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ABSTRACT 
 
The present investigation calculates possible times to recovery of the bowhead 
whale population of the eastern Canadian Arctic Ocean, based on the limited 
knowledge currently available. Recovery was defined as the population growing up 
to 70% of the assumed pre-exploitation abundance. The simulation used a 
stochastic generalized logistic model and considered alternative assumptions 
about parameter values; current status and possible future catch levels. One single 
stock was assumed to constitute the bowhead whale population in the eastern 
Canadian Arctic, including Prince Regent Inlet, Baffin Bay, Davis Strait, Hudson 
Bay and Foxe Basin. The uncertainty associated with the current level of 
knowledge about the population dynamics and status of the bowhead whale 
population in the eastern Canadian Arctic leads to a wide range in the possible 
times to recovery. Results indicate that improvements in the estimate of the current 
population size would considerably narrow the range in times to recovery. Of all 
harvest levels explored, a removal of 50 animals caused the greatest delay in the 
time to recovery. Removing 15 animals per year can cause a considerable delay 
under some parameter assumptions, but if the catch is below 10 animals, there is 
virtually no delay in the time to recovery. This result will hold under the 
assumptions that this population is appropriately described by a logistic model with 
parameter values within the range used in the present analysis; that current 
environmental conditions won’t change beyond the limits imposed by the model 
(including the occurrence of catastrophic events); and that there are no other 
significant sources of mortality. Finally, the behaviour of the component of process 
error in the population model indicated that values of σprocess 0.015 and higher lead 
to annual growth values that may be unrealistic for the population of bowhead 
whales in the eastern Canadian Arctic. On the other hand, all tested values of 
σprocess allow negative growth when the population is approaching carrying 
capacity, but only if set to 0.2 or higher, can the population present negative 
growth at lower population levels. Although this can be considered a caveat of this 
component of the model, it was considered to be acceptable to represent natural 
variability. Fluctuations in the annual growth due to process error are expected to 
be smaller than the observed fluctuations in the eastern stock of gray whales and a 
choice of σprocess of 0.01 and ρ of 0.8 was made for the analysis. 
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RÉSUMÉ 
 

Le présent examen vise à calculer le délai de rétablissement possible de la 
population de baleines boréales de l’est de l’Arctique canadien, à partir des 
connaissances limitées actuellement disponibles. Le rétablissement est défini 
comme l’augmentation de la population jusqu’à 70 % de l’abondance présumée 
d’avant l’exploitation. La simulation, effectuée au moyen d’un modèle logistique 
généralisé stochastique, a permis d’examiner des hypothèses différentes à propos 
des valeurs des paramètres : la situation actuelle et les niveaux futurs possibles de 
capture. On a supposé qu’un seul stock constituait la population de baleines 
boréales dans l’est de l’Arctique canadien qui comprend l’inlet Prince-Régent, la 
baie Baffin, le détroit de Davis, la baie d’Hudson et le bassin Foxe. L’incertitude 
associée aux connaissances actuelles de la dynamique de la population et de la 
situation de la population de baleine boréales de l’est de l’Arctique canadien donne 
lieu à un large éventail de délais de rétablissement possibles. Les résultats 
montrent que l’amélioration de l’estimation de la taille de la population resserrerait 
considérablement l’éventail des délais de rétablissement. Parmi tous les niveaux 
d’exploitation évalués, un retrait de 50 bêtes entraînerait le plus long délai de 
rétablissement. Le fait de retirer 15 animaux par année peut causer un délai 
considérable dans le contexte de certains paramètres, mais si les prises sont 
inférieures à 10 animaux, il n’y aurait à peu près pas de délai de rétablissement. 
Ce résultat est valable dans la mesure où l’on suppose que la population est 
correctement décrite par un modèle logistique utilisant des valeurs de paramètres 
se situant dans l’échelle utilisée pour la présente analyse, que les conditions 
actuelles de l’environnement ne dépasseront pas les limites imposées par le 
modèle (y compris l’occurrence d’événements catastrophiques) et qu’il n’y a pas 
d’autre source importante de mortalité. Enfin, le comportement de la composante 
de l’erreur de traitement dans le modèle de population a indiqué que des valeurs 
de σprocess de 0,015 et plus entraînaient des valeurs de croissance annuelle de la 
population qui peuvent être irréalistes pour la population de baleines boréales de 
l’est de l’Arctique canadien. Par ailleurs, toutes les valeurs utilisées de σprocess 
permettent une croissance négative quand la population approche de la capacité 
de charge, mais c’est uniquement à 0,2 ou plus que la population présente une 
croissance négative à des niveaux de population inférieurs. Bien que cette 
situation puisse susciter une mise en garde à l’égard de cette composante du 
modèle, celui-ci est jugé acceptable pour représenter la variabilité naturelle. Les 
fluctuations de la croissance annuelle dues à l’erreur de traitement devraient être 
inférieures aux fluctuations observées au sein du stock de l’est de baleines grises 
et un choix de σprocess de 0,01 et de ρ de 0,8 a été fait pour l’analyse. 
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INTRODUCTION 
 
The present report includes results of analyses that are an extension and a 
review of the previous efforts to evaluate time to recovery of bowhead whales in 
the eastern Canadian Arctic (Alvarez-Flores 2006).  The analyses reported here 
include additional catch options and a revised estimate of abundance. The 
description of the process error term is also presented with additional figures and 
explanations that aim to clarify previous questions regarding its influence on 
annual growth. A good portion of the content in this report is taken from the 
previous one, allowing the report to be a stand alone document. Although times 
to recovery presented here are different from those in the previous report, the 
main conclusions remain the same and only a few additions are made. 
 

METHODS 
 
Time to Recovery 
A simulation model was built and coded using the C++ computer language. The 
overall structure of the model is represented in Fig. 1 and appendix 1 presents a 
description and a guide to the use of the software. The program requires an input 
file to feed the all assumptions for parameter values, the alternative catch levels 
and all necessary variables to control the simulations. Values used in the present 
analysis are shown in Table 1. 
 
The Conservation Strategy considers a time frame of 100 years to monitor 
recovery because of the estimated lifespan of the bowhead whale and its slow 
population growth rate.  For this reason, the simulation model projected the 
population 100 years using different combinations of parameters ψ, K, Rmax (see 
the description of the population model below for parameter definitions) as well 
as all alternative catch levels. Each population trajectory spanning 100 years for 
each set of parameters and catch was repeated 5000 times.  For each trajectory, 
the number of years that it took the population to be equal or greater than 0.7K 
was stored. Next, the 5000 values of time to recovery obtained for each set of 
parameters and catch were used to create a frequency distribution histogram 
with a bin size of one year and then standardized to obtain probability and 
cumulative probability distributions. From the cumulative probability distribution 
the year to recovery (YTR) corresponding to the 95th percentile was arbitrarily 
chosen as the acceptance level to decide that the population had recovered to 
the selected target level. 
 
Decline 
When a deterministic logistic model is used to project a population subject to an 
unsustainable constant catch level, it is enough to check if the abundance at the 
beginning of the projection N0 is smaller than N0+1 because the declining trend 
will continue at least for part of the projection. In a stochastic logistic model 
however, this is not useful because chance will determine the outcome for any 
single realization. In this way, a large number of simulations are run to determine  
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Fig. 1. Flow chart describing the general structure of the simulation model to 
compute the time to recovery of bowhead whales in the eastern Canadian Arctic. 
 
if the population is recovering or declining with some projections within a trial 
presenting an increasing trend and others a declining one. The decision to 
determine that under a certain combination of parameters and catch a population 
has a high probability of declining was built in two steps. First, a single population 
trajectory had a declining trend if the projection reached 100 years without 
recovery and the abundance at time N100 was smaller than N0. Secondly, during 
a trial, the number of trajectories resulting in a decline was counted. If 95% or 
more of the projections resulted in a decline, then the result of that trial was a 
decline. 
 

