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ABSTRACT  
 
Predators affect prey populations by consuming individuals and inducing spatial changes in 
their behaviour. For the prey population, indirect effects of predation may be more important  
than predation itself by inducing reduced survival, growth or reproduction. The biomass of large 
demersal fishes of northwest Atlantic collapsed in early 1990s and failed to recover whereas the 
abundance of grey seals (Halichoerus grypus) is currently at historically high levels which could 
amplify their predation pressure on the fish stock. We followed 14 grey seals equipped with 
satellite transmitters in the southern Gulf of St. Lawrence during the summer period. Overall, 
seals were concentrated at <50 km from haulout place with a decreasing probability of foraging 
in areas away from haulout sites. Small white hake, small herring, and winter flounder were 
more abundant at distances of less than 50km from the haulout sites , whereas cunner, capelin, 
herring were more abundant further offshore.   In August, seals overlap more with small cod 
near the haulout-sites compared to the overlap observed at 50-100km offshore, whereas the 
reverse was observed for sandlance. During September, the probability of having a foraging 
patch in areas of high density of cod was highest in between 50-100 km from the haulout site 
than in closer areas. The distribution of fish near haulout sites suggests that they try to minimize 
exposure to predation from grey seals, which could on a longer term affect recovery.  
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RÉSUMÉ 
 
Les prédateurs peuvent affecter les populations de proies en consommant les individus et en 
induisant des changements spatiaux dans leur comportement. Pour les proies, les effets 
indirects de la prédation peuvent être plus importants que la prédation en elle-même en 
affectant négativement la survie, la croissance ou la reproduction. La biomasse des poissons 
démersaux de grande taille de l’Atlantique Nord-Ouest s’est effondrée au début des années 
1990 et n’a pas récupérée depuis alors que l’abondance de phoques gris (Halichoerus grypus) 
est actuellement à des niveaux historiquement élevés ce qui peut amplifier la pression de 
prédation qu’ils exercent sur les stocks de poissons. Nous avons utilisé des émetteurs satellite 
pour suivre les déplacements de 14 phoques gris autour de leur site de repos au cours de l’été 
dans le sud du golfe du Saint-Laurent afin d’évaluer leur chevauchement avec les poissons 
d’intérêt commercial dont nous avons quantifié l’abondance et la distribution spatiale à partir de 
données de recensement. Généralement, les phoques sont concentrés à moins de 50 km de 
leur site de repos et la probabilité qu’ils démontrent un comportement d’alimentation décroît 
avec la distance au site d’échouerie. À l’opposé de ce qui est observé où aucun site 
d’échouerie n’est connu, le lançon, les petites merluches blanches, les petits harengs et les 
petites plies rouges sont concentrés à moins de 50 km des sites de repos alors que la tanche, 
le capelan et le hareng de grande taille étaient plus abondants au large des côtes. En août, le 
chevauchement entre les phoques et les petites morues est plus important à proximité des sites 
de repos qu’entre 50-100 km alors que l’inverse est observé pour le lançon. En septembre, la 
probabilité d’avoir une aire d’alimentation dans les régions de fortes abondances de morue est 
plus élevée entre 50 et 100 km qu’à proximité des sites de repos. La distribution des poissons 
autour des échoueries de phoques gris suggère que les poissons tentent de minimiser les 
menaces de prédation que les phoques gris et les autres prédateurs exercent ce qui, à long 
terme, peut nuire au rétablissement des stocks. 
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INTRODUCTION 
 
Predators affect prey populations most obviously by killing and consuming individuals (Wirsing 
et al. 2008). Their success in doing this will depend on the degree of spatial and temporal 
overlap in distribution between a predator and its prey, which in turn determines the rate of 
spatial encounters between them (Fauchald 2009). From the perspective of the predator, it is 
assumed that they maximize foraging efficiency, by moving between foraging patches as effort 
expended to obtain energy shows a decline in some measure of cost to benefit. In response to 
predation threats, prey species may undergo seasonal or spatial changes in their own 
behaviour to avoid or minimize predation risk. Such responses may involve changes in habitat 
use, foraging, aggregation, and movement patterns (Creel and Christianson 2008, Wirsing et al. 
2008). For example in Shark Bay Australia, dolphins alter their foraging behaviour, moving to 
deeper less prey rich waters when tiger sharks are present during the warm season, then return 
to feed in the more prey-dense shallow water areas when tiger sharks are less abundant during 
the cooler parts of the year (Wirsing et al. 2008). Foraging by large baleen whales at depth in 
Antarctic waters may reduce the depths that krill descend during their vertical migration (Willis 
2007). The costs of these responses can be manifested by reduced survival, growth or 
reproduction (Creel & Christianson 2008). Recent empirical research has shown that risk effects 
on prey dynamics may be greater than direct effects (Creel and Christianson 2008, Wirsing et 
al. 2008). Therefore, it is important when examining the effects of predators on prey, that risk 
effects be considered as well.  
 
Spatial and foraging constraints may also be placed on predators due to threats from other 
predators, inter and intraspecific competition and ties to some physical feature of the landscape. 
For example harbour seals in Prince William sound, Alaska, must balance expected energy 
gains obtained from feeding on herring near the surface against potential predation risk from 
killer whales versus expected energy gains feeding on less energy dense but larger Pollock at 
depth where exposure to predation risk from sleeper sharks will be greatest (Frid et al. 2007, 
Wirsing et al. 2008). The predicted level of risk taking will vary among individuals according to 
fat reserves, age and experience (Wirsing et al. 2008). In this case human resource use, such 
as overfishing of near-surface herring would  result in an increasing proportion of seals foraging 
in deeper and apparently more dangerous strata (Frid et al. 2007, Wirsing et al. 2008). Seabirds 
that are adapted for efficient flying may have low costs of transport but are only able to utilize 
the upper meter of the sea and prey may escape by hiding at depth, where exposure to 
predation from predatory fish, diving seabirds and sea mammals would have the opposite effect 
of forcing schools of prey fish and krill to the surface, making them available to surface-feeding 
seabirds (Hoffman et al. 1981, Safina and Burger 1985, Mills 1998, Fauchald 2009). 
 
Many species are limited to a specific location at certain times of the year. Seabirds are 
constrained to the nesting site during breeding, but may forage at large distances away from the 
site (Weimerskirch et al. 2005). Similarly, the seal life history strategy is characterized by marine 
foraging interspersed with a requirement for a solid platform (land or ice) for giving birth and 
caring for offspring, moult and resting. The spatial constraint associated with returning to a 
central place between successive foraging bouts will influence the distribution of foraging effort 
of central-place foragers. Central place foraging theory predicts that space use and foraging 
decisions are a function of the distance from the haul-out site (Orians and Pearson 1979) where 
central-place foragers show both lower selection for preferred resources and a lower overall 
variation in selection of resources close to the central point (Schoener 1979). As the risk of 
predation decreases with increasing distance from the colony, prey availability would increase 
(Lewis et al. 2001, Ainley et al. 2003). Similarly, different patterns have evolved to decrease 
intraspecific competition around the central place. Differences in diet and foraging areas 
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between sexes have been observed among many species (Beck et al. 2005, Breed et al. 2006). 
Among seals, food limitations close to haul-out sites, aggression from larger conspecifics, or 
lack of experience in how and where to exploit resources might force juveniles to move further 
from the haul-out sites or to dive deeper than adults to acquire food (Sjöberg and Ball 2000, 
Lowry et al. 2001; Harvey et al. 2008). Ultimately, those differences in habitat use might affect 
the foraging success, growth and possibly survival of individuals (Tupper and Boutilier 1997, 
Cresswell et al. 2010). 
 
The grey seal is a medium sized phocid (approx 300 kg) occurring throughout the North Atlantic. 
Abundant throughout the North Atlantic up to the 17th or 18th centuries, population declined in 
the 19th and 20th centuries but have shown marked increases since the 1970s (Lavigueur and 
Hammill 1993, Bowen et al. 2003, Thomas et al. 2008). Grey seals are strongly associated with 
coastal habitats, alternating hauling out on isolated islands, or reefs with foraging trips to sea. 
The reason why they frequently return to land to haulout is unknown but may be associated with 
costs incurred for processing food (Sparling et al. 2007). The central place foraging behaviour is 
predominant in summer, when grey seals are concentrated in coastal areas and widely 
dispersed throughout their range. The distribution of haul-out sites within the southern gulf is not 
uniform. Grey seals are sensitive to disturbance, and although several areas would appear to be 
suitable for hauling out, the majority of sites are limited to more isolated areas or protected 
areas (National Parks) (Hammill personal observation). In winter, grey seals use more offshore 
areas since they may utilize drifting ice as a platform to haulout on in some areas (Harvey et al. 
2008). Grey seals are also relatively shallow divers. Although capable of diving to 400 m, most 
dives are less than 200 m deep; much less than is observed with the similar sized hooded seal, 
which regularly dives to 400 m or more and with maximum dives of over 1 km in depth (Bajzak 
et al. 2009).  
 
In the southern Gulf of St. Lawrence (Gulf) the biomass of large demersal fishes, notably 
Atlantic cod (Gadus morhua), collapsed in the late 1980s and early 1990s, mostly due to 
overfishing. Despite limited fishing over the last 15 years, demersal fish populations in the Gulf, 
most notably cod, have failed to recover due to elevated natural mortality among adult fish 
(Swain and Chouinard 2008, Swain et al. 2009) and it has been suggested that predation by 
grey seals may be an important factor (Chouinard et al. 2005, Benoît and Swain 2008, Swain et 
al. 2009). Available diet information indicates that they prey primarily on fish of intermediate 
sizes (e.g., mean length of cod 28 cm in length), not large adult fish for which the recent 
elevated natural mortality levels have been documented. However, the consumption of large 
fish by grey seals may be underestimated if their heads are not consumed (e.g., Hauser et al. 
2008, Phillips and Harvey 2009) or if sampling to determine diet composition has not occurred 
when and where grey seals and large fish overlap. Many groundfish spawn and are widely 
distributed throughout the southern Gulf during the summer. However, in late autumn, they exit 
the Gulf to overwinter in Cabot Strait and off the northeast coast of Cape Breton Island. Harvey 
et al. (2011) examined the winter distribution of some groundfish species and grey seals 
equipped with satellite transmitters and concluded that male grey seals, in particular, may feed 
on highly aggregated large cod in early winter in Cabot Strait, off northern Cape Breton Island. 
Subsequent diet sampling based on analyses of stomach contents in the area confirmed that 
grey seals were consuming considerable numbers of large cod (average length 42 cm; Stenson 
and Hammill unpublished data).  
 
In this study, we used telemetry data to analyse movement and to quantify the spatial 
distribution of the foraging behaviour of grey seals in late summer. As grey seals are central 
place foragers, we predict that their foraging effort decreases with increasing distance from 
haul-out site. Using fish data survey, we also estimated the overlap of grey seals with fish of 
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commercial concern. Since much of the available information on diet composition is based on 
near-shore sampling we examined the spatial overlap between grey seals and fish to determine 
if the information on diet may be biased, particularly with respect to size composition of fish 
consumed in the diet versus what is available where grey seals are foraging. If grey seals are 
important predators within the region, then we would predict that prey densities would increase 
as distance from the haul-out site (central place foraging) increased, but we expected that 
abundance of non-preferred prey would show little change with distance to haul-out site. We 
also expect that seals will overlap more with high energetic fish in areas further offshore than at 
close distances to the haulout site. 
 
