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ABSTRACT 

The herring stock assessment catch-age model (EASM) was designed for Pacific herring and 
includes assumptions unique to those stocks.  A new catch-age model (NASM) was recently 
developed for a B.C. herring objective based fisheries management evaluation.  The two models 
differ in some of their assumptions about the fisheries and population dynamics, and it is not 
clear which should be used in the annual stock assessment process. 
 
We present another catch-age model, HCAM, which incorporates the structure and assumptions 
of both the EASM and the NASM, with the purpose of determining which assumptions of the 
EASM and NASM models result in better performance. To the extent possible, objective criteria 
are used to assess model performance.  
 
Both the EASM and NASM models over-weight the data (that is, residuals tended to be over-
dispersed relative to the error assumed for individual data components) and both models have 
strong age-related patterns in the residuals from fitting the age composition data.  The EASM 
analyses have strong retrospective bias in abundance estimates; for the NASM-like analyses the 
retrospective patterns are not as large and relatively unbiased.  
 
We evaluated numerous implementations of the HCAM, attempting to minimize the areas of 
concern with the EASM and the NASM implementations.  An implementation of this model was 
developed that we believe has better performance than either the EASM or the NASM, although 
it incorporates aspects of both those models.  Diagnostics from the HCAM implementation that 
we believe indicate better performance are; a reduction in the magnitude of the retrospective 
pattern; a reduction in the magnitude of the age-related pattern in age-composition residuals, and 
better coherence between the assumed and empirical estimates of the lack of model fit to the data. 
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RÉSUMÉ 

 
Le modèle existant de la structure d’âge (MSAE) utilisé pour l’évaluation des stocks de hareng a 
été conçu précisément pour le hareng du Pacifique et comporte des hypothèses qui sont propres à 
ces stocks. Un nouveau modèle de la structure d’âge (NMSA) a récemment été bâti en vue de 
réaliser une évaluation de la gestion par objectif de la pêche du hareng de la C.-B. Les deux 
modèles diffèrent quant aux hypothèses posées à propos de la pêche et de la dynamique des 
populations et l’on ne sait pas encore lequel devrait être utilisé pour le processus annuel 
d’évaluation des stocks. 
 
Nous présentons un autre modèle des prises selon l’âge (MPAH) auquel ont été intégrées la 
structure et les hypothèses des précédents, soit le MSAE et le NMSA, en vue de déterminer 
quelles hypothèses du MSAE et du NMSA donnent la meilleure performance. Dans la mesure du 
possible, des critères objectifs sont utilisés pour évaluer la performance du modèle.  
 
Les deux modèles, le MSAE et le NMSA, entraînent une surpondération des données (c.-à-d. que 
les valeurs résiduelles tendent à être trop dispersées par rapport à l’erreur hypothétique des 
différents éléments de données) et ils affichent de fortes tendances selon l’âge dans les données 
résiduelles découlant de l’application des données de la composition par âge. Les analyses selon 
le MSAE montrent un fort biais rétrospectif dans l’estimation de l’abondance. Dans les analyses 
selon le NMSA, les tendances rétrospectives ne sont pas aussi fortes et sont relativement non 
biaisées.  
 
Nous avons évalué de nombreuses applications du MPAH, en essayant de minimiser les points de 
préoccupation du MSAE et du NMSA. Nous avons développé une application de ce modèle qui, 
à notre avis, donne une meilleure performance que le MSAE ou le NMSA, bien qu’elle comporte 
des aspects de ces deux modèles. Les résultats de l’application du MPAH qui nous permettent de 
dire qu’il a une meilleure performance sont les suivants : une réduction de l’ampleur de la 
tendance rétrospective, une diminution de l’ordre de grandeur de la tendance liée à l’âge dans les 
valeurs résiduelles de la composition selon l’âge et une meilleure cohérence entre les estimations 
hypothétiques et empiriques du manque d’ajustement du modèle aux données.  
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INTRODUCTION 
 
B.C. herring stock assessments have been based on statistical catch-age model analyses since the 
early 1980’s (Haist and Stocker 1984).  The catch-age model used in the assessments was 
specifically designed for the Pacific herring stocks and thus has assumptions and resulting 
parameterizations that are unique to those stocks.  The model has been revised over the years, but 
the basic structure and assumptions remain the same (eg. Schweigert 2005a, Schweigert 2005b).  
This model, which recently was given the name EASM (existing age-structured model), uses 
maximum likelihood estimation.  
 
Recently, an alternative age-structured model was developed and used to reconstruct the B.C. 
herring stocks.  The purpose of the new models was to function as an operating model for an 
objective-based fishing management evaluation of B.C. herring stocks (Fu et al. 2004).  This new 
model, called NASM (new age-structured model), adopts some structural assumptions that differ 
from the EASM and the model allows investigation of alternative assumptions about herring 
dynamics. A major difference between the EASM and the NASM is the estimation of annual 
natural mortality rates. Additionally, NASM incorporates stock-recruitment functions and 
estimates deviations from average selectivity functions.  The NASM is based on Bayesian 
estimation, which allows a consistent method to estimate uncertainty of both the estimated and 
derived parameters (Punt and Hilborn 1997).  Simulation-estimation experiments suggest that in 
certain circumstances NASM provides more consistent parameter estimates (Fu et al. 2004). 
 
Catch-age analyses provide the basis for setting annual herring TACs, so it is imperative that the 
best possible analytical methods be used. It is likely that there are aspects of both the EASM and 
the NASM that will result in superior model performance.  To the extent possible, comparison of 
model performance should be based on objective criteria. 
 
The purpose of the work presented in this paper is to develop a generic model (ie. the computer 
code) for analyses of the herring fisheries data, and to determine which assumptions of the 
EASM and NASM models result in better performance.  Objective criteria are used to assess 
improvements in performance. The new model, HCAM for herring catch-age model, can 
replicate the dynamics modelled by EASM and NASM, and allows for some additional 
assumptions to be investigated.   
 
The first part of this paper provides a general description of the HCAM model.  Then results from 
an EASM-like and a NASM-like implementation of the model are presented.  Finally, alternative 
model assumptions are evaluated to find those that result in consistent analyses of the B.C. 
herring fisheries data.  Some additional structural options in the HCAM model (eg multi-region 
and two sex analyses) are not investigated here. 

DESCRIPTION OF THE GENERALIZED HERRING CATCH-AGE MODEL  

In this section we provide an overview of the generalized herring catch-age model (HCAM), 
including descriptions of the options for population and fishery dynamics and the likelihoods 
used in fitting to observations.  A detailed model description is provided in Appendix A.  
Differences between the EASM and the NASM implementations are also described here.   
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MODEL DYNAMICS 

The state, or current status of the populations, partitions the fish by characters that define their 
distinct status.  The possible characters include: age class, sex, maturity (called availability to 
reflect their being available to fisheries), and stock.  Changes in state, or transition processes 
include: recruitment, natural mortality, fishing mortality, and ageing. 

Time steps or fishing periods 

The HCAM structure allows for a variable number of time steps (periods) each year, where each 
time step may have an associated fishery and natural mortality.  The EASM analyses separate the 
annual herring catch into three categories: a winter fishery; a spawning-season seine fishery (SN); 
and a spawning-season gillnet fishery (GN).  For the NASM analyses, data from the first two of 
these fisheries (winter and SN) are combined and only two fisheries are modelled. 

Selectivity/Availability Options 

The model structure allows the distinction of fish that are available to the fishery from those that 
are not. The separation into available and non-available fish, which is modelled as age-specific, 
occurs at the beginning of the year.  The available fish are subject to both fishing and natural 
mortality while the non-available fish are subject to natural morality.  The availability 
parameterization is used in EASM but not in NASM.    
 
A number of options are coded for the parameterization of age-specific fishery selectivity and 
age-specific availability.  These include: fixed at 1; age-based logistic functions; a size-based 
logistic function; and free-at-age (see Appendix A for descriptions of these).   
 
Deviations from the prescribed availability-at-age or selectivity-at-age can be estimated.  For 
availability deviations this adds an additional parameter for each year and for selectivity 
deviations this adds an additional parameter for each fishery.  The methods for including 
deviations are different for the alternative parameterizations of availability and selectivity and are 
described in the Appendix A.     
 
EASM uses a weight-based logistic function to parameterize GN selectivity and fixes selectivity 
at 1 for the other fisheries.  The EASM analyses also estimate deviations from the age-specific 
availability.  NASM uses an age-based logistic function (with fixed parameters) for both the GN 
and the SN (combined winter and spawning-season) fisheries, and estimates deviations. 

Fishery Dynamics and the Catch Equations 

The fishery dynamics can be modelled using either the instantaneous (Baronov) form of catch 
equations where fishing and natural mortality are simultaneous or a discrete form of catch 
equations where natural mortality occurs prior to fishing.  Solution of the catch equations can be 
done analytically (using an iterative Newton-Raphson algorithm for the instantaneous form) or by 
estimating parameters that define fully-selected fishing mortality rates.  In the first case the 
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implied assumption is that there is no error in the catch data while the second case acknowledges 
error in the catch data.   
  
The EASM analyses are based on the instantaneous fishing mortality equations and estimate 
model parameters that define the fully-selected fishing mortality rates.  NASM uses the discrete 
form of the catch equations and these are solved analytically.  The NASM analyses have both 
fisheries occurring simultaneously at the end of the year (ie. after natural mortality). 

Natural Mortality 

A number of options representing different assumptions about natural mortality rates are 
available.  These include:  fixed or estimated values for the constant natural mortality rate; age-
dependent natural mortality rates; annual deviations from an average natural mortality rate; and a 
time-series approach using a “random walk” (Gudmundsson 1994) to parameterize annual 
changes in natural mortality rates.  These are described in Appendix A. 
 
EASM estimates a single natural mortality rate.  NASM estimates annual deviations in natural 
mortality and uses a recursive approach (Appendix A) so that the average natural mortality is not 
an estimated “free” parameter. 

Stock-Recruitment Assumptions 

A Beverton-Holt type stock-recruitment relationship is coded in HCAM, using the “steepness” 
parameterization (Mace and Doonan 1988, Francis 1992).  Estimated parameters of the stock-
recruitment relationship are: 0R , the average recruitment at the unfished equilibrium biomass 
level ( 0B ); steepness ( h ), the fraction of 0R that is expected at 20% of 0B ; and the variance of the 
residuals from the stock-recruitment relationship ( rσ ). 
 
EASM does not assume a stock-recruitment relationship.  The NASM herring analyses assume a 
Beverton-Holt stock-recruitment relationship and also estimate autocorrelation in the recruitment 
residuals.  We did not code the option for estimating autocorrelation in the recruitment residuals 
because experience suggests that it is not possible to simultaneously estimate the autocorrelation 
and variance parameter ( rσ ). 

Initializing the Populations 

The populations can be initialized either by estimating parameters for the number of fish in each 
age-class in the first year of the analysis, or by assuming equilibrium conditions in the first year.  
Equilibrium conditions can be estimated for populations that are subject only to natural mortality 
prior to the first year or they can be estimated for populations that are subject to a constant 
exploitation rate and natural mortality prior to the first year.   
 
HCAM models a “plus” age-class, which accumulates all fish of the “plus” age and older. 
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EASM initializes the populations by estimating the number of fish in each age-class in the first 
year (1951).  NASM initializes the populations by assuming equilibrium conditions (with no 
harvest) in 1943, and assumes there is no catch taken until 1951.  EASM has a “plus” group at 
age 7 and NASM has a plus group at age 10.  

Ageing Errors 

Two options for estimating ageing errors are incorporated into HCAM.  The first option estimates 
two vectors for ageing errors – these represent the probabilities at each age of under-ageing fish 
by one year and the probabilities at each age of over-ageing fish by one year.  The second option 
is based on an ageing error model developed by Francis (2003).  The basis of this model is the 
assumption that for each ring in the ageing structure there is a probability that the ring will not be 
counted and second probability that two rings will be counted. Thus, the probability of ageing 
error increases with age and may be asymmetrical. 
 
The EASM and the NASM model do not estimate ageing errors. 

PARAMETER ESTIMATION 

HCAM is structured for Bayesian estimation, though by not specifying parameter priors 
maximum likelihood estimation can be done.  HCAM uses the ADMB model package (Otter 
Research 2000).  ADMB allows multi-phase estimation, where initially some parameters are held 
fixed while the minimization is carried out, then some of the fixed parameters are freed and the 
minimization carried out, etc.  For Bayesian analyses, ADMB uses the MCMC algorithm 
(Gelman et al. 1995) to estimate the joint posterior probability densities.  When posterior 
densities are presented in this paper they are based on MCMC chains of length 1 million.   

Likelihoods  

For age composition data, HCAM has two likelihood options.  These are the multinomial 
distribution and a robust-normal distribution (Fournier et al. 1990, Starr et al. 1999).  The EASM 
estimations assume the multinomial distribution and the NASM estimations assume the robust-
normal distributions. 
 
For fitting the spawn index data, HCAM only models the lognormal distribution.  Both the 
EASM and NASM analyses assume the lognormal distribution for fitting the spawn index data. 

Priors 

The priors coded in HCAM are those assumed in the NASM analysis, which include uniform, 
normal, and lognormal distributions (see Appendix A). 

Residuals 

To assess deviations from model assumptions we examine two types of residuals; Pearson 
residuals which express the residual relative to the variability of the observation and normalized 
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residuals which express the residual on a standard normal scale (see Appendix A for 
descriptions). For the normalized residuals we calculate two statistics; the standard deviation of 
the normalized residuals (SNDR) which has an expected value of 1, and a potentially more robust 
statistic, the median of the absolute residuals (MAR) which has an expected value of 0.67.  
 