Input: 
- Assumed 
par.  
  values 
- Alternative 
  catch levels 
- Control 
variables

Population model: 
- Project population 100 
yrs. 
- Repeat 5000 times for all
   assumed par. values 
and 
   catch levels. 
- For each run with a set of
assumed par values

Temporary 
storage: 
Output from pop. 
model is input for 

Statistical model: 
- Compute p distributions of YTR 
- Compute cum. p distributions for 
YTR. 
- Find YTR that is 95th percentile of

Model output: 
Table with YTR 
for each set of 
par. values and 
catch 
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Population model 
A single population of bowhead whales in the eastern Canadian Arctic was 
projected using a generalized logistic model with lognormal process error 
(Hilborn and Mangel 1997):  
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Where the process residual ut is serially correlated and computed as: 
 

processtt xuu σρρ 2
1 1 −+= −  

such that 
2)( processtuVAR σ=  and 

2
1 ),( processtt uucor ρσ=−   

(Punt pers. comm.; see Appendix 2 for proof). 
 
Also: 
Nt =  Abundance at time t or t + 1; time in years. 
Rmax = The discrete-time maximum annual population growth.  
K =  The pre-exploitation population size. 
ψ  =  A parameter that determines the population level where productivity is 
maximum, also known as the “shape parameter”, usually called ‘z’ but here given 
a different name to distinguish it from the statistic ‘z’ used in the previous report 
during the sampling process to compute PBR. 
Ct =  The number of whales killed in year t. 
ρ  =  The strength of the autocorrelation in the process error. 
σprocess = The standard deviation of the process error representing the level of 
natural variability. 
xt  = A random number drawn from a standard normal distribution. 
 
Table 1 shows the alternative values assumed for the parameters of the logistic 
model together with catch options and all other control variables. 
 
Selecting values of the population model parameters 
Although alternatives for the parameter values in the logistic model are somehow 
arbitrary, an effort was made to use guidelines based on current knowledge 
about marine mammals, other stocks of bowhead whales or about the eastern 
Canadian Arctic stock itself. 
 
Feasible values for the proportion of MNPL/K in marine mammals have been 
suggested to fluctuate within a range of 0.5 to 0.8 (Taylor and De Master 1993), 
corresponding to ψ values of 1 and 11.22. For the present analysis, the selected 
ratios of MNPL/K were 0.5, 0.675, and 0.85, corresponding to ψ values of 1, 4.2 
and 18.18 respectively.  
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Table 1. Parameter values, alternative catch levels and variables to control the 
simulations to calculate time to recovery of bowhead whales in the eastern 
Canadian Arctic assuming a single stock. Parameters are used in a generalized 
logistic model with ψ = shaping parameter, K = pre-exploitation population level 
or carrying capacity, Rmax = maximum annual population growth, N0 = initial 
population size, ρ = correlation level in process error and σprocess = variability in 
process error. 
 

Parameter values      
ψ K Rmax ρ σprocess N0 

1 9000 0.01 0.8 0.01 5100 
4.2 12300 0.03    
18.18 15000 0.05    
Catch      
Whales killed (or struck 
and lost) yearly 

     

0      
2      
4      
8      
15      
50      
Control variables      
Target fraction of K 
   for recovery 

 
0.7 

    

Acceptance level for 
YTR 

0.95     

Initial year of projection 2005     
Years to project 100     
Number of simulations 5000     

 
 
Selecting values for the maximum annual per capita population increase was 
based on current knowledge about the Western Arctic stock of bowhead whales. 
The most recent stock assessment for the Western stock conducted by the US 
NOAA Fisheries suggests an Rmax of 0.04 (Anglis and Lodge 2004). For the 
present analysis, DFO requested that values of 0.01, 0.03 and 0.05 were used. 
 
A significant difference from the previous analysis is that only a single 
assumption about the present abundance was made. Current abundance of 
bowhead whales is estimated to be 7,309 (CV = 44.8), and DFO decided that the 
20th percentile of the distribution of abundance should be used as input to the 
model, therefore N0 was set to 5,100. 
 
The pre-exploitation abundance for the eastern Canadian Arctic stock has been 
estimated to be of 12,300 whales (Woodby and Botkin 1993; COSEWIC 2005). 
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To choose alternative values, it was decided to take approximately the 60% CI 
from a normal distribution (the approximation would be about the same using a 
lognormal distribution) assuming a CV of 0.3 and a mean of 12,300. This resulted 
in a low value of 9,000 and a high value of 15,000. 
 
Selecting values of ρ and σprocess 
In the equation to compute the serially correlated process residual, parameter ρ 
determines the degree to which a residual is correlated to the previous one, in 
other words, to what extent a residual will likely be followed by another residual of 
similar magnitude and sign. On the other hand, parameter σprocess determines the 
magnitude of the natural variability or the size of the residuals. 
 
When this lognormal process error is applied to the logistic model, it is important 
to note first that the error is applied to the whole population and not explicitly to 
the parameter of growth Rmax. This means that if environmental conditions are 
appropriate, subsequent states of the population (e.g. Nt, Nt+1) may follow each 
other to conform some trend for a period of time. However, because ln(Nt+1 / Nt) 
is the annual growth rt, it follows that the population growth is autocorrelated in 
the same way as the abundance. Recall also that Rmax = maximum expected 
value of (Nt+1 / Nt) – 1 which is an approximation of ln(Nt+1 / Nt). Observe now in 
Fig. 2 the plots of ln(Nt+1 / Nt) vs. time (with K = 12,300, Rmax = 0.04 and ψ = 4.2). 
For reference, the graphs overlap the resulting deterministic and the stochastic 
trajectories of rt. These stochastic curves were generated with a single set of 
random numbers and are useful only to exemplify the effect of using different 
combinations of ρ and σprocess. In these curves, the left part of the plot 
corresponds to the growth at low population levels compared to K (N0 = 3,154) 
and therefore it approaches Rmax. Notice that a small σprocess = 0.0005 introduced 
a level of variability in rt that made the stochastic growth almost indistinct from 
the deterministic. On the contrary a larger value of σprocess = 0.05 created 
extremely large fluctuations in the value of rt, in some cases making it reach 
values of 0.1 or more which may be very unrealistic for the bowhead whale. An 
intermediate value of σprocess = 0.005 produced interesting fluctuations in rt with 
maximum values that didn’t go over 0.05 which is a fairly plausible value for 
bowhead whales and was the maximum value assumed for Rmax in the analyses 
of recovery.  
 
A better description of the behavior of the population model under different levels 
of process error an autocorrelation was developed running a series of simulation 
trials. In these simulations, a population was projected with the parameters of 
dynamics K = 12,300, Rmax = 0.04 and ψ = 4.2. The initial population size was set 
to 500 to observe the response from severely depleted levels and was 
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Fig. 2. Effect of stochasticity on annual population growth as determined by 
alternative parameter values. Dark line is the deterministic trend, light colored 
line is stochastic. 
 
 
projected for 100 years.  Each projection with a single combination of σprocess and 
ρ was repeated 5000 times. Bounds of -0.1 to 0.1 were set to the annual growth 
and if exceeded the projection was discarded. These bounds allow a 
considerable margin of fluctuation in the annual growth but don’t allow 
implausible (although not impossible) growth levels. Each projection was divided 
in three sections. The first section went from the initial population size of 500 to 
the inflection point of the population curve at MNPL where density dependent 
effects start causing a decline in productivity. The second section went from the 
MNPL to half the distance between MNPL and K for moderate density dependent 
effects. The last level went up to K to observe maximum density dependent 
effects. For each section of the projection, the maximum and the minimum 
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growth values were saved, therefore, for every combination of process error 
parameters, the distribution and summary statistics were obtained for the 
maximum and minimum at each section of the population trajectory.  
 
To facilitate interpretation of the results of the simulations, the information is 
presented in different ways. First, the distributions of three parameter 
combinations were selected to present a graphical picture of the possibilities of 
maximum and minimum values of growth during the three different stages of the 
projection. The selected cases were high variance and moderate correlation 
(σprocess =0.05 and ρ=0.8); moderate variance and moderate correlation (σprocess 
=0.02 and ρ =0.8); finally, low variance and high correlation (σprocess =0.01 and 
ρ=0.95). Each set of graphs in figures 3 to 5 include their corresponding 
summary statistics to aid in the interpretation of both the graphs and the 
summary statistics table. 
 
In the first case (σprocess =0.05 and ρ=0.8), both maximum and minimum values 
fell heavily towards the bounds, meaning that in many cases the population 
exceeded the established limits to annual growth (both increasing and 
decreasing) and therefore considered unlikely for bowhead whales on a regular 
basis. Additionally, a wide range of values were observed with this selection of 
parameters with a lager spread of the distributions in the case of the minimums. 
In the second case (σprocess =0.02 and ρ =0.8), reducing the process error moved 
the distributions away from the bounds, although the maximums at low 
population levels were still considerably close to the upper bound. 
 
