## CSAS

Canadian Science Advisory Secretariat
Proceedings Series 2010/009

## SCCS

Secrétariat canadien de consultation scientifique
Compte rendu 2010/009

Proceedings of the Newfoundland and Labrador Region Salmonid Stock Assessment Meeting

November 5-6, 2009
St. John's, NL
Meeting Chairperson
C. Bourgeois

Rapporteur
T. R. Porter

Compte rendu de la réunion d'évaluation des stocks de salmonidés de la région de Terre-Neuve et du Labrador

Les 5 et 6 novembre 2009
St. John's, T.-N.-L.
Président de la réunion
C. Bourgeois

Fisheries and Oceans Canada / Pêches et Océans Canada
Science Branch / Direction des sciences
80 East White Hills Road
St. John's NL / St. John's, T.-N.-L.
A1C 5X1

April 2010
Avril 2010

## Foreword

The purpose of these Proceedings is to document the activities and key discussions of the meeting. The Proceedings include research recommendations, uncertainties, and the rationale for decisions made by the meeting. Proceedings also document when data, analyses or interpretations were reviewed and rejected on scientific grounds, including the reason(s) for rejection. As such, interpretations and opinions presented in this report individually may be factually incorrect or misleading, but are included to record as faithfully as possible what was considered at the meeting. No statements are to be taken as reflecting the conclusions of the meeting unless they are clearly identified as such. Moreover, further review may result in a change of conclusions where additional information was identified as relevant to the topics being considered, but not available in the timeframe of the meeting. In the rare case when there are formal dissenting views, these are also archived as Annexes to the Proceedings.

## Avant-propos

Le présent compte rendu a pour but de documenter les principales activités et discussions qui ont eu lieu au cours de la réunion. Il contient des recommandations sur les recherches à effectuer, traite des incertitudes et expose les motifs ayant mené à la prise de décisions pendant la réunion. En outre, il fait état de données, d'analyses ou d'interprétations passées en revue et rejetées pour des raisons scientifiques, en donnant la raison du rejet. Bien que les interprétations et les opinions contenus dans le présent rapport puissent être inexacts ou propres à induire en erreur, ils sont quand même reproduits aussi fidèlement que possible afin de refléter les échanges tenus au cours de la réunion. Ainsi, aucune partie de ce rapport ne doit être considéré en tant que reflet des conclusions de la réunion, à moins d'indication précise en ce sens. De plus, un examen ultérieur de la question pourrait entraîner des changements aux conclusions, notamment si l'information supplémentaire pertinente, non disponible au moment de la réunion, est fournie par la suite. Finalement, dans les rares cas où des opinions divergentes sont exprimées officiellement, celles-ci sont également consignées dans les annexes du compte rendu.

Proceedings of the Newfoundland and Labrador Region Salmonid Stock Assessment Meeting

Compte rendu de la réunion d'évaluation des stocks de salmonidés de la région de Terre-Neuve et du Labrador

Les 5 et 6 novembre 2009
St. John's, T.-N.-L.
Président de la réunion
C. Bourgeois

Rapporteur
Rapporteur
T. R. Porter
T. R. Porter

Fisheries and Oceans Canada / Pêches et Océans Canada
Science Branch / Direction des sciences
80 East White Hills Road
St. John's NL / St. John's, T.-N.-L.
A1C 5X1

April 2010
Avril 2010
© Her Majesty the Queen in Right of Canada, 2010
© Sa Majesté la Reine du Chef du Canada, 2010
ISSN 1701-1272 (Imprimé / Printed)
ISSN 1701-1280 (En ligne / Online)
Published and available free from: Une publication gratuite de :

Fisheries and Oceans Canada / Pêches et Océans Canada
Canadian Science Advisory Secretariat / Secrétariat canadien de consultation scientifique 200, rue Kent Street

Ottawa, Ontario
K1A 0E6
http://www.dfo-mpo.gc.ca/csas/
CSAS@DFO-MPO.GC.CA


Printed on recycled paper. Imprimé sur papier recyclé.

Correct citation for this publication:
DFO. 2010. Proceedings of the Newfoundland and Labrador Region Salmonid Stock Assessment Meeting; November 5-6, 2009. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2010/009.

## TABLE DES MATIÈRES / TABLE OF CONTENTS

SUMMARY ..... V
SOMMAIRE ..... vi
INTRODUCTION ..... 1
SUMMARY OF PRESENTATIONS ..... 1

1. TITLE: Current processes and products following CSAS review ..... 1
2. TITLE: Definition of conservation for Atlantic salmon ..... 2
3. TITLE: Climate variables in the Northwest Atlantic - Potential impacts on Atlantic salmon ..... 3
4. TITLE: Returns to Labrador rivers and harvests of salmonids in various fisheries, 2009. ..... 4
5. TITLE: Returns to insular Newfoundland rivers, smolt production and marine survival trends ..... 6
6. TITLE: Update biological characteristics Bay St. George Atlantic salmon ..... 7
7. TITLE: Looking for common trends and patterns in Atlantic salmon abundance - A preliminary examination ..... 9
8. TITLE: Changes in angler dynamics in the Newfoundland and Labrador Atlantic salmon recreational fishery, 1994-2008 ..... 10
9. TITLE: Southwest Pond - Atlantic salmon or trout ..... 11
10. TITLE: Report on the Atlantic salmon rivers of Newfoundland and Labrador ..... 12
11. TITLE: Preliminary data on the seasonal use of Renews River estuary by salmonids ..... 13
12. TITLE: Preliminary findings of the Renews River project ..... 14
13. TITLE: Update on SALSEA research vessel survey ..... 15
14. TITLE: Update on Harrys River Atlantic salmon returns ..... 16
15. TITLE: Data provided to ICES regarding the status of the NL stocks ..... 16
OVERVIEW OF THE SAR AND INCLUSION OF RECOMMENDATIONS ..... 17
MANUSCRIPTS FOR UPGRADE TO RESEARCH DOCUMENTS ..... 17
OTHER BUSINESS ..... 18
ACTION ITEMS ..... 18
REFERENCES ..... 18
Appendix 1: Terms of Reference ..... 19
Annexe 2: Cadre de référence ..... 21
Appendix 3: Agenda ..... 23
Appendix 4: List of attendees at the Newfoundland and Labrador Region Atlantic salmon stock assessment meeting ..... 24
Appendix 5a: Summary of Status of Atlantic Salmon in English River, SFA 1, 1999-2009 ..... 27
Appendix 5b: Summary of Status of Atlantic Salmon in Muddy Bay Brook, SFA 2, 2002-2009 ..... 28
Appendix 5c: Summary of Status of Atlantic Salmon in Southwest Brook, SFA 2, 1998-2009 ..... 29
Appendix 5d: Summary of Status of Atlantic Salmon in Sand Hill River, SFA 2, 1994-2009 ..... 30
Appendix 5e: Summary of Status of Atlantic Salmon in Exploits River, SFA 4, 2000-2009 ..... 31
Appendix 5f: Summary of Status of Atlantic Salmon in Campbellton River, SFA 4, 2000-2009 ..... 32
Appendix 5g: Summary of Status of Atlantic Salmon in Gander River, SFA 4, 2002-2009 ..... 33
Appendix 5h: Summary of Status of Atlantic Salmon in Middle Brook, SFA 5, 2002-2009 ..... 34
Appendix 5i: Summary of Status of Atlantic Salmon in Terra Nova River, SFA 5, 2002-2009 ..... 35
Appendix 5j: Summary of Status of Atlantic Salmon in Northwest River (Port Blandford), SFA5, 2000- ..... 2009 ..... 36
Appendix 5k: Summary of Status of Atlantic Salmon in Northeast Brook (Trepassey) SFA 9, 2002- 2009 ..... 37
Appendix 51: Summary of Status of Atlantic Salmon in Rocky River, SFA 9, 2001-2009 ..... 38
Appendix 5m: Summary of Status of Atlantic Salmon in Little River, SFA 11, 2000-2009 ..... 39
Appendix 5n: Summary of Status of Atlantic Salmon in Conne River, SFA 11, 2003 -2009 ..... 40
Appendix 5o: Summary of Status of Atlantic Salmon in Harry's River, SFA 13, 2002 -2009 ..... 41
Appendix 5p: Summary of Status of Atlantic Salmon in Torrent River, SFA 14, 2002 -2009 ..... 42
Appendix 5q: Summary of Status of Atlantic Salmon in Western Arm Brook, SFA 14B, 2002-2009 ..... 43
APPENDIX 6: Copy of presentation, by the chair, on current processes and products following the CSAS
review ..... 44

## SUMMARY

The seventeenth annual Salmonid Stock Assessment Meeting (Regional Assessment Process (RAP)) for the Newfoundland and Labrador Region was held in St. John's, NL, 5-6 November 2009. An update was provided on the status of Atlantic salmon stocks in Newfoundland and Labrador, with specific assessments on 17 rivers monitored in 2009. Data were presented on the estimates of adult salmon returns and the percentage of the conservation egg deposition achieved in 13 rivers in insular Newfoundland and four rivers in Labrador. Estimates of smolt production were provided for five rivers in Newfoundland and one in Labrador. Trends in smolt and adult salmon production, and at-sea survival were provided with comparisons to pre- and post- closure of the commercial salmon fisheries. Estimates of the harvest of Atlantic salmon in the angling and food fisheries in 2008 were provided. The overall abundance of salmon declined in 2009 from levels observed in 2008; although increases were observed in some rivers particularly on the northeast coast of Newfoundland. The declines in large salmon are particularly concerning. The low survival of Atlantic salmon at sea, which has been experienced since the late 1980's, continues to be a significant factor contributing to the overall low abundance of salmon experienced in Newfoundland and Labrador. A review was conducted on the definition of conservation and biological reference levels as it applies to Atlantic salmon in Newfoundland and Labrador. There was a discussion on the available biological characteristics data for salmon populations in Bay St. George rivers; as well, as a preliminary evaluation of common trends and patterns in Atlantic salmon abundance in relation to oceanographic temperatures and the North Atlantic Oscillation Index. An updated list of rivers in Newfoundland and Labrador that contained populations of Atlantic salmon was presented. A presentation was made on changes in Atlantic salmon angler dynamics in Newfoundland and Labrador. A review of data on the "Mystery fish" in Southwest Pond, Bonavista Bay confirmed that the species was an anadromous Atlantic salmon. Two presentations were made on research studies being conducted on salmonids in Renews River. Information was presented on the research vessel cruise conducted in 2009. The presentations were reviewed and discussed by participants from DFO, Newfoundland and Labrador Provincial Department of Environment and Conservation, Parks Canada Agency, and various stakeholder groups.

## SOMMAIRE

La dix-septième réunion annuelle d'évaluation des stocks de salmonidés (Processus d'évaluation régional) de la Région de Terre-Neuve et du Labrador a eu lieu à St. Jonh's, T.-N.L., les 5 et 6 novembre 2009. On a présenté une mise à jour de l'état des stocks de saumon atlantique de Terre-Neuve et du Labrador ainsi que les évaluations de 17 cours d'eau ayant fait l'objet d'une surveillance en 2009. On a présenté des données sur les estimations de la montaison des adultes ainsi que du pourcentage de la ponte nécessaire pour assurer la conservation dans 13 cours d'eau de la partie insulaire de Terre-Neuve et dans 4 cours d'eau du Labrador. Des estimations de la production de saumoneaux dans 5 cours d'eau de TerreNeuve et dans 1 cours d'eau du Labrador ont aussi été fournies. On a également présenté les tendances relatives à la production de saumoneaux et de saumons adultes ainsi qu'à la survie en mer en comparant les périodes antérieures et postérieures à la fermeture de la pêche commerciale au saumon. Des estimations des prélèvements de saumon dans le cadre des pêches à la ligne et de subsistance de 2008 ont été fournies. En général, l'abondance des saumons a diminué en 2009 comparativement aux niveaux observés en 2008; cependant, on a observé des augmentations dans quelques cours d'eau, particulièrement sur la côte nord-est de Terre-Neuve. Les déclins observés chez les saumons de grande taille sont particulièrement préoccupants. La faible survie en mer du saumon atlantique, qui persiste depuis la fin des années 1980, est encore un important facteur qui contribue à la faible estimation de l'abondance générale de saumons de Terre-Neuve et du Labrador. On a examiné les niveaux de référence de conservation et biologiques pour le saumon atlantique de Terre-Neuve et du Labrador. On a tenu des discussions sur les données disponibles concernant les caractéristiques biologiques des populations de saumons des cours d'eau qui se jettent dans la baie St. George ainsi que sur l'évaluation préliminaire des tendances et des profils communs dans l'abondance du saumon atlantique par rapport aux températures océanographiques et à l'indice d'oscillation nord-atlantique. On a présenté une liste mise à jour des cours d'eau de Terre-Neuve et du Labrador qui abritent des populations de saumons atlantiques. Un exposé a traité des changements dans la dynamique de la pêche à la ligne au saumon atlantique de Terre-Neuve et du Labrador. Un examen des données sur le «mystérieux poisson»de Southwest Pond, dans la baie de Bonavista, a confirmé que l'individu était un saumon atlantique anadrome. Deux exposés ont traité des recherches menées sur les salmonidés de la rivière Renews. On a présenté l'information sur la sortie en mer d'un navire de recherche en 2009. Parmi les participants qui ont passé en revue les exposés et qui ont tenu des discussions sur ceux-ci, mentionnons des représentants du MPO, du ministère provincial de l'Environnement et de la Conservation de Terre-Neuve-et-Labrador, de l'Agence Parcs Canada ainsi que de différents groupes d'intervenants.

## INTRODUCTION

The sixteenth annual Regional Assessment Process (RAP) for Salmonids for the Newfoundland and Labrador Region was held at the Comfort Inn Airport, 106 Airport Road, St. John's, NL, 5-6 November 2009 to review information on the status of Newfoundland and Labrador Salmonid stocks. The Terms of Reference are provided in Appendix 1 (English) and Appendix 2 (French). The Agenda for the meeting is in Appendix 3. The meeting participants included representatives from: Department of Fisheries and Oceans (DFO) Science, and Fisheries and Aquaculture Management branches, Government of Newfoundland and Labrador, Aboriginal groups, Memorial University of Newfoundland, salmonid conservation organisations, and aquaculture industry. A list of attendees is provided in Appendix 4.

This report provides, for each presentation, a summary, a synopsis of the discussion and recommendations. Summary sheets for the Atlantic salmon stocks assessed are in Appendix 5.

