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ABSTRACT 

Ordinary kriging (OK) has long been used to provide resource distribution maps 

and abundance indices for snow crab in the southern Gulf of St. Lawrence. To 

counterbalance biases along the margins of the study areas, the data set was 

supplemented with null data values around the study area, called pseudo-zeroes (OKpz), 

but issues of subjectivity and estimation bias were again raised. An alternative method, 

kriging with external drift (KED) using depth as a predictor of local density, is proposed. 

All three methods are compared. OKpz is found to be overly biased with respect to OK 

and KED. KED is shown to provide results intermediate to OK and OKpz and to have the 

desired spatial properties. A complete description of all steps of the geostatistical 

analyses are provided, including variogram estimation, kriging and all relevant 

methodological aspects. 

 

RÉSUMÉ 

 
Le krigeage ordinaire (KO) est utilisé depuis longtemps pour founir des cartes de 

distribution et des indices d’abondance du crabe des neiges dans le sud du Golfe du 

Saint-Laurent. Afin de corriger des biais positifs en bordure de l’aire d’étude, l’ensemble 

de données usuel a été complémenté par un ensemble de données nulles entourant l’aire 

d’étude, appelées pseudo-zéros (KOpz). Cependant, certains ont questionné la subjectivité 

de ces valeurs et souligné la possibilité de biais. Une méthode alternative, nommé 

krigeage avec dérive externe (KDE), incorporant la profondeur de l’eau pour prédire la 

densité locale, est proposée. Les trois méthodes sont comparées. On démontre que KOpz 

est biaisé par rapport au KO et KDE. Avec le KDE, on obtient des résultats qui sont 

intermédiaires à ceux KO et KOpz, et présentant les propriétés spatiales désirées. Toutes 

les étapes de l’analyse géostatique sont explicitement décrites, incluant l’estimation du 

variogramme, le krigeage et tous les aspects méthodologiques pertinents.
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1.0 INTRODUCTION 

 
Geostatistical analyses of snow crab trawl survey data have been used for 

estimating commercial snow crab (Chionoecetes opilio) abundance indices and mapping 

its distribution in the southern Gulf of St. Lawrence (sGSL) (Conan et al. 1988; Moriyasu 

et al. 1998) annually since 1988. This method models and applies the spatial correlation 

between data points in an effort to provide more precise estimates of abundance and 

distribution.  

Ideally, the region under study is a well-defined area overlaid by an appropriate 

sampling design. However, in practice such factors as bottom topography, water depth 

and suitable habitat have all been used to define the boundaries of the study area and, to a 

lesser extent, the particular locations of sampling stations within the study area. Given the 

considerable cost of sampling, marginal sampling sites where no crab were expected to 

be present were generally excluded from the sampling design in favour of having more 

sites within the study region. This sampling bias results in a positive predictive bias along 

the margins of the study area and also resulted in an increased in predictive variance of 

local abundance estimates. This and other problems relating to estimation along marginal 

areas are collectively referred to as edge-effects in the geostatistical literature. 

A number of methods have been used to counteract these edge-effects, one of the 

simplest being to place virtual sampling stations with zero-point values, colloquially 

called ‘pseudo-zeroes’, along the margins where the assumption of nil densities of crab is 

thought to be reasonable. However, depending on the properties of geostatistical model 

being used, pseudo-zeroes may have too large an influence in regions of the study area 

which are dominated by their margins, such as narrow straits or bays (DFO, 2006). This 

issue was raised by industry representatives during the Regional Assessment Process 

(RAP) in 2005 and formally discussed during a DFO-hosted workshop (DFO, 2006). As 

an alternative solution, we propose a modification of the currently used geostatistical 

model by incorporating a secondary variable, namely water depth, into the analysis. This 

method is called kriging with external drift (KED). 
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The goal of this paper is to compare the performance of KED with that of two 

previously used methods: ordinary kriging (OK) and ordinary kriging with inclusion of 

pseudo-zeroes (OKpz) in the analysis. Each method is applied to two areas, the first 

spanning a substantial portion of the southern Gulf of St. Lawrence, and the second a 

smaller area dominated by its coastal margins. Point density data from the 1988-2005 

trawl surveys will be used as part of an overall comparative analysis while data from the 

2003 survey year will be the focus of a more detailed analysis. This paper will also 

provide for the first time, a detailed description of all analytical steps used in the 

estimation of southern Gulf snow crab abundance indices and resource distribution. 