Finally, setting σprocess to 0.01 and ρ to 0.95 not only narrowed the spread of the 
distributions limiting the range of possible annual growth, but centered the 
distributions on values that are considered more realistic for bowhead whales. 
For the same three cases above, the distribution of the deviation from the 
deterministic projection is presented in Fig. 6. Values in the x axis of the charts 
are deviations at all times during the projections. They can be a deviation when 
the population is at low levels and therefore the deterministic annual growth was 
close to Rmax, but could also be a deviation from the growth when the population 
was approaching K and therefore the annual growth was low. Observe that when 
process error was large (0.05), the stochastic growth could depart considerably 
from the deterministic values causing unrealistic population fluctuations.   
Moderate levels of process error (0.02) restricted the departures to more realistic 
scenarios, but if the departure was positive at low population levels, the 
maximum growth values could be above 9% (0.04 + 0.05). Under this level of 
process error, an extreme negative departure can be considered reasonable if 
caused by rare catastrophic events. When process error was set to (0.01), level 
of fluctuation in the annual growth appeared more constrained to fluctuations that 
can be more easily explained by the biology of the species and environmental 
conditions. However, negative departures from the deterministic growth may still 
be considered insufficient because strong catastrophic events may not be 
properly represented. 
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c. 
 
Fig. 3. Distribution of the maximum (left panels) and minimum (right panels) 
annual growth obtained during simulations of stochastic projections of bowhead 
whales. The projections in this figure were made using parameters σprocess =0.05 
and ρ=0.8 and are presented for the cases where the population was below 
MNPL (a), between MNPL and 0.5(K-MNPL) (b) and above 0.5(K-MNPL) (c).
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Fig. 4. Distribution of the maximum (left panels) and minimum (right panels) 
annual growth obtained during simulations of stochastic projections of bowhead 
whales. The projections in this figure were made using parameters σprocess =0.02 
and ρ =0.8 and are presented for the cases where the population was below 
MNPL (a), between MNPL and 0.5(K-MNPL) (b) and above 0.5(K-MNPL) (c).
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Fig. 5. Distribution of the maximum (left panels) and minimum (right panels) 
annual growth obtained during simulations of stochastic projections of bowhead 
whales. The projections in this figure were made using parameters σprocess =0.01 
and ρ=0.95 and are presented for the cases where the population was below 
MNPL (a), between MNPL and 0.5(K-MNPL) (b) and above 0.5(K-MNPL) (c). 
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Deviation from the deterministic projection 
c. 
Fig. 6. Distribution of the deviations from the deterministic projected annual 
growth of bowhead whales in stochastic simulations using parameters σprocess 
=0.05 and ρ=0.8 (a), σprocess =0.02 and ρ =0.8 (b) and σprocess =0.01 and ρ=0.95 
(c). 
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An alternative way to present the results of these simulations was to plot the 
mean maximum and minimum values (Fig. 7). In each section of this figure, the 
upper panel shows the maximum values and lower shows the minimums. The 
values in the charts are ordered and included in boxes representing the level of 
process error. Within a box, three distinct sequences of dots are observable, the 
upper one corresponding to the maximum or minimums for the segment of the 
projection when the population is below MNPL, the sequence in the middle 
representing the projection section when the population is between MNPL and 
half the distance between MNPL and K, and the lower sequence for the 
remaining of the population projection as it approaches K. Each dot in the 
sequence is the mean for the respective σprocess and each value of ρ (from left to 
right 0.5, 0.8, 0.9 and 0.95). The plots show that as expected, when process 
error was low (0.005), at low population levels the observed mean maximum 
growth was close to Rmax, particularly if the level of autocorrelation was high. On 
the other hand, maximum growth values had a tendency to be higher the more 
the population was allowed to fluctuate with higher values of process error. Also 
as expected, the maximum annual growth declined as the population approached 
K. Practically all minimum mean growth values allowed declines (they were 
negative) if the population was approaching K. However, when the population 
was below half the distance between MNPL and K, only if the level was at least 
0.02 the growth could be negative. This may be a caveat of the model that may 
require further development to allow more cases with negative annual growth 
when the population is not too close to K. Notice that when σprocess was set to 
0.015 and 0.02 the mean minimum growth at low population levels was smaller 
than at medium population levels. This is due to a wider spread of the distribution 
at medium population levels for which there’s no apparent explanation. 
 
After the first report proposed the use of a component of process error in the 
model, the discussion that followed suggested comparing the results of the 
predicted annual growth in the bowhead whale in the eastern Canadian Arctic 
with the observed growth in the gray whale of the eastern Pacific Ocean. Data for 
the gray whale were taken from Rugh et al. (2005). As pointed out elsewhere, the 
data shows that from 1970 to 1997 the population grew at a rate of approximately 
0.025, whereas from 1997 to 2001 the population declined at an average rate of 
approximately -0.123.  Several things need to be considered about this data 
before it is used to compare growth in the bowhead whale simulations. For 
example, the time series of estimates of abundance show fluctuations at different 
times which certainly may reflect the natural variability in the population, at least 
in part. However annual growth of 0.436 between 1971 and 1972; 0.253 between 
1977 and 1978 and 0.268 between 1992 and 1993 were observed. The 
maximum growth (Rmax) adopted by the US NOAA Fisheries for gray whales has 
a value of 0.047 which is the 10th percentile of the error distribution around the 
best estimate of 0.072. If gray whales have an Rmax of 0.07, then the high annual 
growth values observed are probably biologically 



 

 13

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Mean maximum (upper panel) and minimum (lower panel) annual growth 
of a simulated population of bowhead whales projected with a stochastic logistic 
model. Each box aggregates values obtained with specific levels of σprocess. Dots 
are the mean maximum and minimums when the population was below MNPL, 
squares when the population was between MNPL and half the distance between 
MNPL and K and triangles for values as the population approached K. Within a 
box, each mark from left to right represent the value for autocorrelation (ρ) levels 
of 0.5, 0.8, 0.9 and 0.95. 
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implausible and may be a result of observation error more than process error. 
Also, if the decline between 1997 and 2001 is certainly the longest sustained 
population decline recorded, another decline spanning three years was also 
recorded between 1969 and 1971 with annual growth values that averaged  
-0.128. The lowest growth was -0.253 observed between 1977 and 1978, but 
was immediately followed by an increase of almost the same magnitude. The 
decline in 1977-78 could then be subject of debate as to whether the population 
might have actually declined more than 25% in a single year only to recover that 
loss the following year. Shelden et al. (2004) associated this decline with the 
appearance of an environmentally anomalous year and report unusual numbers 
of calf carcasses along the migratory route. No adult carcasses were reported, 
therefore, the observed environmental fluctuation may have slowed down the 
recovery process but caused a minor (if any) decline in the total population. 
Additionally, Shelden et al. (2004) also report a change in whale distribution and 
the timing of migration, which may influence the abundance estimation process 
and therefore a better explanation to the observed decline. As for the decline 
observed in the last years, Rugh et al. (2005) suggest that it may be an indication 
that the population is currently approaching carrying capacity which was 
combined with unusually poor environmental conditions.  Although the time 
series of abundance estimates for the gray whale are the most complete and one 
of the best available for large whales, it is still questionable if direct observation 
of the sequence of estimates leads to reliable estimates of the annual growth 
because their variability may be confounded with unaccounted uncertainty in the 
abundance estimates. Wade (2002) fitted alternative models to the catch and 
abundance data and found that the model that best fitted the data had to include 
a parameter that incorporated additional variance to the estimates of abundance. 
An attempt to separate the effects of process and observation error was made by 
Punt and Butterworth (2002), concluding that for the most part, parameter 
estimates were insensitive to alternative choices of increasing values of process 
error and those that showed some response were considered only “a little less 
optimistic”. Because of this, it was concluded that the effect of process error was 
insufficient to explain the discrepancy between the catch and the abundance 
data, and that it appeared that the inclusion of the additional variance proposed 
by Wade (2002) was justified. Although additional improvements have been 
made to the estimated abundance and its variance (Hobbs et al., 2004 and 
Rough et al., 2005), no consideration was made as to what extent the 
improvement matched the required additional variance that made a model, which 
included a parameter representing the addition, a better fit to the data. 
 