Complete details of the data and methodologies used in the assessments are published in the Canadian Science Advisory Secretariat (CSAS) Research Document series, while the overall report on the status of stocks is contained in the CSAS Science Advisory Report 2009 for the Newfoundland Region. CSAS Publications are available in Portable Document Format (PDF) at http://www.dfompo.gc.ca/csas/Csas/Home-Accueil e.htm.

The chair welcomed participants to the meeting, and asked each participant to introduce her/himself and with their affiliation. The chair gave a brief overview of the Terms of Reference for the meeting and stressed that Fisheries Management issues would not be discussed. The agenda was reviewed and two items were added to the agenda: 1) Process and products following CSAS Review of Science Advisory Report; and 2) Update on returns of salmon to Harrys River.

## SUMMARY OF PRESENTATIONS

## 1. TITLE: Current processes and products following CSAS review

PRESENTER: C. Bourgeois, Department of Fisheries and Oceans Canada
SUMMARY: The slides used in the presentation are provided in Appendix 6.

## DISCUSSION:

- One participant inquired as to the process that stakeholder groups would follow to have requests for science advice placed on the RAP agenda. The stakeholder had made a request to Fisheries Management and Aquaculture Brach; but, it was never placed on the agenda. The chair indicated that there was a formal process within CSAS and he would get the information and pass it to the stakeholder.
- Another participant asked if advice that was placed in the SAR constituted formal peer review scientific advice or does the information have to be published in a Research Document before it was considered formal advice. The response was that the advice in the SAR was formal advice. A Research Document documenting the information supporting the advice is to be produced in a timely manner. Data, analytical methodology, results and conclusions are supposed to be tabled at the RAP for review prior to formulating the Science advice.


## 2. TITLE: Definition of conservation for Atlantic salmon

PRESENTER: J. B. Dempson, Department of Fisheries and Oceans Canada
SUMMARY: An overview of the historical basis for determining reference levels, or bench marks, in the context of the "conservation" of the Atlantic salmon resource was provided. Early consideration of optimal production originated in the 1950s with the work of Dr. Paul Elson. As early as 1977, CAFSAC referred to 2.4 eggs $/ \mathrm{m}^{2}$ as the minimum number of required eggs for maximum smolt production. Refinement and debate over the suitability of this value was reviewed at a number of workshops. Of particular significance was the formal definition of conservation adopted by CAFSAC in 1991 as: "That aspect of renewable resource management which ensures that utilization is sustainable and which safeguards ecological processes and genetic diversity for the maintenance of the resource concerned". It was acknowledged that stock-recruitment relationships have been constructed for salmon but in the absence of river-specific relationships an operational translation of conservation was required. Accordingly, egg deposition rates of 2.4 eggs $/ \mathrm{m}^{2}$ of fluvial (river) habitat in addition for insular Newfoundland of 368 eggs/hectare of lacustrine (lake) habitat was accepted as a biological reference level in the context of conservation of the resource.

The Wild Atlantic Salmon Conservation Policy, released in August 2009, defined conservation as: "The protection, maintenance, and rehabilitation of genetic diversity, species, and ecosystems to sustain biodiversity and the continuance of evolutionary and natural production processes". This Policy reiterates that the conservation limit, or benchmark reference level for salmon, continue to use the above noted values, and that the further the spawning escapement is below the reference level, and the longer this situation occurs, the greater the possibility exists of incurring risks which may cause irreversible damage to the stock. Numbers of salmon returning to various rivers is evaluated relative to the respective benchmark conservation level to infer the overall status of the resource.

## DISCUSSION:

- Participants were pleased with the information presented. Many were not familiar with the derivation of the Conservation Levels used in Newfoundland.
- Considerable discussion occurred as to whether the Conservation Level was considered a biological threshold level below which no harvest should occur or a target management level. DFO considers the Conservation Level as a threshold level.
- Conne River has both a salmon conservation level ( 2,475 small salmon) and a management target ( 4,000 small salmon). The Conne River First Nations agrees with managing the fishery at the management target.
- There is insufficient information to determine what proportion of the conservation egg deposition level should be derived from large salmon.
- The Conservation Level for rivers in SFA 3-14B is 2.4 eggs $/ \mathrm{m}^{2}$ for fluvial habitat plus 368 eggs/hectare for lacustrine habitat for rivers in SFA 3-13, and 105 eggs/ hectare for rivers in SFA 14A and 14B. The Conservation Level for Labrador rivers in SFA 1 and 2 is 1.9 eggs $/ \mathrm{m}^{2}$ for fluvial habitat. Egg requirements for lacustrine habitat in SFAs 1 and 2 are assumed to be built into the 1.9 eggs $/ \mathrm{m}^{2}$. The different level in Labrador is related to differences in species composition, climate and productivity of the rivers.
- The approach of using a minimum number of eggs for establishing a Conservation Level is similar for North America and Europe; although the actual Conservation Level to meet the threshold limit differs.
- There was a discussion on how science gets the message to Fisheries Managers to use the Conservation Level as a threshold and not as a management target. It was pointed out, that each year on the first page Science Advisory Document, there is a statement that the "Conservation requirements for Atlantic salmon rivers are considered to be threshold reference points".
- The appropriate place for stakeholders to discuss management targets would be at the salmon management stakeholder consultation meetings.
- There was considerable discussion on the appropriateness of the Conservation Level established and the impact of going below that level. There were a number of questions related to the lack of increases in the size of stocks after the closures of the commercial fisheries and the benefit of having a spawning level above the Conservation Level.
- How does DFO establish the number of eggs deposited in a river? This was covered in presentation \#5 below.


## RECOMMENDATIONS: None

## 3. TITLE: Climate variables in the Northwest Atlantic - Potential impacts on Atlantic salmon

PRESENTER: J. B. Dempson (for Eugene Colbourne), Department of Fisheries and Oceans Canada

SUMMARY: The North Atlantic Oscillation (NAO) index for 2009 was slightly above normal indicating a weak arctic air outflow in the Northwest Atlantic. Air temperatures in eastern Newfoundland at St. John's remained well above normal during the winter and spring of 2009, reaching near $+3^{\circ} \mathrm{C}$ above normal in February. The annual sea-ice extent on the Newfoundland and Labrador Shelf during 2009 was slightly below the long-term average for the $15^{\text {th }}$ consecutive year; however there appears to be an increasing trend since 2007. In fact spring (April-June) sea-ice extent was above the long term average the first time since 1994.

Surface water temperatures at Station 27 off St. John's Newfoundland remained above normal during the winter (Jan.-Mar.) of 2009 by $>0.5^{\circ} \mathrm{C}$. Spring temperatures in 2009 increased over 2007 and 2008 to $>0.5^{\circ} \mathrm{C}$ above normal. Temperature data collected during the spring multispecies assessment surveys off the south coast of Newfoundland generally showed a slight warming compared to 2008. Observations from a mid-summer oceanographic survey indicated that the area of the cold-intermediate-layer ( $\mathrm{CIL}<0^{\circ} \mathrm{C}$ ) shelf water off eastern Newfoundland increased over 2008 but was below normal for the $15^{\text {th }}$ consecutive year off Cape Bonavista. In general, sea-surface temperatures during the spring throughout the Northwest Atlantic show a decreasing trend since the record highs observed in 2006.

Preliminary analyses have shown associations between marine environmental conditions and marine survival of salmon, adult salmon run timing and abundance of both large and small salmon. For example, salmon run-times are significantly correlated with both sea-surface temperature ( $r^{2}=0.52$ ) in eastern Newfoundland waters and spring (April-June) sea-ice cover ( $r^{2}=0.42$ ) with later run-times associated with cold conditions and extensive ice cover. The latest run time on record occurred in 1991 when ocean temperatures off Newfoundland were at an all time low. The abundances of both small and large salmon for all insular waters of Newfoundland are also highly correlated ( $r^{2}=0.52$ ) with sea surface temperatures. More research is required to quantify these relationships. However, based on historical data the
marine environment in Newfoundland and Labrador waters during recent years, except for 2007, were generally favourable for Atlantic salmon.

## DISCUSSION:

- There was a discussion on the effects of oceanographic temperatures on ice on salmon at sea. The extent of ice affects distribution of salmon. The larger the area of ice cover, the further salmon are distributed south.


## RECOMMENDATIONS:

1. More research is required to quantify the relationships between sea surface temperatures and ice cover on survival of salmon.

## 4. TITLE: Returns to Labrador rivers and harvests of salmonids in various fisheries, 2009

PRESENTER: D. G. Reddin, Department of Fisheries and Oceans Canada
SUMMARY: In 2009, returns to four counting fences were enumerated and harvests of salmonids in the food fishery and angling were recorded (preliminary). The 2008 data has been updated for the food and recreational fishery.

In 2009, a total of 280 small and 105 large salmon returned to English River. When compared to 2008 the returns of small salmon had declined by $17 \%$ while returns of large salmon had increased by $56 \%$. When compared to the previous 6 -year mean, small and large salmon returns increased by $46 \%$ and $56 \%$, respectively. A total of 67 small and 13 large salmon returned to Southwest Brook (Paradise River). When compared to 2008 small salmon had decreased by $86 \%$ while large salmon had declined by $63 \%$. When compared to the previous 6 -year mean, small salmon returns decreased by $85 \%$ while large salmon returns declined by $65 \%$. A total of 115 small and 10 large salmon returned to Muddy Bay Brook (Dykes River). When compared to 2008 there was a decrease in returns of small salmon by $76 \%$ and large salmon by $72 \%$. When compared to the previous 6 -year mean, returns of small and large salmon decreased by $73 \%$ and $59 \%$, respectively. A total of 1,605 small and 723 large salmon returned to the main stem of Sand Hill River, (exclusive of Northwest Tributary). Returns of small and large salmon decreased by $67 \%$ and $9 \%$, respectively compared to 2008. When compared to the previous 6 -year mean, small salmon returns decreased by $65 \%$ whereas there was no change for large salmon (< $10 \%$ change).

Smolt production and sea survival was measured at Sand Hill River, Labrador. Smolt estimates are available for the 2007-2009 and 1970-1973. The smolt estimate in 2009 of 59,661 has declined the last two years but remains about average for all years for which estimates are available. Because Sand Hill River, like some other Labrador rivers, has 2SW salmon, a complete estimate of sea survival is available only from the 2007 smolt class. The total sea survival from that smolt class is $6.85 \%$ (smolt to returns of small salmon in year (i) plus returns of large salmon in year (i+1)).

Landings in the four fisheries for Food, Social and Ceremonial (FSC) or subsistence purposes in 2008 increased to 36 tonnes over the previous year value of 26 tonnes (figures unavailable for 2009).

In 2008, angling catches retained and released in Labrador have decreased for small and large salmon over 2007. Angling catch and effort rates in 2008 are similar to 2006. The catch rate, however, is on an increasing trend since 1991.

## DISCUSSION:

- There was considerable discussion on the declines in returns of salmon to monitored rivers in Labrador.
- One participant indicated that there are reports that considerable poaching occurs near the mouth of rivers. The response was that most people in Labrador are aboriginal and have a legal access to salmon. There is no evidence of illegal netting near the mouths of monitored rivers. Legal netting occurs in the vicinity of Muddy Bay Brook and a small amount of effort in Sand Hill Cove. This netting is not believed to have caused the reductions in numbers of salmon observed in the rivers.
- Concern was raised that the presentation did not raise concern about the decline in small salmon. The presenter indicated that that the low returns of small salmon in 2009 is not an indication of the numbers that will return in 2010.
- The question was asked regarding the number of years a salmon stock would have to show low returns before recommending a reduction in fishing effort? Since components of a year class spawn over several years, declines in numbers of spawners over three consecutive years would warrant a recommendation for a reduction in exploitation.
- There was concern expressed that the large salmon component in Labrador rivers are still very low in comparison to abundance in the 1970's. These stocks should not be considered healthy even though the numbers of large salmon have increased in the past 15 years. The presenter pointed out that the salmon abundance, in recent years, has increased and he considers the stocks relative healthy compared to the numbers in the 1990's albeit, lower than in the 1970's.
- There was no explanation why the large salmon have not increased to the levels observed in the 1970's. This phenomenon is common to all the Northwest Atlantic.
- Additional rivers need to be monitored to get a better representation of the status of stocks in Labrador. It would be good if the DIDSON sonars purchased in 2008 were used on a large river in Labrador in 2010. If the river cannot be the Eagle as originally intended then another large Labrador river should be chosen.
- There are no salmon stocks being assessed in either the Straits or Lake Melville areas of Labrador. This should be corrected.
- It was good to see the successful smolt count at Sand Hill using the smolt wheels. The smolt monitoring should be continued; however, when possible, the full smolt count should be done.
- About $50 \%$ of the previous spawning salmon sampled in the Food Fisheries were repeat spawning 2 SW salmon. Thus about $60 \%$ of the large salmon harvested in the Food Fisheries were 2SW salmon (virgin 2SW and previous spawners).
- No information was available to determine if the 1SW large salmon sampled in the Food Fishery were maturing or non-maturing fish.
- There was few, if any, Newfoundland origin salmon caught in the Labrador Food Fishery. Historical data indicates that few Newfoundland salmon are in the vicinity of the Food Fishery during the period when the fishery is conducted. There is the possibility that some non-maturing 2SW salmon of Newfoundland origin are caught in the food fisheries.
- There is an expectation that the returns of small salmon will be higher in 2010 than in 2009. Historical data indicate that in the year following a year of very low abundance there is an increase in abundance.
- One participant requested that the by-catches of salmon in the resident food fishery be separated from the directed salmon fisheries for social, ceremonial and subsistence purposes.


## RECOMMENDATIONS:

1. There should be a reduction in exploitation of large salmon in Labrador commencing in 2010.
2. More research is required on large salmon populations, in Labrador, to determine if the four rivers that are monitored rivers are representative of populations in other rivers, in particular, rivers in Lake Melville and the Straits areas.
3. Studies are required to determine why populations of large salmon are not increasing to levels observed in the 1970's.

## 5. TITLE: Returns to insular Newfoundland rivers, smolt production and marine survival trends

## PRESENTER: C. Bourgeois, Department of Fisheries and Oceans Canada

SUMMARY: The commercial Atlantic salmon fishery moratorium, implemented in insular Newfoundland in 1992, entered its $18^{\text {th }}$ year in 2009. Abundance levels, on average, are below levels achieved prior to the moratorium. Low marine survival, since the late 1980's, continues to be the major factor affecting overall abundance of Atlantic salmon in Newfoundland rivers. Inter-annual variation in marine survival continues to fluctuate widely both among rivers and years as evidenced by the marine survival rates for the 2007-2009 returns. Overall mean sea survival of the 2008 smolt class from the five monitored rivers was amongst the lowest values observed, with smolt to small salmon survival averaging less than $5 \%$.