2.0. MATERIALS AND METHODS 

2.1. DATA 

The sGSL snow crab bottom trawl survey has been performed annually from mid-

July to September since 1988, after most of the fishery has taken place. Due to financial 

limitations, only a limited survey was performed in 1996. The number of sample stations 

has increased from 155 in 1988 to over 300 stations in 2005, along with the extent of the 

study area. The study area was stratified as 10 by 10 minute regular grids and a number 

of stations (usually 1 or 2) were chosen within each cell. At each station a Nephrops-type 

bottom trawl was towed for ~5 minutes at a speed of ~2 knots. Trawl net behavior was 

monitored using either a Scanmar® (1988-1998) or Netmind® (1999-present) hydro-

acoustic sensors relaying information in real-time onto an on-board computer. Local 

point density estimates (number of crab per square kilometer) are estimated by dividing 

the number of crab of a target category by the swept area as estimated from the trawl 

acoustic sensor data. The commercial category, defined as hard-shelled males having a 

carapace width larger than 95 millimeters, was used in the following analyses. Nearly all 

tows are found at depths ranging from 30 to 170 meters with the larger proportion being 

concentrated between 50 and 85 meters. 

In addition to the snow crab survey data, an accessory data set, gathered on the 

sGSL September multi-species bottom trawl survey 2000-2005 (Hurlbut & Clay 1990; 
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Benoit et al. 2003), was used to illustrate the empirical relationship between snow crab 

abundance and depth. As the size and shell hardness of snow crab were not recorded 

throughout the time series, the total number of snow crab was used. Most tows of the 

sGSL September multi-species bottom trawl survey are found within the 15 to 150 meter 

range with the majority falling between 20 and 80 meters, thus allowing for better 

characterization of the depth-abundance relationship at shallower depths than the sGSL 

snow crab survey. This data set was not used in any geostatistical analysis. 

2.2. STUDY AREA 

The performance of three kriging methods (OK, OKpz and KED) was evaluated in 

two areas: the snow crab area 12 fishing area which spans a substantial portion of the 

southern Gulf, and sector 1, a portion of area 12 which was highlighted as an area being 

particularly susceptible to edge-effects (Fig. 1).  

2.3. MODEL 

A basic geostatistical model assumes the existence of a covariance function which 

describes the relationship between random variables in a defined space. The term kriging 

usually refers to the estimation of the value of a target random variable at an unsampled 

location. This kriged estimate is a minimum error-variance unbiased estimator (MVUE), 

obtained as a linear combination of surrounding samples, weighted by the covariance 

function. The covariance function is intimately related to the theoretical variogram, 

which rather models the semivariance of the difference between pairs of random 

variables as a function of the distance which separates them. We will now provide a more 

formal definition of the geostatistical model to be applied. 

2.3.1. Variogram model 

Let x  and x′  be two arbitrary sample locations within a defined study region, 

separated by a distance xxh ′−= , usually taken to be the Euclidean metric. We suppose 

that )(xZ  and )(xZ ′  are random functions of the locations x  and x′  which follow the 

following assumptions: 
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(1.1)     [ ] [ ] μ=′= )()( xZExZE   

(1.2)               [ ] ( )hxZxZVar γ2)()( =−′   

Assumption (1.1) states that the expected value of the random functions )(xZ  and )(xZ ′   

within the study region are everywhere equal and (1.2) states that the variance of the 

difference between  )(xZ  and )(xZ ′  is strictly a function of their separation distance h , 

also referred to as the lag distance. When ( )hγ  is bounded, the only case considered in 

this study, )(xZ  is said to follow a second-order stationary process, referring to the fact 

that both the mean and covariance between variables do not depend on their specific 

location, but only their lag distance. When ( )hγ  is unbounded, )(xZ  is said to be 

intrinsic. The function ( )hγ  is called a variogram function and is usually formulated as 

an increasing function of h , expressing our intuition that locations which are in 

proximity to each other in space should more closely resemble each other (their 

difference has a smaller variance) than areas which are farther apart. Note that ( )hγ  is in 

fact half the variance in (1.2) and thus actually models the semivariance rather than the 

variance. 

The form of the variogram model used in the following analyses is given by  

(2)    ( )

⎪
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h
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,
22
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3

γ , 

where 0≥a , 0>b  and 0≥c . This model is called a spherical variogram model in the 

literature (Fig. 2), though other models are commonly used such as the exponential or 

Gaussian models (Goovaerts, 1997). Its individual parameters relate to particular spatial 

features of the model: a  is called the nugget value, representing the residual variance at 

each location since ( ) ah
h

=
+→
γ

0
lim , often heuristically interpreted as a combination of 

micro-scale spatial variation and measurement error; b  is called the range of the 

variogram model and relates to correlation length of the spatial model; and the sum ca +  

is called the sill of the variogram which is the maximum semivariance attained for all 
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bh > ; it is also equal to ( )[ ]xZVar . If 0=c , then the variogram is a constant function of 

distance and there is no spatial correlation between the data. Under a Gaussian 

assumption, this situation corresponds to the independence hypothesis required by most 

standard statistical models.  

