## sccs

Secrétariat canadien de consultation scientifique
Document de recherche 2005/018

Ne pas citer sans
autorisation des auteurs *

# Évaluation du stock de morue (Gadus morhua) dans les divisions 2J3KL de I'OPANO, en mars 2005 

G.R. Lilly, J. Brattey, N.G. Cadigan, B.P. Healey and E.F. Murphy

Science Branch
Fisheries and Oceans Canada
P.O. Box 5667, St. John's, NL A1C 5X1

[^0]
## TABLE OF CONTENTS / TABLE DES MATIÈRES

ABSTRACT ..... iii
RÉSUMÉ ..... iv
1 Introduction ..... 1
2 The fishery ..... 3
2.1 Nominal catches prior to the 1992 moratorium ..... 3
2.2 Management advice, TACs and catches during 1992-2002 ..... 4
2.3 Landings during 2003 and 2004. ..... 4
2.4 By-catch, discards and illegal fisheries ..... 6
2.5 Sampling of catch in 2003 and 2004 ..... 7
2.6 Catch numbers and weights at age ..... 7
3 Stakeholder perspectives ..... 9
4 Stock structure ..... 10
5 Population indices ..... 11
5.1 Bottom-trawl surveys ..... 11
5.1.1 Survey design ..... 11
5.1.2 Autumn bottom-trawl surveys ..... 13
5.1.2.1 Autumn abundance and biomass ..... 13
5.1.2.2 Autumn mean catch at age per tow ..... 14
5.1.2.3 Effect of strata missed during autumn 2004 ..... 15
5.1.2.4 Autumn distribution ..... 16
5.1.3 Spring 3L bottom-trawl surveys ..... 17
5.1.3.1 Spring 3L abundance and biomass ..... 17
5.1.3.2 Spring 3L mean catch at age per tow ..... 17
5.1.3.3 Spring 3L distribution ..... 18
5.2 Sentinel surveys ..... 18
5.2.1 Sentinel catch rates by site and Division ..... 19
5.2.2 Sentinel standardized (modelled) CPUE ..... 19
5.3 Hydroacoustic survey of Smith Sound ..... 22
6 Population biology ..... 23
6.1 Maturity ..... 23
6.2 Growth ..... 24
6.3 Condition ..... 24
7 Stock trends ..... 25
7.1 Offshore ..... 25
7.1.1 Spawner stock biomass in the offshore ..... 25
7.1.2 Recruitment in the offshore ..... 26
7.1.3 Mortality in the offshore ..... 26
7.2 Inshore ..... 27
7.2.1 Exploitation rates from tagging ..... 27
7.2.1.1 Exploitation rates from individual tagging studies ..... 28
7.2.1.2 Exploitation rates and exploitable biomass in specific areas ..... 28
7.2.1.3 Evidence of high natural mortality based on tagging data ..... 29
7.2.2 Sequential population analysis (SPA) ..... 30
7.2.2.1 Very brief history of SPAs for 2J3KL cod. ..... 30
7.2.2.2 SPA for resident inshore cod ..... 32
8 Conclusions and advice ..... 35
8.1 Inshore fishery and inshore population growth ..... 35
8.2 Inshore fishery and offshore recovery ..... 36
8.3 Regional vulnerability to exploitation ..... 37
9 Other considerations ..... 37
9.1 Physical oceanography ..... 37
9.2 Predators ..... 38
9.3 Prey ..... 38
References ..... 39
Appendix 1. Objectives for the assessment ..... 170
Appendix 2. Management regulations during 1996-2002 ..... 171
Appendix 3. Groundfish conservation harvesting plan for 2004. ..... 176
Appendix 4. The inshore cod of Divisions 3K and 3L ..... 182
Appendix 5. The collapse of 2J3KL cod. Some thoughts on the role of the environment ..... 192
Appendix 6. Factors influencing the re-building of 2J3KL cod ..... 197
Appendix 7. The role of predators, especially seals, in the dynamics of cod since the mid-1990s ..... 203
Appendix 8. The role of prey, especially capelin, in the dynamics of cod since the mid-1990s ..... 207