 
 

Figure 1. The five major British Columbia herring stock assessment regions: Prince Rupert District (PRD), 
Queen Charlotte Islands (QCI), Central Coast (CC), west coast of Vancouver Island (WCVI) and the Strait of 
Georgia (SOG). 
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RESULTS FROM EASM-EQUIVALENT STOCK RECONSTRUCTIONS 

The implementation of EASM that is replicated here is the version described in Schweigert 
(2005b).  The data files used for the 2005 herring stock assessment using EASM (described in 
Schweigert 2005a) were used for these analyses, so data inputs to the EASM and the HCAM are 
equivalent.  Figure 1 shows the locations of the five herring stocks for which analyses are 
conducted. Appendix Table 1 describes the parameters estimated in the minimizations. 

REPLICATING RESULTS 

An EASM-equivalent implementation of HCAM was run for the five herring stocks, and model 
outputs compared with results from EASM.  While EASM results were not replicated exactly, the 
HCAM results were very close. There were small differences in the value of the total objective 
function, but there was no pattern of one model obtaining better fits than the other (Table 1).  In 
some cases, one of the models fit was better for all objective function components (eg. GS), and 
in others there appeared to be a trade-off with both models fitting better to one of the objective 
function components (eg. WCVI).  That pattern suggested the possibility that some of the model 
fits represented local rather than global minima, so a number of additional HCAM runs were 
done with different sequences in the phase that specific parameters were included in the 
estimation.  These did not result in any different minima. 
 

Objective Function Value 

Stock Model Total 
Age

Composition
Catch 
Data

Spawn 
Index

Penalty 
Function

GS HCAM 6721.7 5605.8 199.6 382.4 533.8
 EASM 6714.4 5601.4 199.1 380.6 533.3
       
WCVI HCAM 4943.5 3077.5 280.4 1010.7 574.9
 EASM 4968.8 3141.3 276.3 1011.2 540.0
       
CC HCAM 4630.5 3257.3 162.8 723.2 487.2
 EASM 4641.4 3261.3 162.9 726.5 490.7
       
CC1 HCAM 10719.3 4485.5 412.4 885.8 4935.7
 EASM 10739.7 4501.1 412.5 891.8 4934.4
       
PRD HCAM 7596.0 6262.2 166.6 751.8 415.4
 EASM 7595.9 6261.5 166.5 751.7 416.2
       
QCI HCAM 4353.3 2790.0 182.5 587.2 793.5
 EASM 4350.3 2789.2 182.1 586.6 792.4
1 Central Coast analysis with larger value for penalty function 
 
In the time available, it was not possible to determine why there are small differences between 
the EASM and EASM-equivalent HCAM fits. One noted difference between the two model 
implementations was that EASM sets the terminal year age-specific availability parameters equal 
to the geometric mean values of those parameters (mean over final ten years).  However, when 
this option was coded in HCAM the differences between the objective function values did not 

Table 1. Values of the objective function and it’s components from the EASM and the EASM-equivalent 
HCAM analyses for the five BC herring stocks. 
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improve (more similar for some stocks, but greater differences for others).  It appears that there 
are still minor differences in the two model implementations, but these are unlikely to have a 
noticeable effect on the results presented here.   
 
Stock reconstructions and parameter estimates are largely indistinguishable between the EASM 
and EASM-equivalent analyses.  Figure 2 shows the ratio of recruitment estimates from EASM 
relative to those from the HCAM.  The ratios are all close to one up to the final two years, where 
the effect of the two methods for handling the terminal year availability parameters is apparent.  
Note however that when the EASM parameterization of availability was tested in the HCAM, 
there were still major differences between the recruitment estimates for 2004 and 2005. 

DIAGNOSTICS 

Diagnostic features that were examined to assess whether the models provided adequate fits to 
the data and generated consistent stock reconstructions were the patterns and magnitude of 
residuals and the retrospective patterns. 

Patterns in residuals 

For the EASM-equivalent HCAM analyses normalized residuals were calculated for all data 
components.  As discussed previously, the normalized residuals have an expected standard 
deviation (SDNR) of 1 and an expected median of their absolute values (MAR) of 0.67.   
Deviation from the expected values indicates inconsistency between the assumed and empirical 
distribution of residuals and may indicate misspecification of the variances.  This could result 
from model misspecification, underestimating or not accounting for process error, or incorrect 
estimates of sampling error.  
 
The SDNR and MAR statistics for model fits to the age composition data, the spawn index data 
and the catch data are shown in Table 2 for the EASM-equivalent analyses.  The SDNR statistics  
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Figure 2.  Ratio of recruitment estimates from EASM and HCAM stock reconstructions for the 
five B.C. herring stocks. 
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   Age Composition        Spawn Index       Catch 
Stock SDNR MAR SDNR MAR SDNR MAR
GS 5.88 2.31 3.70 2.52 1.81 0.28
WCVI 4.55 2.18 6.03 2.87 2.61 1.20
CC 4.08 2.09 5.12 3.44 1.92 0.92
PRD 5.45 2.64 5.22 3.38 1.82 0.62
QCI 4.43 2.15 4.62 2.79 2.14 0.39
 
are substantially greater than 1 for all data sets and stock assessment regions, indicating the 
magnitude of the residuals are larger than expected given the assumed variances of the data.  The 
MAR statistics are also greater than expected except for the fits to the catch data for a few stocks.  
When the MAR statistic is smaller than expected and the SDNR statistic is larger than expected 
there are many small residuals and a few very large residuals.  For example, Figure 3 shows the 
observed and fitted values for the catch data from the GS analysis.  The smaller catches are fitted 
reasonably well while the larger catches tend to be poorly fitted.  Given there should not be much 
information in the data about the true catches, deviations from the observed catches are likely 
being used to improve fits to other data components (likely the spawn data). 
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The EASM model uses maximum likelihood estimation, so misspecification of the variance of 
the data sets will not affect parameter estimates (and stock reconstructions) if the relative 
variances are appropriately specified.  That is, the same proportional change to all the variance 
components will result in the same parameter estimates.  However, estimates of uncertainty in the 
free and the derived model parameters (calculated from the Hessian or based on likelihood 
profiles) will be impacted by the assumed variances.  Assuming variances that are smaller than 
the model fits to the data suggest will result in underestimating the uncertainty in model outputs. 
 

Table 2.  Summary statistics for the data fits from EASM-equivalent analyses for the five herring stocks.  
Reported statistics are the standard deviation of the normalized residuals (SDNR) and the median absolute 
normalized residual (MAD).  Expected values for these statistics are 1 (Std. Dev.) and 0.67 (MAR). 

Figure 3.  Observed versus fitted catch for the EASM-equivalent analysis of the Strait of Georgia data.  The 
left panel has the data plotted on an arithmetic scale and the left panel has the data plotted on a logarithmic 
scale. 
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The distributions of residuals for the EASM-equivalent model fits to the fishery age composition 
data are presented as quantile plots in Figure 4.  The quantile plots show the median, the 
interquartile range and the 10th and 90th quantiles of the residual distributions by age-class and by 
fishery for each stock assessment region.   As already noted, the magnitude of the normalized 
residuals is inconsistent with the assumed variances of the data (specified as sample sizes in the 
multinomial).  More disconcerting, is the pattern in the residuals.  In general, the medians and the 
means of the residual distributions differ markedly from 0.  There is no clear pattern to indicate a 
trade-off in fitting data from the different fisheries (i.e. for an age-class, a preponderance of 
positive residuals in the fits to one of the fisheries’ data balanced by a preponderance of negative 
residuals in the fits for the other fisheries’ data).  For the plus age group (7++) the median 
residuals are negative for most of the stocks and fisheries.  These patterns suggest either model 
misspecification or the influence of a few very large residuals.  

Retrospective Analysis 

Retrospective analyses were conducted using the EASM-equivalent model to assess whether the 
stock reconstructions remained stationary as additional years of data become available.  Analyses 
were conducted fitting to the data series with terminal years from 1996 through 2003.  As shown 
in the last herring stock assessment (Schweigert 2005a), there is a strong retrospective pattern for 
all stocks with abundance estimates decreasing as additional years of data are added (Figure 5).   
 
Taking biomass estimates that result from the full time series (i.e. to 2005) as the best estimates 
of abundance, we calculate a statistic that measures the change in biomass from the first time it is 
estimated relative to the “best” estimate ( y

yB , the estimated biomass in year y, as estimated with 
data through year y and 2005

yB , the biomass in year y as estimated with data through 2005).  This 
statistic, presented in Table 3, provides a basis for comparing retrospective patterns among 
different model formulations.  For the EASM analyses these indicate a mean initial estimation 
“error” of 47.5%.  All “errors” are in the direction of overestimating abundance, indicating a 
persistent bias.  
  

   

( )2005

2005
100 y

y y

y

B B
B

−
 

Stock Mean 
Mean 

absolute 1996 1997 1998 1999 2000 2001 2002 2003 
GS 13.6 13.6 25.5 21.8 7.7 15.1 6.3 13.5 8.3 10.8 
WCVI 95.0 95.0 44.0 59.0 126.6 159.0 133.4 82.8 67.7 87.2 
CC 33.6 33.6 20.0 22.1 21.3 16.7 33.2 53.4 61.0 41.6 
PRD 28.1 28.1 19.4 12.9 16.5 29.9 30.4 48.5 40.3 26.6 
QCI 67.2 67.2 46.0 28.7 64.9 67.6 70.4 101.9 83.8 74.4 
Mean 47.5 47.5         
 
 

Table 3.  Summary statistics for retrospective changes in stock biomass estimates from the EASM-equivalent 
analyses for the five herring stocks. 
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Figure 4. Quantile plots of normalized residuals from age composition fits for the EASM-equivalent model, by 
fishery and stock.  The shaded boxes show the inter-quartile range (with the median shown by the solid bar) 
and the whiskers show the 10th and 90th quantiles. The horizontal lines indicate the expected values for the 
10th, 25th, 50th, 75th, and 90th quantiles. 
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Figure 5.  Trajectories of spawning stock biomass for retrospective runs conducted with the EASM-equivalent 
model and terminal years from 1996 to 2003. 
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RESULTS FROM NASM-EQUIVALENT STOCK RECONSTRUCTIONS 

The NASM structure allows selection among many assumptions, which results in different sets of 
parameters that are estimated.  A number of sets of assumptions were evaluated in an initial paper 
presenting results of a simulation-estimation study to assess this models’ performance (Fu et al. 
2004).  The different assumptions investigated were time-varying natural mortality rates versus a 
fixed mortality rate and estimated versus fixed values for the proportionality constant for fitting 
spawn index data.  We replicate the NASM implementation that is described in the current 
PSARC working paper (Schweigert et al. 2006). The implementation estimates time-varying 
natural mortality rates and a single proportionality constant for the spawn index data prior to 
1988.  Appendix Table 1 provides a list of parameters estimated in the NASM-like 
implementation of HCAM. 

REPLICATING RESULTS 

There are some differences between the NASM analyses and the NASM-like version of HCAM 
that were not resolved, so we do not attempt to replicate outputs from that model.  We did not 
have the data input files from the NASM analyses so we used those from the 2005 EASM herring 
stock assessment, as we did for the EASM-like implementation of HCAM.  The NASM analyses 
combine the catch and age composition data from the winter and spawning season SN fisheries, 
and fit to catch in biomass rather than catch in numbers.  Because they use different data, there 
will certainly be differences in analyses from NASM and the NASM-like implementation of 
HCAM. 
 
Every effort was made to implement the NASM model as described in Schweigert et al. (2006), 
except for the stock-recruitment likelihood function.  We do not allow for estimation of an 
autocorrelation parameter and use the more traditional likelihood for the stock-recruitment 
residuals (see Appendix A for details). 

DIAGNOSTICS 

Initial model runs with a NASM-like form of HCAM were conducted using the parameterization 
described in Schweigert et al. (2006), but not estimating annual natural mortality deviations.  Our 
first model fits were conducted using the robust-normal likelihood for fitting age composition 
data through all phases of the estimation and using the phase sequence for parameter estimation 
that is specified in Schweigert et al. (2006).  We did additional model runs that used an 
alternative phasing scheme and also runs where a multinomial distribution was used for fitting 
age composition data until the final phase of the estimation when the robust-normal was adopted.  
It has been found (Jim Ianelli, pers. comm.) that when using the robust-normal likelihood for age 
composition data, better fits are obtained when a multinomial likelihood is used until the final 
phase of the estimation.  Estimates of the total negative log-likelihood at the MPD (mode of the 
posterior distribution) from this series of model fits indicate that the model minimization often 
becomes trapped at local minima (Table 4).  Given that there appear to be many local minima it is 
not clear that any of the final fits represents a global minimum. 
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 Negative log-likelihoods and contribution of priors to objective function 
Est. 
scheme stock Total

Age
 comp.

Spawn 
data

Sel.
 Devs.