Assuming that the population is at or near K (with annual growth close to zero or 
even negative), and assuming also that the estimated abundance in the last 5 
years are unbiased or at least contain biases of similar nature and magnitude 
and that their variances are better estimated than in the past, then a decline of -
0.123 may be realistic although there’s no undisputable evidence that the decline 
was actually of this magnitude. On the other hand, a decline of similar or greater 
magnitude while the population was well below K, is more difficult to explain and 
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allowing annual abundance declines as large as 0.1 is only justified when the 
population is close to K. 
 
The most recent stock assessment on bowhead whales of the western Arctic 
stock published by NOAA Fisheries also show large fluctuations in the time 
series of estimated abundance (Anglis and Outlaw 2005), but it is possible that 
estimating abundance of these whales is more problematic than for gray whales 
and that this problem complicates even more the interpretation of the observed 
annual change. If bowhead whales have an Rmax value around 0.04 as assumed 
by the US NOAA Fisheries, then it may be expected that fluctuations due to 
process error are smaller than in the gray whale population. In this way, looking 
at the level of variability shown in figure 7 a choice of σprocess = 0.01 and � = 0.8 
allowed for maximum growth that had a mean value of nearly 0.06 with a range 
of 0.044 to 0.084 and 95% of the simulations falling below 0.069. This choice of 
parameters for process error also allows minimum growth values that have a 
mean of -0.009 with the lowest observed value of -0.028. As mentioned before, 
the limit in the lower annual growth can be a caveat if negative values may be 
expected to be even smaller near K and occur more often at population levels 
away from K and not properly represented by the model. 
 
Finally, the complete results of the simulations are presented in the form of 
summary statistics in Table 2. 
 
 

RESULTS AND DISCUSSION 
 
Table 3 shows the estimated times to recovery (YTR) for all combinations of 
parameter values and alternative catch quotas. In this table, YTR values 
represent the time needed to find 95% of the simulations yielding a population at 
or above the recovery target of 0.7 of K. The model was programmed to project 
the population only for 100 years, therefore, if a population takes longer than that 
to recover it is reported as 100+.  
 
 
A quick look at table 3 shows that YTR values ranged from 5 to 100+. This result 
is expected given the equally wide range in the combination of parameter values 
and initial abundance. For example, given that the initial abundance was 
assumed to be 5,100 and no catch was applied, a combination of ψ = 18.18, K = 
9,000 and Rmax = 0.05 yielded a recovery time of 5 years. This is expected given 
that in this case the target population level was 6,300 and the population is 
growing faster from the initial 5,100. In contrast, if the parameters were set  
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Table 2. Summary statistics of simulations to test the influence of different parameter values to compute process error on 
the annual population growth of bowhead whales. �is the residual correlation coefficient and σprocess its standard error; 
mean and standard errors of the 5000 maximum values of rt obtained for each combination of parameters are presented. 
 
 

σ process ρ mean SE mean SE mean SE mean SE mean SE mean SE
0.5 0.0498 0.0024 0.0358 0.0037 0.0248 0.0039 0.0259 0.0026 0.0207 0.0045 -0.0032 0.0034
0.8 0.0486 0.0028 0.0346 0.0043 0.0236 0.0043 0.0272 0.0030 0.0225 0.0052 -0.0011 0.0039
0.9 0.0473 0.0032 0.0340 0.0046 0.0230 0.0047 0.0286 0.0034 0.0233 0.0054 0.0003 0.0042

0.95 0.0456 0.0035 0.0333 0.0048 0.0226 0.0049 0.0300 0.0037 0.0238 0.0054 0.0015 0.0044
0.5 0.0614 0.0048 0.0425 0.0068 0.0319 0.0066 0.0145 0.0050 0.0159 0.0092 -0.0103 0.0068
0.8 0.0589 0.0055 0.0399 0.0076 0.0294 0.0075 0.0171 0.0060 0.0200 0.0108 -0.0058 0.0084
0.9 0.0563 0.0059 0.0382 0.0082 0.0277 0.0081 0.0201 0.0069 0.0227 0.0111 -0.0029 0.0088

0.95 0.0532 0.0065 0.0371 0.0088 0.0270 0.0086 0.0233 0.0075 0.0250 0.0110 -0.0010 0.0083
0.5 0.0730 0.0069 0.0496 0.0099 0.0402 0.0092 0.0031 0.0075 0.0107 0.0151 -0.0173 0.0112
0.8 0.0695 0.0080 0.0463 0.0108 0.0364 0.0103 0.0071 0.0091 0.0181 0.0174 -0.0114 0.0129
0.9 0.0657 0.0087 0.0439 0.0116 0.0342 0.0109 0.0114 0.0105 0.0226 0.0175 -0.0075 0.0126

0.95 0.0607 0.0092 0.0424 0.0120 0.0328 0.0114 0.0165 0.0114 0.0267 0.0168 -0.0051 0.0109
0.5 0.0831 0.0077 0.0566 0.0120 0.0486 0.0117 -0.0082 0.0099 0.0053 0.0209 -0.0250 0.0160
0.8 0.0791 0.0089 0.0529 0.0134 0.0447 0.0130 -0.0034 0.0125 0.0157 0.0243 -0.0173 0.0173
0.9 0.0740 0.0105 0.0502 0.0141 0.0418 0.0139 0.0024 0.0148 0.0225 0.0250 -0.0125 0.0163

0.95 0.0681 0.0114 0.0478 0.0148 0.0391 0.0142 0.0093 0.0156 0.0270 0.0232 -0.0090 0.0138
0.5 0.0915 0.0000 0.0799 0.0137 0.0797 0.0160 -0.0684 0.0189 -0.0274 0.0501 -0.0570 0.0353
0.8 0.0931 0.0062 0.0762 0.0156 0.0769 0.0164 -0.0579 0.0258 -0.0178 0.0549 -0.0552 0.0324
0.9 0.0883 0.0111 0.0738 0.0167 0.0726 0.0170 -0.0477 0.0320 -0.0087 0.0565 -0.0459 0.0297

0.95 0.0821 0.0149 0.0712 0.0178 0.0683 0.0179 -0.0325 0.0364 0.0100 0.0542 -0.0348 0.0244

0.05

0.005

0.01

0.015

0.02

Min MNPL - 0.5(K-MNPL) Min 0.5(K-MNPL) - KMax below MNPL Max MNPL - 0.5(K-MNPL) Max 0.5(K-MNPL) - K Min below MNPL
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Table 3. Estimated time to recovery (YTR) of bowhead whales in the eastern Canadian Arctic for different combinations of 
population parameter values and catch assuming that N0 = 5,100. For comparison, the stochastic output of the model 
(column S) is presented together with the deterministic time to recovery (column D). 
 

S D S D S D S D S D S D
1 9000 0.01 100+ 58 100+ 64 100+ 72 100+ 95 100+ 100+ Decline Decline
1 9000 0.03 44 20 45 20 49 21 53 23 63 26 100+ 100+
1 9000 0.05 22 12 23 12 23 12 24 13 28 14 53 23
1 12300 0.01 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ Decline Decline
1 12300 0.03 68 40 70 41 71 42 76 44 87 48 100+ 93
1 12300 0.05 37 24 37 25 38 25 39 26 42 27 61 37
1 15000 0.01 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ 100+ Decline Decline
1 15000 0.03 80 51 82 52 83 53 90 55 97 59 100+ 95
1 15000 0.05 43 31 44 31 45 31 46 32 48 33 65 42

4.2 9000 0.01 60 25 65 26 71 28 79 30 100+ 37 100+ Decline
4.2 9000 0.03 13 9 13 9 14 9 14 9 16 10 25 13
4.2 9000 0.05 6 5 6 6 6 6 7 6 7 6 9 7
4.2 12300 0.01 100+ 58 100+ 60 100+ 63 100+ 67 100+ 78 100+ Decline
4.2 12300 0.03 28 20 28 20 28 20 29 21 31 22 41 27
4.2 12300 0.05 15 12 15 12 15 12 15 13 15 13 18 15
4.2 15000 0.01 100+ 79 100+ 81 100+ 84 100+ 89 100+ 100+ Decline 100+
4.2 15000 0.03 35 27 36 27 36 27 37 28 39 29 50 35
4.2 15000 0.05 19 16 20 16 20 17 20 17 20 17 24 19

18.18 9000 0.01 53 22 55 23 57 23 63 25 80 29 100+ 100+
18.18 9000 0.03 10 8 11 8 11 8 11 8 12 8 18 11
18.18 9000 0.05 5 5 5 5 5 5 5 5 5 5 7 6
18.18 12300 0.01 95 53 100+ 55 100+ 57 100+ 60 100+ 69 100+ 100+
18.18 12300 0.03 24 18 25 18 25 19 25 19 27 20 35 24
18.18 12300 0.05 13 11 13 11 13 11 13 12 14 12 16 13
18.18 15000 0.01 100+ 73 100+ 75 100+ 77 100+ 82 100+ 93 100+ 100+
18.18 15000 0.03 32 25 33 25 33 25 34 26 35 27 45 32
18.18 15000 0.05 18 15 18 15 18 15 18 16 19 16 21 18

K R max

YTR
Annual Catch

Parameter values

0 2 4 8 15 50
ψ
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to ψ = 1, K = 15,000 and Rmax = 0.01, the population was very far from the target 
level and growing slowly, taking 100+ years to recover even without removals. 
 