#### Abstract

The directed commercial fishery for northern (2J3KL) cod was closed in 1992, reopened for small boats in the inshore alone during 1998-2002, and closed again in 2003. Landings in 2003 came mainly from a mass mortality of cod in Smith Sound during April, and landings in 2004 were mainly from by-catch during a winter (blackback) flounder fishery in summer. Because of differences in the dynamics of offshore and inshore populations of northern cod since the mid-1990s, information is provided for the offshore and inshore separately. Populations in the offshore remain broadly distributed at very low density. The indices of biomass from research bottom-trawl surveys in autumn (2J3KL) and spring (3L only) are at less than $2 \%$ of their levels during the 1980s. Recruitment in the offshore has been very low and total mortality has been very high since at least the mid-1990s. Few fish survive beyond age 5. In the inshore, catch rates in sentinel surveys (1995-2004) and commercial fisheries (1998-2002), as well as cod by-catch in fisheries targeted at other species (2003-2004), indicate that there has been relatively few cod in 2J and northern 3 K since at least the mid-1990s. However, there have been high catch rates at various times and places in southern 3K and in 3L. Inshore catch-rate indices from linetrawl and gillnet sentinel surveys increased from 1995 to a peak in 1997 and 1998 respectively, declined by the early 2000s, and then increased during recent years to levels similar to those in 1995. For the purpose of this assessment, the inshore is subdivided into three areas: 1) a northern area ( 2 J and northern 3 K ) that contains relatively few cod; 2) a central area (southern 3 K and northern 3L) where most of the resident inshore fish are located; and 3) a southern area (southern 3 L ) that is, at present, largely dependent on cod that overwinter in inshore and offshore areas of 3Ps, move into southern 3L in the spring-summer and return to 3Ps in the autumn. A sequential population analysis (SPA) was conducted for the resident cod in the inshore central area. SPA estimates indicate that spawner biomass in this area increased from $10,000 \mathrm{t}$ in 1995 to $22,000 \mathrm{t}$ in 1998, declined during 1998-2002 (when there was a commercial fishery) to $7,000 \mathrm{t}$ in 2003, and has subsequently increased to $13,000 \mathrm{t}$ by the beginning of 2005. The estimate of age 4+ biomass at the beginning of 2005 is about $20,000 \mathrm{t}$. Fishing mortality increased from 1998 to a peak of about $35 \%$ in 2001 and 2002 and has subsequently declined to relatively low levels. Deterministic projections from 2005 to 2008 were conducted for the inshore central area under three annual catch options and three recruitment assumptions (low, medium, high). No such projections could be performed for the northern and southern areas. The inshore northern area appears to have very low densities of cod. Any catch option would likely impose high fishing mortality and further reduce stock size in this area. The inshore southern area is primarily dependent on seasonal immigration of fish, the magnitude of which cannot be predicted. Therefore, the effect of removals of various levels cannot be estimated. There is a risk that fishing in the inshore will impede recovery in the offshore. The spawner biomass of the stock as a whole remains far below any conservation limit reference level as generally applied through the precautionary approach to fisheries management. Although such a level has not been defined precisely for 2J3KL cod, it is anticipated to lie above 300,000 t.