The theoretical covariance between data at different locations, expressed by the 

covariance function ( )hC , is related to the variogram model by the expression 

( ) ( ) ( )hCCh −= 0γ . 

2.3.2. Empirical semivariogram and model fitting  

Once a variogram model has been selected, its parameters must be estimated from 

the data. Let the data be represented by the pair ( )( )ii xZx ,  for ni ,,1K=  where the ix ’s 

are the sample locations and ( )ixZ  are the observed values of the spatial process at each 

location. As an estimator of the variogram, Matheron (1962) defined the empirical 

semivariogram ( )heγ  as 

(3)   ( ) ( ) ( ) ( )[ ]∑
≈

−=
n

hhml
jie

lm

xZxZ
hN

h
|),(

2

2
1γ  

where ( )hN  is the number of data pairs within a specified range, usually taken to be 

regularly spaced lag distance intervals, labelled as ih  for ki ,,1K=  where k  is the 

number of lags. In this paper, lag intervals were set at regular 3-kilometre intervals for 

k=25 lags for all analyses, for a maximum distance of 75 kilometres. The empirical 

semivariogram is a useful tool for exploring the spatial autocorrelation between the data, 

though some key points, most notably the correlation between the binned semivariances, 

must be kept in mind when interpreting or fitting the data (Diggle et al. 2003).  

2.3.3. Model fitting and parameter estimation 

Parameters for the variogram model may be estimated using a number of 

statistical methods, such as maximum likelihood, though in the geostatistical literature, 

the variogram is generally fitted according to the empirical variogram via the method of 
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least-squares. Following this approach, the objective function to be minimized, written as 

a function of the model parameters is 

(4)   ( ) ( ) ( ) ( ) ( )[ ]∑
=

−=
k

i
ieiii hcbahhghNcbaS

1

2,,|,, γγ  

where ih  represents the average distance in lag distance bin i , k is the number of bins, 

( )ihg  is weight function decreasing with distance, here chosen as ( ) 2
1
ihihg =  and ( )ihN  is 

the number of data pairs in the ith lag distance interval. The goal is to lend more weight to 

those variogram values which are estimated with many data pairs separated by smaller 

distances, given that these are the most influential values used in the kriging step. 

It is often observed that variograms fitted to homologous data, say a time series 

over the same study area, show considerable variation in their parameter estimates. This 

variation is due to two factors. The first stems from the fact that the spatial relationship 

between variables may change from data set to data set and thus differences in the fitted 

variograms would appropriately reflect actual changes in the spatial relationship. The 

second factor, more problematic from an inference point of view, is the fact that 

simulation, maximum likelihood and Bayesian-based studies have shown that the 

parameters within the variogram model are often highly correlated, implying that many 

different combinations of parameters may yield similar fits (Diggle & Ribeiro, 2007). 

This implies that small changes in the spatial characteristics of the data may have a large 

influence on the resulting variogram. Furthermore, these variogram differences, while not 

necessarily entailing large changes in the goodness of fit of the model, may visibly alter 

the character of the interpolation maps which are produced.  

In order to counterbalance this effect, each variogram for a given year was 

averaged over a three-year period in the following manner. The empirical variograms 
( ) ( )hj
eγ  were first calculated for each year j for each lag intervals. The resulting 

variograms ( ) ( )hj
eγ  were then standardized by dividing the semivariance by the sample 

variance for each year j. The standardized semivariances were then averaged for year j-2, 

j-1 and j. The resulting averaged standardized empirical variogram was then scaled 

according to the sample variance for year j. When fitting this averaged empirical 
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variogram, the total numbers of data pairs in each lag interval for the target year j were 

used as weights.  

2.3.4. Ordinary kriging (OK) 

Once a variogram model is defined, one may use it to find the expected value of 

the variable of interest at an unsampled location as a linear combination of the values 

surrounding it, a process referred to as kriging, named after D.G. Krige (1951) who laid 

some of the foundations of geostatistics while working in the South African mining 

industry.  

We suppose that the observed random variable may be decomposed, as follows:  

( )xWxZ +=α)( , 

where α  is a constant and W(x) is a zero-mean second-order stationary process (Eqns 1.1 

and 1.2) corresponding to the correlated residual structure. The observed variables )(xZ  

may be thought of as the response variable in a regression model with mean α  and 

correlated residuals ( )xW . 

