sccs

Secrétariat canadien de consultation scientifique
Document de recherche 2006/043

Ne pas citer sans
autorisation des auteurs *
G.R. Lilly, E.F. Murphy, B.P. Healey, and J. Brattey

Science Branch
Fisheries and Oceans Canada
P.O. Box 5667

St. John's, NL A1C 5X1

[^0]
TABLE OF CONTENTS / TABLE DES MATIÈRES

ABSTRACT v
RÉSUMÉ vi
1 INTRODUCTION 1
2 THE FISHERY 3
2.1 NOMINAL CATCHES PRIOR TO THE 1992 MORATORIUM 3
2.2 MANAGEMENT ADVICE, TACs AND LANDINGS DURING 1992-2004 3
2.3 MANAGEMENT REGULATIONS AND LANDINGS DURING 2005 4
2.4 BY-CATCH, DISCARDS AND ILLEGAL FISHERIES 5
2.5 SAMPLING OF CATCH IN 2005 6
2.6 CATCH NUMBERS AND WEIGHTS AT AGE 6
3 STAKEHOLDER PERSPECTIVES 7
4 STOCK STRUCTURE 8
5 POPULATION INDICES 9
5.1 BOTTOM-TRAWL SURVEYS 9
5.1.1 Survey design 9
5.1.2 Autumn Bottom-Trawl Surveys 10
5.1.2.1 Autumn abundance and biomass 10
5.1.2.2 Autumn mean catch at age per tow 11
5.1.2.3 Autumn distribution 12
5.1.3 Spring 3L bottom-trawl surveys 12
5.1.3.1 Spring $3 L$ abundance and biomass 12
5.1.3.2 Spring $3 L$ mean catch at age per tow 13
5.1.3.3 Spring 3L distribution 13
5.2 SENTINEL SURVEYS 13
5.2.1 Sentinel catch rates by site and Division 14
5.2.2 Sentinel standardized (modelled) catch per unit effort (CPUE) 14
5.3 HYDROACOUSTIC SURVEY OF SMITH SOUND 17
6 POPULATION BIOLOGY 18
6.1 MATURITY 18
6.2 GROWTH 19
6.3 CONDITION 19
7 STOCK TRENDS 19
7.1 OFFSHORE 20
7.1.1 Spawner stock biomass in the offshore 20
7.1.2 Recruitment in the offshore 20
7.1.3 Mortality in the offshore 21
7.2 INSHORE 22
7.2.1 Exploitation rates from tagging 22
7.2.1.1 Exploitation rates from individual tagging studies 22
7.2.1.2 Exploitation rates and exploitable biomass in specific areas 23
7.2.1.3 Evidence of high natural mortality based on tagging data 23
7.2.2 Sequential population analysis (SPA) 23
7.2.2.1 Very brief history of SPAs for 2J3KL cod 23
7.2.2.2 SPA for resident inshore cod 25
8 CONCLUSIONS AND ADVISE 26
8.1 INSHORE FISHERY AND INSHORE POPULATION GROWTH 26
8.2 INSHORE FISHERY AND OFFSHORE RECOVERY 28
8.3 IMPLICATIONS OF FISHING BAY-BY-BAY 28
8.4 HAWKE CHANNEL CLOSED AREA 29
9 OTHER CONSIDERATIONS 29
9.1 PHYSICAL OCEANOGRAPHY 29
9.2 PREDATORS. 29
9.3 PREY 30
REFERENCES 31
Appendix 1. Objectives for the 2006 regional assessment of 2J3KL cod 146
Appendix 2. Management regulations during 1996-2002 147
Appendix 3. Conservation harvesting plan for winter (blackback) founder in 2005Appendix 4. Studies on predator-prey interactions involving cod in theLabrador-Newfoundland ecosystem154

Abstract

The directed commercial fishery for northern (2J3KL) cod was closed in 1992, reopened for small boats in the inshore alone during 1998-2002, and closed again in 2003. Landings in 2004 and 2005 were mainly from by-catch during winter (blackback) flounder fisheries in summer. Because of differences in the dynamics of offshore and inshore populations of northern cod since the mid-1990s, information is provided for the offshore and inshore separately. Populations in the offshore remain broadly distributed at very low density. The indices of biomass from research bottom-trawl surveys during autumn (2 J 3 KL) and spring (3L only) remain extremely low. The index from autumn surveys is less than 2% of the average level during the 1980s. Recruitment in the offshore has been very low and total mortality has been extremely high since at least the mid-1990s. Few fish survive beyond age 5 . In the inshore, catch rates in sentinel surveys (1995-2005) and commercial fisheries (1998-2002), as well as cod by-catch in fisheries targeted at other species (2004-05), indicate that there have been cod aggregations at various times and places since at least the mid-1990s, particularly in southern 3K and in 3L. Catch-rate indices from linetrawl and gillnet sentinel surveys increased from 1995 to a peak in 1997 and 1998 respectively, declined by the early 2000s, and then increased during recent years. Current estimates are similar to or above average. For the purpose of this assessment, the inshore is subdivided into three areas: 1) a northern area (2J and northern 3 K); 2) a central area (southern 3 K and northern 3L) where most of the resident inshore fish are located; and 3) a southern area (southern 3L) that is, at present, largely dependent on cod that overwinter in inshore and offshore areas of 3Ps, move into southern 3L in the spring-summer and return to 3Ps in the autumn. A sequential population analysis (SPA) was conducted for the resident cod in the inshore central area. SPA estimates indicate that spawner biomass in this area increased from 10,000 t in 1995 to $22,000 \mathrm{t}$ in 1998, declined during 1998-2002 (when there was a commercial fishery) to $7,000 \mathrm{t}$ in 2003, and has subsequently increased to $14,000 t$ by the beginning of 2006. The estimate of age $4+$ biomass at the beginning of 2006 is about $23,000 \mathrm{t}$. Fishing mortality increased from 1998 to a peak of about 35% in 2001 and 2002 and has subsequently declined to relatively low levels. Deterministic projections from 2006 to 2009 were conducted for the inshore central area under three annual catch options and three recruitment assumptions (low, medium, high). Assuming removals of $1,250 \mathrm{t}$ or less, spawner biomass is projected to increase for each recruitment assumption. At a catch option of $2,500 \mathrm{t}$, spawner biomass is projected to decrease if recruitment is low, but to increase otherwise. The inshore northern area appeared to have very low densities of cod up until 2005, when there was a large increase in sentinel survey catch rates. Because it is not known if this increase will persist, it would be prudent to keep catches in this area low. The inshore southern area is primarily dependent on seasonal immigration of fish, the magnitude of which cannot be predicted. Therefore, the effect of removals of various levels cannot be estimated. There is a risk that fishing in the inshore will impede recovery in the offshore, but the level of risk is difficult to quantify at this time. There is no single measure of the biomass of the 2 J 3 KL cod stock as a whole, but current biomass is a very small proportion of the approximately 3 million t (of ages 3 and older) estimated for the early 1960s.

RÉSUMÉ

La pêche commerciale dirigée à la morue du Nord (2J3KL) a été fermée en 1992, rouverte aux petits bateaux côtiers seulement de 1998 à 2002, puis fermée à nouveau en 2003. Les débarquements de 2004 et de 2005 étaient principalement composés des prises accessoires de la pêche à la plie rouge, en été. En raison des différences constatées dans la dynamique des populations des eaux extracôtières et des eaux côtières depuis le milieu des années 1990, les renseignements concernant ces eaux sont présentés séparément. Les populations extracôtières demeurent réparties sur un vaste territoire, mais à très faible densité. Les indices de la biomasse dérivés des relevés de recherche au chalut de fond effectués en automne (2J3KL) et au printemps (3L seulement) demeurent extrêmement faibles. L'indice issu des relevés d'automne se situe à moins de 2% des niveaux moyens enregistrés dans les années 1980. Le recrutement dans les eaux extracôtières a été très faible et la mortalité totale a été très élevée depuis au moins le milieu des années 1990. Peu de poissons dépassent l'âge 5. Dans les eaux côtières, les taux de prises constatés dans les relevés par pêche sentinelle (1995-2005) et les pêches commerciales (19982002), ainsi que les prises accessoires de morue dans le cadre des pêches dirigées vers d'autres espèces (2004-2005) indiquent qu'il y a eu des agrégations de morues à divers moments et endroits depuis au moins le milieu de la décennie 1990, particulièrement dans le sud de 3K et dans 3L. Les indices des taux de prises dérivés des relevés par pêche sentinelle à la palangre et au filet maillant ont grimpé à partir de 1995 pour culminer, respectivement, en 1997 et en 1998, diminuer au début des années 2000, pour ensuite s'élever de nouveau au cours des dernières années. Les estimations actuelles sont semblables ou supérieures à la moyenne. Aux fins de la présente évaluation, les eaux côtières sont subdivisées en trois zones : 1) la zone du nord (2J et nord de $3 \mathrm{~K})$; 2) la zone du centre (sud de 3 K et nord de 3 L), où se trouvent la plupart des poissons résidents des eaux côtières; 3) la zone du sud (sud de 3L), maintenant en grande partie dépendante de la morue qui hiverne dans les eaux côtières et extracôtières de 3Ps, se déplace vers le sud de 3L au printemps et en été, et revient vers 3Ps à l'automne. Une analyse séquentielle de la population (ASP) a été menée sur la morue résidente de la zone côtière du centre. Les estimations établies au moyen de l'ASP indiquaient que la biomasse du stock reproducteur de cette zone était passée de 10000 t en 1995 à 22000 t en 1998, qu'elle avait diminué de 1998 à 2002 (Iorsqu'une pêche commerciale a eu cours) pour s'établir à 7000 t en 2003, puis qu'elle avait par la suite atteint 14000 t au début de 2006. L'estimation de la biomasse des individus d'âge 4+ au début de 2006 est d'environ 23000 t . La mortalité par la pêche s'est accrue à partir de 1998 pour atteindre un sommet d'environ 35% en 2001 et en 2002 et descendre par la suite jusqu'à des niveaux relativement bas. On a établi des projections déterministes pour la zone côtière du centre pour la période s'échelonnant de 2006 à 2009, en utilisant encore une fois trois scénarios d'exploitation annuels et trois hypothèses de recrutement (faible, moyen, élevé). Si l'on suppose des prélèvements de 1250 t ou moins, la biomasse de reproducteurs devrait augmenter selon chaque hypothèse de recrutement. Selon un scénario d'exploitation de 2500 t , on s'attend à ce que la biomasse de reproducteurs diminue si le recrutement est faible, mais à ce qu'elle augmente autrement. La zone côtière du nord semble présenter des densités de morue très faibles jusqu'en 2005, année où l'on a enregistré une importante augmentation des taux de prises dans les relevés par pêche sentinelle. Comme on ne sait pas s'il s'agit d'une augmentation persistante, il serait prudent de maintenir les prises dans cette zone à un faible niveau. La zone côtière du sud dépend principalement de la migration saisonnière des poissons, dont l'ampleur ne peut être prévue. En conséquence, on ne peut évaluer l'effet des divers scénarios de prélèvement. Il est possible que la pêche menée dans les eaux côtières empêche le rétablissement dans les eaux extracôtières, mais ce risque est actuellement difficilement quantifiable. On ne dispose pas d'une mesure de la biomasse totale du stock de morue dans les divisions 2 J 3 KL , mais la biomasse actuelle ne représente qu'une très petite proportion des trois millions de tonnes (âge 3 et plus) estimées au début des années 1960.

1 INTRODUCTION

The northern (2J3KL) stock of Atlantic cod (Gadus morhua) occupies the area from the southern Labrador Shelf to the northern Grand Bank (Fig. 1a-c), where it occurs from the coast to 500-600 m, and occasionally to 900 m , on the upper continental slope. Historically, much of the cod overwintered near the shelf break in 300-500 m from Hamilton Bank in Div. 2J to the Nose of Grand Bank in Div. 3L. At some time in the spring most of these fish moved onto the shelf, and many of them migrated during late spring and summer into the shallow, coastal waters where they fed on capelin (Mallotus villosus) that had approached the coast to spawn (Templeman 1966). The cod then moved back across the shelf during the autumn. Not all cod had this offshore-inshore migration pattern. For example, some cod moved during summer to feeding areas on the plateau of Grand Bank. Others spent the whole year in inshore waters, moving from deep inlets during winter to shallow feeding areas in summer.

The northern cod has been exploited for centuries (Lear and Parsons 1993; Hutchings and Myers 1995; Lear 1998). Annual landings increased through the $18^{\text {th }}$ and $19^{\text {th }}$ centuries to about 300,000 t during the early decades of the $20^{\text {th }}$ century. The early fishery was limited to shallow water. Deep waters ceased to be refugia in the 1950s, and especially in the 1960s, when longliners were introduced to nearshore waters and distant water trawlers from Europe located and exploited dense aggregations of cod overwintering along the shelf break. Total landings escalated from 360,000 tin 1959 to 810,000 t in 1968 (Table 1; Fig. 2), and then plummeted to $140,000 \mathrm{t}$ in 1978. Mathematical reconstruction of the population in later years (e.g. Bishop et al. 1993) indicated that this severe overfishing had caused a decline in biomass (ages 3 and older) from about 3,000,000 t in 1962 to about $500,000 \mathrm{t}$ in 1978 . The landings by distant water fleets declined substantially when Canada declared a 200 mile fishing zone in 1977. With reduced fishing mortality, improved recruitment and an increase in individual growth rate, the population biomass started to rise. Canadian trawlers soon replaced the non-Canadian fleets on the winter fishing grounds, and catches once again rose to above 200,000 t. In 1988-89 it was recognized that the stock size had been considerably overestimated for several years, and that fishing mortality during the 1980s had been higher than intended. Quotas were reduced, but not sufficiently to prevent an increase in fishing mortality. In addition, oceanographic conditions became particularly severe during the early 1990s following two decades of low temperatures (Drinkwater 2002). The survey index declined precipitously in the early 1990s. The stock appeared to be declining rapidly, and in July 1992 Canada declared a moratorium on directed cod fishing. The survey index continued to decline, reaching an extremely low level by 1994. There has been almost no sign of improvement in the offshore during the subsequent decade.

After the stock as a whole collapsed in the early 1990s, it became clear that aggregations of cod could still be found inshore. This engendered much interest in the stock affinities of these inshore fish. Numerous studies have indicated the likelihood of substock structure within the northern cod stock complex (see, for example, overviews by Lear 1986; deYoung and Rose 1993; Smedbol and Wroblewski 2002), and several sources of information support the hypothesis that fish overwintering inshore are functionally distinct from populations in the offshore (reviewed by Lilly et al. 1999). Genetic studies suggest that the northern cod conforms to an isolation-by-distance structure, with cod from more distant locations tending to be more distinct (Beacham et al. 2002). There appear to be differences between the inshore and the offshore, and among various areas of the offshore (Ruzzante et al. 1998; Beacham et al. 2002; but see Carr et al. 1995). Subpopulation structure at the level of individual bays is less strongly supported.

Attention must be drawn to one specific portion of the inshore. Gilbert Bay in southern Labrador ($52^{\circ} 35^{\prime} \mathrm{N} ; 56^{\circ} 00^{\prime} \mathrm{W}$) has been shown to have a resident population of cod (Green and Wroblewski 2000; Morris and Green 2002) that is genetically distinct from other cod in the 2J3KL area (Ruzzante et al. 2000; Beacham et al. 2002). Population biomass has been estimated at less than 70 t (Morris et al. 2003). Gilbert Bay was designated a Marine Protected Area (MPA) in October 2005. Because of its small size, limited distribution, genetic distinctiveness and management under MPA regulations, the Gilbert Bay population is not considered further in the present assessment of 2 J 3 KL cod. No other resident population of cod has yet been identified along the Labrador coast (Morris and Green 2002).

The inshore populations of 3 KL appear to have been more productive than the offshore populations of 2 J3KL since at least the mid-1990s. In 1998 a directed fishery was reopened for small (<65 feet) vessels operating in the inshore, but the inshore populations declined during the next few years, and all directed fishing was closed once again in 2003.

Assessments of the status of 2J3KL cod have been conducted since 1972 (Bishop and Shelton 1997). The basis for the computation of population size had been sequential population analysis (SPA) of the stock as a whole. These analyses became problematic during the early 1990s because of a poor fit between model output and the index of abundance derived from the DFO bottom-trawl surveys. The use of SPA for determining population trend and status was discontinued. There were several attempts to fit whole stock SPAs during the latter half of the 1990s and early 2000s (see overview in Lilly et al. 2003), but the models were considered to be only "illustrative" of the population dynamics, and not sufficiently well estimated to allow the projection of population size. In addition to the poor model fit in the early 1990s, a second problem arose during the mid-1990s when it became clear that the inshore populations were more productive than populations in the offshore. The landings during 1998-2002 came almost entirely from the inshore, and included many fish of ages and sizes beyond those captured in the offshore surveys. It was felt that the offshore bottom-trawl index was not representative of the inshore populations and was not appropriate for tuning a SPA.

Since the late 1990s, information on the status of 2J3KL cod has been presented for the offshore and inshore separately, without losing sight of the severely depleted status of the stock as a whole. Trends and status in the offshore were monitored by DFO research bottom-trawl surveys of the whole of Div. 2 J 3 KL in the autumn and Div. 3L in the spring. Additional information came from hydroacoustic studies conducted in two specific areas (inner Hawke Channel and the portion of the Northeast Newfoundland Shelf south of Funk Island Bank). Trends and status in the inshore were monitored and assessed by sentinel surveys, hydroacoustic surveys in one specific area (Smith Sound), and tagging studies, which provided information on migrations and exploitation rates. The fishery in 1998-2002 provided information on catches and catch rates. Estimates of population size were produced from models that incorporated catches and the tag returns.

The assessment in February 2003 (DFO 2003; Lilly et al. 2003; Rice and Rivard 2003) continued this approach, but also introduced an SPA based on catches and indices from the inshore alone. In April 2003, the stock was closed indefinitely to all directed fishing.

In 2004, the assessment (DFO 2004; Lilly et al. 2004) consisted simply of a review of by-catch landings in 2003 and an appraisal of major indices of stock abundance. These indices, which were analyzed in an age-aggregated form, were the DFO bottom-trawl surveys in the offshore, the sentinel surveys in the inshore, and the hydroacoustic survey of Smith Sound.

In response to demands that the inshore fishery be reopened, the stock was again assessed in detail in March 2005 (DFO 2005; Lilly et al. 2005). This time, the area to which SPA was applied was reduced from the whole of the inshore to a smaller area encompassing southern 3 K and northern 3 L . This SPA was tuned with three indices from the sentinel surveys. The offshore continued to be monitored by the DFO bottom-trawl surveys.

The whole stock area remained closed to directed commercial and recreational fishing in 2005. Demands for an inshore fishery intensified, and another detailed assessment was conducted in April 2006 (DFO 2006a). The present document provides information in support of that assessment. Specific objectives are provided in Appendix 1. To address these objectives, the assessment meeting reviewed data from research bottom-trawl surveys, sentinel surveys (Maddock Parsons and Stead 2006), prerecruit surveys (updated from Gregory et al. 2006), tagging studies, a telephone survey of fish harvesters (updated from Jarvis and Stead 2005), and catches from commercial and recreational fisheries in the inshore during 1995-2005. A sequential population analysis was conducted for a portion of the inshore area following the procedure adopted in 2003 and revised in 2005.

2 THE FISHERY

2.1 NOMINAL CATCHES PRIOR TO THE 1992 MORATORIUM

Landings from this stock increased during the late 1950s and early 1960s and peaked at just over $800,000 \mathrm{t}$ in 1968 (Table 1; Fig. 2). Landings then declined rapidly to a minimum of $139,000 \mathrm{t}$ in 1978, increased to a plateau of approximately $250,000 \mathrm{t}$ in the mid- to late 1980s and then declined very quickly in the early 1990s. The portion of the landings coming from each of the Divisions changed over time. During the 1960s, when the fishery was primarily by non-Canadian fleets (Fig. 2), landings were taken mainly from Div. 2J and 3L (Fig. 3). Div. 3K became prominent in the mid-1970s. Landings from Div. 2J were relatively small in the mid-1980s. Division 3L dominated from the mid-1980s until the moratorium in 1992.

The fixed gear landings (Table 2; Fig. 4) increased from just 41,000 t in 1975 to a peak of $113,000 \mathrm{t}$ in 1982, declined to $74,000 \mathrm{t}$ in 1986, and increased again to a peak of $117,000 \mathrm{t}$ in 1990, just 2 years before declaration of the moratorium. Some of the increase in the late 1980s was due to a resurgence of gillnet landings in southern Div. 2J and trap landings in Div. 3L (Table 2), but much was due to an expansion of the gillnet fishery to the Virgin Rocks and other offshore areas in Div. 3L (Table 3; Fig. 5).

Landings declined to just 61,000 t in 1991. The commercial fishery was closed in July 1992 and only $12,000 \mathrm{t}$ were landed that year.

2.2 MANAGEMENT ADVICE, TACs AND LANDINGS DURING 1992-2004

A summary of management advice, TACs and landings from various sources during the period from just before imposition of the moratorium on commercial fishing in July 1992 to the end of 2002 is provided by Lilly et al. (2003). A summary of management measures during 1996-2002 is provided in Appendix 2.

Note that a new fishing season (April 1 to March 31) was put in place for 2000/2001 and subsequent years. However, only very small by-catches have been reported during the first three months of any year since the mid-1990s, so it is convenient to continue to refer to the fishery year as the calendar year in which the first 9 months of the fishery season occurred (e.g. the 2001-02 fishery season will be referred to simply as 2001).

1993-97

Landings during 1993-97 came from by-catches in fisheries directed at other species, food/recreational fisheries, and DFO-industry sentinel surveys that started in 1995 (Table 2; Fig. 6).

1998-2002
A small index/commercial fishery limited to fixed gear deployed from small (< 65 feet) vessels commenced in 1998. Landings from 1998 to 2002 came from directed cod fisheries, by-catches, sentinel surveys and food/recreational fisheries (Table 2; Fig. 6).

2003
The whole of the 2 J 3 KL area was again closed to directed commercial and recreational fisheries in April 2003.

Reported landings during 2003 were 90 t from the sentinel surveys and approximately 880 t from commercial fisheries, for a total of 970 t (Lilly et al. 2005). Most (780 t) of the commercial catch during 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay, during April. The exact cause of the event
remains uncertain, but it was clearly associated with unusually cold water within the Sound (Colbourne et al. 2003). The cod were collected from the surface of the water by gaff and dipnet. Many of these fish were frozen, whereas others were torpid but still alive. The fish were generally large, with a high proportion in the range $55-85 \mathrm{~cm}$.

NOTE: The landings of cod from Smith Sound in April 2003 are, at the time of writing, still recorded in DFO's statistical data base against the code for handline. It is emphasized that these fish were not caught by handline. They were collected from the surface with either gaff or dipnet. It is also somewhat uncertain whether these fish should be considered commercial landings or natural mortality. A high proportion of the fish were dead when collected from the surface, but many, especially during the second half of the event, were alive when taken from the water.

The rest of the reported catch in 2003 was by-catch in fisheries directed at other species. Most (84 t) of this came from gillnets set for winter (blackback) flounder. The bulk of this catch came from Bonavista Bay and Trinity Bay in July.

2004

The moratorium on directed commercial and recreational fishing for cod remained in effect during 2004. However, fishery management regulations (Lilly et al. 2005; their Appendix 3) were changed in 2004 such that individual fish harvesters were limited to a maximum by-catch of 2000 pounds (907 kg) in any and all groundfish fisheries. In addition, for the winter (blackback) flounder fishery, the incidental catch of cod was not to exceed 20% or 300 pounds per day. Many harvesters took much or all of their 2000 pound cod limit while directing for winter flounder. In many cases the catch of winter flounder was much less than the catch of cod. The gillnet mesh size in the winter flounder fishery was $61 / 2-81 / 2$ inches, which is greater than the $51 / 2-61 / 2$ inches in the directed cod fisheries of 1998-2002.

Reported landings during 2004 were 120 t from the sentinel surveys and approximately 520 t of by-catch from commercial fisheries, for a total of 640 t (Lilly et al. 2005). Almost all of the by-catch came from the winter (blackback) flounder fishery. By-catch from Canadian trawlers fishing offshore was 6 t .

2.3 MANAGEMENT REGULATIONS AND LANDINGS DURING 2005

The moratorium on directed commercial and recreational fishing for cod remained in effect during 2005. However, fishery management regulations were again modified. By-catch restrictions were in place for all fisheries directed at other species, but again the fishery with the greatest impact on cod was that directed at winter (blackback) flounder in Div. 3KL. The Conservation Harvesting Plan for winter flounder is provided in Appendix 3. The incidental catch of cod in this fishery was not to exceed 20\% or 300 pounds per day, but there was a change from 2004 in that there was a limitation of 2000 pounds (round weight) of cod per licence holder while directing for winter flounder. (In 2004 there had been an upper limit of 2000 pounds of cod caught while directing for any and all demersal fish (which might include, for example, Greenland halibut and lumpfish).) Additional changes from 2004 included a reduction in the number of nets to be used at one time from 30 to 15, but an expansion of the acceptable mesh size from $61 / 2-81 / 2$ inches to $51 / 2-81 / 2$ inches. (The latter change made more cod gillnets permissable in the winter flounder fishery.) The regulations were broadly interpreted as permission to catch 2000 pounds of cod, without much regard to the catch of winter (blackback) flounder, and indeed the catch of cod was roughly double that in 2004 and much larger than the catch of winter (blackback) flounder, which was supposed to be the target species. And yet the regulations also stated that "where there are widespread incidental catch problems, an entire area will be closed to the fleet sector". It was obvious that there would be "widespread incidental catch problems", and the fishery, which had been opened for the period August 4-26, was closed on August 17 because the by-catch of cod was considered to be excessive.

Reported landings during 2005 were 160 t from the sentinel surveys and approximately 1060 t of by-catch from commercial fisheries, for a total of 1220 t . Almost all of the by-catch came from the winter (blackback) flounder fishery. By-catch from Canadian trawlers fishing offshore was less than 2 t . Landings
from all sources are presented by gear, unit area and month in Table 4. Gillnets contributed 98\% by weight, small mesh gillnets (from sentinel surveys) and linetrawls each contributed just under 1\%, and handlines and otter trawls contributed much less than 1\%.

An estimate is not yet available for the 2005 catch by non-Canadian trawlers outside the 200 nautical mile limit on the Nose of the Bank (Div. 3L). The Scientific Council of the Northwest Atlantic Fisheries Organization (NAFO) determined that annual catches during 2000-04 were 80 t or less (Table 1).

2.4 BY-CATCH, DISCARDS AND ILLEGAL FISHERIES

By-catches of cod occur in ongoing Canadian and non-Canadian fisheries. All recorded by-catch has been incorporated into the catch (Tables 1 and 2), but not all by-catch is recorded.

In the inshore, by-catches are common in gillnet fisheries for lumpfish and especially winter (blackback) flounder. They also occur in the herring gillnet fishery and the capelin trap fishery. Note that for winter flounder and herring there are both commercial fisheries and bait fisheries. The only inshore fishery that has been studied specifically for by-catch is the herring gillnet bait fishery, in which by-catches of cod appear to be small (Reddin et al. 2002).

In the offshore, by-catches of cod by Canadian fleets have, in recent years, come from trawl fisheries for yellowtail flounder and both trawl and gillnet fisheries for Greenland halibut. The recorded by-catches in these fisheries have been small.

A catch of cod by non-Canadian fleets has been reported for the area outside the 200 mile limit on the Nose of Grand Bank in Div. 3L. These catches are understood to be small (see previous section).

Discards

The discarding of cod in the shrimp fishery was dramatically reduced with the introduction of the Nordmore grate in 1993 (Kulka 1998). Total discards from the large-vessel shrimp fishery in 2J3K were 5 t in 1995 and 13 t in 1996 (Kulka 1998).

Shrimp quotas increased dramatically during the late 1990s, and a new fleet of smaller trawlers entered the fishery in 1997. The level of observer coverage in this fleet of smaller vessels has been low (Orr et al. 2002). Therefore, the total quantity of discards may have increased since the mid-1990s, and the opportunities for observing such discards have declined.

Shrimp fisheries expanded into Div. 3L during the 1990s and increased considerably starting in 2000. Studies during the early years of these fisheries indicated that there was little overlap between the distributions of shrimp and small cod during the autumns of 1995-98 (Orr et al. 1999), and the discards of cod by small and large shrimp vessels combined was less than 1 t annually during 2000 and 2001 (Orr et al. 2002).
D. Orr (Fisheries and Oceans Canada, St. John's, NL, October 2004, pers. comm.) provided estimates of the quantity of cod discarded by large and small shrimp vessels in 2 J 3 K and 3 L for the years 1997-2003 (Lilly and Murphy 2004). The procedure used was similar to that described for the estimation of by-catch of Greenland halibut in the same fisheries (Bowering and Orr 2004). It was estimated that discards in $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3 L combined by both fleets combined were less than 5 t each year.

Additional unquantified sources of mortality include the fallout and discarding of low quality cod caught in gillnets, and the discarding of small cod caught by handlining.

Illegal fishing

It is known that in recent years there have been removals in inshore waters in excess of sentinel surveys and legal fisheries. The magnitude of poaching is not known.

The impact of unaccounted fishing mortality
In the offshore, cod appear to experience an extraordinarily high mortality rate (see Section 7.1.3). The extent to which this is attribuTable to mortality associated with unreported catch, discards and injury caused by contact with gear (e.g. shrimp trawls) is not known. However, any such deaths may be important because the abundance of cod in the offshore is so very low.

In the inshore, the magnitude of unreported by-catch and poaching is not known, so the impact of such removals cannot be assessed.

2.5 SAMPLING OF CATCH IN 2005

The sentinel survey was sampled intensively during 2005. Sampling of by-catches from other fisheries was insufficient in some cases and had to be augmented by sentinel survey data. Sampling of by-catch is difficult because landings tend to be small at any specific time and place, and it is difficult to predict when landings will occur.

The number of fish measured in 2005 is given by gear, unit area and month in Table 5. The number of fish aged in 2005 is given by gear, unit area and quarter in Table 6.

2.6 CATCH NUMBERS AND WEIGHTS AT AGE

The age composition and mean length-at-age of the landings were initially calculated by gear, unit area and quarter as described in Gavaris and Gavaris (1983). The following relationship was applied in deriving average weight-at-age:

$$
\log (\text { weight })=3.0879 * \log (\text { length })-5.2106
$$

Landings during 2005
The total catch-at-age in 2005 comprised a range of ages, with ages 3-9 each contributing at least 2% by number and age 6 most prominent, followed by age 5 (Table 7; Fig. 7).

As discussed in Section 7.2.2.2, a sequential population analysis was conducted based on fish caught in the central portion of the inshore. (Actually, as explained later, the catch used in the inshore SPA came from the central portion of the inshore, which comprises unit areas $3 \mathrm{Kh}, 3 \mathrm{Ki}$, 3 La and 3 Lb , but with the addition of the catch in 3 Ka and 3 Kd .) In 2005 this central area accounted for 74% (by number) of the fish landed (Table 7; Fig. 7), compared to 67\% during 2004. The age composition from the central area was similar to that from the total stock area (see above), but with ages 5 and 6 (the 1999 and 2000 age-classes) a little more strongly represented. The age composition from the southern inshore area (not illustrated) was dominated by ages 6 and 7 , with age 8 being much more strongly represented than in the central area. That is, the southern area had stronger representation of the 1997 and 1998 year-classes. It had been noted last year (Lilly et al. 2005) that the 1997 year-class (erroneously referred to as the 1987 year-class) strongly dominated the catch in the southern inshore area during 2004. The 1997 and 1998 year-classes have been relatively strong in Subdiv. 3Ps (Brattey et al. 2005). This further supports the understanding that most cod caught in southern 3 L in recent years are more strongly associated with the cod that overwinter in 3Ps than with the cod that overwinter in 3KL.

Historic pattern

The catch-at-age of fish in the reported landings (inshore and offshore combined) from 1962 to 2005 is presented in Table 8. The 1989 year-class was the most important contributor to the catch in 1993-94, the 1990 year-class in 1995-97, the 1992 year-class in 1998-99, the 1994 year-class in 2000, the 1997 year-class in 2001-04, and the 1999 year-class in 2005. The pattern reflects variability in year-class strength and variability in the proportion of the catch coming from each of the various gears (Table 2).

The age compositions of the total landings from 1998 to 2004 (Fig. 8) illustrate the broadening of the age composition of the populations currently inshore. As described in earlier reports, there had been a severe truncation of the age composition by the mid-1990s (see Table 8). When the index fishery opened in 1998, there were very few fish older than age 9 (the 1989 year-class) (Fig. 8). However, the 1990 and 1992 year-classes were moderately strong in the inshore and have persisted, so that by 2002 there was good representation to age 12, and there were even some age 13s. The age composition in 2003 was very unusual. It was comprised mainly of cod from the Smith Sound mass mortality. The age composition of cod taken in this event (Lilly et al. 2004) may be interpreted as indicating that the older (1990-92) year-classes are better represented in the Smith Sound overwintering aggegation than in the 2002 catch for 2 J 3 KL as a whole. This interpretation must be treated with caution, however, because it is also possible that older cod experienced higher mortality than younger cod during the Smith Sound event. At present there is insufficient additional data to inform this issue. The age composition of the 2004 catch was similar to that which would be expected as a progression from the 2002 catch. The 1990 and 1992 year-classes persisted at ages 14 and 12, but were weakly represented.

The age composition of the 2005 catch shows further reduction in the relative importance of the older year-classes, with the 1990 and 1992 year-classes being very weakly represented. This may reflect several factors. (1) The abundance of these year-classes is decreasing. (2) These year-classes may have been weakly selected by the gears in the 2005 fishery. (Recall that 98% of the catch by weight was taken by gillnet, and that these nets may have included a much higher proportion of smaller ($51 / 2$ inch) mesh gillnets than in 2004.) (3) The 1999 and 2000 year-classes appear to be moderately strong.

The mean weights-at-age calculated from mean lengths-at-age in the landings have varied over time (Table 9; Fig. 9). There was an increase in the late 1970s and early 1980s, followed by a decline through the 1980s to low levels in the early 1990s. There has been substantial improvement in the latter half of the 1990 s, and for some age-groups (e.g. ages 4-7) the weights-at-age calculated for recent years have been at or near the highest levels in the time-series. Interpretation of changes in the weights-at-age is difficult because of changes in the relative contributions of the various gear components and changes in the location and timing of catches from each gear component. For example, much of the landings prior to the moratorium came from otter trawling offshore early in the year, whereas since the moratorium most of the catch has come from fixed gear inshore in the second half of the year. In addition, the high proportion of landings coming from gillnets in recent years will tend to increase the calculated mean weight-at-age of those age-classes entering the selection range of the gear. This may apply in particular to ages 5 and 6. There may also be an underestimate of weight-at-age for those age-classes leaving the selection range of gillnets.

There are clearly problems with the 1993 weights-at-age that remain to be resolved.
The biomass at age in the reported landings from 1962 to 2005 is presented in Table 10.

3 STAKEHOLDER PERSPECTIVES

A telephone survey was conducted by the Fish, Food and Allied Workers (FFAW) Union to assess the opinions of fish harvesters regarding the abundance of cod in inshore waters, the size and condition of the cod, and the abundance of prey (updated from Jarvis and Stead 2005). In 2J, most fish harvesters felt that cod abundance during 2005 was lower than it had been during the late 1980s but higher than it was
during 2004. In 3 K and 3L, most fish harvesters felt that cod abundance during 2005 was higher than it had been during the late 1980s. Most felt that cod abundance during 2005 had not changed or had increased relative to 2004.

4 STOCK STRUCTURE

Stock structure was reviewed during the 2005 regional assessment meeting (Lilly et al. 2005). The only new observations relate to additional uncertainty occasioned by the increase in sentinel survey catch rates toward the north (see below). A brief overview of stock stucture follows.

Numerous studies have indicated the likelihood of substock structure within the northern cod stock complex (see, for example, overviews by Lear 1986; deYoung and Rose 1993; Smedbol and Wroblewski 2002). The evidence includes a north-south cline in size-at-age and time of spawning, and a change in vertebral counts at approximately the north slope of Grand Bank. Cod tagged at specific locations in the offshore in winter tended to migrate to specific but broad areas of the inshore during summer and then returned to approximately the area of tagging in subsequent winters. It was also known that cod overwintered in various locations inshore and that some spawning occurred inshore.

Since the mid-1990s, there has been a dichotomy between the offshore and the inshore. In the offshore, research bottom-trawl surveys have found cod to be at very low density. The fish are small and young, especially in Div. 2J and 3K. In contrast, aggregations sampled inshore since the mid-1990s by commercial fisheries, sentinel surveys, and research bottom-trawling within Smith Sound in winter contain a high proportion of individuals that are older and larger than those taken by the offshore surveys. A larger run of fish has also been evident in the winter cod-seal events (Lilly et al. 1999; Lilly 2004) and the mass mortality of cod in Smith Sound in April 2003 (Lilly et al. 2004).

Tagging studies have revealed that during the period from the late 1990s to 2003 the inshore of 3KL was inhabited by at least two groups of cod: (1) a northern resident coastal group that inhabited an area from western Trinity Bay northward to western Notre Dame Bay and (2) a migrant group that overwintered in inshore and offshore areas of 3Ps, moved into 3L during late spring and summer, and returned to 3 Ps during the autumn. Tagging studies also indicated considerable movement of cod among Trinity, Bonavista and Notre Dame bays. This stock structure was not evident historically because the majority of fish observed during inshore fisheries were migrants from the offshore.

The above understanding regarding groups of cod in the inshore became less clear in 2005, notably because catch rates increased in sentinel surveys in 2J and northern 3K (see Section 5.2.2). The stock affinity of the fish that appeared in higher densities in the northern portion of the inshore needs to be clarified.

Additional support for the existence of a resident coastal group came from examination of the tagging information associated with the mass mortality event in Smith Sound (Fig. 1g) during April 2003 (Brattey and Healey 2005). Most of the 418 tags recovered during the event had been applied in the local area encompassing Smith Sound itself, the waters around Cape Bonavista and southern Bonavista Bay. None of the recovered tags had been applied in 3Ps or 3Pn4RS, despite intensive tagging programmes in both of those stock areas. Only one tag had been applied in 3K, and only one tag had been applied in southern 3L (Conception Bay and southward). This is consistent with previous conclusions that Smith Sound is an overwintering area for a group of cod that during late spring and summer moves northward along the north side of Trinity Bay and may round Cape Bonavista, with some individuals moving into southern 3 K . The absence of fish that had been tagged in 3Ps, and the recapture of only one fish that had been tagged in southern 3L, indicates that the cod that move from 3Ps into 3L in summer return to 3Ps in winter.

The extent of migration between the inshore and offshore of 2J3KL during recent years is not well understood. There has been only one reported offshore recapture of a cod tagged inshore after the mid-1990s, but of course there has been no directed offshore cod fishery during this period, so recaptures
could come only from fisheries directed at other species. It is thought that migrants from offshore 2J3KL currently contribute little to the biomass of cod in the inshore of 2 J 3 KL .

Several additional sources of information are consistent with the hypothesis that there are distinct inshore or bay stocks along the east coast of Newfoundland. The information includes the presence of cod inshore in the winter, the historic existence of spring fisheries in the inner reaches of Bonavista and Trinity bays before cod arrived at the headlands from the offshore, and the occurrence of spawning within the bays.

Genetic studies suggest that the northern cod conforms to an isolation-by-distance structure, with cod from more distant locations tending to be more distinct (Beacham et al. 2002). There appear to be differences between the inshore and the offshore, and among various areas of the offshore (Ruzzante et al. 1998; Beacham et al. 2002; but see Carr et al. 1995). Subpopulation structure at the level of individual bays is less strongly supported.

In summary, various observations, both historic and recent, are consistent with the hypothesis that there are populations in the inshore that are functionally distinct from those in the offshore. It is thought that these inshore populations have historically been small relative to the populations that migrated into the inshore from the offshore during spring/summer.

5 POPULATION INDICES

5.1 BOTTOM-TRAWL SURVEYS

5.1.1 Survey design

Research bottom-trawl surveys have been conducted by Canada during the autumn in Div. 2J, 3K and 3L since 1977, 1978 and 1981 respectively. No autumn survey was conducted in Div. 3L in 1984, but the results of a summer (August- September) survey in 1984 have been used for some analyses. The 1995 and 2002-05 autumn surveys were not completed on time and continued into late January of the following years.

Spring surveys have been conducted by Canada in Div. 3L during the years 1971-82 and 1985-present.

The autumn surveys in Div. 2J and 3K were conducted by RV Gadus Atlantica until 1994. In 1995-2000 they were conducted mainly by RV Teleost, although RV Wilfred Templeman surveyed part of Div. 3K. Surveys in Div. 3L were conducted by RV A.T. Cameron (1971-82) and RV Wilfred Templeman or its sister ship RV Alfred Needler (1985-2000 for spring and 1983-2000 for autumn). In recent years, RV Teleost occupied some of the 3L stations, particularly those in deep water. The surveying in Divisions 2J and 3 K became increasingly complex in 2001-05, with more individual trips required to complete the surveys and increased incidence of more than one ship contributing to the surveying of each Division.

During the autumn of 1995 both ships used for the first time the Campelen 1800 shrimp trawl with rockhopper footgear, replacing the Engel 145 Hi-rise trawl that had been used since the start of the surveys in 2 J and 3 K and since the change to the RV Wilfred Templeman in Div. 3L. In addition, the Campelen trawl was towed at 3.0 knots for 15 min instead of 3.5 knots for 30 min . The selectivities of the two nets were found through comparative fishing experiments in 1995 and 1996 to be markedly different, with the Campelen being far more effective at catching small cod (Warren 1997; Warren et al. 1997). There were limited data for the comparison of larger cod. Conversion of Engel catches to Campelen equivalent catches was reported by Stansbury $(1996,1997)$.

The survey stratification scheme, illustrated in Fig. 10-12, is based on depth intervals intersected by lines of latitude and longitude (Doubleday 1981; Bishop 1994). The strata used in 1996 were similar to
those in previous years except that the survey was extended to 1500 m and 25 new strata were added to the inshore in Divisions 3K and 3L to obtain an estimate of the cod landward of the standard survey area. The survey in 1997 was similar to that in 1996, except that some of the new inshore strata were modified and one stratum was added. The survey in 1998 was as in 1997. The survey in 1999 was as in 1997 and 1998 except that the new inshore strata were not fished. The surveys in 2000-05 were similar to those in 1997-98.

Prior to 1988, set allocation was proportional to stratum area, with the provision that each stratum be allocated at least 2 sets. In 1989 and 1990 an "adaptive design" was introduced in an attempt to minimize variance. It was found that this method introduced a bias and the additional sets fished during the second phase of these surveys have been excluded from analyses. In 1991-94, additional sets were allocated in advance to certain strata based on stratum variance observed in the past (Gagnon 1991). In 1995-2005, set allocation was based once again on stratum area alone (with the provision that there be at least 2 sets in each stratum).

Additional details on the research bottom-trawl surveys conducted by DFO since the introduction of the Campelen trawl in 1995 are provided by Brodie (2005).

5.1.2 Autumn Bottom-Trawl Surveys

5.1.2.1 Autumn abundance and biomass

Abundance and biomass have been estimated by areal expansion of the stratified arithmetic mean catch per tow (Smith and Somerton 1981). To account for incomplete coverage of some strata in some years, estimates of biomass and abundance for non-sampled strata were obtained using a multiplicative model. Note, however, that such a procedure was not followed for the autumn survey in 2004, when several strata in Div. 3L were not fished, even though the survey was continued into January 2005. See Lilly et al. (2005) for additional information regarding the area that was not fished and the reasons for not estimating the quantity of cod that may have been in the unfished area at the time of the survey.

Estimates of abundance and biomass from the autumn surveys in 1978-94 (Div. 2J and 3K) and 1981-94 (Div. 3L) may be found in Tables 12-19 of Shelton et al. (1996). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented in the present paper along with the actual Campelen data from 1995 to 2005. Data for Div. 2J are in Tables 11-14 and data for Div. 3 K are in Tables 15-18. Note that data for 1993-2005 are presented separately from earlier years for Divisions 2 J and 3K because of the change in stratification scheme introduced in 1993 (Bishop 1994). Estimates for surveys in Div. 3L are in Tables 19-20 for strata in depths $<=200$ fathoms (366 m) and Tables 21-22 for strata in depths >200 fathoms.

Because there have been changes over time in the depths fished, annual variability in the abundance and biomass of cod has been monitored for those strata that have been fished most consistently since the start of the surveys. These "index" strata are those in the depth range $100-500 \mathrm{~m}$ in Div. 2J and 3K and 55-366 m (30-200 fathoms) in Div. 3L. The inshore strata fished in 1996-98 and 2000-05 are not included in the index. Because an index has also been calculated for the inshore strata, the former "index" will be referred to in this paper as the "offshore index".

Changes in abundance and biomass in the offshore index strata are shown by Division for the years 1983-2005 in Fig. 13. The patterns in abundance and biomass differ in detail, reflecting changes in the relative abundance of small and large fish. Of note are the strong positive anomaly in 2 J and 3 K in 1986, the very large increase in 3K in 1989, the increase in 3L in 1990, and the rapid decline during the early 1990s. Abundance and biomass have remained at extremely low levels in all Divisions since 1993.

Abundance and biomass estimates for the new inshore strata that were fished in 1996-98 and 2000-05 are provided in Tables 23 and 24.

The total abundance and biomass of all strata fished in 1983-2005 are provided by Division and year in Table 25.