## RÉSUMÉ

La pêche dirigée de la morue du Nord (2J3KL) a été fermée en 1992, rouverte aux petits bateaux côtiers seulement de 1998 à 2002, puis fermée à nouveau en 2003. Les débarquements en 2003 étaient attribuables principalement à une mortalité massive de morues survenues dans le bras Smith, en avril et, en 2004, aux prises accessoires d'une pêche de la plie rouge, en été. En raison des différences constatées dans la dynamique des populations des eaux extracôtières et des eaux côtières depuis le milieu des années 1990, l'information concernant ces eaux est présentée séparément. La morue du large demeure répartie sur un vaste territoire marin, mais à très faible densité. Les indices de biomasse provenant des relevés de recherche au chalut de fond effectués en automne ( $2 \mathrm{~J}+3 \mathrm{KL}$ ) et au printemps ( 3 L seulement) se situent à moins de $2 \%$ des niveaux des années 1980. Le recrutement dans les eaux extracôtières a été très faible et la mortalité totale a été très élevée depuis au moins le milieu des années 1990. Peu de poissons dépassent l'âge 5. Dans les eaux côtières, les taux de prise constatés dans les relevés par pêche sentinelle (1995-2004) et les pêches commerciales (1998-2002), ainsi que les prises accessoires de morue au cours des pêches dirigées vers d'autres espèces (2003-2004) indiquent qu'il y a eu relativement peu de morue dans 2 J et dans le nord de 3 K depuis au moins le milieu de la décennie 1990. Cependant, on a enregistré des taux de prise élevés à divers moments et endroits dans le sud de 3K et dans 3L. Les indices des taux de prise en eaux côtières dérivés des relevés par pêche sentinelle à la palangre et au filet maillant ont grimpé à partir de 1995 pour culminer, respectivement, en 1997 et en 1998, diminuer au début des années 2000, pour ensuite s’élever de nouveau au cours des dernières années et atteindre des niveaux semblables à ceux de 1995. Aux fins de la présente évaluation, les eaux côtières sont subdivisées en trois zones : 1) la zone du nord ( 2 J et nord de 3 K ), qui contient relativement peu de morues; 2) la zone du centre (sud de 3 K et nord de 3 L ), où se trouvent la plupart des poissons résidents des eaux côtières; 3) la zone du sud (sud de 3L), maintenant en grande partie dépendante de la morue qui hiverne dans les eaux côtières et extracôtières de 3Ps, se déplace vers le sud de 3L au printemps et en été, et revient vers 3Ps à l'automne. Une analyse séquentielle de la population (ASP) a été menée sur la morue résidente de la zone côtière du centre. Les estimations établies avec l’ASP indiquaient que la biomasse du stock reproducteur de cette zone était passé de 10000 t en 1995 à 22000 t en 1998, qu'elle avait diminué de 1998 à 2002 (lorsqu'une pêche commerciale a eu cours) pour s'établir à 7000 t en 2003, puis qu'elle avait par la suite atteint 13000 t au début de 2005. L'estimation de la biomasse des individus d'âge 4+ au début de 2005 est d'environ 20000 t . La mortalité par la pêche s'est accrue à partir de 1998 pour atteindre un sommet d'environ $35 \%$ en 2001 et en 2002 et descendre par la suite jusqu'à des niveaux relativement bas. On a établi des projections déterministes pour la zone côtière du centre pour la période s'échelonnant de 2005 à 2008, en utilisant encore une fois trois scénarios d'exploitation annuels et trois hypothèses de recrutement (faible, moyen, élevé). Aucune projection semblable n'a pu être réalisée pour les zones du nord et du sud. La zone côtière du nord semble présenter des densités de morue très faibles. Tous les scénarios d'exploitation étudiés engendreraient sans doute une mortalité par la pêche élevée et réduiraient davantage le volume des stocks dans cette zone. La zone côtière du sud dépend principalement de la migration saisonnière des poissons, dont l’ampleur ne peut être prévue. En conséquence, on ne peut évaluer l'effet des divers scénarios de prélèvement. Il est possible que la pêche menée dans les eaux côtières empêche le rétablissement dans les eaux extracôtières. Dans l'ensemble, la biomasse génitrice du stock de morue demeure de beaucoup inférieure à la limite propre à assurer la conservation des stocks que l'on applique généralement selon l'approche de précaution à la gestion des pêches. Bien qu'un tel niveau n'ait pas été défini avec précision pour la morue de $2 \mathrm{~J}+3 \mathrm{KL}$, on prévoit qu'il se situera au-dessus de 300000 t .

## 1 Introduction

The northern (2J3KL) stock of Atlantic cod (Gadus morhua) occupies the area from the southern Labrador Shelf to the northern Grand Bank (Fig. 1a-c), where it occurs from the coast to 500-600 m , and occasionally to 900 m , on the upper continental slope. Historically, much of the cod overwintered near the shelf break in 300-500 m from Hamilton Bank in Div. 2J to the Nose of the Bank in Div. 3L. At some time in the spring most of these fish moved onto the shelf, and many of them migrated during late spring and summer into the shallow, coastal waters where they fed on capelin (Mallotus villosus) that had approached the coast to spawn (Templeman 1966). The cod then moved back across the shelf during the autumn. Not all cod had this offshore-inshore migration pattern. For example, some cod moved during summer to feeding areas on the plateau of Grand Bank. Others spent the whole year in inshore waters, moving from deep inlets during winter to shallow feeding areas in summer.

The northern cod has been exploited for centuries (Lear and Parsons 1993; Hutchings and Myers 1995; Lear 1998). Annual landings increased through the $18^{\text {th }}$ and $19^{\text {th }}$ centuries to about 300,000 tonnes during the early decades of the $20^{\text {th }}$ century. The early fishery was limited to shallow water. Deep waters ceased to be refugia in the 1950s, when longliners were introduced to nearshore waters and distant water trawlers from Europe located and exploited dense aggregations of cod overwintering along the shelf break. Total landings escalated from 360,000 t in 1959 to 810,000 t in 1968 (Table 1; Fig. 2), and then plummeted to $140,000 \mathrm{t}$ in 1978. Mathematical reconstruction of the population in later years (e.g. Bishop et al. 1993) indicated that this severe overfishing had caused a decline in biomass (ages 3 and older) from about $3,000,000 \mathrm{t}$ in 1962 to about 500,000 t in 1978. The landings by distant water fleets declined substantially when Canada declared a 200 mile fishing zone in 1977. With the reduced fishing mortality, improved recruitment and an increase in individual growth rate, the population biomass started to rise. Canadian trawlers soon replaced the non-Canadian fleets on the winter fishing grounds, and catches once again rose to above 200,000 t. In 1988-1989 it was recognized that the stock size had been overestimated for several years, and that fishing mortality during the 1980s had been higher than intended. Quotas were reduced, but not sufficiently to prevent an increase in fishing mortality. In addition, oceanographic conditions became particularly severe during the early 1990s following two decades of low temperatures (Drinkwater 2002). The survey index declined precipitously in the early 1990s. The stock appeared to be declining rapidly, and in July 1992 Canada declared a moratorium on directed cod fishing. The survey index continued to decline, reaching an extremely low level by 1994. There has been almost no sign of improvement in the offshore during the subsequent decade.