The goal is to estimate the value of )(xZ  at an unsampled location x . Under the 

assumptions outlined in the above model, one may express )(xZ  as a linear combination 

of the observed data values. This kriged estimate may be written as 

(5)    ( ) ( )∑
=

=
n

i
ii xZxZ

1
λ , with 1

1
=∑

=

n

i
iλ  

where the iλ s are called kriging weights, calculated by solving the following 

( ) ( )11 +×+ nn  linear system, given in matrix form: 

(6)     ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
10

x
T

kλ
1

1
μ

K
, 

where K  is the nn×  matrix data covariance matrix, equal to the covariance matrix of 

the residual matrix ( )xW , whose elements are defined according to the covariance 

function ( )jiij xxCK −=  for nji ,,1, K= ; 1 is a n -element vector of ones, 
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( )Tnλλ ,,K1λ =  is the vector of kriging weights to be estimated; μ  is the Lagrange 

multiplier and xk  is an n -element covariance vector between the n data and the point x , 

again modeled by the covariance function. The kriging variance at location x  is given by 

(7)    ( ) ( ) ( ) ( )∑
=

−−−=
n

i
iiOK xxxCCx

1

2 0 μλσ . 

To obtain abundance indices within a specified area, one may extend the kriged 

estimate beyond a point estimate to that over an area (usually a specified polygon). For 

example if the )(xZ  are observed densities at specific locations, then the total abundance 

AT  within an area A is given by the integral 

[ ] ( )∫=
A

A dxxZTE  

and its variance is given by:  

[ ] ( )∫ ∫ ′′−=
A A

A xdxdxxCovTVar . 

Generally, spatial predictions are calculated over a regular grid and plotted, 

resulting in a kriged map. By default, a 100x100-point grid was used. 

2.3.5. Ordinary kriging with pseudo-zeroes (OKpz) 

The ordinary kriging algorithm in the previous section was also applied to an 

extended version of the data set, comprised of the original data set having n observed 

locations and data values ( )( )ii xZx ,  for ni ,,1K=  plus a set of k additional locations 

with null density values, called pseudo-zeroes, written symbolically as ( )( )0, =′′ ++ jnjn xZx  

for kj ,,1K= . These additional locations were placed at approximately regular intervals 

just beyond the boundary of the study area (Fig. 3). The variogram was fit using only 

observed data, while the ordinary kriging itself was performed using the extended data 

set. 
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2.3.6. Kriging with an external drift (KED) 

Rather than supplement the data with zero values, kriging with external drift 

(KED) seeks to compensate for the scarcity of samples along the edges of the study area 

by incorporating secondary information to improve predictions in these areas. KED 

assumes that, rather than being constant, the mean μ  is a function of location, 

specifically a linear combination of one or more secondary variables called drift functions 

which vary according to location. In the usual form we may write  

( ) ( ) ( )xWxxZ +=α  

where ( ) ( ) ( )xYaxYaax pp+++= K110α , paa ,,0 K  are linear coefficients and 

( ) ( )xYxY p,,1 K  are drift functions and ( )xW  is defined as before. To be useful the drift 

functions either need to be everywhere known or can be easily and precisely interpolated 

throughout the study area. They are also generally smoother than the observed variable 

( )xZ . The KED linear system is given in matrix form as 

(8)     ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
f

k
μ
λ

0F
F x

T

K
 

where F  is a )1( +× pn  matrix of drift function values at each location ix , which 

includes a column of ones if the function ( )xμ  includes an intercept 0a , 0  is a 

)1()1( +×+ pp  matrix of zero values, ( )Tpaa ,,0 K=μ  is the vector of Lagrange 

coefficients and ( ) ( )( )Tp xYxY ,,,1 1 K=f , the value of each drift function at location x  to 

be estimated. 

In this paper we will use depth as a secondary variable, so setting ( )xd  as a drift 

function which represents the depth for any location x , the mean function is equal to 

( ) ( )xdaax 10 +=μ . The coefficients 0a  and 1a  are implicitly estimated along with the 

kriging weights. The last two equations of the kriging system, i.e. fλFT = , ensure that 

the estimate will be unbiased whatever the values of 0a  and 1a .  
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Given that the mean varies as a function of location x , one may ask how well the 

covariance matrix K , also the covariance matrix of the residuals ( )xW , is approximated 

by the variogram model. If one of the slope coefficients 0a  or 1a  is large over the whole 

study area, it will be necessary to find other ways to estimate the variogram model. 

Among the many methods available, cross-validation (see below) may be useful to select 

among candidate variogram models. In our particular case, the correlation between depth 

and the observed density ( )xZ  is generally weak, leading to estimates of  0a  or 1a  which 

are correspondingly small, so the covariance matrix K , as calculated from the fitted 

variogram, can be used as a safe approximation for that of the residual matrix ( )xW . 

Thus an identical variogram was used for all three kriging methods in each given year. 

2.3.7. Depth covariate in KED 

The choice of water depth as a predictor of local snow crab density is less based 

in its direct relevance to local density, than its availability and its correlation with a 

number of important environmental variables, such as bottom temperature, salinity and 

bottom type. These variables may directly or indirectly impact local abundance by 

affecting larval settlement, recruitment, mortality or migration. Unfortunately, recall that 

external drift covariates in KED need to be available at all unsampled locations within the 

study area. Thus while some variables, such as bottom temperature or bottom type are 

locally known or observed locally, they may not be used using the KED method.  