M 
devs

S-R 
resids

Sigma
 R h

C; NASM GS 324.5 204.2 53.42 65.80 0 -5.24 0.02 0.38
C/M; NASM GS -43.0 -137.9 40.88 33.23 0 19.49 0.34 0.91
C; alt GS 83.2 1.6 40.51 27.78 0 12.34 0.16 0.78
C/M; alt GS -67.3 -177.0 53.05 33.75 0 21.54 0.54 0.82
          
C; NASM WCVI 364.6 278.9 47.69 36.94 0 0.12 0.00 0.26
C/M; NASM WCVI 201.0 61.0 76.27 36.25 0 25.75 0.76 0.94
C; alt WCVI 392.9 312.5 48.58 17.38 0 13.32 0.23 0.78
C/M; alt WCVI 207.6 60.1 83.62 33.33 0 28.20 1.16 1.26
          
C; NASM CC 584.0 498.4 44.40 60.19 0 -23.42 0.40 0.39
C/M; NASM CC 473.1 278.2 61.75 98.44 0 32.25 1.04 1.17
C; alt CC 459.7 358.0 61.16 39.15 0 0.36 0.00 0.88
C/M; alt CC 517.8 190.3 99.41 59.80 0 143.77 24.13 0.38
          
C; NASM PRD 770.1 662.6 52.29 67.68 0 -13.06 0.13 0.17
C/M; NASM PRD 527.5 324.9 72.75 100.91 0 27.50 0.93 0.51
C; alt PRD 835.4 723.3 60.17 40.11 0 11.54 0.15 0.08
C/M; alt PRD 514.8 315.4 71.09 96.90 0 29.37 1.29 0.70
          
C; NASM QCI 268.6 143.6 71.62 47.92 0 3.53 0.02 0.11
C/M; NASM QCI 224.5 -6.2 111.85 69.06 0 46.73 2.73 0.33
C; alt QCI 245.6 143.1 62.58 23.98 0 15.17 0.25 0.10
C/M; alt QCI 213.8 -8.6 113.93 55.75 0 47.97 3.68 0.86
  
Using a multinomial error structure for fitting the age composition data in the initial phases of the 
estimation and then switching to the robust-normal error structure in the final phase consistently 
produced lower minima than were obtained using the robust-normal through all phases of the 
estimation. Using this approach resulted in better fits to the age composition data and larger 
contributions to the objective function from the prior on the stock-recruitment residuals and 
sigmaR (the variance of the stock-recruitment residuals parameter).  In terms of the preferred 
sequence for including parameters in the estimation, neither of the two schemes evaluated 
generated consistently better fits.  Further analyses looking at alternative phasing schemes may 
produce a sequence that consistently produces the best fits. 
 
Because NASM is structured for Bayesian estimation, the inability of the estimation to 
consistently find a global minimum, may not be of issue.  That is, if the same joint posterior 
distributions are estimated from different MPD starting points, the local minima are not of 
concern.  We did not investigate if this was the case because of computing limitations, but 
suspect that there would be differences in the joint posterior distributions given different starting 

Table 4. Estimates of the negative log-likelihood (for age composition and spawn index data) and prior 
contributions to the objective function (for selectivity deviations, natural mortality deviations (M devs), stock-
recruitment residuals, sigma R and steepness (h)) for a NASM-like implementation of HCAM using different 
parameter and likelihood phase-estimation schemes.  Function values are at the MPD (mode of the posterior 
distribution). “C” indicates the robust-normal likelihood for age composition data throughout the estimation; 
“C/M” indicates using a multinomial likelihood until the final phase when the robust-normal is adopted; 
“NASM” indicates using the parameter-phase estimation sequencing Schweigert et al. (2006) and “alt” 
indicates an alternative parameter-phase sequence.  The highlighted values indicate the best fits. 
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points for the MCMC chain (ADMB begins the MCMC chain at the estimated MPD and uses the 
estimated covariance matrix at the MPD to determine chain steps). 
  
The next step in implementing the NASM-like model was to estimate the natural mortality 
deviation parameters.  For these runs we used the combination multinomial/robust-normal age 
composition likelihoods and the NASM phase sequence for estimating parameters. Being aware 
of local minimum concerns, a number of runs were conducted for each stock assessment region 
with different initial values for natural mortality.  That is, the natural morality rate was fixed at 
different values until phase 4, where the natural mortality deviations were estimated.  The 
estimated values of the objective function and the range in the annual natural mortality estimates 
are shown in Table 5 for the various runs. 
 

Natural Mortality Negative log-likelihoods and contribution of priors to objective function 
Est. 
sch. Stock Mean Min Max Total

Age
 comp.

Spawn 
data

Sel.
 Devs.

M 
devs

S-R 
resids

Sigma 
R h

0.45 GS 0.51 0.39 1.08 -57.4 -167.11 38.87 31.72 21.48 16.12 0.23 1.24
0.65 GS 0.56 0.43 0.93 -55.4 -140.02 28.88 30.48 18.58 5.79 0.02 0.85
0.25 GS 0.58 0.40 1.79 -7.7 -146.35 40.25 32.83 36.56 17.50 0.25 1.84
est GS 0.55 0.43 0.75 -90.8 -186.44 37.95 33.12 15.06 9.04 0.09 0.35
             
0.45 WCVI 0.48 0.34 0.69 190.7 60.19 53.73 33.61 19.61 21.14 0.50 1.88
0.65 WCVI 0.47 0.32 0.71 169.9 40.92 54.72 34.14 21.49 16.86 0.35 1.42
0.25 WCVI 0.48 0.34 0.64 183.0 49.81 53.40 33.74 17.07 26.12 0.95 1.92
est WCVI 0.47 0.34 0.67 174.3 57.50 51.11 34.60 15.97 14.10 0.24 0.77
             
0.45 CC 0.29 0.22 0.49 338.8 164.03 75.17 58.19 16.27 22.62 0.61 1.92
0.65 CC 0.25 0.20 0.41 353.5 183.82 75.15 55.20 12.86 23.82 0.60 1.91
0.25 CC 0.28 0.24 0.46 345.6 172.11 71.81 59.51 12.87 26.05 0.99 1.92
est CC 0.27 0.21 0.42 356.3 180.05 81.01 53.82 13.46 25.08 1.04 1.82
             
0.45 PRD 0.28 0.24 0.37 469.9 278.67 60.70 96.33 7.81 24.84 0.70 0.53
0.65 PRD 0.27 0.23 0.36 472.3 279.43 65.91 92.94 6.13 26.29 0.89 0.35
0.25 PRD 0.29 0.24 0.39 474.1 274.48 60.41 99.20 5.98 31.32 1.19 1.23
est PRD 0.27 0.23 0.35 471.8 284.44 57.22 101.95 4.51 22.58 0.72 0.02
             
0.45 QCI 0.53 0.36 0.87 154.8 -54.47 75.70 70.20 18.31 41.86 2.59 0.56
0.65 QCI 0.55 0.40 0.92 155.4 -49.93 69.46 70.86 18.56 43.87 2.33 0.21
0.25 QCI 0.54 0.37 0.88 171.7 -39.29 76.92 67.88 18.47 43.74 2.92 1.07
est QCI 0.43 0.31 0.70 162.1 -54.10 82.99 68.75 16.03 45.42 2.79 0.16
 
There is no pattern where one estimation scheme (initial M value) consistently results in better 
fits. In general, it appears that better fits are obtained to both the age composition data and the 
spawn index data when annual natural mortality rates are estimated (compare values in Tables 4 
and 5).  We do not attempt statistical tests to determine if the improvements in model fit under 
the “time-varying natural mortality rates” hypothesis are significant because for a Bayesian 

Table 5. Estimates of the negative log-likelihood and prior contributions to the objective function for a 
NASM-like implementation of HCAM that estimates annual natural mortality rates.   Estimated natural 
mortality rates include the mean, the minimum and the maximum values.  Function values are at the MPD 
(mode of the posterior distribution).  Results are presented for runs that had different values of M in the 
initial phases of the analysis (0.45, 0.65, 0.25, and estimated), and the best fit for each stock is highlighted. 
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estimation based model this would require estimating the joint posterior distributions for all 
model runs to calculate “Bayes Factors” (Kass and Raftery 1995). 
 
The estimated annual natural mortality rates for the five herring stocks are shown in the left 
panels of Figure 6.  The range in natural mortality rates we estimated is much lower than the 
range reported by Fu et al. (2004, their figures 8,11,14,17 and 20).  There are two factors that 
may cause this difference: 1) not using the robust normal age composition likelihood through all 
estimation phases, and 2) the prior on the natural morality deviation parameters having less effect 
on the estimation because we are fitting to more age composition data (for three fisheries rather 
than two).  To investigate these factors we first calculated annual natural morality rates for runs 
where we use the robust normal age composition likelihood through all phases of the estimation.  
This resulted in higher average natural mortality rate estimates for the CC and PRD stocks, 
though the variation in M did not increase.  Then we increased the standard deviation of the 
natural mortality deviation prior (from 0.2 to 0.3).  This resulted in annual estimates of natural 
mortality that were more similar to those obtained by Fu et al. (Figure 6, right panels).   
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Figure 6.  Estimates of annual natural morality rates from the NASM-like analyses for the five herring 
stocks. The left panels show results from runs with the NASM natural mortality deviation prior and the right 
panels show results from runs with a higher natural mortality deviation prior. 
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Patterns in residuals 

Statistics summarizing the residuals from the fits to the age composition data and the spawn 
index data are shown in Table 6 for the NASM-like implementation of HCAM.  The residual 
estimates are from the best fits obtained when estimating annual natural mortality rates (Table 5).  
For the age composition fits, we present statistics for both Pearson residuals and the approximate-
normalized residuals because the robust-normal likelihood used for those data does not have 
exact normalized residuals. The Pearson residuals provide a basis for evaluating the effect of 
using the robust-normal likelihoods in discounting data outliers. 
 
The SDNR and MAR statistics indicate that the model is over-weighting both the spawn index 
data and the age composition data.  The SDNR for the age composition Pearson residuals is quite 
large relative to the SDNR of the approximate-normalized residuals suggesting there is a large 
effect of the robust-normal likelihood in discounting larger residuals.  The residual statistics 
indicate there is greater deviation from the model specification than expected based on the 
assumed variances of the data. 

 
 
 
 
 
 
 
 

 
The distributions of normalized residuals for the model fits to the fishery age composition data 
are presented as quantile plots in Figure 7.  As noted, the magnitude of the normalized residuals 
are inconsistent with the assumed variances of those data, though to a lesser extent than for the 
EASM-like model.  There is a general pattern, in particular in the fits to the SN roe fishery data, 
for primarily negative residuals in the fits for the younger and older age classes and positive 
residuals in the fits for the intermediate age-classes.  This pattern suggests an inconsistency in the 
model structural assumptions and the age composition data.   

Retrospective Analysis 

Retrospective analyses were conducted using the NASM-like model to assess whether the stock 
reconstructions remained stationary as additional years of data become available.  Analyses were 
conducted fitting to the data series with terminal years from 1996 through 2003.   We calculated 
the same statistics as for the EASM-like model to measure the degree to which biomass estimates 
change as additional years of data are added to the estimation.  Results are shown in Table 7.    

 

Table 6. Summary statistics for Pearson and normalized residuals for fits to age composition and spawn index 
data for the NASM-like model runs.  Reported statistics are the standard deviation of the normalized 
residuals (SDNR) and the median absolute normalized residual (MAD).  Note that for the age composition fits 
of the normalized residuals are only approximate . Expected values for these statistics are 1 (SDNR) and 0.67 
(MAR). 

   Age Composition     Spawn Index 
        Pearson residuals       Normalized residuals        Normalized residuals
Stock SDNR MAR SDNR MAR SDNR MAR
GS 5.86 0.79 1.66 0.79 1.18 0.73
WCVI 5.03 1.03 1.80 1.03 1.39 0.90
CC 10.47 1.09 1.84 1.09 1.64 0.93
PRD 7.37 1.17 1.87 1.17 1.49 0.94
QCI 7.68 0.82 1.70 0.82 1.66 1.19
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Figure 7.  Quantile plots of normalized residuals from age composition fits for the NASM-equivalent model, 
by fishery and stock.  The shaded boxes show the inter-quartile range (with the median shown by the solid 
bar) and the whiskers show the 10th and 90th quantiles. The horizontal lines indicate the expected values for 
the 10th, 25th, 50th, 75th, and 90th quantiles. 
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Table 7. Summary statistics for retrospective changes in stock biomass estimates from the NASM-like model 
analyses for the five herring stocks. 

   

( )2005

2005
100 y

y y

y

B B
B

−
 

Stock    Mean 
Mean 

absolute 1996 1997 1998 1999 2000 2001 2002 2003 
GS 43.2 43.2 15.7 20.8 98.8 11.0 8.4 75.3 28.4 87.2 
WCVI 51.0 52.0 -4.1 9.3 46.5 111.9 95.8 41.5 43.4 63.7 
CC -8.6 14.0 -6.0 -37.7 -22.0 -17.7 -7.1 18.4 0.3 3.0 
PRD 8.7 18.9 -28.1 -12.8 26.2 13.7 13.7 42.0 2.8 12.0 
QCI 16.2 28.5 -13.0 -22.9 48.2 22.4 4.0 87.8 -13.3 16.2 
Mean 22.1 31.3         
 
The retrospective patterns from the NASM-like model are much better than those from the 
EASM-like model.  Although this model also tends to initially estimate higher abundance than 
what later, more mature data series suggest, this tendency does not hold across all stocks and for 
all years.  Overall stocks and years, the mean percent “error” in the initial abundances estimates 
is 22.1% and the mean absolute percent “error” in the initial abundance estimates is 31.3%.  This 
compares with a mean percent “error” and a mean percent absolute “error” of 47.5% for the 
EASM-like model. 
 
Because the NASM is structured for Bayesian estimation, a more appropriate retrospective 
analysis would be to estimate the full joint posterior distribution for each of the retrospective 
years and then see how the distributions of stock biomass change as additional years of data are 
added to the model. This was not feasible because of computing limitations, and we only 
estimated the joint posterior distributions for the full data sets.  The marginal posterior 
distributions of spawning stock biomass (the 10th and 90th percentiles) are shown in Figure 8 
along with the retrospective spawning stock biomass estimates.  In general, the retrospective 
abundance trends are within the 10th and 90th percentiles of the marginal posterior distributions 
from the analysis using the full (through 2005) data set.    