After the stock as a whole collapsed in the early 1990s, it became clear that some aggregations of cod could still be found inshore. This engendered much interest in the stock affinities of these inshore fish. Numerous studies have indicated the likelihood of substock structure within the northern cod stock complex (see, for example, overviews by Lear 1986; deYoung and Rose 1993; Smedbol and Wroblewski 2002), and several sources of information support the hypothesis that fish overwintering inshore are functionally distinct from populations in the offshore (reviewed by Lilly et al. 1999). Genetic studies suggest that the northern cod conforms to an isolation-by-distance structure, with cod from more distant locations tending to be more distinct (Beacham et al. 2002). There appear to be differences between the inshore and the
offshore, and among various areas of the offshore (Ruzzante et al. 1998; Beacham et al. 2002; but see Carr et al. 1995). Subpopulation structure at the level of individual bays is less strongly supported. Tagging studies conducted during the collapse period indicate that the inshore of 3KL is currently inhabited by at least two groups of cod: (1) a northern resident coastal group in northern 3L and southern 3K and (2) a migrant group from inshore and offshore areas of 3Ps that moves into 3L during late spring and summer and returns to 3Ps during the autumn. A third group, the migrants from offshore 2J3KL that historically supported the bulk of the inshore catch, appears to contribute little if any biomass to inshore waters during summer.

Attention must be drawn to one specific portion of the inshore. Gilbert Bay in southern Labrador ( $52^{\circ} 35^{\prime} \mathrm{N} ; 56^{\circ} 00^{\prime} \mathrm{W}$ ) has been shown to have a resident population of cod (Green and Wroblewski 2000; Morris and Green 2002) that is genetically distinct from other cod in the 2J3KL area (Ruzzante et al. 2000; Beacham et al. 2002). Population biomass has been estimated at less than 70 t (Morris et al. 2003). Gilbert Bay has been designated an Area of Interest, which is a step along the way to becoming a Marine Protected Area (MPA). Because of its small size, limited distribution and genetic distinctiveness, the Gilbert Bay population is not considered further in the present assessment of 2J3KL cod. No other resident population of cod has yet been identified along the Labrador coast (Morris and Green 2002).

The inshore populations of 3KL appear to have been more productive than the offshore populations of 2J3KL since at least the mid-1990s. In 1998 a directed fishery was reopened for small ( $<65$ feet) vessels operating in the inshore, but the inshore populations declined during the next few years, and all directed fishing was closed once again in 2003.

Assessments of the status of 2J3KL cod have been conducted since 1972 (Bishop and Shelton 1997). The basis for the computation of population size had been sequential population analysis (SPA) of the stock as a whole. These analyses became problematic during the early 1990s because of a poor fit between model output and the index of abundance derived from the DFO bottom-trawl surveys. Attempts at fitting whole stock SPAs were continued during the latter half of the 1990s and early 2000s (Lilly et al. 2003), but the models were considered to be only "illustrative" of the population dynamics, and not sufficiently well estimated to allow the projection of population size. In addition to the poor model fit in the early 1990s, a second problem arose during the mid-1990s when it became clear that the inshore populations were more productive than populations in the offshore. The landings during 1998-2002 came almost entirely from the inshore, and included many fish of ages and sizes beyond those captured in the offshore surveys. It was felt that the offshore bottom-trawl index was not representative of the inshore populations and was not appropriate for tuning the SPA.