As its name implies, snow crab is an epibenthic species exhibiting a preference 

for cold water temperatures ranging from -1oC to +3oC (Comeau et al., 1991) though 

temperatures up to +7oC are physiologically tolerated and the lethal limit is about +15oC 

(Foyle et al., 1989; Hardy et al. 1994). This narrow range of cold temperatures naturally 

occurs in the sGSL within what is called the cold intermediary layer (CIL), a 

stratification of the water column which occurs during the spring, summer and fall 

seasons. This layer is effectively sandwiched between the warm surface waters and the 

relatively warm deeper waters. Much of the bottom in the sGSL bathes in this CIL, 

making an ideal habitat for snow crab, which is thus bounded away from the shoreline by 

the warm, shallow waters on the south and west (west and south shores of the Gaspé 
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Peninsula, New Brunswick, north shores of Prince Edward Island and eastern shores of 

Cape Breton Island) and to the northeast by the warmer, deep waters of the Laurentian 

Channel.  

The relationship between temperature and water depth, along with the snow 

crab’s preference for cold waters implies a relationship between water depth and local 

density. This was verified empirically by plotting the mean snow crab count per tow for 

the snow crab survey data (data pooled from 1988-2005) as well as the groundfish 

September multi-species survey data set (data pooled from 2000-2005). This latter data 

was used in order to corroborate the trend observed at shallow depths as it sampled 

shallower areas than the snow crab trawl survey. For this and the above mentioned 

reasons, water depth was chosen as a predictor of local density. 

2.3.8. Local data neighbourhoods 

Rather than kriging values at unknown locations by considering the global 

sample, we may both further relax the stationarity assumption (1.1) and reduce 

computation time by considering local neighborhoods of sample points. Thus it is only 

assumed that the mean is constant, or follows a linear function in the KED case, within a 

local neighborhood rather than globally and better predictions are obtained in a manner 

analogous to a series of linear models approximating a complex function. In cases where 

there is no relationship between ( )[ ]xZE  and depth, the KED system will converge 

towards the OK solution. 

The approach that we have adopted here is to use a maximum of 32 nearest 

neighbors for each interpolated point, with a maximum of 8 per quadrant. The latter 

constraint limits the impact that points in a given direction may exert, especially along 

the edges of the study area. Previous testing using cross-validation show that the 

optimum number of local neighbors in our case usually lies between 20 and 40, with 

values within this range showing little quantitative difference. This approach was used 

for all kriging methods compared.  

Because a drift model is implicitly fitted to the data when using KED, the local 

neighborhood must contain a sufficient number of data points to ensure a stable estimate 



 12

of the drift function parameters and avoid degenerate configurations which would lead to 

a singular kriging matrix. For instance, if all points in a given local neighborhood had the 

same depth, then the two columns of F  would be proportional to each other, leading to a 

singular kriging matrix (i.e. with zero determinant). 

2.4. MODEL EVALUATION 

The performance of each kriging method, either ordinary kriging with pseudo-

zeroes (OKpz) or without (OK), or kriging with external drift (KED), were compared each 

other in a number of ways. Distribution maps, corresponding to predicted kriged density 

estimates over the sGSL study area, were plotted for each method using the 2003 

commercial male trawl survey data set. The relative performance of each kriging method 

was evaluated using every pairwise combination (i.e. OKpz-OK, KED-OK and KED- 

OKpz), by spatial differencing and identifying areas where high discrepancies occurred. 

Spatial estimates were also compared on bivariate plots is order to identify global 

systematic differences. Pairwise predictive differences were plotted as a function of water 

depth to illustrate the role which depth played in the estimated values of each method. 

Kriged abundance estimates for area 12 from 1988-2005 were plotted for each kriging 

method to show temporal trends. 

The bias and precision of spatial predictive estimates from each kriging method 

was evaluated using ‘leave-one-out’ cross-validation (Isaaks and Srivastava, 1989), also 

called the jackknife in the statistical literature (Efron, 1979). This method, in the context 

of geostatistical predictive power, is applied by removing each sample in turn, say ( )ixZ , 

and estimating its expected value ( )ixZ *  at that location using the given kriging method. 

Intuitively, if the estimated values compare favourably, then the predictive ability of the 

method being tested is deemed acceptable. We will use two statistics based on the bias 

and its variability to compare each kriging method. The mean cross-validated bias is 

defined as  

(9)     ( ) ( )∑
=

−=
n

i
ii xZxZ

n
B

1

*1  

while the mean absolute error will be a robust measure of the scale of the errors 
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(10)     ( ) ( )∑
=

−=
n

i
ii xZxZ

n
E

1

*1  

The B  and E  summary statistics were generated for the two reference areas, Area 12 

and its component sector 1 (Fig. 1) for the time period 1988-2005 as well as for 2003 in 

particular.  