The estimates of abundance and biomass in offshore index strata, deep offshore strata and inshore strata are provided in Table 26 by Division and year for the 11 years since introduction of the Campelen trawl. The highest abundance and biomass has generally been found in the offshore index strata. Abundance in these offshore index strata declined from 1995 to 1997, increased considerably from 1998 to 1999, and then fluctuated without trend (Table 26; Fig. 13). Biomass in the offshore index strata increased from 1995 to 1997-98, nearly doubled in 1999, remained relatively constant in 2000-01, declined again until 2003, and has subsequently increased. The average biomass in offshore index strata during 2003-05 was about 20,000 t , which is about 1.7% of the average biomass of about 1,200,000 t (in Campelen equivalents) in the period 1983-88 (excluding the high value in 1986).

The quantities of cod found in the offshore deep strata have been highly variable, and always less than in the offshore index strata. The quantities found in the inshore strata have also been highly variable. During 1996 and 2003, the abundance in the inshore strata of Div. 3L exceeded the abundance found in the offshore index strata of Div. 3L.

It is not known if the continuation of the surveys into January has created a bias in estimation of abundance and biomass. However, the continuation of the surveys into January does appear to have an effect on the perceived depth distribution of fish. The estimates of the number and biomass of cod in depths greater than 500 m tended to be greater when the surveys were extended beyond the end of the year, viz in 1995 and 2002 in Div. 2J and in 1995, 2002, 2003, 2004 and 2005 in Div. 3K (Fig. 14). A more thorough analysis would focus on individual strata in the 501-750 m depth-range.

5.1.2.2 Autumn mean catch at age per tow

5.1.2.2.1 Offshore index strata

The divisional mean number caught at age per tow in offshore index strata during autumn surveys from 1979 (1981 in Div. 3L) to 1994, and the mean number per tow for Divisions 2J, 3K and 3L combined, may be found in Tables 3-6 of Bishop et al. (1995). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented along with the actual Campelen data from 1995 to 2005 in Table 27 for Divisions 2J, 3K and 3L separately and for all three Divisions combined. Mean catch per tow has continued to be very low for each age in each Division during the past few years when compared with many years in the 1980s and early 1990s.

Much of the very modest expansion in age distribution in Div. 3L since the collapse in the early 1990s has been due to catches of small numbers of the 1989 and 1990 year-classes. The individuals representing these year-classes may have originated within the 2 J 3 KL stock area, but it is also possible that they moved into Div. 3L from the south. The 1989 and 1990 year-classes were stronger than adjacent year-classes in both 3Ps and 3NO during the late 1990s (Lilly et al. 2000a) and remain clearly discernable in commercial and research catches in both 3Ps (Brattey et al. 2005) and 3NO (Power et al. 2005).

The high catch rate at age 0 in Div. 2 J in 2005 is due primarily to a relatively large catch of small fish in one tow in stratum 237, which is near the coast in central 2 J .

The matrix of mean number caught at age per tow for all divisions combined is used to provide information on spawner biomass, recruitment and mortality in the offshore (see Section 7.1).

5.1.2.2.2 Inshore strata

Inshore strata in 3K and 3L were fished in 1996-98 and 2000-05. The mean catch at age per tow was calculated for 3 K and 3 L separately and for 3 KL combined (Table 28). Each 3 KL value is the mean of
the divisional means, weighted by the divisional survey areas (where the area of inshore strata is $3,235 \mathrm{sq}$ n miles in 3 K and $3,107 \mathrm{sqn}$ miles in 3 L).

5.1.2.3 Autumn distribution

The distribution of cod at the time of the autumn surveys has been illustrated in numbers per standard tow (Shelton et al. 1996; Murphy et al. 1997) and in weight (kg) per standard tow (Lilly 1994, 1995). The catch from each tow in the period 1983-94 has been recalculated to Campelen equivalents, and plots of these recalculated catches for 1985-94 are illustrated in Lilly et al. (1999).

For the period 1980-88, catches were widespread over the survey area, with larger catches tending to occur in four loosely defined areas: (1) from the northern limit of the survey to the coastal shelf off northern Newfoundland, especially the northern tip of Hamilton Bank and near the isthmus leading to Belle Isle Bank; (2) the outer trough between Belle Isle Bank and Funk Island Bank; (3) the outer trough between Funk Island Bank and Grand Bank, and from there southeastward along the northeastern slope of Grand Bank; and (4) the plateau of Grand Bank (Fig. 15). The first indication of the big changes to come occurred in 1988, when almost no fish were caught in the area of Harrison Bank in northwestern Div. 2J (Lilly et al. 1999). Commencing in 1989 the fish in Divisions 2 J and 3 K became increasingly concentrated toward the edge of the bank. By 1991, concentrations on Hamilton Bank and the plateau of Grand Bank disappeared, leaving fish in inner Hawke Saddle and in the saddles between Belle Isle Bank and Funk Island Bank and between Funk Island Bank and Grand Bank. In 1992, only the concentration between Funk Island Bank and Grand Bank remained. This concentration was smaller in 1993 and disappeared in 1994.

Catches from 1995 onward (Fig. 16) tended to be very small. (See Fig. 15 for a comparison between the average catches in 1980-88 and the catches taken during 2002.) On the southern Labrador Shelf and the Northeast Newfoundland Shelf (Div. 2Jand 3K) the larger catches were broadly spread, with a tendency toward occurrence off the banks. The area with the most consistent relatively large catches has been around Funk Island Bank, particularly to the east and southeast.

As noted above, the 1995 and 2002-05 surveys were not completed during the calendar year, and some of the strata were fished early in the following year. Each of these five surveys is again illustrated in Fig. 17, where the sets before and after the end of the calendar year are displayed separately. As noted by Lilly et al. (2004), the degree of aggregation on the outer flanks of the banks may appear higher in years when these areas are surveyed after the end of the calendar year. This is not surprising in an historic context. Prior to the collapse of the stock, there were large winter (January- April) fisheries on overwintering aggregations along the shelf break. The extent to which the surveying after January 1 may create a bias in the population estimates remains unknown at this time.

5.1.3 Spring 3L bottom-trawl surveys

5.1.3.1 Spring 3L abundance and biomass

Abundance and biomass of cod in Div. 3L in the spring have been estimated by areal expansion of the stratified arithmetic mean catch per tow. Estimates for the surveys from 1978 to 1995 may be found in Tables 20-21 of Shelton et al. (1996). The data from 1985 to 1995 have been converted to Campelen equivalents. Estimates of abundance and biomass for the index strata (depths <= 366 m or 200 fathoms) during 1985-2004 are provided in Tables 29 and 30 respectively and illustrated in Fig. 18. The indices declined very rapidly from 1990 to 1993. However, there was a considerable quantity of cod in deeper strata during 1992 (see below). There are indications from other sources that the cod were distributed more deeply during the early 1990s than they had been during the 1980s, so the rapid decline in the spring indices during the early 1990s may reflect in part a movement to depths beyond the index strata.

The indices have remained very low since the mid-1990s (Fig. 18). The average biomass in index strata during 2002-04 was about 3,100 t, which is about 0.6% of the average biomass of about 484,400 t (in Campelen units) in the period 1986-89. The biomass in 2005 was about $12,400 \mathrm{t}$, which is about 2.5% of the 1986-89 average.

Surveying in waters deeper than 200 fathoms started on a regular basis in 1991 (Table 31). In some years, most notably 1992, a substantial biomass was estimated to lie in these deeper strata. There may have been a large biomass in the deeper water in 1991 as well. In that year stratum 735 (201-300 fath), which was estimated to contain $50,000 \mathrm{t}$ in 1992, was not fished because of ice cover. The percentage of the total estimated biomass found in depths greater than 200 f has been as high as 92% in 1994 and as low as 0\% in 2004.

5.1.3.2 Spring $3 L$ mean catch at age per tow

The mean numbers caught at age per tow in index strata during 3L spring surveys from 1985 to 2004 are presented in Table 32. The values from 1985 to 1995 are Campelen equivalents and those from 1996 onward are based on actual Campelen catches. Mean catch per tow declined precipitously in the early 1990s and values continue to be well below levels obtained prior to 1993.

As noted for the autumn surveys in Div. 3L (see Section 5.1.2.2.1), much of the very modest expansion in age distribution since the collapse in the early 1990s has been due to catches of small numbers of the 1989 and 1990 year-classes. The individuals representing these year-classes may have originated within the 2 J 3 KL stock area, but it is also possible that they moved into Div. 3L from Div. 3NO or Subdiv. 3Ps.

5.1.3.3 Spring 3L distribution

The distribution of cod during spring surveys in Div. 3L is shown together with distribution in Div. 3NO for the years 1984-2000 in Figs. 18-20 of Lilly et al. (2001). During the second half of the 1980s the spring distribution in Div. 3L was similar to that observed during the autumn, in that the highest densities were generally on the plateau of the bank and along the northern and northeastern slopes of the bank. However, in some years there were also moderately large catches in the area between the northern slope and the plateau, a situation much less evident in the autumn. The spring of 1990 was unusual, in that few cod were taken on the plateau but very large catches were taken along the full length of the northeastern slope. Much of the northeastern slope could not be surveyed in 1991 because of ice cover, but catches seemed to be smaller. Catches continued to decline until 1995 when very few cod were caught.

Catch rates increased with the introduction of the Campelen trawl in 1996 (Fig. 19a), but have remained far below the levels of the 1980s. Starting in 1996 the cod in 3NO appeared to be further onto the bank at the time of the surveys than they were in the early 1990s. In 1999 there was a hint, for the first time in many years, of a continuous distribution of cod from the southwestern part of 30 across the 3L/3NO boundary into the area of the Virgin Rocks. In 2000-05 (Fig. 19b,c) cod were caught around the periphery of the bank, from the southernmost part of the Northeast Newfoundland Shelf in northern 3L, along the northeastern slope of Grand Bank to the Nose of the Bank, and southward to the 3L/3NO boundary. Small catches were also taken on the plateau of the bank and in the Avalon Channel.

5.2 SENTINEL SURVEYS

Sentinel surveys for cod were conducted by fishing enterprises operating from many communities (Fig. 1f) in Div. 2J, 3K and 3L at various times during summer and autumn 1995-2005 (Maddock Parsons and Stead 2006). The number of enterprises varied between 53 and 59 during 1995-2002, but was
reduced to 44 in 2003, 45 in 2004 and 44 in 2005. Since 1999 sampling has been conducted for a minimum of 10 weeks at each site.

The primary goal of these surveys when they were initiated was to obtain information on relative density of cod on traditional inshore fishing grounds during the moratorium. The surveys continued during the period of index/commercial fishing (1998-2002). The surveys have been conducted primarily with gillnets ($51 / 2$ inch mesh). Linetrawls have been used extensively in only a few areas, and indeed the use of linetrawls has declined over time. Handlines and cod traps have been used much less. Small mesh (3¼ inch) gillnets were introduced at many sites in 1996 to provide information on the relative size of incoming year-classes. See Maddock Parsons and Stead (2006) for additional details regarding fishing methods and sampling strategy.

The sentinel surveys were also intended to provide samples that would yield information on various aspects of the biology of cod in the inshore, including age compositions, size-at-age, condition, maturity and feeding. Various analyses were conducted on data collected in 1995-97 (Lilly 1998; Lilly et al. 1998a), but these have not been updated. However, aggregated length-frequencies have been examined each year (see Section 5.2.1) and age compositions for the full time period are available in the form of standardized catch rates at age (see Section 5.2.2).

Note that sampling for lengths and ages has been relatively intensive in the sentinel surveys. Without this sampling, it would have been very difficult to decompose the catch from the index/commercial fisheries into catch at age, particularly in 2002.

5.2.1 Sentinel catch rates by site and Division

Maddock Parsons et al. (2000) provided weekly average catch rates by sentinel survey site, gear and year (1995-99). There is considerable among-site variability in the timing of fishing effort and in the seasonal and annual patterns in fishing success.

Maddock Parsons and Stead (2006) presented weekly average catch rates and annual relative length frequencies (total number of fish caught at length divided by total amount of gear deployed) by gear, NAFO division, and year (1995-2005).

The $51 / 2$ inch gillnet has the narrowest range of selectivity ($50-80 \mathrm{~cm}$). Catch rates have been highest in 3L. In all Divisions, catch rates declined from 1998 to 2002 and then increased during 2003-05. In 2J, catch rates increased substantially in 2005.

Catches in the small mesh ($31 / 4$ inch) gillnet are characterized by two modes; the smaller (approximately $34-44 \mathrm{~cm}$) is represented by fish that are meshed in the net and the larger by fish that are entangled in the net. Catches in this gear tend to be variable over time and space. In 2 J the smaller mode declined from 1997 to 1999 and has been variable since then. In 3K the smaller mode declined from 1996 to 1999 and remained at the lower level except in 2003 and 2005, when there was an increase. In 3L the smaller mode was relatively stable over time, except for a decline in 1999 and increases in 2003 and 2005. The catches of the larger fish declined from 1998 to 2001 in all divisions, and increased in 2003 and 2004.

Linetrawl has the widest range of fish sizes. In 2J, catch rates were lower than in 3K and 3L. Linetrawl has not been deployed in 2J since 2001. In 3K, catch rates declined from 1997 to 2000 and then increased to 2003 and have remained high.

5.2.2 Sentinel standardized (modelled) catch per unit effort (CPUE)

An age-disaggregated index of standardized relative abundance for cod in the inshore of 2J3KL was calculated from data gathered from sentinel fishing with gillnets and linetrawls (Stansbury et al. 2000). The catch from 2 J3KL was divided into cells defined by gear type (gillnet $51 / 2$ inch, gillnet $31 / 4$ inch and
linetrawl), NAFO Div. (2J, 3K, 3L), statistical unit area (e.g. 3Ki, 3Lh), year (1995-2005) and quarter. Age-length keys were generated for each cell using fish sampled from both fixed and experimental sites. There were no fixed sites using $31 / 4$ inch gillnets. Length frequencies and age-length keys were combined within cells. Numbers of fish at length were assigned ages using an age-length key. Because there were few or no discards in the sentinel fishery and the fish harvesters measured the length of all the fish caught with linetrawl and gillnet, obtaining catch numbers-at-age was relatively straight forward [see Stansbury et al. (2000) for details].

Methods

CPUE at age data were standardised to remove site and seasonal effects. For gillnets, only sets fished during July to November with a soak time between 12 and 32 hours were included in the analysis. (Note that Lilly et al. (2003) stated that only sets with soak times between 18 and 24 hours were included in the analysis. This is an error. The 2003 analysis incorporated sets with soak times between 12 and 32 hours.) For linetrawl, sets fished during August to November with a soak time less than or equal to 12 hours were selected. Sets with effort and no catch for some or all ages were considered valid entries in the model. Ages in the model ranged from 3 to 10 for $5 \frac{1}{2}$ inch gillnet, 2 to 10 for $31 / 4$ inch gillnet and 3 to 9 for linetrawl. Fish older than age 10 were not included because of their rarity.

A generalized linear model (McCullagh and Nelder 1989) was applied to the catch and effort data for each gear and survey method. The response distribution was specified as Poisson and the link function was chosen to be log. That is, the Poisson mean parameter μ_{i} is related to the linear predictor by

$$
\log \left(\mu_{i}\right)=X_{i}^{\prime} \beta
$$

where X_{i} is a vector of explanatory factors for catch observation i (i.e. month, site, age and year) and β is a vector of coefficients to be estimated from the data.

Thus catch is assumed to have a Poisson probability distribution with the mean μ_{i} related to the factors month nested within site and age nested within year by

$$
\log \left(\mu_{j k l m}\right)=\log \left(E_{j k l m}\right)+\beta_{j k}\left(\text { month }_{j} \times \operatorname{site}_{k}\right)+\beta_{l m}\left(\text { age }_{l} \times \text { year }_{m}\right)
$$

where E is an offset parameter for fishing effort and the subscripts j, k, l, m indicate the level for month, site, age and year, repectively. For example, for the factor month

$$
\text { month }_{j}=\left\{\begin{array}{l}
1 \text { if month }=j \\
0 \text { if month } \neq j
\end{array} .\right.
$$

The levels for month, site and age vary across gear type.
Site/month combinations in which fewer than 5 fish were landed in all years combined were deleted from the analysis because of difficulties with estimation. (This differs from the analysis in 2003, when site/month combinations in which no fish were landed in all years were deleted from the analysis.)

The model was fit using the SAS procedure GENMOD. Amount of gear is expressed as number of nets for gillnet and number of hooks for line trawl. Estimates for age nested in year were adjusted for month nested in site effects (i.e. least-squares means) and transformed to a linear scale to give the relative index at age for each year.

Additional details regarding the models (proportion of available data that was actually included, model output and residual plots) were reviewed but are not provided in the present paper. Such information from an earlier analysis of the 1995-99 data are described in detail by Stansbury et al. (2000).

Age-aggregated indices were computed by summing the age within year effects for each year.
Catch rates by gear, year and age from the whole of the inshore
Standardized catch rates by gear, year and age are illustrated in Fig. 20.
Standardized catch rates at age from the $51 / 2$ inch gillnets illustrate that the 1990 and 1992 year-classes were relatively strong. Subsequent year-classes appear to have been weaker. However, for these more recent year-classes, the number of fish surviving to ages $6-8$ would have been influenced by the commercial and recreational fisheries during 1998-2002. The catch rates at age started to increase again after 2002. This might indicate increasing strength of the year-classes recruiting to the gear, but undoubtedly it also reflects the reduction in mortality following the reimposition of the moratorium in 2003. Thus, the index from the $51 / 2$ inch gillnets may provide a good index of abundance, but not necessarily a good measure of relative year-class strength at the older ages that are most strongly selected by the gear.

The relatively strong 1990 and 1992 year-classes may also be discerned in the catch rates from the $3 \frac{1}{4}$ inch gillnets and the linetrawls.

The indices of catch rate at age (from the central inshore area alone) are incorporated into the inshore sequential population analysis (see Section 7.2.2.2), but there are concerns regarding the extent to which these catch rates reflect population abundance at age. For example, it is possible that the decrease in catch rates after 1998 might reflect increased competition between sentinel gears and commercial gears. Such competition could include competition for fish and competition for space on the fishing grounds. Similarly, the increase in catch rates after 2002 might reflect a reduction in competition following reimposition of the moratorium. Questions regarding competition between commercial and sentinel fishing gear have not yet been adequately addressed.

Another factor that might affect sentinel catch rates is the distribution of fish on the fishing grounds. It was frequently stated during the period of declining catch rates that the declines might reflect a decreased availability of fish to the gear, perhaps because the fish were distributed over a greater range of depths. One must ask, then, whether the recent increase in catch rates reflects an increasing availability of fish to the gear. This question of whether there are among-year differences in fish distribution, and whether such differences might affect catch rates, has not yet been adequately addressed.

Catch rates (age-aggregated) by gear and year, for the whole of the inshore and by area
Standardized catch rates by gear and year have been provided since 1999. Beginning in 2005, the inshore was divided into 3 areas (Fig. 1h) for the purposes of assessment (see additional details in Section 7.2.2.2), and standardized catch rates were also computed for each of the areas (except for area/gear combinations for which it was considered that there were insufficient data).

5½ inch gillnets

Standardized catch rates from the $51 / 2$ inch gillnets (Fig. 21) from the whole of the inshore increased from 1995 to a peak in 1998, declined by the early 2000s, and then increased during recent years. Current estimates are about average and well below the peak in 1998. In the northern area, average catch rates were low from 1995 to 2004, but increased considerably in 2005. In the central and southern areas, the trends over time were very similar to one another and to the trend in the overall index, but with some differences in recent years. In the central area there was a gradual increase from the low point in 2002, whereas in the southern area there was a more rapid increase after 2002 followed by a decline from 2004 to 2005.

Linetrawls

Standardized linetrawl catch rates (Fig. 22) showed relatively little change from 1995 to 1996, increased in 1997, declined by the early 2000s, and then increased during recent years to about average. In the central area, mean catch rates followed a pattern similar to that for all sites combined, but tended to be higher in the early and later parts of the time series. It is emphasized that the linetrawl catch rates are based on relatively small sample sizes.

Small mesh ($31 / 4$ inch) gillnets
Small mesh ($31 / 4$ inch) gillnets were introduced at many sites in 1996 to provide information on recruitment. As noted above, the size distribution of cod caught by this gear tends to have two modes. The smaller mode tends to be represented primarily by cod of ages 3 and 4.

During the 2005 assessment (DFO 2005; Lilly et al. 2005), standardized catch rates were presented for cod of ages 3 and 4 combined to provide information regarding incoming recruitment. During the present assessment, it was decided that this was inappropriate, and instead the aggregated catch rate for all ages combined has been provided. To illustrate that trends in the age aggregated index do not closely represent those of the younger fish, the catch rates for ages 2-5 combined are presented separately from those for ages 6-10 combined (Fig. 23). The catch rates for ages 2-5 declined from 1996 to 1999 and then increased (with a drop in 2004), whereas the catch rates for the older fish (ages 6-10) declined from the 1990s to a low in 2002 and have increased only slightly. The decline in catch rates of older cod has been documented in the series of standardized length frequencies (Maddock Parsons and Stead 2006).

The standardized age-aggregated (ages 2-10) catch rates declined from 1996 to a low in 1999-2001 and then increased to an intermediate level (Fig. 24). The catch rates for ages 3-4, as presented during the 2005 assessment, declined less during the 1990s than the catch rates for ages 2-10 (Fig. 24). The patterns have been very similar since the early 2000s.

Standardized catch rates in the central inshore area followed a pattern very similar to that for all sites combined, but were higher (Fig. 25).

Catch rates for smaller geographic areas

Standardized catch rates were not computed for smaller areas (e.g. bays) within the three areas reported above. However, information reported by Maddock Parsons and Stead (2006) leads one to suspect that both the central area and the southern area have regional variability. For the central area, catch rates in Trinity and Bonavista bays would be higher than catch rates in southern 3K, particularly the western side of Notre Dame Bay. For the southern area, catch rates would be higher in St. Mary's Bay than along the eastern Avalon Peninsula and Conception Bay.

5.3 HYDROACOUSTIC SURVEY OF SMITH SOUND

Hydroacoustic studies have been conducted in Smith Sound in western Trinity Bay (Fig. 1g) at various times since the spring of 1995. The quantity of cod detected in the Sound at any specific time will depend not only on the size of the population but also the stage of the seasonal migration pattern. Fish overwinter in deep water in the Sound. It is thought that most of those cod move into shallow water and northward along the coast from late spring to early autumn, and then return to the Sound in late autumn or early winter.

Estimates of the biomass of cod within Smith Sound have varied considerably (Lilly et al. 2003). If one focuses on recent hydroacoustic surveys in January-February, the average index of biomass increased rapidly from about 15,000 t in 1999 to $26,000 \mathrm{t}$ in 2001 and then declined to $23,000 \mathrm{t}$ in 2002, 20,000 t in 2003 and 18,000 t in 2004 (Rose 2003; G. Rose, Memorial University of

Newfoundland, St. John's, NL, pers. comm.). The fish sampled during the 2004 survey were of a wide size range (35-120 cm). There was no comparable January-February survey of Smith Sound during 2005.

Hydroacoustic studies in Smith Sound are continuing (G. Rose, Memorial University of Newfoundland, St. John's, NL, pers. comm.). No new information was presented for the 2006 assessment.

6 POPULATION BIOLOGY

The information on maturity, growth and condition reported in this section is derived from sampling during the autumn offshore bottom-trawl surveys. Additional data are available from sampling of spring surveys in the offshore and sentinel surveys in the inshore, but analyses based on these data were not presented during the 2006 assessment meeting.

6.1 MATURITY

The gonads of samples of cod collected during annual DFO autumn bottom-trawl surveys were visually inspected and assigned to the category "immature" or "mature" according to the criteria of Templeman et al. (1978). Visual inspection is not always totally accurate and there can be difficulties in classifying some stages; for example, mature fish that are skipping a spawning year may be erroneously classified as immature or vice-versa, and mature fish that have recently shed a batch of hydrated eggs may be classified as maturing when they are in fact spawning. The extent to which these errors influence the estimation of proportion mature and proportion at each stage of maturation has not been fully evaluated. However, Bolon and Schneider (1999) showed using histological methods that the visual method of classification was reasonably accurate, but tended to slightly underestimate the proportion of spawning fish and overestimate the proportion of maturing fish when spawning was occurring in Placentia Bay (NAFO Subdiv. 3Ps).

Annual estimates of age at 50\% maturity (A50) for females from the 2 J 3 KL cod stock, collected during annual autumn DFO research bottom-trawl surveys, were calculated as described by Morgan and Hoenig (1997). Maturation is estimated by cohort rather than by year (Table 33); prior to the 2001 assessment maturation was estimated by year. In addition, data extending back to 1960 have been included in the current analyses. The estimated age at 50% maturity (A50) was generally between 6.0 and 7.0 among cohorts produced in the mid-1950s and around 6.0 among those produced during the late 1960s to the early 1980s, but declined dramatically thereafter to a low of 5.0 for the 1989 cohort (Fig. 26). Age at maturity remained low but variable (5.1-5.7) for the 1990-2001 cohorts, with no clear trend. Males show a similar trend over time (data not shown), but tend to mature about one year earlier than females.

The annual estimates of proportion mature for ages 3-8 show a similar increasing trend (i.e. increasing proportions of mature fish at young ages) through the late 1970s and 1980s, particularly for ages 5,6 , and 7 (Fig. 27). For example, the proportion of 6 yr olds that are mature has increased from about 15\% during the early 1960s to about 50\% in the 1970s and 1980s and to about 80% during the 1990s and 2000s. There is considerable year-to-year variability, part of which, in recent years, may be due to small sample sizes. Because of this variability, the proportion of females at young ages that contribute to the spawner stock biomass is uncertain.

Currently, the age composition of the offshore components of 2 J 3 KL cod remain extremely protracted with very few cod older than age 6 . A spawning stock biomass that consists mainly of older fish, or a broad age range, may result in a longer time span of spawning (Hutchings and Myers 1993; Trippel and Morgan 1994). Older, larger fish also produce more viable eggs and larvae (Solemdal et al. 1995; Kjesbu et al. 1996; Trippel 1998).

Portions of the inshore cod populations of $2 J 3 K L$ have a more extended age distribution with some larger, older cod, particularly around the Bonavista Peninsula, where the ages of cod in the catch extend
out to the mid-teens. Maturities are available from sampling the sentinel catch in the inshore of 3KL, mainly for cod aged 4 and older. A previous analysis of data collected by the inshore sentinel survey during 1995-97, fitted by year rather than by cohort, showed a similar low age at maturity to that observed for the offshore portion of the stock (Lilly et al. 1998a).

6.2 GROWTH

The lengths-at-age and weights-at-age of cod sampled during the autumn surveys confirm the general pattern of a decline in the 1980s and early 1990s as observed in commercial weights-at-age (Fig. 9). The research survey data (Tables 34, 35; Fig. 28a and b, 29) illustrate that the changes varied with Division; there was a strong decline in Div. 2J, a lesser decline in Div. 3K, and little or no decline in Div. 3L. The divisional differences in mean lengths and weights are more apparent in Fig. 30, which focuses on changes in cod of ages 4 and 6 . Superimposed on the long-term decline are periods of relatively quicker or slower growth associated with changes in water temperature (Shelton et al. 1999).

The trend toward low mean lengths-at-age and weights-at-age in the early 1990s has been reversed during the latter half of the 1990s. For example, in Div. 2J, where the decline was the greatest, recent mean lengths-at-age have been at about the average for the 1978-2005 period (Fig. 28b).

Size-at-age has varied without trend in the past few years. Sample sizes at ages greater than age 4 have been very small since about 1992-94 (Lilly 1998), so the accuracy of the estimates is likely to be poor.

6.3 CONDITION

Condition can be expressed in various formulations. In this paper it is presented as $\left(W / L^{3} * 10^{5}\right)$, where W is either the gutted weight of the fish or the liver weight in kg , and L is the length in cm . Arithmetic means by Division, year and age are presented for gutted condition (Table 36; Fig. 31) and liver index (Table 37; Fig. 32).

In Div. 2J, both gutted condition and liver index declined in the early 1990s. During the second half of the 1990s gutted condition returned to approximately normal, whereas the liver index improved but did not fully recover. There has been variability with little trend since the mid-1990s.

In Div. 3K, gutted condition declined during the early 1990s and improved during the latter half of the 1990s. Liver index changed little during the 1990s. As in Div. 2J, there has been variability with little trend since the mid-1990s.

In Div. 3L, gutted condition has remained relatively unchanged over time whereas liver index increased considerably in the early 1990s and has since declined to an intermediate level.

Historic trends in condition indices are complex and poorly understood (Lilly 1996, 1998, 2001).

7 STOCK TRENDS

As discussed in Section 4, cod in the inshore of Div. 3KL appear to have experienced different dynamics than cod in the offshore of Div. 2J3KL since at least the mid-1990s. In recognition of these differences, the status of cod in the offshore has been presented separately from that of cod in the inshore since the late 1990s.

7.1 OFFSHORE

There is at present no analytical model of the dynamics of cod in the offshore of 2 J 3 KL . Information regarding trends in the dynamics of cod in the offshore has come primarily from the research bottom-trawl surveys.

Trends in total abundance and biomass in index strata are reported for the autumn surveys in Section 5.1.2.1 and for the spring surveys in Section 5.1.3.1.

The present section provides information on spawner stock biomass, recruitment and mortality.

7.1.1 Spawner stock biomass in the offshore

An index of spawner stock biomass in the offshore was derived from catches and sampling during autumn bottom-trawl surveys. Because the surveys were conducted during the autumn, it was thought that the population biomass estimated in a given year would provide an appropriate index for spawner biomass in the following spring. The spawner biomass on January 1 in year y was computed as

$$
\sum_{a=1}^{20}\left(N_{a-1, y-1} \times P m_{a-1, y-1} \times W_{a, y}\right)
$$

where N is population number, Pm is proportion mature, W is individual weight (kg), a is index of age ($a=1-20$) and year is index of year ($y=1984-2006$). N was computed by areal expansion of the stratified arithmetic mean catch at age per tow in index strata in Div. 2J, 3K and 3L combined (Table 27). Pm is the proportion of female cod that were mature, as estimated from a probit model fitted by cohort to observed proportions mature at age (see Section 6.1). W is the estimated weight on January 1. These weights were computed from mid-year commercial weights (Table 9) as described in Lilly et al. (2003). The Table of January 1 weights was last presented in 2003 (see Table 11 of Lilly et al. 2003). Weights derived from sampling of the commercial catch are used so as to be consistent with the weights used in the inshore SPA (see Section 7.2.2.2). Note that the computation of spawner biomass as described here differs from computation of the total biomass as illustrated in Fig. 13 in the use of commercial weights-at-age, rather than the weights-at-age computed from the survey samples, and in extrapolation from a mean catch per tow rather than a summation of biomass estimates calculated for individual strata. (Recall that some strata were not surveyed in some years.)

The index (Fig. 33) declined quickly after 1990 to reach a minimum in 1995. There was a slight increase during the late 1990s followed by a slight decline and greater among-year variability in the mid-2000s. Despite the increase in proportion of fish mature at age (Section 6.1) and the increase in commercial weights at age (Section 2.6), the average index during the most recent three years was only 1% of the average index in the period 1984-89 (excluding the high value in 1987).

7.1.2 Recruitment in the offshore

The weakness of recent year-classes is emphasized when mean catch at age per tow (Table 27) is plotted for the 1976-2004 year-classes at ages 1-3 (Fig. 34a). For age 1, year-class strength declined from 1994 to 1996, increased to 1999, and then fluctuated without trend. The 2004 year-class appears very small. The catch rates of some of these year-classes appear strong at age 1 compared with year-classes prior to 1994, but of course this is simply a reflection of the weak ability of the Engels trawl to catch small fish. The catch rates of many of the earlier year-classes appear much stronger when converted to Campelen equivalents, and even this underrepresents their relative strength, because zero catches cannot be converted.

By age 3 all year-classes from 1992 to 2002 look weak even when compared with unconverted catches of some of the year-classes from the early and late 1980s (Fig. 34a).

Year-class strength has also been expressed as an index, wherein the strength of a year-class is taken from the catch rates at ages 2 and 3 (Campelen equivalents prior to 1995 and actual catch rates from 1995 onward), and the rates within each age are scaled to a maximum of 1 (Fig. 34b). This index shows the 1980-82 year-classes to be relatively strong, and the 1986 and especially the 1987 year-classes to be equally strong. The latter peak of young fish seemed to disappear rapidly from the surveys and commercial catches and made only a very small contribution to the spawning stock. All year-classes from 1990 onward have been very weak.

7.1.3 Mortality in the offshore

Total mortality rates at age in each year, $Z_{\mathrm{a}, y}$ (Fig. 35), were estimated from catch rate at age during the autumn research vessel (RV) bottom-trawl surveys in 2 J 3 KL (combined) by applying the following equation:

$$
Z_{a, y}=-\ln \left(R V_{a, y} / R V_{a-1, y-1}\right)
$$

where ages $(a)=2$ to 15 and years $(y)=1984$ to 2005. For example, mortality of the 1991 year-class from the autumn of 1996 to the autumn of $1997(Z=2.16)$ is referenced to age 6 in 1997. This is intended to reflect the likelihood that most of the deaths experienced by the 1991 year-class from autumn 1996 to autumn 1997 will have occurred during 1997.

There is considerable variability in these data (Fig. 35). Prior to the collapse the various age groups tended to follow the same pattern, reflecting trends in mortality and among-year variability (year effects). The most extreme instance of a year effect was the anomalously high index value in 1986, which resulted in the appearance of production of fish (negative mortality) from 1985 to 1986 and the appearance of very high mortality from 1986 to 1987. Since the collapse of the stock, the Z's are characterized by some year effects, but none as dramatic as in the latter half of the 1980s. There is also, since the mid-1990s, considerable among-age variability, much of which may be a consequence of sampling error associated with very low population size.

Note that the mortalities computed from survey catches should be interpreted as indicators of trends over time, rather than absolute values. Rates calculated for younger ages (e.g. from age 2 to age 3) may underestimate mortality for two reasons. (1) The proportion of a year-class occurring within the offshore index strata increases with age (and perhaps length within age) as the fish move from inshore nursery grounds to the offshore. There is no information regarding what proportion of 2 J 3 KL cod at age occurs within the offshore index strata at the time of the autumn survey. (2) The proportion of those fish in the path of the trawl that are actually caught by the trawl increases with fish length. This was especially true for the Engels trawl that was used prior to 1995. Although the catch rates from that trawl have been adjusted to those of the Campelen trawl with a length-based conversion formula, the success of the conversion may have declined with decreasing fish length because of an increase in the proportion of sets where fish were available but the catch was nil. There is no independent information on catchability at age for either trawl. Note that mortality rates computed from these data may be too high for older ages, especially since the introduction of the Campelen trawl. This is because the ability of the trawl to catch larger cod may decline at larger fish sizes because the slow tow rate and short tow duration may be insufficient to tire the fish.

To illustrate more clearly the trend in total mortality over time, the data for just two ages (4 and 6) were illustrated separately during the 2005 assessment (see Fig. 36 of Lilly et al. 2005). In that figure the data were presented as annual mortality rates (proportion of fish dying in a year) rather than as
instantaneous rates because it was thought that many readers may be better able to interpret an annual death rate of 0.88 than an instantaneous mortality rate of 2.16.

During the present assessment meeting, it was decided to combine several ages in the computation of annual mortality rather than to highlight the mortality at specific ages. Mortality was computed from the sum of catch rates at ages $4-6$ in year t-1 and the sum of catch rates at ages 5-7 in year t. Despite the absence of a directed fishery in the offshore, mortality at ages 5-7 has remained very high (averaging 0.6 during the 10 years since introduction of the Campelen trawl) (Fig.36).

To date, it has not been possible to distinguish the relative contributions of fishing and natural mortality to this high total mortality. Reported by-catches in the offshore have been small (Section 2.4), so considerable attention has focused on the possibility that natural mortality is high. High natural mortality could be the consequence of several factors, but predation (Section 9.2) and insufficient prey (Section 9.3) have received greatest attention.

7.2 INSHORE

7.2.1 Exploitation rates from tagging

A large scale mark-recapture (tagging) study of cod in the inshore of NAFO Div. 3KL was started in the mid-1990s. This study has provided new information about cod movement patterns and stock structure, as well as estimates of exploitation rates among cod tagged in different regions of the inshore (Brattey 1999, 2000; Brattey and Healey 2003, 2005; Cadigan and Brattey 2000, 2003). The numbers of cod tagged each year has varied substantially depending on factors such as funding and whether or not the directed cod fishery has been open. In the last three years (2003-05) the directed cod fishery has been closed and annual landings (from by-catch fisheries and the sentinel program) have been small (<1,200 t); consequently, the opportunity for tag returns has diminished, less tagging has been conducted, and fewer recaptures have been obtained.

As described by Lilly et al. (2003), two approaches have been employed to estimate exploitation rate from the tag return data. One method (Brattey and Healey 2003) estimates annual exploitation of the fish tagged within each tagging experiment. This calculation takes into account all recaptures, irrespective of where and when the recaptures occurred. (For example, for a tagging experiment conducted in Smith Sound, the exploitation rate for that experiment would be calculated from all recaptures within a specific year. This would include not only those fish recaptured within Smith Sound, but also all those recaptured as the fish went through their annual migration out of Smith Sound, perhaps as far as Notre Dame Bay, and then back to the Sound.) The second approach (Cadigan and Brattey 2003) attempts to estimate the exploitation rate of cod within a specific area and time when the commercial fishery has been open. With this approach, the exploitation is calculated from the recovery rate of all fish that are estimated to be within the area during the specified period. (For example, the exploitation rate that is calculated for 3 K for a specific period in time would be based not only on fish that were tagged within 3K, but also fish that were estimated to have moved into 3K from other areas, such as northern 3L, southern 3L and even 3Ps. There would also be allowance for fish that were tagged within 3K but moved elsewhere.)

7.2.1.1 Exploitation rates from individual tagging studies

The annual exploitation rate for each tagging experiment in 3KL has been estimated and summarized by geographic area (Brattey and Healey 2003, 2005).

The tag returns in 2003 were particularly interesting because the majority came from the Smith Sound mass mortality in April of that year. Estimates of exploitation were high (10-24\%) for 11 of 22 experiments that involved release of cod tagged in 3Lb during 1999-2002, indicating that the event resulted in mortality of a substantial proportion of the cod that had been tagged in the local area in recent years.

Because tag returns during 2004 and 2005 were very small (89 and 71 tags respectively), reporting rates and exploitation rates could not be reliably estimated.

7.2.1.2 Exploitation rates and exploitable biomass in specific areas

Exploitation rates and exploitable biomass were estimated by Cadigan and Brattey (2003) for specific areas during periods when the commercial fishery was open in 1999-2002. The procedure could not be repeated for 2003-05 because of the much reduced levels of catch and tagging.

7.2.1.3 Evidence of high natural mortality based on tagging data

The modelling conducted by Cadigan and Brattey (2003) provided evidence that natural mortality was much higher than 0.2 in southern $3 K$ and moderately higher than 0.2 in 3L. During the 2003 assessment, it was concluded that natural mortality might be as high as 0.8 in southern 3 K and 0.4 in 3 L . A value of 0.5 was chosen for sequential population analysis (SPA) of the cod in the inshore (Lilly et al. 2003). The analyses conducted by Cadigan and Brattey (2003) were re-examined during the 2005 assessment (Lilly et al. 2005), and led to the conclusion that 0.65 might be appropriate for the natural mortality of cod in southern 3 K during the period of the inshore fishery, and that 0.3 might be appropriate for the cod in northern 3L. It was assumed that 0.4 might be an appropriate level for natural mortality of the cod in the central inshore area during the period of the inshore fishery, and that level was applied to all years and ages for SPA modelling during 2005.

7.2.2 Sequential population analysis (SPA)

7.2.2.1 Very brief history of SPAs for 2J3KL cod

Whole-stock SPAs

The history of assessments of 2J3KL cod, from 1977 until the moratorium in 1992, is reported in considerable detail by Bishop and Shelton (1997). Results from the various SPAs explored during the assessment meetings in 1992 were used in projections of stock size under different levels of fishing mortality, even though a problem of lack of model fit in the most recent years was a serious concern (Baird et al. 1992). The SPA in 1993 (Bishop et al. 1993) had a severe residual pattern and was not used as a basis for projection. By 1994 the residual pattern was so strong (Bishop et al. 1994) that it was concluded that the results did not adequately represent stock abundance. That is, the SPA was rejected. An SPA was again attempted in 1996 (Shelton et al. 1996), and again the residual pattern was so severe that it was considered that the results were "illustrative" of the population dynamics, but were not sufficiently well estimated to allow the projection of stock size. "Illustrative" SPAs were explored again in 1997, when the results were used as the basis for a projection to evaluate an F0.1 control rule (Murphy et al. 1997), and in 1998, when a tentative risk analysis was attempted (Lilly et al. 1998b).

An analytical assessment was not attempted in 1999 (Lilly et al. 1999). The inability to reconcile reported catches and the research vessel index in the late 1980s and early 1990s had not been resolved. In addition, it was felt that the research vessel bottom-trawl index, the only long-standing fishery-independent index available for this stock, may no longer be representative of the stock as a whole. It was thought that the index was adequately reflecting the status of the stock in the offshore, which constitutes the vast bulk of the stock area, but was not reflecting the status of cod found on traditional inshore fishing grounds from White Bay to St. Mary's Bay. It was decided that an analytical assessment of the inshore alone was not possible because inshore catches prior to the moratorium could not be apportioned into those coming from inshore components and those coming from components that migrated into the inshore from the offshore.

An analytical assessment was not attempted in 2000 (Lilly et al. 2000b).
In 2001, several attempts were made to combine catch data and various indices in an SPA for the whole stock (Lilly et al. 2001; Morgan 2001). The formulations incorporated new indices from the inshore (research vessel inshore, sentinel gillnet and sentinel linetrawl) along with the autumn and spring research vessel offshore indices, but the attempts were considered unsuccessful. As noted above, during the latter half of the 1990s and early 2000s a high (but unquantified) proportion of the cod in the stock area was in the inshore, and almost all the catch was taken in the inshore. Thus, the offshore bottom-trawl survey no longer reflected a consistent proportion of the stock. Various new indices from the inshore were now available, but these were of short duration. Even if these indices were of longer duration, it is likely that they too would be considered not to reflect a consistent proportion of the stock because of their limited geographic coverage.

It is important to note that one of the models examined during the 2001 assessment meeting addressed the concern regarding the poor fit between SPA model estimates and the offshore research vessel index. Shelton and Lilly (2000) computed the number and age of fish that would have to be added to the reported catch during several years in the early 1990s to make the catch fit the survey index, without relaxing standard assumptions regarding natural mortality and catchability. P. Shelton has used this "missing fish" model in various exercises, most notably for computing metrics of population change in the provision of information to the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (Smedbol et al. 2002).

Assumptions in this model result in the appearance of a stock collapse that was a little later than the collapse depicted by models that did not have added catch (e.g. Bishop et al. 1993; Lilly et al. 1998b). In addition, the 1986 and 1987 year-classes, which initially seemed to be strong at age 3 in SPA estimates (Baird et al. 1991) but later (after their rapid disappearance from the surveys) seemed much weaker (Bishop et al. 1993, Lilly et al. 1998b), appear in the "missing fish" model to be strong (Morgan et al. 2000; Smedbol et al. 2002). This variability in perception is particularly dramatic for the 1987 year-class. Thus, the history of stock dynamics during the latter half of the 1980s and the early 1990s differs between the "missing fish" model and models that have not been altered by the addition of a substantial quantity of unreported catch.

Inshore SPA

During the 2001 assessment meeting (Morgan 2001), it was suggested that, with additional time, it may be possible to use the inshore bottom-trawl survey and the sentinel surveys to tune an inshore SPA. A suggested approach would be to ignore the historic catch data and construct an inshore assessment using the most recent data in isolation.

This new approach was attempted in 2003 (Lilly et al. 2003). Several models and formulations were explored. An analysis using the adaptive framework (ADAPT) (Gavaris 1988) incorporated catch at age for ages 2 to 10 for years 1995-2002, mean numbers per tow from the autumn stratified-random bottom-trawl survey in inshore strata for ages 2 to 9 and years 1996-2002 (with the exception of 1999 when no survey was carried out), sentinel survey $51 / 2$ inch gillnet catch rate index for ages 3 to 9 for years 1995-2002, sentinel survey $31 / 4$ inch gillnet catch rate index for ages 2 to 9 for years 1996-2002, and sentinel line trawl catch rate index for ages 3 to 9 for years 1995 to 2002. It should be noted that this SPA was based on all catches taken in 2 J 3 KL , including cod that overwintered in 3Ps. That is, the SPA represents more than the resident coastal group that overwinters within 3 K and 3 L (primarily northern 3 L).