Since the late 1990s, information on the status of 2J3KL cod has been presented for the offshore and inshore separately, without losing sight of the severely depleted status of the stock as a whole (Lilly et al. 2003). The most recent full assessment of stock status, conducted during February 2003 (DFO 2003; Lilly et al. 2003; Rice and Rivard 2003), continued this approach. The status of cod in the offshore was assessed on the basis of abundance/biomass indices from the DFO bottom-trawl surveys in 2J3KL in autumn and 3L in spring, and from hydroacoustic studies in specific areas. The status of cod in the inshore was assessed on the basis of indices of abundance/biomass from the sentinel surveys, hydroacoustic surveys in Smith Sound,
exploitation rates and biomass estimates from tagging studies, catches from the commercial and recreational fisheries, and catch rates from the commercial fishery. A new SPA was constructed based on catches and indices from the inshore alone.

Because the fishery had been closed indefinitely in 2003, only an update of stock status was provided in 2004 (DFO 2004; Lilly et al. 2004). This was based simply on a review of by-catch landings in 2003 and an appraisal of major indices of stock abundance. These indices, which were analyzed in an age-aggregated form, were the bottom-trawl surveys in the offshore, the sentinel surveys in the inshore, and the hydroacoustic survey of Smith Sound.

The present document provides information in support of the regional assessment in March 2005 (DFO 2005). Specific objectives for the assessment are provided in Appendix 1. To address these objectives, the assessment reviewed information on stock structure and data from research bottom-trawl surveys, sentinel surveys (Maddock Parsons and Stead 2005), prerecruit surveys (Gregory et al. 2006), tagging studies (Brattey and Healey 2005), a telephone survey of fish harvesters (Jarvis and Stead 2005), and catches from commercial and recreational fisheries in the inshore (1995-2004). A sequential population analysis was conducted for a portion of the inshore area.

## 2 The fishery

### 2.1 Nominal catches prior to the 1992 moratorium

Landings from this stock increased during the late 1950s and early 1960s and peaked at just over $800,000 \mathrm{t}$ in 1968 (Table 1; Fig. 2). Landings then declined rapidly to a minimum of 139,000 t in 1978, increased to a plateau of approximately $250,000 \mathrm{t}$ in the mid- to late 1980s and then declined very quickly in the early 1990s. The portion of the landings coming from each of the Divisions changed over time. During the 1960s, when the fishery was primarily by non-Canadian fleets (Fig. 2), landings were taken mainly from Divisions 2J and 3L (Fig. 3). Division 3K became prominent in the mid-1970s. Landings from Division 2J were relatively small in the mid1980s. Division 3L dominated from the mid-1980s until the moratorium in 1992.

The fixed gear landings (Table 2; Fig. 4) increased from just 41,000 t in 1975 to a peak of $113,000 \mathrm{t}$ in 1982, declined to $74,000 \mathrm{t}$ in 1986, and increased again to a peak of $117,000 \mathrm{t}$ in 1990, just 2 years before declaration of the moratorium. Some of the increase in the late 1980s was due to a resurgence of gillnet landings in southern Division 2J and trap landings in Division 3L, but much was due to an expansion of the gillnet fishery to the Virgin Rocks and other offshore areas in Division 3L (Table 3; Fig. 5).

Landings declined to just 61,000 t in 1991. The commercial fishery was closed in July 1992 and only $12,000 \mathrm{t}$ were landed that year.

### 2.2 Management advice, TACs and catches during 1992-2002

A summary of management advice, TACs and landings from various sources during the period from just before imposition of the moratorium on commercial fishing in July 1992 to the end of 2002 is provided by Lilly et al. (2003). A summary of management measures during 1996-2002 is provided in Appendix 2.

Landings during 1993-1997 came from by-catches in fisheries directed at other species, food/recreational fisheries, and DFO-industry sentinel surveys that started in 1995 (Table 2; Fig. $6)$.

A small index/commercial fishery limited to fixed gear deployed from small (<65 feet) vessels commenced in 1998. Landings from 1998 to 2002 came from directed cod fisheries, by-catches, sentinel surveys and food/recreational fisheries (Table 2; Fig. 6).

Note that a new fishing season (April 1 to March 31) was put in place for 2000/2001 and subsequent years. However, only very small by-catches have been reported during the first three months of any year since the mid-1990s, so it is convenient to continue to refer to the fishery year as the calendar year in which the first 9 months of the fishery season occurred (e.g. the 2001/2002 fishery season will be referred to simply as 2001).

### 2.3 Landings during 2003 and 2004

The whole of the 2J3KL area was again closed to directed commercial and recreational fisheries in April 2003.

## Landings during 2003

Reported landings during 2003 were approximately 880 t from commercial fisheries and 90 t from the sentinel surveys, for a total of 970 t . Landings from all sources are presented by gear, unit area and month in Table 4a. Gillnets contributed 17\% by weight, small mesh gillnets from the sentinel surverys $1 \%$, linetrawls $1 \%$ and handlines $81 \%$. As described below, only a very small proportion of the catch attributed to handline was actually taken by handline.