Conservation egg deposition was achieved on seven of the 13 rivers assessed. Of the six rivers that did not achieve conservation, four were rivers that have had additional habitat opened for salmon colonization (Exploits, Terra Nova, Northwest and Rocky rivers); the other two rivers were Harry's River and Conne River. Overall there was a decrease in returns of small and large salmon in 2009 compared to 2008. Returns of small salmon increased on seven rivers and declined on six rivers; while, returns of large salmon increased on four rivers and declined on seven rivers as compared to the 1992-2008 mean.

Smolt output declined in four of the five monitored rivers from 2008 to 2009. Sea survival rates of the 2008 smolt class were among the lowest values observed from 1992-2008.

Concern is expressed about the poor status of the salmon stock in Middle Barachois Brook. There was no assessment in 2009; however, the assessment in 2008 indicated that the river was only at $28 \%$ of its conservation egg deposition requirements. It is recommended that Science Branch and Fisheries and Aquaculture Management Branch conduct investigations to identify the possible causes with a goal to increase the egg deposition. Concern is noted for the upper section of the Exploits River watershed where the egg deposition dropped by $60 \%$ from 2008 to 2009.

## DISCUSSION:

- A participant indicated that the salmon populations in Bay St. George have increased more than in many other rivers in Newfoundland due to the reduction in illegal nets since the Conservation Strategy was introduced in 2002. The presenter indicated that the trends in salmon abundance in Bay St. George are similar to abundance on other rivers.
- A participant asked if there were any management recommendations. The presenter indicated that a decline in abundance during one year is not sufficient to warrant concern
about the long term future of the stocks. However there should be no increase in fishing mortality.
- There is no apparent explanation for why there was a decrease in abundance of salmon in most rivers in Newfoundland in 2009 while no decrease was observed on the Northeast coast.
- There are Conservation Levels established separately for three sections of the Exploits River. The lower Section continues to meet its spawning requirements. Although the abundance of salmon increased on the Exploits River, the number of salmon migrating into the Upper Exploits (upstream from Red Indian Lake dam) declined by about 60\% from 2008. Some participants felt that the counts at the three fishways on the Exploits should have been presented.
- One participant suggests that the increase in the returns on the Exploits may be a misinterpretation of the information. It would appear that the returns in 2008 were not as high as it should have been given the increases observed in returns of salmon to other rivers. The presenter concurred that this was a possibility. However, there were improvements to the downstream passage for smolt and kelt which may have been a contributing factor to the increase in numbers of salmon in the Exploits River in 2009; as well as an increase in the number of repeat spawners.
- Concern was raised about the overall low abundance of small and large salmon in Newfoundland rivers; as well, as the lack of improvement in stock levels since 1992. Some participants felt that DFO should be doing more to ensure stocks improve and that there should be a reduction in mortality on salmon stocks below the conservation level, with particular emphasis on the MSW components.
- Considerable discussion took place regarding the abundance of salmon now and prior to the closure of the commercial fishery in 1992. Prior to 1992 the returns of salmon into Newfoundland rivers and the total abundance (before fisheries) were declining. Subsequent to the closure the escapements into rivers and egg deposition have increased; however, there has not been an increase in total abundance as was anticipated. Due to the low sea survival presently being experienced, a marginal increase in egg deposition is unlikely to result in a significant increase in returns.


## RECOMMENDATIONS:

1. Increase the number of Atlantic salmon spawners in the Upper Exploits River.
2. There should be no increase in fishing mortality on Newfoundland salmon stocks in 2010.

## 6. TITLE: Update biological characteristics Bay St. George Atlantic salmon

## PRESENTER: G. Veinott, Department of Fisheries and Oceans

SUMMARY: Data available (1992-2009) for estimating whole weight, \% females, and fecundity in Atlantic Salmon stocks in rivers in the Bay St. George area of insular Newfoundland was reviewed. New estimates of biological characteristics of these stocks were compared to values currently used to determine their status. In general, the new estimates of whole weight and \% female were lower than the current default values. A new estimate of fecundity ( 2000 eggs $/ \mathrm{kg}$ ) was higher than the default value of 1540 eggs $/ \mathrm{kg}$. The new values resulted in a $14-61 \%$ increase in the percent conservation achieved in rivers assessed in 2008 using the recalculated default values.

## DISCUSSION:

- There was considerable discussion on the derivation of the fecundity estimates from samples taken in summer and those taken in the fall. The value of 2000 eggs $/ \mathrm{kg}$ was chosen from the Flat Bay fecundity data, which is similar to estimates derived for other rivers by O'Connell et al (2008).
- There are insufficient sample sizes to obtain reliable estimates of biological characteristics for salmon in individual rivers in Bay St. George, except Harry's River (fecundity estimates are not available for Harrys River). When samples from all rivers are grouped, the large number of samples on Harry's River biases the estimates for mean weight and percent female.
- There was discussion about the sparse amount of biological characteristic data for salmon in Bay St. George rivers and the importance of getting more data, given that these rivers contain most of the MSW salmon populations in Newfoundland. Also these MSW salmon populations are at low levels.
- Using the re-calculated biological characteristics (data from rivers grouped) results in a higher estimate of the percentage of the conservation requirements achieved for all rivers than those derived in previous years assessments.
- Considerable discussion occurred with regard to the appropriate calculation for an estimate of fecundity. There may be a decrease in average weight of salmon from time of entry into the river until spawning. Also atresia is known to occur prior to spawning; thus, there would be fewer eggs $/ \mathrm{kg}$ in fish in the fall.
- Fecundity estimates in terms of eggs $/ \mathrm{kg}$ and eggs/cm are available for salmon on Flat Bay Brook.
- It would be appropriate to calculate the length-weight and fecundity relationships using a log-log scale.
- It is important to collect additional river specific biological characteristics data;
- The calculation of egg deposition on rivers outside Bay St. George does not use a fecundity value of 1540 eggs $/ \mathrm{kg}$.
- It may be appropriate to develop fecundity estimates based on length, since length does not change from the time fish enter the river and time of spawning.
- One participant felt that it is conceivable that the average size of the salmon ova may have decreased since the earlier studies were completed in the 1960's. There are limited data to evaluate if there were changes in size of eggs over time.
- Percent female changes throughout the run of salmon to the river. Sampling needs to be taken over the entire run of salmon to the river.
- Local ecological knowledge indicates differences in size of small and large salmon among rivers in Bay St. George, and even grouping of stock characteristics from adjacent rivers may be inappropriate.
- Some participants felt that the new values for biological characteristics should be used; however there was no agreement on this issue. Concern was expressed that the values presented might change with additional analysis, and since this parameter value is integral to calculating the status of stocks, it would be prudent to wait for further analysis to determine the most appropriate fecundity estimate to use. It was agreed that a detailed working paper should be presented at the next meeting with consideration to additional analysis. Once values for the biological characteristic are agreed upon, they would be used in future assessments.
- Sufficient data are available for weight, length and percent female for Harrys River; and these should be used in the Harrys River assessment.


## RECOMMENDATIONS:

1. Details of methodology to calculate the biological characteristics to be used in assessing Bay St. George salmon stocks should be tabled in a working paper at the next Regional Stock Assessment meeting for review. Consideration should be given to comparing the fecundity estimate for Flat Bay Brook to fecundity estimates at the time of stripping for all rivers including Exploits, Terra Nova, and Pipers Hole rivers. Length and weight data are available for these rivers. It would be desirable to use egg length relationships for fecundity since there are more data available on lengths of salmon then on weights. Consideration should be given to using raw data in developing the fecundity relationships; and where logarithmic scale is used, both axes should be logged.
2. River specific biological characteristics data should be collected in Bay St. George.

## 7. TITLE: Looking for common trends and patterns in Atlantic salmon abundance - A preliminary examination

## PRESENTER: M. Koen-Alonso, Department of Fisheries and Oceans

SUMMARY: Salmon rivers in NL are typically grouped regionally (e.g. Northeast coast of Newfoundland [NEC], South coast of Newfoundland [SC], etc.), and trends in salmon abundance are often reported by merging/integrating information by region. This type of analysis has shown differences in trends among regions (e.g. SC rivers have continued to decline after the moratorium while NE rivers have shown increases in salmon runs). The very nature of the aggregate analysis prevents exploring if individual rivers within these areas actually show common trends or, if they do, which are the rivers that may be driving these common trends. The objective of this work was to explore this issue by: a) searching for common trends among individual rivers within a region, and b) investigating if environmental variables can explain, at least in part, these common trends. Given the exploratory nature of this analysis, the study was focused on NEC and SC regions and only data for small salmon were considered. The analysis covered the period 1984-2009. Since several individual river time series do not cover the entire period, analyses were performed on subsets of the data to: a) maximize the length of the time series to be analyzed, or b) maximize the number of rivers included in the analysis. The existence of common trends was investigated using a combination of two statistical techniques: Minimum/maximum Autocorrelation Analysis (MAFA) and Dynamic Factor Analysis (DFA). The effect of environmental conditions was mainly explored by incorporating environmental variables into DFA models. Signals at two different geographical scales were considered, a local one represented by the average annual sea bottom temperatures in the vicinity of the region, and a system-wide one represented by the annual North Atlantic Oscillation (NAO) index. The Akaike's Information Criterion (AIC) was used to compare models. Results indicate that there are detectable common trends in both regions. These trends are not evident in all rivers, but where they are, they do not appear to be related to river proximity. This suggests "marine-bound" mechanisms underlying these trends. The main trend in NEC suggests an increase in salmon returns between the mid-late 1980s and the mid-late 1990s. The main trend in SC suggests a decline during the same period. There is some evidence of environmental influence in these trends, but this evidence is not consistent. Both local conditions and general ocean/ecosystem state appear to have effects, and these effects vary over time. Environmental signals were stronger in SC rivers; most clearly in the 1986-1996 period.

## DISCUSSION:

- The modelling exercise looks promising and continuation of the modelling is encouraged.
- There were a number of questions to clarify the model.
- Although these specific models were not used to compare sea temperatures and NAO index to abundance of other marine species, the changes in salmon abundance are mirrored by other marine species such as cod and capelin. During the mid-1980s to the mid-1990s there were major changes in abundance of many fish species. The factors affecting salmon appears to be also affecting other species as well.
- Consider running the models using other marine water temperatures during specific periods of time; such as the first three weeks when salmon are at sea. There maybe other time periods that could also be tried.
- We know that the marine survival at sea is low; so, evaluating changes in food and feeding, and predation seems reasonable.
- How do you choose factors to be included in the model: e.g. enhancement, seals, aquaculture, predators and prey?
- Consider looking at sea survival rates in relation to sea temperatures and NAO.
- If we remove the Exploits River and Terra Nova River data from the Northeast coast model, then the trend line would be flat.
- Increasing the smolt production would only marginally increase adult returns due to the low survival of salmon at sea ( $\sim 3 \%$ on the south coast).
- One participant asked if it is possible that over the past decades that we have overharvested the stocks on the south coast to such an extent that we have caused negative genetic effects which have affected their survival rate at sea and thus, not able to rebuild population sizes to historic levels? Currently there is no means to evaluate if this change has occurred.


## RECOMMENDATIONS:

1. The modelling research should be continued, since refinements of the models could enhance capabilities to forecast large changes in sea survival.

## 8. TITLE: Changes in angler dynamics in the Newfoundland and Labrador Atlantic salmon recreational fishery, 1994-2008

## PRESENTER: J. B. Dempson, Department of Fisheries and Oceans Canada

SUMMARY: The licence stub return program began in 1994. Since then, the number of licences issued has declined substantially, falling from 20,000 to 25,000 in the mid-1990s to a low of 14,000 by 2007. An analysis of the licence part of the database, consisting of almost 250,000 records, allowed trends in licence sales and angler age demographics to be examined across specific regions of the Province. Licence sales declined in five of seven regions, but have been increasing in both the Southwest coast and Northeast Avalon (greater St. John's) regions in recent years. Non-resident Canadian anglers, primarily from Nova Scotia, Ontario, and Alberta, have been increasing while numbers of international anglers have declined. Over all years, about $91 \%$ of all licences issued went to resident (Newfoundland and Labrador) anglers.

Mean age of anglers has increased consistently across all regions of the Province. The youngest average age of anglers (39.8 years) were anglers from Southeast Labrador, while those with the oldest average age ( 44.7 years) were from the Southwest coast. Examination of the distribution of anglers showed a substantive decline in anglers less than age 30 whereas those 50 to 69 age category have shown a corresponding increase over time. This lack of "recruitment" of new anglers contributes to the overall decline in licence sales for the Newfoundland and Labrador Region.

By merging the licence database with the stub return dataset provides insight into the regional distribution of anglers fishing on any particular river of interest. For example, Gander River is frequented mostly by anglers from central Newfoundland and the Northeast Avalon (greater St. John's area) while Humber River is commonly fished by anglers from the Southwest coast with similar contributions of anglers from the Northern Peninsula - White Bay area, central Newfoundland, and the Northeast Avalon areas. The time series of data available also illustrates how the regional contributions can change over time.

Reasons for the overall decline in angler participation could be related, in part, to the overall increase in age of anglers, out-migration and the decline in the total population of the Province, and the significant relationship between the increasing value of the Canadian dollar in recent years and the coincidental decline in numbers of international anglers.

## DISCUSSION:

- One participant indicated that observations on the rivers indicate that there are more female anglers in recent years. However, the data does not show any dramatic change in percent female anglers although there are annual fluctuations.
- About $80 \%$ of the people that bought licences angled.
- Those licensees that do not angle tend not to send in their returns.
- Anglers that voluntarily send in their licence return, tend to have a higher catch and effort than those who do not voluntarily send in their return.
- There are reports of similar reductions in participation, particularly in the younger age groups, in recreational fisheries in other Canadian provinces, the USA and in the United Kingdom.