During the 2005 assessment meeting (Lilly et al. 2005), an inshore SPA was again conducted, but an attempt was made to limit the analysis to those cod that were inshore residents. For the purpose of the assessment, the inshore was subdivided into three areas (Fig. 1h): 1) a northern area (2 J and northern 3K) that was understood to contain relatively few cod; 2) a central area (southern 3 K and northern 3 L) where most of the resident inshore fish were located; and 3) a southern area (southern 3 L) that was understood to be largely dependent on cod that overwinter in inshore and offshore areas of 3Ps, move into southern 3L
in the spring-summer and return to 3Ps in the autumn. The boundary line between the northern and central areas was placed at Partridge Point, which is the headland of demarcation between statistical unit areas 3 Kh and 3 Ki (see Fig. 1d for an illustration of the unit areas). This headland was chosen based on visual inspection of various plots of the return patterns from tagging studies in southern 3 K and 3 L . The boundary line between the central and southern areas was placed at Grates Point, which is the headland of demarcation between statistical unit areas 3Lb and 3Lf. This headland was chosen based on tag return patterns, which illustrate that few fish tagged within and to the north of Trinity Bay (3Lb) are recaptured to the south. The SPA incorporated catch data from just the central inshore area (actually unit areas 3Ka, d,h,i and 3La,b) and was tuned with data from the three sentinel surveys.

7.2.2.2 SPA for resident inshore cod

For the present assessment, a sequential population analysis was conducted for the central inshore area alone following the procedure adopted during 2005.

SPA model structure

Several SPA analyses were evaluated by the Regional Advisory Process (RAP) meeting. The agreed ADAPT inputs and model structure were very similar to those in 2005 and were as follows.

A catch at age matrix was computed for all landings in $3 \mathrm{~K}(3 \mathrm{Ka}, \mathrm{d}, \mathrm{h}, \mathrm{i})$ plus 3 L north (3La,b). The matrix has ages 2 to 10+ (where 10+ is 10-20) for years 1995-2005 (Table 38). Note that this catch includes a small quantity from unit areas 3 Ka and 3 Kd , which are outside the central inshore area. The catch from these external areas contributed 3.3% of the total (1995-2005) catch used in the modelling. On an annual basis, the percentage of catch taken in 3Ka,d varied from 9.2\% in 1996 (when there was a recreational fishery but no commercial fishery) to 0.7% in 2003 (when most of the "catch" came from the Smith Sound mass mortality). During the period of the directed fishery (1998-2002) the average annual percentage was 2.9 (range 1.2-4.0). The value in 2005 was 4.9\%.

The commercial mean weights-at-age computed during the process of deriving catch at age are provided in Table 39. Beginning of year weights-at-age, computed from the commercial weights-at-age, are provided in Table 40.

The standardized sentinel catch rates at age were recomputed for just sites within the central inshore area (3Kh, 3Ki, 3La, 3Lb). These sites were Coachman's Cove to Heart's Content, inclusive. All three sentinel catch rate indices were used to estimate population abundance: the $51 / 2$ inch gillnet index (ages 3-9), the $31 / 4$ inch gillnet index (ages 3-9), and the linetrawl index (ages 3-7) (Table 41).

Natural mortality (M) was fixed at 0.4 (33\%) for all years and ages. (See Section 7.2.1.3.)
The abundance of age classes 4-10+ were estimated for January 1, 2006.
F-constraints using the FRATIO method of ADAPT were applied to complete the remaining cohorts. Using this method, the ratio of the fishing mortality on the plus-group (10+) relative to the oldest true age (age 9) is estimated or assigned. In the present analysis, three FRATIO parameters were estimated: a common F-ratio over 1995-2002, an F-ratio parameter for 2003, and a common F-ratio parameter for 2004-05. The 2003 and 2004-05 parameters were considered separately due to unusual catch circumstances in those years: in 2003, the majority of the catch came from the Smith Sound mass mortality; in 2004 and 2005, removals were primarily by-catches from a winter (blackback) flounder fishery that used gillnets of larger mesh size than those typically employed in directed cod fisheries (Sections 2.2 and 2.3).

SPA model output

Table 42 provides the ADAPT parameter estimates, with associated bias and standard errors. The relative error of most parameters is about 20%. However, the abundance estimates for ages 4 and the $10+$ group have relative errors that exceed 30%.

Residual plots from the ADAPT analysis are presented in Fig. 37a-c. These plots suggest that the model fit is acceptable ; however there is some evidence of year effects (Fig. 37c).

Estimates of bias-adjusted abundance at age are given in Table 43. Total abundance (2+) declined from almost 50,000,000 individuals in 1995 to about 25,000,000 individuals in 2000, and has subsequently risen to about 42,000,000 individuals (Fig. 38).

Estimates of recruitment at age 3 (Fig. 39) suggest that the 1992 year-class has been the strongest within the short period covered by the SPA. Year-class strength declined to a low in 1996, increased to 2000, and varied at a relatively high level in 2001 and 2002.

Estimates of fishing mortality at age are given in Table 44. The average fishing mortality over ages 5-10+ (Fig. 40) was low from 1995 to 1997 when the directed fisheries were closed (except for a small food/recreational fishery in 1996). During the period of the index/commercial fisheries (1998-2002) there was a variable but increasing trend in fishing mortality. Fishing mortality declined dramatically when directed fishing was stopped in 2003, but nevertheless landings from the mass mortality event in Smith Sound during the spring of 2003 indicate a level of "fishing" mortality comparable to that during 1998 when the directed fishery was first reopened. This reflects not only the number of fish killed during the event but the fact that a high proportion of the fish were relatively old (see Sections 2.2 and 2.6). The fishing mortality estimated for 2004 and 2005 is relatively low, but higher than in the three years prior to the opening of the fishery.

Population biomass at age (Table 45) was computed from the bias-corrected numbers at age at the beginning of the year (Table 43) and beginning of year weights-at-age derived from commercial sample data (Table 40). Exploitable (4+) biomass peaked at about $30,000 \mathrm{t}$ in 1997-98, declined to about 12,000 t in 2003, and subsequently increased to about $23,000 \mathrm{t}$ by the beginning of 2006 (Fig. 41).

Spawner stock biomass (SSB) at age (Table 46) was computed from the population biomass at age (Table 45) and the cohort model estimates of proportion mature at age from offshore survey data (Table 33). SSB increased from 10,000 t in 1995 to about 22,000 t in 1998-99, declined to $7,000 \mathrm{t}$ in 2003, and subsequently increased to $14,000 \mathrm{t}$ by the beginning of 2006 (Fig. 41).

In summary, population biomass increased during the mid-1990s as a result of growth of the 1990 and 1992 year-classes. (The 1990 year-class was stronger at age 5 than the 1992 year-class - see Table 45.) Biomass then declined by more than 50% from about 1998 to 2003 as a result of reduced recruitment and increasing fishing mortality. Biomass increased again after 2003 as a result of much-reduced fishing mortality and improved recruitment.

8 CONCLUSIONS AND ADVISE

This section focuses on the implications of reopening an inshore fishery.

8.1 INSHORE FISHERY AND INSHORE POPULATION GROWTH

One of the many uncertainties regarding this exercise is the magnitude of the year-classes that will enter the exploitable portion of the stock over the next few years. The $31 / 4$ inch mesh sentinel gillnet index was designed to provide an index of incoming year-classes, but age 2 estimates from this index have been excluded from the SPA tuning due to poor fit. However, catch rate information is also available for ages 0
and 1 from beach seining in Newman Sound in Bonavista Bay (Gregory et al. 2006). A comparison between catches at age 1 from the beach seine studies (R . Gregory, Fisheries and Oceans Canada, St. John's, NL, April 2006, pers. comm.) and year-class strength at age 3 from the SPA reveals a promising positive correlation. The beach seine survey results for the 2003 and 2004 year-classes are the lowest in the time series.

Central inshore area

Deterministic projections of stock size from 2006-09 were computed from the SPA results for the central inshore area (southern 3 K and northern 3 L). Projections were conducted under catch options of 0 t , $1,250 \mathrm{t}$, and $2,500 \mathrm{t}$. Due to uncertainties in future recruitment, three values (low, medium, and high) were considered in the projections. The low recruitment value was the minimum estimate from 1995 to 2004 of age 2 abundance from the SPA; medium recruitment was the 2002-04 geometric mean; and high recruitment was the maximum estimated value (at age 2) in the SPA. The value of natural mortality used in the projections was the same as that in the SPA ($M=0.4$). An average partial recruitment vector from 2000 to 2002 (i.e. prior to the second moratorium) was applied in the projection. The projection weights at age are geometric means of the values in 2003-05. The above input parameters are summarized in Table 47.

The projection of spawner biomass from 2006 to 2007 is insensitive to the assumed value of recruitment. With no removals or a catch option as high as $2,500 \mathrm{t}$, spawner biomass is projected to increase (Table 48a).

In the three year projection (2006-09), assuming no removals or a catch option of 1,250 t, spawner biomass is projected to increase for each recruitment assumption (Table 48b). At a catch option of 2,500 t, spawner biomass is projected to decrease if recruitment is low, but increase if recruitment is medium or high. Trajectories of spawner biomass for each recruitment level and catch option are illustrated in Fig. 42.

In the medium recruitment assumption of the three year projection, the sizes of the 2003-07 year-classes are assumed to be equal to the geometric mean of the 2000-02 year-classes. As noted above, the beach seine survey in a limited area of Bonavista Bay indicates that the 2003 and 2004 year-classes at age 1 are the lowest in the time-series. This indicates that the projections assuming low recruitment may be more realistic.

Projection results are dependent, of course, on the values of all variables used in the computations, but particular note is made of the high (0.4) value of natural mortality applied in both the SPA and the projections. There is insufficient information on spatial and temporal variability in natural mortality to explore informative alternatives. However, if future natural mortality differs from the assumed value, then the projected changes in SSB will differ from the above results.

The Science Advisory Report (DFO 2006a) provides the results of a second method of exploring the consequences of various catch options. The method and results are described by Shelton (2006).

Northern inshore area.

For the northern inshore area (2 J plus northern 3 K), it is inferred from the low catch rates in the sentinel surveys (1995-2004) and the commercial fishery (1998-2002) that cod densities have been very low for at least a decade. However, catch rates in the sentinel surveys increased during 2005. This has provided some optimism that the abundance of cod in the north is improving. Nevertheless, to date this increase has been seen in just one year. In addition, the stock affinities of the fish remain uncertain. They appear to be immigrants, possibly from the offshore.

Given the fact that the increased catch rates have been seen in just one year, and the affinity of the fish is uncertain, it would be prudent to keep catches low in this area.

Southern inshore area

For the southern inshore area (southern 3L), it is clear that catch rates have been relatively high at certain times and in some areas. The tagging data illustrated that fisheries in the area during 1998-2002 were primarily dependent on fish that migrate seasonally between 3Ps and 3L. Since the magnitude of migration in future years cannot be predicted, the effect of removals of various levels cannot be estimated. However, fisheries in southern 3L will contribute additional mortality to groups of fish that migrate between 3Ps and southern 3L. Some of these groups already experience high fishing mortality within Placentia Bay.

8.2 INSHORE FISHERY AND OFFSHORE RECOVERY

There is a possibility that cod currently offshore in 2 J 3 KL undergo spring/summer feeding migrations to the inshore, similar to their historic pattern. At current offshore population levels, any offshore fish exploited in an inshore fishery could further impede recovery in the offshore.

The potential for cod currently in the inshore to repopulate the offshore of 2 J 3 KL remains uncertain. Studies with one specific genetic technique have demonstrated a population substructure between most inshore and offshore areas. It has been suggested that this substructure indicates a low likelihood that inshore-spawning cod will contribute to offshore recovery (Beacham et al. 2002). Nevertheless, it is well known that fish populations can expand into new environments, and that this is more likely to occur as population levels increase. It is possible, then, that cod from inshore populations might expand into the offshore, and allowing the inshore populations to grow might increase the likelihood of this happening.

In consideration of the above, there is a risk that fishing in the inshore will impede recovery in the offshore. However, at this time the level of risk is difficult to quantify.

8.3 IMPLICATIONS OF FISHING BAY-BY-BAY

The remit for the meeting (Appendix 1) requested an assessment of the implications of conducting an inshore fishery on a bay-by-bay basis. It is assumed that "bay-by-bay basis" refers to limitations placed on the area in which individual harvesters may fish, not to the establishment of quotas for individual bays (or sections of coast).

During the inshore fisheries of 1998-2002, all participants were given the same individual quota but were limited with respect to the area in which they were permitted to fish (see Appendix 2). However, the distribution of fish harvesters does not match the distribution of cod. This has the potential of causing geographic variability in fishing mortality. For example, after the fishery was opened in 1998, catch rates in the index/commercial fishery declined very rapidly in southern 3 K , and analysis of tagging data revealed that exploitation was much higher in southern 3 K than in Trinity Bay.

One possible explanation for the above difference in exploitation rate is that fisheries in Trinity Bay (particularly northern Trinity Bay) exploit primarily one relatively large local population that overwinters in Smith Sound and migrates along the coast in summer. In contrast, the many fish harvesters in Notre Dame Bay may exploit several local stocks, each of which is much smaller than the Smith Sound population. These populations can be heavily exploited if there is not a substantial influx of fish from elsewhere, such as Smith Sound.

Care must be take to preserve and enhance population spatial structure and diversity within the stock.

8.4 HAWKE CHANNEL CLOSED AREA

The remit for the meeting (Appendix 1) requested an assessment of the effect of the Hawke Channel closed area (cod box). The reader is referred to the meeting Proceedings for an overview of presentations and discussions regarding this issue.

9 OTHER CONSIDERATIONS

The ecosystem in which the 2 J 3 KL cod stock is but one component has experienced dramatic changes since the 1980s. The relative importance of fishing, physical environment and biological interactions in causing and sustaining those changes is difficult to discern.

9.1 PHYSICAL OCEANOGRAPHY

The marine environment off Labrador and eastern Newfoundland has experienced considerable variability since the start of standardized measurements in the mid-1940s (Colbourne and Anderson 2003; DFO 2006b). A general warming phase reached its maximum by the mid-1960s. Beginning in the early 1970s there was a general downward trend in ocean temperatures, with particularly cold periods in the early 1970s, early to mid-1980s and early 1990s. Ocean temperatures started to warm in 1995. The decade of the 1990s experienced some of the greatest extremes, with particularly cold conditions in 1991 and very warm conditions in various years of the late 1990s. There have also been extremes within a year, as illustrated by the particularly cold winter and unusually warm summer/autumn of 2003.

Ocean temperatures have been above normal for the past decade, with some years near record highs. Water temperatures in 2004 reached record highs in some areas (Colbourne et al. 2005). In general, water temperatures in 2005 were slightly below 2004 values, but still well above long-term means (Colbourne et al. 2006). Ice coverage during 2004 was the second lowest in 42 years, and its duration was generally less than average (Petrie et al. 2005). Ice coverage during 2005 was the fifth lowest in the time-series, and again the duration was generally less than average (Petrie et al. 2006).

Studies based on data up to the mid-1990s have demonstrated that cod growth declines when temperature declines (Shelton et al. 1999). There has been no analysis of more recent data. Whether or not the cold water of the early 1990s influenced recruitment and natural mortality is contentious. (An overview of studies regarding the role of the environment in the collapse of 2 J 3 KL cod is provided in Appendix 5 of Lilly et al. (2005), and an overview of hypotheses concerning the non-recovery of 2 J 3 KL cod is provided in Appendix 6 of that document.)

No new information regarding the influence of physical oceanography on cod biology and dynamics was presented to the meeting. It is anticipated that the cod off southern Labrador and eastern Newfoundland will be more productive when water temperatures are toward the warm end of the regional range, but to date the populations of cod in the offshore have not started to increase.

9.2 PREDATORS

A wide variety of predators are known to consume cod, mainly during the cod's juvenile stages (Pálsson 1994; Bundy et al. 2000). Cannibalism is well documented for 2J3KL cod and is thought to be an important source of mortality in some cod stocks (Bogstad et al. 1994). However, the predator that has attracted the most interest and concern in recent years is the harp seal.

No new information regarding the impact of seals on the dynamics of cod was presented to the meeting. Previous cod assessments (DFO 2003) have concluded, based on seal feeding behaviour and trends in the abundance of both seals and cod, that predation by seals is a factor contributing to the high total mortality of cod in the offshore and the high natural mortality of adult cod in the inshore.

Estimates of the quantity of cod consumed by harp seals are based on estimates of harp seal population numbers, energy requirements of individual seals, the average duration of seal occurrence within 2 J 3 KL , the relative distribution of seals between inshore and offshore, and stomach contents of seals sampled in the inshore and offshore in winter and summer. A major shortcoming is that there are very few stomach samples from the offshore, where most of the feeding by seals occurs. A two-year programme of enhanced study of seals, initiated in 2003, has included new population surveys, new studies of distribution, and new studies of diet, both inshore and offshore. The information from this programme is not yet available for review.

The estimates of prey consumption by seals rely on the presence and identification of hard parts (such as cod otoliths) in the seal stomachs. Seals also prey on cod by belly-feeding, a mode of predation on fish which are usually too large to be consumed whole. The seal takes a bite from the belly of the fish, removing the liver and gut, but not consuming the muscle or hard parts. Observations of belly-feeding were more frequent during 1998-2000 than in recent years, and occurred mainly in Notre Dame Bay and southern Bonavista Bay.

A pilot study on the efficacy of seal exclusion zones has been conducted in Smith Sound (Bowen 2004). The results of the study are not yet available.

Some discussion regarding the interaction between seals and cod is presented in an overview of hypotheses concerning the non-recovery of 2J3KL cod (Appendix 6 of Lilly et al. 2005). Additional information regarding seals and cod is presented in Appendix 7 of Lilly et al. (2005) and in Appendix 4 of the present document.

9.3 PREY

Cod feed on a wide variety of prey (Lilly 1987, 1991). The major prey for small cod are planktonic crustaceans, notably hyperiid amphipods in the north and euphausiids on Grand Bank. For medium-size cod the major prey are schooling planktivorous fish. The most important of these is capelin, but Arctic cod are eaten in the north, herring are consumed in inshore waters, and sand lance are important on Grand Bank. Larger cod tend to feed on medium-sized fish and crabs, especially toad crabs and small snow crabs. Shrimp are consumed by a broad size range of cod. Cod also feed on smaller cod, but cannibalism is not an important aspect of the diet of northern cod.

The prey that has received most attention is capelin. The trend in biomass of capelin, historically the major prey of cod in 2 J 3 KL , has been uncertain since the late 1980s. Biomass estimates from hydroacoustic surveys in the offshore have been much lower since the early 1990s compared with the 1980s, but indices of capelin biomass from the inshore have not shown such extensive declines. Some studies of cod condition and feeding indicate that cod may not be faring well in certain seasons and areas, and that this is due to low availability of capelin. Other studies and observations do not suggest any concerns at present about cod growth or condition. Whatever the present circumstances, there remains concern that there may not be sufficient capelin to support a recovery of the cod stock, especially in the offshore and in the north.

Some discussion regarding the interaction between cod and capelin is presented in an overview of hypotheses concerning the non-recovery of 2J3KL cod (Appendix 6 of Lilly et al. 2005). Additional information regarding cod and capelin is presented in Appendix 8 of Lilly et al. (2005) and in Appendix 4 of the present document.

REFERENCES

Baird, J.W., Bishop, C.A., Brodie, W.B., and Murphy, E.F. 1992. An assessment of the cod stock in NAFO Divisions 2J3KL. NAFO SCR Doc. 92/18, Ser. No. N2063. 69 p.

Baird, J.W., Bishop, C.A., and Murphy, E.F. 1991. An assessment of the cod stock in NAFO Divisions 2J3KL. CAFSAC Res. Doc. 91/53.

Beacham, T.D., Brattey, J., Miller, K.M., Le, K.D., and Withler, R.E. 2002. Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES J. Mar. Sci. 59: 650-665.

Bishop, C.A. 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO SCR Doc. 94/43, Ser. No. N2413. 23p.

Bishop, C.A., Anderson, J., Dalley, E., Davis, M.B., Murphy, E.F., Rose, G.A., Stansbury, D.E., Taggart, C., and Winters, G. 1994. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 94/40, Ser. No. N2410. 50 p.

Bishop, C.A., Murphy, E.F., Davis, M.B., Baird, J.W., and Rose, G.A. 1993. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 93/86, Ser. No. N2271. 51 p.

Bishop, C.A., and Shelton, P.A. 1997. A narrative of NAFO Div. 2J3KL cod assessments from extension of jurisdiction to moratorium. Can. Tech. Rep. Fish. Aquat. Sci. 2199: 66 p.

Bishop, C.A., Stansbury, D.E., and Murphy, E.F. 1995. An update of the stock status of Div. 2J3KL cod. DFO Atl. Fish. Res. Doc. 95/34.

Bogstad, B., Lilly, G.R., Mehl, S., Pálsson, Ó.K., and Stefánsson, G. 1994. Cannibalism and year-class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems (Barents Sea, Iceland and eastern Newfoundland). ICES Mar. Sci. Symp. 198: 576-599.

Bolon, A. D., and Schneider, D.C. 1999. Temporal trends in condition, gonado-somatic index and maturity stages of Atlantic cod (Gadus morhua) from Placentia Bay (subDivision 3Ps), Newfoundland, during 1998. DFO Can. Stock Ass. Sec. Res. Doc. 99/45.

Bowen, W.D. (Chairperson). 2004. Report of the seal exclusion zone workshop. 11-13 May 2004, Cambridge Suites, Halifax, N.S. DFO Can. Sci. Advis. Sec. Proc. Ser.2004/022.

Bowering, W.R., and Orr, D.C. 2004. By-catch of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) in the Canadian fishery for northern shrimp (Pandalus borealis, Koyer) in NAFO Subarea 2 and Divisions 3KL. NAFO SCR Doc. 04/67.

Brattey, J. 1999. Stock structure and seasonal migration patterns of Atlantic cod (Gadus morhua) based on inshore tagging experiments in Div. 3KL during 1995-97. DFO Can. Stock Ass. Sec. Res. Doc. 99/103. 19 p.
2000. Stock structure and seasonal movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL inferred from recent tagging experiments. DFO Can. Stock Ass. Sec. Res. Doc. 2000/084.

Brattey, J., Cadigan, N.G., Healey, B.P., Lilly, G.R., Murphy, E.F., Shelton, P.A., and Mahé, J.-C. 2005. Assessment of the cod (Gadus morhua) stock in NAFO Subdiv. 3Ps in October 2005. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/070.

Brattey, J., and Healey, B.P. 2003. Exploitation rates and movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL based on tagging experiments conducted during 1997-2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/032.
2005. Exploitation and movements of Atlantic cod (Gadus morhua) in NAFO Div. 3KL : further updates based on tag returns during 1995-2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/047.

Brodie, W. 2005. A description of the autumn multispecies surveys in SA2+ Divisions 3KLMNO from 1995-2004. NAFO SCR Doc. 05/8.

Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310: xiv + 157 p.

Cadigan, N., and Brattey, J. 2000. Lower bounds on the exploitation of cod (Gadus morhua) in NAFO Div. 3KL and Subdiv. 3Ps during 1997-99 from tagging experiments. DFO Can. Stock Ass. Sec. Res. Doc. 2000/073.
2003. Analyses of stock and fishery dynamics for cod in 3Ps and 3KL based on tagging studies in 1997-2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/037.

Carr, S.M., Snellen, A.J., Howse, K.A., and Wroblewski, J.S. 1995. Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf. Molecular Ecology 4: 79-88.

Colbourne, E.B., and Anderson, J.T. 2003. Biological response in a changing ocean environment in Newfoundland waters during the latter decades of the 1900s. ICES Mar. Sci. Symp. 219: 169-181.

Colbourne, E.B., Brattey, J., Lilly, G., and Rose, G.A. 2003. The AZMP program contributes to the scientific investigation of the Smith Sound mass fish kill of April 2003. DFO Atlantic Zone Monitoring Program Bulletin 3: 45-48. http://www.meds-sdmm.dfo-mpo.gc.ca/zmp/Documents/AZMP_bulletin_3.pdf

Colbourne, E., Fitzpatrick, C., Senciall, D., Stead, P., Craig, J., and Bailey, W. 2005. An assessment of the physical environment on the Newfoundland and Labrador Shelf during 2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/014.

Colbourne, E., Craig, J., Fitzpatrick, C., Senciall, D., Stead, P., and Bailey, W. 2006. An assessment of the physical oceanographic environment on the Newfoundland and Labrador Shelf during 2005. DFO Can. Sci. Adv. Sec. Res. Doc. 2006/030.
deYoung, B., and Rose, G.A. 1993. On recruitment and distribution of Atlantic cod (Gadus morhua) off Newfoundland. Can J. Fish. Aquat. Sci. 50: 2729-2741.

DFO. 2003. Northern (2J+3KL) cod. DFO Can. Sci. Advis. Sec. Stock Status Report 2003/018.
2004. Northern ($2 \mathrm{~J}+3 \mathrm{KL}$) cod Stock Status Update. DFO Can. Sci. Advis. Sec. Stock Status Report 2004/011.
2005. Stock assessment report on northern (2J+3KL) cod. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2005/024.

2006a. Stock assessment of northern (2J3KL) cod in 2006. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2006/015.

2006b. 2005 state of the ocean: physical oceanographic conditions in the Newfoundland and Labrador region. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2006/018.

Doubleday, W.G. (ed.) 1981. Manual on groundfish surveys in the Northwest Atlantic. NAFO Sci. Coun. Stud. 2: 7-55.

Drinkwater, K.F. 2002. A review of the role of climate variability in the decline of northern cod. Amer. Fish. Soc. Symp. 32: 113-130.

Gagnon, P. 1991. Optimization des campagnes d'échantillonnage: les programmes REGROUP et PARTS. Rapp. tech. can. sci. halieut. aquat. 1818: iii+20 p.

Gavaris, S., and Gavaris, C. A. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region. In Sampling commercial catches of marine fish and invertebrates. Edited by W. G. Doubleday and D. Rivard. Can. Spec. Publ. Fish. Aquat. Sci. 66. pp. 178-182.

Green, J.M., and Wroblewski, J.S. 2000. Movement patterns of Atlantic cod in Gilbert Bay, Labrador: evidence for bay residency and spawning site fidelity. J. Mar. Biol. Ass. U.K. 80: 1077-1085.

Gregory, R.S., Morris, C., Sheppard, G.L., Thistle, M.E., Linehan, J.E., and Schneider, D.C. 2006. Relative strength of the 2003 and 2004 year-classes, from nearshore surveys of demersal age 0 and 1 Atlantic cod in Newman Sound, Bonavista Bay. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/038.

Hutchings, J.A., and Myers, R.A. 1993. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 50: 2468-2474.
1995. The biological collapse of Atlantic cod off Newfoundland and Labrador: an exploration of historical changes in exploitation, harvesting technology, and management. In The north Atlantic fisheries: successes, failures, and challenges. Edited by R. Arnason and L. Felt. The Institute of Island Studies, Charlottetown, Prince Edward Island. p. 39-93.

Jarvis, H., and Stead, R. 2005. Results of the 2005 fish harvesters' telephone survey on the status of northern (2J3KL) cod. DFO Can. Stock Ass. Sec. Res. Doc. 2005/092.

Kjesbu, O.S., Solemdal, P., Bratland, P., and Fonn, M. 1996. Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 53: 610-620.

Kulka, D.W. 1998. Update of discarding of cod in the shrimp and cod directed fisheries in NAFO Divisions 2J, 3K, and 3L. DFO Can. Stock Ass. Sec. Res. Doc. 98/12.

Lear, W.H. 1986. A further discussion of the stock complex of Atlantic cod (Gadus morhua) in NAFO Div. 2J, 3K and 3L. NAFO SCR Doc. 86/118.
1998. History of fisheries in the Northwest Atlantic: the 500-year perspective. J. Northw. Atl. Fish. Sci. 23: 41-73.

Lear, W.H., and Parsons, L.S. 1993. History and management of the fishery for northern cod in NAFO Divisions 2J, 3K and 3L. In Perspectives on Canadian marine fisheries management. Edited by L.S. Parsons and W.H. Lear . Can. Bull. Fish. Aquat. Sci. 226. p. 55-89

Lilly, G.R. 2004. The distribution of northern (2J+3KL) cod, with emphasis on the inshore and Smith Sound, and notes regarding cod-seal events. p. 44-51, In. W.D. Bowen (Chairperson). Report of the seal exclusion zone workshop. 11-13 May 2004, Cambridge Suites, Halifax, N.S. DFO Can. Sci. Adv. Sec. Proceed. Series 2004/022.
2001. Changes in size at age and condition of cod (Gadus morhua) off Labrador and eastern Newfoundland during 1978-2000. ICES CM 2001/V:15. 34 p.
1998. Size-at-age and condition of cod in Divisions 2J+3KL during 1978-1997. DFO Can. Stock Ass. Sec. Res. Doc. 98/76.
1996. Condition of cod in Divisions 2J+3KL during the autumns of 1978-1995. NAFO SCR Doc. 96/48, Ser. No. N2723. 15 p.
1995. Did the feeding level of the cod off southern Labrador and eastern Newfoundland decline in the 1990s? DFO Atl. Fish. Res. Doc. 95/74. 25 p.
1994. Predation by Atlantic cod on capelin on the southern Labrador and Northeast Newfoundland shelves during a period of changing spatial distributions. ICES Mar. Sci. Symp. 198: 600-611.
1991. Interannual variability in predation by cod (Gadus morhua) on capelin (Mallotus Villosus) and other prey off southern Labrador and northeastern Newfoundland. ICES Mar. Sci. Symp. 193:133-146.
1987. Interactions between Atlantic cod (Gadus morhua) and capelin (Mallotus Villosus) off Labrador and eastern Newfoundland: a review. Can. Tech. Rep. Fish. Aquat. Sci. 1567: vii + 37 p .

Lilly, G.R., Brattey, J., Cadigan, N.G., Healey, B.P. and Murphy, E.F. 2005. An assessment of the cod (Gadus morhua) stock in NAFO Divisions 2J3KL in March 2005. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/018.

Lilly, G.R., Brattey, J., and Davis, M.B. 1998a. Age composition, growth and maturity of cod in inshore waters of Divisions 2J, 3K and 3L as determined from sentinel surveys (1995-1997). DFO Can. Stock Assess. Sec. Res. Doc. 98/14.

Lilly, G.R., and Murphy, E.F. 2004. Biology, fishery and status of the 2GH and 2J3KL (northern) cod stocks: information supporting an assessment of allowable harm under the Species at Risk Act for the COSEWIC-defined Newfoundland and Labrador population of Atlantic cod (Gadus morhua). DFO Can. Sci. Adv. Sec. Res. Doc. 2004/102.

Lilly, G.R., Murphy, E.F., and Simpson, M. 2000a. Distribution and abundance of demersal juvenile cod (Gadus morhua) on the Northeast Newfoundland Shelf and the Grand Banks (Divisions 2J3KLNOP): implications for stock identity and monitoring. DFO Can. Stock Ass. Sec. Res. Doc. 2000/092.

Lilly, G.R., Murphy, E.F., Healey, B.P., Maddock Parsons, D., and Stead, R. 2004. An update of the status of the cod (Gadus morhua) stock in NAFO Divisions 2J+3KL in March 2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2004/023. 55 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., and Stansbury, D.E. 2001. An assessment of the cod stock in NAFO Divisions $2 \mathrm{~J}+3 \mathrm{KL}$. DFO Can. Stock Ass. Sec. Res. Doc. 2001/044. 148 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N., Murphy, E.F., Stansbury, D.E., Davis, M.B., and Morgan, M.J. 1998b. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 98/15. 102 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Murphy, E.F., and Stansbury, D.E. 1999. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 99/42. 165 p.

2000b. An assessment of the cod stock in NAFO Divisions 2 J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2000/063. 123 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., Stansbury, D.E., and Chen, N. 2003. An assessment of the cod stock in NAFO Divisions 2J+3KL in February 2003. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/023.

McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. London, Chapman and Hall.
Maddock Parsons, D., and Stead, R. 2006. Sentinel surveys 1995-2005: catch per unit effort in NAFO Divisions 2J3KL. DFO Can. Sci. Adv. Sec. Res. Doc. 2006/074.

Maddock Parsons, D., Stead, R., and Stansbury, D. 2000. Sentinel surveys 1995-1999: catch per unit effort in NAFO Divisions 2J3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2000/102.

Morgan, J. 2001. Proceedings of the Newfoundland Regional Advisory Process for Div. 2J3KL cod, March 2001, Airport Plaza Hotel, St. John's. DFO Can. Stock Ass. Sec. Proc. Ser. 2001/10.

Morgan, M.J., and Hoenig, J.M. 1997. Estimating maturity-at-age from length stratified sampling. J. Northw. Atl. Fish. Sci. 21: 51-63.

Morgan, M.J., Shelton, P.A., Stansbury, D.P., Brattey, J., and Lilly, G.R. 2000. An examination of the possible effect of spawning stock characteristics on recruitment in 4 Newfoundland groundfish stocks. DFO Can. Stock Ass. Sec. Res. Doc. 2000/028.

Morris, C.J., and Green, J.M. 2002. Biological characteristics of a resident population of Atlantic cod (Gadus morhua L.) in southern Labrador. ICES J. Mar. Sci. 59: 666-678.

Morris, C.J., Green, J.M., and Simms, J.M. 2003. Abundance of resident Atlantic cod in Gilbert Bay, Labrador, based on mark recapture, sampling catch per unit effort and commercial tag return data collected from 1998 to 2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/039.

Murphy, E.F., Stansbury, D.E., Shelton, P.A., Brattey, J., and Lilly, G.R. 1997. A stock status update for NAFO Divisions 2J+3KL cod. NAFO SCR Doc. 97/59, Ser. No. N2893. 58 p.

Orr, D.C., Kulka, D., and Firth, J. 2002. Groundfish by-catch in the Canadian small (< 500 tons; LOA < 100') and large ($=>500$ tons) vessel Division 3L shrimp fishery, during 2000 and 2001. NAFO SCR Doc. 02/6, Ser. No. N4607. 6 p.

Orr, D.C., Parsons, D.G., Atkinson, D.B., Veitch, P.J., and Sullivan, D. 1999. Information pertaining to northern shrimp (Pandalus borealis) and groundfish in NAFO Divisions 3LNO. NAFO SCR Doc. 99/102, Ser. No. N4181. 22 p.

Pálsson, Ó.K. 1994. A review of the trophic interactions of cod stocks in the North Atlantic. ICES Mar. Sci. Symp. 198: 553-575.

Petrie, B., Pettipas, R.G., and Petrie, W.M. 2005. An overview of meteorological, sea ice and sea-surface temperature conditions off eastern Canada during 2004. NAFO SCR Doc. 05/5, Ser. No. N5080.
2006. An overview of meteorological, sea ice and sea-surface temperature conditions off eastern Canada during 2005. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/039.

Power, D., Healey, B.P., Murphy, E.F., Brattey, J., and Dwyer, K. 2005. An assessment of the cod stock in NAFO Divisions 3NO. NAFO SCR Doc. 05/67.

Reddin, D.G., Johnson, R., and Downton, P. 2002. A study of by-catches in herring bait nets in Newfoundland, 2001. DFO Can. Sci. Adv. Sec. Res. Doc. 2002/031. 19 p.

Rice, J., and Rivard, D. (Chairpersons) 2003. Proceedings of the zonal assessment meeting - Atlantic cod. DFO Can. Sci. Advis. Sec. Proc. Ser. 2003/021.

Rose, G.A. 2003. Monitoring coastal northern cod: towards an optimal survey of Smith Sound, Newfoundland. ICES J. Mar. Sci. 60: 453-462.

Ruzzante, D. E., Taggart, C.T., and Cook, D. 1998. A nuclear DNA basis for shelf- and bank-scale population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges Bank. Mol. Ecol. 7: 1663-1680.

Ruzzante, D.E., Wroblewski, J.S., Taggart, C.T., Smedbol, R.K., Cook, D., and Goddard, S.V. 2000. Bay-scale population structure in coastal Atlantic cod in Labrador and Newfoundland, Canada. J. Fish Biol. 56: 431-447.

Shelton, P.A. 2006. Management strategies for recovery of northern cod. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/044.

Shelton, P.A., and Lilly, G.R. 2000. Interpreting the collapse of the northern cod stock from survey and catch data. Can. J. Fish. Aquat. Sci. 57: 2230-2239.

Shelton, P.A., Lilly, G.R., and Colbourne, E. 1999. Patterns in the annual weight increment for Div. $2 \mathrm{~J}+3 \mathrm{KL}$ cod and possible prediction for stock projection. J. Northw. Atl. Fish. Sci. 25: 151-159.

Shelton, P.A., Stansbury, D.E., Murphy, E.F., Lilly, G.R., and Brattey, J. 1996. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Atl. Fish. Res. Doc. 96/80 (also NAFO SCR Doc. 96/62.)

Smedbol, R.K., Shelton, P.A., Swain, D.P., Fréchet, A., and Chouinard, G.A. 2002. Review of population structure, distribution and abundance of cod (Gadus morhua) in Atlantic Canada in a species-at-risk context. DFO Can. Sci. Adv. Sec. Res. Doc. 2002/082.

Smedbol, R.K., and Wroblewski, J.S. 2002. Metapopulation theory and northern cod population structure: interdependency of subpopulations in recovery of a groundfish population. Fish. Res. 55: 161-174.

Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

Solemdal, P., Kjesbu, O.S., M. Fonn, M. 1995. Egg mortality in recruit- and repeat-spawning cod - an experimental study. ICES C.M. G:35: 14 pp .

Stansbury, D.E. 1996. Conversion factors from comparative fishing trials for Engels 145 otter trawl on the FRV Gadus Atlantica and the Campelen 1800 shrimp trawl on the FRV Teleost. NAFO SCR Doc. 96/77, Ser. No. N2752. 15 p.
1997. Conversion factors for cod from comparative fishing trials for Engel 145 otter trawl and the Campelen 1800 shrimp trawl used on research vessels. NAFO SCR Doc. 97/73, Ser. No. N2907. 10 p.

Stansbury, D.E., Maddock Parsons, D., and Shelton, P.A. 2000. An age disaggregate index from the sentinel program for cod in 2J3KL. DFO Can. Stock Ass. Sec. Res. Doc. 2000/090. 64 p.

Templeman, W. 1966. Marine resources of Newfoundland. Fish. Res. Board Can. Bull. 154.
Templeman, W., Hodder, V.M., and Wells, R. 1978. Sexual maturity and spawning in haddock, Melanogrammus aeglefinus, of the southern Grand Bank. ICNAF Res. Bull. 13: 53-65.

Trippel, E.A. 1998. Egg size and viability and seasonal offspring production of young Atlantic cod. Trans. Amer. Fish. Soc. 127: 339-359.

Trippel, E.A., and Morgan, M.J. 1994. Age-specific paternal influences on reproductive success of Atlantic cod (Gadus morhua L.) of the Grand Banks, Newfoundland. ICES Mar. Sci. Symp. 198: 414-422.

Warren, W.G. 1997. Report on the comparative fishing trial between the Gadus Atlantica and Teleost. NAFO Sci. Coun. Studies 2: 81-92.

Warren, W.G., Brodie, W., Stansbury, D., Walsh, S., Morgan, J., and Orr, D. 1997. Analysis of the 1996 comparative fishing trial between the Alfred Needler with the Engel 145 trawl and the Wilfred Templeman with the Campelen 1800 trawl. NAFO SCR Doc. 97/68.

Table 1. Landings (t) of cod from NAFO Divisions 2J3KL for the period 1959-2005.

Year	2J				3K				3L				2 J 3 KL			
	Offshore mobile gear		Fixed gear Canada	Total	Offshore mobile gear		Fixed gear Canada	Total	Offshore mobile gear		Fixedgear \quadCanada	Total	Total Canada	Total Other	Total	TAC
	Canada	Other			Canada	Other			Canada	Other						
1959	0	46372	17533	63905	0	97678	56264	153942	4515	51515	85695	141725	164007	195565	359572	
1960	1	164123	15418	179542	53	74999	47676	122728	7355	63985	94192	165532	164695	303107	467802	
1961	1	243144	17545	260690	0	64023	31159	95182	4675	73899	70659	149233	124039	381066	505105	
1962	0	226841	23424	250265	0	47015	42816	89831	4383	90276	72271	166930	142894	364132	507026	
1963	1	197868	23767	221636	0	79331	47486	126817	4446	83015	73295	160756	148995	360214	509209	
1964	13	197359	14787	212159	0	121423	40735	162158	10158	142370	75806	228334	141499	461152	602651	
1965	0	246650	25117	271767	21	50097	26467	76585	7353	130387	58943	196683	117901	427134	545035	
1966	39	226244	22645	248928	13	58907	32208	91128	8253	120206	55990	184449	119148	405357	524505	
1967	28	217255	27721	245004	114	78687	24905	103706	13478	200343	49233	263054	115479	496285	611764	
1968	4650	355108	12937	372695	1849	119778	40768	162395	15784	211808	47332	274924	123320	686694	810014	
1969	30	405231	4328	409589	56	80949	24923	105928	18255	151945	67973	238173	115565	638125	753690	
1970	0	212961	1963	214924	92	78274	21512	99878	14471	137840	53113	205424	91151	429075	520226	
1971	0	154700	3313	158013	31	61506	21111	82648	11976	148766	38115	198857	74546	364972	439518	
1972	0	149435	1725	151160	7	133369	14054	147430	4380	109052	46273	159705	66439	391856	458295	
1973	1123	52985	3619	57727	108	159653	13190	172951	1258	97734	24839	123831	44137	310372	354509	666000
1974	0	119463	1804	121267	19	149189	10747	159955	880	67918	22630	91428	36080	336570	372650	657000
1975	410	78578	3000	81988	189	112678	15518	128385	670	53770	22695	77135	42482	245026	287508	554000
1976	94	30691	3851	34636	771	79540	20879	101190	2187	40998	35209	78394	62991	151229	214220	300000
1977	525	39584	3523	43632	1051	26776	28818	56645	5362	26799	40282	72443	79561	93159	172720	160000
1978	4682	17546	6638	28866	7027	6373	29623	43023	9213	12263	45194	66670	102377	36182	138559	135000
1979	9194	6537	8445	24176	21572	16890	27025	65487	14184	12693	50359	77236	130779	36120	166899	180000
1980	13592	7437	17210	38239	21920	6830	37015	65765	15523	13963	42298	71784	147558	28230	175788	180000
1981	22125	4760	14251	41136	23112	3847	23002	49961	21754	15070	42827	79651	147071	23677	170748	200000
1982	58384	8923	14429	81736	8881	4074	42141	55096	27181	9271	56490	92942	207506	22268	229774	230000
1983	37276	4158	10748	52182	31621	2815	40683	75119	39123	10920	55001	105044	214452	17893	232345	260000
1984	9231	2782	13150	25163	48114	11059	35143	94316	47668	15973	49351	112992	202657	29814	232471	266000
1985	1466	78	10211	11755	68880	12945	30368	112193	36863	31176	39306	107345	187094	44199	231293	266000
1986	5734	7859	12916	26509	62086	5781	28384	96251	57805	53946	32202	143953	199127	67586	266713	266000
1987	39344	3999	16022	59365	39686	6160	27442	73288	44612	25916	36743	107271	203849	36075	239924	256000
1988	41468	9	17112	58589	40260	50	33820	74130	57805	26748	51405	135958	241870	26807	268677	266000
1989	33626	1003	23304	57933	37350	1179	20711	59240	40958	36621	59238	136817	215187	38803	253990	235000
1990	17883	183	14505	32571	26920	504	27516	54940	31187	25488	75266	131941	193277	26175	219452	199262

cont'd.

Table 1. (cont'd)

Year		2 J				3K				3L				2J3KL			
		Offshore mobile gear		$\begin{gathered} \hline \text { Fixed } \\ \text { gear } \end{gathered}$	Total	Offshore mobile gear		$\begin{gathered} \hline \text { Fixed } \\ \text { gear } \end{gathered}$	Total	Offshore mobile gear		$\begin{aligned} & \text { Fixed } \\ & \text { gear } \end{aligned}$	Total	Total Canada	Total Other	Total	TAC
		Canada	Other	Canada		Canada	Other	Canada		Canada	Other	Canada					
1991		621	82	2214	2917	30112	311	13332	43755	30264	$49660{ }^{2}$	45416^{3}	125340	121959	50053	172012	190000
1992		0	0	18	18	584	273	884	1741	13627	$14610{ }^{4}$	$10960{ }^{5}$	39197	26073	14883	40956	0
1993		0	0	13	13	0	0	541	541	2	$2425{ }^{6}$	$8411{ }^{7}$	10838	8967	2425	11392	0
1994		0	0	9	9	0	0	368	368	0	1	936	937	1313	1	$1314{ }^{8}$	0
1995	13	0	0	0	1	0	0	122	122	1	0	290	290	413	0	$413{ }^{9}$	0
1996	13	0	0	3	3	0	0	961	961	1	1	908	910	1874	1	$1875{ }^{10}$	0
1997	13	0	0	4	4	0	0	280	280	0	0	592	593	877	0	877	0
1998	13	0	0	16	16	0	0	1994	1994	1	6	2491	2497	4501	0	4507	4000
1999	13	0	0	33	33	0	0	3554	3554	0	1	4938	4939	8525	1	8526	9000
2000	1	0	0	3	3	0	0	1410	1410	26	54^{12}	3937	4017	5376	54	5430	7000
2001	1	0	0	21	21	0	0	1736	1736	7	82^{12}	5124	5212	6887	82	6969	5600
2002	1	0	0	13	13	0	0	647	647	3	$50{ }^{12}$	3533	3586	4196	50	4246	5600
2003	1	0	0	2	2	0	0	29	29	3	$23{ }^{12}$	$937{ }^{11}$	963	971	23	994	0
2004	1	0	0	3	3	0	0	152	152	6	0	482	488	643	0	643	0
2005		0	0	6	6	1	0	504	505	1		708	709	1220	0	1220	0

[^1]${ }^{7}$ Includes 5053 t estimated for the recreational fishery additional to that recorded by Canadian statistics.
1300 t is from the food fishery; the remainder is bycatch
${ }^{9}$ Includes 275 t caught in the sentinel survey and 138 t caught as bycatch.
${ }^{10}$ Comprised of a sentinel survey catch of 296 t , a food fishery catch of 1155 t and bycatch of 422
${ }^{11} 780 \mathrm{t}$ of this catch was the result of a mass mortality in Smith Sound
${ }^{14}$ NAFO Scientific Council agreed catches.
${ }^{10}$ Canadian catches have been updated based most recent catch data

Table 2. Fixed gear landings (t) by Division and gear type in Divisions 2J, 3K and 3L in 1975-2005. Landings from statistical areas other than Newfoundland are not included.