 

METHODS 
 
STUDY AREA AND DATA COLLECTION  
 
This study occurred in the Gulf of St. Lawrence (Gulf), a wide and shallow shelf of <100 m deep, 
included in the Northwest Atlantic Fishing Organization (NAFO) fishing zone of 4T (Fig. 1). 
Seals were captured in the western part of the Gulf, consequently we limited our study area to 
the western Gulf (WG), a region that was bounded by the eastern coast of New Brunswick and 
Gaspé, the Laurentian channel and the western coast of Magdalen Islands (Fig. 1). Bottom-
trawl surveys to evaluate fish abundance of the southern Gulf have been conducted by the 
Department of Fisheries and Oceans in August since 2003 and in September since 1971 (only 
data since 2000 are used here). Surveys followed a stratified random design, with stratification 
based on depth and geographic area. The survey area was divided into 16 regions or “strata”, 
and fishing locations were randomly selected within each stratum. The number of sites sampled 
each year has varied from about 65–75 in the 1970s to 140–200 in years since 1989. The target 
fishing procedure in all years was a 30-min tow at 3.5 knots. All catches were adjusted to a 
standard tow of 1.75 nautical miles. Fishing was conducted only during daylight hours (07:00–
19:00) prior to 1985, and 24 h per day since then. Catchability of some fish (e.g., thorny skate) 
to the survey is higher at night than in day, and night catches were adjusted to be equivalent to 
day catches as described in Benoît and Swain (2003a,b). When necessary, based on the 
results of comparative fishing experiments, catches of fish were adjusted for a change in survey 
vessel in 1992 and for a change in vessel and gear in 1985 (Benoît and Swain, 2003b). Depths 
covered during the survey varied between 20 to 400 m (Fig. 1) (Swain and Benoit 2006). 
 
A fish survey has also been conducted in Northumberland Strait (NS survey), which separates 
Prince Edward Island from the mainland, in July since 2000 (Fig. 1). This trawl survey used a 
random-block experimental design developed from a 2 x 2 nautical mile grid placed over all of 
Northumberland Strait and adjacent waters. A total of 1,100 permanent stations were identified 
over this area. The potential survey area was divided into 10 experimental blocks (based on 
substrate characteristics); five zones/strata were included in this study. For each block, 30 to 50 
primary stations and up to 15 alternate stations were chosen at random (without replacement) 
from within each block. As our study was limited to the WG, we only considered fish abundance 
sampled at the western end of the area covered by this survey (Hanson 2009) (Fig. 2c).  
 
Most of the demersal and pelagic fish species as well as crustaceans that occurred within the 
area covered by the surveys were sampled. We selected ten common and commercially 
important fish species including both species frequently (e.g., herring, cod) and rarely (e.g., 
winter flounder, skates) reported in grey seal diets (Table 1). When possible, we divided the 
survey catch of fish species into two or three size classes (Table 2). This resulted in a total of 
10, 12 and 18 fish groups considered respectively for the NS, August and September WG 
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surveys. We used principal components analysis (PCA) to summarize similarities and 
differences in spatial distribution among fish groups on each fish survey. A PCA was performed 
using a normalized varimax rotation on the correlation matrix of the fish groups. Variables were 
log-transformed to improve the normality of their distribution prior to analysis. We used the 
Geostatistical Analyst extension of ArcGIS v9.2 (Environmental System Research Institute, Inc 
(ESRI), 380 New York Street Redlands, CA 92373-8100) to produce prediction maps of fish 
density for each groups of fish, combining the data from all years. These analyses were 
repeated for each survey dataset. We used the “ordinary kriging” method to model spatial 
structure based on an omni-directional, spherical semivariogram model. When more than one 
value was available at the same location catch rates were averaged.  
 
GREY SEALS 
 
We captured grey seals during either May-June (post-moult), or September-October from 2000 
to 2008 at Sable Island, and within the Gulf. Seals were anesthetised (Baker et al. 1990) and an 
incisor tooth was extracted for age determination (Bernt et al. 1996). Animals were classified as 
juveniles (<6 years) and adults (≥6 years old) (Hammill and Gosselin 1995). Argos satellite 
transmitters (tag models deployed include: SDR -Wildlife Computers, Redman, WA, USA; ST- 
8, Telonics, Mesa AZ, USA or SRDL 7, Sea Mammal Research Unit, St. Andrews, UK) were 
glued to seals using 5-minute epoxy. All animal handling procedures followed the guidelines of 
the Canadian Council on Animal Care (1993). 
 
DATA COLLECTED 
 
Satellite transmitter signals were received by satellite, and processed under the ARGOS 
system, which provided information on animal position (Argos 1989). A pressure sensor 
sampled depth and a wet/dry sensor also included in tags used, allowed inferring about the 
diving and haul-out activity of seals. Wildlife Computers tags sampled depths at every 10 s and 
at a resolution of 2 m. Dive data were assigned to user-programmed bins that recorded the 
number of dives as well as time spent in each depth category and the number of dive in each 
duration category. The binned data were collected and transmitted over 6 h periods. The SMRU 
transmitters recorded dive parameter information at 4 seconds intervals at a resolution of 2 m. 
These tags transmitted summary statistics of the diving and haul-out activity of seals throughout 
a 3-h time period. A haul-out begins when the SRDL has been continuously dry for at least 10 
minutes and ends when continuously wet for 40 seconds. The duration and the approximate 
positions for the start and the end of each haul-out event, interpolated along the track joining the 
locations obtained for each individual, were also obtained. Similar information was also obtained 
for individual dives performed by seals.  
 
MODELLING PATH TRAJECTORIES 
 
Differences in satellite uplink rates, duty cycles, and batteries life as well as location error rates 
can cause large differences in both track duration and in the number of locations collected from 
each animal per unit time. We fit a two-state switching CRW model described in Breed et al. 
(2009), to the grey seal data using WinBUGS 5 (available online) and R (R Development Core 
Team, http://cran.r-project.org) to handle erroneous satellite locations and normalized the 
number of locations obtained for each individual per day. State-space models handle erroneous 
points by estimating the true location using the error structure of the entire set of satellite 
locations. We used a first difference correlated random walk model with a 480 min time-step (3 
locations by day) to determine whether a seal was foraging or travelling as described by (Breed 
et al. 2009). Locations for which the state-space model had inferred uncertain behaviour (less 
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than 10% of the dataset) were excluded from some of our behavioural analyses. Most fishes 
begin to migrate out of the Gulf by mid-October. Thus, we only considered locations of seals 
between July and mid-October.  
 
CENTRAL PLACE FORAGING BEHAVIOUR 
 
We used haul-out information obtained by the SMRU tags to investigate movement of seals at-
sea. We calculated the proximate distance to land for each haul-out event. Haul-out conditions 
occasionally occurred at sea. This was probably due to the seal remaining motionless at the 
surface at sea or to the inaccuracy of the Argos system. As the Argos precision was about 1 km 
(Argos 1989, Vincent et al. 2002), only haul-out events that occurred within a distance of 1 km 
of the coastline were considered as terrestrial haul-out events. We calculated duration of each 
haul-out event and the distance between successive terrestrial haul-outs. Trip-to-sea was 
defined as an excursion between two successive terrestrial haul-out events. Haul-out events 
that occurred at more than 1 km from the shore were designated as extended at-sea surface 
intervals. Each of these events was assigned to their relevant trip to sea. Altogether, we 
assigned 3 053 locations to their relevant trips to sea (N=489), providing us with the distance of 
each location from the haul-out site from which the seal began its trip to sea. The location with 
the greatest distance from the haulout within each single trip to sea was used as a proxy for the 
maximum distance travelled during that trip. Trip duration was estimated by extracting the time 
elapsed between when the animal left the start haulout site, travelled to sea then hauled out 
again.  
 
STATISTICAL ANALYSIS 
 
We used linear mixed models to test the influence of different parameters (see table 4) on the 
haul-out and trip duration, distance between successive haul-outs, maximum distance reach 
during a trip to sea, extended at-sea surface duration, and return trip duration to haul-out. To 
account for repeated measures on the same individuals and for differences between individuals, 
an “individual” was considered as a repeat factor in the models. We applied a log transformation 
to variables tested prior to the analysis to improve the normality of residuals. We calculated the 
Akaike information criterion (AIC), delta AIC and Akaike weights to determine the factors that 
best explained the variation in the data. Model selection was performed following the parsimony 
principle (Burnham and Anderson 2002a). However, when models with similar AIC values were 
observed (AIC≤2), we estimated parameter values and standard errors using a model 
averaging procedure based on model AIC weight (Burnham and Anderson 2002a). Only the 
best models for each analysis are reported below. All models tested and their associated AIC 
values are presented in appendix A. All statistical analyses were carried out using SAS (SAS 
version 9.1; SAS Institute Inc, 100 SAS Campus Drive Cary, NC 27513-2414 USA) with a 
probability level set at 0.05. All results are presented as means ± se. 
 
AREA AND RESOURCES AVAILABLE 
 
To assess foraging behaviour of seals, we defined any area of at least three consecutive 
foraging locations as a foraging patch. We then measured the area of foraging patches using a 
minimum convex polygon method (Breed et al. 2009). This was done considering all locations 
obtained for seals that concentrated their activities within the southern Gulf between July and 
mid-October. Logistic regression analyses, relating the probability of occurrence of a foraging 
patch to fish abundance (Manly et al. 2002), were then used to estimate the overlap between 
seals and fish. This analysis compared fish density between observed and randomly located 
foraging patches created in the area available for seals.  
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As grey seals are central place foragers, the area available to them is limited to the area 
surrounding the haul-out site. The maximum distance reach by a seal during a trip to sea was 
170 km. We then considered the area located at less then 170 km from a haul-out as habitat 
available to seals. Trips in which the foraging patch of grey seals occurred were concentrated 
around four haul-out site areas: Gaspé, Miscou Island, Neguac and Kouchibouguac (Fig. 1). We 
calculated the average coordinates for the haul-out sites that occurred in each of these areas 
and created a circle of 170 km of radius around each of these ‘average haul out sites’ (Fig. 1). 
We determined if fish abundance within the area available for seals differed from fish 
abundance within the area covered by the survey. We also performed t-tests to estimate how 
abundance of each fish group varied within the area used by seals according to different 
distances classes (0-10; 10-30; 30-50; 50-100; 100-170; >170 km) from the haul-out site. No 
large persistant haulout sites occur along the northern coast of the PEI Island. Using the same 
distance classes as in the previous analyses, we also performed t-tests to determine if fish 
abundance in this area was different from areas where seals were observed to occur.  
 