 Cross validation is a general statistical method which may be used for evaluating 

other aspects of a geostatistical model, such as the adequacy of competing variogram 

models, underlying assumptions, structural aspects (Delhomme 1978) such as isotropy or 

anisotropy (Delhomme 1978), and the size of the local neighborhood to be used in 

kriging.  

2.5. SOFTWARE 

All geostatistical analyses were performed using MPOGEOS in a graphical-user 

interface implemented by one of the authors (D. Marcotte) in the MATLAB® interpreter 

language. For OK and OKpz, the program uses the kt3d function from GSLIB, the 

geostatistical software library (Deutsch & Journel, 1992). For KED and all variogram 

computations, the program uses specifically developed MATLAB® functions. 

3.0. RESULTS 

3.1. ABUNDANCE VERSUS DEPTH 

The mean counts per tow of total snow crab versus depth for the snow crab (Fig. 

4) and September multi-species (Fig. 5) surveys show similar trends. Very few crab are 

present at shallow depths and these become progressively more abundant in the 20 m to 

50 m range. The maximum observed mean densities occur in the 70 to 120-meter range 

while the densities slowly taper off at deeper water depths. The September multi-species 

survey has more samples at shallower and deeper water depths than does the snow crab 

survey and confirms that very few snow crab are present at depths shallower than 40 

meters or beyond 200m. The consistency of these observations is supported by the small 

sampling errors. As for the snow crab survey, snow crab counts are shown to slowly taper 
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off in deeper waters, although since the number of samples at these depths is limited and 

the abundance is highly variable, the associated sample errors are correspondingly large. 

3.2. VARIOGRAM 

The averaged empirical variogram and fitted spherical variogram used in the 2003 

analyses are shown in Figure 6. The nugget value was estimated to be nearly zero at 

01013.4 9 ≈⋅= −a , the range parameter 932.9=b km and the sill 610283.9 ⋅=+ ca .  

3.3. KRIGED MAPS 

The kriged density estimates for the 2003 commercial males over the southern 

Gulf are presented in Figure 7 for each of the three kriging methods used. The spatial 

distribution is broadly similar for all three kriging methods, with the main concentrations 

occurring around the Bradelle Bank, an area north of Prince Edward Island, and also off 

the western coast of Cape Breton. The crab concentrations obtained using OK and OKpz 

appear spotty and more disjointed, with many concentrations centered about individual 

sample stations, than those of KED, which seem to be coalesced into larger contiguous 

units. Both OKpz and KED show the desired tapering off to null densities along the 

boundaries of the study area, while in OK, relatively high densities are often extrapolated 

up to the edges of the study area. This effect is especially visible all along the north coast 

of PEI. We note that a large area within the OKpz has consistently lower estimates than 

those of either OK or KED. This is readily apparent in the much reduced area of the 

3000-4000 density contour layer. 

3.4. DIFFERENCE MAPS 

The arithmetic differences for each pairwise combination of the three kriging 

methods are shown in Figure 8. The OKpz-OK difference map shows that the inclusion of 

pseudo-zeroes in the OK method yielded local density estimates which were consistently 

lower than those of OK using only the original data. As expected, the largest differences 

lie near the edges of the study area. However, negative differences are present throughout 

most of the study area, corresponding to the area within which the pseudo-zeroes were 
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included in the 32-point local data neighborhood. A large central portion shows identical 

results (i.e. zero-difference) with OK, its mottled appearance being due to slight 

numerical fluctuations in the algorithms used.  

The KED-OK difference map shows large negative differences along the edges of 

the study area showing that inclusion of depth as a predictor results in consistently lower 

estimates. Many differences are visible within the study area, partially the result of the 

contrast between the spotty character of the OK kriged map and the more unified KED 

map, as well as differences between the predicted local densities based on the depth 

covariate. A similar pattern is apparent in the KED-OKpz difference map, except that the 

KED estimates are shown to be generally larger than those of OKpz, resulting in mainly 

positive differences within the map. 

3.5. BIVARIATE PLOTS 

The kriged estimates over the regular grid which lie within the sGSL study area 

for each pairwise combination of the three kriging methods were plotted in Figure 9. 

Each spatial estimate from one kriging method was plotted versus that of another in a 

bivariate plot. The plot of OKpz versus OK shows that the former estimates are always 

lower than those of the latter. The plot of KED versus OK estimates shows that estimates 

from the two methods are roughly similar, though as observed on the density and 

difference maps, there are many local fluctuations resulting in a fairly diffuse cloud. The 

plot of KED versus OKpz estimates shows that the KED estimates area generally 

consistently larger than those of OKpz. 