	2 J					3K					3L					2J3KL
Year	Trap	GN	LL	HL	Total	Trap	GN	LL	HL	Total	Trap	GN	LL	HL	Total	Total
1975	642	2304	0	54	3000	4662	8645	565	1646	15518	10390	7552	1641	3112	22695	41213
1976	1022	2787	6	36	3851	7056	10666	718	2439	20879	18404	9066	2904	4835	35209	59939
1977	1285	2076	37	125	3523	11501	11611	1294	4412	28818	20988	8852	3591	6851	40282	72623
1978	2872	3376	55	335	6638	11329	11445	3647	3202	29623	23218	9023	5114	7839	45194	81455
1979	1333	5663	175	1274	8445	3532	11474	8414	3605	27025	20785	13488	7022	9064	50359	85829
1980	4679	11414	204	913	17210	12732	13549	8059	2675	37015	12871	11231	9394	8802	42298	96523
1981	3893	10105	72	181	14251	3952	10679	6360	2011	23002	10177	13579	11425	7646	42827	80080
1982	4464	9121	114	730	14429	16415	17571	6101	2054	42141	24248	20295	5704	6243	56490	113060
1983	3870	4854	842	1182	10748	10490	18305	2560	9328	40683	25690	16446	3834	9031	55001	106432
1984	5618	6116	379	1037	13150	9957	14362	2499	8325	35143	23103	14985	3824	7439	49351	97644
1985	4973	2992	252	1994	10211	13310	8082	2352	6624	30368	21594	8760	3245	5707	39306	79885
1986	4373	7804	109	630	12916	14555	7626	1555	4648	28384	15669	9865	2492	4176	32202	73502
1987	5158	9228	218	1418	16022	11278	10223	1590	4351	27442	11370	17419	3338	4616	36743	80207
1988	5907	9183	272	1750	17112	16261	11898	935	4726	33820	22148	18576	4004	6677	51405	102337
1989	6713	14846	290	1455	23304	8189	7921	700	3901	20711	23964	22231	4676	8367	59238	103253
1990	3616	9364	653	872	14505	11201	7726	3838	4751	27516	32158	28936	4545	9627	75266	117287
1991	1016	271	93	834	2214	7696	1384	1851	2401	13332	26524	$11696{ }^{2}$	1247	5949	$45416{ }^{2}$	60962
1992	0	0	2	16	18	27	103	9	745	884	1173	1131	16	$8640{ }^{3}$	$10960{ }^{3}$	11862
1993	0	0	1	12	13	3	37	9	492	541	11	93	80	$8227{ }^{3}$	$8411{ }^{3}$	8965
1994	0	0	0	9	9	0	8	0	359	367	6	38	22	870	936	1312
1995	0	0	0	0	0	25	65	31	1	122	23	207	41	20	291	413
1996	0	0	0	3	3	65	184	31	680	959	42	335	30	501	656	$1500{ }^{4}$
1997	0	2	0	0	2	57	150	63	8	278	71	427	42	45	585	865
1998	0	3	5	8	16	024	1081	245	644	1994	31	1377	284	798	2490	4501
$1999{ }^{\text { }}$	0	20	4	9	33	14	3080	110	350	3554	35	4469	70	365	4938	8525
$2000{ }^{1}$	0	4	0	1	5	15	1126	43	275	1459	63	2954	189	684	3891	5354
$2001{ }^{\text {1 }}$	0	3	1	17	21	28	796	90	822	1735	175	2844	110	1994	5124	6880
$2002{ }^{1}$	0	7	0	6	13	2	272	30	342	647	128	2517	30	858	3533	4193
$2003{ }^{\text {1 }}$	0	2	0	0	2	0	25	4	0	29	0	152	4	781	937	968
$2004{ }^{\text {1 }}$	0	1	0	0	1	0	146	5	0	152	0	479	2	0	481	635
$2005{ }^{1}$	0	6	0	0	6	0	498	6	0	504	0	704	4	0	708	1218

Provisional catches.
${ }^{2}$ Catch is 4000 (t) less than Canadian statistics as this quantity is considered 3 NO gillnet catch misreported in 3 L .
${ }^{3}$ Estimate for recreational fishery has been reported as 3L Handline.
${ }^{4}$ Comprised of sentinel survey catch of $294 t$, a food fishery catch of $1155 t$ and by-catch $142 t$.
An amount of 103 t must still be allocated by gear type and division from the sentinel catches.
${ }^{5} 780 \mathrm{t}$ of this catch was the result of a mass mortality in Smith Sound. (Actual gear used was gaff or dip net).

Table 3. Fixed gear landings in Div. 3L, by broad area (inshore vs offshore) and gear (gillnet vs other). The numbers do not match those in Table 2 because they are extracted from a different statistical source. (from Shelton et al. 1996)

	Inshore			Offshore	
	Gillnet	Other		Gillnet	Other
1975	7,440	14,908		0	0
1976	9,012	26,141		8	0
1977	8,768	31,433		46	0
1978	9,024	36,237		0	18
1979	13,486	36,876		1	32
1980	11,228	31,061		0	9
1981	12,117	29,243		1,630	3
1982	20,274	36,184		1,049	0
1983	16,451	38,557		0	1,148
1984	14,947	34,121		808	898
1985	8,753	29,688		1,590	856
1986	8,277	21,953		1,652	387
1987	11,660	17,946		5,752	194
1988	9,143	30,648		9,422	887
1989	8,329	34,682		13,890	558
1990	7,174	43,841		21,721	157
1991	2,219	33,657		9,499	2

Table 4. Catch (t) in 2005 from all sources (by-catch and sentinel surveys), by gear, unit area and month.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Gillnet													
2Jm							0.32	2.85	1.16				4.32
3 Ka						0.18	1.18	10.16	0.14				11.67
3Kb							0.07	0.58					0.65
3Kd						0.72	5.12	25.54	0.22	0.13			31.74
3Kh					0.03	1.01	5.74	120.81	1.04	0.66	0.27		129.58
3 Ki						2.33	10.35	303.27	1.36	0.46	2.94		320.71
3La						2.09	7.46	168.31	4.23		2.80		184.89
3Lb						13.25	10.46	180.26	8.73	0.22	0.49	0.08	213.48
3LC								3.08	2.65	0.38	0.13		6.24
3Ld								0.91	0.05				0.96
3Lf						0.23	8.17	115.26	1.33	0.25			125.24
3Lg								1.12	0.97				2.10
3Li								0.17					0.17
3Lj						3.30	4.95	123.03	0.07	0.06			131.41
3Lq						5.54	6.06	22.30	0.03	0.56			34.49
Total					0.03	28.66	59.90	1077.64	21.99	2.73	6.63	0.08	1197.65
Gillnet (small mesh)													
2Jm							0.13	1.07	0.27				1.47
3 Ka							0.04	0.56	0.11				0.70
3Kd						0.06	0.32	0.36	0.04	0.01			0.78
3Kh						0.07	0.33	0.08	0.01	0.05	0.01		0.56
3Ki						0.05	0.43	0.61	0.07	0.10	0.07	0.10	1.44
3La							0.55	0.68			0.10		1.33
3Lb						0.10	0.67	1.38	0.64				2.80
3Lf						0.01	0.18	0.12	0.02	0.03			0.36
3Lj						0.06	0.07	0.12					0.25
3Lq						0.04	0.03	0.00					0.07
Total						0.40	2.74	4.97	1.16	0.19	0.18	0.10	9.75
Linetrawl													
3Kh								0.48	1.62	0.25	0.16		2.52
3Ki								1.74	1.43	0.18			3.35
3La								1.10	0.45				1.55
3Lf									0.20	1.01			1.21
3Lh									0.12				0.12
3Lj									0.16				
3Lq								0.87		0.01			0.88
Total								4.19	3.97	1.46	0.16		9.78
Handline													0.00
2Jm								0.03	0.03		0.18		0.23
3Kh									0.36				0.36
3Ki								0.00					0.00
3Lj									0.02				0.02
Total								0.03	0.40		0.18		0.61
Otter trawl													
3Kc										0.03			0.03
3 Kg									0.00				0.00
3 Ki								0.69					0.69
3Lr					0.17	0.58							
3Ls					0.01								0.01
Total					0.19	0.58		0.69	0.00	0.03			1.48
All gears	0.00	0.00	0.00	0.00	0.22	29.63	63.33	1086.83	27.52	4.41	7.16	0.18	1219.27

Table 5. Number of fish measured in 2005 from all sources (by-catch and sentinel surveys), by gear, unit area and month.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Gillnet												
2Jm						160	1242	524				1926
3 Ka					114	618	1535	76				2343
3Kd					359	2440	2177	103	61			5140
3Kh					471	2879	2182	247	317	132		6228
3 Ki					982	4994	4190	276	155	1345		11942
3La						3009	2756			1003		6768
3Lb					2333	4476	5122	2007				13938
3Lc							613	180				793
3Ld							46					46
3Lf					97	3487	3282	275	96			7237
3Lj					1089	2080	2132	34				5335
3Lq					1687	2655	902	24				5268
Total 0	0	0	0	0	7132	26798	26179	3746	629	2480	0	66964
Gillnet- small mesh												
2Jm						207	1467	401				2075
3 Ka						52	813	149				1014
3Kd					53	335	529	50	11			978
3Kh					118	536	92	23	88	20		877
3 Ki					54	716	1064	97	151	103	164	2349
3La						932	1065			101		2098
3Lb					82	722	1722	610				3136
3Lf					10	216	167	34	44			471
3Lj					108	130	229					467
3Lq					54	36	3					93
Total 0	0	0	0	0	479	3882	7151	1364	294	224	164	13558
Linetrawl												
3Kh							432	1416	283	151		2282
3 Ki							844	1066	50			1960
3La							603	409				1012
3Lf								123	758			881
3Lj								120				120
3Lq							407		12			419
Total 0	0	0	0	0	0	0	2286	3134	1103	151	0	6674
Handline												
2Jm							24	20				44
3Kh								337				337
3Lj								25				25
Total 0	0	0	0	0	0	0	24	382	0	0	0	406
Otter trawl												
3Kc								34				34
3 Kg								2			3	5
3Lr				23	113							136
Total 0	0	0	0	23	113	0	0	36	0	0	3	175

Shrimp Trawl													
2Jb		15		6									21
2Jc		37			3								40
2Jf			22	5		8				4			39
2JI		2											2
2Jn	202	162	884	455	3								1706
3Ka				2									2
3Kb	744		49			24							817
3Kc		116	229	41	32					2		11	431
3Kf				17			9						26
3 Kg					22			41					63
Total	946	332	1184	526	60	32	9	41	0	6	0	11	3147
All gears	946	427	1379	792	83	8396	31794	35681	8662	2032	2855	178	93225

Table 6. Number of fish aged in 2005 from all sources (by-catch and sentinel surveys), by gear, unit area and month. Quarter 1 is January-February, Quarter 2 is March-May, Quarter 3 is June-August and Quarter 4 is September-December.

	Quarter				
	1	2	3	4	Total
Gillnets		658		658	
2Jm		112		112	
3Ka		591	110	701	
3Kd			572	66	638
3Kh			675	168	843
3Ki			507	64	571
3La			621	182	803
3Lb			478		4
3Ld			601	50	528
3Lf			258	5	606
3Lj			5077	645	5722
3Lq					
Total					

Linetrawl				
3Kh		32	114	146
3Ki	55	76	131	
3La	54		54	
3Lf			77	77
3Lj		15	45	45
3Lq	0	156	312	468

Ottertrawl

3 Kg			3	3	
3 Lr		71			71
Total	0	71	0	3	74

Twin trawls				
2Jb		1		1
2Jn	66		66	
3Kc	61	6		67
3Kg		143		143
Total	61	216	0	0

Shrimp trawl					
2Jb	15	3			18
2Jc	36	1		37	
2Jf	22	8		34	
2JI	2			2	
2Jn	293	76		369	
3Ka		2		11	220
3Kb	63	17			80
3Kc	143	66			12
3Kf		12			21
3Kg	574	206	0	15	795
Total					
	635	495	5233	975	7338
All gears					

Table 7. Estimated average weight (kg), length (cm) and number (plus standard error and coefficient of variation) of the 2005 catch at age, all gears combined, for the total stock area and for the central portion of the inshore.

AGE	$\begin{gathered} \text { WEIGHT } \\ (\mathrm{kg.}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { LENGTH } \\ & \text { (cm.) } \\ & \hline \end{aligned}$	NUMBER		
			(000'S)	STD ERR.	CV
Total stock area; all gears combined					
1	0.00	0.00	0.0	0.00	
2	0.28	32.12	0.2	0.07	0.39
3	0.53	39.26	14.3	0.88	0.06
4	0.85	45.49	24.9	1.34	0.05
5	1.77	58.18	125.2	3.54	0.03
6	2.17	62.23	166.8	4.10	0.02
7	2.60	65.94	92.8	3.24	0.03
8	3.14	69.87	46.7	2.01	0.04
9	3.89	74.62	17.7	1.31	0.07
10	4.71	79.48	6.6	0.94	0.14
11	5.68	84.48	4.0	0.81	0.20
12	6.43	88.42	1.9	0.50	0.27
13	7.80	94.10	1.8	0.37	0.21
14	6.69	89.28	0.5	0.16	0.34
15	7.73	94.17	0.5	0.18	0.34
16	8.26	96.34	0.4	0.34	0.79
17	8.43	97.10	0.3	0.34	1.00
18					
19					
20					
Total			504.6		

Central inshore area (3Ka, 3Kd, 3Kh, 3Ki, 3La, 3Lb); all gears combined

1	0.00	0.00	0.0	0.00	
2	0.28	32.00	0.2	0.07	0.41
3	0.52	38.99	11.7	0.82	0.07
4	0.85	45.45	17.6	1.20	0.07
5	1.79	58.32	105.2	3.35	0.03
6	2.18	62.29	135.3	3.85	0.03
7	2.67	66.58	62.0	2.93	0.05
8	3.41	71.95	21.4	1.58	0.07
9	4.29	76.95	8.1	1.07	0.13
10	5.18	82.24	4.7	0.87	0.19
11	6.04	86.59	2.8	0.76	0.28
12	6.38	88.37	1.5	0.48	0.33
13	7.71	93.72	1.6	0.36	0.23
14	6.33	87.76	0.4	0.15	0.35
15	7.55	93.50	0.4	0.17	0.41
16	8.15	95.98	0.4	0.34	0.82
17	8.43	97.10	0.3	0.34	1.00
18					
19					
20			373.5		

Table 8. Catch numbers (thousands) at age for cod in 2J3KL in 1962-2005. Note that much of the "catch" in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
2	301	1446	2872	85	819	790	288	59	6819	33	236	0	473	420	15
3	8666	5746	19338	5177	14057	15262	6142	4330	18104	12876	6737	3963	3231	3968	13767
4	26194	27577	27603	28709	65992	77873	94291	39626	60102	71557	79809	40785	13201	14101	33727
5	64337	60234	57757	46800	93687	100339	205805	100858	82357	95384	116562	94844	34927	25370	28049
6	58163	118112	60681	66946	62812	96759	150541	163228	101249	98111	76196	59503	74403	34426	20898
7	47314	58996	100147	64360	59312	54996	83808	107509	85696	57865	55984	35464	60539	39105	16811
8	27521	29349	50865	68176	30423	38691	39443	52661	29218	25055	29553	27351	35687	36485	16022
9	20142	15520	20892	33819	23844	17146	23171	19651	10857	11732	11750	14153	18854	13421	10931
10	18036	11612	12264	14913	8762	16084	10984	12370	3825	4470	6393	7566	10492	7514	4637
11	10444	8248	8698	6945	4528	5949	5591	6389	2000	2223	2987	3815	5818	2315	1462
12	9468	4204	6352	3729	2280	3367	5249	4479	1200	1287	1660	2153	2934	1179	631
13	7778	3942	4989	3948	1825	2108	1939	3004	507	1140	1388	1173	1078	808	292
14	5785	2933	4036	3730	1186	1529	1334	1557	224	720	725	450	652	372	251
15	4669	2928	2703	2722	967	685	818	622	214	355	748	278	249	165	100
16	3888	1737	1456	1859	806	424	610	567	244	474	606	309	338	82	50
17	3955	1263	1918	575	416	193	127	319	124	124	452	85	162	5	40
18	2161	1352	1154	971	279	107	89	100	32	128	136	27	113	8	64
19	232	328	501	183	486	72	83	46	10	148	195	38	45	22	30
20	403	182	312	226	178	211	26	99	34	78	36	8	20	1	20
Total	319457	355709	384538	353873	372659	432585	630339	517474	402816	383760	392153	291965	263216	179767	147797
Age	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
2	108	0	0	92	0	0	18	3	0	1	42	25	8	58	35
3	7128	1323	1152	2554	2185	1702	2585	782	650	831	2329	2779	1696	7693	3111
4	65510	17556	12361	12025	7172	31286	13616	14871	14824	15219	9217	14651	17639	40557	31654
5	40462	39206	37493	28814	13191	19003	42602	31760	36614	44168	32340	20184	21150	36410	53805
6	12107	20319	29202	30016	24800	14397	19028	38624	33922	45869	49061	47917	25212	22695	29553
7	5397	7711	10982	18017	22014	25435	12044	12503	28006	26025	28469	45725	38708	16390	9064
8	3396	3078	3460	4830	11848	16930	14701	7246	7050	14722	19505	18608	28499	17940	6164
9	2730	1530	1300	1217	3175	11936	8934	8910	3836	3104	5818	9026	8696	9156	4745
10	1381	1083	757	520	779	1923	6341	4227	5162	2000	1346	4337	3640	2865	1696
11	532	437	560	232	309	338	1018	2536	2905	1977	676	774	1695	1084	641
12	296	219	183	229	195	156	248	451	1681	1101	873	422	572	478	250
13	149	105	116	56	125	90	90	146	254	574	391	366	244	103	88
14	75	62	51	65	48	153	41	48	107	116	200	223	180	98	39
15	42	40	43	37	14	40	29	41	39	29	37	100	94	36	21
16	21	21	38	13	28	12	11	30	20	18	22	32	43	25	9
17	20	7	7	10	20	13	9	7	17	11	3	5	4	8	3
18	14	8	7	14	5	4	6	7	1	9	1	10	9	7	2
19	2	2	4	4	5	0	2	4	3	2	4	5	0	1	2
20	6	7	9	10	5	0	3	3	5	2	0	5	1	0	0
Total	139376	92714	97725	98755	85918	123418	121326	122199	135096	155778	150334	165194	148090	155604	140882
Age	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
2	0	0	0	0	1	0	3	7	5	10	6	0	1	0	
3	430	940	105	12	35	12	96	70	141	249	166	9	10	14	
4	3860	4993	379	41	157	39	229	238	258	778	296	11	24	25	
5	14535	3343	575	93	304	92	395	638	419	710	399	19	33	125	
6	12211	1940	177	76	401	95	689	795	437	611	335	53	47	167	
7	4526	700	74	25	131	148	384	1157	328	365	235	44	59	93	
8	1372	147	22	10	24	35	236	370	294	190	124	28	32	47	
9	376	21	2	2	7	5	74	253	151	272	77	22	14	18	
10	199	0	0	0	2	2	10	52	136	80	113	9	7	7	
11	104	0	0	0	0	0	5	13	33	117	50	32	3	4	
12	18	0	0	0	0	0	2	3	5	33	52	20	5	2	
13	9	0	0	0	0	0	1	0	3	3	10	27	2	2	
14	4	0	0	0	0	0	0	0	1	1	2	7	2	0	
15	0	0	0	0	0	0	0	0	0	0	0	3	0	1	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
												0	0	0	
Total	37644	12084	1334	259.4067	1062	429	2125	3596	2210	3418	1866	286	241	505	

Table 9. Catch weights-at-age (kg) for cod caught in 2J3KL in 1962-2005.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
2	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14		0.11	0.26	0.25
3	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.44	0.32	0.35	0.45	0.45
4	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.53	0.47	0.68	0.63	0.61
5	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.64	0.71	0.91	0.96	0.93
6	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.08	0.96	1.11	1.18	1.32
7	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.66	1.52	1.30	1.27	1.39	1.75
8	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.13	1.80	1.56	1.74	2.07
9	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.86	2.20	2.05	2.21	2.24
10	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.18	3.29	2.82	2.75	2.61	2.99
11	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.76	3.95	3.19	3.13	3.34	3.67
12	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.15	4.12	3.79	3.41	3.66	4.56
13	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	6.06	5.00	4.53	4.92	4.78	6.18
14	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	5.54	9.32	6.93	4.40	5.20	8.19
15	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	6.11	9.40	7.22	6.33	5.20	9.77
16	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	5.83	6.89	7.05	5.50	5.46	11.23
17	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	6.44	14.67	9.45	7.57	8.51	12.44
18	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	6.07	12.04	11.16	11.07	9.24	11.16
19	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	6.61	7.62	7.62	7.62	7.62	7.62
20	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	7.19	17.46	17.46	17.46	17.46	17.46
Age	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
2	0.09			0.41	0.00		0.31	0.34		0.21	0.32	0.29	0.26	0.29	0.17
3	0.45	0.40	0.46	0.53	0.55	0.53	0.62	0.59	0.48	0.51	0.43	0.49	0.48	0.42	0.36
4	0.60	0.72	0.74	0.77	0.78	0.84	0.87	0.88	0.73	0.72	0.66	0.73	0.74	0.69	0.61
5	0.97	1.04	1.13	1.16	1.17	1.20	1.32	1.20	1.10	1.04	1.03	1.08	1.03	1.06	0.97
6	1.66	1.58	1.67	1.71	1.64	1.77	1.75	1.79	1.43	1.54	1.32	1.38	1.44	1.50	1.41
7	2.33	2.46	2.46	2.38	2.23	2.10	2.28	2.28	2.06	1.85	1.87	1.67	1.83	1.94	1.88
8	2.82	3.26	3.57	3.56	2.86	2.66	2.61	2.71	2.66	2.35	1.93	2.21	2.07	2.22	2.27
9	3.46	4.05	4.41	5.01	3.81	3.09	3.18	2.96	3.23	2.94	2.80	2.51	2.64	2.44	2.63
10	3.88	4.46	5.25	5.49	5.32	4.18	3.50	3.65	3.32	3.47	3.51	3.04	3.02	3.06	3.14
11	4.78	5.02	5.80	6.72	6.29	6.16	4.79	4.28	4.06	3.80	4.80	4.37	3.96	3.58	3.80
12	6.13	6.72	7.03	7.87	7.06	7.19	7.76	6.19	4.55	4.54	4.64	5.49	5.41	4.68	4.96
13	7.31	8.10	8.96	8.38	7.32	8.00	9.07	8.39	7.03	5.34	5.74	6.55	7.50	6.23	5.49
14	8.40	7.42	8.54	10.03	10.01	8.36	9.14	10.26	9.67	7.12	6.13	8.60	9.24	8.51	7.61
15	8.81	8.20	9.46	11.31	8.99	7.86	10.62	11.44	11.37	11.77	8.53	9.76	10.05	9.78	11.58
16	11.75	11.26	10.70	13.87	11.54	7.91	10.57	11.61	11.27	11.24	13.51	9.73	9.34	12.58	11.01
17	10.63	11.61	13.12	10.68	10.48	9.58	13.13	17.47	12.68	14.15	9.10	12.58	15.74	15.45	12.82
18	12.27	8.92	13.49	16.09	11.15	12.95	15.97	12.94	12.42	16.14	21.77	16.01	18.66	13.58	13.00
19	7.62	10.57	15.51	12.04	9.82	0.00	9.73	15.21	14.38	12.30	17.66	16.60		17.26	13.10
20	17.46	16.00	14.77	11.37	12.59	0.00	15.88	12.81	19.49	15.72	0.00	11.03	17.64		
Age	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
2				0.22	0.37	0.32	0.29	0.32	0.26	0.38	0.41	0.31	0.33	0.28	
3	0.29	0.57	0.40	0.49	0.70	0.54	0.63	0.59	0.66	0.63	0.63	0.50	0.56	0.53	
4	0.58	0.71	0.68	0.80	1.01	0.88	0.94	1.05	0.97	0.91	0.91	0.82	0.87	0.85	
5	0.81	0.97	0.98	1.47	1.42	1.46	1.51	1.62	1.71	1.36	1.56	1.41	1.54	1.77	
6	1.19	1.25	1.41	1.91	2.04	1.98	2.14	2.12	2.14	2.02	2.09	2.03	2.12	2.17	
7	1.73	1.59	1.85	2.27	2.51	2.44	2.48	2.51	2.79	2.54	2.70	2.54	2.73	2.60	
8	2.05	8.40	2.05	2.62	2.77	2.91	3.02	2.96	3.39	3.24	3.24	3.03	3.33	3.14	
9	2.66	9.23	3.05	3.02	3.22	3.63	3.35	3.66	3.95	3.93	3.83	3.64	4.18	3.89	
10	2.24			2.81	3.87	4.25	4.18	4.70	4.54	4.43	4.45	4.36	5.02	4.71	
11	2.68			4.67	5.18	4.36	4.01	5.17	4.88	5.06	4.77	4.91	5.46	5.68	
12	4.95			0.00	4.04	6.06	3.80	5.57	6.03	6.56	5.13	5.72	6.34	6.43	
13	5.34			0.00	7.62	6.22	6.42	6.23	5.63	7.21	5.90	5.92	6.26	7.80	
14	7.02			0.00	4.46	0.00	0	7.66	4.80	5.46	5.70	6.07	6.56	6.69	
15				0.00	0.00		0		9.42	7.62	6.10	5.38	6.81	7.73	
16										0.00	0.00	0.00		8.26	
17									11.28	0.00	0.00	6.90		8.43	
18										0	8.40				
19										0					
20															

Table 10. Catch biomass (t) at age for cod caught in 2 J 3 KL in 1962-2005.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976
2	42	202	402	12	115	111	40	8	955	5	33	0	52	109	4
3	2946	1954	6575	1760	4779	5189	2088	1472	6155	4378	2964	1268	1131	1786	6195
4	14407	15167	15182	15790	36296	42830	51860	21794	33056	39356	42299	19169	8977	8884	20573
5	56617	53006	50826	41184	82445	88298	181108	88755	72474	83938	74600	67339	31784	24355	26086
6	71540	145278	74638	82344	77259	119014	185165	200770	124536	120677	82292	57123	82587	40623	27585
7	78541	97933	166244	106838	98458	91293	139121	178465	142255	96056	85096	46103	76885	54356	29419
8	58345	62220	107834	144533	64497	82025	83619	111641	61942	53117	62948	49232	55672	63484	33166
9	53175	40973	55155	89282	62948	45265	61171	51879	28662	30972	33605	31137	38651	29660	24485
10	57354	36926	39000	47423	27863	51147	34929	39337	12164	14215	21033	21336	28853	19612	13865
11	39269	31012	32704	26113	17025	22368	21022	24023	7520	8358	11799	12170	18210	7732	5366
12	39292	17447	26361	15475	9462	13973	21783	18588	4980	5341	6839	8160	10005	4315	2877
13	47135	23889	30233	23925	11060	12774	11750	18204	3072	6908	6940	5314	5304	3862	1805
14	32049	16249	22359	20664	6570	8471	7390	8626	1241	3989	6757	3119	2869	1934	2056
15	28528	17890	16515	16631	5908	4185	4998	3800	1308	2169	7031	2007	1576	858	977
16	22667	10127	8488	10838	4699	2472	3556	3306	1423	2763	4175	2178	1859	448	562
17	25470	8134	12352	3703	2679	1243	818	2054	799	799	6631	803	1226	43	498
18	13117	8207	7005	5894	1694	649	540	607	194	777	1637	301	1251	74	714
19	1534	2168	3312	1210	3212	476	549	304	66	978	1486	290	343	168	229
20	2898	1309	2243	1625	1280	1517	187	712	244	561	629	140	349	17	349
Total	644926	590090	677428	655244	518248	593302	811698	774346	503047	475357	458793	327188	367583	262319	196809
Age	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
2	10	0	0	38	0	0	6	1	0	0	13	7	2	17	6
3	3208	529	530	1354	1202	902	1603	461	312	424	1001	1362	814	3231	1120
4	39306	12640	9147	9259	5594	26280	11846	13086	10822	10958	6083	10695	13053	27984	19309
5	39248	40774	42367	33424	15433	22804	56235	38112	40275	45935	33310	21799	21785	38595	52191
${ }_{6}$	20098	32104	48767	51327	40672	25483	33299	69137	48508	70638	64761	66125	36305	34043	41670
7	12575	18969	27016	42880	49091	53414	27460	28507	57692	48146	53237	76361	70836	31797	17040
8	9577	10034	12352	17195	33885	45034	38370	19637	18753	34597	37645	41124	58993	39827	13992
9	9446	6197	5733	6097	12097	36882	28410	26374	12390	9126	16290	22655	22957	22341	12479
10	5358	4830	3974	2855	4144	8038	22194	15429	17138	6940	4724	13184	10993	8767	5325
11	2543	2194	3248	1559			4876	10854	11794	7513	3245	3382	6712	3881	2436
12	1814	1472	1286	1802	1377	1122	1924	2792	7649	4999	4051	2317	3095	2237	1240
13	1089	851	1039	469	915	720	816	1225	1786	3065	2244	2397	1830	642	483
14	630	460	436	652	480	1279	375	492	1035	826	1226	1918	1663	834	297
15	370	328	407	418	126	314	308	469	443	341	316	976	945	352	243
16	247	236	407	180	323	95	116	348	225	202	297	311	402	315	99
17	213	81	92	107	210	125	118	122	216	156	27	63	63	124	38
18	172	71	94	225	56	52	96	91	12	145	22	160	168	95	26
19	15	21	62	48	49	0	19	61	43	25	71	83	0	17	26
20	105	112	133	114	63	0	48	38	97	31	0	55	18	0	0
Total	146023	131904	157091	170005	167661	224625	228118	227236	229191	244066	228564	264975	250632	215096	168021
Age	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
2	0	0	0		0	0	1	2	1	4	3	0	0	0	
3	125	536	42	6	25	6	60	41	93	157	104	5	6	8	
4	2239	3545	258	32	158	34	214	249	249	704	268	9	21	21	
5	11773	3243	564	138	433	134	596	1032	716	967	623	26	51	222	
6	14531	2425	250	144	817	189	1478	1687	936	1232	702	109	101	362	
7	7830	1113	137	57	329	361	954	2908	915	926	635	112	162	241	
8	2813	1235	45	25	67	102	713	1094	994	614	402	84	106	147	
9	1000	194	6	6	22	19	247	927	598	1068	296	81	59	69	
10	446	0	0	1	8	7	40	246	616	354	501	41	35	31	
11	279	0	0	1	1	2	22	65	162	592	239	159	16	23	
12	89	0	0	0	1	1	7	14	31	219	269	116	33	12	
13	48	0	0	0	0	0	6	2	18	20	61	159	13	14	
14	28	0	0	0	0	0	0	1	5	5	11	40	13	3	
15	0	0	0	0	0	0	0	0	1	1	3	16	2	4	
16	0	0	0	0	0	0	0	0	0	0	0	0	0	4	
17	0	0	0	0	0	0	0	0	1	0	0	0	0	3	
18	0	0	0	0	0	0	0	0	0	0	1	0	0	0	
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total	41200	12290	1301	411	1861	857	4338	8269	5335	6864	4117	957	618	1163	

Table 11. Estimates of cod abundance (thousands) from surveys in Div. 2 J in 1983-92, in Campelen equivalent units.

	Stratum	Area sq.	Gadus									
	number	nautical	86-88	101-102	116-118	131-132	145-146	159-160	174-176	190-191	208-209	224-226
		miles	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Mean survey date			05-Nov-83	05-Nov-84	30-Oct-85	11-Nov-86	06-Nov-87	14-Nov-88	10-Nov-89	12-Nov-90	14-Nov-91	05-Nov-92
101-200	201	1427	87811	52543	82806	99720	25126	319	0	0	0	0
	205	1823	122517	182501	48964	44029	34532	38745	502	1223	0	0
	206	2582	55637	142654	68017	134937	17607	83620	48332	2874	3197	3339
	207	2246	145830	101693	171902	37826	38648	45550	9825	15492	0	1545
201-300	202	440	5387	8111	4086	31746	7838	1025	0	0	0	0
	209	1608	108766	14599	39668	142610	48249	47602	140710	8590	9006	2522
	210	774	389901	16929	772	97706	479	10221	43414	34603	24230	2783
	213	1725	62645	33648	67470	102247	36569	43632	183006	89430	25390	1948
	214	1171	18102	112678	78314	157299	128223	115524	70582	18267	2942	897
	215	1270	25616	42569	26380	293011	27603	90521	1689	9434	2271	2114
	228	1428	22525	8643	2582	61157	4153	6679	14364	15813	154727	1964
	234	508	50198	16841	11926	22187	6825	2690	0	0	0	256
301-400	203	480	990	1552	638	5745	3962	5910	0	0	66	110
	208	448	5947	760	4622	9768	12572	1849	53462	8012	986	2465
	211	330	4698	908	2361	4880	4835	6945	35386	23197	67475	8058
	216	384	18	740	396	317	9720	1347	2562	872	687	106
	222	441	0	20	698	61	849	182	33214	4853	1597	364
	229	567	6357	208	3536	1872	338	1222	6214	5577	11518	1508
401-500	- 204	354	1704	5235	0	1802	1242	5405	268	146	0	162
	217	268	0	38	0	0	184	0	0	0	74	0
	227	686	47	0	0	157	236	252	3350	18150	6810	582
	235	420	9620	404	144	0	780	462	664	3178	12537	212
total strata fished <= 500 meters 1 STD strata fished <= 500 meters			1124316	743236	615282	1249077	410570	508714	647594	260268	323637	30960
			320612	112688	88262	261581	66519	74633	112157	45978	165231	5287
501-750	- 212	664	0	91	23	761	365	548	206	3562	41423	274
	218	420	0	nf	0	0	0	0	0	0	0	0
	224	270	0	0	0	0	0	0	0	0	130	0
	230	237	0	0	0	0	0	98	0	978	0	0
501-750		1591	0	91^{1}	23	761	365	646	206	4540	41553	274
751-1000	219	213	0	nf	0	0	0	0	0	0	0	0
	231	182	0	0	0	0	0	0	nf ${ }^{1}$	0	0	325
	236	122	0	0	0	34	0	0	nf	0	0	0
751-1000 51			0	0	0	34	0	0	0	0	0	325
total strata fished > 500 meters			0	91	23	795	365	646	206	4540	41553	599
total all strata fished			1,124,317	743,328	615,304	1,249,871	410,936	509,360	647,797	264,807	365,191	31,560
1 STD all strata fished			320612	112687	88263	261582	66519	74635	112159	46014	170124	5304
mean number per tow			345.328	237.344	188.987	383.891	126.217	159.411	201.556	81.334	112.166	9.693

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=500$ meter depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 12. Estimates of cod biomass (t) from surveys in Div. 2 J in 1983-92, in Campelen equivalent units.

$\begin{aligned} & \hline \text { Stratum } \\ & \text { depth } \\ & \text { (meters) } \end{aligned}$	Stratum	Area sq.	Gadus									
	number	nautical	86-88	101-102	116-118	131-132	145-146	159-160	174-176	190-191	208-209	224-226
		miles	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Mean survey date			05-Nov-83	05-Nov-84	30-Oct-85	11-Nov-86	06-Nov-87	14-Nov-88	10-Nov-89	12-Nov-90	14-Nov-91	05-Nov-92
101-200	201	1427	61842	41743	58556	88676	27395	208	0	0	0	0
	205	1823	53701	95026	30679	38754	31421	61555	691	182	0	0
	206	2582	33286	121643	49111	123683	16999	92563	38555	661	1333	1489
	207	2246	46134	55054	107180	25989	36773	18803	2352	6370	0	649
201-300	202	440	8365	7647	3064	32711	11398	1874	0	0	0	0
	209	1608	127333	17017	35398	119210	56901	28242	52339	1670	3966	990
	210	774	241006	21752	1521	87332	737	10667	36642	12536	13406	1116
	213	1725	50086	27703	55229	98497	41997	53146	120476	34360	11859	587
	214	1171	19316	104048	77051	189715	170212	137161	56924	13766	1018	399
	215	1270	30986	31690	30602	379256	36553	146322	315	8508	1073	760
	228	1428	8049	7695	1244	52833	4800	10296	12552	8973	65772	672
	234	508	16910	11930	9173	22705	7342	5157	0	0	0	68
301-400	203	480	2250	3445	582	7875	6300	9640	0	0	45	77
	208	448	7465	1115	4301	8575	16641	3653	22845	3699	455	1091
	211	330	6334	1570	3287	4661	7667	7283	56896	10465	35048	3629
	216	384	52	1592	429	435	13557	2201	3178	255	287	25
	222	441	0	32	784	59	1192	247	9028	2559	579	175
	229	567	2354	263	3823	2399	340	1889	6166	4265	4906	595
401-500	204	354	2458	5863	0	2174	1732	8318	36	37	0	48
	217	268	0	60		0	211	0	0	0	45	0
	223	180	0	0	0	0	0	57	23	212	107	13
	227	686	217	0	0	224	341	353	5407	17904	4643	311
	235	420	4348	332	133	0	1090	717	962	1930	5594	101
total strata fished <= 500 meters			722492	557160	472147	1285763	491599	598478	425387	128352	150136	12795
1 STD strata fished <= 500 meters			177183	83218	65293	325107	31381	97959	218324	25701	72612	2315
501-750	212	664	0	nf	0	0	0	0	0	2196	20693	159
	218	420	0	0	0	0	0	0	0	0	62	0
	224	270	0	0	0	0	0	193	0	0	0	0
	230	237	0	0	0	0	0	0	0	1395	0	0
501-750		1591	0	0^{1}	0	0	0	193	0	3591	20755	159
751-1000	219	213	0	nf	0	0	0	0	0	0	0	0
	231	182	0	0	0	0	0	0	nf	0	0	144
	236	122	0	0	0	62	0	0	nf	0	0	0
751-1000		517	0	0	0	62	0	0	0^{1}	0	0	144
total strata fished >500 meters total all strata fished			0	0	0	62	0	193	0	3591	20755	303
			722491	557302	472214	1287042	492144	599436	425874	131943	170892	13096
1 STD all strata fished			177183	83218	65293	325108	84935	97963	85921	25746	74135	2326

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{5 0 0}$ meter depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 13. Estimates of cod abundance (thousands) from surveys in Div. 2J in 1993-2005, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2005.

			GADUS	GADUS	TELEOST	TELEOST	TELEOST	TELEOST	TELEOST	TELEOST	TEL 361 「EL 415,454,AN 399-400 TEL457		$\begin{array}{r} \text { TELEOST } \\ 509-510 \\ 2003 \end{array}$	TELEOST TEL 611,612		
			236-238	250-252	20-23	39	54-54	72-73	86-88	340-343			537-539	WT 632		
			1993	1994	1995-6	1996	1997	1998	1999	2000	2001	2002		2004	2005-6	
			7-Nov-93	17-Nov-94	28-Dec-95	30-Oct-96	27-Oct-97	27-Oct-98	13-Nov-99	7-Nov-00	28-Nov-01	24-Dec-02		8-Dec-03	10-Nov-04	27-Nov-05
101-200	201	633	0	0	nf	0	0	44	44	0	0	0	44	44	0	
	205	1594	63	219	nf	110	110	32	37	37	37	0	0	37	37	
	206	1870	547	0	0	184	257	294	110	115	171	37	110	220	37	
	207	2246	2128	2699	350	588	138	751	666	1280	447	1032	1122	623	623	
	237	733	151	0	273	134	0	34	0	101	25	307	2041	178	7125	
	238	778	nf	0	nf	107	36	0	0	0	36	0	306	41	0	
201-300	202	621	0	0	49	0	0	0	0	0	0	0	0	0	0	
	209	680	374	514	327	249	62	243	374	187	28	218	258	234	31	
	210	1035	5731	854	1424	320	214	178	854	676	261	269	473	570	249	
	213	1583	871	0	2504	835	1085	871	290	1161	416	954	1327	617	1716	
	214	1341	1771	338	323	959	406	451	221	517	823	833	148	1402	369	
	215	1302	1719	358	90	2917	1381	498	788	609	191	466	1197	2006	1075	
	228	2196	436	0	949	2068	1347	2001	868	944	1847	1729	874	1284	2228	
	234	530	0	0	nf	73	142	36	32	36	36	146	0	146	36	
301-400	203	487	0	301	0	335	234	67	100	0	0	33	0	67	167	
	208	588	0	162	809	566	0	40	40	335	144	0	352	243	1213	
	211	251	414	322	708	483	0	192	383	533	78	72	104	138	173	
	216	360	0	173	927	715	99	74	275	198	303	297	57	371	891	
	222	450	279	846	495	543	1021	272	371	495	954	836	340	464	248	
	229	536	590	295	627	946	205	74	442	184	1180	885	442	332	1548	
401-500	204	288	0	0	16	20	0	0	14	0	0	20	0	0		
	217	241	66	55	561	63	0	166	33	33	15	715	38	83	215	
	223	158	0	0	880	91	54	19	0	nf	0	73	54	54	33	
	227	598	795	0	370	1207	41	247	0	55	0	329	0	247	247	
	235	414	1044	1006	541	101	85	85	0	0	0	159	28	85	111	
	240	133	9	0	123	9	18	0	128	18	42	125	0	18	146	
total strata fished $<=500 \mathrm{~m}$ upper t-value $\underline{\text { STD strata fished }<=500 \mathrm{~m}}$			16989	8145	12346	13625	6936	6669	6074	7516	7033	9534	9315	9503	18519	
			28803	16368	16367	17716	9046	8575	8163	10007	9222	12588	13125	11582	50073	
			2.571	3.182	2.228	2.179	2.11	2.07	2.18	2.2	2.14	2.09	2.365	2.05	4.3	
			4595	2584	1805	1877	1000	921	958	1132	1023	1461	1611	1014	7338	
501-750	212	557	77	128	69	136	77	0	0	38	0	72	82	0	38	
	218	362	0	50	1660	75	0	0	0	0	0	100	0	25	0	
	224	228	0	0	596	0	0	0	42	0	0	233	47	0	0	
	230	185	0	34	13	0	0	0	13	13	0	480	0	0	0	
	239	120	17	17	0	8	7	0	0	0	7	8	0	8	8	
751-1000	219	283	0	0	0	0	0	0	0	0	0	0	0	0	0	
	231	186	0	0	0	0	0	0	0	0	0	0	0	0	0	
	236	193	0	0	12	0	0	0	0	0	0	0	0	0	0	
1001-1250	220	330	nf	nf	nf	0	0		nf		0	0	0	0	0	
	225	195	nf	nf	nf	0	0		0		0	0	0	0	0	
	232	228	nf	nf	nf	0	0		0		0	0	0	0	0	
			nf	nf	nf	0	0	0	0	0	0	0	0	0	0	
$\frac{1001-1250^{1}}{1251-1500}$	221	330	nf	nf	nf	0	0		0	0	0	0	0	0	0	
	226	201	nf	nf	nf	0	0		0	0	0	0	0	0	0	
	233	237	nf	nf	nf	0	0		0	0	0	0	0	0	0	
1251-1500 ${ }^{1}$			nf	nf	nf	0		0	0	0	0	0	0	0	0	
total strata fished $>500 \mathrm{~m}$total all strata fished			94	229	2350	219	84	0	55	51	7	893	129	33	46	
			17082	8373	14654	13844	7020	6636	6129	7567	7040	10427	9445	9536	18465	
total all strata fished upper			28898	16608	19098	17946	9136	8538	8220	10060	9230	13495	13254	11615	50120	
t-value			2.571	3.182	2.16	2.179	2.11	2.07	2.18	2.2	2.14	2.09	2.365	2.05	4.3	
1 STD all strata fished			4596	2588	2057	1883	1003	919	959	1133	1023	1468	1611	1014	7362	

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 14. Estimates of cod biomass (t) from surveys in Div. 2J in 1993-2005, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2005.