SPATIAL OVERLAP BETWEEN FISH AND SEALS 
 
Habitat selection was determined by comparing the abundance of a fish group within a seals’ 
foraging patch to fish group abundance within the study area. The availability of fish was 
determined by randomly positioning each foraging patch (using rotation and translation) within 
the survey area (Wilson et al. 1998, Dussault et al. 2005). Random permutations of the foraging 
patch were retained if ≥50% of range area overlapped the study area to avoid an 
underestimation of the study area boundary (Wilson et al. 1998, Dussault et al. 2005). We 
repeated this exercise over the areas covered by the NS survey and by the WG survey by 
creating 10 to 30 random permutations over each of these areas, respectively. We used ArcGIS 
9.2 to calculate the abundance of each fish group within a foraging patch and random 
permutations.  
 
We applied a distance-based model to incorporate potential spatial clustering of habitats 
surrounding the central place and to account for potential bias in the selection estimates 
(Rosenberg and McKelvey 1999, Carrete and Donázar 2005, Beest et al. 2010). We used the 
distance between the middle of a foraging patch and the haul-out site as an explanatory 
variable in the models tested. For the foraging patch for which the coordinates of the departure 
haul-out site were unknown, we visually examined the path of the individual and calculated trip 
distance using the average coordinates of haul-out site area that occurred in the vicinity of the 
haul-out site from which trip began for that seal. We considered 5 distance classes, in our 
analysis (0-10; 10-30; 30-50; 50-100; 100-170 km). Models estimated did not converge if we 
included distance classes within which no foraging patch occurred. We then excluded distance 
class for which no foraging patch occurred from our analysis. We excluded the following 
distance class from our analyses: NS survey: 100-170km; WG August: 0-10;100-170km; WG 
September: 0-10;10-30;100-170.  
 
Logistic regressions using generalized estimating equations (GEE) to control for repeated 
observations on the same individual were used to relate the probability of occurrence of a 
foraging zone to fish abundance. The quasi-likelihood information criterion (QICu) developed by 
Pan (2001) was used instead of the Akaike information criterion (AIC) because GEEs are not 
based on maximum likelihood estimation. Similar to AIC, the ΔQICu and QICu weights were 
computed to select the most parsimonious model (Burnham and Anderson 2002b). Models with 
ΔQICu≤2 were considered to be equivalent. When models were equivalent, the model with the 
fewest parameters was selected (Burnham and Anderson 2002b). We considered ‘n’, the 
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sample size, as the number of foraging patches. To avoid model over-parameterization, only 
models in which the number of variables did not exceed n/5 were explored. We tested all 
models including each fish group and distance separately as well as the interaction between 
fish group and distance. Only foraging patches observed over the NS’s area in July and August 
were used for the analysis of NS survey. Foraging patches that occurred in August and 
September in the WG area were respectively used for the analysis involving data obtained from 
the WG survey conducted in August and September.  
 
The coefficient value for each parameter estimated by the model, known as the log odds ratio 
(), are equivalent to what are known as selection ratios (Manly et al. 2002). Log odd-ratios are 
the odds of an event occurring with an increase of one unit of the variable. As we considered 
categorical variables in our models, we could not derive absolute probabilities of selection. 
However, the calculation of odds ratios relative to a reference category consisting of a chosen 
combination of levels of the categorical independent variables is informative and reliable 
(Godvik et al. 2009). We set the reference category in our logistic model to the farthest distance 
class. The confidence interval limit of the Wald’s statistic was used to determine if  differed 
from 0. When >0, the probability of use by a seal is higher than in reference category and 
lower if <0. Logistic regressions were performed using SAS (Littell et al. 2002). Results are 
presented as means ± SE. 
 
 

RESULTS 
 
FISH DISTRIBUTION AND ABUNDANCE 
 
The estimated abundance of fish of all species in the area covered by the NS survey was  
227.4±343.8. The estimated abundance of fish of all species in the area covered by the WG 
survey was 111.5±147.3 in August and 390.9±289.6 during September. Winter flounder, herring 
and sand lance were the three most abundant fish species caught in the area covered by the 
NS fish survey accounting for 31%, 30% and 28% of the total number of fish caught (Table 2a). 
Thorny and smooth skates as well as capelin were not sampled in the NS survey. In the WG 
survey seasonal changes in the abundance of fish occurred. In August, herring, cod and winter 
flounder were the most common fish species accounting for 52%, 39% and 3% of the total 
number of fish caught (Table 2b). However, between August and September there was a 4-fold 
increase in fish abundance due primarily to increases in capelin abundance over the 100-200 m 
deep area located in the middle of the southern Gulf. During September capelin accounted for 
60% of the fish caught (vs only 5% in August), followed by herring (21%), cod (12%) and winter 
flounder (8%) (Table 2c). 
 
Fish were not uniformly distributed throughout the study area. Within the NS survey region, the 
PCA identified 2 fish assemblages which explained 42% of the variability of fish distribution 
(Table 3a). Winter flounder, cod and herring were associated with the first axis of the PCA. 
These fish were widely distributed over the NS survey area with the highest concentrations 
observed off Néguac and Kouchibouguac and along the western coast of PEI (Fig. 3a). The 
second axis of the PCA was composed of winter skate and cunner. The highest concentration 
of these fish was observed along the northern coast of PEI. Cunner was also abundant in the 
Kouchibouguac area and high concentrations of winter skate occurred in Northumberland Strait. 
Sandlance, were very abundant in the northern part of the NS survey area but were absent in 
Kouchibouguac area as well as along the northern coast of PEI. This fish was negatively 
associated with the second axis. White hake were abundant off western coast of PEI and were 
associated with both axes of the PCA (Fig. 3a).   
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In the WG surveys, during both August and September, the highest concentrations of fish were 
observed off the Gaspe and New Brunswick coasts over areas 100-200m deep but a change in 
the distribution of fish in the WG area occurred between the August and September surveys, 
with a shift in most fishes migrating towards the south-western part of the study area in 
September (Fig. 3b,c). A PCA analysis explained 62% of the total variability in spatial 
distribution of fish in both months, along five components (Table 3b,c). White hake, thorny and 
smooth skates aggregated along the slope of the Laurentian channel dominated one axis in 
both months. Herring, cunner and winter flounder as well as small cod in September were 
associated with the second axis. These fish groups occurred along the coast of New Brunswick, 
between Chaleur Bay and Néguac in areas where water depths were less than 100 m with the 
highest concentration of fish observed around Miscou Island. They were also concentrated 
along the northern shore of PEI. No winter flounder and cunner were caught at depths greater 
than 50 m. In September, the abundance of herring over water depths of 100-200m increased, 
while this fish was concentrated in the south western part of the study area. However, some 
spatial segregation was observed with small herring forming dense aggregations along the 
coast of New-Brunswick while large herring were concentrated on the northern shore of PEI. 
Medium and large cod, as well as small cod in August dominated the third axis of the PCA. Cod 
was most abundant off the coast of New Brunswick during August, but their distribution shifted 
to the south of the study area in September when aggregations formed along the northern coast 
of PEI. Shifts in depth preferences were also observed with cod being concentrated in areas 
100-200m deep in August, then shifting to shallower water in September. Spatial segregation 
according to length class was observed in their distribution with small cod located closer to 
shore while large cod occurred further offshore and along the slope of the Laurentian channel. 
Cod were also also stratified with respect to depth. The largest concentrations of small, medium 
and large cod were respectively observed at less than 60 m, at greater than 150 m and at 200 
m deep. A fourth axis of the PCA was dominated by sandlance (+ve) and capelin (-ve) in both 
August and September. During August, capelin was also negatively associated with the axis 
composed of medium and large cod. Sandlance were aggregated off Kouchibouguac (New 
Brunswick) coast as well as along the edge of the Laurentian channel, while capelin, were 
highly concentrated between Gaspé and the Magdalen Islands. The fifth PCA axis was 
dominated by winter skates, which were abundant in the southwestern Gulf off Shippagan 
during both August and September. 
 
GREY SEAL DISTRIBUTION 
 
From July to mid-October seals were located around Sable Island, in the northern Gulf of 
St. Lawrence, along Anticosti Island and in the southern shore of St. Lawrence estuary (Fig. 1). 
Fourteen individuals, all tagged within the Gulf (6 male adults; 6 male juveniles; 2 female 
adults), concentrated their activities within the southern Gulf at Kouchibouguac, Néguac, Miscou 
Island and offshore Gaspé (Fig. 1). Locations of adults and juveniles as well as males and 
females overlapped broadly. Each tagged seal used one major site most of the time, but the 
preferred area varied among individuals. Most seals remained in the same area from July to 
mid-October with the exception of two individuals that travelled to the St. Lawrence estuary and 
back, during this period. In the month of October, no seal was located in the Gaspé area. 
 
CENTRAL PLACE FORAGING BEHAVIOUR 
 
Seals tracked in the southern Gulf alternated haul-out periods on land (n=782) of 4.69±0.01 h 
with foraging trips-at-sea that lasted, on average, 2.05 ± 0.14 d. The duration of both the haulout  
and trip-at-sea increased during the fall, averaging two and three times longer respectively in 
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October compared to July and August (F3,32=2.97 p=0.04) (Table 4a,c ,5a). Age class 
(F1,12=0.44 p=0.52) and sex (F1,12=1.40 p=0.26) had no effect on duration of haulout (F1,12=1.88, 
p=0.37) and trip duration (Table 5a) when included in the competitive models. The average 
distance at which seals were located from shore increased gradually throughout the summer 
period and was almost twice as far in October (52.6±3.5 km) compared to August (27.8±1.1 km) 
(Table 4b, 5b; month effect: F3,31=17.9, P<0.01). Overall, 90% of the time, seals were located at 
less than 50 km and 90% of their trips were less than 50 km from their haulout site (Fig. 4b,c). 
On average, seals spent 0.49±0.05 d travelling outwards to the furthest location and 1.6±0.12 d 
to return to the haulout site. The maximum distance from shore (F1,474=23.67, p<0.01), time to 
travel to the furthest point (F1,468=59.29, p<0.01) and time to return to the haulout site increased 
with an increase in trip duration (Table 4g,h,i). However, the maximum distance was not 
affected by sex (F1,12=0.08, p=0.78) or age class (F1,12=0.73, p=0.41). Most trip-at-sea (90%) 
ended less than 10 km from where they began (Fig. 4a).  
 
Seals performed 635 extended at-sea surfaces during 204 trips-at-sea. The occurrence of the 
extended surface periods did not vary with sex (F1,12=0.01, p=0.93) or age class (F1,12=2.87, 
p=0.12). Extended time at the surface was observed to occur closer to the haulout sites in 
August than in October (Table 4e, 5c) (month effect: F3,29=2.79, p=0.06), but overall, 70% of the 
extended at-sea surface time occurred within 30 km of the haul-out (Fig. 4d). Seals surfaced 
less frequently at-sea in October (22%) than during July (28%) (Table 5c). Both the duration of 
the extended at-sea surfaces (3.59h±0.617h vs 0.59h±0.06h; t-test: t774=−8.95, P <0.01) and 
distance travelled (15.58±1.01 vs 4.41±0.38; t-test: t64=−13.65, P <0.01) were greater in October 
than at the beginning of summer. On trips for which we had locations (n=624), 72% of the 
extended at-sea surface time occurred during the return to the haul-out site. Extended at-sea 
surfacing occurred farther from haul-out site while maximum distance of trip increased 
(F1,585=259.99, p<0.01; Table 4e). The duration of extended at-sea surfacings did not vary with 
trip duration (F1,596=0.16, p=0.69), but juveniles had longer extended at sea-surfacing bouts than 
adults (F1,12=5.77, p=0.03) (Table 4d, 5c).  
 