DEVELOPING A HCAM FORMULATION FOR PACIFIC HERRING 

In this section we describe a step-wise process to evaluate alternative parameterizations and 
assumptions with the objective of obtaining a consistent analysis of the herring data.  Where 
possible we use objective criteria to evaluate model performance between competing 
assumptions.  We do not conduct hypothesis tests to select among model formulations, because 
with Bayesian estimation this would require calculating the joint posterior distribution for all 
model runs (Kass and Raftery 1995) and that is beyond the limits of available computing power.  
Rather we look for consistency in improvement in model fits across stocks, and focus on the 
patterns in model residuals.  For the higher parameter models, we expect to get reasonable 
patterns in the residuals. 
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Figure 8.  Estimates of spawning stock biomass from retrospective analyses (1996-2003, light coloured lines) 
and marginal posterior estimates (using data through 2005, 10th and 90th percentiles of the distribution are 
shown as heavy lines).  Results are from the NASM-like implementation of HCAM. 
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BAYESIAN ESTIMATION 

We choose Bayesian estimation for these analyses.  The Bayesian approach is the state-of-the art 
in fisheries modelling because it allows estimation of uncertainty in both estimated and derived 
model parameters (Punt and Hilborn 1997).  Most of the results we present are based only on 
MPD estimates because computer limitations restrict the number of joint posterior distributions 
that can be estimated. Consequently, results and their interpretation may be biased, because often 
MPD parameter estimates are close to the bounds of their marginal posterior values. 
 
Assumptions made about priors can significantly impact results, so efforts to develop informed 
priors either from data that are not used in the model or from published meta-analysis would be 
of value.  The prior assumptions used in the following analysis are either taken from the NASM 
analysis or are ad hoc.  Appendix A and Appendix Table 2 describe the priors and Appendix 
Table 1 lists the parameters estimated in each of the runs. 
 
To ensure that model priors have the appropriate influence in the analyses, it is important that the 
weighting given to the data (i.e. variance assumptions) is consistent with the ability of the model 
to fit the data.  Commonly used methods to ensure appropriate data weighting include: iterative 
re-weighting of data components (Cope and Punt 2006, Helser et al. 2004); estimating process 
error variance for some or all data components (Bull et al. 2003, Francis 2006); estimating an 
overall variance term that is added to the individual variance components (Kim et al. 2003), or 
using concentrated likelihoods (Sullivan et al. 1999, Otter Research Ltd. 2000).  For these 
analyses we assume (rather than estimate) process error in fitting to the age composition data, and 
increase the assumed variance of the spawn index data (from that assumed in the NASM 
analyses).  Table 8 shows the means of the actual age composition sample sizes, as used in the 
EASM and NASM-like model implementations, and Figure 9 shows the rescaling of actual 
samples size to effective samples sizes for the HCAM model runs where process error is 
included. 
 

Average age composition 
sample size 

 Winter Sn-Roe GN-Roe 
GS 3112 6282 911 
WCVI 1247 5268 531 
CC 1962 5261 839 
PRD 1601 3206 676 
QCI 603 2691 353 

STRUCTURE OF THE INITIAL HCAM MODEL 

The model structure for our initial runs is similar to the NASM parameterization, though 
simplified in some respects.  The model is parameterized as follows:  

 
• Uses the discrete form of the catch equations.  Assumes catch is known without error. 

Table 8. Average age composition samples sizes by stock and fishery.
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• Models three fishing periods (for the winter, spawning season SN, and spawning season 
GN) with fractions of the total mortality in each period (0.45, 0.45, and 0.10).  Because 
the discrete form of the catch equations have natural mortality occurring prior to fishing 
mortality this sets 90% of the annual natural mortality prior to the spawning season. 

• Age-based logistic selectivity function, with common selectivity parameters for the 
winter and spawning season SN fisheries.  No fishery specific selectivity deviations 
estimated. 

• Population initialized at equilibrium in 1943, and assume no catch taken until 1951. 
Plus group at age 10. 

• Natural mortality rate estimated with normal prior as specified in Appendix A. 
• Assume the Beverton-Holt stock recruitment relationship. 
• Multinomial distribution for fitting age composition data and lognormal distribution for 

fitting spawn index data.  Assume process error in the fit to age composition data and 
set to a fixed value.  The assumed variance of the fit to spawn index data is increased 
from the values used in the NASM analyses. 

 
From this initial model structure (termed R1), additional analyses are conducted that change one 
model component at a time.  Appendix Table 1 describes the parameters estimated in each set of 
runs, Table 9 presents summary statistics for the various runs, and Appendix Table 3 presents 
estimates of all components of the objective function for each of the runs. 
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Figure 9.  The relationship between actual sample size and effective sample size when process error is 
included in the estimation.  All HCAM model runs assume the 0.003 process error, except for R13 where the 
0.009 process error is assumed. 
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HCAM ANALYSES 

Run R1 

Figure 10 shows the mean normalized residuals for the R1 fits to age composition data for each 
age-class, fishery and stock.  There is an over-riding pattern of negative residuals for the fits for 
the younger age-class, positive residuals for the fits for the intermediate age-classes, and negative 
residuals for the fits to the oldest age-class.  This pattern is captured in a “mean of means” 
statistic that calculates the mean of the age-specific means across the fisheries and stocks, and 
provides a convenient way to compare the over-all residual patterns across model runs (Table 
10). 
 
Model fits to the age composition data and the spawn index data are considerably worse than 
expected, given the assumed variances of these data.  That is, the normalized residuals statistics, 
the SDNR and the MAR, are greater than their expected values for all data sets (Table 9). 
Additionally, the autocorrelations in the spawn index residuals indicate there are reasonably 
strong patterns in the lack of fit to the spawn index data (Table 9).  The objective of increasing 
the model complexity in the following series of model runs is to reduce the magnitude and 
patterns in the residuals. 
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Figure 10.  Mean normalized residuals for the R1 fits to age composition data by age-class fishery and stock. 
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Stock Statistic R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

GS F 1265.0 1173.7 1263.8 1100.1 1085.1 1014.8 1073.5 1055.7 997.8 983.6 398.1 388.6 404.3 -613.3
WCVI F 1141.3 1153.0 1089.2 1064.8 1041.7 879.7 1005.3 911.9 861.1 856.5 400.6 392.1 389.0 -338.6

CC F 1482.1 1473.3 1322.9 1234.2 1214.8 999.7 1148.2 1028.1 955.5 944.5 578.9 572.4 460.9 -368.6
PRD F 2653.9 2610.1 2431.8 2249.9 2200.5 1858.5 2142.3 1979.8 1983.0 1965.5 886.4 862.3 892.2 -77.9
QCI F 1576.5 1655.0 1502.4 1506.6 1484.6 1173.1 1410.1 1314.6 1148.9 1141.4 590.6 583.0 606.3 -153.1

Age composition   
GS SDNR 1.63 1.58 1.63 2.41 1.50 1.80 1.59 1.57 1.51 1.51 0.94 0.94 0.98 1.26

 MAR 0.87 0.81 0.87 0.76 0.76 1.10 0.84 0.86 0.84 0.84 0.58 0.56 0.55 0.66
WCVI SDNR 1.93 1.89 1.85 1.93 1.86 2.18 1.93 1.89 1.87 1.87 1.12 1.11 1.24 1.27

 MAR 1.06 1.04 1.01 0.95 0.94 1.10 1.01 0.96 0.94 0.93 0.56 0.57 0.58 0.69
CC SDNR 2.10 2.15 2.01 1.98 1.96 2.20 2.02 1.87 1.79 1.79 1.29 1.28 1.20 1.27

 MAR 1.06 1.04 1.00 0.93 0.92 1.02 0.95 0.85 0.88 0.87 0.69 0.69 0.60 0.65
PRD SDNR 2.85 2.83 2.84 2.58 2.53 2.89 2.66 2.57 2.95 2.95 1.65 1.63 1.90 1.56

 MAR  1.39 1.32 1.41 1.31 1.27 1.61 1.37 1.36 1.40 1.41 0.90 0.87 0.92 0.91
QCI SDNR 3.01 2.75 3.77 3.56 2.92 2.81 3.00 2.67 3.20 2.95 1.51 1.51 2.48 1.41

 MAR 1.23 1.23 1.07 1.14 1.17 1.23 1.21 1.12 1.11 1.41 0.82 0.81 0.76 0.75
Spawn Data   

GS SDNR 1.23 1.25 1.22 1.27 1.27 1.29 1.28 1.30 1.17 1.06 0.92 0.83 0.95 1.04
 MAR 0.85 0.80 0.84 0.86 0.80 0.85 0.80 0.85 1.00 0.76 0.62 0.42 0.64 0.64

WCVI SDNR 1.41 1.58 1.39 1.49 1.51 1.51 1.52 1.52 1.09 1.09 0.99 0.97 0.98 0.99
 MAR 1.01 1.03 0.97 1.18 1.12 1.06 1.13 0.95 0.71 0.64 0.59 0.59 0.60 0.66

CC SDNR 1.40 1.64 1.50 1.48 1.48 1.46 1.51 1.40 1.27 1.21 1.24 1.21 1.16 1.23
 MAR 0.96 0.94 1.26 1.12 1.12 1.03 1.10 0.92 0.77 0.69 0.68 0.64 0.72 0.62

PRD SDNR 1.22 1.34 1.46 2.34 2.36 2.15 2.34 1.74 1.33 1.24 1.11 1.08 1.15 1.06
 MAR 0.63 0.86 1.10 1.76 1.77 1.48 1.70 1.32 0.56 0.54 0.66 0.62 0.45 0.60

QCI SDNR 1.83 2.40 2.30 2.32 2.35 1.93 2.33 1.89 1.44 1.42 1.28 1.26 1.37 1.42
 MAR 1.01 1.05 1.75 1.57 1.65 1.29 1.68 1.24 0.70 0.76 0.93 0.88 0.72 0.81
    

GS AC 0.49 0.49 0.48 0.51 0.52 0.53 0.52 0.54 0.52 0.46 0.21 0.09 0.25 0.32
WCVI AC 0.66 0.59 0.67 0.72 0.74 0.73 0.74 0.70 0.54 0.52 0.40 0.37 0.46 0.46

CC AC 0.42 0.29 0.50 0.45 0.45 0.47 0.47 0.50 0.38 0.34 0.27 0.24 0.31 0.31
PRD AC 0.12 0.18 0.41 0.72 0.72 0.69 0.72 0.57 0.29 0.20 0.09 0.04 0.08 -0.15
QCI AC 0.28 0.56 0.61 0.61 0.61 0.39 0.60 0.35 0.02 0.00 0.10 0.08 0.01 0.03

 NVAR 71 71 74 74 76 74 76 77 132 133
211- 
252

212 -
253 132 132

 

Table 9.  Summary statistics for the HCAM series of model runs (R1-R14) for the five herring stocks.  Statistics include the objective function value (F), 
the standard deviation of normalized residuals (SDNR) , the median absolute normalized residual (MAR),  the autocorrelation (AC) in the spawn index 
residuals, and the number of parameters estimated in the minimization (NVAR). 
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Age-class Model 
Run 2 3 4 5 6 7 8 9 10 
R1 -0.18 0.00 -0.34 -0.06 0.48 0.87 0.50 0.01 -1.00 
R2 0.05 -0.01 -0.50 0.08 0.37 0.73 0.41 -0.07 -1.00 
R3 -0.07 -0.24 0.22 -0.30 -0.05 0.62 0.55 0.27 -0.77 
R4 0.09 -0.22 -0.11 -0.01 0.04 0.43 0.44 0.31 -0.45 
R5 0.05 -0.25 -0.12 0.01 0.05 0.41 0.37 0.10 -0.57 
R6 0.10 -0.20 -0.12 0.19 0.31 -0.14    
R7 0.04 -0.26 -0.12 0.04 0.09 0.44 0.24 -0.35  
R8 0.04 -0.18 0.03 0.08 -0.10 0.14 0.19 -0.13  
R9 -0.07 -0.22 0.01 0.07 0.01 0.21 0.33 0.09  
R10 -0.06 -0.22 0.02 0.06 0.00 0.20 0.33 0.11  
R11 -0.01 -0.16 0.04 0.01 -0.08 0.21 0.21 -0.12  
R12 -0.01 -0.16 0.05 0.00 -0.08 0.22 0.21 -0.16  
R13 -0.05 -0.14 -0.01 0.04 -0.01 0.12 0.21 0.07  
R14 -0.14 -0.82 -0.37 -0.24 -0.07 0.18 0.23 -0.15  

Run R2 

Run R2 differs from run R1 in that availability parameters are estimated and selectivity of the 
winter and seine roe fisheries are set to 1 (i.e. all available fish are equally selected).  
Additionally, with this formulation all available fish are assumed to be mature and spawning and 
the input maturity ogive is not used to estimate spawning abundance. The availability 
parameterization was originally used in the herring catch-age model (eg. EASM) because that 
model was based on the instantaneous (Baranov) catch equations.  With the instantaneous form 
of catch equations all fish in an age-class whose selectivity is non-zero are potentially vulnerable, 
and with high fishing mortality rates as seen during the “reduction” fishery, are potentially caught 
in the fishery.  The availability parameterization allows a reserve of younger fish that are not 
vulnerable to the fishery.  The discrete form of the catch equations accomplishes the same 
objective, ensuring that the non-selected proportion of an age-class is invulnerable to the fishery.  
As such, the distinction between the availability and selectivity formulations should not make 
much difference in model fitting.  
 