Table 3 also shows that when ψ = 1, there’s a tendency for YTR to differ more 
from all other YTR values, than the difference between times to recovery when ψ = 
4.2 and ψ = 18.18. For example, if the catch was 4 and parameter values were ψ = 
1, K = 9,000 and Rmax = 0.03, the time to recovery was 48 years, whereas YTR 
was 14 if ψ = 4.2 and 11 if ψ = 18.18 with everything else kept equal. This 
difference is a direct consequence of one of the effects of the shape parameter on 
the population behavior as described with a generalized logistic model. For one 
single growth value, the population increases faster with larger values of ψ, but the 
difference in the increase is smaller between larger ψ values. 
 
Regarding the influence of the different assumptions about parameter values, the 
conditions in this report differ from the previous analysis in that only a single 
assumption was made here about the initial population size. If the combination of K 
and N0 influenced the results more strongly in the past, throughout table 3 it is 
seen that it is the whole set of parameters of the logistic model that can be 
considered important. Lower values of K implied that the current population was 
closer to the target and took less time to recover. In the same way, the larger 
ψ and Rmax were, the less it took the population to reach the recovery target. This 
result doesn’t contradict the conclusion in the past report, it only highlights the 
relevance of having a reliable estimate of the present whale abundance and ideally 
to have a complete reliable record to estimate model parameters instead of 
assuming their values in a simulation analysis.  
 
In the same way as in the past report, from the practical point of view, a critical 
result of the exercise is the fact that for any particular combination of parameters, 
as long as the catch is lower than 10 animals, the delay in time to recovery is 
minimal compared to YTR values with no catch.  For example, in Table 3 if ψ = 1, 
K = 9,000 and Rmax = 0.03, time to recovery is 46 years if no catch is allowed. With 
the same combination of parameters, YTR values with catch levels of 2, 4 and 8 
animals were 46, 48 and 52 respectively, increasing to 63 and more than 100 
years when the catch was set to 15 and 50 whales. If the parameter combination 
was ψ = 4.2, K = 12,300 and Rmax = 0.03, time to recovery was 27, 27, 28, 29 and 
30 for no catch, and catches 2, 4 8 and 15 respectively and only when the catch 
was 50, time to recovery went up to 41 years. As concluded in the past report, 
because the recovery goal in the Conservation Strategy is not specific about the 
time to reach the target, regardless of what parameters govern the real world 
population of whales, if they are within the limits of the model, catches smaller than 
10 whales, allow adopting an acceptable level of confidence that such 
management action is compatible with the goals outlined in the Conservation 
Strategy for the bowhead whale. 
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A catch of 50 whales was also the only level that resulted in population decline. 
This situation occurred in all cases when Rmax was assumed to be 0.01. This is an 
interesting result because if the management goal is not explicit about the 
timeframe to observe recovery, even if the population takes more than 100 years 
to recover, as long as there is recovery the management goal is met. Under these 
assumptions, the only circumstance that can lead to a decline with an annual 
removal of 50 animals is that this particular whale population does have indeed low 
annual growth. The declining populations occur in the stochastic model under 
conditions coinciding with the resulting declines in the deterministic model. 
However, a decline in the deterministic model resulted in a population taking more 
than 100 years to recover and another one that in the deterministic model took 
more 100 years to recover but in the stochastic model resulted in a decline. Both of 
these cases occurred as well when Rmax was set to 0.01. These differences don’t 
imply inconsistencies between the two models and are only a consequence of the 
natural variability represented by the process error. 
 
The conclusion that low catch levels won’t cause marked delays in time to recovery 
holds under the assumptions that aside from the catch there are no other 
significant sources of mortality that go unrecorded; that this bowhead whale 
population is appropriately described by the model with parameters within the 
range used in the present analysis. This implies the assumption that environmental 
conditions won’t change beyond the limits imposed on the model parameters.  
 
The comparison of the times to recovery obtained with the model including process 
error with results using a deterministic model show that YTR values in the first 
case tend to be considerably larger as time to recovery increases. The reason for 
this divergence is found in the way times to recovery are recorded in the stochastic 
model. Recall that in the stochastic model YTR is the time where 95% of the 
projected populations (5000) during a simulation trial were above the recovery 
target. In this way, a population that takes longer to recover undergoes a longer 
process of fluctuation producing a broader distribution of times to recovery. 
Observing one such distribution illustrates this point. Figure 8 presents the 
distribution of YTR with ψ = 1, K = 9,000 and Rmax = 0.03 and no catch. Time to 
recovery from the stochastic model was 46 years (light colored bar) whereas the 
deterministic time to recovery is 20, which as expected is at the mode of the 
distribution (patterned bar). In contrast, figure 9 presents the distribution of times to 
recovery with ψ = 4.2, K = 9,000 and Rmax = 0.05 where the time to recovery from 
the stochastic model was 6 years and 5 from the deterministic model. Notice the 
narrow distribution that makes both results to be very close. The observed 
differences in the predicted times to recovery between the two population models 
certainly reflect the relevance of considering the effect of natural variability when 
projecting animal populations of long life span. However, the magnitude if the 
divergence from the deterministic model is determined by a choice that is more 
political than biological, the larger the acceptance level is the more conservative 
the policy is. 
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Fig. 8. Relative frequency distribution of time to recovery of bowhead whales in the 
eastern Canadian Arctic if no catch was allowed and parameters of dynamics were 
set to ψ = 1, K = 9,000 and Rmax = 0.03. Light colored bar is the time to recovery 
where 95% of the simulations fell above the recovery target. Patterned bar is the 
mode of the distribution corresponding to the deterministic prediction. 
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Fig. 9. Relative frequency distribution of time to recovery of bowhead whales in the 
eastern Canadian Arctic if no catch was allowed and parameters of dynamics were 
set to ψ = 4.2, K = 9,000 and Rmax = 0.05. Light colored bar is the time to recovery 
where 95% of the simulations fell above the recovery target. Patterned bar is the 
mode of the distribution corresponding to the deterministic prediction. 
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Selecting an acceptance level lower than 95% will make the predicted time to 
recovery closer to the deterministic prediction. On the other hand, if management 
goals are set to be achieved in the short term, it is possible to ignore the effects of 
process error, but if the goal is expected to be reached in the long term, then 
natural variability introduces a source of uncertainty that is difficult to ignore. 
 
Finally, it is important to keep in mind that the results presented in this report are 
valid only under the assumed parameter values of process error. Larger values of 
σprocess can certainly modify these results. Observing the population response 
under a different assumption about the magnitude of process error however would 
work in the same way as with the selection of alternative population parameter 
values to explore feasible future scenarios. 
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Appendix 1 
Instructions to use the program to run simulations that compute time to recovery 
under different assumptions of population parameters and catch levels 
 
The program was coded in C++ using an object oriented approach. The code 
includes a typical header file (BHWREC.H); a main file (MAIN_BHWREC.CPP); a 
file with the functions required to simulate the population dynamics and catch as 
well as a random number generator (POPSIM.CPP); a file to create the probability 
distributions (PDF.CPP) and a file for data management (DATA_MANAG.CPP). An 
external input data file is required to read the alternative parameter values as well 
as the control variables (BHW.dat). All the functions, the global variables and 
variables used in files other than the main are declared in the header file. Variables 
of local scope are declared in the functions where they are used. The program is 
commented as much as necessary to facilitate understanding of its different 
components. 
 