Seals were in foraging states as inferred by the state-space model for 78% of locations obtained 
within the southern Gulf. We identified 242 foraging patches between July and mid-October 
(Fig. 5a), of which, 44 zones were used by 11 individuals (1 female juvenile; 2 female adults, 3 
males juvenile, 5 males adults) in the NS survey area in July, and 38 foraging zones were used 
by 13 individuals between August mid-October (23 August ; 15 September-mid-October) in the 
WG survey area (Fig. 5b). On average, seals stayed 2.7±0.2 days within these foraging areas 
that covered an average area of 87.1 ± 11.2 km². Most foraging areas were located off 
Kouchibouguac (66%) and Néguac (31%) and only 3 foraging areas occurred off Miscou Island 
(August). 
 
All foraging patches were located within 100 km of the haul-out site, at an average distance of 
30.5 ± 3.2 km from the haul-out (Fig. 4g, 7). Foraging zones were located closer to the haul-out 
site in July and August than in September and October (Anova: F3,75 = 11.26, P<0.01) 
(Table 5d). Females foraged two times closer (t-test: t1,77 = 2.06, P=0.04) and stayed longer (t-
test: t1,81 = 1.63, P=0.11) in their foraging patch than did males. Age class did not affect the 
location of foraging zones (t-test: t1,77 = 1.83, P=0.3) as well as time spent within these zones  (t-
test: t1,81 =0.46 , P=0.64.). Time within the foraging patch and distance from the foraging patch 
to the haulout site increased significantly as the maximum distance reached during the trip-at-
sea  increased (GLMM: log(temps)=log(temps)*0.046+2.1; F1,52=8,37; P=0.01; 
log(distance)=log(distance)*0.19+0.32; F1,52=38,4; P<0.01). 
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RESOURCE AVAILABILITY ACCORDING TO DISTANCE TO HAUL-OUT SITE  
 
The NS survey overlapped with the area used by seals at the Kouchibougauc and Néguac, 
haulout sites. In this area, winter skates were more abundant at >10 km from the haulout site 
than at closer distance to the haulout site. The abundance of all others fish species did not vary 
with distance from shore (Table 6a). 
 
In the southern Gulf, no difference in abundance of fish was observed between the area 
available for seals and the whole area covered by the fish survey in both August and 
September, with the exception of smooth and thorny skates that were more abundant in the 
whole survey area than in the area used by seals in September (Table 2). Some species of fish 
were not uniformly distributed within the area used by seals. During August, medium cod, large 
cod and cunner were more abundant between 50-100 km and/or 100-170 km from shore than in 
closer areas. The opposite was observed for small winter flounder (Table 6b). The abundance 
of herring, sand lance, skates, white hake, large winter flounder and small cod did not vary with 
distance (Table 6b).  
 
In September, the abundance of capelin and large herring was lower nearer to the haulout site 
(Table 6c). At the opposite, the abundance of sand lance, small white hake, small herring and 
small winter flounder decreased with increasing distance from the haulout site (Table 6c). A 
gradient in cod abundance was also observed with distance from the haulout site. Small cod 
were more abundant at less than 50 km from a haulout site than at greater distances, while the 
highest density of medium cod was observed between 50 and 170 km from the haulout site. The 
abundance of large cod was greater at 50-100 km from the haulout site than in all other 
distance classes (Table 6c). No difference in abundance according to distance from haulout site 
was observed for large white hake, large winter flounder, cunner and skates. 
 
Fish abundance near haulout sites differed from abundances at similar distances off the PEI 
coast, an area where grey seals are not thought to haulout in any significant numbers. In 
August, large, small and medium cod were less abundant at, respectively, 10-30 km, 30-50 km 
and 50-100 km from the haulout site than at similar distances from the PEI coast. Small cod, 
medium cod and capelin were also more abundant at a distance of 100-170 km from haulout 
than at similar distance off the PEI coast (Fig. 6a, 7a). At the opposite of what was seen at 50-
100km, herring was more abundant around the haulout site than offshore PEI island between 
10-30 km and at >100 km. The abundance of cunner, winter flounder, white hake, sand lance 
and skates was the same in the vicinity of haulout areas and off the coast ot PEI island.  
 
In September, large herring, large white hake and all size classes of cod, were less abundant at 
less than 50 km from the haulout site than at similar distances from the PEI coast. Small 
herring, between 10-30 km and at >50 km, sandlance, at less than 50 km, and winter flounder, 
between 30-50 km and 50-100 km, were more abundant in areas surrounding haulout sites, 
compared to off the PEI coast (Fig. 6b, 7b). The abundance of cunner, small white hake and 
skates in the areas surrounding haulout sites was similar to that at similar distances off the PEI 
coast.  
 
 

HABITAT SELECTION PATTERNS 
 
In both the NS and WG survey areas, the probability of having a foraging zone was strongly 
influenced by the combination of overall fish abundance, and distance from the haulout site 
(Table 7).  
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ONSHORE SURVEY 
 
In the NS survey area, the probability that a foraging zone overlapped with winter flounder was 
greatest at 30-50 km than between 50-100 km. The probability that a foraging patch overlapped 
with concentrations of winter flounder at 0-10 km and 10-30 km from haulout site did not differ 
than the probability observed between 50-100 km. The probability of having a foraging patch in 
areas of high density of cod was highest in areas located 50-100 km from the haulout site than 
at closer areas. Selection for sandlance areas did not vary with distance to the haulout site 
(Tables 8a;9a).  
 
WG SURVEY 
 
In the area covered by the August WG survey, the best model indicated that  sandlance 
preferred areas 50-100 km offshore instead of nearshore areas (Tables 8b, 9b). Selection for 
high density of small cod was higher within 10-30 km than betweem 50-100 km of the haulout 
site whereas selection for this fish group did not vary between 30-50 km and 50-100 km. The 
probability of having a foraging patch according to abundance of large winter flounder, medium 
cod and large cod did not vary with distance from the haulout site (Table 8b, 9b).  
 
In September, in the WG survey area, the likelihood of having a foraging patch in an area used 
by medium cod was higher between 50-100 km than between 100-170 km from the haulout site 
(Tabls 8c, 9c). The best models also pointed out that habitats with high densities of large cod 
were less used within 30-50 km of the haulout, but had a similar probability of being used 
between 50-100 km and 100-170 km. The probability of having a foraging patch according to 
distance did not vary with the abundance of small winter skate and winter flounder. 
 
 

DISCUSSION 
 
During the summer grey seals in the Gulf spend most of their time within 50 km of their 
preferred haulout sites from which they complete relatively short return trips-at-sea (McConnell 
et al. 1999, Sjöberg and Ball 2000, Austin et al. 2004). In the northwest Atlantic these preferred 
areas appear to be located in areas where human disturbance is minimal or benign such as in 
parks or areas with limited human access (Hammill personal observation). Their preference for 
relatively shallow areas (Harvey et al. 2008), and limited offshore movement may be linked to 
physiological limitations on their diving capacity (Halsey et al. 2006) and need to haulout. In late 
summer, when seals performed longer trips-at-sea and foraged further offshore, they also 
stayed longer at haulout sites when they returned. The reasons for the need to haulout are not 
clear but it has been suggested that this behaviour is in response to avoid predators, processing 
food, thermoregulate, or to rest (Thompson et al. 1989, Watts 1992, McConnell et al. 1999, 
Sparling et al. 2007). However, there are few predators (sharks) in the southern Gulf.  
 
Grey seals spent 90% of their time within 50 km of their haulout sites. The proximity of prey 
aggregations to colonies or haulout sites allows marine predators to reach prey patches at low 
energetic costs (Guinet et al. 2001, Weimerskirch et al. 2005, Baylis et al. 2008, Winter et al. 
2009). In September, when the distribution of many fish groups shifted to the south-western part 
of the Gulf and abundance increased in offshore areas, a shift in foraging activity occurred as 
animals made longer trips to areas located further offshore. Seasonal changes in distances 
travelled and location of diving activity have been observed in other marine predators (Guinet et 
al. 2001, Baylis et al. 2008, Winter et al. 2009) and may be associated with seasonal changes in 
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energy buildup prior to the January breeding season (Beck et al. 2003b). Often, shifts in 
foraging location have been associated with ecosystem productivity with marine predators 
concentrating their foraging effort in areas where the highest aggregation of prey occurrs (Lowry 
et al. 2000). Birds, otariids and Steller sea lions changed colony or haulout sites and to alternate 
nearshore and offshore foraging areas to track changes in the distribution of highly aggregated 
preys (Lowry et al. 2000 , Weimerskirch et al. 2005, Baylis et al. 2008, Winter et al. 2009). 
However, we did not observe major shifts in haulout use between areas suggesting that 
sufficient resources were available within range of currently used sites, or that alternative 
secure sites may not be available. 
 
We observed that the probability of a foraging patch occurring varied according to a 
combination of fish abundance and distance from the haulout site. Differences were also 
observed between male and female grey seals in the amount of time spent near haulout sites 
versus offshore areas. Central place foraging strategy states that searching and foraging efforts 
should decrease as distance from the central place, but animals that forage at a greater 
distance from the central place should increase their energy gain in the patch encountered in 
the furthest habitats (Orians and Pearson 1979). Marine predators and breeding bird species 
that forage in distant areas generally consume more food items with high-energy content and 
deliver either larger single prey items or larger loads of smaller items to their offspring (Staniland 
et al. 2007). Grey seals are capital breeders and the seasonal motivation to buildup fat reserves 
differs between the sexes (Beck et al. 2003b) resulting in spatial partitioning of foraging areas, 
for limited resources around central place, as is commonly observed in colonial insects, land 
birds and seabirds foraging in adjacent colonies (Dukas and Edelstein-Keshet 1998, Adler and 
Gordon 2003, Ainley et al. 2003). Male grey seals generally prey on a wide range of prey with 
more emphasis on demersal species whereas females appear to consume more high energy 
small pelagic fish (Beck et al. 2003a, Beck et al. 2007, Tucker et al. 2007, Hammill, this 
meeting). Offshore foraging areas (≥50 km from the haulout) are more frequently used by males 
than by females (Breed et al. 2006, Harvey et al. 2008, Harvey et al. 2011). These offshore 
areas are characterized by high densities of larger cod in the Northumberland Strait area, high 
densities of the energy rich sandlance in August, and high densities of medium and large cod in 
September in the Western Gulf region.  
 