Most ( 780 t ) of the commercial catch during 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay, during April. The exact cause of the event remains uncertain, but it was clearly associated with unusually cold water within the Sound (Colbourne et al. 2003). The cod were collected from the surface of the water by gaff and dipnet. Many of these fish were frozen, whereas others were torpid but still alive. The fish were generally large, with a high proportion in the range $55-85 \mathrm{~cm}$.

NOTE: The landings of cod from Smith Sound in April 2003 are, at the time of writing, entered into DFO's statistical data base against the code for handline. It is emphasized that these fish were not caught by handline. They were collected from the surface with either gaff or dipnet. It is also somewhat uncertain whether these fish should be considered
commercial landings or natural mortality. A high proportion of the fish were dead when collected from the surface, but many, especially during the second half of the event, were alive when taken from the water.

The rest of the reported catch was by-catch in fisheries directed at other species. Most (84 t) of this came from gillnets set for winter (blackback) flounder. The bulk of this catch came from Bonavista Bay and Trinity Bay in July.

There are no estimates of discards from inshore fisheries. In addition, there are no estimates of the quantity of cod taken in illegal fishing, but such fishing is known to exist.

The by-catch from Canadian trawlers fishing offshore was 3 t .
The catch by non-Canadian trawlers outside the 200 nautical mile limit on the Nose of the Bank (Div. 3L) was 23 t .

## Landings during 2004

The moratorium on directed commercial and recreational fishing for cod remained in effect during 2004. However, fishery management regulations (Appendix 3) were changed for 2004 such that individual fish harvesters were limited to a maximum by-catch of 2000 pounds ( 907 kg ) in any and all groundfish fisheries. In addition, for the winter (blackback) flounder fishery, the incidental catch of cod was not to exceed $20 \%$ or 300 pounds per day. Many harvesters took much or all of their 2000 pound cod limit while directing for winter flounder, and in many cases the catch of winter flounder was much less than the catch of cod. The gillnet mesh size in the winter flounder fishery was $61 / 2-81 / 2$ inches, which is greater than the $51 / 2-61 / 2$ inches in the directed cod fisheries of 1998-2002.

Reported landings during 2004 were approximately 520 t of by-catch from commercial fisheries and 120 t from the sentinel surveys, for a total of 640 t . Landings from all sources are presented by gear, unit area and month in Table 4b. Gillnets contributed $96 \%$ by weight, small mesh gillnets from sentinel surveys $1 \%$, linetrawls $1 \%$ and handlines $\ll 1 \%$.

Almost all of the by-catch came from the winter (blackback) flounder fishery.
By-catch from Canadian trawlers fishing offshore was 6 t.
An estimate is not yet available for the 2004 catch by non-Canadian trawlers outside the 200 nautical mile limit on the Nose of the Bank (Div. 3L). The Scientific Council of the Northwest Atlantic Fisheries Organization (NAFO) determined that catches during 2000-2003 were 20-80 t annually (Table 1).

### 2.4 By-catch, discards and illegal fisheries

By-catches of cod occur in ongoing Canadian and non-Canadian fisheries. All recorded by-catch has been incorporated into the catch (Tables 1,2), but not all by-catch is recorded.

In the inshore, by-catches are common in gillnet fisheries for lumpfish and especially winter (blackback) flounder. They also occur in the herring gillnet fishery and the capelin trap fishery. Note that for winter flounder and herring there are both commercial fisheries and bait fisheries. The only inshore fishery that has been studied specifically for by-catch is the herring gillnet bait fishery, in which by-catches of cod appear to be small (Reddin et al. 2002).

In the offshore, by-catches of cod by Canadian fleets have, in recent years, come from trawl fisheries for yellowtail flounder and both trawl and gillnet fisheries for Greenland halibut. The recorded by-catches in these fisheries have been small.

A catch of cod by non-Canadian fleets has been reported for the area outside the 200 mile limit on the Nose of Grand Bank in Division 3L. These catches are understood to be small (20-80 t annually in 2000-2003).

## Discards

The discarding of cod in the shrimp fishery was dramatically reduced with the introduction of the Nordmore grate in 1993 (Kulka 1998). Total discards from the large-vessel shrimp fishery in 2J3K were 5 t in 1995 and 13 t in 1996 (Kulka 1998).