The availability parameters are modelled with a logistic function so this parameterization does 
not change the number of “free” parameters estimated through the minimization.  Comparison of 
the R1 and the R2 runs show equivocal results.  For three of the five stocks the R2 fits are better 
as a result of improvements in fits to the age composition data (Table 9 and Appendix Table 3).  
For all but one stock, the fits to the spawn data are worse for the R2 runs.  The age composition 
residual patterns appear equally bad for runs R1 and R2 (Table 10), and although the 
autocorrelation in the spawn index residuals changes substantially for 3 of the 5 stocks, the 
changes do not favour one model over the other. There is no clear basis for selecting one 
parameterization over the other. We’ve chosen to retain the selectivity parameterization because 
it allows fishery dependent changes (deviations) in selectivity whereas the availability 
parameterization allows only annual changes in the availability parameters. 
 

Table 10. Mean (across fisheries and stocks) of the mean residuals for the fit to the age composition data by 
age-class.  Note that the terminal age-class is always a ‘plus’ group. 
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Run R3 

Model runs R3 adopt the structure of the R1 runs, except that the logistic function used to 
describe the form of age specific selectivity for the seine fisheries is replaced with direct 
estimates of selectivity parameters for age-classes 2 through 6.  Selectivity of age-classes 7 and 
older is fixed at 1. This increases the number of parameters in the model by 3.   
 
With this alternative parameterization of age-specific selectivity for the seine fisheries the 
objective function decreased for all stocks, in some cases by a considerable amount (Table 9).  
The improvements in model fit are all obtained through better fits to the age composition data 
and in general the fits to the spawn index data are worse.  For the PRD and the QCI stocks the 
autocorrelation in spawn index residuals increases substantially (Table 9).  The patterns in age 
composition residuals are slightly better (Table 10) but still show strong age related trends.  
Because of the improvements in fit and slight improvement in age composition residual patterns, 
we choose to retain the age specific parameters rather than the logistic function for describing 
selectivity. 

Run R4 

The R4 set of model runs follow from the R3 set of runs with the logistic age-based selectivity 
function replaced by a size-based logistic function for the GN fishery. This alternative 
parameterization does not change the number of parameters in the model.  
 
Using the size-based selectivity model rather than the age-based selectivity model for the GN 
fishery substantially improves the model fits for all stocks except for QCI where there is a 
slightly poorer fit (Table 9).  Improvements in overall model fit generally result from 
improvements in the fit to the age composition data, and for the PRD stock there is a substantial 
decrease in the fit to the spawn index data (Appendix Table 3).  The patterns in the age 
composition residuals are generally better (Table 10) though the overall age related pattern 
remains.  There appears to be strong support in the data for the size-based selectivity 
parameterization (except for QCI), and we retain this parameterization. 

Runs R5 to R7 

In age-structured fisheries models a “plus” group (a terminal age-class that accumulates all fish at 
or older than the “plus” age) is often used to deal with ageing error.  The idea is that ageing errors 
increase with age, and grouping the older fish will decrease the influence of ageing errors.  An 
alternative approach, or perhaps one that can be used in conjunction with a plus group, is to 
explicitly allow for ageing error.  This can be done by providing an ageing precision matrix to the 
model, which is then used to modify the fitted age compositions.  Ageing precision matrices are 
estimated from duplicate ageing of age structures, and by necessity assume that ageing error is 
symmetrical.  We chose a different approach, estimating an ageing error matrix based on the 
assumption that for each annual ring in the ageing structure, there is a probability p that the ring 
will not be counted and a probability q that two rings will be counted (see Appendix A for 
description).    
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With the R5 and R6 set of model runs we explore using a lower “plus” group and estimating 
ageing errors in the model estimation.  The R5 model runs have the same structure as the R4 
runs, except that ageing error is estimated.  This increases the number of estimated parameters by 
2.   
 
All stocks show a moderate improvement in their fits with the inclusion of the ageing error 
parameters (Table 9).  The improvements are primarily obtained with better fits to the age 
composition data, though the over-riding residual patterns do not improve much (Table 10).  The 
estimated values for the ageing error parameters are shown in Table 11.  There is consistency in 
the parameter estimates among some of the stocks, though not for all.  Generally, the estimated 
probabilities of not counting a true ring are higher than the probabilities of counting two rings 
where there is only one.  This suggests an increasing bias to under estimating the true age as fish 
get older.  Ageing errors are likely common among the stocks, and simultaneously analyzing the 
data for all the stocks while estimating common ageing error parameters would be a reasonable 
way to investigate ageing errors.   
 

R5 R11 R13 R14  
stock - + - + - + - + 
GS 0.012 0.014 0.009 0.015 0.000 0.016 0.004 0.015 
WCVI 0.021 0.014 0.015 0.012 0.020 0.014 0.000 0.015 
CC 0.018 0.004 0.009 0.006 0.000 0.005 0.003 0.008 
PRD 0.004 0.017 0.009 0.015 0.001 0.027 0.004 0.021 
QCI 0.022 0.005 0.021 0.006 0.012 0.005 0.000 0.003 
  
 
The set of runs R6 have parameterization like the R4 set except that the “plus” group is decreased 
from 10 to 7.  This changes the data that is being fitted, so it is not appropriate to compare 
objective function values among runs R4 to R6.  With a younger “plus” group the magnitude of 
the overall mean age composition residuals is reduced, but the pattern of predominantly negative 
residuals for the younger and oldest age-classes and positive residuals for the intermediate age-
classes remains (Table 10).  For 3 of the 5 stocks (WCVI, CC, and PRD), the age composition 
normalized residuals statistics, SDNR and MAD, are worse with the lower “plus” group 
(compare runs R4 and R6 in Table 9).  
 
Neither of the options for dealing with ageing error, direct estimation of ageing errors or reducing 
the age of the “plus” group, provides a great improvement in the age composition residual 
patterns, so there is no strong basis to choose between them.  We adopt a compromise, and retain 
the ageing error parameterization and reduce the “plus” group to age 9.   Results from this 
compromise parameterization are shown as run R7. 

Run R8 

The set of runs R8 are an extension of runs R7 with the addition that age-dependent natural 
mortality is estimated.  Age-dependent natural mortality is parameterized as a linear change in 
natural mortality beginning at age 4.  This assumption adds one free parameter to the estimation.  

Table 11. Estimates of ageing error ( - and + are the probabilities of either not counting a ring or counting two 
rings, for each true ring in the structure) .  Estimates are from HCAM runs R5, R11, R13 and R14 for the five 
herring stocks. 
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The assumption of age-dependent natural mortality provides a slight improvement in the overall 
model fits for all stocks (Table 9) and provides a reasonable improvement in the residual patterns 
of the age composition data (Table 10).  Thus we retain this assumption in further runs. 

R9 

The set of runs R9 are the same as the R8 set, except for the addition of estimating time-varying 
natural mortality, which is parameterized as a random walk. This increases the number of free 
parameters that are estimated by 55.   
 
The time-varying natural mortality assumption produces improvements in fit primarily for the 
spawn index data, and to a lesser extent for the age composition data.  This is seen both in 
decreased values of the negative log-likelihood for these data (Appendix Table 3) and in 
decreased values for the normalized residuals statistics, SDNR and MAR (Table 9).  Also, the 
autocorrelation in the spawn index residuals is reduced for all stocks (Table 9).  
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The patterns in the natural mortality estimates show some similarities among the stocks, with 
high natural mortality rates during the 1960’s decreasing to low natural mortality rates in the 
1970’s (Figure 11).  Since then, the natural mortality rates have increased in all stocks except for 
CC. 
 
The random-walk natural mortality parameterization provides major improvements in all aspects 
of the model fits and is retained in further runs. 
 

Figure 11.  Natural mortality estimates for HCAM runs R9 and R13 for the five herring stocks. 
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R10 

The R10 set of runs builds on the structure of the R9 set and estimates a second spawn index 
proportionality constant (q) for the period 1988-2005.  The prior on this second q is uniform 
between 0.7 and 1.  The rationale for this is that a small proportion of the spawning events are not 
surveyed and there is a loss of eggs between the spawning events and the surveys due to 
predation.  While both of these effects would decrease q from 1, the prior is ad hoc.    
 
Estimating a second spawn index proportionality constant improves the model fits, though for 
some stocks (eg. WCVI and QCI) the improvement is very small.  For all stocks, the 
autocorrelation in the spawn index residuals decreases (Table 9).   
 
For all stocks, the 1988-2005 spawn index qs are at their lower bound (Table 12).  This is an 
unsatisfactory result, given that the prior on this q is ad hoc. We conclude that inclusion of this 
second spawn index proportionality parameter in the herring model is not warranted until such 
time that an informed prior can be developed for it.  An informed prior could be developed based 
on studies that have investigated herring egg loss due to predation and estimates of the proportion 
of spawning events that are not surveyed.  It is interesting to note that inclusion of the spawn q 
for 1988-2005 has little effect on the estimates of the spawn q for 1951-1987 (Table 12).  To 
investigate the assumption that the spawn index q=1 for recent years introduces a negative bias to 
the estimates of spawning abundance, we evaluate the effect of estimating a second spawn index 
q on the retrospective patterns in a later section.  
  

R9 R10 R13  
Stock 1951-

1987 
1988-
2005 

1951-
1987 

1988-
2005 

1951-
1987 

1988-
2005 

GS 0.79 1.00 0.69 0.70 0.60 1.00 
WCVI 0.83 1.00 0.79 0.70 0.78 1.00 
CC 0.31 1.00 0.28 0.70 0.35 1.00 
PRD 0.42 1.00 0.38 0.70 0.50 1.00 
QCI 0.60 1.00 0.54 0.70 0.56 1.00 

R11 

The set of runs R11 builds on the R9 set and introduces deviations from the selectivity functions.  
Deviations are estimated for each fishery, so this adds between 78 and 119 additional parameters 
to the estimation. 
 
Model fits are improved substantially when we allow deviations from the average selectivity 
functions.  Many of the normalized residuals statistics, the SDNR and MAR, are now close to 
their expected values (Table 9). The notable exceptions are the age composition residuals for the 
PRD and QCI stocks, which are still larger than their expectations.  Also, the age composition 
residuals for the GS stock are smaller than expected, suggesting this data is being under-
weighted.  The over-riding pattern in the age-specific residuals is improved, but there is still a 
preponderance of positive residuals for age-classes 7 and 8 and negative residuals for the “plus” 

Table 12. Estimates of the spawn index proportionality “q’s”.  Estimates are from HCAM runs R9, R10, and 
R13 for the five herring stocks.  Note that for runs R9 and R13 the 1988-2005 q’s are fixed at 1. 
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age-class (Table 10).  Quantile plots of these residuals indicate this pattern is largely driven by a 
lack of fit to the GN fishery data, and to a lesser extent the SN-roe fishery data (Figure 12). 
 
The inclusion of fishery-specific deviations from the average selectivity function decreased the 
magnitude of the time trends in the natural mortality estimates (Figure 11).  Also, the 
autocorrelation in the spawn index residuals is reduced for most stocks (Table 9).   

R12 

The set of runs R12 is the same as the set R11 with the addition that a 1988-2005 spawn index 
proportionality constant is estimated.  We introduce this run so that we can investigate its 
retrospective pattern. 

R13 and R14 

The selectivity deviations introduced in runs R11 substantially improved the model fit (smaller 
age composition and spawn index residuals), but this parameterization requires a large number of 
additional parameters to be estimated.  Alternative approaches to dealing with the magnitude of 
the age composition residuals are to either use the robust-normal likelihood or to increase the 
process error variance in the multinomial likelihood.  We evaluate both approaches and compare 
results with those where deviations from average selectivity are assumed.    
 
For runs R13 we increased the age composition process error variance so that the total objective 
function values were similar to runs R11 (from 0.003 to 0.009).  Otherwise this set of runs is the 
same as the R9 set.  Overall the pattern of age composition residuals for this run is an 
improvement over run R11, with smaller average residuals for all age-classes, and in particular 
for age-classes 7 through  9+ (Table 10). Quantile plots of the distribution of these normalized 
residuals show that for the winter fishery the magnitude of the residuals tend to be larger for the 
younger age-classes than for the older age-classes (Figure 13). The results are equivocal as to 
whether it is better to estimate selectivity deviations or to allow a larger process error in the fits to 
the age composition data, though from the perspective of parsimony the R13 run would be 
preferred.  
 
For runs R14 we use the robust-normal likelihood in fitting to age composition data (with the 
multinomial until the final phase).  Otherwise these runs are the same as runs R9.  The pattern of 
age composition residuals for this run are worse than those from the R11 fits, with larger positive 
residuals for the younger age-classes (Table 10). Overall, the age composition SDNR and MAR 
statistics are similar to those from the R11 fits.  As for the R13 set of runs, the residuals for the 
younger age-classes tend to be larger than those for the older age-classes (Figure 14).   
 