## RECOMMENDATIONS: None

## 9. TITLE: Southwest Pond - Atlantic salmon or trout

## PRESENTER: Martha Robertson, Department of Fisheries and Oceans Canada

SUMMARY: Southwest Pond is located in the Greenspond area of Bonavista Bay. The fish harvested from this area have been recognized by anglers as being distinct. People described the fish as being most like Atlantic salmon but smaller and with "stubby" heads. Public concern was raised in the mid-1990s regarding the identity of the fish from Southwest Pond, the perceived high exploitation rate and reduced abundance of these fish, and the trout management plan being applied at that time. A research study was conducted on Southwest Pond by Stephen Sutton, Memorial University (Sutton,1997). Through DNA analysis, the study concluded that the fish from Southwest Pond were Atlantic salmon. The growth and migration pattern of these salmon, as determined though scale and otolith samples, was consistent with that of precocious postsmolt. Atlantic salmon postsmolt from Southwest Pond only spend 2-3 months at sea before returning to spawn and over-winter in freshwater. This short duration feeding at sea results in a smaller body size and younger age at maturation than 1 SW salmon (grilse). The precocious postsmolt life history strategy is common in Newfoundland and represents $2-13 \%$ of the returns in Campbellton River. The proportion of these salmon in Southwest Pond is unknown. However, Local Ecological Knowledge data suggests that larger salmon ( $>45 \mathrm{~cm}$ ) have almost disappeared from the watershed. Since 2000, the Atlantic salmon in the Southwest Pond watershed have been managed as a Special Trout Management Area.

## DISCUSSION:

1. Precocious postsmolt are common in many rivers in Newfoundland, particularly on the Northeast coast; however, the numbers of precocious postsmolt returning to Southwest Pond appears (from reports from local anglers) to be a higher proportion of the total stock than in other rivers in Newfoundland. From the information provided, it appears that a high portion of the population spends less than one year at sea; some fish spend only two or three months at sea before returning to the river to spawn.
2. The participants agreed that the "mystery fish" in Southwest Pond are anadromous Atlantic salmon.
3. There was a discussion as to whether or not this population should be managed as other Atlantic salmon stocks. However, since this is a fisheries management decision, the issue was not pursued.
4. Some participants felt that this stock has a unique sea run component in its life cycle, given that a high portion of the population spends less than one year at sea.
5. There was a discussion as to the possibility of recommending that this stock be managed as a unique salmon stock. There was no consensus.
6. Current regulations require that salmon less than 30 cm have to be released. There was a suggestion that this size limit be reduced to 25 cm , which would allow people to harvest the postsmolt salmon on Southwest Brook. There was no consensus on carrying this suggestion forward as a recommendation.
7. Local anglers feel that the abundance of salmon has decreased.

## RECOMMENDATIONS:

1. Inform Fisheries Management and Aquaculture Branch that the "Mystery" fish in Southwest Pond are anadromous Atlantic salmon. The Atlantic salmon population from the Southwest Pond area appear to have a high proportion of precocious postsmolt returning to freshwater to spawn in the same year that they migrated to sea as smolt.

## 10. TITLE: Report on the Atlantic salmon rivers of Newfoundland and Labrador

## PRESENTER: R. J. Poole, Department of Fisheries and Oceans Canada

SUMMARY: The number and size range of Atlantic salmon rivers in Newfoundland and Labrador was updated as part of DFO's initiatives to develop the Canadian Stock Status Report on Atlantic salmon in Eastern Canada. It is a "living document" that will be reviewed yearly. The latitude/longitude coordinates are taken at the mouth of the fluvial system. A fluvial system is defined as a river which has its mouth flowing directly into tidal water. A salmon river for purposes of this initiative was defined as any river where anadromous salmon was reported as parr or adult in the reported salmon statistic. Records used to determine a salmon river included angling statistics collected by Fisheries \& Oceans, and information from DFO field staff from the Salmonids Section, Fish Habitat Management, and Conservation and Protection groups, as well as information from Aboriginal groups. Candidate rivers were chosen from geographic information maps of the province. In total, 311 out of a total of 364 rivers on the Island of Newfoundland were identified as salmon rivers along with a further 85 salmon rivers out of a total of 366 rivers in Labrador. In 2009, six rivers were added to the list for Newfoundland and four were removed from the list for Labrador. At present, but subject to further review, the Newfoundland \& Labrador Region has 396 Atlantic salmon rivers in total.

## DISCUSSION:

- The list of rivers with anadromous Atlantic salmon stocks includes the rivers provided by various stakeholder groups.
- Anyone that is aware of a river with a salmon stock that is not listed, should pass the information to Rebecca Poole or David Reddin, Salmonids Section, Science Branch, DFO. The latitude and longitude of the mouth of the river is essential, so that the river can be appropriately located.
- Caution should be used in applying the term Atlantic salmon population, since each river may have one or more salmon populations.
- One participant asked if there was any initiative started to schedule the rivers crossed by the Trans-Labrador Highway. All rivers with anadromous Atlantic salmon crossed by the Trans-Labrador Highway in Southern Labrador are scheduled and classified.
- It was pointed out that all rivers with anadromous Atlantic salmon stocks are included in the River Classification scheme as Class III Rivers, even if they are not Scheduled Salmon Rivers.


## RECOMMENDATIONS: None

## 11. TITLE: Preliminary data on the seasonal use of Renews River estuary by salmonids

PRESENTER: L. Warner, MSc. candidate, Memorial University of Newfoundland
SUMMARY: A given population of salmonids may contain both anadromous (sea- run) and resident (non-sea-run) individuals. Anadromy is favoured when individual fitness is greater using multiple habitats than a single habitat. Anadromous individuals may experience greater fitnessrelated costs, including the increased probability of mortality. However, anadromous individuals have been shown to reach a greater size-at-age and have increased fecundity than resident individuals. This is because marine habitats are more productive than freshwater habitats in temperate latitudes; and, estuary habitats are highly productive and dynamic rearing and feeding grounds.

The Renews estuary was chosen to study the seasonal use of estuary habitat by salmonids. Standardized sampling was being conducted bi-monthly over a 12 month time period. All sampling was being done within a 4 -hour time window around peak high tide (when peak high tide was between $9 a m-4 \mathrm{pm}$ ). Each sampling event consists of two days of sampling within each tide window; the second day being a replicate of the first day. Two sites were sampled using a large beach seine, and six additional sites were sampled using gill nets. Gill nets consisted of one 1-inch mesh panel and one 2-inch mesh panel, which were set for < one hour, in order to avoid sampling mortality. Passive Integrated Transponder (PIT) tags were being implanted in most salmonids measuring $\geq 45 \mathrm{~mm}$ for mark/recapture. Standardizing sampling methods allowed comparisons at multiple scales, including collection, day, tide-cycle (bimonthly), monthly and seasonally.

To date, 13 tide cycles (May $1^{\text {st }}$ to Oct $24^{\text {th }}$ ) have been sampled and 16 species have been caught for a total of 13821 individuals. Seven hundred and seventy-seven (777) Atlantic salmon, 221 brown trout and 3 brook trout have been caught and 247 PIT tags have been deployed. Most of the Atlantic salmon were caught on May $13^{\text {th }}$ and were part of the smolt run (few PIT tags were implanted in these individuals due to the unlikely event of them remaining in the estuary). Atlantic salmon and brown trout (< 20 per day) were consistently caught throughout the sampling period, with brown trout being consistently more abundant following the smolt run. Two brook trout were caught during the smolt run and one was caught in June. Average fork length of salmonids was greatest during the smolt run, decreased following the smolt run, then steadily increased throughout the sampling period to achieve an average fork
length in October, similar to that of the smolt run. One brown trout that was tagged on August 25th was recaptured on September 22 and achieved 5 mm of growth during that time.

Other work related to the potential benefits of anadromy is also being conducted along the Renews River watershed. Young-of-year salmonids (Atlantic salmon, brown trout and brook trout) were collected from 16 sites ( 5 below $1^{\text {st }}$ Falls, 5 between $1^{\text {st }} \& 2^{\text {nd }}$ Falls, 6 upstream of $2^{\text {nd }}$ falls), between the outflow into the Renews estuary upstream to the inflow to Big Butterpot Pond. Otoliths will be removed for micro-chemical analysis in order to identify individuals as the progeny of anadromous or resident mothers. Size (fork length \& dry weight) will be compared between individuals from anadromous and resident mothers in order to determine if individuals from anadromous mothers are of higher quality than individuals from resident mothers.

## DISCUSSION:

- There was a discussion regarding the number of salmon parr caught while electro-fishing. Atlantic salmon parr were caught while electro-fishing; but, since electro-fishing was directed specifically towards habitat used by young-of-the-year salmonids, very few older salmon parr were capture.
- One participant suggested that the summer water temperatures in Renews River are known to exceed $25^{\circ} \mathrm{C}$, which may result in salmon parr migrating to the estuary for a thermal refuge. The presenter indicted that this may occur; however the estuarial temperatures in 2009 approached $25^{\circ} \mathrm{C}$.
- Most of the salmon (777) captured in the estuary in May were smolt. One the first day, 703 smolt were captured. Few adipose fin-clipped smolt were recaptured.
- A participant asked if the sampling biased towards smaller fishes? Sampling in the estuary was intentionally designed to minimise the catch of larger fish, i.e. biased towards catching small fish; although some larger fish were captured. Only small meshed gill nets were used; and nets were set for a short duration. The sampling design was to assess seasonal variation in usage of the estuary by fishes. Some large fish were caught. If there were many large brown trout in the estuary then some would have been caught. Sampling of the anglers catch indicates that model length of angled brown trout is about 25 cm .
- One participant indicated that historically larger brown trout were caught. It would appear that the large component has disappeared.


## RECOMMENDATIONS: None

## 12. TITLE: Preliminary findings of the Renews River project

## PRESENTER: G. Veinott, Department of Fisheries and Oceans Canada

SUMMARY: Data on Atlantic salmon collected during the Renews River Salmonid Project were presented. Parr densities in the main stem of Renews Rivers were low (25-35/100 sq m) compared to other NL sites. The smolt run for 2008 and 2009 was estimated at 1500-1600 fish comparable to that on Northeast Trepassey. Angling data from DFO's license stub returns suggests that the adult run size is declining. However, reports by anglers indicate that the number of salmon released is increasing. It was estimated that the adult salmon stock is at approximately $50 \%$ of the number of spawners required to meet the conservation requirements of Renews River.

## DISCUSSION:

- One participant suggested that the estimated number of smolt migrating from Renews River may be an under estimate. One seine haul in the estuary in May captured over 700 smolt. It would appear that the total population of smolt was larger than what was indicated by the number of smolt caught in the fyke net in the river. It is unlikely that one seine haul caught half of the total smolt population. However, a large number of smolt is inconsistent with the catches in the in-river fyke net. There were no data to resolve the discrepancy between the two numbers.
- There are two waterfalls on Renews River. The lower falls is not considered a barrier to upstream migrating large Atlantic salmon or trout. However, the upper falls is believed to be a partial upstream migration barrier during low water levels.
- Fish that stage at the falls are susceptible to illegal fishing.
- Both waterfalls are barriers to upstream migrating juvenile salmon and small trout.


## RECOMMENDATIONS: None

## 13. TITLE: Update on SALSEA research vessel survey

PRESENTER: D. G. Reddin, Department of Fisheries and Oceans Canada
SUMMARY: A research cruise to the mid-Labrador Sea was conducted during fall of 2009. During the trip 21 sets were made in the Labrador Sea between $55^{\circ} \mathrm{N}$ and $58^{\circ} \mathrm{N}$. Fourteen tows were made with the surface trawl and eight postsmolt salmon were caught with the aquarium attached. No postsmolt were caught during tows without the aquarium. Different fishing techniques including adjustments to warp length, vessel speed, length of tow time and time of fishing were tried. Two night tows were done and five postsmolt caught. Two tows and one gillnet set were made in the colder water of the Labrador Current with no salmon caught. The upper portion (20 m to surface) of the water column is extremely productive.

Seven drift net sets of 42 to 48 nets of varying mesh size (2.5-5 inch) were completed in the Labrador Sea. Eighty-four salmon (61 post smolt, 23 adults) were caught with an average time of each set being approximately 16 hours.

Eighty five (85) salmon were sampled for biological, morphometric, and biochemical data. Vemco VR2 sonic recorders were deployed on the rosette sampler and gillnet high flyers but no tagged salmon were recorded on either device.

In spite of the poor weather for fishing surface trawl and gillnets, the SALSEA program objectives of sampling the ecosystem components within the upper 20 m of the water column were achieved. The data from salmon that were intensively sampled, when analysed, will define the characteristics, origin, age, health, and diet of the salmon population in the northern Labrador Sea area. Stable isotope analysis will define the salmon's place trophically in the ecosystem. Other accomplishments were showing that salmon could be caught in the surface trawl at night, and the high productivity and species diversity of the upper portion of the water column in the Labrador Sea. No salmon were caught in sets on the shelf area influenced by the Labrador Current versus fishing sets in mid-Labrador Sea where salmon were commonly caught.

Species caught during surface trawling included salmon, lumpfish, myctophids, jellyfish, amphipods, barracudina, squid, redfish, Atlantic saury, redfish and Greenland halibut. Most
abundant species were lumpfish, myctophids, redfish, salmon and squid. Sections of the survey area were incomplete due to time lost due to bad weather which plagued the trip.

## DISCUSSION:

- The salmon caught in the Labrador Sea during this trip appeared to be quite healthy, have good growth and there appears to be an abundance of prey items. It is suggestive that if high mortality of salmon is occurring at sea, then it is occurring before they get to the Labrador Sea, i.e. closer to shore, during early post smolt migration.
- It would be interesting to see the age distribution of the salmon caught in the Labrador Sea in 2009. Since the southern North American stocks have declined, one would anticipate that there would be a corresponding decline in the proportion of younger age fish in the Labrador Sea.
- Telemetry studies currently being conducted by the ASF indicate that post smolt from the southern Gulf rivers pass through the Strait of Belle Isle in July


## RECOMMENDATIONS: None

## 14. TITLE: Update on Harrys River Atlantic salmon returns

## PRESENTER: S. Styles, Bay St. George Atlantic Salmon Conservation Group

SUMMARY: A report was tabled that stresses the importance of increasing angler presence on rivers as a deterrent to illegal fishing. Harrys River Conservation Working Group was formed in 2002 and a Conservation /Stock Recovery Strategy was implemented in 2003. The numbers of Atlantic salmon returning to Harrys River, 1992-2009, and the percentage conservation egg deposition achieved, 1953-2009, was presented. The total number (years combined) of small and large salmon entering Harrys River, 2002-2009, was $69 \%$ and $303 \%$ respectively higher than the total number in the preceding 8 years, 1994-2001. The percentage of the conservation egg deposition requirements achieved has also increased considerably since 2002. Low egg depositions were experienced in 2007 and 2009 similar to most other rivers in Newfoundland. The combined efforts of the Harrys River Conservation Working Group, DFO and aboriginal enforcement staff are believed to have been major contributing factors to increasing the numbers of spawners since 2002. It is the view of the Bay St. George Salmon Group that the improvements in salmon returns to Harrys River also occurred in other rivers in Bay St. George.