Stratum Stratum Area sq. depth number nautital (meters) neal Mean survey date miles			GADUS	GADUS	TELEOST	TELEOST	TELOST	TELOST	TELOST	TELEOST	TEL 361 [EL 415,454,		TELEOST	TELEOST TEL 611-612	
			236-238	250-252	20-23	39	54-55	72-73	86-88	340-343	AN 399-400	TEL457	509-510	537-539	WT 632
			1993	1994	1995-6	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005-6
			7-Nov-93	17-Nov-94	28-Dec-95	30-Oct-96	27-Oct-97	27-Oct-98	13-Nov-99	7-Nov-00	28-Nov-01	24-Dec-02	8-Dec-03	10-Nov-04	27-Nov-05
101-200	201	633	0	0	nf	0	0	30	6	0	0	0	44	24	0
	205	1594	63	151	nf	16	42	5	4	42	41	0	0	5	39
	206	1870	155	0	0	62	125	186	24	47	90	20	7	76	34
	207	2246	452	507	44	57	110	406	156	220	107	26	204	114	118
	237	733	83	0	13	8	0	2	0	3	8	2	23	22	65
	238	778	nf	0	nf	21	27	0	0	0	11	0	2	59	0
201-300	202	621	0	0	9	0	0	0	0	0	0	0	0	0	0
	209	680	100	67	52	20	44	162	86	60	7	56	82	79	19
	210	1035	1158	139	108	26	112	98	168	271	77	72	121	254	59
	213	1583	346	0	336	214	586	639	180	398	208	389	715	410	817
	214	1341	700	174	39	273	186	289	127	303	355	460	122	878	194
	215	1302	443	210	21	959	586	404	625	436	88	371	646	1207	736
	228	2196	294	0	263	665	747	1258	280	433	514	613	329	572	924
	234	530	0	0	nf	22	83	3	1	3	17	31	0	54	3
301-400	203	487	0	220	0	136	157	67	107	0	0	23	0	26	148
	208	588	0	41	123	200	0	4	12	268	63	0	149	142	229
	211	251	241	110	141	81	0	139	71	208	36	17	27	43	60
	216	360	0	96	234	194	54	73	82	95	148	134	33	186	515
	222	450	146	276	124	290	495	194	200	193	363	374	257	297	142
	229	536	109	124	184	305	138	54	172	63	469	339	216	190	984
401-500	204	288	0	0	1	8	0	0	19	0	0	25	0	0	0
	217	241	67	19	135	26	0	177	14	7	10	401	37	40	121
	223	158	0	0	135	32	35	25	0	nf	0	47	43	42	28
	227	598	441	0	109	748	33	197	0	23	0	146	0	115	224
	235	414	318	559	175	84	30	71	0	0	0	58	8	74	121
	240	133	13	0	68	2	19	0	192	10	32	77	0	13	140
total strata fished $<=500 \mathrm{~m}$ upper			5129	2693	2312	4261	3609	4483	2527	3082	2646	3680	3065	4921	5719
			7096	3824	2905	6472	4574	5924	4023	4171	3345	4790	4226	5996	7650
upper t -value			2.228	2.201	2.179	2.776	2.086	2.08	2.45	2.23	2.09	2.13	2.262	2.07	2.26
1 STD strata fished $<=500 \mathrm{~m}$			883	514	272	796	463	693	611	488	334	521	513	519	854
501-750	212	557	93	89	15	22	49	0	0	10	0	45	115	0	63
	218	362	0	51	519	12	0	0	0	0	0	77	0	31	0
	224	228	0	0	205	0	0	0	45	0	0	152	68	0	0
	230	185	0	32	14	0	0	0	18	6	0	307	0	0	0
	239	120	17	11	0	2	3	0	0	0	1	7	0	1	11
751-1000	219	283	0	0	0	0	0	0	0	0	0	0	0	0	0
	231	186	0	0	0	0	0	0	0	0	0	0	0	0	0
	236	193	0	0	2	0	0	0	0	0	0	0	0	0	0
1001-1250	220	330	nf	nf	nf	0	0	0	nf	0	0	0	0	0	0
	225	195	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
	232	228	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
1001-1250 ${ }^{1}$ - 753			nf	nf	nf	0	0	0	0	0	0	0	0	0	0
1251-1500	221	330	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
	226	201	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
	233	237	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
1251-1500 ${ }^{1}$		768	nf	nf	nf	0	0	0	0	0	0	0	0	0	0
total strata fished > 500 m			110	183	755	36	52	0	63	16	1	588	183	32	74
total all strata fished			5238	3448	3067	4484	3662	4483	2590	3098	2647	4270	3248	4953	5793
upper			7217	4019	3927	6621	4629	5924	4091	4187	3346	5387	4411	6028	7730
t -value			2.228	2.179	2.262	2.776	2.08	2.08	2.45	2.23	2.09	2.12	2.262	2.07	2.26
1 STD all strata fished			888	262	380	770	465	693	613	488	334	527	514	519	857

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 15. Estimates of cod abundance (thousands) from surveys in Div. 3 K in 1983-92, in Campelen equivalent units.

$\begin{gathered} \text { Stratum } \\ \text { depth } \\ \text { (meters) } \end{gathered}$	Stratum	Area sq.	GADUS									
	number	nautical	87-88	101-103	117-118	131-132	146-147	160-161	175-176	191-192	209-210	224-226
		miles	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Mean survey date			26-Nov-83	23-Nov-84	18-Nov-85	01-Dec-86	27-Nov-87	05-Dec-88	05-Dec-89	04-Dec-90	04-Dec-91	26-Nov-92
101-200	618	1455	17028	24569	26453	64689	14954	57577	14811	13210	721	1268
	619	1588	3835	9955	1155	17476	6826	19598	63705	2578	0	218
201-300	620	2709	126888	110535	4685	135397	32793	100337	253826	11304	3780	2236
	621	2859	33593	32109	8338	27811	16059	32525	44025	14230	2517	131
	624	668	10016	9786	2550	2573	1746	3982	4901	24948	7076	735
	632	447	30765	9851	4591	4735	7410	51959	4888	22044	10336	1438
	634	1618	61564	31160	29182	323578	60702	21441	269092	4610	99321	694
	635	1274	7711	29442	4682	14225	3593	9534	5934	3505	1490	701
	636	1455	8807	17788	3828	21566	6777	12743	13850	715	1134	133
	637	1132	31704	73889	15928	46132	15805	24915	13766	6634	5320	156
301-400	623	1027	29291	51057	3697	4026	11782	23649	102872	50690	3155	5557
	625	850	4677	1988	7156	3196	11400	5554	21251	11693	1676	546
	626	919	6953	3266	2705	62324	5815	5006	12566	9260	1264	632
	628	1085	7935	4670	6617	2687	1582	18448	12575	5522	9303	4179
	629	495	2357	2557	1647	5720	938	7276	3135	6521	978	1853
	630	544	1497	2170	262	262	524	524	7009	1085	499	150
	633	2179	15312	21312	38293	96780	49404	15737	220703	243039	185926	7410
	638	2059	53867	17476	37259	36467	24472	23650	137139	360185	200000	7511
	639	1463	12449	5283	8780	15127	5980	12176	19270	52757	91771	2262
401-500	622	632	304	1434	283	1652	174	3188	21561	12476	1449	1594
	627	1194	1032	1038	372	4658	2633	1173	10505	85313	4506	3692
	631	1202	1025	33	472	207	3059	6063	42471	28964	15157	992
	640	198	194	0	9	14	0	109	2982	150	1970	17459
	645	204	0	0	9	90	112	28	4686	379	0	75
total strata fished <=500 meters			447748	451517	208952	891302	284541	457191	1307523	971810	649350	61622
1 STD strata fished <=500 meters			61132	68574	27228	321032	44267	73335	270219	184614	159892	17726
$501-750^{1}$		917	0	0	0	nf	107	nf	nf	92	122	263
$751-1000^{1}$		1340	nf	nf	0	nf	nf	nf	nf	128	56	0
total strata fished > 500 meters			0	0	0	0	107	0	0	220	178	263
total all strata fished			447748	451517	208952	891302	284648	457191	1307523	972029	649529	61886
1 STD all strata fished			61132	68574	27228	321032	44267	73335	270219	184614	159892	17726

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=500$ meter depth range have been filled using a multiplicative model using data to $\mathbf{1 9 9 2}$. Std are for strata fished in the depth range.

Table 16. Estimates of cod biomass (t) from surveys in Div. 3 K in 1983-92, in Campelen equivalent units.

Stratum depth (meters)	Stratum	Area sq.	GADUS									
	number	nautical	87-88	101-103	117-118	131-132	146-147	160-161	175-176	191-192	209-210	224-226
		miles	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
Mean survey date			26-Nov-83	23-Nov-84	18-Nov-85	01-Dec-86	27-Nov-87	05-Dec-88	05-Dec-89	04-Dec-90	04-Dec-91	26-Nov-92
101-200	618	1455	7987	18702	24894	53641	10200	2443	1575	1514	261	450
	619	1588	1491	4801	1113	3157	2538	1212	3363	154	0	119
201-300	620	2709	67557	87523	8223	131461	27088	13232	24447	1636	1158	847
	621	2859	18041	25813	6216	19356	3294	11590	7313	1021	359	194
	624	668	3920	3082	2340	2798	802	3087	1660	8649	3809	331
	632	447	33968	10779	4106	4540	7824	51549	2030	8677	5581	663
	634	1618	56301	24843	28663	436500	80357	19008	322401	1976	77639	450
	635	1274	4940	11970	3551	16754	3329	3843	2609	998	617	319
	636	1455	11657	13899	3977	13264	5871	9229	3577	431	334	138
	637	1132	36769	75369	15341	50718	15913	29982	13010	2665	2332	85
301-400	623	1027	23690	46679	5155	4602	17254	3662	22849	12857	1130	1960
	625	850	5410	2474	7062	3405	11136	5766	12105	4049	861	291
	626	919	5565	3377	4274	41267	4852	1188	5858	718	345	218
	628	1085	8807	4909	7807	2564	1484	7998	7102	2184	4028	1345
	629	495	2506	1739	955	5557	907	1391	1550	2003	95	535
	630	544	1452	1564	435	292	743	863	9065	644	267	85
	633	2179	15440	23201	39817	115810	66782	15297	148660	169097	132091	4366
	638	2059	56662	12773	35965	37822	31829	18946	184194	353107	150413	3564
	639	1463	17739	5242	8657	14185	6332	7526	7803	24244	74514	941
401-500	622	632	541	1487	215	1307	163	847	8794	2974	498	564
	627	1194	970	772	360	5307	1150	1208	4805	13523	1248	765
	631	1202	2700	138	493	273	3049	6448	31211	11300	8691	732
	640	198	385	0	16	22	0	299	2436	204	1231	16334
	645	204	0	0	50	255	139	122	1628	368	0	48
total strata fished <=500 meters			374634	370356	209686	964600	303038	216734	830045	624993	467505	35346
1 STD strata fished $<=500$ meters			51399	58138	26560	428297	61366	50225	289567	207590	128742	16146
$501-750^{1}$		917	0	0	0	nf	174	nf	nf	72	133	258
$751-1000^{1}$		1340	nf	nf	0	nf	nf	nf	nf	70	39	0
total strata fished >500 meters			0	0	0	0	174	0	0	142	172	258
total all strata fished			374634	370356	209686	964600	303212	216734	830045	645136	649529	35604
1 STD all strata fished			51399	58138	26560	428297	61366	50225	289567	198748	159892	16146

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=500$ meter depth range have been filled using a multiplicative model using data to $\mathbf{1 9 9 2}$. Std are for strata fished in the depth range.

Table 17. Estimates of cod abundance (thousands) from surveys in Div. 3K in 1993-2005, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2005.

[^2]in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 18. Estimates of cod biomass (t) from surveys in Div. 3K in 1993-2005, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2005.

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 19. Estimates of cod abundance (thousands) from surveys in Div. 3L in 1983-2005 in depths <= 200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratum depth (fath)		Area sq. nautical	WT	WT	WT	AN	WT							
		miles	7-9	16-18	37-39	72	65	78	87	101	114-115	129-130	145-146	160-162
			1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Mean survey date			27-Oct-83	15-Aug-84	27-Oct-85	21-Nov-86	24-Oct-87	3-Nov-88	20-Oct-89	5-Nov-90	21-Nov-91	16-Nov-92	23-Nov-93	22-Nov-94
31-50	350	2071	26886	62391	66442	43614	15131	13276	10854	5911	5359	1140	1804	122
	363	1780	38933	73152	143316	6156	21384	23286	43993	52247	3702	13036	408	367
	371	1121	20972	36304	5199	565	3547	4472	193	7556	411	1079	103	0
	372	2460	157018	160636	65709	16318	57710	16269	32627	141824	3774	2919	299	0
	384	1120	29119	73645	1560	801	34383	1489	986	41791	1061	146	154	0
51-100	328	1519	6868	1985	1802	37264	2507	8806	1224	2090	279	1114	488	139
	341	1574	14723	8401	4949	6124	337	1245	298	1985	505	217	1516	0
	342	585	2837	4466	912	885	1073	429	80	2052	161	54	0	80
	343	525	915	14408	1517	1974	337	650	24	1372	481	722	72	96
	348	2120	8934	34810	6978	6008	3143	3995	6189	6389	1896	3208	nf	219
	349	2114	9306	62170	15645	8724	2472	7302	1745	4736	3722	58	1939	208
	364	2817	25576	97381	20064	3720	4789	10048	1656	13595	291	388	1421	323
	365	1041	7074	102281	4242	8821	1456	1690	573	895	1575	286	95	95
	370	1320	5811	52295	2865	2905	1059	623	121	1888	121	484	666	0
	385	2356	5445	20391	756	4497	972	25	29	1713	389	648	0	0
	390	1481	815	33751	553	5229	23276	3107	2183	1290	0	136	0	0
101-150	344	1494	5823	15722	10733	8250	5600	4874	4580	9454	3186	5446	2363	771
	347	983	5995	11719	3056	3651	2502	10628	4571	30560	609	676	439	34
	366	1394	11314	56011	51115	59062	25367	66130	17888	9812	19359	44544	2972	115
	369	961	9628	14919	5222	53011	11336	12241	1005	2809	12559	1884	227	0
	386	983	10318	8587	4327	14705	7167	4895	6464	7099	135	766	135	0
	389	821	10850	3614	4518	4179	49636	13270	10023	2936	10842	0	0	0
	391	282	16778	291	6440	485	2289	427	1028	1629	233	129	116	0
151-200	345	1432	6821	7936	14730	12410	8963	11285	5881	11977	4432	985	1510	542
	346	865	17634	9023	9567	14120	30253	27058	9073	14517	37387	33292	1417	136
	368	334	21257	2688	6524	12497	3101	5008	1861	11555	27437	30338	15627	88
	387	718	12466	19062	3704	22519	4708	1753	1350	3325	2963	2864	2601	779
	388	361	5572	4817	1341	3629	844	1813	5761	1962	1556	579	414	177
	392	145	150	1107	339	110	10	289	40	598	259	20	27	0
total strata fished <= 200 fathoms			428505	993964	464125	358606	325352	256383	172299	395569	144684	147159	36813	4292
ADJUSTED			495838	993963	464125	362233	325352	256383	172300	395567	144684	147158	36813	4291
upper			531562	1232300	652696	472366	434746	312134	235628	525307	181155	215462	65605	6233
t-value			2.16	2.228	2.131	2.262	2.16	2.069	2.06	2.201	2.08	2.012	2.306	2.042
1 STD strata fished <= 200 fathon			47712	106973	88489	50292	50645	26946	30742	58945	17534	33948	12486	951

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 19 (cont'd). Estimates of cod abundance (thousands) from surveys in Div. 3L in 1983-2005 in depths <= 200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

$\begin{gathered} \hline \text { Stratum } \\ \text { depth } \\ \text { (fath) } \end{gathered}$	Stratum	Area sq.		Tel 41	Tel 55-57				AN 399	Tel 412,413	Tel 513	WT 558-559	Tel 662
	number	nautical	WT	WT	WT	WT	WT	WT 321-323	WT 373-376	Tel 415	WT 487-489	WT 587 W	WT 628-630, 637
		miles	176-181	196-198	213-217	230-233	245-247	Tel 342-343 TEL	357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658
			1995	1996	1997	1998	1999	2000	2001	2002-3	2003	2004	2005-6
Mean survey date			27-Nov-95	2-Nov-96	27-Nov-97	15-Nov-98	29-Nov-99	28-Nov-00	15-Nov-01		5-Dec-03	5-Dec-04	14-Nov-05
31-50	350	2071	1045	285	570	773	1587	936	1420	512	692	1750	163
	363	1780	365	82	1306	481	367	184	245	408	245	542	77
	371	1121	31	0	0	0	39	0	0	77	77	77	0
	372	2460	353	414	42	1114	1269	1523	926	550	296	296	254
	384	1120	0	0	0	0	385	77	0	39	0	77	0
51-100	328	1519	0	334	376	334	1226	209	5391	775	3636	1319	251
	341	1574	36	289	54	223	1256	476	1261	558	693	1291	396
	342	585	40	121	40	80	724	201	188	40	201	483	0
	343	525	36	0	68	0	361	397	36	36	144	144	29
	348	2120	250	393	167	194	767	292	1333	287	329	1280	208
	349	2114	122	166	344	162	955	614	706	291	706	1015	412
	364	2817	43	116	525	0	775	1163	388	172	400	2177	560
	365	1041	215	207	191	0	0	nf	95	239	0		143
	370	1320	73	0	91	0	0	257	45	40	52		0
	385	2356	0	36	0	41	41	0	162	0	0	41	41
	390	1481	34	0	0	0	204	0	0	0	41	41	0
101-150	344	1494	530	2950	914	715	1548	2023	968	1219	2089	4091	1169
	347	983	199	391	541	406	316	371	496	225	406	406	90
	366	1394	230	236	652	443	345	671	5420	3209	920		107
	369	961	78	0	220	39	1332	0	176	44	176		32
	386	983	0	45	0	0	45	0	45	45	0		0
	389	821	38	0	38	0	151	113	38	0	0	225	38
	391	282	0	0	19	0	97	19	0	17	19	39	39
151-200	345	1432	2780	433	302	653	2863	4436	3467	1055	1435	2272	630
	346	865	754	379	1269	297	881	4557	3570	806	535	801	920
	368	334	299	128	459	368	980	9396	694	184	436		49
	387	718	66	44	1514	132	527	494	329	88	99		0
	388	361	99	0	135	0	5313	472	221	50	0	199	3129
	392	145	19	18	20	0	928	130	104	18	9	38	44
total strata fished <= 200 fathoms			7732	7066	9859	6454	25281	29010	27724	10984	13638	18605	8780
ADJUSTED			7735	7067	9859	6454	25281	29010	27724	10984	13638		8780
upper			12328	12052	15027	8524	95232	52913	42861	15550	18275	22936	49867
t-value			2.306	2.571	2.776	2.05	12.71	4.3	2.23	2.36	2.365	2.06	12.71
1 STD strata fished <= 200 fathon			1993	1939	1862	1010	5504	5559	6788	1935	1961	2102	3233

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 20. Estimates of cod biomass (t) from surveys in Div. 3L in 1983-2005 in depths $<=200$ fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratum Stratum depth number (fath)		Area sq. nautical	WT	WT	WT	AN	WT							
		miles	7-9	16-18	37-39	72	65	78	87	101	114-115	129-130	145-146	160-162
			1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Mean survey date			27-Oct-83	15-Aug-84	27-Oct-85	21-Nov-86	24-Oct-87	3-Nov-88	20-Oct-89	5-Nov-90	21-Nov-91	16-Nov-92	23-Nov-93	22-Nov-94
31-50	350	2071	18204	42081	35227	46248	14242	16885	10769	6602	6434	1877	1522	179
	363	1780	36935	50726	103274	9116	22124	30177	33959	35121	4266	7504	344	211
	371	1121	13316	24055	3285	366	4935	7746	457	9110	481	893	91	0
	372	2460	100388	74560	62776	22328	68454	19194	29816	177108	3164	1896	287	0
	384	1120	15999	57404	1314	163	27226	1681	223	61815	674	127	67	0
51-100	328	1519	2634	832	1378	11971	603	3397	1101	415	185	1748	166	248
	341	1574	4517	5043	2694	4218	473	1273	198	1237	920	253	289	0
	342	585	752	1733	554	588	451	583	114	1029	383	123	0	36
	343	525	1341	6036	518	1930	404	661	90	653	132	459	79	34
	348	2120	6763	24084	4851	5686	3229	3906	4158	2995	1666	1504	nf	322
	349	2114	5245	23149	9512	7711	2203	8207	2690	3630	5454	66	1755	54
	364	2817	5306	21027	4966	2813	3463	7216	1681	6851	915	526	873	302
	365	1041	2101	20303	2383	4292	2116	1961	797	509	2814	347	54	114
	370	1320	2403	21444	1579	579	1605	1128	224	1159	189	673	171	0
	385	2356	1719	5657	316	2583	1624	303	110	1620	300	735	0	0
	390	1481	1366	6250	108	561	1850	516	294	283	0	81	0	0
101-150	344	1494	3698	12067	9056	7635	4726	2746	2435	5079	809	3003	988	382
	347	983	6183	10733	2265	3960	1906	9386	5239	18473	369	181	351	20
	366	1394	15941	18725	54100	70142	28721	76378	18189	8194	15225	40824	2426	116
	369	961	9321	8962	8086	65455	19792	12361	3266	3223	13072	937	180	0
	386	983	8056	5281	6595	23005	5487	6410	7472	10209	124	366	194	0
	389	821	5277	4726	5017	3420	9036	2951	5134	3838	3388	0	0	0
	391	282	1418	157	1522	711	400	76	158	577	74	18	53	0
151-200	345	1432	10540	7499	15729	16629	9962	14557	7883	7575	1775	736	957	245
	346	865	14781	6034	10546	15984	36414	33516	14619	13512	27945	29383	702	91
	368	334	23841	2557	10438	21732	7227	7539	4904	13883	26629	29646	10776	80
	387	718	13000	14254	7063	37565	5152	2623	1146	9129	3515	2018	1984	321
	388	361	5572	1730	3116	3629	389	1067	3506	1564	740	390	268	119
	392	145	172	245	251	43	15	110	55	276	117	9	19	0
total strata fished <= 200 fathoms			278412	477355	368514	387438	284230	274553	160688	405668	121761	126323	24594	2873
ADJUSTED			336789	477354	368519	391063	284229	274554	160687	405669	121759	126323	24596	2874
upper			361946	559984	491927	534112	349929	337286	205564	592708	154941	193308	44710	3895
t-value			2.365	2.04	2.12	2.365	2.056	2.086	2.069	2.306	2.131	2.014	2.306	2.035
1 STD strata fished <= 200 fathoms			35321	40504	58214	62019	31955	30073	21690	81110	15570	33260	8723	502

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 20 (cont'd). Estimates of cod biomass (t) from surveys in Div. 3L in 1983-2005 in depths $<=200$ fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratum depth (fath)	Stratum	Area sq.		Teleost 41	Tel 55-57				AN 399	Tel 412,413	Tel 513	WT 558,559	Tel 662
	number	nautical	WT	WT	WT	WT	WT	WT 321-323	WT 373-376	Tel 415	WT 487-489	WT 587	WT 628-630, 637
		miles	176-181	196-199	213-217	230-233	246-248	Tel 342-343 TEL	357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658
			1995	1996	1997	1998	1999	2000	2001	2002-3	2003	2004	2005/6
Mean survey date			27-Nov-95	2-Nov-96	27-Nov-97	15-Nov-98	29-Nov-99	28-Nov-00	15-Nov-01	12-Nov-02	5-Dec-03	5-Dec-04	14-Nov-05
31-50	350	2071	1276	362	1355	997	1342	842	2442	367	1181	179	39
	363	1780	506	224	2895	152	80	28	588	1230	232	42	36
	371	1121	10	0	0	0	26	0	0	73	51	11	0
	372	2460	54	557	29	431	608	66	1303	1074	49	127	165
	384	1120	0	0	0	0	212	4	0	0	0	33	0
51-100	328	1519	0	537	1014	144	195	41	3995	145	407	394	190
	341	1574	2	248	16	290	1043	120	475	272	304	181	101
	342	585	22	184	66	5	164	135	79	13	74	54	0
	343	525	18	0	45	0	69	130	5	6	44	31	10
	348	2120	181	326	144	191	144	55	583	174	122	300	123
	349	2114	88	117	327	357	531	228	658	114	88	313	254
	364	2817	1	95	353	0	331	403	59	82	97	712	325
	365	1041	129	147	72	0	0	nf	72	72	0		35
	370	1320	72	0	41	0	0	107	17	22	2		0
	385	2356	0	11	0	57	13	0	77	0	0	2	13
	390	1481	13	0	0	0	81	0	0	0	8	16	0
101-150	344	1494	233	2214	221	409	802	908	274	601	765	1343	741
	347	983	99	324	259	407	81	87	224	175	109	144	22
	366	1394	121	87	264	223	58	321	2527	1572	292		57
	369	961	174	0	170	4	1048	0	64	15	71		17
	386	983	0	20	0	0	26	0	18	10	0		0
	389	821	12	0	35	0	58	54	9	0	0	102	37
	391	282	0	0	21	0	178	1	0	31	6	4	16
151-200	345	1432	1441	370	76	512	1301	1299	2178	709	658	627	449
	346	865	459	243	466	287	414	1359	2350	394	77	618	487
	368	334	129	48	181	240	954	8268	290	169	201		97
	387	718	25	19	851	99	284	227	180	30	2		0
	388	361	35	0	78	0	3080	335	140	97	0	23	1887
	392	145	15	7	10	0	489	51	97	10	7	11	16
total strata fished <= 200 fathoms			5114	6140	8991	4804	13611	15070	18706	7460	4849	5266	5118
ADJUSTED			5115	6140	8991	4804	13611	15070	18706	7460	4849		5118
upper			7661	9799	13920	6901	56006	83892	27204	10528	7539	6640	29932
t-value			2.145	2.306	2.228	2.04	12.71	12.71	2.12	2.13	2.228	2.09	12.71
1 STD strata fished <= 200 fathoms			1187	1587	2212	1028	3336	5415	4008	1440	1207	657	1952

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 21. Estimates of cod abundance (thousands) from surveys in Div. 3L in 1983-2005 in depths > 200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratum depth	Stratum number	Area sq. nautical	WT	WT	WT	AN	WT							
(fathoms)		miles	7-9	16-18	37-39	72	65	78	87	101	114-115	129-130	145-146	160-162
			1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Mean survey date			27-Oct-83	15-Aug-84	27-Oct-85	21-Nov-86	24-Oct-87	3-Nov-88	20-Oct-89	5-Nov-90	21-Nov-91	16-Nov-92	23-Nov-93	22-Nov-94
201-300	729	186	nf	320	0	0	nf	nf	nf	38	0	13	213	0
	731	216	nf	15	30	nf	nf	nf	nf	15	30	168	277	21
	733	468	nf	1481	43	nf	nf	nf	nf	386	21	494	1223	107
	735	272	nf	25	94	0	nf	nf	nf	nf	923	886	9155	180
301-400	730	170	nf	0	0	nf	nf	nf	nf	nf	0	0	0	8
	732	231	nf	0	0	nf	nf	nf	nf	0	0	0	0	0
	734	228	nf	0	0	nf	nf	nf	nf	0	0	0	31	42
	736	175	0	nf	0	0	nf	nf	nf	0	24	0	96	28
401-500	737	227	nf											
	741	223	nf											
	745	348	nf											
	748	159	nf											
401-500		957	nf											
501-600	738	221	nf											
	742	206	nf											
	746	392	nf											
	749	126	nf											
501-600		945	nf											
601-700	739	254	nf											
	743	211	nf											
	747	724	nf											
	750	556	nf											
601-700		1745	nf											
701-800	740	264	nf											
	744	280	nf											
	751	229	nf											
701-800		773	nf											
total strata fished > 200 fathioms			0	1841	167	0	0	0	0	439	998	1561	10995	386
total all strata fished offshore			428505	995804	464291	358606	325352	256383	172299	396008	145682	148719	47809	4678
upper			531562	1234157	652863	472366	434746	312134	235628	525748	182099	217045	77554	6627
t-value			2.16	2.228	2.131	2.262	2.16	2.069	2.06	2.201	2.074	2.012	2.228	2.042
1 STD all strata fished offshore			47712	106981	88490	50292	50645	26946	30742	58946	17559	33959	13351	954

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 21 (cont'd). Estimates of cod abundance (thousands) from surveys in Div. 3L in 1983-2005 in depths > 200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratumdepth(fathoms)	Stratum	Area sq.		Teleost 41	Tel 55-57				AN 399	Tel 412,413	Tel 513	WT 558-559	Tel 662
	number	nautical	WT	WT	WT	WT	WT	WT 321-323	WT 373-376	Tel 415	WT 487-489	WT 587 W	628-630, 637
		miles	176-181	196-198	213-217	230-233	246-249	Tel 342-343 TEL	357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658
			1995	1996	1997	1998	1999	2000	2001	2002-3	2003	2004	2005/6
Mean survey date			27-Nov-95	2-Nov-96	27-Nov-97	18-Nov-98	29-Nov-99	28-Nov-00	15-Nov-01	12-Nov-02	5-Dec-03	5-Dec-04	14-Nov-05
201-300	729	186	0	0	13	0	38	0	38	0	13	36	0
	731	216	13	nf	178	0	40	208	106	0	0	17	0
	733	468	32	0	193	61	64	101	444	29	322	0	0
	735	272	187	0	449	112	67	3528	692	83	337	nf	33
301-400	730	170	0	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	167	0	0	0	0	0	0	nf	0
	736	175	32	0	144	0	24	0	12	0	139	nf	0
401-500	737	227	16	0	0	0	0	0	0	0	0	nf	0
	741	223	nf	0	0	0	0	0	0	0	0	nf	nf
	745	348	nf	0	0	0	0	0	0	0	0	nf	nf
	748	159	nf	0	0	0	0	0	0	0	0	nf	nf
401-500		957	16	0	0	0	0	0	0	0	0	nf	
501-600	738	221	0	0	0	0	0	0	0	0	0	nf	nf
	742	206	nf	0	0	0	0	0	0	0	0	nf	nf
	746	392	nf	0	0	0	0	0	0	0	0	nf	nf
	749	126	nf	0	0	0	nf	0	0	0	0	nf	nf
501-600		945	0	0	0	0	0	0	0	0	0	nf	
601-700	739	254	nf	0	0	0	0	0	0	0	0	nf	0
	743	211	nf	0	0	0	0	0	0	0	0	nf	nf
	747	724	nf	0	0	0	0	0	0	0	0	nf	nf
	750	556	nf	0	0	0	0	0	0	0	0	nf	nf
601-700		1745	nf	0	0	0	0	0	0			nf	
701-800	740	264	nf	0	0	0	0	0	0	0	0	nf	0
	744	280	nf	0	0	0	nf	0	0	0	0	nf	nf
	751	229	nf	0	0	0	nf	0	0	0	0	nf	nf
701-800		773	nf	0	0	0	0	0	0	0	0	nf	
total strata fished > 200 fathioms			280	0	1144	173	233	3837	1292	112	811	53	33
total all strata fished offshore			8013	7066	11003	6628	25514	32846	29017	11096	14448	18657	8813
upper			12630	12052	19944	8699	95474	58560	44211	15667	19068	22989	49903
t-value			2.306	2.571	2.447	2.05	12.71	4.3	2.23	2.36	2.306	2.06	12.71
1 STD all strata fished offshore			2002	1939	3654	1010	5504	5980	6813	1937	2003	2103	3233

nf Not all strata in the depth range have been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 22. Estimates of cod biomass (t) from surveys in Div. 3L in 1983-2005 in depths > 200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratum depth	Stratum number	Area sq. nautical	WT	WT	WT	AN	WT							
(fathoms)		miles	7-9	16-18	37-39	72	65	78	87	101	114-115	129-130	145-146	160-162
			1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Mean survey date			27-Oct-83	15-Aug-84	27-Oct-85	21-Nov-86	24-Oct-87	3-Nov-88	20-Oct-89	5-Nov-90	21-Nov-91	16-Nov-92	23-Nov-93	22-Nov-94
201-300	729	186	nf	206	0	0	nf	nf	nf	107	0	45	208	0
	731	216	nf	92	248	nf	nf	nf	nf	19	49	131	177	23
	733	468	nf	1678	461	nf	nf	nf	nf	937	28	316	837	85
	735	272	nf	276	466	0	nf	nf	nf	nf	1214	1233	4809	91
301-400	730	170	nf	0	0	nf	nf	nf	nf	nf	0	0	0	8
	732	231	nf	0	0	nf	nf	nf	nf	0	0	0	0	0
	734	228	nf	0	0	nf	nf	nf	nf	0	0	0	18	42
	736	175	0	nf	0	0	nf	nf	nf	0	56	0	51	28
401-500	737	227	nf											
	741	223	nf											
	745	348	nf											
	748	159	nf											
401-500		957	nf											
501-600	738	221	nf											
	742	206	nf											
	746	392	nf											
	749	126	nf											
501-600		945	nf											
601-700	739	254	nf											
	743	211	nf											
	747	724	nf											
	750	556	nf											
601-700		1745	nf											
701-800	740	264	nf											
	744	280	nf											
	751	229	nf											
701-800		773	nf											
total strata fished > 200 fathoms			0	2252	1175	0	0	0	0	1063	1347	1725	6100	277
total all strata fished offshore			278412	479606	369689	387438	284230	274553	160688	406730	123108	128048	30694	3149
upper			361946	562277	493108	534112	349929	337286	205564	593770	156389	195072	51127	4178
t -value			2.365	2.04	2.12	2.365	2.056	2.086	2.069	2.306	2.131	2.014	2.262	2.032
1 STD all strata fished offshore			35321	40525	58217	62019	31955	30073	21690	81110	15618	33279	9033	506

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.
cont'd.

Table 22 (cont'd). Estimates of cod biomass (t) from surveys in Div. 3L in 1983-2005 in depths >200 fathoms. The 1983-94 data are in Campelen equivalent units and the 1995-2005 data are in actual Campelen units.

Stratumdepth(fathoms)	Stratum	Area sq.		Teleost 41	Tel 55-57				AN 399	Tel 412,413	Tel 513	WT 558-559	Tel 662
	number	nautical	WT	WT	WT	WT		WT 321-323	WT 373-376	Tel 415	WT 487-489	WT 587 W	WT 628-630, 637
		miles	176-181	196-198	213-217	230-233	246-249	Tel 342-343	TEL 357-358 361	WT 428-431	WT 511	Tel 540	AN 657-658
			1995	1996	1997	1998	1999	2000	2001	2002-3	2003	2004	2005/6
Mean survey date			27-Nov-95	2-Nov-96	27-Nov-97	18-Nov-98	29-Nov-99	28-Nov-00	15-Nov-01	12-Nov-02	5-Dec-03	5-Dec-04	14-Nov-05
201-300	729	186	0	0	19	0	67	0	45	0	42	30	0
	731	216	5	nf	178	0	20	165	108	0	0	4	0
	733	468	14	0	161	68	66	110	261	36	156	0	0
	735	272	109	0	369	167	104	3973	697	155	226	nf	43
301-400	730	170	0	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	313	0	0	0	0	0	0	nf	0
	736	175	15	0	169	0	37	0	7	0	164	nf	0
									0				
401-500	737	227	17	0	0	0	0	0	0	0	0	nf	0
	741	223	nf	0	0	0	0	0	0	0	0	nf	nf
	745	348	nf	0	0	0	0	0	0	0	0	nf	nf
	748	159	nf	0	0	0	0	0	0	0	0	nf	nf
401-500		957	17	0	0	0	0	0	0	0	0	nf	
501-600	738	221	0	0	0	0	0		0	0	0	nf	nf
	742	206	nf	0	0	0	0		0	0	0	nf	nf
	746	392	nf	0	0	0	0		0	0	0	nf	nf
	749	126	nf	0	0	0	nf		0	0	0	nf	nf
501-600		945	0	0	0	0	0	0	0	0	0	nf	
601-700	739	254	nf	0	0	0	0		0	0	0	nf	0
	743	211	nf	0	0	0	0		0	0	0	nf	nf
	747	724	nf	0	0	0	0		0	0	0	nf	nf
	750	556	nf	0	0	0	0		0	0	0	nf	nf
601-700		1745	nf	0	0	0	0	0	0	0	0	nf	
701-800	740	264	nf	0	0	0	0		0	0	0	nf	0
	744	280	nf	0	0	0	nf		0	0	0	nf	nf
	751	229	nf	0	0	0	nf		0	0	0	nf	nf
701-800		773	nf	0	0	0	0	0	0	0	0	nf	
total strata fished > 200 fathoms			160	0	1209	235	294	4248	1118	191	588	34	43
total all strata fished offshore			5275	6140	10200	5039	13904	19318	19824	7652	5438	5300	5161
upper			7834	9799	19797	7148	56316	91155	28382	10721	8157	6675	29981
			2.145	2.306	2.447	2.07	12.71	12.71	2.12	2.12	2.201	2.09	12.71
1 STD all strata fished offshore			1193	1587	3922	1019	3337	5652	4037	1448	1235	658	1953

nf Not all strata in the depth range have been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 23. Estimates of cod abundance (thousands) from surveys in inshore strata of divisions 3 K and 3L in 1996-98 and 2000-05. Also shown are totals for offshore strata and for all strata fished.

Division 3L											
Stratum depth (fathoms)	Stratum number	Area sq. nautical miles	Teleost 41 WT 213-217		WT 233		WT 372-376	WT 428-431	WT488-489	WT 558-559 Tel 611+662	
			WT	TELEOST		WT 321-323				WT 587	Wt 631-632
			196-198	57-58		Tel 342-343	WT 398		WT 511	Tel 540	WT 660
			1996	1997	1998	2000	2001	2002	2003	2004	2005-6
Mean survey date			2-Nov-96	27-Nov-97	28-Nov-98	28-Nov-00	15-Nov-01	12-Nov-02	18-Nov-04	5-Dec-04	14-Nov-05
							abundance				
16-30	784	268	1161	995	203	1419	4737	250	276	977	442
31-50	785	465	3998	1279	352	1567	2910	959	192	1983	1060
51-100	786	84	12	97	532	58	56	116	1375	20	249
	787	613	42	84	4005	1288	201	422	12522	421	84
	$788{ }^{1}$	252	2409	323	144	1849	1387	156	2549	1562	664
	790	89	55	444	61	208	318	402	4440	631	294
	793	72	599	119	64	337	1362	594	1766	203	136
	794	216	609	97	104	nf	1997	1119	396	893	1025
	797	98	20	27	101	440	162	150	620	329	81
	799	72	857	30	39	89	312	11	299	114	37
101-150	795	164	11	64	163	1277	429	654	14900	256	114
	$791{ }^{2}$	227	X	200	94	710	1102	281	687	734	85
101-200	$789{ }^{1}$	81	0	0	0	4	10	0	20	10	5
	$791{ }^{2}$	308	191	X	X	X	X	X	X	X	X
	798	100	14	0	34	107	227	360	104	110	61
151-200	796	175	0	23	12	138	686	300	226	144	84
	$800{ }^{2}$	81	X	6	49	94	95	40	61	67	0
201-300	792	50	0	0	3	3	10	3	7	14	0
total inshore strata			9978	3788	5960	9588	16002	5817	40442	8467	4422
total offshore			7066	11004	6628	32846	29017	11096	14448	18657	8813
total all strata fished			17044	14792	12588	42435	45019	17024	54890	27124	13235
upper			27958	19944	61095	62955	61291	22146	120325	35275	55601
t-value			2.776	2.447	12.71	3.18	2.14	2.2	4.303	2.45	12.71
STD all strata fished			3932	2105	3816	6453	7604	2328	15207	3327	3333

[^3]Table 24. Estimates of cod biomass (t) from surveys in inshore strata of divisions 3 K and 3L in 1996-98 and 2000-05. Also shown are totals for offshore strata and for all strata fished.

Division 3K											
Stratum depth (meters)	Stratum number	Area sq.	WT 196-199	WT 217	WT 233	WT 321-323					Tel 611+662
		nautical	TELEOST	TELEOST			WT 372-376	WT 428-431	WT 515	Tel 539-542	Wt 631-632
		miles	40-42	55-57			WT 398		TEL 514	WT 588	WT 660
			1996	1997	1998	2000	2001	2002	2003	2004-5	2005-6
Mean survey date			14-Nov-96	18-Nov-97	2-Dec-98	28-Nov-00	15-Nov-01	6-Dec-02	13-Jan-04	14-Dec-04	24-Dec-05
101-200		biomass									
	608	798	201	142	113	288	431	86	401	135	216
	612	445	111	3	18	7	20	8	36	71	47
201-300	616	250	4	0	5	9	6	11	2	30	nf
	609	342	108	64	30	79	188	128	162	60	102
	$611{ }^{3}$	600	25	129	9	136	83	118	82	20	256
	615	251	0	0	61	8	14	1	4	2	1
301-400	610	256	3	117	50	63	58	55	14	29	28
	614	263	2	0	33	0	0	0	0	3	0
401-500	613	30	0	0	1	1	0	0	0	1	0
total inshore strata			454	455	320	592	800	408	701	351	650
total offshore			5588	4020	7521	11994	9946	12523	6569	10375	17038
total all strata fished			6039	4475	7843	12585	10746	12931	7270	10726	17688
upper			7036	5583	10141	19889	13694	19174	9115	13740	22558
t-value			2.032	2.11	2.23	2.45	2.14	2.18	2.306	2.36	2.07
STD all strata fished			491	525	1030	2981	1378	2864	800	1277	2353

Division 3L											
Stratum depth (fathoms)	Stratum number	Area sq. nautical miles	Teleost 41 V	T 213-217	WT 233 WT 321-323		WT 372-376	WT 428-431/T 488-489		WT 558-559 Tel 611+662	
			WT	TELEOST						WT 587	Wt 631-632
			196-198	57-58			WT 398		WT 522	Tel 540	WT 660
			1996	1997	1998	2000	2001	2002	2003	2004	2005-6
Mean survey date			2-Nov-96	27-Nov-97	28-Nov-98	28-Nov-00	15-Nov-01	20-Dec-02	18-Nov-04	5-Dec-04	14-Nov-05
biomass											
16-30	784	268	80	40	3	597	378	6	54	38	27
31-50	785	465	6627	1786	109	564	181	150	53	75	149
51-100	786	84	2	36	54	43	17	39	56	24	49
	787	613	135	61	105	214	28	264	794	117	158
	$788{ }^{1}$	252	177	232	92	79	208	85	79	162	158
	790	89	56	222	24	67	53	181	161	156	136
	793	72	155	56	24	35	84	171	209	30	51
	794	216	84	122	31	nf	474	229	138	123	490
	797	98	11	13	24	25	8	25	19	28	8
	799	72	410	19	9	9	43	7	17	7	11
101-150	795	164	5	50	58	69	80	145	385	41	46
	$791{ }^{2}$	227	X	154	53	274	626	148	224	252	36
101-200	$789{ }^{1}$	81	0	0	0	1	2	0	5	1	9
	$791{ }^{2}$	308	114	X	X	X	X	X	X	X	X
	798	100	47	0	11	33	53	173	26	16	49
151-200	796	175	0	8	2	34	136	85	11	53	45
	$800{ }^{2}$	81	X	2	60	21	34	14	35	30	0
201-300	792	50	0	0	3	1	7	1	1	1	0
total inshore strata			7903	2801	662	2066	2412	1719	2266	1154	1422
total offshore			6140	10200	5039	19318	19824	7652	5438	5300	5161
total all strata fished			14044	13000	5702	21386	22236	9099	7705	6454	6583
upper			92802	19797	7837	93444	30832	12376	10466	7923	31713
t-value			12.706	2.447	2.06	12.71	2.11	2.11	2.179	2.07	12.71
STD all strata fished			6198	2778	1036	5669	4074	1553	1267	710	1977

changes below were made before 1997 fall survey

${ }^{1}$ Area of stratum 788 was increased by 9 sq. n. mi and the area of stratum 789 was decreased by 9 sq.n. mi.
${ }^{2}$ Stratum 791 in the 100-200 depth range was divided into two separate strata; 791 101-150
with area $=227$ sq. n. mi.and stratum $800151-200$ area $=81$ sq. n.mi.
${ }^{3}$ Stratum 611 area was decreased by 27 sq. n. mi.

Table 25. Summary of estimates of cod abundance (thousands) and biomass (t) for all strata fished in 1983-2005. Data from 1983-94 are in Campelen equivalent units and data from 1995-2005 are in actual Campelen units.

DIVISION	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
Total abundance all strata fished												
2J	$1,124,317$	743,328	615,304	$1,249,871$	410,936	509,360	647,797	264,807	365,191	31,560	17,082	8,373
3K	447748	451,517	208,952	891,302	284,648	457,191	$1,307,523$	972,029	649,529	61,886	37,265	9,612
3L	428505	995,804	464,291	358,606	325,352	256,383	172,299	396,008	145,682	148,719	47,809	4,678
2J3KL	$2,000,570$	$2,190,649$	$1,288,547$	$2,499,779$	$1,020,936$	$1,222,934$	$2,127,619$	$1,632,844$	$1,160,402$	242,165	102,156	22,663
Total biomass all strata fished												
2J	722,491	557,302	472,214	$1,287,042$	492,144	599,436	425,874	131,943	170,892	13,096	5,238	2,877
3K	374,634	370,356	209,686	964,600	303,212	216,734	830,045	645,136	649,529	35,604	14,598	4,437
3L	278,412	479,606	369,689	387,438	284,230	274,553	160,688	406,730	123,108	128,048	30,694	3,149
2J3KL	$1,375,537$	$1,407,264$	$1,051,589$	$2,639,080$	$1,079,586$	$1,090,723$	$1,416,607$	$1,183,809$	943,529	176,748	50,530	10,463

Percent abundance												
2 J	56	34	48	50	40	42	30	16	31	13	17	37
3 K	22	21	16	36	28	37	61	60	56	26	36	42
3L	21	45	36	14	32	21	8	24	13	61	47	21
Percent biomass												
2 J	53	40	45	49	46	55	30	11	18	7	10	27
3 K	27	26	20	37	28	20	59	54	69	20	29	42
3L	20	34	35	15	26	25	11	34	13	72	61	30

DIVISION	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Total abundance all strata fished											
2J	14,654	13,300	7,020	6,636	6,129	7,567	7,040	10,427	9,945	9,536	18,465
3K	23,954	20,756	10,984	19,067	29,433	39,110	34,093	45,502	34,899	39,079	41,314
3L	8,013	17,044	14,774	12,588	25,514	42,435	45,019	17,024	54,890	27,124	13,235
2J3KL	46,621	51,100	32,778	38,291	61,076	89,112	86,152	72,953	99,734	75,739	73,014
Total biomass all strata fished											
2J	3,067	4,298	3,662	4,483	2,590	3,098	2,647	4,270	3,248	4,953	5,793
3K	4,978	6,039	4,475	7,842	12,519	12,585	10,746	12,931	7,270	10,726	17,688
3L	5,275	14,044	13,000	5,701	13,904	21,386	22,236	9,099	7,705	6,454	6,583
2J3KL	13,320	24,381	21,137	18,026	29,013	37,069	35,629	26,300	18,223	22,133	30,064

Percent abundance											
2J	31	26	21	17	10	8	8	14	10	13	25
3K	51	41	34	50	48	44	40	62	35	52	57
3L	17	33	45	33	42	48	52	23	55	36	18
Percent biomass											
2J	23	18	17	25	9	8	7	16	18	22	19
3K	37	25	21	44	43	34	30	49	40	48	59
3L	40	58	62	32	48	58	62	35	42	29	22

Table 26. Summary of estimates of cod abundance (thousands) and biomass (t) for divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3L separately and combined in 1995-2005. Strata are aggregated into offshore index strata; those strata deeper than the offshore index strata and seaward of them; and those strata inshore of the offshore index strata. There are no inshore strata in Div. 2 J.