There is no strong basis for deciding whether to model selectivity deviations, to assume higher 
process error in the fits to age composition data, or to use the robust-normal likelihood.  We did 
investigate alternative sequences in the phased estimation of parameters for the R11 set of runs, 
and did find some examples where different local minima occurred. We did not attempt similar 
analyses for the R13 and the R14 set of runs, but if one of these approaches were able to generate 
consistent minima with alternative phasing this could be a criteria for selecting the best approach. 
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Figure 12. Quantile plots of normalized residuals from age composition fits for the R11 HCAM model, by 
fishery and stock.  The shaded boxes show the inter-quartile range (with the median shown by the solid bar) 
and the whiskers show the 10th and 90th quantiles. The horizontal lines indicate the expected values for the 
10th, 25th, 50th, 75th, and 90th quantiles. 
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Figure 13. Quantile plots of normalized residuals from age composition fits for the R13 HCAM model, by 
fishery and stock.  The shaded boxes show the inter-quartile range (with the median shown by the solid bar) 
and the whiskers show the 10th and 90th quantiles. The horizontal lines indicate the expected values for the 
10th, 25th, 50th, 75th, and 90th quantiles. 
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Figure 14.  Quantile plots of normalized residuals from age composition fits for the R14 HCAM model, by 
fishery and stock.  The shaded boxes show the inter-quartile range (with the median shown by the solid bar) 
and the whiskers show the 10th and 90th quantiles. The horizontal lines indicate the expected values for the 
10th, 25th, 50th, 75th, and 90th. 
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 Retrospective Analyses 

Retrospective analyses were conducted using the HCAM model to assess whether the stock 
reconstructions remained stationary as additional years of data become available.  Analyses were 
conducted fitting to the data series with terminal years from 1996 through 2003.   We calculated 
the same statistics as for the EASM-like and NASM-like models to measure the degree to which 
biomass estimates change as additional years of data are added to the estimation.  Retrospective  
analyses were done for the R9 and R11 through R14 model structures so that we could assess 
whether estimating the second spawn index proportionality constant, estimating selectivity 
deviations, or the alternate methods of dealing with age composition residuals were influential in 
the retrospective patterns.  Results are shown in Table 13.  
 

 
   ( )2005 2005100 y

y y yB B B−  

Run Stock Mean 
Mean 
absolute 1996 1997 1998 1999 2000 2001 2002 2003

R9 GS 27.3 27.3 29.9 5.2 30.4 34.5 43.3 37.3 23.6 14.4
 WCVI 2.7 10.4 18.5 4.2 -15.9 -3.9 -2.4 16.0 13.6 -8.4
 CC 2.4 13.3 -27.2 -15.1 8.8 19.7 6.0 -1.3 11.5 16.9
 PRD 22.3 27.0 34.6 51.5 56.3 31.5 13.4 -15.1 10.0 -3.6
 QCI -2.7 17.1 -7.2 20.6 5.7 -15.0 -1.1 -56.0 29.4 2.0
 Mean 10.4 19.0         

R11 GS 19.4 19.9 26.1 34.1 31.5 19.2 -2.2 18.9 15.2 12.3
 WCVI -16.9 17.7 3.0 -24.7 -32.2 -35.3 -22.8 -4.9 -5.8 -12.4
 CC 9.9 15.2 21.7 21.6 25.5 22.9 9.0 -10.6 -10.0 -0.8
 PRD -5.5 9.9 -11.6 -31.6 0.1 -1.1 9.6 -12.0 8.0 -5.4
 QCI 0.8 21.2 16.9 26.6 -4.5 11.2 16.3 -60.4 16.9 -16.4
 Mean 1.5 16.8         

R12 GS 18.7 18.8 20.4 30.0 25.7 13.5 -0.2 21.5 22.1 16.8
 WCVI -17.1 18.2 4.2 -24.7 -33.9 -32.9 -21.0 -4.2 -7.0 -17.4
 CC 7.6 14.3 18.2 16.8 19.1 18.5 4.7 -14.0 -13.0 10.4
 PRD -9.6 12.2 -15.0 -26.1 -0.2 -4.3 7.3 -25.9 3.1 -15.8
 QCI -0.4 18.0 15.4 22.1 -6.4 5.1 12.3 -51.7 15.4 -15.4
 Mean -0.2 16.3         

R13 GS 17.1 17.1 25.3 8.4 10.3 11.0 28.5 25.1 15.5 12.5
 WCVI -3.8 12.4 9.2 -1.6 -26.3 -21.6 -6.4 13.0 12.1 -8.9
 CC 0.7 7.0 -11.0 -1.2 14.7 15.8 0.4 -10.6 -0.5 -1.9
 PRD 14.2 18.1 18.2 29.6 36.0 17.3 10.8 -15.6 12.1 4.8
 QCI -6.4 16.2 -4.5 19.7 -1.0 -8.4 -2.8 -70.3 19.4 -3.4
 Mean 4.3 14.1         

R14 GS 25.8 25.8 34.0 15.1 19.7 22.0 34.1 31.8 34.2 15.4
 WCVI -3.0 12.5 11.5 -2.4 -20.5 -21.4 -10.6 13.5 12.9 -7.3
 CC 2.8 12.5 -25.4 -12.3 15.6 25.9 8.9 3.2 7.8 -1.0
 PRD 15.4 20.6 15.7 32.0 34.5 14.3 7.8 -20.8 22.4 17.4
 QCI -7.4 16.8 -7.7 23.3 1.3 -10.9 -5.7 -69.6 13.1 -2.8
 Mean 6.7 17.6         
 

Table 13.  Summary statistics for retrospective changes in stock biomass estimates from the HCAM model 
runs (R9 and R11 through R14) for the five herring stocks. 
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Figure 15. Estimates of spawning stock biomass from retrospective analyses (1996-2003, light coloured lines) 
and from marginal posterior estimates (using data through 2005, 10th and 90th percentiles of the distribution 
are shown as heavy lines). Results are from analyses using the R13 model parameterization. 
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Overall there tends to be a small positive bias between the initial estimates of spawning 
abundance and those from the 2005 assessment, with the R9 run having the largest bias.  None of 
the model formulations resulted in consistently better retrospective patterns across all stocks, 
though R13 had the lowest mean absolute residuals for three of the five stocks. Inclusion of a 
second spawn index proportionality constant (R12) did not improve the retrospective pattern, and 
exclusion of the selectivity deviation parameters (R9) resulted in slightly poorer retrospective 
patterns. Overall, the R13 model formulation had the lowest mean absolute error with an average 
14.1 percent error (Table 13).  The retrospective patterns are smaller for the HCAM series of runs 
than for either the EASM or HASM-like model formulations. 
 
For the set of R13 runs we estimated the joint posterior distribution using the ADMB MCMC 
algorithm.  The marginal posterior distributions of spawning stock biomass (the 10th and 90th 
percentiles) are shown in Figure 15 along with the retrospective spawning stock biomass 
estimates for R13.  In general, the retrospective abundance trends are within the 10th and 90th 
percentiles of the marginal posterior distributions from the analysis using the full (through 2005) 
data set. 
 
Other diagnostics were also examined for the run R13 MCMC chains and the marginal posterior 
distributions of some parameters.  In general the MCMC chains did not show any problems with 
non-convergence, though for the GS stock a longer chain would have been useful to ensure 
convergence.  Comparison of marginal posterior distributions with their priors show that the 
stock-recruitment variance parameter, sigmaR, is fairly well determined with posterior 
distributions at the upper end of the priors for all stocks except for GS (Figure 16).  The stock 
recruitment steepness parameter also appears to be reasonably well determined, with little 
posterior density at the lower steepness values (Figure 17).  
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Figure 16. Marginal posterior and prior distributions for the stock-recruitment variance parameter 
(SigmaR) from runs R13 for the 5 herring stocks. 
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COMPARISON OF EASM AND HCAM-R13 STATISTICS OF MANAGEMENT 
CONCERN 

We compared some model output quantities that impact management decisions to see how the 
HCAM R13 results differ from those of the current stock assessment model (EASM).  
 
Estimates of spawning stock biomass from the EASM and the HCAM R13 runs, based on the full 
data series (i.e. data through 2005), are shown in Figure 18.  The general patterns in spawning 
abundance are similar for the two models though there are some significant differences between 
the absolute magnitude of spawning abundance for some of the stocks.  In particular, for the GS 
and CC stocks the HCAM R13 model consistently estimates higher spawning abundance than the 
EASM. For the other stocks, differences tend to be minor or occur only over time intervals. 
 
For each year of the retrospective analyses stock projections were made to compare TAC 
expectations from the EASM and the HCAM R13 model formulations. The stock projections 
assumed recruitment of 3-year olds would be equal to the average over the historic period, a full 
years’ mortality would occur prior to the fishery, and a 20% harvest rate.  For the EASM runs the 
results are from the MLE estimates, which is consistent with the process currently used.  For the 
HCAM R13 runs results are from the MPD estimates for all years of the retrospective analysis.  
For the 2005 analyses we had also completed the full Bayesian estimation, so for that year we 
also present results based on the median of the projected stock biomass’ over the MCMC chain  
 

Figure 17. Prior and marginal posterior distributions for the stock-recruitment steepness parameter from 
runs R13 for the 5 herring stocks. 
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for comparison. The differences between the EASM and HCAM R13 projected TAC’s are shown 
in Table 14.    
 
TAC projections are consistently lower for the HCAM R13 model formulation than for the 
EASM formulation for all stocks except for CC.  This result appears to be due to the EASM 
retrospective bias whereby additional years’ data tend to decrease earlier stock estimates from 
this model.  The differences between the EASM and HCAM projections are less when the 
median of the HCAM posterior distribution of projected biomass is used for the projections than 
when the MPD of projected biomass is used for the projections (compare 2005 MCMC and MPD 
differences in Table 14).  Full Bayesian analyses were not conducted for each of the retrospective 
years, so it is not possible to evaluate how different these would be to the MPD estimates.  For 
Bayesian estimation the appropriate statistics to use are from the posterior distribution rather than 
the MPD estimates. 
 
 
 
 
 
 

Figure 18.  Estimates of spawning stock biomass from the EASM and from the HCAM R13 model 
formulation for the 5 herring stocks. 
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Method Year GS WCVI CC PRD QCI All stocks
MCMC 2005 -3057 -2857 -1631 1986 -983 -6542

        
MPD 2005 -1519 -3089 -1936 -972 -1091 -8607
MPD 2003 -4009 -2486 292 -1167 -2528 -9898
MPD 2002 -1863 -2967 167 -131 -1145 -5938
MPD 2001 -4081 -1676 863 -311 -1398 -6602
MPD 2000 -5936 -662 792 -497 -575 -6879
MPD 1999 -4360 -163 680 -469 -968 -5280
MPD 1998 -2915 -361 565 -2219 -3565 -8495
MPD 1997 -2506 -186 2179 -1460 -1479 -3451
MPD 1996 -5498 -233 2530 -2000 -644 -5846

 

SUMMARY AND CONCLUSIONS  

The primary areas of concern we found in the EASM-like and NASM-like model analyses was 
that the data were over-weighted (that is, residuals tended to be over-dispersed relative to the 
error assumed for individual data components) and there was a strong age-related pattern in the 
residuals from the fits to the age composition data. Given the larger number of parameters in 
these models, one would hope for more balanced residuals. 
 
An implementation of the HCAM was developed for analyzing the herring fisheries data that we 
believe has better performance than either the EASM or the NASM, although it incorporates 
aspects of both the EASM and the NASM.  Diagnostics from the HCAM implementation that we 
believe indicate better performance are: a reduction in the magnitude of the retrospective pattern; 
a reduction in the magnitude of the age-related pattern in age composition residuals, and better 
coherence between the assumed and empirical estimates of the lack of model fit to the data.  
 
HCAM is structured for Bayesian estimation, which we believe is superior to maximum 
likelihood estimation for fisheries assessment models because it facilitates estimation of the 
uncertainties in estimated and derived parameters. Additionally, a Bayesian approach facilitates 
estimation of parameters for which there is generally little information in the data through the 
influence of the priors.  An example is the stock-recruitment parameter steepness, which is 
generally not well determined from fisheries data.  However, results from meta-analyses can 
provide informed priors (estimated for species groups) for this parameter (Myers et al. 2002) 
improving the consistency of its estimation.     
   
Bayesian estimation performs best with well-developed informed priors.  For these analyses, we 
did not attempt to develop informed priors, but rather adopted those specified for the NASM 
analysis or specified ad hoc priors.  Additional work to develop informed priors would benefit 
the herring assessments.  These could be based on additional data and information not directly 
used in the assessment or based on published results from meta-analyses. In particular, the priors 

Table 14. The difference between EASM and HCAM R13 TAC projections (20% of projected biomass in 
tonnes) for the retrospective runs from 1996 through 2005.  EASM projections are all based on the MLE, 
while HCAM projections are primarily from the MPD estimates.  For the 2005 analysis the median from the 
MCMC analysis are presented for comparison with the MPD results.    
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on the spawn index proportionality constants “q” should be informed priors, and there is 
additional data not used in the model from which the priors could be developed. 
 
The NASM analysis models annual variation in natural morality rates as independent annual 
events, whereas the HCAM analyses assume trends in the annual changes in natural mortality 
rates (i.e. a “random walk”).  The rationale for the NASM parameterization of natural mortality is 
to allow for episodic emigration events (Ware and Schweigert, 2001) as well as inter-annual 
variation in predation rates. We prefer the “random walk” parameterization because emigration or 
immigration events should be estimated by modelling the herring populations simultaneously to 
ensure the emigration and immigration events balance and changes in predation rates are likely to 
change slowly over time rather than with annual random variation.  We did not explore other 
alternative assumptions regarding annual changes in natural mortality, for example Haist et al. 
(1993) found evidence for density dependent natural mortality rates in the B.C. herring stocks.    
 
Alternative methods for improving model fits to the age composition data sets and reducing the 
impact of large outliers were examined.  These included; assuming fishery-specific deviations 
from the age-specific average selectivity, assuming a larger variance for the process error in fits 
to the age composition data, and using a robust-normal likelihood which down-weights large 
residuals in fitting the age composition data. None of these approaches were clearly superior, 
though the assumption of fishery-specific deviations from the average selectivity resulted in 
residuals that were more evenly distributed across age classes.      
 