Generally, fish abundance was higher in areas where large grey seal haulouts are not known or 
increased with distance from the haulout site among most species, with abundance peaking 
about 50-100 km offshore suggesting that seal predation had reduced fish abundance as one 
moved closer to a haulout site, or prey responded by shifting their distribution to minimize 
predation or a combination of the two mechanisms. Changes in the size distribution of fish also 
occurred suggesting that other habitat factors might have been involved. Generally, larger, older 
demersal fish occur in deeper waters whereas small fish are found in shallower water depths 
(Werner and Gilliam 1984, MacPherson and Duarte 1991). We observed such a pattern among 
cod, with smaller cod found closer to shore, medium sized cod at intermediate distances and 
large cod found farthest offshore. Although small cod would be exposed to predation from seals, 
this inshore movement may also provide greater protection from large cod, which would 
represent a much more significant predation threat than would grey seals. Small herring, an 
important prey for cod (Hanson and Chouinard 2002) were also more abundant in nearshore 
waters, whereas large herring occurred off the north coast of PEI where grey seals are not as 
abundant. Similar responses to predation threats have been observed among migrant pied 
flycatchers (Ficedula hypoleuca), which selected to nest in areas where predation from 
sparrowhawks (Accipiter nisus) represented a threat, but also one that was likely to be lower 
than predation threats from other avian or mammal predators (Thomson et al. 2006). The 
abundance of large cod increased with increasing distance from shore, particularly beyond 
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distances normally visited by grey seals, suggesting attempts to minimize predation threats. 
Although this offshore distribution might represent a selection for cooler water to lower 
metabolic costs in the face of low prey levels. Such shifts, possibly in response to limited food 
resources would be expected when cod biomass was quite high. However, current cod biomass 
levels are quite low and higher densities of large cod would be expected to be observed in 
warmer waters closer to shore, as has been observed in the past when the Northwest Atlantic 
grey seal population was only a tenth of its current size (Chouinard and Swain 2002,Thomas et 
al. 2008).  
 
However, in our study, other species, such as sandlance did not show similar displacement, but 
their numbers may be so abundant that predation from grey seals would have little impact, 
threats of predation from other fish such as cod may represent a more significant threat 
(Morissette et al. 2006, Savenkoff et al. 2007), aspects of their biology to avoid predators 
(hiding in the substrate) may be an effective strategy to minimize predation mortality or aspects 
of their biology do not favour an offshore distribution.  
 
Direct and indirect predation effects might be quite significant in the case of rarer species such 
as skates and hake. Significant shifts in the distribution of winter, smooth and thorny skate 
within the southern Gulf have been observed over the last 3 decades. During the 1970s, 
smooth,winter and thorny skate were widely distributed throughout the southern Gulf 
(COSEWIC 2005, Swain and Benoit 2006). However currently thorny skate and smooth skate 
are limited to the deeper waters of the southern slope of the Laurentian Channel, while the now 
Endangered population of winter skate are limited to a small area in the southwestern Gulf 
(Swain et al. 2005, Swain and Benoît 2006).  
 
This ‘halo’ effect where prey densities have declined around areas where predators are 
abundant has also been observed among colonies and haulout sites of seabirds (Lewis et al. 
2001, Ainley et al. 2003) and is likely a prey response to reduce predation risk. This indirect 
effect of predators on their prey can be subtle but energetically expensive where prey are forced 
to select less suitable habitat or foraging areas to reduce threats from predators (Werner and 
Peacor 2003, Cresswell et al. 2010). Dolphins allocated significantly more time to deep habitats 
than expected based on food resources when sharks were common compared to period where 
abundance of sharks is low (Heithaus and Dill 2002). Among elk, predation risk affected calf 
recruitment in subsequent years (Creel et al. 2007) whereas had lowest clutch size when they 
breed in the vicinity of sparrowhawk nests (Thomson et al. 2006). 
 
An understanding of diet composition is an important in trying to understand the role of grey 
seals within the southern gulf ecosystem. Among marine mammals diet has been estimated 
using stable isotopes, fatty acids and analyses of digestive tract contents. All of these 
techniques are associated with various strengths and weaknesses (see Phillips and Harvey 
2009). In the southern Gulf, analyses of digestive tracts have been the preferred approach, 
assuming that digestive content recovery reflects the spatial and temporal variation in diet 
composition. In this study, grey seals spent much of their time within 50 km for the haulout site, 
with the average trip at sea lasting for approximately 3 days. In studies using recovery of faecal 
material to determine diet, the majority of otoliths and beaks ingested by seals were passed 
within 3 days (Grellier and Hammond 2006). This indicates that much of the diet would be 
captured using analyses of digestive tracts among seals in the southern Gulf, but for longer trips 
extending further offshore e.g., those often undertaken by males some diet material may 
already have been passed before animals returned to the haulout site. There was also some 
evidence that animals may have remained at sea, spending extended periods of time at the 
surface. Similar, extended at-sea surfaces have been related to the digestion process among 
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elephant seals and in captive grey seals (Crocker et al. 1997, Bonermann et al. 2000, Sparling 
et al. 2007). In the absence of at-sea sampling of animals, diets based on shore collections of 
faecal material might under-estimate foraging in these offshore regions. Seals spent 4.45±1.15 
hours (range 0.67-14.7) in their foraging patch located in areas of high concentration of large 
cod.  Representation by large cod as well as other species that show higher densities further 
offshore may then be under-represented in shore-based collections. This may be particularly 
true for the fall when seals go further offshore and spend more time in areas of high 
concentration of large cod.  
 
The current collapse has been accompanied by a significant change in ecosystem structure, 
where the ecosystem formerly dominated by large piscivores demersal fish is now dominated by 
small pelagic forage species and marine mammals (Morissette et al. 2006, Savenkoff et al. 
2007, Bundy et al. 2009). The current recovery has been limited by a combination of continued 
fishing and high levels of natural mortality even when no fishing has occurred. During that time 
the NW Atlantic grey seal population has increased from approximately 25,000 animals during 
the 1970s to over 300,000 animals in 2008. At current levels, the grey seal may be playing an 
important role in structuring the southern Gulf ecosystem through direct predation (Savenkoff et 
al. 2007) and in influencing the distribution of prey species in the southern Gulf. This could have 
longer term implications on the recovery of groundfish in this area.   
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Table 1. Diet composition of grey seals collected from the Miramichi (southern Gulf of St. Lawrence) area 
(from Hammill 2011). 
 

Miramichi Fall intestine   Spring intestine 

 females (N=46) males (23)  females (27) males (5) 

  Mean SD Mean SD   Mean SD Mean SD 

Sandlance 88.9 3.2 77.7 11.4  92.9 3.6 64.5 27.7 

Hookear sculpin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Atlantic herring 1.3 0.8 10.5 6.1  0.5 0.5 0.0 0.0 

Sculpin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Wrymouth 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Lumpfish 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Fourbeard rockling 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Fourline snakeblenny 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Atlantic cod 0.9 0.6 6.0 6.2  2.5 2.1 22.3 18.1 

Gadid  1.2 0.8 0.0 0.0  0.0 0.0 0.0 0.0 

Arctic staghorn sculpin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Sea raven 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

American plaice 0.5 0.4 0.0 0.0  0.0 0.0 0.0 0.0 

Yellowtail flounder 1.5 0.9 0.1 0.1  1.6 0.8 10.3 8.4 

Snakeblenny 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Daubed shanny 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Blenny  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Checker eelpout 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Eelpout 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Ocean pout 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Capelin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Longhorn sculpin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Shorthorn sculpin 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Sculpin 0.0 0.0 0.8 0.9  0.0 0.0 0.0 0.0 

White barracudina 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Smelt 0.1 0.1 0.0 0.0  0.3 0.3 0.0 0.0 

Butterfish 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Flounders 1.7 0.7 1.2 0.7  0.4 0.2 0.0 0.0 

Winter flounder 2.7 0.9 1.7 1.1  1.2 0.8 1.5 1.3 

Mackerel 0.9 0.9 0.0 0.0  0.0 0.0 0.0 0.0 

Windowpane 0.1 0.1 0.0 0.0  0.1 0.1 0.0 0.0 

Redfish 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Arctic shanny 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Prickleback/Blenny 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Cunner 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Unspecified 0.2 0.1 1.1 1.3  0.1 0.1 0.4 0.4 

White hake 0.0 0.0 1.0 0.6  0.2 0.3 0.9 0.8 

Eelpout 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Amphipod 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 
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Table 1.  (End) 
 

Miramichi Fall intestine   Spring intestine 

 females (N=46) males (23)  females (27) males (5) 

  Mean SD Mean SD   Mean SD Mean SD 

Bivalvia 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Shrimps 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Crab 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Squid 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Cumacean 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Euphausid 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Gastropoda  0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Isopod 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 

Ave mass per stomach (g) 4398.4 4429.3 4468.3 8342.3   5095.4 5986.2 4092.2 2637.0
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Table 2. Fish species and size classes used in this study. N is the a) total and b) average number of fish caught in the area covered by the fish 
survey conducted in Northumberland Strait (NS) and in the Western Gulf (WG) of St. Lawrence in both August and September. The average 
number of fish within the area available for seal is also given in c. 
 

   WG survey 
 

NS survey 
August September Group fish 

Class 
lenght 
(cm)  a b* a b c a b c 

<25    4,535 4.0 ± 7.6 6.5 ± 1 6,350 5.7 ±14.8 8.5 ± 1.6 

25-35    12,368 12.6 ± 15.8 14 ± 0.7 8,719 9.1 ±14.9 10.1 ± 1.5 

>35    27,760 30.5 ± 33.6 36.1 ± 1.2 35,475 39.9 ±117.9 38.7 ± 5.2 

Cod (Gadus morhua) 

all  5,600 9.4 ± 3.5 44,656 47.6 ± 46.7 56.6 ± 2.8 59,544 
55.3 ± 
137.1 57.8 ± 8.4 

≤35    543.0 0.5 ± 4.2 0.2 ± 0.2 468 0.4 ±1.2 0.1 ± 0.1 

>35    851.0 0.7 ± 2.2 0.2 ± 0.2 920.4 0.9 ± 2.4 0.3 ± 0.2 
White hake (Urophycis 

tenuis) 

all  155 0.1 ± 0.4 1,394 1.2 ± 3.6 0.4 ± 0.3 1,388.36 1.4 ± 3.6 0.4 ± 0.2 

≤30    3,432 2.9 ± 7.0 4.5 ± 0.7 37,538 31.1 50.3 ± 7.8 

>30    489.0 0.4 ± 1.1 0.7 ± 0.1 2,236 1.9 3 ± 0.5 

Winter flounder 
(Pseudopleuronectes 

americanus) 
all  38,043 46.9 ± 37.5 3,921 3.3 ± 7.9 5.2 ± 0.8 39,774 

32.9 ± 
109.8 

53.2 ± 8.3 

<30       83,727 72.8 ±163.3
115.7 ± 

20.8 

>30       18,743 17.1 ±40.7 26.8 ± 5.1 
Herring (Clupea 

harengus) 

all  36,804 37.8 ± 90.8 57,568 51.4 ± 135.7 
79.7 ± 
14.4 102,470

80.3 ± 
176.6 

126.5 ± 
23.5 

Capelin (Mallotus 
villosus) 

all  1 0 ± 0.01 6,015 10.6 ± 80.9 8.9 ± 3.9 290,783 240 ± 447.2
230.2 ± 

39.4 
Cunner (Tautogolabrus 

adspersus) 
all  8,672 7.1 ± 14.9 120 0.1 ± 0.4 0.2 ± 0 839 0.6 ±2.4 1 ± 0.2 

sandlance (Ammodytes 
dubius) 

all  33,731 131.7 ± 376.8 15 0 ± 0.1 0 848 0.8 ± 2.5 0.5 ± 0 



 