Division	Grouping	Abundance (thousands)										
		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2 J	index	12,305	13,081	6,936	6,636	6,074	7,516	7,033	9,534	9,315	9,503	18,519
	offshore deep	2,350	219	84	0	55	51	7	893	129	33	46
	total	14,654	13,300	7,020	6,636	6,129	7,567	7,040	10,427	9,444	9,536	18,565
3K	index	23,200	18,550	8,428	15,612	29,308	35,774	28,535	41,853	19,908	34,468	33,834
	offshore deep	754	72	22	285	124	0	60	792	1,962	1,581	278
	inshore	nf	2,133	2,534	3,171	nf	3,336	5,498	2,569	13,032	3,030	7,201
	total	23,954	20,755	10,984	19,068	29,432	39,110	34,093	45,214	34,902	39,079	41,313
3L	index	7,735	7,067	9,859	6,454	25,281	29,010	27,724	10,984	13,638	18,605	8,780
	offshore deep	280	0	1,144	173	233	3,837	1,293	112	811	53	33
	inshore	nf	9,978	3,770	5,960	nf	9,588	16,002	5,817	40,442	8,467	4,422
	total	8,015	17,045	14,773	12,587	25,514	42,435	45,019	16,913	54,891	27,125	13,235
2 J 3 KL	index	43,240	38,698	25,223	28,702	60,663	72,300	63,292	62,371	42,861	62,576	61,133
	offshore deep	3,384	291	1,250	458	412	3,888	1,360	1,797	2,902	1,667	357
	inshore	nf	12,111	6,304	9,131	nf	12,924	21,500	8,386	53,474	11,497	11,623
	total	46,624	51,100	32,777	38,291	61,075	89,112	86,152	72,554	99,237	75,740	73,113
Division	Grouping						mass (t)					
		1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2 J	index	2,312	4,261	3,609	4,483	2,527	3,082	2,646	3,680	3,065	4,921	5,719
	offshore deep	755	36	52	0	63	16	1	588	183	32	74
	total	3,067	4,297	3,661	4,483	2,590	3,098	2,647	4,268	3,248	4,953	5,793
3K	index	4,578	5,457	3,978	7,280	12,230	11,994	9,890	11,889	4,912	9,609	16,696
	offshore deep	400	131	42	242	289	0	56	557	1,657	766	341
	inshore	nf	454	455	320	nf	592	800	408	701	351	650
	total	4,978	6,042	4,475	7,842	12,519	12,586	10,746	12,854	7,270	10,726	17,687
3L	index	5,115	6,140	8,991	4,804	13,611	15,070	18,706	7,460	4,849	5,266	5,118
	offshore deep	160	0	1,209	235	294	4,282	1,118	191	588	34	43
	inshore	nf	7,903	2,801	662	nf	2,066	2,412	1,719	2,266	1,154	1,422
	total	5,275	14,043	13,001	5,701	13,905	21,418	22,236	9,370	7,703	6,454	6,583
2 J 3 KL	index	12,005	15,858	16,578	16,567	28,368	30,146	31,242	23,029	12,826	19,796	27,533
	offshore deep	1,315	167	1,303	477	646	4,298	1,175	1,336	2,428	832	458
	inshore	nf	8,357	3,256	982	nf	2,658	3,212	2,127	2,967	1,505	2,072
	total	13,320	24,382	21,137	18,026	29,014	37,102	35,629	26,492	18,221	22,133	30,063

Table 27. Autumn bottom-trawl mean number per tow at age in offshore index strata (1983-2005). The 2J3KL total is the mean of the divisional means, weighted by the divisional survey areas.

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.01	0.02	00	0.33	0.74	. 00	. 43
1	46.58	7.57	1.71	0.65	1.46	20.52	4.86	2.75	0.37	0.00	0.00	0.18	2.46	0.52	0.00	0.10	0.21	0.57	0.16	0.43	0.66	0.38	0.27
2	147.86	41.01	14.01	18.71	3.03	17.69	108.44	13.80	11.17	0.68	3.22	1.21	1.24	2.15	0.41	0.19	0.79	0.66	0.69	0.76	0.47	1.22	0.80
3	61.64	86.28	48.03	39.16	8.12	10.83	33.77	46.34	19.04	4.45	1.03	0.83	0.80	1.24	1.42	0.72	0.56	0.77	1.25	0.8	0.79	0.70	1.69
4	61.08	38.75	74.50	97.79	12.11	12.14	16.27	12.48	60.31	1.70	1.05	0.34	0.31	0.49	0.39	0.89	0.30	0.45	0.19	0.78	0.31	0.58	0.80
5	25.59	53.27	28.44	153.27	50.67	16.35	10.85	4.79	14.89	3.29	0.32	0.15	0.08	0.13	0.11	0.29	0.17	0.04	0.06	0.10	0.13	0.24	0.17
6	10.44	14.98	27.11	68.45	43.15	41.46	12.35	2.39	1.73	0.31	0.27	0.01	0.02	0.02	0.00	0.04	0.00	0.04	0.01	0.01	0.02	0.06	0.04
7	4.87	2.87	9.75	29.99	9.98	42.71	17.99	1.44	0.70	0.01	0.02	0.02	0.00	0.02	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.00
8	12.46	1.83	1.35	10.84	6.58	6.93	11.13	2.35	0.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	5.05	3.46	0.83	0.70	2.64	4.27	1.45	1.08	0.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	2.87	1.49	1.14	0.64	0.41	2.06	0.77	0.23	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.58	0.54	0.39	0.55	0.04	0.28	0.35	0.06	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.04	0.12	0.17	0.29	0.16	0.11	0.12	0.05	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.03	0.02	0.03	0.07	0.06	0.08	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.02	0.00	0.00	0.02	0.04	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	379.11	252.19	207.46	421.13	138.45	175.48	218.36	87.76	109.11	10.44	5.91	2.74	4.96	4.57	2.33	2.24	2.04	2.55	2.37	3.21	3.12	3.18	6.20
3K																							
Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.08	0.15	0.28	0.71	0.05	0.04	0.54	0.03	0.28
1	22.84	8.27	0.28	7.91	7.35	37.54	36.91	22.21	0.59	0.65	0.28	0.20	2.77	0.70	0.07	1.13	1.07	2.61	1.46	2.09	2.35	2.58	0.73
2	32.49	32.45	5.07	18.35	6.63	29.28	111.95	32.45	15.74	2.85	4.67	0.39	1.56	2.28	0.92	0.80	2.71	2.33	2.22	5.19	0.88	4.04	1.97
3	27.87	24.34	13.32	21.13	8.34	18.49	58.16	83.98	23.97	4.12	2.24	1.16	0.98	1.20	0.85	0.92	2.01	2.24	2.37	2.03	0.85	1.10	3.68
4	15.09	22.21	12.39	65.26	10.01	8.40	44.92	48.74	70.05	2.33	1.27	0.38	0.34	0.34	0.20	0.59	0.87	1.17	0.71	0.92	0.27	0.66	1.35
5	17.24	11.98	10.93	56.87	17.27	6.92	25.69	23.11	37.29	4.01	0.30	0.14	0.10	0.10	0.09	0.20	0.36	0.27	0.30	0.21	0.10	0.17	0.44
6	4.39	8.97	4.13	29.01	11.21	7.54	17.17	12.35	9.09	1.16	0.34	0.02	0.02	0.00	0.00	0.06	0.03	0.05	0.03	0.02	0.00	0.04	0.04
7	2.58	3.12	3.23	13.32	4.17	3.70	14.93	7.74	2.80	0.16	0.09	0.03	0.00	0.01	0.00	0.05	0.02	0.01	0.00	0.00	0.00	0.02	0.00
8	4.26	1.41	0.86	6.66	2.67	1.00	7.06	7.62	1.03	0.03	0.01	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.01	0.00
9	2.98	2.12	0.65	2.41	1.21	0.44	2.54	2.35	0.56	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00
10	0.91	1.06	0.55	0.64	0.52	0.22	1.41	0.68	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
11	0.22	0.34	0.40	0.79	0.21	0.04	0.65	0.22	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.12	0.11	0.09	0.58	0.08	0.04	0.16	0.06	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.02	0.05	0.01	0.09	0.06	0.01	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.01	0.02	0.00	0.07	0.02	0.02	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.01	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	131.02	116.45	51.91	223.09	69.75	113.64	321.74	241.51	161.39	15.31	9.20	2.34	5.82	4.63	2.21	3.91	7.36	9.39	7.16	10.50	4.99	8.66	8.49

cont'd.

Table 27 (cont'd). Autumn bottom-trawl mean number per tow at age in offshore index strata adjusted for missing strata (1983-2005). The 2 J 3 KL total is the mean of the divisional means, weighted by the divisional survey areas. The 1989 and 1990 year-classes are highlighted from 1995 onward in the Div. 3L panel.

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.32	0.30	0.04	0.03	0.03	0.17	0.27	0.02
1	17.62	7.68	0.15	1.03	3.87	1.26	0.54	0.82	1.06	0.08	0.00	0.00	0.11	0.04	0.07	0.14	0.79	1.18	0.67	0.30	1.54	0.98	0.07
2	27.24	75.48	11.11	9.71	22.54	12.57	5.36	6.54	5.27	3.25	1.66	0.19	0.34	0.21	0.64	0.17	1.51	1.59	1.66	0.90	0.32	2.64	0.25
3	40.89	56.42	32.05	9.02	7.70	13.43	12.73	22.12	5.02	8.14	2.44	0.28	0.52	0.36	0.61	0.32	1.86	1.62	1.49	0.37	0.40	0.33	0.99
4	9.53	35.05	24.62	22.23	6.96	4.08	7.03	24.38	7.89	7.96	2.46	0.23	0.27	0.43	0.27	0.17	0.20	0.98	0.95	0.31	0.13	0.12	0.31
5	9.21	6.44	13.18	13.13	10.93	5.57	2.17	11.06	5.59	5.64	0.79	0.09	0.15	0.19	0.15	0.04	0.15	0.31	0.45	0.18	0.06	0.08	0.05
6	1.50	10.12	5.23	10.20	6.81	5.91	2.30	5.29	2.66	3.07	0.32	0.04	0.11	0.09	0.04	0.03	0.08	0.09	0.10	0.05	0.03	0.03	0.03
7	1.45	1.48	3.04	2.97	2.86	4.19	2.20	3.21	0.44	0.79	0.05	0.02	0.03	0.05	0.07	0.01	0.01	0.03	0.02	0.01	0.01	0.02	0.00
8	2.36	1.02	0.57	2.09	1.10	1.86	0.81	2.38	0.22	0.06	0.01	0.00	0.01	0.01	0.09	0.05	0.02	0.03	0.01	0.00	0.00	0.01	0.01
9	1.26	0.88	0.69	0.80	0.85	0.90	0.56	1.31	0.23	0.04	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.01	0.02	0.00	0.00	0.01	0.00
10	0.44	0.94	0.35	0.32	0.09	0.46	0.17	0.51	0.09	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
11	0.13	0.38	0.25	0.41	0.12	0.12	0.06	0.24	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.06	0.00	0.01	0.00	0.00
12	0.06	0.22	0.11	0.22	0.19	0.10	0.03	0.15	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00	0.00
13	0.02	0.04	0.04	0.09	0.10	0.12	0.03	0.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
14	0.05	0.03	0.01	0.03	0.03	0.07	0.04	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00
15	0.00	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.01	0.03	0.00	0.01	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.02	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.03	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	111.87	196.27	91.42	72.30	64.19	50.68	34.04	78.19	28.59	29.08	7.73	0.85	1.54	1.39	1.95	1.28	4.98	5.88	5.48	2.18	2.69	4.49	1.73
2J3KL																							
Age	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.03	0.18	0.22	0.26	0.03	0.11	0.43	0.12	0.70
1	26.49	7.85	0.58	3.23	4.44	18.12	13.75	8.44	0.73	0.25	0.09	0.11	1.58	0.38	0.05	0.46	0.74	1.51	0.81	0.93	1.59	1.37	0.34
2	58.68	52.62	9.81	14.81	12.42	19.41	66.33	16.98	10.22	2.48	3.05	0.51	0.97	1.38	0.68	0.39	1.73	1.61	1.61	2.30	0.54	2.76	0.96
3	41.65	53.05	29.73	20.48	8.02	14.48	33.08	48.74	14.80	5.89	2.03	0.71	0.74	0.86	0.89	0.62	1.59	1.62	1.72	1.03	0.65	0.68	2.06
4	24.08	31.67	32.81	55.20	9.25	7.51	21.96	29.59	41.55	4.54	1.72	0.31	0.30	0.41	0.28	0.49	0.45	0.91	0.68	0.63	0.22	0.41	0.78
5	15.93	19.82	16.18	62.23	22.83	8.67	12.16	13.54	18.47	4.52	0.51	0.12	0.12	0.15	0.12	0.15	0.23	0.23	0.30	0.17	0.09	0.15	0.21
6	4.67	10.93	10.25	30.82	17.22	15.21	9.74	6.93	4.58	1.75	0.31	0.03	0.06	0.04	0.02	0.04	0.04	0.06	0.05	0.03	0.02	0.04	0.04
7	2.67	2.37	4.76	13.08	5.05	13.51	10.34	4.29	1.29	0.39	0.06	0.02	0.01	0.03	0.03	0.02	0.01	0.02	0.01	0.00	0.00	0.02	0.00
8	5.48	1.35	0.86	5.77	2.97	2.82	5.44	4.12	0.54	0.04	0.01	0.01	0.00	0.00	0.04	0.02	0.01	0.01	0.01	0.00	0.00	0.01	0.00
9	2.77	1.93	0.71	1.31	1.41	1.58	1.44	1.60	0.35	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.00	0.01	0.00	0.00	0.00	0.00
10	1.20	1.12	0.61	0.51	0.31	0.77	0.73	0.50	0.15	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
11	0.27	0.41	0.33	0.57	0.13	0.13	0.33	0.19	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00
12	0.07	0.16	0.12	0.36	0.15	0.08	0.10	0.10	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
13	0.02	0.04	0.03	0.09	0.08	0.07	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.03	0.02	0.00	0.04	0.03	0.04	0.04	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.02	0.00	0.01	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
20	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
21	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL	184.04	183.38	106.79	208.52	84.33	102.43	175.50	135.09	92.76	19.89	7.77	1.81	3.79	3.25	2.10	2.21	5.05	6.23	5.28	5.21	3.56	5.5	5.09

Table 28. Autumn bottom-trawl mean catch (number) per tow at age in inshore strata in 3 K and 3 L , and 3 K and 3 L combined, in 1996-98 and 2000-05. For each year and Division, an age-length key was constructed from sampling conducted both inshore and offshore, and this key was applied to the catch rate at length from the inshore strata in the appropriate year and Division.

	3K										3L									
Age	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0	0.04	0.70	0.64		0.48	0.15	0.46	7.03	0.12	4.99	0.04	1.53	6.54		2.34	1.79	1.69	14.00	5.71	0.31
1	1.87	2.15	4.76		3.27	7.38	2.73	21.32	4.09	8.31	10.28	1.31	4.77		10.83	23.63	3.77	74.93	7.61	3.35
2	1.70	2.19	1.33		2.43	2.55	2.29	0.56	2.25	2.32	5.67	1.39	1.47		6.20	7.86	5.66	2.60	5.52	2.58
3	0.76	0.49	0.31		1.15	1.79	0.19	0.28	0.33	1.88	2.50	1.75	0.57		2.90	2.07	1.39	2.30	0.44	3.08
4	0.33	0.05	0.08		0.10	0.51	0.09	0.27	0.07	0.19	2.12	1.54	0.34		1.18	1.31	0.61	0.58	0.18	0.69
5	0.10	0.07	0.04		0.12	0.07	0.05	0.07	0.01	0.01	1.49	0.86	0.08		0.32	0.57	0.30	0.15	0.18	0.11
6	0.02	0.00	0.02		0.00	0.00		0.00			2.06	0.12	0.10		0.12	0.09	0.08	0.02	0.05	0.06
7		0.08	0.02			0.00		0.00			1.10	0.15	0.02		0.09	0.03	0.00	0.01	0.05	0.06
8											0.54	0.11	0.02		0.07	0.01	0.02	0.00	0.06	0.00
9											0.48	0.10	0.02		0.03	0.04	0.03	0.01	0.01	0.00
10											0.11				0.00	0.02	0.01	0.00	0.01	0.06
11															0.01	0.03	0.00	0.00		0.00
12																	0.00	0.00		0.03
13																	0.00	0.03		
14																	0.00			
15																	0.01			
Total	4.82	5.73	7.20		7.55	12.45	5.81	29.53	6.87	17.70	26.39	8.86	13.93		24.09	37.45	13.57	94.63	19.82	10.33

	3 KL										
Age	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	
0	0.04	1.11	3.53		1.39	0.95	1.06	10.44	2.86	2.70	
1	5.99	1.74	4.76		6.97	15.34	3.24	47.58	5.81	5.88	
2	3.64	1.80	1.40		4.28	5.15	3.94	1.56	3.85	2.45	
3	1.61	1.11	0.44		2.01	1.93	0.78	1.27	0.38	2.47	
4	1.21	0.78	0.21		0.63	0.90	0.34	0.42	0.12	0.43	
5	0.78	0.46	0.06		0.22	0.31	0.17	0.11	0.09	0.06	
6	1.02	0.06	0.06		0.06	0.04	0.04	0.01	0.02	0.03	
7	0.54	0.11	0.02	0.04	0.01	0.00	0.00	0.02	0.03		
8	0.26	0.05	0.01		0.03	0.00	0.01	0.00	0.03	0.00	
9	0.24	0.05	0.01		0.01	0.02	0.01	0.00	0.00	0.00	
10	0.05	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.03		
11	0.00	0.00	0.00		0.00	0.01	0.00	0.00	0.00	0.00	
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01		
13	0.00	0.00	0.00		0.00	0.00	0.00	0.01	0.00	0.00	
14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Total 0+	15.39	7.26	10.50	15.65	24.70	9.61	61.42	13.21	14.09		
Total 1+	15.35	6.16	6.97	14.26	23.74	8.55	50.98	10.36	11.39		
Total 5+	2.89	0.73	0.16		0.37	0.42	0.25	0.14	0.18	0.16	

Table 29. Estimates of cod abundance (thousands) from spring surveys in Div. 3L in 1985-2005 in depths $<=200$ fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2005 data are in actual Campelen units.

Depthrange(fath) \quad St		Stratum	WT										
	Stratum	area	28-30	48	59-60	70-71	83	96	106-107	119-122	137-138	152-154	168-170
	number	sq mi.	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Mean Date			7-May-85	16-May-86	23-May-87	15-May-88	18-May-89	26-May-90	20-May-91	24-May-92	31-May-93	1-Jun-94	6-Jun-95
31-50	350	2071	52111	14685	17275	90559	24682	8018	748	414	32	0	0
	363	1780	25710	24878	27778	46453	21738	3918	1504	789	306	0	0
	371	1121	29035	2262	3503	3115	4086	3315	32260	123	93	0	0
	372	2460	83387	37973	21684	37778	17675	2852	541	34	62	0	0
	384	1120	591	4442	5238	1078	1566	193	270	0	31	0	0
51-100	328	1519	5642	2113	2866	522	0	3194	1846	0	453	0	0
	341	1574	17899	5678	14651	20425	7984	2436	469	0	0	736	0
	342	585	3702	1127	1328	402	5445	523	0	1314	322	188	0
	343	525	9076	4496	1300	2744	8065	891	2239	1565	614	361	361
	348	2120	38479	16258	21435	19062	12022	6575	73	227	109	365	510
	349	2114	32383	21146	12795	14649	25115	10986	1066	711	905	0	0
	364	2817	38614	10691	21365	13718	24050	4456	1902	0	97	0	0
	365	1041	22237	6272	15466	15931	8306	2076	322	36	0	0	0
	370	1320	57062	2973	16783	8861	18226	1219	34833	0	91	0	0
	385	2356	22038	997	1886	5736	25360	7808	17055	97	383	0	0
	390	1481	2513	484	320	0	891	41	122	34	102	0	0
101-150	344	1494	10481	21142	3288	4110	31503	4864	986	1165	514	0	822
	347	983	7221	14225	7077	11981	6694	913	1690	34	304	0	0
	366	1394	207996	63401	41749	8885	33414	15053	12651	415	384	0	0
	369	961	58351	33952	16392	28158	13021	6134	3701	198	0	0	0
	386	983	46544	12395	14766	26504	37547	32048	32544	68	54	0	0
	389	821	70767	10458	8150	11181	13214	5788	9524	75	0	0	56
	391	282	5916	4442	2812	1494	2819	45154	6750	0	0	0	0
151-200	345	1432	16153	41480	60278	19723	29548	14232	3217	492	525	2167	197
	346	865	10650	63279	18991	11602	9965	145882	10812	1577	833	278	476
	368	334	10154	10912	14289	414	4150	51551	4992	10866	1355	184	23
	387	718	131461	22816	691	2272	16336	241169	93995	23145	6288	0	560
	388	361	2955	11496	25	1738	1606	36947	10809	4618	2235	0	174
	392	145	6642	1855	20	2094	645	22130	4618	40	479	0	110
total strata fished <= 200 fath			1025769	468328	374201	411190	405673	680365	263087	48038	16569	4278	3289
ADJUSTED			1025770	468328	374201	411189	405673	680366	291539	48037	16571	4279	3289
upper			1335489	548125	506851	521077	475378	1169116	395962	105950	29261	7094	5694
			2.16	2.037	2.571	2.16	2.04	2.776	2.365	4.303	3.182	2.201	2.306
1 STD strata fished <= 200 fath			143389	39174	51595	50874	34169	176063	56184	13459	3989	1279	1043

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 29 (cont'd). Estimates of cod abundance (thousands) from spring surveys in Div. 3L in 1985-2005 in depths <= 200 fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2005 data are in actual Campelen units.

Depthrange(fath)		Stratum	WT									
	Stratum	area	189-191	207-208	223-224	240-241	317-318	365-370	422-424	479-482	546-549	621
	number	sq mi.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Mean Date			14-Jun-96	15-Jun-97	19-Jun-98	22-Jun-99	17-Jun-00	11-Jun-01	10-Jun-02	15-Jun-03	16-Jun-04	20-Jun-05
31-50	350	2071	412	122	47	1268	71	297	81	163	285	570
	363	1780	111	0	0	281	420	82	0	41	122	147
	371	1121	0	0	0	0	0	39	39	0	39	62
	372	2460	217	0	42	602	1203	42	0	42	381	169
	384	1120	102	0	0	0	77	0	0	39	0	39
51-100	328	1519	90	35	125	376	1254	139	84	507	79	279
	341	1574	340	1728	172	577	476	909	43	173	433	379
	342	585	0	121	80	121	322	241	40	80	201	201
	343	525	36	0	217	108	72	36	0	0	144	401
	348	2120	151	65	328	231	109	0	167	333	232	500
	349	2114	424	145	73	646	332	249	166	249	291	872
	364	2817	234	49	106	201	155	254	129	0	43	48
	365	1041	58	0	0	95	0	48	48	0	95	143
	370	1320	61	0	0	0	36	0	0	0	0	182
	385	2356	30	0	0	46	81	46	41	0	81	216
	390	1481	59	0	0	150	0	122	0	0	0	36
101-150	344	1494	565	300	355	509	260	392	485	870	575	1212
	347	983	0	34	203	336	135	676	45	180	90	1713
	366	1394	245	447	141	133	1630	230	3545	652	1432	1142
	369	961	30	33	66	39	132	196	206	264	118	1586
	386	983	0	30	34	265	406	260	45	0	40	130
	389	821	0	33	33	113	1412	1016	75	0	376	565
	391	282	0	0	0	19	0	78	19	39	0	466
151-200	345	1432	773	972	460	1121	2151	2053	2403	906	2430	2114
	346	865	487	579	71	670	948	996	2248	1282	363	1547
	368	334	402	158	46	92	863	1330	578	347	523	712
	387	718	142	1037	1635	684	3556	307	285	198	1054	1564
	388	361	84	0	72	372	564	695	290	770	221	1324
	392	145	111	0	80	41	195	150	748	140	70	417
total strata fished <= 200 fath			5166	5888	4386	9096	16860	10884	11810	7277	9718	18736
ADJUSTED			5164	5888	4386	9096	16860	10884	11810	7277	9718	18736
upper t-value			6223	10529	10169	11449	52643	14422	16092	9317	14260	24225
			2.023	2.447	4.30	2.05	12.71	2.31	2.33	2.12	2.26	2.31
1 STD strata fished <= 200 fath			522	1897	1345	1148	2815	1532	1838	962	2010	2376

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 30. Estimates of cod biomass (t) from spring surveys in Div. 3L in 1985-2005 in depths $<=200$ fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2006 data are in actual Campelen units.

Depth	Stratum number	Stratum	WT										
range		area	28-30	48	59-60	70-71	83	96	106-107	119-122	137-138	152-154	168-170
(fath)		sq mi.	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
Mean Date			7-May	16-May	23-May	15-May	18-May	26-May	20-May	24-May	31-May	1-Jun	6-Jun
31-50	350	2071	61578	29203	32147	116896	41232	14057	1636	315	35	0	0
	363	1780	29020	26035	38567	49356	30897	12388	2289	526	111	0	0
	371	1121	29516	5426	7039	6714	7089	5149	44086	36	37	0	0
	372	2460	87371	39729	37570	52582	31350	12849	1553	112	96	0	0
	384	1120	557	7038	7416	1515	1308	1029	653	0	71	0	0
51-100	328	1519	568	1708	3573	879	0	5670	180	0	243	0	0
	341	1574	11711	12988	20564	32613	9121	5854	376	0	0	65	0
	342	585	1445	2669	1041	600	1400	1035	0	66	64	33	0
	343	525	2833	3087	1981	2878	3927	255	207	70	52	46	42
	348	2120	17699	22373	52505	40777	18921	6772	273	37	43	47	87
	349	2114	31189	44296	22988	34821	50689	3835	836	125	158	0	0
	364	2817	21165	17309	34942	26822	34642	15553	1228	0	124	0	0
	365	1041	5934	6427	19818	18776	10427	2210	154	81	0	0	0
	370	1320	21097	6523	16440	12422	15405	1288	29422	0	74	0	0
	385	2356	6499	894	2131	4572	10414	2269	13797	95	256	0	0
	390	1481	874	764	891	0	520	129	604	58	83	0	0
101-150	344	1494	1926	16730	1768	2949	15613	696	103	167	83	0	95
	347	983	6837	19615	8729	17943	5283	669	199	35	83	0	0
	366	1394	111212	62264	42788	15741	32354	12386	6899	111	121	0	0
	369	961	36262	27273	23039	37815	18342	7693	3547	78	0	0	0
	386	983	13632	5635	10490	10110	19985	59202	17066	154	66	0	0
	389	821	21457	3540	2864	3284	3509	1529	1654	114	0	0	36
	391	282	1380	1944	797	316	513	6018	1220	0	0	0	0
151-200	345	1432	6738	39168	63833	24326	40145	5601	466	332	120	437	108
	346	865	1650	48302	18827	13037	10501	136822	4834	613	302	86	91
	368	334	4237	13403	16324	1286	5297	41814	3318	4684	590	120	22
	387	718	60424	16437	508	1609	8453	101468	37550	18465	2329	0	227
	388	361	1143	5814	27	695	676	35162	4031	1078	1431	0	60
	392	145	5177	1121	11	573	251	6418	1107	22	63	0	37
total strata fished <= 200 fathoms			601128	487714	489618	531905	428264	505819	164236	27374	6633	834	805
ADJUSTED			601131	487715	489618	531907	428264	505820	179288	27374	6635	834	805
upper			765217	563448	632377	669157	490124	742119	286846	71593	14791	1310	1234
t-value			2.101	2.02	2.447	2.16	1.998	2.228	2.447	4.303	4.303	2.365	2.179
1 STD strata fished <= 200 fathoms			78100	37492	58340	63543	30961	106059	50106	10276	1896	201	197

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.
cont'd.

Table 30 (cont'd). Estimates of cod biomass (t) from spring surveys in Div. 3L in 1985-2005 in depths <= 200 fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2005 data are in actual Campelen units.

Depth		Stratum	WT									
range	Stratum	area	189-191	207-208	223-224	240-241	317-318	365-370	422-424	479-482	546-549	621
(fath)	number	sq mi.	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Mean Date			14-Jun	15-Jun	19-Jun-98	22-Jun	17-Jun	11-Jun	10-Jun	15-Jun	16-Jun-04	20-Jun-05
31-50	350	2071	359	135	6	3708	17	621	28	11	22	2142
	363	1780	61	0	0	693	193	1	0	3	1275	8
	371	1121	0	0	0	0	0	25	1	0	1	13
	372	2460	83	0	0	598	392	4	0	355	8	56
	384	1120	65	0	0	0	20	0	0	1	0	8
51-100	328	1519	6	5	115	739	89	37	3	129	61	318
	341	1574	127	4497	9	1238	96	549	3	16	644	1911
	342	585	0	346	8	209	23	9	2	9	13	23
	343	525	9	0	36	254	27	0.361	0	0	11	173
	348	2120	53	13	536	395	10	0	14	16	20	204
	349	2114	303	419	101	1903	615	26	5	113	34	551
	364	2817	20	11	225	683	43	15	3	0	3	75
	365	1041	5	0	0	178	0	17	1	0	8	37
	370	1320	6	0	0	0	1	0	0	0	0	59
	385	2356	4	0	0	227	2	4	42	0	3	86
	390	1481	31	0	0	6	0	5	0	0	0	9
101-150	344	1494	111	115	124	496	152	126	71	307	128	579
	347	983	0	8	150	52	9	182	3	32	13	949
	366	1394	104	173	61	83	210	25	292	130	396	424
	369	961	16	3	20	11	218	159	10	60	93	976
	386	983	0	16	183	94	311	131	10	0	25	61
	389	821	0	9	25	16	587	440	83	0	137	237
	391	282	0	0	0	4	0	41	2	3	0	145
151-200	345	1432	149	294	159	359	956	725	605	327	349	918
	346	865	178	238	32	407	582	260	558	644	215	643
	368	334	148	96	8	63	499	417	100	91	225	381
	387	718	84	303	1199	578	2057	191	112	34	325	604
	388	361	12	0	27	167	251	176	147	497	67	571
	392	145	18	0	23	30	19	74	332	13	16	219
total strata fi	ed <= 200	thoms	1951	6667	3048	12962	7378	4262	2428	2794	4094	12377
ADJUSTED			1952	6667	3048	12962	7378	4262	2428	2794	4094	12377
upper			2468	17631	6102	18566	30307	6164	3040	4093	7427	18175
t-value			2.017	2.571	3.18	2.16	12.71	2.14	2.18	28	2.36	2.36
1 STD strata fis	d <= 200	homs	256	4264	960	2594	1804	889	281	46	1412	2457

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 31. Estimates of cod abundance (thousands) and biomass (t) from spring surveys in Div. 3L in 1985-2005 in depths >200 fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2005 data are in actual Campelen units.

Depth range (fath) Mean Date		Stratum	WT										
	Stratum	area	28-30	48	59-60	70-71	83	96	106-107	119-122	137-138	152-154	168-170
	number	nautical miles	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
			7-May	16-May	23-May	15-May	18-May	26-May	20-May	24-May	31-May	1-Jun	6-Jun
abundance													
201-300	729	186	102	nf	nf	nf	nf	nf	141	3876	192	77	0
	731	216	30	nf	nf	nf	nf	nf	3046	267	416	9701	0
	733	468	1674	nf	nf	nf	nf	nf	7339	2672	880	1513	483
	735	272	94	nf	nf	nf	nf	nf	nf	92905	0	6080	673
301-400	730	170	0	nf	nf	nf	nf	nf	0	0	0	0	0
	732	231	0	nf	nf	nf	nf	nf	0	0	0	0	0
	734	228	0	nf	nf	nf	nf	nf	267	0	0	0	0
	736	175	0	nf	nf	nf	nf	nf	nf	60	0	0	0
401-500	737	227	nf	0	nf								
	741	223	nf	0	nf								
	745	348	nf	0	nf								
	748	159	nf	0	nf								
Total >200 fathoms			1900	0	0	0	0	0	10793	99780	1488	17371	1156
Total all strata fished upper			1027668	468328	374201	411190	405673	680365	273879	147819	18056	21649	4445
			1337409	548125	506851	521077	475378	1169116	407660	1331862	29180	148586	7460
upper t-value			2.16	2.037	2.571	2.16	2.04	2.776	2.365	12.706	2.776	12.706	2.365
1 STD all strata fished			143399	39174	51595	50874	34169	176063	56567	93188	4007	9990	1275
biomass													
201-300	729	186	78	nf	nf	nf	nf	nf	320	1683	78	29	0
	731	216	78	nf	nf	nf	nf	nf	1967	389	248	5913	0
	733	468	755	nf	nf	nf	nf	nf	6351	1959	345	556	219
	735	272	894	nf	nf	nf	nf	nf	nf	50199	0	3238	386
301-400	730	170	0	nf	nf	nf	nf	nf	0	0	0	0	0
	732	231	0	nf	nf	nf	nf	nf	0	0	0	0	0
	734	228	0	nf	nf	nf	nf	nf	437	0	0	0	0
	736	175	0	nf	nf	nf	nf	nf	nf	69	0	0	0
401-500	737	227	nf	0	nf								
	741	223	nf	0	nf								
	745	348	nf	0	nf								
	748	159	nf	0	nf								
Total >200 fathoms			1805	0	0	0	0	0	9075	54299	671	9736	605
Total all strata fished			602932	487714	489618	531905	428264	505819	173311	81673	7304	10570	1410
upper			767031	563448	632377	669157	490124	742119	296576	729549	15476	86302	7004
t-value			2.101	2.02	2.447	2.16	1.998	2.228	2.447	12.706	4.303	12.706	12.706
1 STD all strata fished			78105	37492	58340	63543	30961	106059	50374	50990	1899	5960	440

nf Not all strata in the depth range were fished. Strata not fished in the greater than 200 fathom depth range have not been filled using a multiplicative model.

Table 31 (cont'd). Estimates of cod abundance (thousands) and biomass (t) from spring surveys in Div. 3L in 1985-2005 in depths > 200 fathoms. The 1985-95 data are in Campelen equivalent units and the 1996-2005 data are in actual Campelen units .

Depth range (fath) Mean Date		Stratum	WT									
	Stratum	area	189-191	207-208	223-224	240-241	317-318	365-370	422-424	479-482	546-549	621
	number	nautical miles	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
			14-Jun	15-Jun	19-Jun	22-Jun	17-Jun	11-Jun	10-Jun	15-Jun	16-Jun-04	20-Jun-05
abundance												
201-300	729	186	13	0	13	0	2240	171	50	280	0	0
	731	216	152	0	13	104	155	409	272	1398	0	43
	733	468	41	89	0	258	315	626	1094	5565	0	0
	735	272	5512	524	3480	35	580	3792	3138	3530	0	0
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	0	0	0	0	0	14	0	0
	736	175	0	0	0	0	0	0	0	0	0	0
401-500	737	227	nf									
	741	223	nf									
	745	348	nf									
	748	159	nf									
Total >200 fathoms			5718	613	3506	397	3290	4998	4554	10787	0	43
Total all strata fished			10884	6501	7892	9493	20150	15881	16364	18064	9718	18779
upper			21527	11073	54843	11907	58359	67976	60855	41584	14260	24268
t-value			4.303	2.365	12.71	2.04	12.706	12.706	12.71	4.303	2.26	2.31
1 STD all strata fished			2473	1933	3694	1183	3007	4100	3500	5466	2010	2376

biomass												
201-300	729	186	2	0	31	0	858	78	15	108	0	0
	731	216	69	0	15	57	51	321	117	1588	0	18
	733	468	28	74	0	111	172	290	351	2071	0	0
	735	272	3823	352	2646	24	270	2557	1877	1486	0	0
301-400	730	170	0	0	0	0	0	0	0	0	0	0
	732	231	0	0	0	0	0	0	0	0	0	0
	734	228	0	0	0	0	0	0	0	50	0	0
	736	175	0	0	0	0	0	0	0	0		0
401-500	737	227	nf									
	741	223	nf									
	745	348	nf	nt	nf	nf	nt	nt	nt	nt	nf	nt
	748	159	nf									
Total >200 fathoms			3922	426	2692	192	1351	3246	2360	5303	0	18
Total all strata fished			5874	7093	5740	13154	8728	7507	4788	8097	4094	12395
upper			32789	18073	41373	18765	32059	41939	27442	16216	7427	18193
t-value			4.303	2.571	12.71	2.16	12.706	12.706	12.71	3.182	2.36	2.36
1 STD all strata fished			6255	4271	2804	2598	1836	2710	1782	2552	1412	2457

nf Not all strata in the depth range were fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom
depth range have not been filled using a multiplicative model.

Table 32. Spring bottom-trawl mean number per tow at age in index strata ($<=200$ fath) in Div. 3L during 1985-2005. The 1989 and 1990 year-classes are highlighted from 1995 onward.

Age	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
0												0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00
1	0.00	0.00	0.24	0.05	0.00	0.16	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.05	0.23	0.69	0.28	0.76	0.16	0.19	0.14
2	24.66	4.71	6.20	4.56	6.56	8.14	4.82	1.29	0.08	0.19	0.25	0.43	0.18	0.08	0.54	0.87	0.86	0.89	0.27	1.10	0.72
3	85.66	17.70	11.95	24.30	23.92	46.84	13.81	2.26	1.71	0.33	0.19	0.23	0.43	0.25	0.26	0.86	0.35	0.43	0.38	0.31	1.83
4	48.28	31.74	11.45	10.16	20.06	41.76	19.67	1.82	0.79	0.12	0.16	0.15	0.16	0.25	0.17	0.69	0.13	0.16	0.12	0.19	0.59
5	23.76	18.51	19.07	9.93	5.23	18.34	9.80	2.54	0.34	0.06	0.05	0.05	0.07	0.11	0.11	0.08	0.11	0.07	0.07	0.07	0.20
6	8.24	9.85	13.15	17.32	3.62	5.05	4.25	1.09	0.24	0.01	0.01	0.05	0.03	0.07	0.08	0.08	0.01	0.02	0.02	0.01	0.04
7	7.17	3.96	6.27	7.39	8.32	4.30	1.07	0.36	0.07	0.00		0.03	0.20	0.02	0.08	0.01	0.00		0.00	0.02	0.07
8	1.39	2.95	1.95	3.71	6.06	4.74	0.85	0.06	0.04				0.06	0.02	0.05	0.00	0.01		0.00	0.01	0.06
9	0.65	0.65	1.52	1.25	1.58	2.53	0.80	0.01	0.00				0.02	0.01	0.16	0.00			0.00	0.00	0.00
10	0.92	0.56	0.58	1.04	0.62	1.02	0.28	0.04					0.01	0.00	0.06	0.00			0.00	0.00	0.01
11	1.04	0.96	0.41	0.30	0.54	0.44	0.28	0.00					0.01		0.03	0.01			0.00	0.00	0.01
12	0.35	0.62	0.54	0.36	0.14	0.28	0.09	0.00							0.01	0.01			0.00	0.01	0.00
13	0.14	0.21	0.33	0.32	0.19	0.21	0.03	0.01							0.01	0.01			0.03	0.00	0.00
14	0.04	0.07	0.10	0.25	0.33	0.15	0.01	0.01							0.01					0.01	0.00
15	0.06	0.06	0.05	0.10	0.13	0.13	0.02													0.00	0.02
16	0.01	0.02	0.01	0.04	0.04	0.07	0.00													0.01	
17	0.00	0.00	0.00	0.03	0.03	0.05	0.00														
18	0.01	0.02	0.01	0.02	0.02	0.01	0.00														
19	0.00	0.00	0.01	0.00	0.01	0.01	0.01														
20	0.01	0.00		0.01			0.01														
21	0.01																				
22	0.00																				
23	0.01																				
24																					
25																					
TOTAL	202.41	92.59	73.84	81.14	77.40	134.23	55.80	9.49	3.27	0.71	0.66	1.00	1.17	0.86	1.80	3.33	1.75	2.33	1.05	1.93	3.69

Table 33. Estimated proportions mature for female cod from NAFO Div. 2J3KL from DFO surveys from 1960 to 2005 projected forward to 2010 and back to 1958. Estimates were obtained from a probit model fitted by cohort to observed proportions mature at age. Lightly shaded cells are averages of the first or last three estimates extrapolated backward or forward. Darkly shaded cells are the average of adjacent estimates for the same age group.