Two sets of files are provided. A “clean” set includes only the principal code files as 
well as the executable file and the input and output folders. The second set 
includes the same files as the clean set plus all other files produced by the 
compilation process, provided only in case the Microsoft Visual C++ 6.0 ® compiler 
is used to modify the code. In this case, the MAIN_BHWREC.DSW workspace 
opens with all the code files. Of course, the clean set is enough to use the 
Microsoft compiler, but a new workspace needs to be created. If changes to the 
code are required later on, it isn’t necessary to use the Microsoft Visual C++ 6.0 ® 
compiler but it is highly recommended. It is possible that earlier versions of the 
Microsoft compiler may present incompatibilities and it is unknown if newer 
versions such as 7.0 (Visual C++ .NET 2002), 7.1 (Visual C++ .NET 2003) or 8.0 
(Visual C++ 2005) will compile the code. 
 
The overall structure of the program is outlined in Fig. 1. The main file controls the 
central flow of the program by starting the simulations for each catch level. The 
program first runs the popsim function to project the population as many years as 
determined in the input file and repeats the projection as many times as declared 
in the same input file. The output of the popsim function is stored in the file 
RawYrToRecovLook.out and then read by the pdf function called in the main file 
immediately after popsim. The content in the file RawYrToRecovLook.out could be 
used to generate the probability distributions and to obtain the times to recovery 
externally if desired but maybe cumbersome given the amount of data produced. 
Finally, after simulations have been run for all catch levels in the main, the final 
data with times to recovery are written by the write_data function into the YTR.out 
file and the program terminates. Tables 3a and b are basically the same YTR.out 
output file simplified to facilitate their reading. 
 
The random number generator uses two additional files with the functions gasdev 
which draws numbers from a standard normal distribution and ran1 which draws 
random numbers from a uniform distribution. Both functions for random numbers 
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are from Numerical Recipes in C++ (Press, W. H., S. A. Teukolsky, W. T. 
Vetterling and B. P. Flannery . 2002. Numerical Recipes in C++. The art of 
scientific computing. Cambridge.). 
 
The pdf function produces an output file with the probability distributions of time to 
recovery (PDF.out) and another one with the cumulative probability distributions 
(CPROB.out). In these two files, there are as many columns as years the 
population was projected. Each row includes the distributions for each combination 
of parameters. The arrangement is hierarchical with catch on the top, followed by 
ψ, K and Rmax. The order of the rows resembles the parameter combinations in 
Tables 3a and b. Note that the Tables have 27 rows corresponding to each 
parameter combination. In the probability distribution files, the same sequence is 
represented for each catch level (5 total) in the same order as in Table 3 for a total 
of 135 rows. Although the user doesn’t need these two files to extract the times to 
recovery, they are provided in case a plot of one or more of such distributions is 
required to visualize or explore their behavior or any other use as desired. 
 
Before running the program it is necessary to verify that the location of the input 
and output files are consistent with the path of all stream declarations in the code 
(for both input and output). The simplest way to do this is to create new folders 
with the same paths as in the code. Default paths (folders that need to be created) 
are C:\Bowheads\Recovery\Input and C:\Bowheads\Recovery\Output. Note that if 
these paths need to be changed in the code, the paths must have double 
backslashes. For example, the path for data input would be 
C:\\Bowheads\\Recovery\\Input\\BHW.dat.  If the output of a program run is to be 
kept, it is necessary to move it to a different location taking care of including 
information in the new folder about the specific parameter settings used in that run. 
If the output is not moved to a different folder location and the program is run again 
with different settings, the previous output will be lost. An alternative way to assure 
that file locations and program path declarations are the same is to modify the 
program with the desired new paths and recompile the program. This method has 
the advantage of providing the possibility of making multiple copies of the program 
in different locations for each run eliminating the need of moving the output to a 
new folder. 
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Before running the program it is also necessary to carefully create the input file. 
The following table is an example of the format of one such file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The data are arranged in 9 distinct blocks that correspond to the following 
information: 

1. Alternative values for ψ. 
2. Alternative values for K. 
3. Alternative values for Rmax. 
4. Alternative values for N0. 
5. The maximum catch for the two areas contributing to the “irregular” catch 

schedule. More on this in the description of block 7. 
6. The minimum catch for the two areas contributing to the “irregular” catch 

schedule. 
7. The periodicity with which the maximum catches occur. Blocks 5 to 7 in this 

example are interpreted so that in one area one whale is removed in the first 
line every two years and zero otherwise. In the same way, for the other 
area, one whale is removed every 13 years and zero otherwise. However, 
the catch options can be set in different ways. For example, if the numbers 
in block 5 were 4 and 10, the numbers in block 6 were one and two and the 
numbers in block 7 were 5 and 15, it would mean that in one area 4 whales 
are removed every 5 years and one otherwise whereas in the other area 10 
whales would be removed every 15 years and two otherwise. 

 

1.0 
4.2 
18.18 
-9999 
 
9000 
12300 
15000 
-9999 
 
0.03 
0.04 
0.05 
-9999 
 
7104  
-9999 
 
1 
1 
-9999 
 
0 
0 
-9999 
 
2 
13 
-9999 
 
0.8 0.005 0.7 0.41 2005 100 0.5 10 0.95 5000 1 
 
0.0 
1.0 
8 0
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Note also that up to block 7 the last number in the series is -9999. This number is a 
tag that tells the program it is the end of each block and must be present, 
otherwise numbers in the following block will be interpreted as part of the last block 
and will cause the program to fail the execution. Note also that between blocks 
there is an empty row. This blank row is not necessary but recommended to 
facilitate the order and control in the file. 
 
The next block is the series of the so called “control variables”. The sequence is for 
the autocorrelation parameter ρ, the magnitude of the natural variability �, the 
management goal as a proportion of K, the CV of the surveys, the initial year, the 
number of years to project the population, the recovery factor Fr for PBR, the 
periodicity of future surveys, the critical probability value to accept that recovery 
occurred, the number of simulations and the bin size for the probability 
distributions. No end of block tag is included. 
 
The final block corresponds to the fixed catch quotas. In this block, the last value 
must be the fixed PBR harvest level. No end of block tag is included. It is very 
important that at the end of this block there must be NO return, space or any other 
character after the last number, otherwise the program will crash. 
 
Blocks 1 trough 4 and 9 can have any number of alternative values of parameters 
and catch, the program is not restricted to work with the same number of options 
as in the example provided. The only requirements are that for blocks 1 through 4 
the end of block tag is included and that in block 9 nothing else is added after the 
last number. 
 
The program can be run in windows simply by double clicking on the icon for the 
executable file. However, it can also be run by typing the name of the executable in 
the command line of a DOS console after entering the correct path or by clicking 
the start and run windows buttons and going to the folder where the executable is 
stored. 
 
Once the program starts, it opens a DOS console and shows on the screen the 
parameter values, the control variables and the catch so that the user is able to 
take a quick look and verify that parameter and variable assignments are correct. If 
something looks wrong, the program can be stopped by pressing ctrl c or ctrl 
brake.  
 
All output files are found in the Outputs folder and are text files that can be opened 
with any word editor or spreadsheet program. Columns in the YTR.out and 
RawYrToRecovLook.out files are separated by tabs. Columns in the PDF.out and 
CPROB.out files are separated by single blank spaces. 
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Appendix 2 
Proof of the equation for serially correlated residuals of process error1 
 

The aim is to generate a time-series of residuals so that 
2)( σε =tVAR  and 

2
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1 This proof was kindly provided as personal communication by Andre Punt (School of Fisheries, University 
of Washington). 



 

 28  

Appendix 3 
Criticisms and comments, and responses by the author. 
 
Page numbers refer to relevant text in the present document. 
 
Criticism or comment (p. 1), regarding how decline was detected. Quoted original 
text with suggested text and comments shown in bold. 
 

When the deterministic portion of this model is used to project a 
population subject to an unsustainable constant catch level, it is 
sufficient to check if the abundance at any given time Nt is smaller 
than Nt+1 and that net productivity declines as well (Comment: a 
sustainable harvest will cause a decline from K) because the 
declining trend will continue for the rest of the projection. In the 
stochastic model below, this is not useful because chance will 
determine the outcome for any one realization thus a large 
number of simulations are run to determine the likelihood that the 
population is recovering or declining estimated by the fraction of 
projections within a trial presenting an increasing trend and others a 
declining one.  
 