25 

Table 2. (End) 
 

   WG survey 

 
NS survey 

 August September Group fish 
Class 
lenght 
(cm) 

 a b*  a b c a b c 

≤45        357 0.4 ± 0.8 0.1 ± 0.1 

>45        62.7 0.1 ± 0.2 0 
Thorny skate (Amblyraja 

radiata) 

all  0 0  551 0.5 ± 1.2 0.2 ± 0.1 419 0.5 ± 0.9 0.1 ± 0.1 

            

≤45        118 0.1 ± 0.4 0 

>45        19 0 ±0.6 0 
Smooth skate 

(Anacanthobatis sp.) 

all  0 0  77.1 0.1 ± 0.2 0 137 0.2 ± 0.5 0 

≤45        20 0 ± 0.1 0 

>45        11 0 ± 0.1 0 
Winter skate (latin 

name??) 

all  931 0.8 ± 1.0  4.4 0 ± 0.02 0  31 0 ±  0.1 0 

All fish group     123,938    114,323 111.5 ± 147.3 148.2±15.7  487,234 390.9 ±289.6 448.2 ± 12.5 
 
* The area available for seals is larger than the area covered by the NS survey 
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Table 3. Eigenvectors derived from principal component analysis (PCA) of fish abundance measured at 
stations survey within the southern Gulf of St. Lawrence in a) Northumberland Strait in July (2001-2006) 
b) August (2003-2009) and c) September (2000-2008). High correlation loadings are in boldface. 
Percentage of variability in fish distribution explained by each PCA axis for each survey is given in italics 
characters. 
 
  Factor 1 2 3 4 5 
Fish group           
a) Northumberland Strait* 21.1 20.6      
 winter flounder 0.76 0.23    
 cod 0.70 -0.40    
 Herring 0.39 -0.03    
 white hake 0.35 0.38    
 winter skate -0.19 0.71    
 Cunner 0.27 0.63    
 sandlance 0.07 -0.45    
       
b) August 19.3 15.3 12.9 7.5 7.3 
 white hake ≤35 0.83 -0.03 -0.06 0.04 -0.03 
 white hake >35 0.82 -0.01 -0.17 0.02 -0.04 
 thorny skate 0.70 -0.11 0.11 -0.03 0.08 
 smooth skate 0.68 -0.02 -0.06 0.00 -0.03 
 winter flounder ≤30 -0.14 0.88 -0.17 0.11 0.00 
 winter flounder >30 -0.08 0.87 0.00 0.05 -0.04 
 Cunner -0.01 0.46 -0.02 -0.18 0.44 
 Herring 0.05 0.42 0.10 0.39 0.04 
 cod 25-35 -0.03 0.05 0.91 0.04 0.00 
 cod >35 -0.10 -0.21 0.82 -0.04 -0.02 
 cod <25cm -0.05 0.51 0.56 0.10 -0.03 
 sandlance -0.06 -0.10 -0.08 0.85 -0.07 
 Capelin -0.04 -0.20 -0.06 -0.35 -0.10 
 winter skate -0.02 -0.07 -0.03 0.13 0.92 
       
c) September 22.0 17.1 10.4 6.7 5.7 
 thorny skate >45 0.77 -0.05 -0.08 -0.06 0.00 
 white hake >35 0.77 0.16 -0.16 0.06 -0.10 
 thorny skate ≤45 0.74 -0.20 0.10 -0.02 0.01 
 white hake ≤35 0.70 0.11 -0.18 0.11 -0.04 
 smooth skate >45 0.69 -0.14 0.06 0.03 0.04 
 smooth skate ≤45 0.59 0.02 -0.09 -0.06 -0.06 
 herring ≤30 0.02 0.84 0.16 -0.03 -0.12 
 herring >30 0.10 0.74 0.23 -0.15 -0.19 
 winter flounder ≤30 -0.11 0.74 -0.02 0.45 0.20 
 winter flounder >30 -0.08 0.71 -0.01 0.42 0.14 
 cod <25cm -0.12 0.50 0.45 0.15 0.12 
 cunnner -0.05 0.40 -0.12 0.33 0.11 
 cod 25-35 -0.06 0.10 0.87 0.00 -0.02 
 cod >35 -0.17 0.03 0.77 -0.04 -0.15 
 capelin 0.04 -0.39 -0.49 -0.10 -0.42 
 winter skate >45 0.07 0.05 0.05 0.82 -0.05 
 winter skate ≤45 0.00 0.15 0.03 0.80 0.01 
 Sandlance -0.07 -0.03 -0.11 -0.01 0.88 
              
 
* Capelin as well as smooth and thorny skates were not included in this analysis since they were absent 
from the area covered by the survey 
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Table 4. Linear mixed models testing the effects of individuals and trip characteristics as well as month on haul-out and trip-at-sea behaviour of 
grey seals (n=XX) followed with satellite telemetry within the southern Gulf of the St. Lawrence between July and mid-October (2003-2008). Best 
models are shown in bold, competitive models (AIC<2) in italics. (NP = number of parameters; I = intercept; age class = juvenile(<6)/adult (≥6); 
trip dur.=trip duration; dur. prev. trip= duration previous trip; h-out dur.=haul-out duration; dist. max=maximum distance during trip-at-sea). 
 

  Models Np    
      

a) haul-out duration 

  

c) time at-sea 

 
d) duration of extended 
at-sea surface 

   AIC AIC ω   AIC AIC ω  AIC AIC ω 
1 I 1 2 428.1 28.1 0   3 393.9 6.2 0  1 814.8 66.0 0 
2 I + sex 2 2 429.0 29.0 0   3 392.2 4.5 0  1 814.6 65.8 0 
3 I + age class 2 2 429.2 29.2 0   3 394.2 6.5 0  1 811.3 62.5 0 
4  I + month 2 2 400.0 0.0 0.6   3 389.1 1.4 0.2  1 819.2 70.4 0 
5  I + sex + age class 3 2 430.9 30.9 0   3 392.6 4.9 0  1 811.6 62.8 0 
6 I + sex + month 3 2 401.4 1.4 0.3   3 387.7 0.0 0.4  1 818.9 70.1 0 
7 I + age class + month 3 2 402.3 2.3 0.2   3 389.4 1.7 0.2  1 815.7 66.9 0 
8 I + trip dur. 2 . . .   . . .  1 752.8 4.0 0.1
9 I + trip dur. + sex 3 . . .   . . .  1 752.6 3.8 0.1

10 I + trip dur. + age class 3 . . .   . . .  1 748.8 0.0 0.8
11 I + trip dur. + month 3 . . .   . . .  1 756.3 7.5 0 
12 I + dur. prev. trip  2 2 457.3 57.3 0   3 421.8 34.1 0  . . . 
13 I + dur. prev. trip + sex 3 2 458.2 58.2 0   3 420.1 32.4 0  . . . 
14 I + dur. prev. trip + age class 3 2 458.4 58.4 0   3 422.2 34.5 0  . . . 
15 I + dur. prev. trip + month 3 2 428.5 28.5 0   3 416.7 29.0 0  . . . 
16 I + h-out dur. 2 . . .   3 392.5 4.8 0  1 838.8 90.0 0 
17 I + h-out dur. + sex 3 . . .   3 390.5 2.8 0.1  1 838.6 89.8 0 
18 I + h-out dur. + age class 3 . . .   3 392.7 5.0 0  1 835.2 86.4 0 
19 I + h-out dur. + month 3 . . .   3 393.1 5.4 0  1 843.7 94.9 0 
20 I + dist. max 2 . . .   . . .  . . . 
21 I + dist. max + sex 3 . . .   . . .  . . . 
22 I + dist. max + statut 3 . . .   . . .  . . . 
23 I + dist. max + month 3 . . .   . . .  . . . 
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Table 4.  (End) 
 

  Models Np  
       

e) extended at-sea 
surface dist. 

f) dist. between 
location and h.-out 

g) maximum trip 
dist. 

h) trip to furthest 
dist. duration 

i) Return trip 
duration 

    AIC AIC ω  AIC AIC ω  AIC AIC ω  AIC AIC ω  AIC AIC ω 
1 I 1  2 239.5 311.9 0  10 899.2 62.8 0  1 765.3 15.2 0  1 761.5 71.8 0  1 971.0 222.9 0 
2 I + sex 2  2 236.8 309.2 0  10 896.0 59.6 0  1 765.7 15.6 0  1 761.7 72.0 0  1 969.4 221.3 0 
3 I + age class 2  2 238.2 310.6 0  10 899.0 62.6 0  1 766.9 16.8 0  1 762.5 72.8 0  1 969.8 221.7 0 
4  I + month 2  2 178.5 250.9 0  10 856.0 19.6 0  1 769.8 19.7 0  1 765.1 75.4 0  1 973.7 225.6 0 
5  I + sex + age class 3  2 235.2 307.6 0  10 896.5 60.1 0  1 767.1 17.0 0  1 762.4 72.7 0  1 969.1 221.0 0 
6 I + sex + month 3  2 175.9 248.3 0  10 853.2 16.8 0  1 770.2 20.1 0  1 765.4 75.7 0  1 972.0 223.9 0 
7 I + age class + month 3  2 177.3 249.7 0  10 856.2 19.8 0  1 771.4 21.3 0  1 766.1 76.4 0  1 972.4 224.3 0 
8 I + trip dur. 2  2 084.8 157.2 0  10 890.7 54.3 0  1 750.1 0.0 0.4  1 689.7 0.0 1  1 748.1 0.0 1 
9 I + trip dur. + sex 3  2 082.3 154.7 0 10 887.9 51.5 0  1 750.8 0.7 0.3  1 771.1 81.4 0  1 956.0 207.9 0 

10 I + trip dur. + age class 3  2 083.7 156.1 0  10 890.7 54.3 0  1 751.4 1.3 0.2  1 771.9 82.2 0  1 955.5 207.4 0 
11 I + trip dur. + month 3  2 086.9 159.3 0  10 836.4 0 1  1 753.0 2.9 0.1  1 774.5 84.8 0  1 961.3 213.2 0 
12 I + dur. prev. trip  2      . . .  . . .  .  .  . . . 
13 I + dur. prev. trip + sex 3      . . .  . . .  .  .  . . . 
14 I + dur. prev. trip + age class 3      . . .  . . .  .  .  . . . 
15 I + dur. prev. trip + month 3      . . .  . . .  .  .  . . . 
16 I + h-out dur. 2      . . .  1 789.2 39.1 0  .  .  . . . 
17 I + h-out dur. + sex 3      . . .  1 789.7 39.6 0  .  .  . . . 
18 I + h-out dur. + age class 3      . . .  1 791.0 40.9 0  .  .  . . . 
19 I + h-out dur. + month 3      . . .  1 791.1 41.0 0  .  .  . . . 
20 I + dist. max 2  1 930.1 2.5 0.1  . . .  . . .  1 748.4 58.7 0  . . . 
21 I + dist. max + sex 3  1 929.6 2.0 0.1  . . .  . . .  1 749.5 59.8 0  . . . 
22 I + dist. max + statut 3  1 927.6 0.0 0.4  . . .  . . .    .  . . . 
23 I + dist. max + month 3  1927.9 0.3 0.3  . . .  . . .      . . . 
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Table 5. Average parameters estimated (means ± se) for a) haul-out, b) trip-at-sea with location, c) extended at-sea surface interval and d) 
foraging patch characteristics according to sex, age class and month. 
 