Shrimp quotas increased dramatically during the late 1990s, and a new fleet of smaller trawlers entered the fishery in 1997. The level of observer coverage in this fleet of smaller vessels has been low (Orr et al. 2002). Therefore, the total quantity of discards may have increased since the mid-1990s, and the opportunities for observing such discards have declined.

Shrimp fisheries expanded into Div. 3L during the 1990s and increased considerably starting in 2000. Studies during the early years of these fisheries indicated that there was little overlap between the distributions of shrimp and small cod during the autumns of 1995-1998 (Orr et al. 1999), and the discards of cod by small and large shrimp vessels combined was less than 1 t annually during 2000 and 2001 (Orr et al. 2002).
D. Orr (Fisheries and Oceans Canada, St. John's, NL, October 2004, pers. comm.) provided estimates of the quantity of cod discarded by large and small shrimp vessels in 2J3K and 3L for the years 1997-2003 (Lilly and Murphy 2004). The procedure used was similar to that described for the estimation of by-catch of Greenland halibut in the same fisheries (Bowering and Orr 2004). It was estimated that discards in 2J, 3K and 3L combined by both fleets combined were less than 5 t each year.

Additional unquantified sources of mortality include the fallout and discarding of low quality cod caught in gillnets, and the discarding of small cod caught by handlining.

## Illegal fishing

It is known that in recent years there have been removals in inshore waters in excess of sentinel surveys and legal fisheries. The magnitude of poaching is not known.

## The impact of unaccounted fishing mortality

In the offshore, cod appear to experience an extraordinarily high mortality rate (see Section 7.1.3). The extent to which this is attributable to mortality associated with unreported catch, discards and injury caused by contact with gear (e.g. shrimp trawls) is not known. However, any such deaths may be important because the abundance of cod in the offshore is so very low.

In the inshore, the magnitude of unreported by-catch and poaching is not known, so the impact of such removals cannot be assessed.

### 2.5 Sampling of catch in 2003 and 2004

The sentinel survey was sampled intensively in both 2003 and 2004. Sampling of by-catches from other fisheries was insufficient is some cases and had to be augmented by sentinel survey data. Sampling of by-catch is difficult because landings tend to be small at any specific time and place, and it is difficult to predict when landings will occur.

The number of fish measured in 2003 and 2004 is given by gear, unit area and month in Tables 5 a and 5 b respectively. The number of fish aged in 2003 and 2004 is given by gear, unit area and quarter in Tables 6 a and 6 b respectively.

### 2.6 Catch numbers and weights at age

The age composition and mean length-at-age of the landings were initially calculated by gear, unit area and quarter as described in Gavaris and Gavaris (1983). The following relationship was applied in deriving average weight-at-age:

$$
\log (\text { weight })=3.0879 * \log (\text { length })-5.2106 .
$$

Landings during 2003
The catch at age in 2003 was reported by Lilly et al. (2004), and is reproduced verbatim.
In terms of numbers of fish, the landings in 2003 were dominated by the mass mortality in Smith Sound (68\%), followed by gillnets of mesh size $51 / 2$ inches or greater (28\%), and small mesh gillnets ( $31 / 4$ inches) from the sentinel survey (4\%) (Table 3).

The total catch-at-age in 2003 comprised a range of ages, with ages 3 to 14 each contributing at least $2 \%$ by number and age 6 most prominent. The age composition does not represent a regular
progression from the age compositions seen over the previous 5 years (see Fig. 7c of Lilly et al. 2003). Specifically, older ages (11-14) are much more strongly represented than would be expected. This is a result of the small contribution of gillnet ( $51 / 2-61 / 2$ inch mesh) and hook and line gears to the total landings. Instead, the landings were dominated by the fish from the Smith Sound mass mortality. Sampling associated with hydroacoustic studies in Smith Sound has shown that the cod that occur in the dense overwintering aggregations within the sound are primarily of ages 3-4 and older, and that the 1990 and 1992 year-classes are well represented (Rose 2003). The sampling of fish taken to fish plants during the 2003 mass mortality shows the 1990 and 1992 year-classes to be very well represented, and the 1991 year-class to be stronger relative to the 1990 and 1992 year-classes than it appears in sampling associated with the acoustic surveys (Rose 2003).

Landings from gillnets ( $51 / 2$ inches and greater) were dominated by cod of ages 6 and 7 and landings from sentinel small mesh gillnets were dominated by ages 3 and 4. This corresponds to observations in many previous years (see Figs. 7a,b and 20 of Lilly et al. 2003).

Landings during 2004
In terms of numbers of fish, the landings in 2004 were dominated by gillnets (95\%) (Table 7a). Linetrawl accounted for $2 \%$.