Spatial differences between methods are plotted versus the depth at which they 

are estimated. The OKpz-OK differences, as mentioned before, are consistently negative, 

with the largest differences occurring over shallower waters, corresponding to the edge 

effects observed in the density and difference maps. The KED-OK difference plot shows 

that KED estimates area generally lower in shallower waters while the pattern is more 

complicated in deeper waters, although there are discrepancies which are not so easily 

explained in the observed pattern. The KED-OKpz difference plot shows that the larger 

KED estimates primarily occur in shallower waters. We note that there are areas within 
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the differences map, notably the area about the Bradelle Bank, which show marked 

differences for the KED versus either OK or OKpz. The KED locally models the depth-

density relationship while the latter methods exclusively rely on autocorrelation of 

observed data values. 

3.6. CROSS VALIDATION 

Sector 1 and area 12 cross-validation summary statistics for 1988-2005 for sector 

are presented in Table 1. These show that while the mean absolute errors ( E ) are fairly 

similar in all three cases, the cross-validated bias estimates ( B ) for OKpz tend 

substantially towards the negative, while those of OK and KED are very similar. The 

same set of summary statistics, along with kriged abundance and mean density estimates 

are presented in Table 2 for the 2003 data set. For this data, the inclusion of pseudo-

zeroes with respect to the OK scenario resulted in a decrease in the kriged mean density 

of 20.7% for sector 1 and 10.0% for the Area 12 as a whole, while the KED resulted in a 

smaller decrease of 8.1% for sector 1 and 1.9% for Area 12.  

3.7. TIME SERIES 

The time series (1988-2005) of estimated mean abundance indices for each 

kriging method is presented in Figure 11. Differences between the different methods are 

generally small although they vary according to the mean abundance and the number of 

survey data available for each year. In general, the KED estimate is intermediate between 

those of OK and OKpz, but generally nearer to the OK estimate. However, the overall 

trends predicted by each method are very similar. Furthermore, the larger differences 

observed in the earlier half of the time series are likely due in part to the more restricted 

coverage of past surveys with respect to the presently-defined study area, resulting in 

larger estimation errors as well as larger edge effects. We note that as the survey 

expanded within the study area in the later years, the differences between the three 

kriging methods became less pronounced. Differences between variograms (not shown) 

were also observed during the time series. However, the same type of variogram model 
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(spherical isotropic) consistently provided a good fit to experimental variograms. Its 

parameters (the range b, the ratio a/c) were also quite stable. 

4.0 DISCUSSION 

Empirical relationships between snow crab counts and depth in both the snow 

crab and September multi-species surveys support the assumption that local densities 

along the edges were biased in OK. These show that shallow areas have very few snow 

crab and that their frequency increases with depth. These curves also show that the 

frequencies also taper off in deeper waters, corresponding to the Laurentian Channel in 

the southern Gulf. In accordance with these observations KED, which performs local 

regressions of density on depth, also projected low densities along the margins of the 

study area. These projections are lower than those of OK, which are based solely on 

autocorrelations between the data and do not incorporate any secondary information. 

Similarly, pseudo-zeroes were originally added to the ordinary kriging method in 

order to counterbalance perceived overestimations of local density along the sparsely 

sampled edges of the study area. With respect to OK, the degree to which a kriged 

estimate at a given location will be lowered by pseudo-zeroes will depend on the number 

of pseudo-zeroes, their proximity to the estimated location, the size (number of data and 

spatial extent) of the kriging neighborhood, the range b of the variogram and the relative 

importance of the nugget effect (i.e. the scale of the ratio a/c). Moreover, these factors 

may interact. For example, pseudo-zeroes located at a distance less than the range from 

an estimated point will have a significant influence when 1) it is included in the local 

kriging neighborhood and 2) the ratio a/c is large or the ratio a/c is small and the pseudo-

zero is not screened by any true data (i.e. there is no data point lying close to a line 

connecting the pseudo-zero to the estimated point). Higher relative nugget effect yields, 

relatively, more weight to points located far from the estimated point as a high ratio a/c 

diminishes the ‘screening effect’ of kriging (Chilès and Delfiner, 1999). For instance, as 

the 2003 distribution maps have shown for a local neighborhood of 32 points, the 

influence of pseudo-zeroes is felt a fair distance within the study area. Most of these 

issues were not directly addressed when pseudo-zeroes were initially proposed.  
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While OKpz did induce the desired tapering all along the edges of the study area, 

it was shown in the present analyses that the resulting estimates were negatively biased 

with respect to KED, which models the relationship between density and depth explicitly. 