 

     a) haul-out  b) trip-at-sea with location 

Variable 

 

nb duration (hr) 
distance 
between 

succesive 
(km) 

Time 
between 

successive 
haul-out (d)

nb duration (d)
nb 

location 

distance 
location to 
haul-out 

(km) 

Max. 
distance 

(km) 

trip to 
max. dist. 

(d) 

trip from max. 
dist. (d) 

              
all  782 4.69 ± 0.01 7.47 ±1.01 1.47 ± 0.17 489 2.05 ± 0.14 3 053 34.74 ± 097 21.6 ± 1.7 0.48 ± 0.05 1.58 ± 0.1 
Sex             
 fille  94 4.73 ± 0.83 7.39±2.44 1.94 ± 0.45 64 2.66 ± 0.63 546 22.86 ± 2.03 11.9 ± 1.8 0.38 ± 0.12 2.27 ± 0.5 
 gars  688 5.63 ± 0.41 7.10±1.03 1.41 ± 0.19 425 1.96 ± 0.13 2 507 37.3 ± 1.09 23.1 ± 1.9 0.49 ± 0.05 1.48 ± 0.1 
age class             
 jeunes  390 5.02 ± 0.29 7.01±1.29 1.26 ± 0.12 245 1.96 ± 0.17 1 444 38.98 ± 1.51 23.5 ± 2.5 0.5 ± 0.07 1.45 ± 0.2 
 adultes  392 4.36 ± 0.24 7.27±1.41 1.68 ± 0.33 244 2.15 ± 0.22 1 631 30.98 ± 1.24 19.8 ± 2.4 0.46 ± 0.07 1.72 ± 0.2 
month             
 July  258 4.27  ±  0.36 4.66±0.63 1.23 ± 0.15 158 1.98 ± 0.22 968 27.84 ± 1.07 18.9 ± 2.3 0.54 ± 0.09 1.48 ± 0.2 
 August  283 3.77  ±  0.31 3.35±0.46 1.12 ± 0.16 169 1.81 ± 0.25 976 30.83 ± 1.77 18.5 ± 2.8 0.39 ± 0.07 1.41 ± 0.2 
 September  167 5.95  ±  0.6 3.43±0.52 1.66 ± 0.22 108 2.53 ± 0.31 831 40.90 ± 2.26 21.5 ± 3.9 0.58 ± 0.14 1.95 ± 0.3 
  October  74 7.82  ±  1.08 4.66±0.89 3.31 ± 1.66 54 2.06 ± 0.45 300 52.64 ± 3.51 30.2 ± 5.8 0.34 ± 0.11 1.69 ± 0.5 
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Table 5.  (end) 
 
 

     c) extended at-sea surface    d) foraging patch 

Variable  nb 
nb with 

extended at-
sea surface 

distance from 
haul-out (km) 

duration (hr) 

 

nb distance (km) duration (d) 

              
All  635 204 16.52 ± 5.65 2.64 ± 0.12  83 30.54 ± 3.2 3.31 ± 0.47 
Sex          
 Fille  102 27 17.27 ± 8.18 2.16 ± 0.21  12 14.45 ± 3.84 5.13 ± 2.12 
 Gars  533 177 16.46 ± 3.29 2.73 ± 0.14  71 33.15 ± 3.58 2.99 ± 0.41 
age class          
 jeunes  229 95 11.91 ± 3.07 3.32 ± 0.21  43 31.9 ± 4.25 2.84 ± 0.63 
 adultes  406 109 21.11 ± 4.60 2.25 ± 0.15  40 28.92 ± 4.91 3.81 ± 0.69 
Month          
 July  242 73 17.27 ± 3.11 2.39 ± 0.16  25 17.54 ± 3.01 3.0 ± 0.94 
 August  193 71 13.52 ± 2.51 2.46 ± 0.19  41 26.82 ± 3.22 3.58 ± 0.74 
 September  131 44 16.71 ± 3.28 2.60 ± 0.30  8 59.26 ±17.23 4.25 ± 0.24 
  October  69 16 22.73 ± 5.65 4.08 ± 0.62  9 64.22 ± 13.51 2.11 ± 0.58 
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Table 6. Difference of fish abundance estimated using data obtained throughout the a) Northumberland 
Strait survey (2001-2006) and the Western Gulf survey conducted a) in August (2003-2009) and c) in 
September (2000-2008) according to distance to haulout site used by grey seals in the southern Gulf. 
Letters indicate significant differences across distance with abundance (A>B>C). ‘AB’ means taht the 
abundance at a specific distance class is similar to the ‘A’ and ‘B’ abundance. 
 

 Fish survey 

 a) NS b) WG August  c) September 
Fish group 

distanc
e (m) 

0-
10

10-
30

30-
50

50-
100

10-
30

30-
50

50-
10
0 

100
-

170 
 

10-
30 

30-
50 

50-
10
0 

100
-

170

<25     A A A A  AB A B B 
25-35     B B A A  B  B A AB 
>35     B B A A  C BC A B 

Cod (Gadus morhua) 

all A A A A          
≤35     . . . .  A AB AB B 
>35     A A A A  A A A A 

White hake (Urophycis 
tenuis) 

all              
≤30     A A A B  AB A AB AB 
>30     A A A A  A A A A 

Winter flounder 
(Pseudopleuronectes 
americanus) all A A A A          

<30          A A AB B 
>30          B AB A AB Herring (Clupea harengus) 

all A A A A A A A A      
Capelin (Mallotus villosus) all A A A A A A A A  B B B A 
Cunner (Tautogolabrus 
adspersus) 

all A A A A B B A AB  A A A A 

sandlance (Ammodytes 
dubius) 

all A A A A A A A A  A A AB AB 

≤45          . . . . 
>45          . . . . 

Thorny skate (Amblyraja 
radiata) 

all . . . . A A A A      

≤45          . . . . 
>45          . . . . 

Smooth skate 
(Anacanthobatis sp.) 

all . . . . . . . .      
≤45          A A A A 
>45          A A A A Winter skate (which is the 

best latin name??) all B AB AB AB A A A A      
All fish group all     A A A A  A A A A 
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Table 7. Logistic regression results: effect on fish species on the probability of the occurrence of foraging 
path of grey seals according to fish data obtained from a) onshore survey, b) august survey and c) 
September survey. All possible models including second order interaction terms were tested, and, 
eventually, only the 5 best will be shown here. Best models are shown in bold and equivalent models 
(QICu ≤ 2) in italics. I=Intercept of the model. 

QICU 
Model 

a) NS
b) WG - 
August  

c) WG - 
September 

I 295.9 154.4  125.6 
I + dist. class 199.4 117.0  96.8 
I + cod 297.7    
I + cod1  152.9  120.9 
I + cod2  144.8  127.0 
I + cod3  133.6  127.1 
I + herring 297.9 147.1   
I + herring1    109.8 
I + herring2    127.5 
I + capelin  151.2  120.0 
I + white hake 297.3    
I + white hake1  155.1  113.2 
I + white hake2    127.5 
I + w. flounder 297.7    
I + w. flounder1  151.7  106.2 
I + w. flounder2  159.5  127.6 
I + cunner 297.3 156.7  128.0 
I + sandlance 297.9 134.2  108.3 
I + w. skate 297.5 155.7   
I + w. skate1    101.0 
I + w. skate2    126.7 
I + t. skate     
I + t. skate1    127.6 
I + dist. class + cod + dist. class*cod 195.9    
I + dist. class + cod1 + dist. class*cod1  114.1  97.7 
I + dist. class + cod2 + dist. class*cod2  115.4  85.5 
I + dist. class + cod3 + dist. class*cod3  113.3  89.2 
I + dist. class + herring + dist. class*herring 205.6 119.7   
I + dist. class + herring1 + dist. class*herring1    99.0 
I + dist. class + herring2 + dist. class*herring2    99.8 
I + dist. class + cunner + dist. class*cunner 198.7 121.8  95.9 
I + dist. class + capelin + dist. class*capelin    100.9 
I + dist. class + sandlance +dist. class*sandlance 196.5 104.9  98.2 
I + dist. class + w. flounder + dist. class*w. flounder 194.1    
I + dist. class + w. flounder1 + dist. class*w. 
flounder1  119.1  90.5 
I + dist. class + w. flounder2 + dist. class*w. 
flounder2  117.6  94.6 
I + dist. class + w. skate + dist. class*w. skate  191.3   
I + dist. class + w. skate1 + dist. class*w. skate1    93.2 
I + dist. class + w. skate2 + dist. class*w. skate2        97.9 
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Table 8. Selection estimates (log odds ratio ± 95% confidence intervals limits (cl)) of fish groups included 
in the 5 best logistic-regression models predicting the probability of having a foraging patch of juveniles 
and adults grey seals in the southern Gulf of St. Lawrence in a) Northumberland Strait survey’s area and 
in Western Gulf survey’s area in b) August and c) September between 2003-2008. (distance classes (km) 
: 1: 0-10; 2: 10-30; 3: 30-50; 4: 50-100; 5: 100-170). 
 

  cl 
  

Parameters log odds-ratio std. err. 
lower upper 

a) Northumberland Strait survey    
1. I + distance class + winter flounder + distance class*winter flounder 
 Intercept -3.16 0.69 -4.50 -1.81 
 distance class     
 1 4.41 1.01 2.44 6.39 
 2 2.94 0.93 1.13 4.76 
 3 -1.15 1.30 -3.68 1.39 
 4 0.00 0.00 0.00 0.00 
 winter flounder -0.03 0.01 -0.05 0.00 
 Fish group*distance class    
 winter flounder*dist1 0.02 0.02 -0.01 0.06 
 winter flounder*dist 2 0.00 0.02 -0.03 0.03 
 winter flounder*dist 3 0.04 0.02 0.01 0.07 
 winter flounder*dist 4 0.00 0.00 0.00 0.00 
      