## DISCUSSION:

- The Chair indicated that the report dealt primarily with management issues and so there was no discussion on the presentation.
- The Working Group was commended for its efforts and accomplishments in conserving and restoring the Harrys River salmon stock.


## RECOMMENDATIONS: None

## 15. TITLE: Data provided to ICES regarding the status of the NL stocks

PRESENTER: G. Veinott, Department of Fisheries and Oceans Canada
SUMMARY: Data annually presented at the ICES Working Group on North Atlantic Salmon was reviewed. Total returns of adult Atlantic salmon to all Newfoundland and Labrador rivers are
used by the Working Group to estimate the pre-fishery abundance of 2SW salmon off the coast of Greenland. The estimate of total returns to NL rivers is based on returns of salmon to counting fences in Newfoundland and Labrador, the exploitation rate in the recreational fishery, proportion of the returns that are "large" salmon and the proportion of the returns of large salmon that are 2SW salmon. In Labrador, returns of salmon to the whole area are extrapolated from returns to counting fences corrected for drainage area of the monitored watersheds.

## DISCUSSION:

- Estimates of 2SW salmon for Newfoundland rivers are included in the ICES estimates of PFA (pre-fishery abundance).


## RECOMMENDATIONS: None

## OVERVIEW OF THE SAR AND INCLUSION OF RECOMMENDATIONS

The Chair reviewed a preliminary draft of the SAR. He pointed out the "Context" paragraph on the first page states that Conservation Requirements are considered threshold reference points and that there should be no human induced mortalities below $100 \%$ of conservation.

The Summary bullets were reviewed and the following changes made:

- In the bullets for the NE and Eastern NF, the years used in the comparisons should be identified.
- Check all references to increases and decreases in numbers to ensure that changes within $10 \%$ of the 2008 and the mean levels are considered "No change"; e.g. There was no change in the numbers of large salmon in Harrys River compared to 2008.

In the second line of the "Sources of Uncertainty" on page 17, change the words "impossible to forecast" to "difficult to confidently forecast" or some similarly wording.

In the Management advice section p. 18

- paragraph 2 reword as follows: "The increased...........enforcement have been successful on Bay St. George rivers. DFO should............. 2010."
- Re-word paragraph 3 as follows: "Conservation/....................... Science supports such directed fisheries in cases where conservation/sock recovery strategies are in place and annual in-season ........adjustments."
- Re-word paragraph 4 as follows: "Concern .................... was formed and a Conservation/Stock recovery strategy was developed and presented to Fisheries Management.

In the Research Recommendations Section, Re-word the first paragraph to include other areas of Newfoundland and Labrador that require stock monitoring. Identify priority rivers for monitoring. Some participants suggested that monitoring of rivers on the southwest coast should be a priority given the low abundance of salmon on the southwest coast, the presence of the aquaculture industry, and the proximity of the salmon fishery in St. Pierre and Miquelon. Also add recommendations from the Proceedings Report.

## MANUSCRIPTS FOR UPGRADE TO RESEARCH DOCUMENTS

- Status of Atlantic Salmon Stocks in Newfoundland -SFAs 3-14A
- Status of Atlantic salmon Stocks in Labrador - SFAs 1-2 \& 14B


## OTHER BUSINESS

- Current processes and products following CSAS Review (See Presentation 1 above)
- Update on Harrys River Atlantic salmon returns (See Presentation 14 above)


## ACTION ITEMS

1. The chair will provide Rick Bouzan with information on the formal process within CSAS for requesting items to be placed on the Salmonid RAP agenda.
2. The counts of Atlantic salmon at the three fishways on the Exploits river should be presented at future RAP meetings.
3. Details of methodology to calculate the biological characteristics to be used in assessing Bay St. George salmon stocks should be tabled in a working paper at the next Regional Stock Assessment meeting for review. Consideration should be given to comparing the fecundity estimate for Flat Bay Brook to fecundity estimates at the time of stripping for all rivers including Exploits, Terra Nova, and Pipers Hole rivers. Length and weight data are available for these rivers. It would be desirable to use egg length relationships for fecundity since there are more data available on lengths of salmon then on weights. Consideration should be given to using raw data in developing the fecundity relationships; and where logarithmic scale is used, both axes should be logged.
4. Anyone that is aware of a river with a salmon stock that is not listed in the compendium of salmon rivers for Newfoundland and Labrador, should pass the information to Rebecca Poole or David Reddin, Salmonids Section, Science. Branch, DFO. The latitude and longitude of the mouth of the river is essential, so that the river can be appropriately located.
5. Prepare Science Advisory Report and Research Documents as identified above.

## REFERENCES

Sutton, S. 1997. The Mystery Fish of Bonavista North: A Multidisciplinary Approach to Research and Management of a Unique Recreational Salmonid Fishery in Newfoundland. M.Sc. Thesis, Memorial University of Newfoundland. 120 p.

O'Connell, M. F., J. B. Dempson and D. G. Reddin. 2008. Inter-river, -annual and -seasonal variability in fecundity of Atlantic salmon, Salmo salar L., in rivers in Newfoundland and Labrador, Canada. Fisheries Management and Ecology 15: 59-70

## APPENDIX 1: Terms of Reference

# Meeting of the Newfoundland and Labrador Regional Advisory Process (RAP) on Salmonids November 5-6, 2009 <br> Comfort Inn Airport, 106 Airport Road <br> St. John's, Newfoundland and Labrador 

Meeting Chairperson: Chuck Bourgeois, Section Head, Salmonids, Aquatic Resources Division, DFO, Newfoundland and Labrador Region.

## TERMS OF REFERENCE

## Background

There are 15 Atlantic salmon (Salmo salar) management areas, known as Salmon Fishing Areas (SFAs) 1-14B, in Newfoundland and Labrador. Within these areas there are more than 200 rivers with reported Atlantic salmon populations characterized by differences in life history traits including freshwater residence time, age at first spawning, and the extent of ocean migrations. The November meeting is intended primarily to update those stocks/rivers considered during the last assessment meeting, with emphasis on determining the level of conservation spawning requirement achieved.

## Objectives

An update of any new information available concerning the status of Atlantic Salmon stocks will be presented for Salmon Fishing Area (SFA) ${ }^{1}$ regions as follows:

- Labrador: SFAs 1-2, 14B
- Newfoundland: SFAs 3-14A

The meeting will focus on the general state of salmon stocks in Newfoundland and Labrador and identify conservation issues. Harvests will also be assessed as part of the stock status assessment for Labrador. Detailed assessments of individual rivers will not be carried out. Rather, regional overviews of the status of stocks will be tabled. Finally, an update on smolt production and marine survival of Newfoundland salmon will be presented.

## Products

A Science Advisory Report, Proceedings Report and associated Research Documents will be produced as a result of this meeting.

## Invited Participants

DFO Science, Fisheries Management, Policy \& Economics and SARA Program
Government of Newfoundland and Labrador
Parks Canada
Various Non-Governmental Organizations and Associations

[^0]Various Aboriginal Groups
Memorial University of Newfoundland
Various Salmon Working Groups
Various Aquaculture Groups

ANNEXE 2: Cadre de référence

# Réunion du Processus de consultation scientifique régional (PCSR) sur les salmonidés Les 5 et 6 novembre 2009 Comfort Inn Airport, 106, Airport Road St. John's, Terre-Neuve et Labrador 

Président de la réunion : Chuck Bourgeois, chef de section, Salmonidés, Division des ressources aquatiques, MPO, Région de Terre-Neuve et du Labrador.

## CADRE DE RÉFÉRENCE

## Contexte

On dénombre 15 zones de gestion du saumon atlantique (Salmo salar), désignées zones de pêche au saumon (ZPS) 1 à 14B, à Terre-Neuve et au Labrador. Ces zones comptent plus de 200 cours d'eau dans lesquels on a signalé des populations de saumons atlantiques qui se différencient par les caractéristiques de leur cycle biologique, y compris la durée de leur séjour en eau douce, l'âge au premier frai et l'étendue de leurs migrations dans l'océan. La réunion de novembre vise principalement à mettre à jour l'état des stocks et des cours d'eau examinés lors de la dernière réunion d'évaluation et met l'accent sur la mesure dans laquelle les besoins en reproducteurs pour la conservation ont été comblés.

## Objectives

Présenter l'information nouvelle sur l'état des stocks de saumon atlantique pour les zones de pêche au saumon (ZPS) ${ }^{1}$ suivantes :

- Labrador : ZPS 1-2, 14B;
- Terre-Neuve : ZPS 3-14A.

La réunion portera sur l'état général des stocks de saumons dans la région de Terre-Neuve et du Labrador et sur la détermination des besoins pour la conservation. On évaluera également les prélèvements par la pêche dans le cadre de l'évaluation de l'état des stocks du Labrador. On n'examinera pas les cours d'eau individuellement, mais on présentera plutôt des examens régionaux de l'état des stocks. Enfin, on fera le point sur la production de saumoneaux et la survie en mer des saumons de la région de Terre-Neuve.

## Documents prévus

Un avis scientifique, un compte rendu et des documents de recherche connexes seront produits à la suite de cette réunion.

[^1]Annexe 2 : suite du Cadre de référence

## Participants invités

MPO : secteur des Sciences; Gestion des pêches; Politiques et économie; Programme de la LEP
Gouvernement de Terre-Neuve et du Labrador
Parcs Canada
Diverses associations et organisations non gouvernementales
Divers groupes autochtones
Université Memorial de Terre-Neuve
Divers groupes de travail sur les salmonidés
Divers groupes responsables de questions liées à l'aquaculture

## APPENDIX 3: Agenda

Atlantic Salmon 2009 Stock Status Update<br>November 5-6 commencing at 9:00 am<br>Comfort Inn Airport, 106 Airport Road St. John's

## Day 1

0900 - Introduction (Bourgeois)

- review of agenda

0915 - Data Review:

- Definition of conservation for Atlantic salmon (Dempson)
- Marine Conditions - Climatic Variability in the Northwest Atlantic-Potential Impacts on

Atlantic Salmon- (E. Colbourne and B. Dempson)
1030 - Coffee Break
1045 - Returns to Labrador Rivers (Reddin)

- Harvests of salmonids in various fisheries in Labrador (Reddin)
$1200-1300$ Lunch
1300 -(continued)
- Returns to Insular Newfoundland Rivers, Smolt production and marine survival trends (Bourgeois)
- Update biological characteristics Bay St. George Rivers (Veinott)

1500 - Coffee Break
1515 - Looking for common trends and patterns in Atlantic salmon abundance - a preliminary examination (Koen-Alonso)

- Changes in angler dynamics in the Newfoundland \& Labrador Atlantic salmon recreational fishery, 1994-2008 (Dempson, Cochrane, O'Connell)
- Southwest Pond - salmon or trout (Robertson)


## Day 2

0900 - Listing of rivers of Insular NF and Labrador with salmon populations (Poole)

- Preliminary data on seasonal use of the Renews estuary by Salmonids (Warner)
- Preliminary findings of the Renews River Project (Veinott)
- Update SALSEA research vessel survey (Reddin)

1030 - Coffee Break
1045 - Presentation on data provided to ICES regarding status of NL stocks (Veinott, Reddin, Poole)

- Overview of the SAR and inclusion of recommendations
- Manuscripts for upgrade to Research Documents and Science Advisory Report
- Other Business

1) Current process and products following CSA review of Science Advisory Report (C. Bourgeois)
2) Update on the Atlantic salmon returns to Harrys River (Sid Styles)

APPENDIX 4: List of attendees at the Newfoundland and Labrador Region Atlantic salmon stock assessment meeting

| NAME | AFFILIATION / ADDRESS | ADDRESS | PHONE/FAX | E-MAIL |
| :---: | :---: | :---: | :---: | :---: |
| Adams, Blair | Department of Natural Resources | Gander | $\begin{aligned} & \hline 256-1415 / \\ & 424-0412 \end{aligned}$ | blairadams@gov.nl.ca |
| Billard, Greg | SAEN |  | 722-9300 | coppertopelectric@yahoo.com |
| Bourgeois, Chuck | DFO, Science | $\begin{aligned} & \hline \text { PO Box } 5667 \\ & \text { St. John's NL A1C } \\ & \text { 5X1 } \end{aligned}$ | $\begin{gathered} 772-2128 / \\ 772-3578 \end{gathered}$ | chuck.bourgeois@dfo-mpo.gc.ca |
| Bouzan, Rick | Newfoundland and Labrador Wildlife Federation | 15 Conran St. St. John's, NL | 364-8415 | Rbouzan.fmc@nf.sympatico.ca |
| Dempson, Brian | DFO, Science | $\begin{aligned} & \text { PO Box } 5667 \\ & \text { St. John's NL A1C } \\ & \text { 5X1 } \end{aligned}$ | $\begin{gathered} 772-4475 / \\ 772-3578 \end{gathered}$ | brian.dempson@dfo-mpo.gc.ca |
| Fleming, lan | Ocean Sciences Centre | Memorial Univ of NF, St. John's NL A1C 5S7 | 737-3586 | ifleming@mun.ca |
| Green, Darrell | NL Aquaculture Industry Assoc | PO Box 23176 <br> St. John's NL A1B 4J9 | 754-2854 | dgreen@naia.ca |
| Hinks, Ross | MFN | PO Box 10 Conne River NL AOH 1J0 | 882-2470 | rhinks@mfngov.ca |
| Hurley, Kevin | Chief Resource Management, Central Area | 4A Bayley St. Grand Falls, NL A2A 2T5 | 292-5167 | kevin.hurley@dfo-mpo.gc.ca |
| Hustins, Donald | SCNL | ```20 Linden Place, Apt. 305 St. John's NL A1B 2S8``` | 753-2930 | donaldhustins@hotmail.com |
| Hutchens, Don | SCNL \& SAEN | PO Box 29199 St. John's, NL A1A 5B5 | 722-9300 | Don.hutchens@gmail.com Saen@nfld.com |
| Ivany, Don | Atlantic Salmon Federation | c/o Sir Wilfred Grenfell <br> College <br> Box 2000 <br> Corner Brook, NL $\mathrm{A} 2 \mathrm{H} 6 \mathrm{P9} 9$ | $\begin{aligned} & \hline 632-5100 / \\ & 652-5100 \end{aligned}$ | donivany@swgc.mun.ca |