The extent of this relative bias is readily seen in the density and difference maps, the 

bivariate kriged density plots, the cross validation summary statistics tables and the time-

series of kriged abundance estimates for area 12.  

The differences between the three kriging methods are larger for earlier years than 

later ones. Also, the earlier part of the time-series in fact has larger errors, since the 

survey design then covered only a portion of the present study area and fewer data were 

available. We note that as the survey expanded within our study area, the abundance 

estimates from each kriging method become more and more similar, though KED still 

follows the pattern of being intermediate to OK and OKpz.  

KED has been shown to yield values which are intermediate between the assumed 

positive biases of the OK method, both along the margins of the study area as well as the 

resulting mean densities and abundances. OKpz has been shown to yield lower estimates 

than either OK or KED, though strong effects associated with the pseudo-zeroes are 

mainly observed for small areas which are dominated by their margins (e.g. sector 1). 

Comparisons revealed that the adjustments brought about by OKpz were overly 

conservative and not supported by the observed trends of density versus depth seen in 

KED. We believe that KED’s approach of locally modeling of density and depth, 

yielding realistic tapering along the margins of the study area without overcompensating, 

qualifies KED as being the most desirable of the three methods. 
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Table 1: Cross-validation summary statistics for commercial snow crab densities for all 
years 1988-2005. 
 
Area Statistic OK OKpz KED 
Sector 1 Mean observed 2927 2927 2927 
 Bias ( B ) (#/km2) 28.1 -1184 33.1 
 MAE ( E ) (#/km2) 1904 1951 1982 
Area 12 Mean observed 3262 3262 3262 
 Bias ( B ) (#/km2) 6.3 -451.5 -52.9 
 MAE ( E ) (#/km2) 2300 2247 2299 
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Table 2: Kriging and cross-validation summary statistics for 2003 commercial snow 
crab. Kriging standard errors are shown in parentheses. 
 
Area Statistic OK OKpz KED 
Sector 1 Kriged abundance ( 610 ) 8.00 (1.12) 6.33 (1.12) 7.33 (1.12) 
 Kriged density (#/km2) 2308 (323) 1831 (324) 2122 (324) 
 Mean observed 2755 2755 2755 
 Bias ( B ) (#/km2) -567.8 -1327 -577.4 
 MAE ( E ) (#/km2) 1574 1902 1498 
Area 12 Kriged abundance ( 610 ) 105.9 (6.2) 95.3 (6.2) 103.9 (6.2) 
 Kriged density (#/km2) 2823 (165) 2540 (165) 2769 (165) 
 Mean observed 3088 3088 3088 
 Bias ( B ) (#/km2) -144.9 -571.9 -151.8 
 MAE ( E ) (#/km2) 2060 2101 1956 
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Figure 1: Snow crab trawl survey sample distribution and fishing areas in the southern 
Gulf of St. Lawrence for 2003. 
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Figure 2: Sample spherical variogram (solid line) showing the relationship between the 
curve ( )hγ  and its parameters: the nugget value a , the range b  and the sill ca +  (dashed 
lines). 
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Figure 3: Bathymetry contours and location of pseudo-zeroes used in the OKpz analysis. 
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Figure 4: Depth-abundance relationship using total snow crab counts per tow with 95% 
confidence intervals using sGSL snow crab survey data (1988-2005). For clarity, 1.4% of 
tows at depths greater than 200m are omitted. 
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Figure 5: Depth-abundance relationship using total snow crab counts per tow with 95% 
confidence intervals using sGSL September multi-species survey data (2000-2005). For 
clarity, 7.8% of tows at depths greater than 200m are omitted. 
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Figure 6: Averaged empirical (dashed line) and fitted spherical variogram (solid line) for 
2003 commercial male data for the southern Gulf of St. Lawrence. Estimated parameter 
values are 0≈a , 932.9=b  and 610283.9 ⋅=c . The numbers next to the data points refer 
to the number of data pairs for each lag interval. 
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Figure 7: Distribution maps for 2003 commercial snow crab using ordinary kriging (OK), 
OK with pseudo-zeroes (OKpz) and kriging with external drift (KED). 
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Figure 8: Difference maps for predicted densities for commercial snow crab densities for 
each pairwise combination of the three kriging methods using the 2003 trawl survey data. 
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Figure 9: Bivariate plots comparing kriged estimates arising from pairwise combinations 
of the three kriging methods. A regular lattice of locations was overlain over the study 
area for these comparisons. For the whole southern Gulf commercial males 2003. 
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Figure 10: Pairwise differences between kriged estimates from each of the three methods 
versus water depth. A regular lattice of locations was overlain over the study area for 
these comparisons. For the whole southern Gulf commercial males 2003. 
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Figure 11: Time series plot of area 12 abundance estimates of the three kriging methods 
used. 
 