Author’s response:  Actually, this comment is not entirely accurate. A sustainable 
catch (or yield, SYt) is defined as the catch that makes Nt+1 = Nt. Using a 
deterministic logistic model therefore, such condition is met when Rmax * Nt * (1-
(Nt/K)z) = Ct=SYt. With this in mind, no sustainable catch would cause a decline no 
matter where the population is. Possibly he is thinking of a catch that is between 
the maximum sustainable yield and the sustainable yield for a population between 
K and MSYL. Under those conditions, the population will decline to a certain level 
where it will stabilize and therefore the statements in the paragraph hold with a 
couple of precisions. Instead of “check if the abundance at any given time Nt is 
smaller than Nt+1” it should say “check if the abundance at the beginning of the 
projection N0 is smaller than N0+1” and instead of “because the declining trend will 
continue for the rest of the projection” say “because the declining trend will 
continue at least for part of the projection”. 
 
Criticism or comment (p. 3), regarding the reference to the process error 
equations.  Quoted original text with comments shown in bold. 
 

( ) processttt xuu σρρ 2
1 1 −+= −  

(Unclear how this relates to actual processes in marine mammal 
populations) 
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such that   and   
 
 (Punt pers. comm.; see Appendix 2 for proof )  (Comment:  a well 
known result from time series analysis. Discard the pers com 
and reference a text such as Schumway that is readily available) 

 
Author’s response:  This was requested originally by Pierre and will stay as it is. 
Since I don’t have access to the referred book I prefer not to include the 
recommended reference. 
 
Criticism or comment (p. 3), regarding the objection on the choice of process error 
distribution. 
 

I object to this choice of error term eu .  It is biased positive and 
skewed to allow larger increases than declines both of which have 
significant consequences when the lower 5th percentile of a 
distribution is used as a criterion for a safe harvest.  It does have 
some convenient mathematical properties but these are of limited 
value when compared to the effort required to describe it and the 
caveats required to interpret the results.  There are a variety of 
simple options that are easy to describe and give results that can be 
interpreted directly.   
 
Examples: 
1) replace eu with a binomial draw (p(1)=0.95, p(0.80)=0.05) this 
gives a deterministic growth with a 1 in 20 chance of a 20% decline 
resulting in an expected maximum annual per capita increase of 
Rmax=0.01.  This model will not exceed Rmax in any runs and models 
a process of concern to managers.   
 
 
2) discard eu and replace  in the projection with 
 
 
 
  
 

where U(-a,+a) is a  
 
random draw from a uniform distribution between -a and +a.  This 
can be drawn every year or for 5 or 10 or 20 year blocks to recreate 
periods of good and bad environmental conditions. This gives an 
expected maximum annual per capita increase of Rmax and allows a 
constant range of variation through out.  This model will not exceed 
Rmax +a in any runs. Could use a=0.01, 0.02, etc to provide a range 
of variabilities. 
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3) Replace U(-a,+a) with a Beta distribution scaled to fit the preferred 
range of variation with parameters selected for the chosen mean and 
variance.  This can be set so that the maximum annual increase is 
not greater than 6% and yet significant declines can occur. 
 
4) combine 1) and 2) or 1) and 3), their effects are independent. 

 
Author’s response:  (also applies to other sections of the review where the same 
objection is presented.)  The main objection to the analysis refers to the 
assumption about the distribution of the process error. In principle, I share his 
concerns and already have included in the discussion the downside of the 
approach. However, from the first time he presented his opinion about this issue, 
he hasn’t provided yet with evidence to support his claim that natural variability in 
the bowhead whale is not properly represented by log-normal error. As I said in the 
first reply to the objection, there’s virtually no useful information to determine the 
magnitude of fluctuation in whale populations. The gray whale data which would be 
the most promising to get some insights about natural fluctuations turns out to be 
difficult to use to such purpose (will get back to this further down).  
 
He suggests looking at papers such as Breiwick et al. (no year or any further 
reference on this or any other paper), but I was unable to find such paper. There 
are other papers where Breiwick coauthors analyses on the gray whale abundance 
series. Some have already been referred to in the report, but they mostly focus on 
improvements to reduce biases in the estimates of abundance and their variance. 
He says that the papers he recommends “include attempts to tease apart the 
effects of measurement and process error”. My literature review includes the 
following papers: Buckland and Breiwick (2002); Butterworth et al. (2002); Gerber 
et al. (1999); Gerber et al. (2000); Hobbs et al. (2004); Norris (2002); Punt et al. 
(2004); Punt and Butterworth (2002); Rough et al. (2005); Shelden et al. (2004); 
Wade (2002); Witting (2003). 
 
Out of the reviewed papers, Gerber’s don’t address in any way the problem of 
confounding errors in the time series nor any attempt to separate them. Wade 
(2002) notes that “the mechanism that causes process error is unknown and is not 
explicitly modeled here”. However, he introduced an additional error term to 
include unaccounted observation error and concluded that “an additional variance 
term should be included in the population dynamics models fitted to the gray whale 
abundance data. In other words, it is clear that not all of the variance associated 
with the abundance estimate has been included in previous estimates”.   
 
Of all examined papers, only Punt and Butterworth (2002) used a model that 
explicitly included specifications of process error and explore the behavior of 
different parameters to alternative error levels. In spite of this attempt, it is still 
difficult to know to what extent abundance may deviate from an expected 
deterministic trajectory and their work only looked at the general behavior of 
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parameters such as MSYR, the average trend (their “slope” parameter) and others. 
Results of the analysis in that paper lead to two conclusions relevant to our 
discussion. First, for the most part, parameter estimates were insensitive to 
alternative choices of increasing values of process error and those that showed 
some response were considered only “a little less optimistic” but there is no 
indication that fluctuations in the abundance could be of the magnitude claimed. 
Their second conclusion relevant to our concerns was that their results indicate 
that “process error effects alone are not sufficient to resolve the discrepancy 
between the historical catches and the trend in the abundance estimates”. 
Furthermore, the authors add that the results “confirm that the inclusion of the term 
in equation (7) for additional variance [to the abundance estimates] is justified. 
Wade and DeMaster (1996) showed using Bayesian factors that models that 
included the possibility of additional variance provided more satisfactory fits to the 
abundance data”. In other words, even in the case where an extraordinarily good 
data set is available, it has been impossible to determine the magnitude of the 
acting process error, and the variability in the abundance estimates is most likely 
confounded with still unaccounted observation error.  
 
I understand that Hobbs et al. (2004) and Rough et al. (2005) included in their 
analyses improvements in the estimates of abundance and their variances, but 
they don’t specify to what extent such improvements match the additional variance 
that has been deemed necessary in models to better explained the abundance and 
catch data. 
 
The choice of log-normal process error is a common practice for population trends 
in general (Hilborn and Mangel, 1997) and other components of marine mammal 
population dynamics (Punt and Butterworth, 2002). I understand that use of any 
particular form of error distribution on different elements of a population model can 
lead to different population behavior and agree that log-normal error distribution 
can be skewed, however, such considerations don’t fully justify rejecting the 
choice. Observe that in the report’s figure 6 the plots of deviations of the annual 
growth from the deterministic projection are almost symmetrical. I believe that the 
concerns however, are not so much about the symmetry of the deviations but as to 
the possibility that annual changes could be highly negative. Throughout the 
reviewed literature, the only discussion about observed decline in the estimated 
abundance refers to the cases where the population is approaching K. For 
example, Rough et al. (2005) discuss the possibility that the decline in the last 
abundance estimates can be explained by a population approaching carrying 
capacity. However, there’s no discussion as to what extent the actual population 
response may still be confounded by yet unaccounted observation errors. 
Moreover, Shelden et al. (2004) are the only authors that provide some insights 
about how such density dependent mechanisms may be acting on the gray whale 
by reporting increasing numbers of calves being born outside the traditional 
breeding grounds in Baja California, Mexico. The authors highlight the relevance 
that such population behavior change may have on calf survivorship as a 
mechanism of density regulation. There’s very little information as to what other 



 

 32  

processes may have affected the population while well below K. Shelden et al. 
(2004) include a discussion on the potential effects of environmental conditions on 
different elements of the population. They point out to the shift that occurred in 
1977 that led to the appearance of calf carcasses along the migratory route. This 
event coincides with a decline of about 25% in the estimated abundance in 1978 
but is followed by an increase of almost the same magnitude the following year, an 
increment that seems to be biologically implausible. Additionally, Shelden et al. 
(2004) indicate that the general behavior of the whales also changed with 
increased dispersion and changes in the timing of migration, factors that may affect 
the estimated abundance. Therefore, the hypothesis of increased observation error 
due to factors such as changes in the population behavior appears to be more 
useful to interpret the trends in those years than a real decline and increase in 
three consecutive years. 
 