Year/Age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1958	0.00000	0.00000	0.00004	0.00067	0.01123	0.15756	6337	0.98746	40	0.99997	1.00000	1.00000	1.00000	0000	1.00000	0000	1.00000
1959	0.00000	0.00000	0.00004	0.00067	0.01123	0.15756	0.76337	0.98746	0.99940	0.99997	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00
1960	0.00000	0.00000	0.00000	0.00067	0.01123	0.15756	0.76337	0.98746	0.99940	0.9999	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1961	0.00000	0.00000	0.00004	0.00002	0.01123	0.15756	0.76337	0.98746	0.99940	0.9999	1.00000	1.00000	1.00000	1.00000	1.0000	1.00000	1.00000
196	0.00004	0.00002	0.00008	0.00076	0.00092	0.15756	0.76337	0.98746	0.99940	0.9999	1.00000	1.00000	1.00000	1.00000	1.0000	1.00000	1.00000
1963	0.00007	0.00022	0.00029	0.00123	01304	0.03960	0.76337	0.98746	0.99940	0.9999	1.00000	1.00000	1.00000	1.00000	1.0000	00000	1.00
196	0.00	0.00042	0.0014	0.00348	. 01972	0.1862	. 6493	0.98746	0.99940	0.9999	. 00000	1.0000	. 0000	000	000	1.00000	1.00000
196	0.0	0.0010	0.00262	0.009	0.04024	0.	0.79856	0.9881	0.99940	0.999	. 0000	. 0000	. 0000	000	0000	1.00000	1.00000
1966	0.00002	0.00166	0.0053	0.0160	. 0659	0.334	0.8422	85	. 999973	0.99997	1.0000	. 0000	. 0000	0000	000	1.00000	1.00000
1967	0.00000	0001	0.00814	0.027	0.09165	0.359	0.85792	0.988	9916	999	1.00000	. 0000	.0000	.0000	000	1.00000	1.00000
1968	0.00000	0.00002	106	0.03890	0.129	0.	0.82643	0.9863	. 9992	99	. 0000	1.00000	1.0000	0000	000	1.00000	1.00000
196	0.00011	0000	00030	0.00856	0.16635	0.4403	0.79495	0.9732	0.99885	0.999	. 0000	. 0000	1.00000	. 0000	00	000	1.00000
1970	0.00023	0.0006	0.00001	, 037	0656	0.495	0.81200	60	0.9960	0.9999	1.0000	1.00000	1.0000	1.00000	. 0000	000	1.00000
1971	0.0085	. 0012	0.0034	0.00029	04465	0.36378	0.82905	59	仡	0.999	0.99999	1.00000	1.00000	1.00000	1.0000	1.0000	1.00
1972	0.0169	0.0216	0.00690	. 0187	0.00849	0.3677	. 8230	0.9598	0.992	0.9989	0.9999	1.00000	1.00000	1.0000	1.0000	1.00000	1.00
1973	0.00000	0.04213	0.0538	0.03713	0.09243	0.20038	0.8786	0.9742	0.9915	0.9986	0.9998	0.9999	1.00000	1.0000	1.0000	1.00000	1.00
1974	0.00003	0.00002	0.10084	0.12975	0.1763	0.3718	0.88003	0.9890	0.9967	0.9982	0.9997	0.9999	1.0000	1.00000	1.00000	1.0000	1.00000
1975	0.00017	0.00022	0.00030	0.22237	0.29903	0.5432	. 8742	0.99536	0.9991	0.9996	99	0.9999	1.00000	1.0000	1.00000	1.0000	1.00
1976	0.00013	0.00095	0.00181	0.00364	. 4216	0.59673	0.8684	0.9844	0.99984	0.99993	0.99995	0.9999	0.9999	1.0000	1.0000	1.00000	1.0
1977	0.00005	0.00082	0.00525	0.01501	0.04298	0.65024	0.8471	0.9734	0.99748	0.99999	0.9999	0.99999	0.9999	1.0000	1.00000	1.00000	1.000
1978	0.00000	0.00034	0.00508	0.02848	0.11361	0.35537	0.82579	0.9485	0.99511	0.9995	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00
1979	0.00000	0.00001	0.00244	0.03083	0.14000	0.51882	0.87127	0.92359	0.9818	0.9991	0.99992	1.00000	1.00000	1.00000	1.00000	1.00000	1.00
1980	0.00003	0.00002	0.00022	0.01733	0.16554	0.47482	0.90070	0.98811	0.9	0.9932	0.9998	0.99999	1.00000	1.00000	1.00000	1.0000	1.00
1981	0.00019	0.00025	0.00028	0.00314	0.11291	0.55298	0.83392	0.9870	0.99902	0.9874	0.9974	0.9999	1.00000	1.00000	1.00000	1.00000	1.0
1982	0.00000	0.00096	0.00217	0.00420	0.04363	0.47879	0.88524	0.96538	0.99844	0.99992	0.9	0.9990	0.99999	1.00000	1.00000	1.00000	1.0
1983	0.00000	0.00003	0.00486	0.01860	0.05876	0.39798	0.86894	0.97963	0.99359	0.9998	0.9999	0.9980	0.9996	1.0000	1.0000	1.00000	1.0
198	0.00001	0.00001	0.00037	0.02414	0.14169	0.4805	0.90548	0.9795	0.99668	0.998	0.99998	1.0000	0.9	0.9998	1.0000	1.00000	1.0000
198	0.00001	0.00014	0.00018	0.00452	0.11140	0.5897	0.93200	0.9928	0.99711	0.999	0.99979	1.00000	1.00000	0.9997	1.0000	1.0000	1.00000
198	0.0000	0.0001	142	0.	33	0.3	60	0.995	0.99950	0.999	0.99991	0.999	1.00000	1.0000	1.0000	00	1.0
198	0.00003	0.00030	26	0.01388	0.03945	0.41137	0.76305	0.99091	0.99967	0.999	0.999	0.9999	0.999	1.0000	1.000	000	1.00000
19	0.0000	0.00022	215	0.01266	0.12231	0.38001	658	42	0.99895	0.999	1.0000	0.9999	1.0000	000	1.00000	1.00000	1.00000
198	0.0000	0.00005	194	0.01504	0.11514	0.57979	146	007	. 98806	0.999	1.00000	1.0000	1.0000	000	1.00000	1.00000	1.00000
199	0.00	0.00002	100	0.01679	0.09762	0.56913	179	0.99273	. 99925	99	0.9999	1.0000	. 0000	000	000	1.00000	1.00000
199	0.00	0.00005	0.00046	0.01789	18	0.43384	0.93060	0.99266	951	0.9999	0.9995	1.0000	. 0000	1.0000	000	1.00000	1.00000
1992	0.00	0.00097	138	0.01309	0.24996	0.567	0.84442	0.99271	925	0.99997	1.0000	0.9999	. 0000	1.0000	. 0000	1.00000	1.00000
1993	0.00002	0.00822	0.00856	0.0365	27556	0.85	996	0.9	. 99928	0.999	1.0000	1.0000	0.9999	1.0000	1.0000	1.000	1.0
1994	0.00001	. 0002	0.02914	0.07111	. 51052	0.9160	. 99111	0.990	0.99634	0.9999	0.99999	1.0000	1.00000	1.0000	1.0000	1.0000	1.00
1995	0.00007	0.0001	0.00288	0.09804	0.40446	0.9663	0.99681	0.9995	0.99887	0.9994	0.99999	1.00000	1.00000	1.00000	1.0000	1.0000	1.0000
1996	0.00202	0.00075	0.00200	0.03356	0.28246	0.85765	0.99873	0.99989	0.99997	0.99987	0.99993	1.00000	1.00000	1.00000	1.00000	1.00000	1.000
1997	0.00058	0.00789	0.00784	0.02921	0.29436	0.58773	0.98163	0.99995	1.00000	1.00000	0.99999	0.99999	1.00000	1.00000	1.00000	1.00000	1.0000
1998	0.00003	0.00288	0.03027	0.07633	0.31125	0.83365	0.83774	0.99790	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
1999	0.00000	0.0003	0.01419	0.10913	0.4635	0.8715	0.9836	0.9492	0.99976	1.0000	1.00000	1.00000	1.00000	1.0000	1.00000	1.0000	1.0000
2000	0.00014	0.00007	0.00353	0.06688	0.32465	0.90038	0.99028	0.99862	0.98545	0.99997	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
2001	0.00036	0.00121	0.00138	0.03962	0.26299	0.65355	0.98953	0.99935	0.99988	0.99594	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
02	0.00062	0.00243	0.01020	0.02831	0.32478	0.63982	0.88100	0.99899	0.99996	0.99999	0.99888	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
2003	0.00038	0.00303	0.01627	0.08026	0.37975	0.84866	0.89841	0.96672	0.99990	1.00000	1.00000	0.99969	1.00000	1.00000	1.00000	1.00000	1.0000
2004	0.00038	0.00223	0.01462	0.10095	0.42507	0.92788	0.98493	0.97779	0.99131	0.99999	1.00000	1.00000	0.99991	1.00000	1.00000	1.00000	1.0000
2005	0.00038	0.00223	0.01370	0.06751	0.43261	0.86233	0.99632	0.99869	0.99546	0.99777	1.00000	1.00000	1.00000	0.99998	1.00000	1.00000	1.0000
2006	0.00038	0.00223	0.01370	0.08291	0.26098	0.83812	0.98151	0.99982	0.99989	0.99908	0.99943	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000
2007	0.0003	0.0022	0.01370	0.08291	0.37289	0.63270	0.97234	0.99778	0.99999	0.9999	0.99982	0.99985	1.00000	1.00000	1.00000	1.00000	1.0000
2008	0.0003	0.00223	0.01370	0.08291	0.37289	0.77772	0.89364	0.99583	0.99974	1.00000	1.00000	0.99996	0.99996	1.00000	1.00000	1.00000	1.00000
2009	0.00038	0.00223	0.01370	0.08291	0.37289	0.77772	0.94916	0.97618	0.99938	0.99997	1.00000	1.00000	0.99999	0.99999	1.00000	1.00000	1.00000
010	0.00038	0.00223	0.01370	0.	0.37289	0.77772	0.94916	0.98993	0.99	999	.000	00	.000	. 00	1.000	1.00	1.00

Table 34. Mean length (cm) at age of cod sampled during autumn bottom-trawl surveys in divisions $2 \mathrm{~J}, 3 \mathrm{~K}$ and 3L in 1978-2005. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-80 and 1984.

Division 2J																												
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1																		19.9	19.8		22.9	21.5	22.0	22.8	20.9	20.3	22.4	23.2
2	29.3	30.1	30.6	29.9	30.0	26.6	27.4	27.0	28.2	29.4	30.3	28.1	26.5	28.1	26.5	26.2	25.8	26.2	28.0	30.7	23.9	27.4	27.8	29.3	28.0	31.5	30.9	28.7
3	38.0	41.3	39.4	38.7	37.9	38.8	34.3	33.6	35.5	36.5	37.3	36.9	33.8	32.9	33.8	32.6	36.8	33.1	34.5	37.6	38.7	33.7	37.6	34.8	37.3	38.2	37.7	36.4
4	45.6	47.3	49.6	47.0	47.0	46.1	44.4	40.1	41.1	43.4	44.2	43.7	41.9	38.7	38.8	40.1	42.3	42.1	41.8	43.2	44.4	42.5	44.2	43.7	43.2	43.3	45.2	43.1
5	54.0	55.3	54.5	54.4	53.4	53.9	50.9	48.5	47.6	48.9	48.5	50.1	46.9	43.9	41.8	43.9	46.6	46.7	49.3	48.0	47.7	52.3	54.6	49.9	47.8	50.0	50.0	50.9
6	59.7	60.9	60.7	58.2	59.3	60.0	56.6	53.2	52.7	52.4	53.6	53.8	53.4	51.1	47.0	47.5	56.8	55.4	52.6		52.5	69.0	62.3	54.0	41.0	60.1	55.5	53.5
7	66.4	67.9	64.3	62.8	61.3	62.9	63.4	57.5	56.7	57.3	55.8	57.0	56.6	56.9	56.8	47.0	56.2		61.1		51.0			57.0				66.0
8	69.7	73.9	69.5	66.9	64.5	64.7	65.8	64.3	59.5	58.9	59.8	59.6	59.4	58.3								79.0						
9	79.3	69.2	82.0	73.6	68.9	68.6	66.9	67.2	67.6	61.7	63.8	62.7	61.1	63.8														
10	80.4	76.9	83.3	84.2	77.0	73.5	71.6	70.2	68.2	67.8	66.2	64.7	63.1	65.5														
11	87.7	87.6	86.5	90.1	85.5	75.0	78.4	72.8	72.2	77.5	73.9	69.8	73.6	72.7														
12	91.6	85.9	87.9	88.6	94.6	95.0	83.0	75.9	76.2	75.5	80.5	67.8	73.5	68.5														

Division 3K

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1																		18.6	19.2	21.6	19.2	20.5	20.9	20.1	22.2	19.2	20.9	20.4
2	27.9	30.9	30.7	31.3	29.3	28.5	26.5	28.7	29.5	29.7	25.9	27.3	28.1	29.2	28.5	28.5	29.3	25.6	28.7	29.5	25.3	29.1	27.7	28.1	28.4	30.6	28.0	28.9
3	37.6	42.1	39.9	42.2	40.3	40.5	36.8	36.0	36.5	38.1	36.5	37.2	36.2	36.6	36.4	37.5	36.5	34.2	34.9	39.2	39.0	36.8	36.7	34.6	35.3	39.0	34.9	38.0
4	47.0	49.5	47.2	50.4	50.1	47.9	47.0	43.9	43.8	44.6	44.2	45.0	44.0	42.7	42.4	43.6	42.2	41.8	43.3	47.9	45.4	45.7	45.4	42.6	41.6	45.6	43.6	44.5
5	54.8	55.4	54.7	56.1	54.0	56.2	54.3	51.8	49.9	50.9	51.5	51.5	49.7	47.9	47.0	50.0	51.1	46.8	50.0	56.2	51.4	52.5	52.0	52.1	47.6	53.9	49.3	51.5
6	62.4	62.8	61.8	60.3	60.5	62.3	61.6	57.3	56.1	54.3	56.0	56.3	56.1	54.9	51.8	51.4	53.5	54.7	58.5		58.6	55.7	60.8	54.9	56.5		57.0	60.0
7	69.5	69.9	69.7	65.2	64.3	66.8	64.4	62.5	58.8	60.1	58.6	59.9	58.4	59.7	57.9	53.0	58.1		69.0		62.4	72.9	73.0		57.0		59.9	
8	74.4	76.8	76.3	69.2	69.0	67.7	68.8	69.6	64.1	62.9	66.3	63.1	61.2	62.7	65.2	64.0	61.7			68.0	83.0			74.0			81.0	
9	76.6	83.3	86.0	81.7	74.8	72.5	72.9	70.2	67.3	69.7	73.1	68.1	63.6	65.6	64.0			68.0			80.0	81.0		73.0				
10	81.9	78.3	87.6	90.5	79.8	76.4	78.1	73.1	76.8	74.5	78.7	74.0	64.7	69.1								89.0					58.0	
11	88.4	86.0	103.4	91.6	89.6	84.9	84.9	79.2	75.9	80.8	82.4	75.7	69.3	80.7														
12	92.1	78.9	94.2	92.1	97.0	85.1	90.2	87.1	73.7	86.6	88.5	82.2	71.1	68.4														

Division 3L

Age	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1															16.8	17.7	19.7	18.4	19.3	19.3	18.4	20.6	17.7	20.1	18.6
2	28.5	28.7	30.1		26.8	27.9	27.5	28.7	28.7	27.0	29.7	27.9	30.1	28.1	27.8	30.0	30.3	31.5	30.0	28.3	28.8	29.4	29.0	28.9	29.7
3	40.0	38.2	39.4		36.1	35.4	34.7	37.4	37.6	35.3	36.7	38.5	38.3	34.8	36.9	38.3	38.6	39.9	39.4	39.4	36.7	38.7	39.7	37.3	38.6
4	44.8	50.2	48.0		43.7	43.7	44.2	44.9	44.2	44.9	44.4	44.5	45.2	45.7	41.7	44.2	45.9	46.5	47.2	45.8	44.8	47.1	50.0	47.8	43.8
5	52.6	56.4	56.8		52.2	50.3	52.3	53.1	52.3	52.7	51.1	50.4	51.5	51.8	49.6	49.3	54.9	54.5	55.4	53.3	51.3	56.2	51.0	50.1	49.4
6	60.6	63.5	62.4		58.0	58.2	58.9	58.6	59.0	59.2	56.5	54.9	55.8	57.9	58.6	58.9	62.3	58.4	59.7	58.0	57.9	62.7	60.5	58.9	59.2
7	66.7	69.7	64.7		65.4	62.6	65.1	62.4	63.9	66.4	61.1	56.8	61.9	66.7	66.7	66.7	68.6	78.0	64.0	65.4	65.9	68.0	71.0	72.0	61.0
8	73.1	73.8	69.5		73.3	69.9	69.0	66.7	68.7	70.9	68.0	66.0	61.4	67.0	74.0	70.0	72.6	74.3	72.9	77.9	67.9			57.0	65.7
9	82.2	83.0	73.6		72.8	73.1	75.2	69.6	74.4	75.3	71.5	77.3				66.0	72.0		86.3	81.0	75.1		70.0	69.0	
10	91.2	93.1	76.3		82.6	77.7	80.8	74.3	83.7	76.2	73.2	70.4	87.0						90.7					82.0	
11	103.7	94.1	90.0		86.5	81.5	87.9	88.9	88.1	82.5	74.5	77.1							79.0		91.0		89.0		
12	119.2	110.5	87.5		97.8	86.8	85.4	96.7	94.1	86.9	81.1	94.5							100.0		101.0	98.0			

Table 35. Mean weight (kg) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2005. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-80 and 1984.

Division 2 J																												
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1																		0.06	0.06		0.10	0.09	0.09	0.10	0.09	0.07	0.10	0.10
2	0.22	0.26	0.24	0.23	0.22	0.18	0.15	0.20	0.25	0.27	0.25	0.20	0.16	0.19	0.14	0.15	0.16	0.16	0.19	0.26	0.12	0.20	0.19	0.23	0.20	0.28	0.28	0.23
3	0.49	0.68	0.53	0.55	0.50	0.59	0.38	0.36	0.35	0.55	0.55	0.49	0.36	0.31	0.32	0.30	0.43	0.32	0.37	0.48	0.54	0.36	0.47	0.38	0.47	0.50	0.51	0.45
4	0.95	1.02	1.05	1.08	0.96	0.96	0.83	0.62	0.65	0.91	0.82	0.81	0.70	0.52	0.48	0.58	0.65	0.67	0.67	0.73	0.80	0.76	0.78	0.73	0.73	0.73	0.85	0.76
5	1.58	1.59	1.36	1.66	1.60	1.55	1.30	1.14	1.05	1.36	1.15	1.26	0.99	0.74	0.62	0.75	0.91	0.90	1.16	1.05	1.01	1.38	1.42	1.17	1.03	1.18	1.23	1.36
6	2.20	2.38	2.06	1.98	2.00	1.85	1.78	1.49	1.66	1.48	1.65	1.57	1.46	1.14	0.84	0.92	1.66	1.54	1.43		1.42	3.21	2.46	1.34	0.58	2.05	1.79	1.33
7	2.52	2.75	2.55	2.52	2.39	2.25	2.39	1.88	1.91	2.07	1.69	1.91	1.78	1.54	1.48	0.86	1.70		2.15		1.19			1.64				2.67
8	3.86	2.75	3.09	3.20	2.69	2.77	2.56	2.50	2.29	2.41	2.38	2.26	2.11	1.69								5.18						
9	4.37	6.19	5.99	3.94	3.87	3.35	3.02	2.65	3.81	1.82	2.72	2.62	2.30	2.37														
10	5.77	5.43	7.63	6.59	6.51	4.02	3.46	3.22	4.51	4.65	2.88	3.14	2.54	2.72														
11	6.36	7.19	6.55	6.91	7.66	4.17	5.67	4.18	4.64	4.55	3.87	3.77	4.40	3.96														
12	9.74	6.21	7.72	10.80	10.06	8.95	6.54	4.01	6.16	4.65	6.73	3.21	4.34	3.39														

Division 3 K

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1																		0.05	0.06	0.09	0.06	0.07	0.08	0.07	0.09	0.06	0.08	0.07
2	0.17	0.21	0.24	0.28	0.23	0.23	0.15	0.21	0.19	0.20	0.18	0.19	0.19	0.21	0.21	0.21	0.22	0.15	0.21	0.23	0.15	0.24	0.19	0.20	0.21	0.25	0.21	0.22
3	0.41	0.58	0.58	0.72	0.74	0.54	0.40	0.47	0.45	0.49	0.48	0.49	0.41	0.42	0.40	0.47	0.43	0.36	0.38	0.54	0.55	0.47	0.44	0.36	0.40	0.52	0.42	0.51
4	0.88	1.19	0.95	1.22	1.22	1.12	0.87	0.89	0.82	0.90	0.84	0.87	0.76	0.71	0.67	0.74	0.69	0.65	0.72	0.98	0.87	0.89	0.82	0.71	0.65	0.84	0.79	0.83
5	1.48	1.64	1.41	1.73	1.56	1.67	1.41	1.22	1.15	1.35	1.41	1.33	1.10	1.01	0.95	1.12	1.19	0.91	1.16	1.62	1.30	1.35	1.19	1.26	1.00	1.39	1.18	1.32
6	2.39	2.26	2.01	2.05	1.97	2.11	2.04	1.82	1.99	1.41	1.73	1.82	1.63	1.52	1.30	1.30	1.44	1.53	1.90		1.87	1.56	2.06	1.50	1.52		1.77	2.07
7	2.94	3.16	3.46	2.62	2.45	2.80	2.34	2.59	2.42	2.58	2.26	2.19	1.91	1.92	1.83	1.46	1.98		3.24		2.55	3.74	3.33		1.71		2.32	
8	5.83	4.28	3.18	5.05	3.15	3.44		3.40	3.74	2.78	3.01	2.57	2.20	2.27	2.56	2.29	2.33			2.61	6.32			3.45			4.57	
9	4.67	4.86	6.00	7.33	4.38	3.74	3.69	4.15	3.25	3.40	4.26	3.23	2.44	2.63	2.19			3.28			5.31	6.13		3.71				
10	6.50	4.61	7.53	6.32	6.19	4.86	4.67	4.89	4.92	5.35	4.89	4.20	2.71	3.11								7.27					2.00	
11	5.24	8.37	13.00	9.33	6.52	7.51	6.30	6.52	5.85	10.63	5.41	4.60	3.25	4.93														
12	9.49	10.19	7.10	8.10	9.56	6.05	6.09	6.33	6.47	7.02	7.63	5.59	3.67	3.22														

Division 3L

Age	19781979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
1																	0.11	0.05	0.07	0.05	0.06	0.06	0.05	0.08	0.05	0.07	0.05
2			0.22	0.17	0.24		0.17	0.22	0.18	0.22	0.19	0.17	0.25	0.20	0.24	0.20	0.24	0.26	0.26	0.27	0.26	0.21	0.23	0.24	0.23	0.23	0.26
3			0.56	0.38	0.54		0.44	0.47	0.35	0.46	0.44	0.40	0.46	0.58	0.51	0.40	0.46	0.50	0.53	0.59	0.58	0.58	0.47	0.55	0.56	0.51	0.54
4			0.82	0.48	1.14		0.80	0.80	0.74	0.76	0.79	0.81	0.84	0.88	0.85	0.88	0.67	0.78	0.90	0.94	0.94	0.89	0.85	0.97	1.11	1.05	0.78
5			1.25		1.48		1.38	1.23	1.31	1.37	1.56	1.33	1.28	1.30	1.27	1.32	1.13	1.12	1.63	1.59	1.62	1.43	1.34	1.75	1.23	1.18	1.12
6			1.98		1.98		2.05	1.81	1.80	1.88	1.94	1.90	1.75	1.70	1.76	1.89	2.06	2.08	2.63	1.81	2.07	1.85	1.91	2.33	2.12	2.39	2.05
7			2.64		2.28		2.25	2.70	2.35	2.10	2.57	2.77	2.19	1.86	2.33	2.99	3.25	3.23	3.39	4.25	2.62	2.76	2.87	3.02	3.64	3.14	2.53
8			5.08	5.44	2.93		3.52	2.58	2.82	3.04	3.65	3.48	3.09	2.78	2.55	3.16	4.20	3.44	4.47	4.60	3.90	5.16	3.23			1.67	2.83
9			5.80	6.65	4.01		4.11	4.20	3.80	3.02	3.67	4.27	3.68	4.93				3.20			6.63	4.85	3.72		2.94	3.87	
10			11.76	8.34	4.39		6.13	5.48	7.54	3.48	6.83	4.56	3.95	3.35	6.44						8.28					5.81	
11			11.56	7.49	8.33		5.31	4.46	7.40	7.47	7.46	5.85	4.47	4.95							5.63		8.26		7.70		
12			18.55	10.65	9.90		12.08	10.51	5.53	9.41	11.40	6.64	5.31	8.65							10.05		12.80	9.95			

Table 36. Mean Fulton's condition (gutted weight) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2005. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-80 and 1984.

Division 3K

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
| :--- |

 $\begin{array}{llllllllllllllllllllllllll}3 & 0.719 & 0.741 & 0.786 & 0.793 & 0.815 & 0.742 & 0.719 & 0.744 & 0.714 & 0.757 & 0.785 & 0.750 & 0.714 & 0.719 & 0.700 & 0.741 & 0.767 & 0.744 & 0.746 & 0.758 & 0.758 & 0.761 & 0.738 & 0.728 & 0.746\end{array} 0.7360 .771 \quad 0.763$

| 10 | 0.744 | 0.761 | 0.795 | 0.756 | 0.766 | 0.762 | 0.717 | 0.744 | 0.849 | 0.811 | 0.831 | 0.793 | 0.749 | 0.776 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0.795

\qquad | 0.864 | 0.740 .748 | 0.747 | 0.721 | |
| :--- | :--- | :--- | :--- | :--- |
| 0.867 | | $\mathbf{0 . 7 4 3}$ | | 0.826 |

| 0.706 | 0.867 |
| :--- | :--- | :--- |

Division 3L

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2				0.718	0.707	0.718		0.680	0.769	0.721	0.748	0.734	0.716	0.746	0.744	0.721	0.750	0.935	0.772	0.757	0.744	0.740	0.715	0.740	0.749	0.737	0.763	0.745
3				0.778	0.803	0.724		0.749	0.765	0.733	0.781	0.759	0.734	0.748	0.801	0.741	0.784	0.752	0.749	0.758	0.751	0.798	0.757	0.760	0.762	0.756	0.786	0.761
4				0.794	0.765	0.746		0.740	0.757	0.745	0.730	0.764	0.729	0.769	0.788	0.737	0.741	0.758	0.770	0.756	0.748	0.749	0.762	0.755	0.757	0.735	0.754	0.745
5				0.767		0.735		0.756	0.790	0.748	0.781	0.782	0.752	0.769	0.795	0.715	0.758	0.761	0.760	0.773	0.814	0.776	0.750	0.767	0.785	0.736	0.725	0.786
6				0.729		0.700		0.717	0.781	0.714	0.796	0.776	0.742	0.773	0.796	0.777	0.776	0.804	0.806	0.770	0.751	0.788	0.754	0.783	0.739	0.762	0.871	0.793
7				0.751		0.775		0.715	0.816	0.724	0.741	0.768	0.763	0.741	0.793	0.737	0.775	0.861	0.847	0.824	0.748	0.790	0.771	0.768	0.776	0.766	0.723	0.881
8				0.824	0.767	0.764		0.708	0.730	0.735	0.758	0.804	0.777	0.763	0.723	0.741	0.725	0.780	0.825	0.882	0.861	0.822	0.806	0.767			0.740	0.805
9				0.798	0.800	0.744		0.790	0.775	0.743	0.781	0.729	0.773	0.779	0.803				0.939			0.809	0.743	0.734		0.700	0.834	
10				0.888	0.827	0.749		0.783	0.808	0.852	0.746	0.798	0.785	0.758	0.743	0.787						0.890					0.851	
11				0.800	0.807	0.793		0.774	0.775	0.803	0.736	0.802	0.795	0.817	0.814							0.909		0.809		0.901		
12				0.885	0.771	0.752		0.817	0.811	0.783	0.828	0.822	0.792	0.771	0.808							0.750		0.956	0.813			

Table 37. Mean liver index at age of cod sampled during autumn bottom-trawl surveys in divisions 2 J , 3 K and 3 L in 1978-2005. Highlighted entries are based on fewer than 5 aged fish. (Instances where fewer than 5 aged fish were available are not indicated for years prior to 1995.) There were no surveys in Div. 3L in 1978-80 and 1984.

Division 2 J																												
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2		0.037	0.035	0.046	0.031	0.030	0.032	0.023	0.043	0.031	0.036	0.045	0.042	0.036	0.025	0.032	0.038	0.042	0.037	0.041	0.034	0.045	0.035	0.041	0.044	0.039	0.051	0.044
3		0.061	0.051	0.049	0.047	0.057	0.050	0.036	0.049	0.052	0.049	0.059	0.050	0.042	0.028	0.038	0.039	0.041	0.044	0.043	0.050	0.049	0.038	0.047	0.042	0.038	0.050	0.043
4		0.062	0.034	0.069	0.048	0.078	0.061	0.048	0.079	0.061	0.067	0.067	0.060	0.045	0.040	0.037	0.035	0.041	0.039	0.045	0.047	0.046	0.036	0.041	0.043	0.038	0.052	0.046
5		0.064	0.052	0.053	0.051	0.063	0.066	0.057	0.077	0.073	0.057	0.076	0.061	0.037	0.036	0.038	0.043	0.045	0.043	0.053	0.052	0.054	0.035	0.037	0.037	0.040	0.047	0.043
6		0.080	0.054	0.062	0.060	0.065	0.062	0.056	0.089	0.065	0.074	0.074	0.064	0.033	0.037	0.038	0.049	0.017	0.037		0.065	0.069	0.042	0.023	0.044	0.049	0.069	0.039
7		0.060	0.055	0.056	0.057	0.057	0.055	0.053	0.074	0.061	0.070	0.077	0.067	0.031	0.036	0.030	0.073		0.047		0.057			0.036				0.034
8		0.040	0.041	0.067	0.051	0.077	0.055	0.061	0.051	0.077	0.076	0.089	0.066	0.033								0.090						
9		0.060	0.071	0.058	0.048	0.081	0.066	0.034	0.093	0.045	0.065	0.074	0.073	0.038														
10		0.083	0.084	0.083	0.058	0.053	0.063	0.052	0.071	0.060	0.072	0.097	0.058	0.034														
11		0.097	0.074	0.058	0.052	0.062	0.065	0.065	0.092	0.075	0.068	0.083	0.065	0.042														
12		0.076	0.083	0.061	0.099	0.050	0.053	0.052	0.098	0.089	0.082	0.073	0.084	0.043														
Division 3K																												
Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2	0.030	0.019	0.021	0.040	0.020	0.024	0.013	0.035	0.029	0.029	0.025	0.032	0.035	0.037	0.035	0.042	0.034	0.045	0.039	0.040	0.037	0.046	0.036	0.042	0.048	0.038	0.047	0.041
3	0.020	0.033	0.038	0.044	0.033	0.039	0.032	0.053	0.049	0.046	0.044	0.047	0.042	0.044	0.037	0.043	0.044	0.046	0.044	0.045	0.043	0.052	0.042	0.041	0.048	0.039	0.052	0.046
4	0.032	0.054	0.047	0.041	0.045	0.052	0.037	0.053	0.061	0.049	0.056	0.056	0.052	0.052	0.048	0.045	0.049	0.047	0.044	0.045	0.050	0.054	0.042	0.044	0.045	0.041	0.054	0.051
5	0.040	0.066	0.046	0.035	0.061	0.047	0.046	0.054	0.069	0.056	0.069	0.057	0.051	0.054	0.055	0.051	0.053	0.050	0.046	0.049	0.055	0.052	0.037	0.039	0.048	0.044	0.055	0.053
6	0.037	0.062	0.052	0.054	0.044	0.035	0.041	0.054	0.082	0.064	0.070	0.071	0.055	0.052	0.059	0.058	0.054	0.048	0.038		0.061	0.055	0.041	0.053	0.042		0.045	0.049
7	0.040	0.061	0.045	0.043	0.049	0.035	0.047	0.044	0.082	0.078	0.061	0.071	0.057	0.043	0.064	0.050	0.065		0.059		0.070	0.056	0.040		0.044			
8	0.057	0.058	0.049	0.049	0.052	0.066		0.055	0.074	0.051	0.078	0.072	0.066	0.046	0.059	0.032	0.071			0.032	0.138			0.037			0.068	
9	0.059	0.055	0.045	0.070	0.042	0.046	0.047	0.075	0.064	0.053	0.059	0.072	0.060	0.052	0.061			0.036			0.073	0.113		0.030				
10	0.062	0.061	0.047	0.059	0.057	0.049	0.037	0.049	0.081	0.070	0.069	0.071	0.064	0.054								0.096					0.097	
11	0.033	0.066	0.051	0.077	0.055	0.063	0.065	0.066	0.080	0.091	0.073	0.075	0.062	0.038														
12	0.071	0.080	0.066	0.066	0.062	0.024	0.046	0.052	0.097	0.073	0.070	0.071	0.079	0.034														

Division 3L

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
2				0.021	0.013	0.025		0.029	0.030	0.026	0.025	0.026	0.039	0.046	0.041	0.043	0.039	0.039	0.039	0.042	0.040	0.046	0.039	0.043	0.050	0.042	0.048	0.043
3				0.041	0.025	0.022		0.031	0.032	0.032	0.028	0.036	0.038	0.056	0.067	0.053	0.078	0.048	0.040	0.047	0.045	0.056	0.043	0.047	0.048	0.043	0.055	0.048
4				0.038	0.042	0.024		0.039	0.035	0.031	0.035	0.039	0.037	0.062	0.073	0.062	0.053	0.049	0.044	0.049	0.051	0.050	0.048	0.050	0.051	0.038	0.045	0.04
5				0.039		0.027		0.039	0.047	0.035	0.043	0.052	0.042	0.059	0.076	0.066	0.052	0.050	0.044	0.055	0.067	0.055	0.047	0.052	0.062	0.053	0.048	0.047
6				0.039		0.030		0.033	0.040	0.030	0.045	0.045	0.048	0.060	0.071	0.075	0.074	0.066	0.064	0.053	0.062	0.047	0.052	0.051	0.051	0.047	0.081	0.056
7				0.041		0.041		0.030	0.045	0.029	0.051	0.053	0.057	0.059	0.073	0.066	0.044	0.080	0.078	0.069	0.042	0.091	0.066	0.056	0.038	0.042	0.052	0.094
8				0.065	0.039	0.032		0.046	0.033	0.032	0.043	0.058	0.055	0.069	0.065	0.033	0.035	0.053	0.102	0.068	0.079	0.066	0.086	0.065			0.059	0.06
9				0.049	0.061	0.039		0.051	0.056	0.036	0.050	0.051	0.059	0.075	0.070				0.137	0.087	0.080	0.076	0.051	0.041		0.028	0.085	
10				0.077	0.054	0.041		0.066	0.052	0.091	0.039	0.059	0.057	0.066	0.074	0.098						0.084					0.066	
11				0.052	0.068	0.042		0.060	0.048	0.059	0.044	0.067	0.069	0.074	0.090						0.082	0.081		0.067		0.096		
12				0.068	0.066	0.045		0.071	0.060	0.050	0.070	0.055	0.065	0.056	0.068							0.060		0.146	0.092			

Table 38. Catch numbers at age (thousands) in the central inshore area, including 3Ka and 3 Kd . The 10+ group is the sum of ages 10-20.

	Age									
Year	2	3	4	5	6	7	8	9	$10+$	
1995	0.03	5.73	29.88	72.78	51.24	19.55	5.50	0.90	0.39	
1996	0.43	15.07	85.68	233.86	323.85	75.09	11.87	2.18	0.82	
1997	0.02	7.29	24.98	57.25	70.89	110.48	19.19	2.26	0.77	
1998	2.08	77.77	174.35	316.19	546.07	320.19	190.29	51.74	14.92	
1999	5.63	60.32	191.65	508.01	609.21	912.76	306.12	222.13	51.08	
2000	3.89	87.34	168.98	270.52	297.39	244.20	219.58	114.07	141.39	
2001	7.91	162.85	500.44	507.82	436.73	266.27	135.33	208.60	208.99	
2002	4.86	126.73	174.43	239.12	218.55	179.80	99.83	69.67	215.31	
2003	0.13	7.93	9.04	16.47	45.82	39.89	25.69	21.34	97.45	
2004	0.87	9.04	17.78	22.62	30.34	33.71	21.76	9.94	15.49	
2005	0.16	11.66	17.58	105.24	135.33	62.00	21.36	8.06	12.05	

Table 39. Mean weights-at-age (kg) of cod caught in the central inshore area.

	Age								
Year	2	3	4	5	6	7	8	9	
1995	0.25	0.51	0.83	1.52	1.97	2.33	2.71	3.27	
1996	0.44	0.66	0.97	1.44	2.04	2.55	2.98	3.95	
1997	0.30	0.53	0.83	1.41	1.99	2.44	2.98	3.87	
1998	0.29	0.63	0.94	1.50	2.13	2.48	3.06	3.43	
1999	0.31	0.58	1.05	1.59	2.10	2.50	2.98	3.64	
2000	0.25	0.65	0.94	1.72	2.14	2.84	3.39	4.01	
2001	0.41	0.62	0.88	1.33	2.04	2.61	3.37	4.02	
2002	0.41	0.63	0.90	1.59	2.21	2.82	3.36	3.82	
2003	0.34	0.50	0.84	1.41	2.04	2.57	3.07	3.66	
2004	0.34	0.55	0.86	1.57	2.18	2.95	3.53	4.35	
2005	0.28	0.52	0.85	1.79	2.18	2.67	3.41	4.29	

Table 40. Beginning of year weights-at-age (kg) for the central inshore area.

	Age									
Year	2	3	4	5	6	7	8	9	10	
1995	0.15	0.44	0.71	1.13	1.73	2.23	2.71	3.29	4.30	
1996	0.40	0.40	0.70	1.09	1.76	2.24	2.63	3.27	3.75	
1997	0.21	0.48	0.74	1.17	1.69	2.23	2.76	3.40	4.56	
1998	0.20	0.43	0.70	1.11	1.73	2.22	2.73	3.20	4.18	
1999	0.22	0.41	0.81	1.22	1.77	2.31	2.72	3.34	4.15	
2000	0.16	0.45	0.74	1.35	1.85	2.44	2.91	3.46	4.28	
2001	0.33	0.40	0.76	1.12	1.88	2.36	3.09	3.69	4.80	
2002	0.38	0.51	0.75	1.19	1.72	2.40	2.96	3.59	4.65	
2003	0.26	0.45	0.73	1.13	1.80	2.39	2.94	3.51	4.80	
2004	0.27	0.43	0.66	1.15	1.75	2.45	3.01	3.65	4.91	
2005	0.30	0.42	0.68	1.24	1.85	2.41	3.17	3.89	5.91	
2006	0.28	0.43	0.69	1.17	1.80	2.42	3.04	3.68	5.19	

Table 41. Sentinel survey catch rate at age from three gears in the central inshore area.

	Age							
Year	3	4	5	6	7	8	9	
Gillnet (5.5 inches)								
1995.5	0.000	0.040	1.516	2.111	0.978	0.435	0.073	
1996.5	0.045	0.227	1.688	7.513	2.177	0.507	0.102	
1997.5	0.017	0.120	1.867	3.538	6.373	1.405	0.144	
1998.5	0.071	0.207	1.998	7.095	5.301	2.943	0.784	
1999.5	0.028	0.153	1.395	2.359	3.687	1.146	0.637	
2000.5	0.024	0.105	1.089	2.042	1.371	1.594	0.597	
2001.5	0.017	0.097	0.511	1.263	0.763	0.346	0.480	
2002.5	0.014	0.057	0.760	0.996	0.782	0.335	0.205	
2003.5	0.058	0.133	0.479	1.612	1.066	0.392	0.192	
2004.5	0.023	0.185	1.097	1.753	1.493	0.511	0.196	
2005.5	0.031	0.116	2.020	2.988	1.757	0.945	0.309	

Linetrawl

1995.5	8.266	65.307	58.885	20.069	5.142
1996.5	22.509	40.409	54.402	30.290	4.976
1997.5	21.762	51.356	80.641	46.744	43.277
1998.5	19.912	35.663	26.392	15.329	6.637
1999.5	11.483	22.544	28.549	6.216	0.948
2000.5	5.946	9.414	7.928	4.955	1.486
2001.5	24.784	31.803	12.282	3.509	1.097
2002.5	14.686	24.741	15.017	7.078	1.323
2003.5	28.750	72.468	35.123	5.335	1.334
2004.5	36.910	56.852	27.114	24.490	1.574
2005.5	29.734	57.213	49.462	16.065	2.818

Gillnet (3.25 inches)

1996.5	11.380	24.324	9.714	10.201	0.410	0.051	0.000
1997.5	6.519	13.339	5.507	5.273	4.252	0.477	0.019
1998.5	8.089	4.439	4.948	8.819	4.741	1.947	0.465
1999.5	9.802	6.556	4.714	1.923	2.012	0.373	0.227
2000.5	9.959	8.049	3.683	1.898	0.547	0.494	0.196
2001.5	9.632	8.501	2.933	1.431	0.335	0.096	0.138
2002.5	13.246	6.393	2.014	1.080	0.358	0.050	0.034
2003.5	22.731	10.110	2.989	1.446	0.584	0.096	0.030
2004.5	9.258	10.407	5.435	1.904	0.585	0.112	0.043
2005.5	20.011	11.621	5.921	2.496	0.390	0.134	0.031

Table 42. Central inshore SPA. Parameter estimates and associated standard error for the ADAPT model fit for inshore catch and survey indices.

Parameter	Estimate	Standard Error	Rias	Rel Error	Rel Bias
$\mathrm{N}[2006$ 4]	7490.88	2364.31	579.62	0.32	0.08
$\mathrm{~N}[2006$ 5]	4071.46	955.94	226.61	0.23	0.06
$\mathrm{~N}[2006$ 6]	3640.11	747.36	183.44	0.21	0.05
$\mathrm{~N}[2006$ 7]	1467.47	291.91	75.64	0.20	0.05
$\mathrm{~N}[2006$ 8]	654.65	131.11	35.97	0.20	0.05
$\mathrm{~N}[2006$ 9]	309.87	70.28	20.18	0.23	0.07
$\mathrm{~N}[2006$ 10]	278.11	124.75	45.32	0.45	0.16
Fratio[1995 10]	0.6832	0.0678	0.0033	0.10	0.00
Fratio[2003 10]	1.6671	0.8210	0.3013	0.49	0.18
Fratio[2004 10]	1.1910	0.5387	0.1627	0.45	0.14
Sent 5.5 3	$4.66 \mathrm{E}-06$	$8.80 \mathrm{E}-07$	$-4.52 \mathrm{E}-08$	0.19	-0.01
Sent 5.5 4	$2.71 \mathrm{E}-05$	$4.89123 \mathrm{E}-06$	$-3.39 \mathrm{E}-07$	0.18	-0.01
Sent 5.5 5	0.000405	$7.51806 \mathrm{E}-05$	$-5.79 \mathrm{E}-06$	0.19	-0.01
Sent 5.5 6	0.001521	0.000302599	$-2.47 \mathrm{E}-05$	0.20	-0.02
Sent 5.5 7	0.002207	0.000495238	$-3.68 \mathrm{E}-05$	0.22	-0.02
Sent 5.5 8	0.001857	0.000487622	$-2.43 \mathrm{E}-05$	0.26	-0.01
Sent 5.5 9	0.001269	0.000403845	$5.77 \mathrm{E}-07$	0.32	0.00
Sent LT 3	0.002738	0.00049645	$-3.09 \mathrm{E}-05$	0.18	-0.01
Sent LT 4	0.008565	$1.55 \mathrm{E}-03$	$-1.07 \mathrm{E}-04$	0.18	-0.01
Sent LT 5	0.010030	0.001863506	$-1.43 \mathrm{E}-04$	0.19	-0.01
Sent LT 6	0.007348	0.001461915	-0.000119	0.20	-0.02
Sent LT 7	0.003265	0.00073266	$-5.44 \mathrm{E}-05$	0.22	-0.02
Sent 3.25 3	0.001838	0.000346889	$-1.78 \mathrm{E}-05$	0.19	-0.01
Sent 3.25 4	0.002249	0.000420099	$-2.44 \mathrm{E}-05$	0.19	-0.01
Sent 3.25 5	0.001649	0.000312699	$-2.06 \mathrm{E}-05$	0.19	-0.01
Sent 3.25 6	0.001652	0.000332792	$-2.45 \mathrm{E}-05$	0.20	-0.01
Sent 3.25 7	0.000944	0.000212824	$-1.5 \mathrm{E}-05$	0.23	-0.02
Sent 3.25 8	0.000433	0.000113675	$-5.69 \mathrm{E}-06$	0.26	-0.01
Sent 3.25 9	0.000315	0.000101501	$2.61 \mathrm{E}-07$	0.32	0.00

Table 43. Central inshore SPA. Estimated abundance at age (bias corrected) in thousands.

	Age									
Year	2	3	4	5	6	7	8	9	10	
1995	11713	17068	8175	8801	2074	489	198	141	0	
1996	9595	7852	11436	5455	5840	1349	312	128	94	
1997	8667	6432	5251	7596	3467	3652	843	199	146	
1998	7022	5810	4306	3500	5045	2266	2358	550	229	
1999	8089	4705	3831	2745	2090	2940	1260	1427	468	
2000	8387	5417	3105	2412	1430	912	1239	599	1049	
2001	11450	5619	3560	1944	1398	719	416	653	899	
2002	17613	7669	3634	1983	895	587	270	171	704	
2003	12830	11802	5037	2295	1136	424	249	101	358	
2004	15404	8600	7905	3369	1525	724	252	146	213	
2005	16576	10325	5758	5284	2240	998	458	151	220	
2006	15155	10158	6911	3845	3457	1392	619	290	233	

Table 44. Central inshore SPA. Estimated fishing mortality at age (bias corrected).

Year	Age									$\begin{array}{r} \hline \text { Mean } \\ 5-10 \end{array}$
	2	3	4	5	6	7	8	9	10	
1995	0.000	0.000	0.004	0.010	0.030	0.051	0.037	0.009	0.006	0.024
1996	0.000	0.002	0.009	0.053	0.070	0.070	0.048	0.019	0.013	0.045
1997	0.000	0.001	0.006	0.009	0.025	0.037	0.028	0.012	0.008	0.020
1998	0.000	0.016	0.050	0.116	0.140	0.187	0.102	0.121	0.083	0.125
1999	0.001	0.016	0.063	0.252	0.429	0.464	0.344	0.208	0.141	0.306
2000	0.001	0.020	0.068	0.146	0.287	0.386	0.240	0.260	0.177	0.249
2001	0.001	0.036	0.186	0.376	0.468	0.580	0.491	0.481	0.327	0.454
2002	0.000	0.020	0.060	0.157	0.347	0.457	0.581	0.667	0.454	0.444
2003	0.000	0.001	0.002	0.008	0.050	0.121	0.135	0.287	0.392	0.166
2004	0.000	0.001	0.003	0.008	0.024	0.059	0.112	0.087	0.089	0.063
2005	0.000	0.001	0.004	0.024	0.076	0.078	0.057	0.066	0.068	0.062

Table 45. Central inshore SPA. Population biomass (t) at age.

Age										4+	Total (2+)
Year	2	3	4	5	6	7	8	9	10+		
1995	1786	7473	5839	9905	3587	1092	537	464	0	21424	30682
1996	3798	3169	8029	5963	10288	3025	821	418	352	28897	35864
1997	1787	3084	3868	8902	5876	8151	2327	677	666	30467	35338
1998	1437	2520	3033	3894	8744	5033	6446	1759	958	29866	33823
1999	1767	1934	3120	3361	3705	6784	3426	4761	1942	27098	30798
2000	1330	2454	2296	3251	2641	2228	3612	2070	4493	20591	24375
2001	3812	2220	2701	2175	2621	1699	1286	2412	4318	17213	23245
2002	6628	3906	2728	2351	1538	1409	799	612	3273	12711	23245
2003	3393	5365	3654	2586	2046	1013	733	355	1721	12109	20866
2004	4159	3712	5194	3861	2670	1775	759	533	1047	15838	23709
2005	4964	4293	3938	6566	4143	2408	1452	587	1303	20397	29655
2006	4206	4405	4757	4501	6223	3364	1882	1066	1207	23000	31612

Table 46. Central inshore SPA. Spawner stock biomass (SSB; t) at age.