Evidence that local minima solutions were often obtained when fitting to the herring data sets 
was found for both the NASM-like and HCAM R11 model structures. No such evidence was 
found for the EASM-like model, and other HCAM runs were not examined for possible local 
minima estimates.  Further work evaluating alternative phase sequences for adding model 
parameters to the estimation, may show a phase sequence that can consistently provide the best 
fits to the data.  
 
Aspects of the HCAM parameterization that were not examined in these analyses include; the 
stock-recruitment function, alternative approaches to initializing the populations, and using the 
instantaneous form of the catch equations.  Additional work to evaluate these options is 
warranted. 
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Appendix A.  Description of the generic herring catch-age model (HCAM). 
 
The herring catch-age model partitions the populations by region, year, fishing period, sex, and age.  
Because the analyses presented in this document do not use the region and sex partitions and for ease of 
presentation, this description does not include notation for those options. 
 
The following table describe model parameters: 
 
Parameter Description 
Derived parameters 

,i jN  The number of fish of age j at the beginning of year i 

, ,i p jN ′  The number of fish of age j at the beginning of period p of year i that are 
available to the fishery 

iB  The spawning stock biomass in year i 

, ,i p jF  The instantaneous fishing mortality for fish of age j during fishing period p and  
year i 

, ,i p jM  The instantaneous natural mortality for fish of age j during fishing period p and  
year i 

, ,i jM •  The total natural mortality for fish of age j during year i 

iR  The recruitment in year i 

,i jλ  Proportion of fish at age j available to the fisheries in year i 

, ,i p js  Selectivity at age j for fishing period p in year i  

,α β  Parameters of the stock-recruitment relationship 

, ,
ˆ

i p jC  Fitted catch at age j (numbers) during fishing period p and year i 

, ,ˆ i p jp  Fitted proportion at age j  during fishing period p and year i 

Indices 
, ,l hi i i  Indexes year:  and l hi i are the first and last years, respectively 
, ,l hj j j  Indexes age-class:  and l hj j are the first and last age-classes, respectively  
, hp p  Indexes fishing period: hp  is the final fishing period 

la  First age-class with age-dependent natural mortality trend 

Observations 
,i pC%  Catch in mass or numbers during fishing period p and year i 

, ,i p jp%  The proportion of fish at age j in the catch of fishing period p and year i 

,i pS%  The number of fish aged for fishing period p and year i 

iI%  Spawn index in year i 

,
S
i jw  Mean spawning weight of fish at age j in year i  

,
C
i jw  Mean weight of fish in the catch at age j in year i  

,
G
i jw  Geometric mean weight of fish at age j in year i in the gillnet catch 
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The following table describes parameters that are estimated through the minimization: 
 
Parameter Description 

0R  Average recruitment (at unfished equilibrium, when S-R assumed) 
R
id  Recruitment deviations 

h  Stock-recruitment steepness 
1ψ  Average natural mortality rate 

2ψ  Age-dependent mortality parameter 
M
id  Annual deviations for natural mortality 
2
Rσ  Variance of recruitment 

,p kγ  Selectivity ogive parameters for fishery p 

,
S
i pd  Fishery-specific selectivity deviations 

kv  Availability ogive parameters 
A

id  Annual deviations from average availability 

jη  Parameters for the number of fish of age j in the first year 

,i pF ′′  Fully-selected fishing mortality rates for fishery p in year i 

1 2,q q  Spawn index proportionality constants for periods 1 and 2 

,a a− +  Probabilities for not counting an age ring and counting two rings where only one is 
present  

 
The model description follows. 
 
Fishing and population dynamics: 
 
The following equations describe the population and fishing dynamics: 
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For the NASM-like implementation of the model the, ijλ  parameters are fixed at 1. 
For the EASM-like implementation, which assumes that the available fish represent the mature component 
of the population, the maturity parameters jm are set to 1. 
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Catch equations: 
 
There are two options for describing how catch is taken, the instantaneous (Baranov) catch equations and 
the discrete catch equations.    
 
The form of the instantaneous (Baranov) fishing mortality equation is: 
 

( ), ,
, , , , , , , ,

, , , ,

ˆ 1 exp(i p j
i p j i p j i p j i p j

i p j i p j

F
C F M N

F M
′= − − −

+
 

 
where , , , , ,i p j i p j i pF s F ′′= .  The fully selected fishing mortality rates, ,i pF ′′ , can be calculated iteratively 
through a Newton-Raphson algorithm or estimated as free parameters (as is done in EASM). 
 
The form of the discrete catch equation is: 
 

( ), , , , , , , , ,
ˆ expi p j i p j i p j i p i p jC M s F N′ ′= −  

 
where there are two options for estimating the ,i pF ′ :  1)  as free (estimated) model parameters, or 2) 

( )( )
,

,
, , , , , , ,exp

i p
i p C

i p j i p j i j i p j
j

CF
M s w N

′ =
′−∑

%
 .  Note that first option assumes errors in the total catch data 

and the second option assumes no errors in the total catch data.  For the discrete catch equations the 
variables , ,i p jF  are estimated as: ( ), , , , ,lni p j i p j i pF s F ′= − . 
 
When the catch data is in numbers the average fish weight ,

C
i jw  is set to 1. The discrete form of the catch 

equations is used in the NASM-like model and the HCAM model runs. 
 
 
Parameterizing age-dependent availability and selectivity: 
 
Age-dependent selectivity can be parameterized using the following functions: 
 

Logistic NASM: ( )( )( )( ) 1
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For this parameterization, deviations are applied using odds-ratios to ensure the resultant parameter values 
remain between 0 and 1: 
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When fishery-dependent deviations are not estimated (i.e. ,

S
i pd =0) then , , , ,i p j i p js s′= . 

The set of functions that can be used to define selectivity can also be used to define age-dependent 
availability.  In that case the variables , ,i p js  are replace by ,i jλ  and the free parameters , , and S

p k i pdγ are 

replaced by  and A
k idν . 

 
 
Natural Mortality: 
 
Natural mortality is apportioned across the fishing periods based on user specified mortality fractions 
( )pf  for each period: 
 

, , , ,  where  0 1  and  1i p j p i j p p
p

M f M f f•= ≤ ≤ =∑  

 
As with fishing mortality, there are a number of options coded in HCAM for the parameterization of 
natural mortality.  The annual instantaneous natural mortality rates can vary annually, either with a time-
series component or not.  Also, they can be age-dependant. 
 
M estimated as free parameter: 
 

, , 1i jM ψ• = . 
 
The parameterization of annual deviations: 
 

( ) , ,
, , exp where  M i j

i j i
i j

MM M d M n
•

• = =∑∑  

 
where n is the product of the number of years and the number of age-classes in the model. Note that the 
above equations require a recursive solution.  This form is based on the NASM parameterization and is 
only sensible in the Bayesian context. 
 
The parameterization of annual deviations as a random walk is: 
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The parameterization of age-dependent M is: 
 

( ), , , , 1 21i j i j l l hM M j a a j jψ• • −= + − + < ≤  
 
In the HCAM structure it is possible to model both age-dependent natural mortality and the “random 
walk” annual changes in natural mortality but not the combination of age-dependent natural mortality and 
annual deviations in natural mortality. 
 
 
Stock-recruitment relationship: 
 
A Beverton-Holt stock recruitment relationship is coded in HCAM, using the steepness parameterization 
of Mace and Doonan (1988): 
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where  and α β are defined in terms of 0B and the “free” parameters 0and h R  
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and 0B , the average biomass in the absence of fishing is then given by: 
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This implementation of the Beverton-Holt stock recruitment relationship differs from the NASM 
implementation (Schweigert et al. 2006).  Their parameterization includes a second average recruitment 
term, R , in the stock-recruitment likelihood, and estimates the autocorrelation in stock-recruitment 
residuals. 
 
 
Population Initialization: 
 
The populations can be initialized either by assuming equilibrium conditions or by estimating the initial 
population with “free” parameters. 
 
Initialization with free parameters: 
 

,li j jN η= . 
 
Initialization assuming equilibrium conditions: 
 

( ), 0 exp
li j jN R Z ′= −  
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where , 1
1

l

l

k j

j i k
k j

Z M
=

−
= +

= ∑  under the assumption of no fishing prior to the first year of the analysis, and 

( ), 1
1

l

l

k j

j i k
k j

Z M κ
=

−
= +

= +∑  under the assumption of  a constant level of fishing (κ ) prior to the first year of 

the analysis.  
 
 
Ageing Errors: 
 
Two options are coded in HCAM for estimating ageing errors. 
 
Age-dependent ageing errors: 
 
This option involves estimating a vector that defines the age-dependent probabilities of under-ageing a 
fish by one year ( )( ),  for  1j l ha j j j− + < ≤ and a second vector that defines the age-dependent 

probabilities of over-ageing a fish by one year ( ),  for  j l ha j j j+ < < .  This parameterization assumes the 

first age-class is aged without error.  An ageing error matrix ( )Χ is constructed from these vectors.  For 
example, given a true fish age of k, ka−  fish will be aged k-1,  1 k ka a− +− −  will be aged k, and kq+  will be 
aged k+1. 
 
Ring-dependent ageing errors: 
 
The second ageing error option is based on a model developed by Francis (2003).  The basic assumption is 
that for each ring in the ageing structure there is a probability that the ring will not be counted and second 
probability that two rings will be counted. Thus, the probability of ageing error increases with age and 
may be asymmetrical.  This option involves estimating two parameters, a− , the probability that a ring will 
not be counted, and a+ , the probability that for a true ring, two rings will be counted.  In implementing 
this option we assume that the first ring is always corrected counted.  The ageing error matrix ( )Χ  is built 
using combinatorics, treating the probability of detecting each true ring as IID events. 
 
Spawn index proportionality constants: 
 
Spawn index proportionality constants are defined for two periods, 1951−1987, and 1988−2005 
( )1 2 and , respectivelyq q .  Both indices can either be fixed or estimated. 
 
For the EASM-like and NASM-like models only the first parameter, 1q , is estimated and 2q  is fixed at 1.  
For the HCAM model runs, 1q  is always estimated and 2q  is estimated in a few runs (otherwise fixed at 
1). 
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Likelihoods:  
 
Age composition data: 
 
The multinomial and two forms of robust-normal likelihoods are coded for fitting to age composition data. 
The fitted proportions at age are modified by the ageing error matrix.  Let ,i pp′  be the age vector of 

proportions at age j before ageing error, then the fitted proportions at age after ageing error ( ),ˆ i pp  is given 
by: 
 

, ,ˆ i p i pp p′= Χ    where  , ,
, ,

, ,

ˆ
ˆ

i p j
i p j

i p j
j

Cp
C

′ =
∑

   

 
 
The negative log likelihood given the multinomial error assumption is: 
 

( ) ( ) ( ), , , , , ,ˆlog ln lni p i p j i p i p jL S p S p′ ′− = − % . 
 
Note that the second term of this equation is a constant. 
 
The first robust-normal likelihood option was proposed by Fournier et al. (1990) to reduce the effect of 
outliers when fitting to proportion at length data. This likelihood is based on a multinomial-like variance 
for the proportions, and adds a constant term to the normal likelihood to reduce the effect of large outliers.  
The negative log likelihood for the Fournier robust-normal distribution is: 
 

( ) ( ) ( )2

, , , ,
, ,

, ,, , , ,

,

ˆ
log 0.5 ln log exp 0.012

i p j i p j
i p j

i p ji p j i p j

i p

p p
L r r

S

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− −
⎜ ⎟− = − +⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′⎝ ⎠⎝ ⎠

∑ ∑
%

 

 
where ( ) ( ), , , , , ,

0.01ˆ ˆ1 1i p j i p j i p j
h l

r p p j j= − + − + . 

 
An alternative to the robust-normal likelihood was proposed by Starr et al. (1999).  They conducted 
simulation experiments and showed that the Fournier robust-normal could result in biased estimation.  
This likelihood, sometimes called the Coleraine likelihood (Bull et al. 2003), replaces the , ,i p jr  of the 

Fournier version with ( ) ( ), , , , , ,
0.011 1i p j i p j i p j

h l
r p p j j= − + − +

% % . 

 
For fitting the EASM-like and HCAM model formulations we assume the “Coleraine” version of the 
robust normal rather than the Fournier version.   
 
We include the option of allowing process error in the fits to the age composition data. For both the 
multinomial and the robust-normal likelihoods, the overall variance of a data set is proportional to its 
sample size.  When process error is assumed, the quantities ,i pS ′ are given by: 
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,
, _

1
1 1i p

i p process error

S
S S

′ =
+%

 

 
When no process error is assumed, , ,i p i pS S′ = % . 
 
Spawn index data: 
 
Lognormal distributions are assumed for the spawn index data.  The negative log likelihood is given by 
(ignoring the constant): 
 

( )

2

2

ln
ln

2

i

i ii

i

I
q B

L
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠− =

∑
%

 

 
 
Catch data: 
 
For the EASM-like model, lognormal distributions are assumed for the catch data.  For other 
implementations of the HCAM model the catch data is fitted without error. The negative log likelihood for 
the catch data is given by (ignoring constants): 
 

( )

2

,

,
2

ln ˆ
ln

2

i p

i i p

C

C
C

L
σ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠− =

∑
%

 

 
 
Priors: 
 
The NASM and HCAM models are implemented for Bayesian estimation and thus require specification of 
priors for all “free” model parameters.  These priors contribute to the objective function in the Bayesian 
integration.    
 