In conclusion, although the suggestion of a different error distribution may have 
some potential, switching to any of his recommendations now doesn’t appear to 
have solid justification to describe natural population variability in the bowhead 
whale (e.g. the claim that “declines in excess of 10% are entirely plausible”) and 
can be equally problematic to interpret simulation results. If he has information that 
goes beyond the referred papers, it would be more useful to present it properly to 
aid in the discussion. 
 
As for the current contents of the report regarding this issue, I admit overlooking 
the Punt and Butterworth (2002) and Wade (2002) discussions about the need to 
include additional variance terms while fitting population models to the abundance 
data, which supports the argument that observation and process errors can be 
confounded making difficult to interpret the level of actual fluctuation attributed only 
to natural effects. I’ll include them in the report together with Shelden et al. (2004) 
to support the proposition that large fluctuations when the gray whale population 
was well below K are not easily identifiable. 
 
Criticism or comment (p. 3), regarding the use of the word “rate” to refer to Rmax. 
 

Rmax =  The discrete-time intrinsic rate of deterministic maximum 
annual per capita increase, similar to (r-1), the maximum growth 
rate of a population the continuous parameter.  Note: In the 
standard vocabulary of mathematical modeling, this is not a 
rate. The term rate is used for growth parameters in a 
continuous time model not a discrete time model the 
terminology should be corrected throughout the paper. 

 
Author’s response:  I don’t object to the recommendation, but do suggest that a 
paper be written to change the widespread practice of using the word “rate” to 
define Rmax. The precision in the definition of Rmax however doesn’t invalidate the 
statement that it is equivalent to its continuous counterpart. 
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Criticism or comment (p. 3), regarding adding N(0,1) to the term xt . 
 

xt  = A random number drawn from a standard normal distribution, 
N(0,1). 
 

Author’s response:  Addition of N(0,1) makes the phrase redundant. By definition a 
standard normal distribution is N(0,1). 
 
Criticism or comment (p. 5), regarding correlation in Nt and rt. Quoted original text 
with suggested text and comments shown in bold. 
 

When this lognormal process error is applied to the logistic model, it 
is important to note first that the error is applied to the whole 
population and not explicitly to the parameter of growth Rmax. This 
means that if environmental conditions are appropriate, subsequent 
states of the population (e.g. Nt, Nt+1) may follow each other to 
conform some trend for a period of time. However, because ln(Nt+1 / 
Nt) is the annual growth rate rt, it follows that the population growth is 
autocorrelated in the same way as the abundance (Comment: not 
true, rt  can be uncorrelated and Nt will still be correlated). Recall 
also that Rmax = maximum expected value of (Nt+1 / Nt) – (1 +bias in 
lognormal process error) which is an approximation of ln(Nt+1 / 
Nt). Observe now in Fig 2 the plots of ln(Nt+1 / Nt) vs. time (with K = 
12,300, Rmax = 0.04 and �  = 4.2).  

 
Author’s response:  I don’t see how can rt be uncorrelated if Nt is correlated when rt 
= ln(Nt+1/Nt). 
 
Criticism or comment (p. 5), regarding the discussion to select parameters of 
process error.  Quoted original text with comments shown in bold. 
 

A better description of the behavior of the population model under 
different levels of process error an autocorrelation was developed 
running a series of simulation trials. In these simulations, a 
population was projected with the parameters of dynamics K = 
12,300, Rmax = 0.04 and � = 4.2. The initial population size was set to 
500 to observe the response from severely depleted levels and was 
projected for 100 years. Each projection with a single combination of 
σprocess and ρ was repeated 5000 times. Bounds of -0.1 to 0.1 were 
set to the annual growth rate and if exceeded the projection was 
discarded.  Note: This is a condition on the error term of the model 
and should be included with the model description above.  Also 
sustained growth in excess of 6% is impossible based on our current 
knowledge of bowhead biology but declines in excess of 10% are 
entirely plausible. These bounds allow a considerable margin of 
fluctuation in the growth rate but don’t allow implausible (although not 
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impossible) growth levels (Comment: the discussion of possible 
and plausible values should be in the parameter section.  All of 
this discussion and demonstration of simulation results is 
useful to provide examples to none modelers, but should not be 
used to tune the model.  Given the model description above it is 
quite simple to calculate directly the likelihood of implausible 
and impossible values, which should be the basis for tuning the 
model). 

 
Author’s response:  I think that the comment is a matter of preferences and 
therefore I choose to leave it as it is. 
 
Criticism or comment (p. 6), regarding where density dependent effects start to act. 
Quoted text with suggested text and comments shown in bold. 
 

Each projection was divided in three sections. The first section went 
from the initial population size of 500 to the inflection point of the 
deterministic population curve at MNPL where density dependent 
effects start to act (Not true! density dependence acts throughout 
the range of N, NMPL is the point where the decline in 
population annual increase resulting from increasing density 
dependence of adding one individual matches the increase in 
the annual increase resulting from the addition of that 
individual). 

 
Author’s response:  I agree that density dependence acts throughout the whole 
population trajectory, I meant to say that MNPL is the point where density 
dependent effects start to cause a decline in productivity… will modify the text 
accordingly.  
 
Criticism or comment (p. 12), regarding the paragraph beginning with “After the 
first report proposed the use of a component of process error in the model…”. 
 

The paragraph is bad science and should be re written or removed.  
Much of the variation that is discussed is measurement error not 
process error. There are several good papers reviewing this time 
series Breiwick et al., Wade et al., Gerber et al. come to mind (and 
I’m sure that there are others). These include attempts to tease apart 
the effects of measurement and process error. Carlos should review 
these before launching into his own analysis.  Rather than discussing 
each data point separately I would like to see him fit his model to the 
data so that we get some fitted values from real data for σand ρ. 

 
Author’s response:  I certainly missed the inclusion of a couple of papers that 
support the idea put forward, “much of the variation that is discussed is 
measurement error and not process error”. That is exactly the point, it is very 



 

 35  

difficult to separate the two errors to determine what the magnitude of natural 
variability is and therefore tune the model accordingly (see discussion above). In 
practice, the papers that support the proposition that there’s more observation 
error than reported and the difficulties to separate the effect of the two errors only 
add to what is observable in the data series and I don’t see anything wrong with 
observing what’s conspicuous. The suggestion to fit the model to the data may be 
tempting, however, such thing isn’t possible given the constraints in the Canadian 
Arctic bowhead whale data. If the necessary data were available, a full parameter 
estimation would have been done instead of a simulation. Finally, as discussed 
above, I understand and even share to some extent the concerns about the choice 
of process error distribution, but the preference for other distributions is not 
supported by data or any other verifiable piece of information. I think it would be 
more productive to provide either the data or the proper references to pertinent 
papers to support a claim or proposition. 
 
Criticism or comment (p. 18), regarding the effect of the shape parameter on 
growth. Quoted original text with comment shown in bold. 
 

For one single growth rate, the population increases faster with larger 
values of ψ  but the difference in the increase rate is smaller between 
larger ψ values (Not True! For any given Rmax the per capita 
annual increase in the deterministic model is close to Rmax for 
small values of Rmax.  For larger values of ψ, the per capita 
annual increase remains close to Rmax through a larger range of 
N before dropping to zero at N=K). 

 
Author’s response:  When he says “Not True! For any given Rmax the per capita 
annual increase in the deterministic model is close to Rmax for small values of Rmax” 
I’m not sure what he wants to say here. My guess is that he made a mistake and 
typed Rmax at the end of his sentence when he meant Nt… but then, although 
correct, his comment is irrelevant to the statement under scrutiny. He adds, “For 
larger values of �the per capita annual increase remains close to Rmax through a 
larger range of N before dropping to zero at N=K)”. This is actually not only correct 
but a confirmation of the statement he claims as untrue. 
 
Criticism or comment, regarding assumptions on σ and ρ. 
 
Author’s response:  I’m adding a paragraph at the end of the results-discussion 
section to warn that results are only valid under the choice of assumed parameter 
values and that increasing process error may certainly lead to different results. 
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