Age										Total
Year	2	3	4	5	6	7	8	9	10+	
1995	0	22	572	4006	3466	1089	537	464	0	10156
1996	3	6	269	1684	8824	3021	821	418	352	15400
1997	14	24	113	2621	3453	8001	2327	677	666	17896
1998	4	76	232	1212	7289	4216	6432	1759	958	22178
1999	1	27	340	1558	3229	6673	3252	4760	1942	21782
2000	0	9	154	1055	2378	2206	3607	2040	4493	15942
2001	5	3	107	572	1713	1681	1285	2412	4301	12079
2002	16	40	77	764	984	1241	798	612	3273	7806
2003	10	87	293	982	1736	910	709	355	1721	6804
2004	9	54	524	1641	2477	1748	742	528	1047	8772
2005	11	59	266	2840	3572	2399	1450	585	1300	12482
2006	9	60	394	1175	5215	3302	1882	1066	1206	14310

Table 47. Input parameters for deterministic projection.

Catch Options

0t, 1250t, 2500t
Recruitment at age 2 (in thousands; see text)

Low	7,022
Medium	15,155
High	17,613

Natural Mortality
M 0.4

Projection PR at age

Age	2	3	4	5	6	7	8	9	10
	0.001	0.053	0.218	0.470	0.771	1.000	0.871	0.933	0.634

Stock weights (kg) at age									
Age	2	3	4	5	6	7	8	9	10
	0.278	0.434	0.688	1.171	1.800	2.417	3.042	3.679	5.186
Catch weights (kg) at age									
Age	2	3	4	5	6	7	8	9	10
	0.317	0.522	0.849	1.588	2.131	2.733	3.335	4.098	5.664

Table 48a. Deterministic projections. Percent change from 2006 to 2007 in spawner stock biomass (SSB) relative to the 2006 estimate ($14,272 \mathrm{t}$) under three recruitment options (see text), and three fixed catch options.

\% Change in SSB between 2006-2007 (Jan.1)				
		Catch Option		
		Ot	1,250t	2,500t
	Low	18\%	11\%	4\%
	Medium	19\%	12\%	5\%
	High	19\%	12\%	6\%

Table 48b. Deterministic projections. Percent change from 2006 to 2009 in spawner stock biomass (SSB) relative to the 2006 estimate (14,272 t) under three recruitment options (see text), and three fixed catch options.

\% Change in SSB between 2006-2009 (Jan.1)				
		Catch Option		
		0t	1,250t	2,500t
	Low	34\%	14\%	-5\%
	Medium	59\%	39\%	20\%
	High	66\%	47\%	28\%

Figure 1a. Map of the Labrador-Newfoundland area, illustrating major geographic features and NAFO Divisions and Subdivisions.

Figure 1b. Map of the Labrador-Newfoundland area, illustrating the location of Canada's 200 nautical mile limit and various banks and bays. The bays, from north to south, are White Bay (WB), Notre Dame Bay (NDB), Bonavista Bay (BB), Trinity Bay (TB) and Conception Bay (CB).

Figure 1c. Map of the 2 J 3 KL cod stock area, showing physiographic features and NAFO Divisions.

Figure 1d. Map of the 2J3KL cod stock area, showing commercial fishery statistical unit areas.

Figure 1e. Map of the 2 J 3 KL cod stock area, showing commercial fishery areas and statistical sections.

Figure 1f. Map of the 2 J 3 KL cod stock area, showing sentinel survey sites.

Figure 1g. Map of the east coast of Newfoundland, indicating the location of Smith Sound within Trinity Bay and oceanographic Station 27 off St. John's.

Figure 1h. Map of the inshore of eastern Newfoundland, indicating the locations of the northern, central and southern inshore areas as defined for the present assessment. Also indicated are the locations of Smith Sound, the Avalon Peninsula, and the major bays: White Bay (WB), Notre Dame Bay (NDB), Bonavista Bay (BB), Trinity Bay (TB), Conception Bay (CB) and St. Mary's Bay (SMB). Placentia Bay (PB) is in Subdiv. 3Ps.

Figure 2. Cod in Div. 2J3KL. Total allowable catches (TACs) and landings (thousands of tons) by non-Canadian fleets and Canadian fleets, with the latter divided into mobile gear (offshore) and fixed gear (mainly inshore).

Figure 3. Cod in Div. 2J3KL. Landings (thousands of tons) by Division.

Figure 4. Cod in Div. 2J3KL. Fixed gear landings (thousands of tons) by gear type.

Figure 5. Cod in Div. 3L. Fixed gear landings (thousands of tons) in Div. 3L (1975-91), highlighting landings by gillnet and by other gears combined, with the gillnet landings subdivided into inshore and offshore.

Figure 6. Cod in Div. 2J3KL. Total allowable catches (TACs) and inshore fixed-gear landings (thousands of tons) for the inshore fishery (1995-2005). The landings are subdivided into food/recreational, index/commercial (including by-catch) and sentinel. Most of the landings in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay in April.

Figure 7. The estimated catch at age, all gears combined, in 2005. The upper panel illustrates the catch from the whole of 2 J 3 KL . The lower panel illustrates the catch in the central inshore area as defined for the present assessment. (Actually, the lower panel illustrates the catch in the central inshore area plus 3 Ka and 3 Kb).

Figure 8. The estimated catch at age for all gears combined in 1998-2005.

Figure 9. Mean weights-at-age calculated from mean lengths-at-age in the catch, 1972-2005.

Figure 10. Strata used for research bottom-trawl surveys in Div. 2J.

Figure 11. Strata used for research bottom-trawl surveys in Div. 3K.

Figure 12. Strata used for research bottom-trawl surveys in Div. 3L.

Figure 13. Trend in the index of population abundance (above) and biomass (below) computed by areal expansion of the stratified arithmetic mean catch per tow during autumn bottom-trawl surveys in 2 J 3 KL . The scales on the right panels illustrate just the lower 10\% of the left panels, in order that data from 1992-2005 may be more readily discerned. Note that the survey trawl was changed in 1995, and data collected prior to 1995 have been converted so as to be equivalent to data collected from 1995 onward.

Figure 14. Indices of abundance (top) and biomass (bottom) of cod in strata deeper than 500 m during autumn bottom-trawl surveys in divisions 2 J (left) and 3K (right). Years highlighted in black are those in which at least some strata were fished after December. Only years since the introduction of the Campelen trawl are illustrated.

Figure 15. Cod distribution (kg per standard tow) during the autumn surveys in Divs. 2J3KL. The left panel (from Lilly 1994) illustrates the average catch per 30 min tow with the Engels trawl within areas of 10' latitude amd 20' longitude. All tows during 1980-1988 were combined. The right panel shows the catches per 15 min tow with the Campelen trawl during 2002.

Figure 16a. Cod distribution (number per standard tow) during the autumn surveys in Divs. 2J3KL in 1995 and 1996.

Figure16b. Cod distribution (number per standard tow) during the autumn surveys in Divs. 2J3KL in 1997 and 1998.

Figure 16c. Cod distribution (number per standard tow) during the autumn surveys in Divs. 2J3KL in 1999 and 2000.

Figure 16d. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2001 and 2002.

Figure 16e. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2003 and 2004.

Figure 16f. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2005.

Figure 17a. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 1995, showing those stations occupied during 1995 (left panel) and those occupied during 1996 (right panel).

Figure 17b. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2002, showing those stations occupied during 2002 (left panel) and those occupied during 2003 (right panel).

Figure 17c. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2003, showing those stations occupied during 2003 (left panel) and those occupied during 2004 (right panel).

Figure 17d. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2004, showing those stations occupied during 2004 (left panel) and those occupied during 2005 (right panel).

Figure 17e. Cod distribution (number per standard tow) during the autumn survey in Divs. 2J3KL in 2005, showing those stations occupied during 2005 (left panel) and those occupied during 2006 (right panel).

Figure 18. Indices of abundance (above) and biomass (below) from spring bottom-trawl surveys in Div. 3L. The left panels illustrate all estimates from 1985 to 2005. The right panels illustrate just the lower 5\% of the left panels, in order that the 1992-2005 data may be more readily discerned.

Figure 19a. Geographic distribution (number per standard tow) during the spring surveys in Divs. 3LNO in 1996-1999.

Figure 19b. Geographic distribution (number per standard tow) during the spring surveys in Divs. 3LNO in 2000-03.

Figure 19c. Geographic distribution (number per standard tow) during the spring surveys in Divs. 3LNO in 2004-05.

Figure 20. Standardized catch rate at age for three gear types fished by the sentinel surveys in 1995-2005.

Figure 21. Standardized catch rates from sentinel surveys using gillnets ($51 / 2$ inch mesh). The upper panel shows all sentinel sites combined and the lower panel shows each of the three inshore areas.

Figure 22. Standardized catch rates from sentinel surveys using linetrawls. The solid line shows all sentinel sites combined and the dashed line shows the index from the central inshore area.

Figure 23. Standardized catch rates from sentinel surveys using small mesh ($31 / 4 \mathrm{inch}$) gillnets (all sites combined). The solid line shows the catch rates for young cod (ages $2-5$) and the dashed line shows the catch rates for older cod (ages 6-10). Note that the catch rates for the two age groups are scaled differently.

Figure 24. Standardized catch rates from sentinel small mesh ($31 / 4 \mathrm{inch}$) gillnet surveys (all sites combined). The solid line shows the catch rates for ages 2-10 combined and the dashed line shows the catch rates for ages 3 and 4 combined.

Figure 25. Standardized catch rates from sentinel small mesh ($31 / 4$ inch) gillnet surveys (all ages combined). The solid line shows all sites combined and the dashed line shows the index for the central inshore area.

Figure 26. Age at 50% maturity ($\pm 95 \% \mathrm{Cl}$) by cohort for female cod in divisions 2 J 3 KL combined based on sampling during autumn research bottom-trawl surveys. The closed diamonds show the results of the present analysis. The open circles show the last 11 years from the analysis in 2005.

Figure 27. Estimated percentage mature at ages 3-8 for female cod in Div. 2J3KL combined. The percentage mature at age estimated from sampling during the autumn research bottom-trawl survey in year t is displayed for spawning in year $t+1$.

Figure 28a. Mean lengths (cm) at ages 2-8 of cod in Div. 2J, 3K and 3L in 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 28b. Mean lengths (cm) at ages 4 and 5 of cod in Div. 2J, 3K and 3L during 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. The lines in each panel indicate the annual means (solid line with symbols), a 3-year moving average (heavy solid line) and the mean over all years for which there were observations (dashed line). There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 29. Mean weights at ages 2-8 of cod in Div. 2J, 3K and 3L in 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 30. Mean lengths and weights at ages 4 and 6 of cod in Div. 2J, 3K and 3L in 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 31. Mean Fulton's condition (gutted weight) at ages $3-6$ of cod in Div. 2J, 3K and 3L in 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 32. Mean liver index at ages 3-6 of cod in Div. 2J, 3K and 3L in 1978-2005, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish in 1995-97 are not plotted. There were no surveys in Div. 3L in 1978-80 and 1984.

Figure 33. Trend in the index of spawner stock biomass (SSB) in the offshore of 2J3KL, computed from population estimates at age (from areal expansion of the stratified arithmetic mean catch at age per tow during autumn bottom-trawl surveys), the proportion mature at age, and the Jan. 1 weight at age computed from commercial weights at age. The catch in autumn of year t has been used to compute biomass on Jan. 1 of year t+1. (This is why the strong positive anomaly appears in 1987 instead of in 1986.) Note that the survey trawl was changed in 1995, and data collected prior to 1995 have been converted so as to be equivalent to data collected from 1995 onward.

Figure 34a. Mean catch per tow of the 1976-2004 year-classes at ages 1-3 during autumn bottom-trawl surveys in Div. 2J, 3K and 3L combined. Data obtained prior to the introduction of the Campelen trawl in 1995 are shown as actual (unconverted) numbers (from Shelton et al. 1996) and in numbers converted to Campelen equivalents.

Figure 34b. Relative sizes of the 1980-2003 year-classes in the offshore of 2J3KL as determined from mean catch per tow at ages 2 and 3 during autumn bottom-trawl surveys. Data collected before 1995 have been converted to Campelen equivalents. Number per tow has been scaled to a maximum of 1 within the time-series for each age.

Figure 35. Instanteous total mortality rates (Z) experienced by fish aged 2 to 15 (only selected ages illustrated) as calculated from catch rate at age per tow during the autumn research bottom-trawl surveys in 2J3KL combined in 1983-2005. For example, the value of 2.16 for age 6 in 1997 is the mortality experienced by the 1991 year-class from age 5 in the autumn of 1996 to age 6 in the autumn of 1997.

Figure 36. Age specific annual mortality rate (proportion dying from one year to the next) calculated from mean catch at age per tow during the autumn bottom-trawl surveys in 2 J 3 KL . Mortality is computed from the sum of catch rates at ages $4-6$ in year $\mathrm{t}-1$ and the sum of catch rates at ages 5-7 in year t. As an example, the value of 54% in 1996 is the mortality experienced by the 1991-89 year-classes from ages 4-6 in 1995 to ages 5-7 in 1996. The line is a 3 -year moving average. Data points less than -0.2 , which occurred only before 1990, are not shown. Note that the high level of variability, especially prior to the stock collapse, is a reflection of the high among-year variability in the surveys. The most extreme instance was the anomalously high index value in 1986, which resulted in the appearance of production of fish (negative mortality) from 1985 to 1986 (not illustrated) and the appearance of very high mortality from 1986 to 1987.

Mean Squared Residual

Figure 37a. Central inshore SPA. Mean squared residual for each index-age.

Figure 37b. Central inshore SPA. ADAPT residuals: observed and predicted survey indices.

Figure 37c. Central inshore SPA. ADAPT residuals: annual residuals for each index, with symbol=age.

Figure 38. Central inshore SPA. Estimated population abundance (ages 2+; thousands).

Figure 39. Central inshore SPA. Estimated recruitment (age 3; thousands).

Figure 40. Central inshore SPA. Estimated fishing mortality (average ages 5-10+).

Figure 41. Central inshore SPA. Estimated exploitable (4+) biomass and spawner stock biomass (SSB) (tons).

Figure 42a. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming low recruitment levels in the projection period.

Figure 42b. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming medium recruitment levels in the projection period.

Figure 42c. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming high recruitment levels in the projection period.

Appendix 1. Objectives for the 2006 regional assessment of 2J3KL cod

The assessment of 2 J 3 KL cod is a result of a request for science advice from the Fisheries and Aquaculture Management (FAM) Branch, Newfoundland and Labrador Region. The objectives were as follows:

- Assess the current status of offshore populations, inshore populations and the stock as a whole. In particular, assess current spawning biomass, total (age 3+) biomass, exploitation rate, natural mortality and biological characteristics (including age composition, size at age, age at maturity, and distribution). Describe these variables in relation to historic observations.
- Highlight major sources of uncertainty in the assessment, and where appropriate, consider alternative analytical formulations of the assessment.
- To the extent possible with available information, provide information on the strengths of year-classes expected to enter the exploitable populations in the next 1-3 years.
- Assess the implications of inshore fishery removals varying from zero to $2,500 \mathrm{t}$ annually in 2006 and the medium term. Implications are to be assessed with respect to growth of inshore populations, growth of offshore populations, and recovery of the stock as a whole.
- Assess the implications of conducting an inshore fishery on a bay-by-bay basis.
- Assess the effect of the Hawke Channel closed area (cod box).

Appendix 2. Management regulations during 1996-2002

Table 1 summarizes management regulations in place during the five years of the inshore index/commercial fishery (1998-2002).
Table 2 provides details regarding opening and closing dates for individual geographic areas of the inshore during the 2002 fishery.
Table 3 summarizes management regulations for the recreational/food fishery in 1996-2002.

Appendix 2. Table 1. Management regulations for the inshore index/commercial fishery in Div. 2J3KL in 1998-2002 (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

Management	1998	1999	2000	2001	2002
 Fishing Regime	$\begin{array}{ll} \hline \text { TAC }=4,000 \mathrm{t} \\ - & \text { Inshore }=3,000 \mathrm{t} \\ & (\mathrm{IQ=2,700lbs)} \\ - & \text { Offshore }=350 \mathrm{t} \\ - & \text { By-catch }=275 \mathrm{t} \\ - & \text { Sentinel }=375 \mathrm{t} \end{array}$	$\begin{array}{ll} \hline \text { TAC }=9,000 \mathrm{t} \\ - & \text { Inshore = 8,600t } \\ & \text { (IQ = 9,000Ibs) } \\ - & \text { By-catch = 100t } \\ - & \text { Sentinel = 300t } \end{array}$	$\begin{array}{ll} \hline \text { TAC }=7,000 \mathrm{t} \\ - & \text { Inshore = 6,600t } \\ - & (I Q=8,400 \mathrm{lbs}) \\ - & \text { By-catch }=100 \mathrm{t} \\ - & \text { Sentinel }=300 \mathrm{t} \end{array}$	$\begin{array}{ll} \hline \text { TAC }=5,600 \mathrm{t} \\ - & \text { Inshore }=5,200 \mathrm{t} \\ - & (\mathrm{IQ}=8,400 \mathrm{lbs}) \\ - & \text { By-catch }=100 \mathrm{t} \\ - & \text { Sentinel }=300 \mathrm{t} \end{array}$	Same
Fishing Restrictions	- Core fishers only to participate. - Fishers limited to the Lobster Fishing Area of their homeport (some exceptions for fishers near boundaries). - Fishing restricted to less than 12 miles from land.	- Fishers limited to NAFO Division of their homeport. - Smith Sound and 5 mile buffer zone limited to residents.	- Fishers with access to Northern shrimp out of the fishery. - Efforts to limit concentration of effort around Cape Bonavista (3L split N/S).	Same	Same
Fishing Gear	Gillnets - Min $51 / 2$ inch mesh - 5 nets @ 50 fathoms - Gear tagging Longlines - \#11 circle hook or 16J - 1,000 hooks	Gillnets - Mesh size $5 ½-61 ⁄ 2$ inch - 5 nets @ 50 fathoms Handlines - \#11 circle hook - Max 3 per line Longlines - \#11 circle hook - 2,000 hooks Gear tending requirements.	Gillnets - 6 nets permitted	Gillnets not permitted after September 30.	Same
By-Catch	- All cod charged against IQ. - When IQ taken, all groundfish fisheries closed to fisher.	Same	Same	Same	Same

cont'd.

Appendix 2. Table 1 (cont'd)

Management	1998	1999	2000	2001	2002
Small Fish Protocol	- $\quad \operatorname{Min} 45 \mathrm{~cm}$ - Closures when small fish $>15 \%$ of catch (min 7 days). Test fisheries prior to re-opening.	- Min 43cm	Same	Same	Same
Monitoring	- 100% DMP - Hail in for $>35 \mathrm{ft}$ vessels - Observer coverage	- 10\% Observer coverage targeted.	Same	Same	Some ports 100\% monitored, some random.
Seasons	Sept. 24 - Oct. 16	$\begin{aligned} & \text { July } 8 \text { - July } 31 \\ & \text { Sept. } 6 \text { - Nov. } 13 \end{aligned}$	$\begin{aligned} & \text { June } 26 \text { - July } 29 \\ & \text { Sept. } 11 \text { - Nov. } 31 \end{aligned}$	July 9 - Nov. 30	Varied by area (Appendix 1 Table 2)
Data Collection	- Mandatory logbooks - Dockside sampling	Same	Same	Same	Same
Administrative Sanctions	Overruns of IQ to be deducted from following year IQ.	Same	Same	Withdrawn due to legal challenge	

Appendix 2. Table 2. Index fishery in 2J3KL in 2002. Dates of openings, by area. (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

AREA		SEASON DATES
2J		July 30 - October 13, 2002
3K(a)	Cape Bauld to Harbour Deep Head	July 30 - October 13, 2002
3K(b)	Harbour Deep to Cape John	September 3 - November 10, 2002
	Cape John to Little Bay Head	August 19 - October 26, 2002
	Little Bay Head to North Head	September 16 - November 24, 2002
	North Head to Cape Freels	July 30 - October 13, 2002 (Swan of Exploits - Farmers Head)
3L	Bonavista Bay	July 30 - September 03, 2002 October 14 - November 17, 2002
	Trinity Bay	July 30 - September 1, 2002 October 2 - November 5, 2002
	Conception Bay	July 30 - September 1, 2002 September 16 - October 19, 2002
	Southern Shore	July 30 - October 13, 2002
	Petty Harbour (Defined Handline Area)	July 30 - October 13, 2002
	St. Mary's Bay	July 30 - August 13, 2002. September 9 - November 2, 2002

Appendix 2. Table 3. Management regulations for the recreational/food fishery in Div. 2J3KL in 1996-2002 (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

Management	1996-98	1999	2000	2001	2002
Seasons	$\begin{aligned} & 1996 \text { - two weekends } \\ & 1997 \text { - no fishery } \\ & 1998 \text { - one weekend } \end{aligned}$	$\begin{aligned} & \text { July } 30 \text { - August } 1 \\ & \text { August } 28 \text { - August } 30 \end{aligned}$	August 25-27 September 2-4 September 23-24 (added due to poor weather)	July 18 - September 19 (Introduction of Marine Recreational Groundfish Licence Pilot Program)	August 1 - September 22 (Continuation of Marine Recreational Groundfish Licence Pilot Program)
Fishing Gear	Permitted: Hook and Line Rod and reel (baited hooks and artificial lures) Casting and trolling Not Permitted: Jiggers and jigging	Same	Same	Same	Same
Discarding	Not permitted for any species except Atlantic Halibut which must be released	Same	Same	Same	Same
Processing	Filleting not permitted.	Same	Same	Same	Same
Fishing Restrictions				Closure of Smith Sound and 5 mile buffer zone to non-residents	Closure of Smith Sound and 5 mile buffer zone to non-residents
Catch Limits	- 10 groundfish per day per individual - 50 groundfish per trip per boat - More than one trip per day is permitted	Same	Same	30 tags per licence holder	- 15 cod per licence holder in 2J3KL and 4RS3Pn - 30 cod per licence holder in 3Ps - Bag limit of 10 fish per person per day
Data Collection		Same	Same	Same Telephone survey	Same

Appendix 3. Conservation harvesting plan for winter (blackback) founder in 2005.

CONSERVATION HARVESTING PLAN
 WINTER (BLACKBACK) FLOUNDER
 VESSELS LESS THAN 65 FEET
 FIXED GEAR

NAFO Div. 3KL
This Conservation Harvesting Plan (CHP) applies to all vessels less than 65 feet in length, regardless of homeport, fishing Groundfish in NAFO Div. 3KL.

This CHP applies to 3KL Winter Flounder (Blackback) for the management period April1, 2005 to March 31, 2006

A) FISHING GEAR

1. When fishing any species of Groundfish, you are required to report any lost gillnets to the nearest DFO office within 72 hours, if the loss is noticed before the closure of a fishing area. If the fishing area is already closed, the loss must be reported within 24 hours.
2. You cannot fish with nor have onboard your vessel a Groundfish gillnet unless a tag, issued under the authority of the Minister to you for the current year, is securely attached to the head-rope of the net in a manner for which the tag was designed.
3. The gillnet tag must be affixed to the head rope of each gillnet within 1.85 meters (6 feet) from the side rope on the end of the net where the float or buoy identifies the Vessel Registration number.
4. Gillnets cannot exceed 50 fathoms in length.
5. A maximum of 15 nets may be used with a minimum mesh size is $51 / 2$ inches and maximum mesh size is $8 \frac{1}{2}$ inches.

B) FISHING RESTRICTIONS

Fishing is permitted only in water depths less than 15 fathoms

C) MONITORING

1. All vessels are subject to 100% Dockside Monitoring.
2. Industry-funded at-sea observer coverage is required. The targeted level of coverage will be 5\% of the fleet sector quota.

D) INCIDENTAL CATCH

For the purposes of this CHP, the following definitions apply:
"Directed species" means the permitted species, or combination of species, retained on board and taken by the fisher at time, in an area or by a means that is authorized in Species Specific Licence conditions.

Incidental catch" means the catch retained on board of any species other than a directed species as defined above.

Unless otherwise stated, incidental catch restrictions are always expressed as daily limits (00:01 hours to 24:00 hours local time) and are always calculated using round weights.

Unless otherwise stated, incidental catch restrictions expressed as a percentage are always calculated as a percentage of the round weight of the directed species retained onboard.

When directing for Winter (blackback) flounder in NAFO Div. 3KL, the following incidental catch provisions apply:

1. Incidental catch of cod may not exceed 20% or 300 pounds per day whichever is greater.
2. The incidental catch of Redfish, American Plaice and Yellowtail Flounder may not exceed 5%.

The maximum amount of cod that can be caught incidentally by individual fishers while directing for winter (blackback) flounder is 2000 pounds (round weight). Once a fisher has caught this amount, the fisher must cease all fishing for groundfish.

Where there are widespread incidental catch problems, an entire area will be closed to the fleet sector.

E) DISCARDING

1. All Atlantic Halibut less than 81 cm and northern and spotted wolfish must be released to the place from which it was taken and, when alive, in a manner that causes the least harm.
2. Dogfish and Lumpfish may be returned to the water immediately, dead or alive.
3. Live Winter Flounder less than 25 cm and American Plaice less than 20 cm in length may be returned to the water immediately.

F) OTHER

Other conservation measures may be identified and implemented during the year as required.

G) VALIDITY PERIOD

August 4, 2005 to August 26, 2005.

Appendix 4. Studies on predator-prey interactions involving cod in the Labrador-Newfoundland ecosystem.

The following text provides an introduction to the literature on predator-prey interactions involving northern (2 J 3 KL) cod. It was written by G.R. Lilly as a contribution to a book chapter on the role of Atlantic cod in North Atlantic ecosystems, but the book remains unpublished several years after the text was written.

Introduction

The "northern" cod stock off southern Labrador and eastern Newfoundland crashed during the late 1980s and early 1990s and has languished since the mid-1990s at a very low level (Lilly et al. 2003). The cod collapse was the most prominent in a series of profound changes within the Newfoundland-Labrador ecosystem. Among these were severe declines in most other demersal fish, including species that were not targeted by commercial fishing (Atkinson 1994; Gomes et al. 1995); a surge in snow crab and especially northern shrimp (Lilly et al. 2000); an increase in the abundance of harp seals from fewer than 2 million individuals in the early 1970s to more than 5 million in the late 1990s (Healey and Stenson 2000); and numerous changes in the biology of capelin, the dominant forage fish in the area (Carscadden et al. 2001). It has been asserted that the collapses of cod (Hutchings and Myers 1994; Myers et al. 1996) and other demersal fish (Haedrich and Fischer 1996) were due entirely to fishing, but there is also recognition that the cooler water temperatures of the last three decades of the $20^{\text {th }}$ century, and especially of the early 1990s, may have contributed substantially to the various changes observed in cod (Parsons and Lear 2001; Drinkwater 2002) and other components of the ecosystem (Narayanan et al. 1995; Colbourne and Anderson 2003). It has been difficult to isolate and quantify the relative impacts of fishing, climate variability and species interactions.

Prey of cod (especially capelin)

The upper trophic levels of this Arcto-boreal ecosystem were historically dominated by three species (capelin, cod and harp seals) that were linked trophically (Lilly 1987; Hammill and Stenson 2000) and exploited commercially (Templeman 1966). The importance of capelin to cod was always evident from the vast shoals of cod that migrated into the traditional inshore fishing grounds in pursuit of capelin that had approached the coast to spawn (Akenhead et al. 1982). Diet studies supported the role of capelin as a major prey, but also revealed a wide variety of additional prey that changed gradually as cod grew and also differed spatially, seasonally and annually (Lilly 1987, 1991). The major prey for small cod are crustaceans, notably hyperiid amphipods in the north and euphausiids on Grand Bank. For medium-size cod (say 30-70 cm) the major prey are schooling planktivorous fish, the most important of which is capelin, but Arctic (polar) cod are eaten in the north, herring are consumed in inshore waters, and sand lance are important on Grand Bank. Larger cod tend to feed on medium-sized fish and crabs, especially toad crabs and small snow crabs. Some species, such as northern shrimp, may be of moderate importance over large areas and throughout the year, whereas others, such as bank clam, may be important in only limited areas. Some species, such as the short-finned squid, a summer/autumn migrant from the south, may be important only in certain years.

As in the Barents Sea and Icelandic waters, capelin seems to be very important to cod. A compilation of diet data for a study of biomass flows (Bundy et al. 2000) concluded that capelin comprised about 60% of the diet of large ($>35 \mathrm{~cm}$) cod on an annual basis during the period 1985-87. The importance of capelin was further emphasized by the observation that over a series of years the quantity of capelin in the stomachs of cod caught during the autumn off eastern Newfoundland increased with the abundance of capelin as estimated by independent methods, and that during years of low capelin abundance the cod were not able to compensate fully by feeding more intensively on other prey (Lilly 1991).

Early management concerns focused on questions such as whether exploitation of capelin would result in a reduction in the growth rate of cod or a decline in the proportion of the cod migrating inshore where they would be accessible to the traditional inshore fishery. The approach was not to construct exploratory, heuristic models but rather to conduct empirical analyses to reveal stationary relationships that could then
be built into predictive models (Shelton 1992). Despite the expectation that linkages among species would be strong in a system with few abundant members, it proved difficult to find evidence of such links. Only weak evidence could be found of a positive relationship between capelin biomass and success of the inshore cod fishery (Akenhead et al. 1982; Lear et al. 1986). Similarly, neither Akenhead et al. (1982) nor Millar et al. (1990) found a significant relationship between cod growth and capelin biomass. It was felt by several authors (Akenhead et al. 1982; Shelton et al. 1991) that measurement error may be high, given the complexities and limitations of quantifying fish abundances and vital rates, and that the potential for Type II error was high. Krohn et al. (1997) did find, however, that with the inclusion of data from the early 1990s, capelin biomass explained some of the variability in cod growth and condition.

The role of capelin in the collapse of cod during the early 1990s remains unclear. Estimates of capelin biomass from offshore hydroacoustic surveys declined dramatically from 1991 onward, and the capelin changed their autumn distribution toward the southeast (Carscadden and Nakashima 1997). It has been suggested that these changes, together with changes in the timing of capelin migrations, made the capelin less accessible to cod, thereby contributing to low condition and possibly an increase in mortality of the cod (Atkinson and Bennett 1994; Lilly 2001). However, it may be noted that most of the cod remaining during the latter stages of the collapse seemed to have undiminished access to capelin, at least in the offshore during the autumn (Lilly 1994; Taggart et al. 1994; O'Driscoll et al. 2000). It has also been suggested that the change in capelin distribution was part of the reason for a postulated change in cod distribution, and that the change in distribution of the cod resulted in their being more accessible to trawlers (Rose et al. 2000, but see Hutchings 1996). The extent to which the low water temperatures and extensive ice cover of the early 1990s contributed to changes in distribution of both cod and capelin, and to the accessibility of capelin to cod, remains unclear, in part because of the paucity of information during seasons other than autumn.

The role of capelin in the non-recovery of cod is also controversial. Rose and O'Driscoll (2002) concluded from studies of cod condition and feeding in specific areas and seasons that cod was not faring well in certain areas, and that this was due to low availability of capelin. In contrast, the routine monitoring of cod during autumn research surveys in the offshore and the observations of fish harvesters in the inshore have not identified any problems with cod growth or condition (Lilly et al. 2003). Whatever the circumstances of recent years, there remains concern that the current level of capelin biomass may be insufficient to support a recovery of the cod, especially in the offshore and to the north (DFO 2003).

Predators on cod (especially harp seals)

The predators of cod tend to change as the cod grow (Lilly 1987; Pálsson 1994; Bundy et al. 2000). Very small cod are eaten by squid, various demersal fish (such as sculpins) and some seabirds. Larger juveniles have many predators: demersal fish, most notably larger conspecifics and Greenland halibut; harp seals and hooded seals; certain toothed whales, such as harbour porpoise and pilot whales; and probably minke whales. Large cod seem to have few natural predators, but seals can prey upon them by belly-feeding, a mode of predation whereby the seal takes a bite from the cod's abdomen, consuming the liver and some of the other abdominal organs, but generally leaving the rest of the carcass and the head (Lilly et al. 1999).

The predator that has attracted most attention is the harp seal (Bundy et al. 2000; Hammill and Stenson 2000). There was speculation that seals contributed to the collapse of the cod stock (Atkinson and Bennett 1994), but it is generally thought that their contribution was small. However, the total mortality of cod in the offshore has remained very high since the moratorium on directed fishing in 1992, and analyses of tagging data have revealed that adult cod in the inshore experienced high mortality in addition to that caused by the reopened fishery in 1998-2002 (Lilly et al. 2003). It is possible that the seals could be maintaining cod in a "predator pit" (Shelton and Healey 1999). It has been concluded by some (DFO 2003; Rice et al. 2003), based on the large size of the harp seal population, the known predation by harp seals on cod, and the paucity of information pointing to other factors, that predation by harp seals is a contributing factor to the high mortality of cod. It must be emphasized, however, that there is very little information on harp seal diet in the offshore, where most of the seal foraging is thought to
occur. The little information available for hooded seals indicates that they too could be important predators on cod (McLaren et al. 2001).

The impact of cod on their prey

The role of cod within an ecosystem may become more apparent when cod biomass declines, as happened off Labrador and eastern Newfoundland. The surge in snow crab and particularly northern shrimp is consistent with a release from predation pressure from cod (Lilly et al. 2000; Bundy 2001; Worm and Myers 2003) and other demersal fish, but it is difficult to separate the influence of predator release from the effects of environmental change. It has been postulated that the increase in both snow crab and northern shrimp was related to improved recruitment associated with the cold water during the 1980s and 1990s (e.g. Parsons and Colbourne 2000). It may also be noted that there is no evidence that capelin or any other finfish increased following the cod collapse.

Competition

The degree to which competition with other species has influenced the dynamics of cod is difficult to determine. It has been suggested (Anderson and Rose 2001) that Arctic cod might be a competitor of pelagic juvenile cod, and may have had a larger impact during the cold years of the early 1990s when Arctic cod expanded its distribution southward (Lilly et al. 1994). Greenland cod (Gadus ogac) has become more abundant in shallow coastal waters of eastern Newfoundland in recent years, and could be competing with demersal juvenile cod for space and food. Most concerns regarding competition are focused on the harp seal, which is estimated to have consumed about 3 million tons of food per year in the northern cod stock area during the late 1990s (Hammill and Stenson 2000; Stenson and Perry 2001). Most of this food was pelagic planktivores, notably capelin, so the potential for competition with cod exists. However, cod and seals share capelin and other planktivores (Arctic cod, sand lance, herring) with numerous additional predators, including other demersal fish, several species of baleen whales, and birds (Bundy et al. 2000; Carscadden et al. 2001). The complexity of the food web, and our rudimentary understanding of its dynamics, makes it very difficult to assess the effect on cod resulting from specific changes in the abundance of seals.

References

Akenhead, S.A., Carscadden, J., Lear, H., Lilly, G.R., and Wells, R. 1982. Cod-capelin interactions off northeast Newfoundland and Labrador. In: Mercer, M.C. (ed) Multispecies approaches to fisheries management advice. Can. Spec. Publ. Fish. Aquat. Sci. 59, pp 141-148.

Anderson, J.T., and Rose, G.A. 2001. Offshore spawning and year-class strength of northern cod (2J3KL) during the fishing moratorium, 1994-1996. Can. J. Fish. Aquat. Sci. 58: 1386-1394.

Atkinson, D.B. 1994. Some observations on the biomass and abundance of fish captured during stratified-random bottom trawl surveys in NAFO Div. 2J and 3KL, autumn 1981-1991. NAFO Sci. Coun. Studies 21: 43-66.

Atkinson, D.B., and Bennett, B. 1994. Proceedings of a northern cod workshop held in St. John's, Newfoundland, Canada, January 27-29, 1993. Can. Tech. Rep. Fish. Aquat. Sci. 1999: 64 pp.

Bundy, A. 2001. Fishing on ecosystems: the interplay of fishing and predation in Newfoundland-Labrador. Can. J. Fish. Aquat. Sci. 58: 1153-1167.

Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the Newfoundland-Labrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310: xiv + 157 pp.

Carscadden, J., and Nakashima, B.S. 1997. Abundance and changes in distribution, biology, and behavior of capelin in response to cooler waters of the 1990s. In Forage fishes in marine ecosystems.

Proceedings of the international symposium on the role of forage fishes in marine ecosystems. University of Alaska Sea Grant College Program. Report No 97-01.

Carscadden, J.E., Frank, K.T., and Leggett, W.C. 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Can. J. Fish. Aquat. Sci. 58: 73-85.

Colbourne, E.B., and Anderson, J.T. 2003. Biological response in a changing ocean environment in Newfoundland waters during the latter decades of the 1900s. ICES Mar. Sci. Symp. 219: 169-181.

DFO. 2003. Northern (2J+3KL) cod. DFO Can. Sci. Advis. Sec. Status Report 2003/018.
Drinkwater, K.F. 2002. A review of the role of climate variability in the decline of northern cod. Amer. Fish. Soc. Symp. 32: 113-130.

Gomes, M.C., Haedrich, R.L., and Villagarcia, M.G. 1995. Spatial and temporal changes in the groundfish assemblages on the north-east Newfoundland/Labrador Shelf, north-west Atlantic, 1978-1991. Fish. Oceanogr. 4: 85-101.

Haedrich, R.L., and Fischer, J. 1996. Stability and change of exploited fish communities in a cold ocean continental shelf ecosystem. Senckenbergiana maritima 27: 237-243.

Hammill, M.O., and Stenson, G.B. 2000. Estimated prey consumption by harp seals (Phoca groenlandica), hooded seals (Cystophora cristata), grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina) in Atlantic Canada. J. Northw. Atl. Fish. Sci. 26: 1-23.

Healey, B.P., and Stenson, G.B. 2000. Estimating pup production and population size of the northwest Atlantic harp seal (Phoca groenlandica). DFO Can. Stock Ass. Sec. Res. Doc. 2000/081.

Hutchings, J.A. 1996.Spatial and temporal variation in the density of northern cod and a review of hypotheses for the stock's collapse. Can. J. Fish. Aquat. Sci. 53: 943-962.

Hutchings, J.A., and Myers, R.A. 1994. What can be learned from the collapse of a renewable resource? Atlantic cod, Gadus morhua, of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci. 51: 2126-2146.

Krohn, M., Reidy, S., and Kerr, S. 1997. Bioenergetic analysis of the effects of temperature and prey availability on growth and condition of northern cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 54 (Suppl. 1):113-121.

Lear, W.H., Baird, J.W., Rice, J.C., Carscadden, J.E., Lilly, G.R., Akenhead, S.A. 1986. An examination of factors affecting catch in the inshore cod fishery of Labrador and eastern Newfoundland. Can. Tech. Rep. Fish. Aquat. Sci. 1469: iv +71 pp.

Lilly, G.R. 1987. Interactions between Atlantic cod (Gadus morhua) and capelin (Mallotus villosus) off Labrador and eastern Newfoundland: a review. Can. Tech. Rep. Fish. Aquat. Sci. 1567: vii +37 pp.

Lilly, G.R. 1991. Interannual variability in predation by cod (Gadus morhua) on capelin (Mallotus villosus) and other prey off southern Labrador and northeastern Newfoundland. ICES Mar. Sci. Symp. 193:133-146.

Lilly, G.R. 1994. Predation by Atlantic cod on capelin on the southern Labrador and northeast Newfoundland shelves during a period of changing spatial distributions. ICES Mar. Sci. Symp. 198:600-611.

Lilly, G.R. 2001. Changes in size at age and condition of cod (Gadus morhua) off Labrador and eastern Newfoundland during 1978-2000. ICES CM 2001/V:15. 34 pp.

Lilly, G.R., Hop, H., Stansbury, D.E., and Bishop, C.A. 1994. Distribution and abundance of polar cod (Boreogadus saida) off southern Labrador and eastern Newfoundland. ICES CM1994/O:6. 21 pp.

Lilly, G.R., Parsons, D.G., and Kulka, D.W. 2000. Was the increase in shrimp biomass on the Northeast Newfoundland Shelf a consequence of a release in predation pressure from cod? J. Northw. Atl. Fish. Sci. 27: 45-61.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., Stansbury, D.E., and Chen, N. 2003. An assessment of the cod stock in NAFO Divisions 2J+3KL in February 2003. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/023.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Murphy, E.F., and Stansbury, D.E. 1999. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Ass. Sec. Res. Doc. 99/42. 165 pp.

McLaren, I., Brault, S., Harwood, J., and Vardy, D. 2001. Report of the eminent panel on seal management. Department of Fisheries and Oceans. Ottawa, Canada.

Millar, R.B., Fahrig, L., and Shelton, P.A. 1990. Effect of capelin biomass on cod growth. ICES CM 1990/G:25. 10 pp.

Myers, R.A., Hutchings, J.A., and Barrowman, N.J. 1996. Hypotheses for the decline of cod in the North Atlantic. Mar. Ecol. Prog. Ser. 138: 293-308.

Narayanan, S., Carscadden, J., Dempson, J.B., O'Connell, M.F., Prinsenberg, S., Reddin, D.G., and Shackell, N. 1995. Marine climate off Newfoundland and its influence on Atlantic salmon (Salmo salar) and capelin (Mallotus villosus). In: Beamish R.J. (ed) Climate change and northern fish populations. Can. Spec. Publ. Fish. Aquat. Sci. 121, pp 461-474.

O'Driscoll, R.L., Schneider, D.C., Rose, G.A., and Lilly, G.R. 2000. Potential contact statistics for measuring scale-dependent spatial pattern and association: an example of northern cod (Gadus morhua) and capelin (Mallotus villosus). Can. J. Fish. Aquat. Sci. 57: 1355-1368.

Pálsson, Ó.K. 1994. A review of the trophic interactions of cod stocks in the North Atlantic. ICES Mar. Sci. Symp. 198:553-575.

Parsons, D.G., and Colbourne, E.B. 2000. Forecasting fishery performance for northern shrimp (Pandalus borealis) on the Labrador Shelf (NAFO Divisions 2HJ). J. Northw. Atl. Fish. Sci. 27: 11-20.

Parsons, L.S., and Lear, W.H. 2001. Climate variability and marine ecosystem impacts: a North Atlantic perspective. Progress in Oceanography 49: 167-188.

Rice, J.C., Shelton, P.A., Rivard, D., Chouinard, G.A., and Fréchet, A. 2003. Recovering Canadian Atlantic cod stocks: the shape of things to come? ICES CM 2003/U:06.

Rose, G.A., deYoung, B., Kulka, D.W., Goddard, S.V., and Fletcher, G.L. 2000. Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean. Can. J. Fish. Aquat. Sci. 57: 644-663.

Rose, G.A., and O'Driscoll, R.L. 2002. Capelin are good for cod: can the northern stock rebuild without them? ICES J. Mar. Sci. 59: 1018-1026.

Shelton, P.A. 1992. Detecting and incorporating multispecies effects into fisheries management in the north-west and south-east Atlantic. S. Afr. J. Mar. Sci. 12: 723-737.

Shelton, P.A., and Healey, B.P. 1999. Should depensation be dismissed as a possible explanation for the lack of recovery of the northern cod (Gadus morhua) stock? Can. J. Fish. Aquat. Sci. 56: 1521-1524.

Shelton, P.A., Fahrig, L., and Millar, R.B. 1991. Uncertainty associated with cod-capelin interactions: how much is too much? NAFO Sci. Coun. Studies 16: 13-19.

Stenson, G.B., and Perry, E.A. 2001. Incorporating uncertainty into estimates of Atlantic cod (Gadus morhua), capelin (Mallotus Villosus) and Arctic cod (Boreogadus saida) consumption by harp seals (Pagophilus groenlandicus) in NAFO Divisions 2J3KL. DFO Can. Sci. Adv. Sec. Res. Doc. 2001/074.

Taggart, C.T., Anderson, J., Bishop, C., Colbourne, E., Hutchings, J., Lilly, G., Morgan, J., Murphy, E., Myers, R., Rose, G., and Shelton, P. 1994. Overview of cod stocks, biology, and environment in the Northwest Atlantic region of Newfoundland, with emphasis on northern cod. ICES Mar. Sci. Symp. 198: 140-157.

Templeman, W. 1966. Marine resources of Newfoundland. Fisheries Research Board of Canada, Bull 154.

Worm, B., and Myers, R.A. 2003. Meta-analysis of cod-shrimp interactions reveals top-down control in oceanic food webs. Ecology 84: 162-173.

[^0]: * This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations
 * La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours

 Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

 Ce document est disponible sur l'Internet à:
 http://www.dfo-mpo.gc.ca/csas/

[^1]: ${ }^{1}$ Provisional catches.
 ${ }^{2}$ Includes French catch and other foreign catch as estimated by Canadian surveillance.
 ${ }^{3}$ Figure is 4000 t less than Canadian statistics (this quantity is considered 3 NO catch misreported as $3 \mathrm{~L}^{8}$
 ${ }^{4}$ Derived from reported catch and Canadian surveillance estimate of foreign catch.
 ${ }^{5}$ Includes 5000 t catch from the recreational fishery after the moritorium was declared
 ${ }^{6}$ Canadian surveillance estimate of foreign catch .

[^2]: ${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch

[^3]: changes below were made before 1997 fall survey
 ${ }^{1}$ Area of stratum 788 was increased by 9 sq. n. mi and the area of stratum 789 was decreased by 9 sq.n. mi.
 ${ }^{2}$ Stratum 791 in the 100-200 depth range was divided into two separate strata; 791 101-150
 with area $=227$ sq. n. mi. and stratum 800 151-200 area $=81$ sq. n.mi.
 ${ }^{3}$ Stratum 611 area was decreased by 27 sq. n. mi.