Appendix 4 con't: List of attendees at the Newfoundland and Labrador Region Atlantic salmon stock assessment meeting

| King, Wayne | DFO <br> Senior Area Rep, Labrador | Goose Bay | $\begin{aligned} & 896-6157 \\ & 896-8419 \end{aligned}$ | wayne.king@dfo-mpo.gc.ca |
| :---: | :---: | :---: | :---: | :---: |
| Knight, Len | DFO, Chief Resource Mgmt, Eastern Area | Mount Pearl | 772-5845 | leonard.knight@dfo-mpo.gc.ca |
| Koen-Alonso, Mariano | DFO Science | PO Box 5667 <br> St. John's NL A1C 5X1 | 772-2047 | mariano.koen-alonso@dfompo.gc.ca |
| Kane, Eugene | Renews River Conservation | $\begin{aligned} & \text { PO Box } 142 \\ & \text { Renews, NL } \\ & \text { AOA 3NO } \\ & \hline \end{aligned}$ | 363-2585 | bevekane@hotmail.com |
| Keating, Dave | RRCA |  | 687-2225 | dkeating@nl.rogers.com |
| Lawlor, James | RRCA | PO Box 134 Renews, NL AOA 3N0 | 682-1634 | erm.marine@nf.sympatico.ca |
| Oxford, Andrew | FNI | Corner Brook | 634-1500 | andrew@fni.nf.ca |
| Penney, Kim | DFO FAM | PO Box 5667 <br> St. John's NL A1C 5X1 | 772-2045 | kim.penney@dfo-mpo.gc.ca |
| Perry, Robert | Dept. of Environment and Conservation Wildlife Division | 117 Brakes Cove Corner Brook NL A2H 7S1 | 637-2023 | robperry@gov.nl.ca |
| Poole, Rebecca | DFO | P.O. Box 7003, Stn c Happy Valley-Goose Bay, NL AOP 1C0 | 896-6154 | rebecca.poole@dfo-mpo.gc.ca |
| Porter, Rex | Rapporteur | 383 Tolt Road, St. <br> Philips NL A1M P3 | 895-2154 | porterr@nl.rogers.com |
| Pryor, Miranda | Newfoundland Aquaculture Industry Association | PO Box 23176 St. John's NL A1B 4J9 | 754-2854 | miranda@naia.ca |
| Penton, Norman | Dept of Fisheries and Aquac | PO Box 340 St. Alban's, NL AOH 2E0 | 538-8737 | normanpenton@gov.nl.ca |

Appendix 4 con't: List of attendees at the Newfoundland and Labrador Region Atlantic salmon stock assessment meeting

| Purchase, Craig | MUN | Biology Department <br> A1B 3X9 | $737-4452$ | $\underline{\text { cfpurchase@mun.ca }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Reddin, Dave | DFO, Science | PO Box 5667 <br> St. John's NL <br> A1C 5X1 | $772-4484$ / <br> $772-3578$ | brian.dempson@dfo-mpo.gc.ca |
| Robertson, Martha | DFO Science | PO Box 5667 <br> St. John's NL <br> A1C 5X1 | $772-4553$ | martha.robertson@dfo-mpo.gc.ca |
| Squires, William | RRCA | PO Box 134 <br> Renews, NL <br> A0A 3N0 | $363-7115$ | wsquires@nf.sympatico.ca |
| Slaney, Leon | DFO FAM <br> Chief Resource Management, | PO Box 580 <br> Grand Bank, NL <br> A0E 1W0 | $832-3014$ | leon.slaney@dfo-mpo.gc.ca |
| Styles, Sid | Bay St. George Atlantic Salmon <br> Group | 22 Crescent St <br> Stevenville, NL <br> A2N 1R6 | $643-5416$ | Skip ncr@hotmail.com |
| Tuck, Tony | Newfoundland Outfitters Assoc | 22 Riverview Dr. <br> Clarenville, NL <br> A5A 4M9 | $466-2440$ / | tony@flyfishinggreyriver.com |
| Williams, Patricia | DFO Aboriginal Programs | PO Box 5667 <br> St. John's NL <br> A1C 5X1 | $772-3732$ | patricia.williams@dfo-mpo.gc.ca |
| Warner, Lucas | MUN | Biology Department <br> MUN, St, John's, NL <br> A1B 3X9 | $764-0310$ | $\underline{\text { lawarner@mun.ca }}$ |
| Westley, Peter | MUN | Biology Department <br> MUN, St, John's, NL <br> A1B 3X9 | $737-3465$ | pwestley@mun.ca |
| Willcott, Rebecca | Nunatsiavut Governement | 1-A Hillcrest <br> P.O. Box 909, Stn B. <br> Goose Bay, NL <br> A0P 1E0 | $896-8582$ | Rebecca willcott@nunatsiavut.ca |

## APPENDIX 5A: Summary of Status of Atlantic Salmon in English River, SFA 1, 1999-2009



Recreational catches: observations from counting fence workers.
Data and methodology: complete counts of salmon were obtained at fish counting fence. Total returns to river for 2003-2006 and 2008 include fish counted below fence on swim-thru before removal.

State of the stock: returns have increased from previous years for large salmon but decrease for small from the 2007 high Conservation limits for Labrador rivers are 190 eggs per $100 \mathrm{~m}^{2}$ which is used to evaluate the percent of egg requirements met, was

Forecast: No forecast available.

APPENDIX 5B: Summary of Status of Atlantic Salmon in Muddy Bay Brook, SFA 2, 2002-2009
STOCK: Muddy Bay Brook (Dykes River SFA 2) Accessible drainage area=213 km²
CONSERVATION REQUIREMENT: $\quad 0.582$ million eggs calculated as fluvial area $\times 1.9 \mathrm{eggs} / \mathrm{m}^{2}$

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | $2009{ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |
| Small | 106 | 394 | 454 | 520 | 445 | 240 | 474 | 115 | 106 | 520 |
| Large | 11 | 31 | 28 | 20 | 17 | 14 | 36 | 10 | 10 | 36 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | 9 | 13 | 30 | 1 | 0 | 0 | 0 | 0 | 0 | 30 |
| Released | 4 | 2 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 17 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Released | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 106 | 394 | 454 | 520 | 445 | 240 | 474 | 115 | 106 | 520 |
| Large | 11 | 31 | 28 | 20 | 17 | 14 | 36 | 10 | 10 | 36 |
| Egg conservation requirement |  |  |  |  |  |  |  |  |  |  |
| ${ }^{1}$ Min and max are for the period of record except recreational harvest is since 1994. <br> ${ }^{2}$ Preliminary <br> Note: Any changes from previous years are due to the updating of preliminary data. |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Recreational catches: catches are from License stub return data - no way of knowing if upstream or downstream of fence.

Data and methodology: complete counts of salmon were obtained at a fish counting fence. Counts were adjusted in 2003 for fence non-operational periods.

State of the stock: returns of small salmon have increased from 2006-2007 with the second highest count on record, whereas, large salmon returns increased from the previous high in 2003. Conservation limits for Labrador rivers are 190 eggs per 100 m 2 which is used to evaluate the percent of egg requirements met which were exceeded in 2003-2006 and 2008.

Forecast: No forecast available.

APPENDIX 5C: Summary of Status of Atlantic Salmon in Southwest Brook, SFA 2, 1998-2009
STOCK: Southwest Brook (Paradise River SFA 2) $\quad$ Accessible drainage area $=\mathbf{3 8 5} \mathbf{k m}^{\mathbf{2}}$
CONSERVATION REQUIREMENT: $\quad 0.714$ million eggs calculated as fluvial area $\times 1.9 \mathrm{eggs} / \mathrm{m}^{2}$

| Year | 1998 | 1999 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 ${ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Small | 110 | 331 | 323 | 235 | 158 | 615 | 858 | 326 | 303 | 495 | 67 | 110 | 858 |
| Large | 4 | 43 | 32 | 34 | 16 | 54 | 54 | 35 | 32 | 35 | 13 | 4 | 54 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retained | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retained | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Spawners |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Small | 110 | 331 | 321 | 231 | 156 | 615 | 858 | 326 | 303 | 495 | 67 | 67 | 858 |
| Large | 4 | 43 | 32 | 34 | 16 | 54 | 54 | 35 | 32 | 35 | 13 | 4 | 54 |
| Egg conservation requirement |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% met | 39 | 139 | 110 | 82 | 52 | 201 | 267 | 110 | 102 | 157 | 26 | 39 | 267 |
| ${ }^{1}$ Min and max are for the period of record except recreational harvest is since 1994. <br> ${ }^{2}$ Preliminary <br> Note: Any changes from previous years are due to the updating of preliminary data |  |  |  |  |  |  |  |  |  |  |  |  |  |

Recreational catches: catches are not recorded separately for Southwest Brook which is a tributary of Paradise River.
Data and methodology: complete counts of salmon were obtained at a fish counting fence. Counts were adjusted in 1998, 2003 and 2005 for fence non-operational periods.

State of the stock: 2008 returns show a increase for small and large over 2007 but a decrease from 2005-2006. Conservation limits for Labrador rivers are 190 eggs per 100 m 2 which is used to evaluate the percent of egg requirements met which were exceeded in 2004-2008.

Forecast: No forecast available.

## APPENDIX 5D: Summary of Status of Atlantic Salmon in Sand Hill River, SFA 2, 1994-2009

STOCK: Sand Hill River (SFA 2)
Drainage Area 1155 km $^{2}$
CONSERVATION REQUIREMENT: $\quad 10.099$ million eggs calculated as fluvial area $\times 1.9 \mathrm{eggs} / \mathrm{m}^{2}$


Recreational catches: catches are from angling camps on Sand Hill River and observations of counting fence staff.

Data and methodology: counts of salmon were obtained at a fish counting fence. Total river returns were adjusted for nonoperational periods for all years except 2005. Smolt count derived from mark-recapture for 2007 \& 2009 and total smolt fence count for 2008

State of the stock: numbers of both small and large were down from 2005 but above most other years. Large salmon numbers are the second highest recorded. Conservation limits for Labrador rivers are 190 eggs per $100 \mathrm{~m}^{2}$ which is used to evaluate the percent of egg requirements met which were exceeded in 2004-2006 and 2008.

Forecast: No forecast available.

## APPENDIX 5E: Summary of Status of Atlantic Salmon in Exploits River, SFA 4, 2000-2009

STOCK: Exploits River
Drainage area: $\quad 11602 \mathrm{~km}^{2}$
CONSERVATION REQUIREMENT:


Data and methodology: There are 35 million m 2 units of fluvial habitat and 34,000 ha of lacustrine habitat. Conservation egg requirements are to come from small salmon. Previous fry releases are backcalculated to eggs for $\%$ of conservation egg depositi

State of Stock: Overall returns to the Exploits River, have improved during the moratorium years; however returns to the upper section of the watershed are extremely low and all efforts should be made to increase escapement to this section of the watersh

Forecast: No quantative forecast available

## APPENDIX 5F: Summary of Status of Atlantic Salmon in Campbellton River, SFA 4, 2000-2009

STOCK:
Campbellton River (SFA 4) Drainage area: $296 \mathrm{~km}^{2}$ (accessible)
CONSERVATION REQUIREMENT:
Fluvial area $\times 2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area $\times 368$ eggs $/ \mathrm{ha}$


Recreational catches: The recreational catch for 2009 is the mean of 2007 \& 2008 until 2009 sub returnn figures are done.
Data and methodology: Smolts were enumerated at a counting fence. Returning adults salmon are enumerated at a fish counting fence with a video camera system. A hook-and-release mortality rate of $10 \%$ was used in the calculations of spawning escapements for the years 1993-08. Recreational data for 199708 were from the License Stub Return System. Sea survival is corrected to exclude previous spawners in the upstream migration. Pervious spawners were estimated in 1999 from survival patterns in previous years. The egg conservation requirement for years of low sample numbers from the recreational fishery was calculated using the average whole weight of females and percent female by combining samples from 1993 to 2005. Precocious Post smolts were excluded from the spawning population since their contributions are not fully known.

State of the stock: Conservation requirements were met for all years from 1993 to 2009..

Forecast: No forecast available.

APPENDIX 5G: Summary of Status of Atlantic Salmon in Gander River, SFA 4, 2002-2009
STOCK: Gander River (SFA 4) Drainage Area: 6,398 km²
CONSERVATION REQUIREMENT: $\quad 46.211$ million eggs ( 21,828 small salmon) calculated as fluvial area $\times 2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area $\times 368$ eggs/ha

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | $2008{ }^{2}$ | $2009{ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |
| Small | 13444 | 13657 | 18521 | 17828 | 13959 | 11571 | 22442 | 18883 | 6745 | 26205 |
| Large | 1898 | 1853 | 2668 | 2461 | 1927 | 1243 | 1560 | 869 | 473 | 4815 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | 1726 | 1735 | 1325 | 1893 | 1199 | 489 | 1374 | 1256 | 489 | 4537 |
| Released | 678 | 664 | 795 | 1410 | 554 | 146 | 725 | 726 | 146 | 3323 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | - | - |
| Released | 184 | 65 | 58 | 335 | 94 | 46 | 128 | 132 | 46 | 685 |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 11650 | 11787 | 17091 | 15667 | 12705 | 11067 | 20996 | 17554 | 5565 | 24739 |
| Large | 1880 | 1911 | 2536 | 2407 | 1918 | 1238 | 1547 | 856 | 473 | 4794 |
| Egg conservation requirement \% met | 91 | 96 | 144 | 120 | 87 | 72 | 128 | 103 | 36 | 128 |
| ${ }^{1}$ Min and max are for the period of record since 1984 except recreational harvest is since 1994. <br> ${ }^{2}$ Preliminary <br> Note: Any changes from previous years are due to the updating of preliminary data and biological characteristics information. |  |  |  |  |  |  |  |  |  |  |

Recreational catches: Recreational angling data for 1994-2009 are from the License Stub Return System.
Data and methodology: Complete counts of salmon were obtained at a fish counting fence during 1989-99, and have historically been counted at a fishway located on a tributary, Salmon Brook. Returns to the entire Gander River for 2000-2009 were estimated from relationships between counts at the Salmon Brook fishway and total returns to the counting fence for the period 1989-1999. The 2004-2008 mean angling data was used for 2009. A hook-and-release mortality of $10 \%$ was used in the calculation of total returns and spawning escapements for the years 1993-2009.

State of the stock: Conservation requirement in terms of eggs, in 2009 (103\%) was 20\% lower than in 2008 and $1 \%$ higher than the moratorium mean. In terms of small salmon, conservation requirement was met only in 1993. Conservation egg requirement was achieved in nine of the 18 moratorium years. Using Salmon Brook as an indicator of returns to the entire river, it is likely that returns of small salmon of a magnitude similar to or greater than those in 1992-2009 occurred in pre-moratorium years.