2. I + distance class + cod + distance class*cod   
 Intercept -7.78 1.23 -10.20 -5.36 
 distance class     
 1 9.53 1.43 6.72 12.34 
 2 5.38 1.27 2.88 7.88 
 3 4.19 1.31 1.62 6.77 
 4 0.00 0.00 0.00 0.00 
 cod 0.28 0.08 0.13 0.44 
 Fish group*distance class    
 cod*dist1 -0.34 0.09 -0.52 -0.17 
 cod*dist 2 -0.24 0.08 -0.41 -0.08 
 cod*dist 3 -0.27 0.08 -0.43 -0.11 
 cod*dist 4 0.00 0.00 0.00 0.00 
      
3. I + distance class + sandlance +distance class*sandlance  
 Intercept -5.09 0.66 -6.38 -3.79 
 distance class     
 1 6.57 0.86 4.88 8.26 
 2 3.01 0.67 1.70 4.31 
 3 1.59 0.83 -0.04 3.22 
 4 0.00 0.00 0.00 0.00 
 sandlance 0.00 0.00 0.00 0.00 
 Fish group*distance class    
 sandlance*dist1 -0.01 0.00 -0.01 0.00 
 sandlance*dist 2 0.00 0.00 0.00 0.00 
 sandlance*dist 3 0.00 0.00 -0.01 0.00 
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 sandlance*dist 4 0.00 0.00 0.00 0.00 
      
4. I + distance class      
 Intercept -4.01 0.53 -5.04 -2.98 
 distance class     
 1 5.07 0.71 3.68 6.46 
 2 2.04 0.57 0.93 3.15 
 3 0.67 0.63 -0.56 1.90 
 4 0.00 0.00 0.00 0.00 
      
5. I + distance class + cunner +distance class*cunner   
 Intercept -2.40 0.62 -3.61 -1.19 
 distance class     
 1 2.95 0.86 1.27 4.63 
 2 0.22 0.72 -1.18 1.63 
 3 -0.82 0.79 -2.37 0.73 
 4 0.00 0.00 0.00 0.00 
 sandlance -1.35 0.36 -2.06 -0.64 
 Fish group*distance class    
 cunner*dist1 1.38 0.36 0.67 2.09 
 cunner*dist 2 1.37 0.36 0.65 2.08 
 cunner*dist 3 1.31 0.37 0.57 2.04 
 cunner*dist 4 0.00 0.00 0.00 0.00 
      
b) August     
1. I + distance class + sandlance +distance class*sandlance  
 Intercept -3.99 0.50 -4.96 -3.01 
 distance class     
 2 3.37 0.91 1.59 5.15 
 3 2.82 0.64 1.56 4.07 
 4 0.00 0.00 0.00 0.00 
 sandlance 18.78 3.72 11.49 26.07 
 Fish group*distance class    
 sandlance*dist 2 -10.11 3.68 -17.32 -2.89 
 sandlance*dist 3 -19.13 3.97 -26.92 -11.35 
 sandlance*dist 4 0.00 0.00 0.00 0.00 
      
2 .I + distance class + cod3 + distance class*cod3   
 Intercept -2.41 0.59 -3.55 -1.26 
 distance class     
 2 2.69 1.01 0.71 4.67 
 3 1.68 0.74 0.22 3.14 
 4 0.00 0.00 0.00 0.00 
 cod3 -0.04 0.02 -0.08 0.00 
 Fish group*distance class    
 cod3*dist 2 0.03 0.06 -0.09 0.15 
 cod3*dist 3 0.02 0.03 -0.04 0.08 
 cod3*dist 4 0.00 0.00 0.00 0.00 
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3. I + distance class + cod2 + distance class*cod2   
 Intercept -2.57 0.57 -3.69 -1.45 
 distance class     
 2 2.25 1.20 -0.11 4.61 
 3 1.56 0.68 0.23 2.90 
 4 0.00 0.00 0.00 0.00 
 cod2 -0.08 0.05 -0.18 0.01 
 Fish group*distance class    
 cod2*dist 2 0.31 0.41 -0.50 1.12 
 cod2*dist 3 0.03 0.08 -0.12 0.18 
 cod2*dist 4 0.00 0.00 0.00 0.00 
      
4. I + distance class + cod1 + distance class*cod1   
 Intercept -4.87 0.98 -6.79 -2.96 
 distance class     
 2 2.70 1.18 0.39 5.01 
 3 3.93 1.26 1.45 6.41 
 4 0.00 0.00 0.00 0.00 
 cod1 0.09 0.05 0.00 0.18 
 Fish group*distance class    
 cod1*dist 2 0.09 0.05 0.00 0.18 
 cod1*dist 3 -0.12 0.07 -0.26 0.02 
 cod1*dist 4 0.00 0.00 0.00 0.00 
 
5. I + distance class + winter flounder2 + distance class*winter flounder2 
 Intercept -3.30 0.54 -4.36 -2.25 
 distance class     
 2 2.28 1.14 0.04 4.52 
 3 2.79 0.80 1.23 4.35 
 4 0.00 0.00 0.00 0.00 
 winter flounder2 -0.30 0.19 -0.68 0.08 
 Fish group*distance class    
 winter flounder2*dist 2 1.19 0.93 -0.63 3.00 
 winter flounder2*dist 3 -0.17 0.35 -0.87 0.52 
 winter flounder2*dist 4 0.00 0.00 0.00 0.00 
      
c) September     
1. I + distance class + cod2 + distance class*cod2   
 Intercept -3.85 0.81 -5.44 -2.27 
 distance class     
 3 5.27 1.47 2.39 8.16 
 4 2.35 1.05 0.29 4.41 
 5 0.00 0.00 0.00 0.00 
 cod2 -0.39 0.10 -0.58 -0.20 
 Fish group*distance class    
 cod2*dist 3 0.07 0.19 -0.31 0.45 
 cod2*dist 4 0.31 0.10 0.11 0.51 
 cod2*dist 5 0.00 0.00 0.00 0.00 
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2. I + distance class + cod3 + distance class*cod3   
 Intercept -4.49 0.98 -6.41 -2.57 
 distance class     
 3 5.91 1.45 3.08 8.74 
 4 2.79 1.13 0.58 5.00 
 5 0.00 0.00 0.00 0.00 
 cod3 -0.02 0.02 -0.07 0.03 
 Fish group*distance class    
 cod3*dist 3 -0.46 0.22 -0.89 -0.03 
 cod3*dist 4 0.00 0.03 -0.05 0.05 
 cod3*dist 5 0.00 0.00 0.00 0.00 
      
3. I + distance class + winter flounder1 + distance class*winter flounder1 
 Intercept -5.10 0.68 -6.43 -3.76 
 distance class     
 3 4.81 1.17 2.51 7.11 
 4 0.78 1.15 -1.47 3.04 
 5 0.00 0.00 0.00 0.00 
 winter flounder1 0.00 0.00 0.00 0.01 
 Fish group*distance class    
 winter flounder1*dist 3 -0.01 0.00 -0.01 0.00 
 winter flounder1*dist 4 0.01 0.00 0.00 0.02 
 winter flounder1*dist 5 0.00 0.00 0.00 0.00 
 
4. I + distance class + winter skate1 + distance class*winter skate1 
 Intercept -5.37 0.77 -6.87 -3.87 
 distance class     
 3 1.48 2.49 -3.40 6.35 
 4 2.53 0.92 0.71 4.34 
 5 0.00 0.00 0.00 0.00 
 winter skate1 13.99 8.36 -2.40 30.38 
 Fish group*distance class    
 winter skate1*dist 3 0.14 12.12 -23.61 23.89 
 winter skate1*dist 4 -16.92 9.00 -34.57 0.72 
 winter skate1*dist 5 0.00 0.00 0.00 0.00 
      
5. I + distance class + winter flounder2 + distance class*winter flounder2 
 Intercept -5.03 0.68 -6.37 -3.70 
 distance class     
 3 -4.55 5.37 -15.08 5.98 
 4 2.18 0.83 0.54 3.81 
 5 0.00 0.00 0.00 0.00 
 winter flounder1 0.00 0.01 -0.02 0.02 
 Fish group*distance class    
 winter flounder2*dist 3 2.18 1.26 -0.29 4.65 
 winter flounder2*dist 4 -0.03 0.04 -0.11 0.05 
 winter flounder2*dist 5 0.00 0.00 0.00 0.00 
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Table 9. Selection for fish group according to distance class by grey seals in southern Gulf of St. 
Lawrence in August and September 2003-2008. All selection signs are in comparison with the reference 
category: distance class 4 (50-100km) for NS and WG survey conducted in August survey and distance 
class 5 (100-170km) WG survey in September. ‘+/-’ indicated that fish group have been used more/less 
than in reference category. Habitat categories with CI interval overlapping with the reference category are 
used at a similar rate (‘=’). 
 

  Distance class (km) 
  

Fish group 0-10 10-30 30-50 50-100 100-170 
 
a) NS survey      
 winter flounder = = +   
 cod - - -   
 sandlance = = =   
 distance + + =   
 cunner + + +   
       
b) WG survey – August      
 sandlance  - -   
 small cod  + =   
 medium cod  = =   
 large cod  = =   
 large winter flounder  = =   
       
c) WG survey - September      
 medium cod   = +  
 large cod   - =  
 small winter flounder   = =  
 small winter skate   = =  
 large winter flounder   = =  
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Figure 1. Part of the Gulf of St. Lawrence covered by the Northumberland Strait and Western Gulf fish 
survey, haul-out sites from area available for seals around those areas and the surrounding region. 
Dashed lines denote Northwest Atlantic Fishery Organization (NAFO) divisions (e.g., 4T) and 
subdivisions (e.g., 4Vn). Grey seals were captured at Kouchibouguac, Neguac, Anticosti Island and 
Sable Island.  
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Figure 2. Stations sampled during the fish survey conducted in a) the Northumberland Strait in July as 
well as in the Western Gulf of St. Lawrence in b) August and c) in September. 
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Figure 3.  Fish distribution in a) the western Northumberland strait in July 20xx-2006 and the western 
southern Gulf of St. Lawrence b) August as well as c) September 20xx- 20xx derived from bottom-trawl 
surveys. 
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Figure 4. Frequency distribution of distance between haulout and a) the previous haul-out event, b) 
maximum distance reach during a trip-at-sea, c) locations, d) extended at-sea surface, distance between 
foraging path used by seals in e) NS fish survey area and f) Western Gulf fish survey area haul sout site 
used by northwest Atlantic grey seals in the southern Gulf between between July and October 15th, 2004 
and 2008. 
 
 

 
 
Figure 5. A) All foraging patch and b) foraging patch that occurred over the areas covered by the 
Northumberland Strait surgvey and Western Gulf survey conducted in August and September fish of 
satellite equipped grey seals in the southern Gulf of St. Lawrence between July and mid-October period. 
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 a) August survey area 
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 b) September survey area 
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Figure 6. Abundance of each group fish over Western Gulf survey area (black bars), in areas where no 
haulout site was observed (white bars) and in areas around haulout site (means ± se) (grey bars) in a) 
August and b) September (1=small; 2=medium/large; 3=large).  
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Figure 7. Fish abundance according to distance from distance to haulout site (the first bar of each group 
fish) and from distance from the coast of Prince Edward Island where no grey seals haulout site (second 
bar) are known to occurred in a) August and b) September. 
 
 