Recruitment residuals ( )R

id : 

 
Stock-recruitment residuals are assumed normally distributed with mean 0 and variance 2

Rσ .  The prior 
contribution to the objective function is: 
 

( ) ( ) ( )2

2
1

ln
2

h
Ri
i

h l R
i il R

d
i i σ

σ= +

⎛ ⎞
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

∑ .  

 
Stock-recruitment steepness ( )h : 
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The stock-recruitment steepness parameter is assumed normally distributed with mean 0.5 and variance 
2
hσ .  Additionally, the steepness parameter is bounded on the interval 0.2-1.0, making this an improper 

prior. The prior contribution to the objective function is (ignoring the constant): 
 

( )
2

0.5
2 h

h
σ
−

. 

 
NASM assumes a beta distribution for the steepness prior, but with the same expected value as here, so 
this implementation should be similar to theirs. 
 
Stock-recruitment residual variance ( )2

Rσ : 

 
The stock-recruitment variance parameter is assumed normally distributed with mean 0.6 and variance 

2
S Rσ − .  The prior contribution to the objective function is (ignoring the constant): 

 
( )

2

0.6
2
R

S R

σ
σ −

−
. 

 
Natural mortality deviations ( )M

id : 

 
The parameters representing natural mortality deviations are assumed normally distributed with mean 0 
and variance 2

Mσ .  The prior contribution to the objective function is (ignoring the constant): 
 

( )
22

M
i

M

d
σ

. 

 
Selectivity deviations ( )S

id : 

 
The parameters representing selectivity deviations are assumed normally distributed with mean 0 and 
variance 2

Sσ .  The prior contribution to the objective function is (ignoring the constant): 
 

( )
22

S
i

S

d
σ

. 

 
Availability deviations ( )A

id : 

 
The parameters representing selectivity deviations are assumed normally distributed with mean 0 and 
variance 2

Sσ .  The prior contribution to the objective function is (ignoring the constant): 
 

( )
22

A
i

A

d
σ

. 
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Average natural mortality rate: 
 

The mean natural mortality rate, ( )( )( )
, ,

,

1 1

i j
i j

h l h l

M
M

i i j j

•⎛ ⎞
⎜ ⎟=⎜ ⎟− + − +⎜ ⎟
⎝ ⎠

∑
, is assumed normally 

distributed with mean 0.45 and variance 2
Mσ .  The prior contribution to the objective function is (ignoring 

the constant): 
 

( )
2

0.45
2 M

M
σ
−

. 

 
When natural mortality deviations are not estimated, the above equation for the mean natural mortality 
rate is simply, 1M ψ=  

 
Remaining parameters: 
 
The remaining “free” parameters, , 1 2 2, , , , , , , ,o p k kR q q a aγ υ ψ − +  are assumed to be uniformly distributed, 
so the prior contribution to the objective function is constant.  The range of some of these uniform 
distributions is sometimes restricted, eg. [ ]2 ~ 0.7,1.0q U . 
 
 
Residuals: 
 
HCAM calculates two kinds of residuals, Pearson residuals and normalized residuals.  Pearson residuals 
express the residual relative to the variability of the observation, and normalized residuals express the 
residual on a standard normal scale.  
 
Let O be an observation and F the corresponding fit.  The Pearson residuals are defined as: 
( )

( ). .
O F

st dev O
− .  For the multinomial distribution with sample size N:  

 

( ) ( )1. . F Fst dev O N
−= .  

 
 
 For the “Coleraine” robust-normal distribution, with n observations in the sample N: 
 
 

( ) ( )( )1 .01/
. .

O O n
st dev O N

− +
= . 
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Normalized residuals are equal to the Pearson residuals for the normal error distribution and for the 
multinomial error distribution.  For the lognormal error distribution, the normalized residual is: 
 

( )
( )

ln
. .

O F
st dev O . 

 
Normalized residuals are not defined for the robust normal error distribution, which is not a proper density 
function.  However, on the basis that the robust normal likelihood tends towards a constant as deviations 
approach ± 3 standard deviations from the fitted values, we calculate an approximate-normalized residual 
for the robust normal distribution by truncating residuals at ± 3. 
 
 
 
Appendix Table 1.  The number of parameters estimated for each model.  For HCAM the number of 
parameters estimates is run dependent so where parameters are only estimated in some runs, this is indicated. 
Parameter EASM-like NASM-like HCAM 

0R  1 1 1 
R
id  55 62 62 

h   1 1 
1ψ  1  1 

2ψ    1  R8-R12 
M
id   55 54 R9-R14 
2
Rσ   1 1 

,p kγ  2   4 R1; 2 R2; 7 R3-R14 
 

,
S
i pd   79-120 79-120 R11 & R12 

kv  2  2 R2 
A

id  55   

jη  5   

,i pF ′′  79-120   

1 2,q q  1 1 2 R8 & R12, 
 1 otherwise 

,a a− +    2 R5-R14 
Total 201-250 200-249 Variable by run, see Table 8 
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Appendix Table 2. Fixed and assumed values in the EASM-like, the NASM-like, and the HCAM model runs. 
Parameter EASM-like NASM-like HCAM 

iσ  
0.0707 1951 2005i≤ ≤

0.35 1951 1987
0.25 1988 2005

i
i

≤ ≤
≤ ≤

0.4 1951 1987
0.35 1988 2005

i
i

≤ ≤
≤ ≤

 

Cσ  0.0707 N/A N/A 

hσ  N/A 0.25 0.25 

S Rσ −  N/A 0.2 0.2 

Mσ  N/A 0.2 0.1 

Sσ  N/A 0.3 0.3 

Aσ  N/A N/A 0.3 

Mσ  N/A N/A 0.2 

2q  1 1 1, except R8 & R12, 
where estimated 

_process errorS  N/A 1
0.003  R1-R12, R14 

1
0.009       R13 

N/A 

pf  {0.9, 0.05, 0.05} p=1,2,3 {1,0,0} p=1,2,3 {0.45, 0.45, 0.1} p=1,2,3 

jm  N/A N/A {0.25, 0.9, 1,1,1,1,1,1,1} 
j=2,3,4,…10 
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Negative log-likelihood values and contribution of priors to the objective function 

Run    Stock Total
Age

 comp.
Spawn 

data
Sel.

 Devs.
M 

devs
    S-R   
resids Sigma R h m

R1 GS 1265.0 1225.0 46.7 0 0 -7.63 0.06 0.24 0.71
 WCVI 1141.3 1059.3 55.1 0 0 24.54 0.46 1.92 0.01
 CC 1482.1 1397.4 54.3 0 0 28.32 0.48 1.47 0.11
 PRD 2653.9 2579.2 41.0 0 0 31.06 0.56 1.89 0.24
 QCI 1576.5 1433.0 92.6 0 0 47.15 1.88 1.76 0.00
           
R2 GS 1173.7 1136.6 45.2 0 0 -9.64 0.09 0.41 1.06
 WCVI 1153.0 1060.8 68.9 0 0 21.02 0.36 1.92 0.08
 CC 1473.3 1371.0 74.3 0 0 25.56 0.41 1.92 0.05
 PRD 2610.1 2527.7 50.3 0 0 29.45 0.52 1.92 0.20
 QCI 1655.0 1450.1 158.7 0 0 42.51 1.70 1.92 0.04
           
R3 GS 1263.8 1224.8 45.5 0 0 -7.44 0.06 0.25 0.67
 WCVI 1089.2 1012.0 53.3 0 0 21.56 0.38 1.82 0.06
 CC 1322.9 1234.8 64.2 0 0 22.04 0.32 1.47 0.02
 PRD 2431.8 2345.2 63.3 0 0 21.54 0.35 1.39 0.00
 QCI 1502.4 1291.1 145.3 0 0 62.16 2.64 0.87 0.01
           
R4 GS 1100.1 1061.0 48.1 0 0 -10.43 0.10 0.34 0.96
 WCVI 1064.8 974.8 63.1 0 0 24.95 0.55 1.22 0.11
 CC 1234.2 1151.3 60.0 0 0 20.69 0.27 1.83 0.05
 PRD 2249.9 2070.3 155.3 0 0 22.86 0.47 0.13 0.86
 QCI 1506.6 1292.8 148.6 0 0 61.39 2.62 0.91 0.01
           
R5 GS 1085.1 1044.1 47.9 0 0 -8.45 0.07 0.37 1.12
 WCVI 1041.7 948.3 64.2 0 0 27.21 0.69 1.24 0.12
 CC 1214.8 1125.8 60.3 0 0 26.18 0.48 1.91 0.07
 PRD 2200.5 2013.8 158.5 0 0 26.38 0.68 0.14 1.00
 QCI 1484.6 1260.9 152.1 0 0 67.11 3.26 0.80 0.01
           
R6 GS 1014.8 975.4 49.2 0 0 -11.19 0.11 0.40 0.89
 WCVI 879.7 786.2 64.3 0 0 26.91 0.67 1.52 0.05
 CC 999.7 915.2 58.8 0 0 23.34 0.40 1.80 0.06
 PRD 1858.5 1704.2 129.8 0 0 23.64 0.61 0.01 0.22
 QCI 1173.1 1014.3 102.6 0 0 51.89 2.45 1.80 0.01
           
R7 GS 1073.5 1032.0 48.2 0 0 -8.24 0.06 0.38 1.09
 WCVI 1005.3 909.7 65.2 0 0 28.26 0.75 1.27 0.10
 CC 1148.2 1057.1 62.6 0 0 26.25 0.50 1.70 0.04
 PRD 2142.3 1959.4 154.5 0 0 26.75 0.72 0.11 0.84
 QCI 1410.1 1184.3 150.2 0 0 70.70 3.60 0.96 0.00
           
R8 GS 1055.7 1009.9 50.1 0 0 -6.09 0.03 0.50 1.33
 WCVI 911.9 817.1 63.9 0 0 27.91 0.83 1.92 0.12
 CC 1028.1 942.0 54.5 0 0 28.90 0.67 1.88 0.14
 PRD 1979.8 1866.0 85.4 0 0 26.32 0.72 1.42 0.00
 QCI 1314.6 1162.3 99.1 0 0 48.88 2.38 1.92 0.03
           
R9 GS 997.8 935.0 40.4 0 16.66 4.31 0.01 0.42 1.03
 WCVI 861.1 797.9 32.9 0 11.43 16.48 0.30 1.52 0.51
 CC 955.5 857.0 45.6 0 18.48 31.18 1.14 1.92 0.17
 PRD 1983.0 1873.2 52.4 0 19.33 35.53 1.65 0.01 0.85
 QCI 1148.9 1025.5 57.7 0 25.04 36.37 1.64 1.92 0.57
           
  
  

Appendix Table 3. Estimates of the negative log-likelihood and prior contributions to the objective function 
(described in the Table 5 caption) for the HCAM model runs. 
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Negative log-likelihood values and contribution of priors to the objective function 

Run    Stock Total
Age

 comp.
Spawn 

data
Sel.

 Devs.
M 

devs
    S-R   
resids Sigma R h m

R10 GS 983.6 931.8 32.2 0 14.94  3.07 0.01 0.20 1.45
 WCVI 856.5 797.0 32.6 0 11.03 13.35 0.19 1.64 0.62
 CC 944.5 854.5 41.3 0 17.36 28.16 0.94 1.92 0.29
 PRD 1965.5 1865.7 44.7 0 17.66 34.73 1.60 0.00 1.11
 QCI 1141.4 1023.1 55.4 0 23.35 35.31 1.58 1.90 0.75
           
R11 GS 398.1 374.3 24.4 4.04 6.79 -13.63 0.16 0.66 1.33
 WCVI 400.6 327.9 27.6 4.56 9.10 28.69 1.00 1.13 0.60
 CC 578.9 479.6 42.7 16.02 8.76 28.09 0.90 1.92 0.07
 PRD 886.4 802.3 34.1 11.97 8.07 28.37 0.81 0.70 0.02
 QCI 590.6 474.7 45.5 8.46 10.89 46.24 2.66 1.72 0.21
           
R12 GS 388.6 370.3 19.3 3.95 6.15 -13.33 0.15 0.43 1.63
 WCVI 392.1 326.2 26.1 4.56 9.34 22.90 0.62 1.58 0.73
 CC 572.4 477.9 40.3 16.67 8.13 25.83 0.78 1.92 0.18
 PRD 862.3 781.6 32.5 11.69 8.04 26.74 0.74 0.74 0.08
 QCI 583.0 472.7 43.8 8.48 10.71 42.67 2.26 1.85 0.30
           
R13 GS 404.3 394.5 26.4 0 9.92 -30.39 0.62 1.81 1.36
 WCVI 389.0 342.4 26.9 0 8.53 9.11 0.10 1.38 0.55
 CC 460.9 385.7 38.1 0 13.30 21.18 0.55 1.92 0.08
 PRD 892.2 810.5 37.8 0 13.23 28.99 1.13 0.09 0.51
 QCI 606.3 504.3 52.2 0 17.02 29.40 1.13 1.68 0.43
           
R14 GS -613.3 -640.6 32.7 0 9.32 -18.97 0.27 1.77 2.23
 WCVI -338.6 -395.7 27.2 0 10.50 16.53 0.31 1.47 1.02
 CC -368.6 -447.9 42.3 0 9.77 24.54 0.77 1.92 0.00
 PRD -77.9 -149.1 31.5 0 7.91 30.21 1.29 0.20 0.05
 QCI -153.1 -267.2 55.8 0 21.27 32.46 1.53 1.92 0.95

 