Forecast: No forecast available.

APPENDIX 5H: Summary of Status of Atlantic Salmon in Middle Brook, SFA 5, 2002-2009
STOCK: Middle Brook (SFA 5) Drainage area: $276 \mathrm{~km}^{2}$
CONSERVATION REQUIREMENT:
fluvial area $\times 2.4$ eggs $/ \mathrm{m}^{2}$ and lacustrine area $\times 368 \mathrm{eggs} / \mathrm{ha}$

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | $2008{ }^{2}$ | $2009{ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |
| Small | 916 | 1183 | 1520 | 1538 | 1173 | 1050 | 2167 | 1842 | 626 | 2625 |
| Large | 69 | 74 | 88 | 62 | 115 | 141 | 143 | 85 | 13 | 262 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | 117 | 97 | 190 | 141 | 152 | 141 | 222 | 169 | 84 | 391 |
| Released | 28 | 29 | 24 | 96 | 75 | 57 | 181 | 87 | 19 | 458 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | - | - |
| Released | 1 | 2 | 1 | 5 | 7 | 18 | 9 | 8 | 1 | 33 |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 796 | 1083 | 1328 | 1387 | 1013 | 903 | 1927 | 1664 | 461 | 2342 |
| Large | 69 | 74 | 88 | 62 | 114 | 140 | 142 | 84 | 13 | 261 |
| Egg conservation requirement \% met | 101 | 134 | 162 | 163 | 133 | 126 | 237 | 197 | 49 | 301 |
| ${ }^{1}$ Min and max are for the period of record since 1984 except recreational harvest is since 1994. <br> ${ }^{2}$ Preliminary |  |  |  |  |  |  |  |  |  |  |

Recreational catches: Recreational angling data for 1994-2009 are from the License Stub Return System.
Data and methodology: Complete counts are available from a fishway located on the lower river. The 2004-2008 mean angling data was used for 2009. A hook-and-release mortality of $10 \%$ was used in the calculation of total returns and spawning escapements for the years 1993-2009.

State of the stock: Conservation requirement in terms of eggs and small salmon was met for all years since the moratorium started in 1992 except for small salmon in 2002 ( $79 \%$ ) and 2007 ( $89 \%$ ). Egg deposition was below conservation requirement for pre-salmon moratorium years 1985-1991. Counts of small salmon similar to or higher than those observed during the moratorium years occurred in pre-salmon moratorium years. The small salmon returns in 2009 were down $15 \%$ from 2008 and up 13\% from the 92-08 mean.

Forecast: No forecast available.

APPENDIX 5I: Summary of Status of Atlantic Salmon in Terra Nova River, SFA 5, 2002-2009
STOCK: Terra Nova River (SFA 5) Drainage area: $1,883 \mathrm{~km}^{2}$
CONSERVATION REQUIREMENT: 14.3 million eggs ( $\sim 7,094$ small salmon) calculated as fluvial area $\times 2.4$ eggs $/ \mathrm{m}^{2}$ and lacustrine area $\times 368$ eggs $/ \mathrm{ha}$


Recreational catches: Recreational angling data for 1994-2009 are from the License Stub Return System.
Data and methodology: Counts are available from a fishway located on the lower river. Returns to the river in 2000 were estimated based on the relationship between counts at the upper fishway and total returns to the the lower fishway for previous years. The 2003-2008 mean angling data was used for 2009. A hook-and-release mortality of $10 \%$ was used in the calculation of total returns and spawning escapements for the years 1993-2009.
State of the stock: The proportion of conservation requirement achieved in 2009 ( $40 \%$ ) was $35 \%$ lower than in 2008, $5 \%$ higher than the moratorium mean and 15 lower than the $04-08$ mean. Although this river has never achieved conservation requirement, egg depositions during the moratorium years 1992-2009 were generally higher than in pre-moratorium years. It should be noted that accessible rearing habitat for anadromous Atlantic salmon above the lower fishway more than doubled in 1985 with the opening of the area above Mollyguajeck Falls.
Forecast: No forecast available.

APPENDIX 5J: Summary of Status of Atlantic Salmon in Northwest River (Port Blandford), SFA5, 20002009

## STOCK:

## Northwest River (SFA 5)

Drainage Area: $\quad 689 \mathrm{~km}^{2}$
CONSERVATION REQUIREMENT: 4.07 million eggs (equivalent to 1,726 small salmon) Management Target 2002-2005 700 salmon

| Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |  | Max |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns: |  |  |  |  |  |  |  |  |  |  |  |  |
| Small | 272 | 102 | 443 | 1,012 | 1207 | 1210 | 783 | 675 | 1,257 | 448 | 102 | 1257 |
| Large | 106 | 50 | 114 | 273 | 265 | 305 | 197 | 94 | 229 | 121 | 50 | 305 |
| Recreational Harvest(small salmon) |  |  |  |  |  |  |  |  |  |  |  |  |
| released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Recreational Harvest(large salmon) retained | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| released | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other removals |  |  |  |  |  |  |  |  |  |  |  |  |
| Small | 2 | 0 | 1 | 2 | 3 | 13 | 17 | 19 | 39 | 11 | 0 | 17 |
| Large | 0 | 0 | 1 | 0 | 1 | 3 | 8 | 3 | 0 | 0 | 0 | 8 |
| Spawners |  |  |  |  |  |  |  |  |  |  |  |  |
| Small | 270 | 102 | 442 | 959 | 1163 | 1119 | 704 | 623 | 1,178 | 424 | 102 | 1178 |
| Large | 106 | 50 | 113 | 273 | 264 | 302 | 189 | 92 | 229 | 121 | 50 | 302 |
| Conservation Requirement |  |  |  |  |  |  |  |  |  |  |  |  |
| \% eggs met | 27 | 11 | 37 | 81 | 92 | 93 | 58 | 50 | 92 | 37 | 11 | 93 |
| Smolt Count | 11281 | - | - | - | - | - | - | - | - | - |  |  |
| Smolt-to-adult Survival | 1 | - | - | - | - | - | - | - | - | - |  |  |

## Data and methodology:

State of the stock:

Forecast:

Counts of adults have been available from a counting fence since 1995. A smolt population estimate was conducted in 2000. Angling data since 2003 has been provided by Parks Canada. In 2009 the counting fence operated up to Aug 20 and an estimate was provided to the end of August.

Conservation egg deposition has not been met during the time series from 1995. A single smolt population estimate resulted in the lowest sea survival recorded on any river studied. In 2009 there were 118 fish with net marks, the highest since 2000.

No forecast available.

APPENDIX 5K: Summary of Status of Atlantic Salmon in Northeast Brook (Trepassey) SFA 9, 20022009

STOCK:
Northeast Brook, Trepassey (SFA 9)
Drainage area: $21 \mathrm{~km}^{2}$
CONSERVATION REQUIREMENT:
fluvial area x $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area x $368 \mathrm{eggs} / \mathrm{ha}$


Data and methodology: Counts of adults and smolts have been available from a counting fence since 1984 and 1986. In the past, this small system was part of a group of experimental rivers involved in research on stock-recruitment relationships and definition of smolt production in terms of various habitat types. The system has become an important indicator of smolt (year i) to small salmon (year $i+1$ ) survival (repeat spawners included).

State of the stock: Conservation requirement achieved in 2009 (114\%) is $51 \%$ lower than 2008 and $41 \%$ lower than the moratorium mean. In terms of small salmon, 2009 was the fourth year in the time series that percentage of conservation requirement was not achieved. The maximum number of smolts counted was 2,076 in 2002 while the lowest was 792 in 1995. Highest sea survival prior to the commercial salmon-fishing moratorium (8.1\%) was recorded in 1987. Lowest survival on record (2.6\%) occurred in 1992 and again in 2009.

Forecast: No forecast available.

APPENDIX 5L: Summary of Status of Atlantic Salmon in Rocky River, SFA 9, 2001-2009

## STOCK: Rocky River (SFA 9) Drainage area: $296 \mathrm{~km}^{2}$

CONSERVATION REQUIREMENT: 3.4 million eggs ( $\sim 881$ small salmon) calculated as
fluvial area $\times 2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area $\times 368$ eggs $/ \mathrm{ha}$

| Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |  |
| Small | 233 | 276 | 402 | 169 | 427 | 352 | 174 | 695 | 498 | 80 | 695 |
| Large | 60 | 78 | 73 | 235 | 95 | 56 | 35 | 56 | 34 | 1 | 235 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |  |
| Retained | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Released | N/A | 5 | 5 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 5 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |  |
| Retained | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Released | N/A | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| Broodstock removal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 |
| Spawners |  |  |  |  |  |  |  |  |  |  |  |
| Small | 233 | 276 | 401 | 169 | 426 | 352 | 174 | 680 | 494 | 158 | 680 |
| Large | 60 | 78 | 73 | 235 | 95 | 56 | 35 | 56 | 33 | 1 | 89 |
| Fry stocked | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81983 | 434500 |
| Egg conservation requirement \% met | 31 | 38 | 50 | 51 | 55 | 42 | 22 | 76 | 54 | 17 | 76 |
| Smolt count | 9392 | 10144 | 4440 | 13047 | 15847 | 13200 | 12355 | 18338 | 14041 | 4440 | 18338 |
| \% Sea survival <br> (Adult return year) | 3 | 3 | 4 | 4 | 3 | 2.2 | 1.3 | 5.6 | 2.7 | 1.8 | 5.6 |
| ${ }^{1}$ Min and max are for the period of reco <br> ${ }^{2}$ Preliminary <br> smolt to adult survival for 2001-2009 is | nce 19 | all salm |  |  |  |  |  |  |  |  |  |

Background: Rocky River was stocked with salmon fry from 1983 to 1987 with the first returns to the reconstructed fishway realized in 1987. Also in 1987140 adult salmon were transferred into Rocky River from Little Salmonier River.

Data and Methodology: Fluvial habitat consists of 1.08 million $m 2$ and lacustrine habitat includes 2200 ha. Biological characteristics used in calculations are those for Rocky River stock. Previous fry releases are backcalculated to eggs for \% of target

Recreational fisheries: 2002 was the first time a recreational fishery (hook and release only) was opened on Rocky River.

State of the stock: Stock is still in the development phase.

APPENDIX 5M: Summary of Status of Atlantic Salmon in Little River, SFA 11, 2000-2009
STOCK:
Little River (SFA 11)
Drainage Area:
CONSERVATION REQUIREMENT: 0.306 million eggs (equivalent to 230 small salmon)

| Year |  | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | Min $^{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Max and Min are for the period since 1987.
Note: Any changes from previous reports are due to the updating of preliminary data and biological characteristics information.
Recreational catches: The river is presently closed to angling.
Data and methodology: Returns to the river are assessed by a counting fence.
State of the stock: Returns of salmon are considered to be minimum values as salmon are often observed spawning below the counting fence.

Forecast: No forecast available.

## APPENDIX 5N: Summary of Status of Atlantic Salmon in Conne River, SFA 11, 2003-2009

## STOCK: Conne River (SFA 11) Drainage Area $602 \mathrm{~km}^{2}$

MANAGEMENT TARGET: $\quad 7.8$ million eggs ( $\sim 4,000$ small salmon) calculated as fluvial area $\times 2.4$ eggs $/ \mathrm{m}^{2}$ and lacustrine area $\times 368$ eggs $/ \mathrm{ha}$
CONSERVATION REQUIREMENT: 4.34 million eggs ( $\sim 2,475$ small salmon)

| Year | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | $2009{ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to home waters |  |  |  |  |  |  |  |  |  |
| Small | 1953 | 3818 | 1978 | 2623 | 1174 | 2823 | 1828 | 1173 | 10155 |
| Large | 51 | 175 | 105 | 170 | 49 | 144 | 67 | 49 | 516 |
| First Peoples' harvest |  |  |  |  |  |  |  |  |  |
| Small | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 948 |
| Large | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |
| Retained | 180 | 444 | 75 | 395 | 0 | 385 | 294 | 108 | 3302 |
| Released | - | - | - | - | 0 | - | - | 0 | 80 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | 0 | 27 |
| Released | - | - | - | - | - | - | - | 0 | 0 |
| Broodstock removal |  |  |  |  |  |  |  |  |  |
| Small | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 | 245 |
| Large | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Spawners |  |  |  |  |  |  |  |  |  |
| Small | 1770 | 3366 | 1898 | 2210 | 1167 | 2411 | 1521 | 1286 | 7823 |
| Large | 51 | 174 | 105 | 168 | 49 | 144 | 67 | 51 | 488 |
| Management Target |  |  |  |  |  |  |  |  |  |
| \% met | 42 | 97 | 51 | 61 | 31 | 65 | 40 | 30 | 219 |
| Egg conservation requirement \% met | 76 | 174 | 92 | 110 | 55 | 117 | 72 | 55 | 394 |
| Smolt estimate | 71479 | 79667 | 66196 | 35146 | 63738 | 68242 | 63512 | 35146 | 100983 |
| \% Sea survival (Adult return year) | 2.4 | 5.3 | 2.5 | 4.0 | 3.3 | 4.4 | 2.7 | 2.4 | 10.2 |
| ${ }^{1}$ Min and max are for the period of record since 1974. First Peoples' harvest in salt water includes some salmon from other rivers. First Peoples' fishery quota of 1200 fish has been in effect since 1986, but was reduced to 500 fish for 1993. First Peoples' fishery and recreational fishery were closed again in 1998 and 1999. <br> ${ }^{2}$ Preliminary |  |  |  |  |  |  |  |  |  |

Data and methodology: Smolt estimates are derived trom mark-recapture surveys. Keturning adult salmon are enumerated at a fish counting fence. Angling harvests for Conne River are from DFO statistics. A video camera system was introduced in 1993.
 and again in 1996 and 2000, with only $40 \%$ achieved in 2009. In contrast with the Mangement Target, the Conservation egg requirement was met or exceeded from 1986-1990, 1993, 1995-2000, and again in 2002, 2004, 2006 and 2008, with only $72 \%$ attained in 2009. Returns of adult salmon in 2009 decreased by $35 \%$ from 2008 and was the fourth lowest return in 24 years. Sea

Forecast: Smolt estimates for 2009 are again comparable with previous values at about 63,500 . Thus, a marine survival of $3.9 \%$ would be required in order for the conservation requirements of 2475 small salmon to attained. Actual forecasts of survivals and thus returns, however, are not made owing to the uncertainty associated with making predictions a year in advance.

## APPENDIX 50: Summary of Status of Atlantic Salmon in Harry's River, SFA 13, 2002-2009

```
STOCK: Harry's River (SFA 13) Drainage area: 816 km
```


## CONSERVATION REQUIREMENT:

7.8 million eggs calculated as fluvial area $\times 2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area $\times 368 \mathrm{eggs} / \mathrm{ha}$.

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | $2008{ }^{2}$ | $2009{ }^{2}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |
| Small | 1640 | 2334 | 2828 | 2495 | 3004 | 1394 | 3526 | 2165 | 888 | 3526 |
| Large | 285 | 422 | 498 | 453 | 680 | 289 | 398 | 365 | 16 | 676 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | 91 | 223 | 163 | 209 | 135 | 409 | 228 | 2 | 409 |
| Released | 400 | 237 | 534 | 485 | 1283 | 170 | 500 | 594 | 23 | 1411 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | 0 | 0 |
| Released | 75 | 132 | 266 | 139 | 216 | 110 | 236 | 193 | 28 | 266 |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 1600 | 2211 | 2543 | 2279 | 2662 | 1241 | 3064 | 1877 | 573 | 3198 |
| Large | 277 | 403 | 470 | 439 | 658 | 276 | 374 | 346 | 13 | 661 |
| Egg conservation requirement |  |  |  |  |  |  |  |  |  |  |
| Spawners on Pinchgut Brook tributary |  |  |  |  |  |  |  |  |  |  |
| Large | 23 | 22 | 15 |  |  |  |  |  | 3 | 68 |
| ${ }^{1}$ Min and max are for the period of record <br> ${ }^{2}$ Preliminary <br> Note: Any changes from previous reports | $\begin{aligned} & \text { ce } 197 \\ & \text { due to } \end{aligned}$ | upda | of pre | nary d | and b | gical c | racteris | s inform |  |  |

Recreational catches: The fishery was limited to catch and release angling from 1996 to 2002 but was expanded in 2003-2009 to permit a limited retention fishery as part of an overall conservation/recovery/ stewardship program. Retention angling was restricted to the main stem of Harry's River from Home Pool at the outlet of Georges Lake to the river mouth. No retention of salmon is permitted on Georges Lake and Pinchgut Lake, hook and release only.

Data and methodology: Total returns to Harry's River in 2009 were determined from a counting fence operated at Gallant's from May 30August 23, snorkel surveys conducted below the fence site in August 2006-2008 and angling removals below the fence. The angling data are from the License Stub Return System .

Total returns to Harry's River in 2003-2005 were determined from a counting fence operated at the mouth of the river. Spawning escapements were determined by subtracting angling removals. Estimates of total spawners in 1992-2002 were derived from counts of small and large salmon at a fish counting fence operated on Pinchgut Brook tributary adjusted for the percentage of the total spawning activity observed on Pinchgut Brook tributary during surveys conducted in the fall of 1995-1997. Recreational fishery data are from the License Stub Return System. Spawners in 2001-2002 include an adjustment for small and large salmon observed in snorkel surveys of the lower part of the mainstem below George's Lake in mid-August. A hook-and-release mortality of $10 \%$ was used in the calculation of total returns and spawning escapements for the years 1993-2009.

State of the stock: The conservation requirement attained in 2009 ( $72 \%$ ) is $35 \%$ lower than in 2008, 23\% lower than the 04-08 mean and 19\% higher than the 92-08 mean..

Forecast: No forecast available.

## APPENDIX 5P: Summary of Status of Atlantic Salmon in Torrent River, SFA 14, 2002-2009

## STOCK: <br> Torrent River (SFA 14A) <br> Drainage area: 619 km²

CONSERVATION REQUIREMENT: 1.5 million eggs ( $\sim 656$ small salmon) calculated as fluvial area $\times 2.4 \mathrm{eggs} / \mathrm{m}^{2}$ and lacustrine area $\times 105$ eggs/ha.

| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | $2008{ }^{3}$ | $2009{ }^{3}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total returns to river ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |
| Small | 4861 | 3955 | 5110 | 4342 | 4030 | 2979 | 5847 | 2758 | 96 | 7475 |
| Large | 432 | 341 | 549 | 780 | 1431 | 519 | 1298 | 1406 | 7 | 1430 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | 822 | 588 | 674 | 455 | 574 | 384 | 581 | 534 | 137 | 822 |
| Released | 1299 | 695 | 854 | 1084 | 718 | 361 | 705 | 744 | 76 | 1299 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | - |  |
| Released | 111 | 107 | 128 | 92 | 115 | 59 | 48 | 88 | 28 | 224 |
| Specimens collected below fishway: | Small |  |  | 126 |  | 20 |  | 46 |  |  |
|  | Large |  |  | 0 |  | 13 |  | 29 |  |  |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 3909 | 3297 | 4351 | 3653 | 3384 | 2539 | 5195 | 2104 | 121 | 6923 |
| Large | 421 | 330 | 536 | 771 | 1419 | 500 | 1293 | 1368 | 3 | 1419 |
| Egg conservation requirement |  |  |  |  |  |  |  |  |  |  |
| ${ }^{1}$ Min and max are for the period of record since 1974. |  |  |  |  |  |  |  |  |  |  |
| ${ }^{2}$ Total returns are approximate because of spawning below the fishway. |  |  |  |  |  |  |  |  |  |  |
| Note: Any changes from previous reports are due to the updating of preliminary data and biological characteristics information. |  |  |  |  |  |  |  |  |  |  |

Recreational catches: The restriction of hook-and-release angling until a minmum spawning escapement of 750 salmon had passed through the fishway was dropped in 1999. The area above the fishway opened to hook-and-release angling in 2002 and to Class II retention angling in 2007. A telephone survey was conducted in 2007 to determine the number of fish taken above the fishway.

Data and methodology: Returns to the river are determined from counts at the fishway and recreational catch data below the fishway. The fishway has been monitored since 1966. Recreational fishery data are from the License Stub Return System. A hook-and-release mortality of $10 \%$ was used in the calculation of spawning escapements for the years 1985-2009.

State of the stock: The total returns of small salmon to Torrent River in 2009 were $53 \%$ lower than in 2008. It is estimated that the Torrent River stock has achieved conservation requirement every year since 1978. This is due to the successful enhancement program carried out in 1972-1976 when adult salmon were used to colonize new habitat opened up above the fishway. The conservation requirement was achieved again in 2009, but was $38 \%$ lower than 2008 and $5 \%$ above the moratorium mean.

Forecast: No forecast available.

| APPENDIX 5Q: Summary of Status of Atlantic Salmon in Western Arm Brook, SFA 14B, 2002 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STOCK: Western Arm Brone | Western Arm Brook (SFA 14A) |  |  | Drainage area: $149 \mathrm{~km}{ }^{2}$ |  |  |  |  |  |  |
| CONSERVATION REQUIREMENT: | 0.91 million eggs ( $\sim 292$ small salmon) calculated as fluvial area $\times 2.4$ eggs $/ \mathrm{m}^{2}$ and lacustrine area $\times 105$ eggs/ha. |  |  |  |  |  |  |  |  |  |
| Year | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | $2008{ }^{3}$ | $2009{ }^{3}$ | MIN ${ }^{1}$ | MAX ${ }^{1}$ |
| Total returns to river |  |  |  |  |  |  |  |  |  |  |
| Small | 1465 | 1406 | 1151 | 1019 | 1300 | 793 | 1920 | 1063 | 233 | 1920 |
| Large | 48 | 23 | 74 | 43 | 44 | 17 | 15 | 21 | 0 | 128 |
| Recreational harvest (small salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | 0 | 24 |
| Released | - | - | - | - | - | - | - | - | 0 | 0 |
| Recreational harvest (large salmon) |  |  |  |  |  |  |  |  |  |  |
| Retained | - | - | - | - | - | - | - | - | - |  |
| Released | - | - | - | - | - | - | - | - | - |  |
| Known removals above counting fence |  |  |  |  |  |  |  |  |  |  |
| Small | 2 | 20 | 2 | 30 | 22 | 14 | 13 | 26 | 0 | 346 |
| Large | 0 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 3 |
| Spawners |  |  |  |  |  |  |  |  |  |  |
| Small | 1463 | 1386 | 1149 | 989 | 1278 | 779 | 1907 | 1037 | 117 | 1907 |
| Large | 48 | 21 | 73 | 42 | 43 | 17 | 15 | 21 | 0 | 128 |
| Egg conservation requirement |  |  |  |  |  |  |  |  |  |  |
| \% met | 510 | 466 | 425 | 355 | 446 | 258 | 611 | 341 | 30 | 625 |
| Smolt count | 14999 | 12086 | 17323 | 8607 | 20826 | 16621 | 17444 | 18492 | 6232 | 23845 |
| \% Sea survival ${ }^{2}$ |  |  |  |  |  |  |  |  |  |  |
| ${ }^{1}$ Min and max are for the period of record since 1974. |  |  |  |  |  |  |  |  |  |  |
| ${ }^{2}$ Sea survival is from smolt to returns as small salmon. |  |  |  |  |  |  |  |  |  |  |

Recreational catches: The river has been closed to angling since 1989. The angling that took place in 2000-2001 from the mouth of the river to 0.5 km upstream was part of a biological sampling experiment. The purpose of this experiment was to collect biological information from up to 100 small salmon.

Data and methodology: Counts of smolts and adult salmon were obtained at a fish counting fence located at the mouth of the river in 1971-2009. A hook-and-release mortality of $10 \%$ was used in the calculation of spawning escapements for the years 1985-89 when there was a recreational fishery.

State of the stock: This river has exceeded conservation requirement every year since the moratorium. The percentage achieved in 2009 was $44 \%$ lower than in 2008 and $10 \%$ lower than the $92-08$ mean. Smolt production in 2009 was $6 \%$ higher than in 2008 but $22 \%$ lower than the maximum production value (23845) achieved in 1997. The 2009 sea survival was down $47 \%$ from 2008 and $23 \%$ from the 92-08 mean.

Forecast: No forcast available.

APPENDIX 6: Copy of presentation, by the chair, on current processes and products following the CSAS review

## SLIDE 1

DFO Peer Review and Advice:

Current processes and products following the CSAS review
$\qquad$

## SLIDE 2

At a glance:

- DFO Science advisory process is well established, and provides the basis for policy and management options and decisions.
- Canadian Science Advisory Secretariat (CSAS) coordinates the DFO Science advisory process, including publication of advice.
- Science advice is produced via a variety of processes; across a range of scales from Regional to National.
- Approach is based on Government of Canada's Framework for Science and Technology Advice: Guidelines for Scientific Advice for Government Effectiveness (SAGE).
- Over 200 Science publications per year; derived from about 100 workshops and meetings per year (2005-2007).
- Science advisory demands changing over time. Greatly increased demands from newer clients (SARA, Oceans, Habitat), added to historic demands (FAM).


## SLIDE 3

Based on the Government of Canada Scientific Advice for Government Effectiveness (SAGE) Principles*

- Early Issue Identification (proactive)
- Ensure inclusiveness (expertise and perspectives)
- Sound Science \& Science Advice (rigorous, professional)
- Uncertainty and Risk (assess \& communicate)
- Transparency and Openness (public science documents, how science taken in account is explained)
- Periodic reviews (updates based on new knowledge)
*see http://strategis.ic.gc.ca/epic/internet/inrti-rti.nsf/vwapj/stadvice e.pdf/\$FILE/stadvice e.pdf

APPENDIX 6 con't: Copy of presentation, by the chair, on current processes and products following the CSAS review

## SLIDE 4.

- The Science peer review process creates timely products that meet Departmental priorities, support important management decisions and help guide policy development.
- Fisheries: stock assessments for commercially important species (cod, snow crab, marine mammals, etc.), benthic impacts (trawling).
- Aquaculture: sea lice, pathways of effects, etc.
- Habitat: measuring mitigation measures, evaluating in-stream flow needs, pathways of effects, dams and reservoirs, etc.
- Oceans: guidance for establishing marine protected areas, conservation objectives, ecosystem indicator development, impact of seismic activities, etc.
- SARA: advisories linked to SARA legal listing process, recovery assessments and planning, pre-COSEWIC assessments, etc.


## SLIDE 5.

Aims to ensure:

- That a consistently high standard of technical evaluation is applied to all science data and analyses.
- That objectivity is maintained, bias in interpreting results eliminated, the weight of evidence assessed with regard to options and potential consequences.
- That experiential knowledge is evaluated with similar objectivity and rigour through methods appropriate to the type and sources of information.
- That the process is adequately inclusive, with a diversity of experts and perspectives who examine all the material.


## SLIDE 6.

1. Submission of Request for Advice by client sector.
2. Evaluation of Advisory Requests and Capacity to Deliver (Risk-based evaluation of requests - proposed).
If relevant and achievable then:
3. Establish Terms of Reference (TORs).
4. Conduct formal peer review.
5. Develop Science advice.
6. Develop Science products/reports.
7. Publish Science advice (for clients).

APPENDIX 6 con't: Copy of presentation, by the chair, on current processes and products following the CSAS review

## SLIDE 7.

## Science Advisory Reports (Advice)

- SARs are how Science advice is formally provided to a client (Sector) and communicated to the public.
- Need to be accessible to a wide range of audiences.
- Advice requires substantial interpretation of factual results and/or syntheses of diverse types of information.
- Advice often describes the likely consequences of different options available to managers.
- Example: Recovery potential assessment for basking shark.


## SLIDE 8.

## Proceedings

- Proceedings capture the discussions and progression within the peer review or advisory meeting.
- Proceedings do not constitute Science advice.
- Proceedings should be produced as a record of discussion leading to consensus for all scheduled event.
- Proceedings should include the TORs, agenda, list of participants as annexes.


[^0]:    ${ }^{1}$ There are 15 Atlantic salmon (Salmo salar L.) management areas know as Salmon Fishing Areas (SFAs) 114B in Newfoundland and Labrador. See CSAS Science Advisory Report 2007/055, Figures 1 and 2 for illustration: http://www.dfo-mpo.gc.ca/CSAS/Csas/status/2007/SAR-AS2007 055 E.pdf.

[^1]:    ${ }^{1}$ On dénombre 15 zones de gestion du saumon atlantique (Salmo salar L.), désignées zones de pêche au saumon (ZPS) 1 à 14B, à Terre-Neuve et au Labrador. Voir les figures 1 and 2 dans l'avis scientifique du SCCS 2007/055 : http://www.dfo-mpo.gc.ca/CSAS/Csas/etat/2007/SAR-AS2007 055 F.pdf.