The total catch-at-age in 2004 comprised a range of ages, with ages 3-10 and 12 each contributing at least $2 \%$ by number and age 7 most prominent (Table 7a; Fig. 7a). The ages caught in gillnets were, of course, almost identical to those in the total catch. Landings from linetrawls were mainly of ages $3-6$ with age 4 most prominent.

As discussed in Section 7.2.2.2, a sequential population analysis was conducted based on fish caught in the central portion of the inshore. This area accounted for $67 \%$ of the fish landed (Table 7b; Fig. 7b). The age composition from the central area was similar to that from the total stock area (see above). Landings from the southern inshore area were less broadly distributed across ages than the landings from the central area, and were more strongly dominated by age 7 (the 1987 year-class).

## Historic pattern

The catch-at-age of fish in the reported landings (inshore and offshore) from 1962 to 2004 is presented in Table 8. The 1989 year-class was the most important contributor to the catch in 1993-1994. The 1990 year-class was the most important contributor in 1995-1997, the 1992 year-class in 1998-1999, the 1994 year-class in 2000, and the 1987 year-class in 2001-2004. The fact that a more recent year-class has not become prominent in the catch of the past two years may be related to the extremely low proportion of catch coming from gears (notably handline, but also linetrawl) that tend to catch smaller fish.

The age compositions of the total landings from 1998 to 2004 illustrate the broadening of the age composition of the populations currently inshore. As described in earlier reports, there had been a severe truncation of the age composition by the mid-1990s (see Table 8). When the index
fishery opened in 1998, there were very few fish older than age 9 (the 1989 year-class) (Fig. 8). However, the 1990 and 1992 year-classes were moderately strong in the inshore and have persisted, so that by 2002 there was good representation to age 12, and there were even some age 13s. The age composition from the Smith Sound mass mortality in 2003 may be interpreted as indicating that the older (1990-1992) year-classes are even better represented in the Smith Sound overwintering aggegation than in the 2002 catch for 2J3KL as a whole. This interpretation must be treated with caution, however, because it is possible that older cod experienced higher mortality than younger cod during the Smith Sound event. At present there is insufficient additional data to inform this issue. The age composition of the 2004 catch is similar to that which would be expected as a progression from the 2002 catch. The 1990 and 1992 year-classes are persisting at ages 14 and 12, but they are weakly represented.

The mean weights-at-age calculated from mean lengths-at-age in the landings have varied over time (Table 9; Fig. 9). There was an increase in the late 1970s and early 1980s, followed by a decline through the 1980s to low levels in the early 1990s. There has been substantial improvement in the latter half of the 1990s, and for some age-groups (e.g. ages 4-7) the weights-at-age calculated for recent years were at or near the highest levels in the time-series. Interpretation of changes in the weights-at-age is difficult because of changes in the relative contributions of the various gear components and changes in the location and timing of catches from each gear component. For example, much of the landings prior to the moratorium came from otter trawling offshore early in the year, whereas since the moratorium most of the catch has come from fixed gear inshore in the second half of the year. In addition, the high proportion of landings coming from gillnets in recent years will tend to increase the calculated mean weight-at-age of those age-classes entering the selection range of the gear. This may apply in particular to ages 5 and 6 . There may also be an underestimate of weight-at-age for those ageclasses leaving the selection range of gillnets.

There are clearly problems with the 1993 weights-at-age that remain to be resolved.

The biomass at age in the reported landings from 1962 to 2004 is presented in Table 10.

## 3 Stakeholder perspectives

A telephone survey was conducted by the Fish, Food and Allied Workers (FFAW) Union to assess the opinions of fish harvesters regarding the abundance of cod in inshore waters, the size and condition of the cod, and the abundance of prey (Jarvis and Stead 2005). In 2J, most fish harvesters felt that cod abundance during 2004 was lower than it had been during the late 1980s but higher than it was during 2002, the last year of the commercial index cod fishery. In 3K, there was no clear indication of how cod abundance in 2004 compared with abundance during the late 1980s, but most harvesters felt that abundance in 2004 was about the same or better than it had been during 2002. In 3L, most harvesters in Bonavista, Trinity and St. Mary’s bays felt that cod abundance during 2004 was better than it had been in the late 1980s and better than during 2002. In Conception Bay and along the eastern Avalon Peninsula, there was no clear indication of how abundance in 2004 compared with abundance during the late 1980s, but most harvesters felt that abundance during 2004 was better than it had been during 2002.

## 4 Stock structure

The first item in the remit for the present assessment was as follows:
"Review the evidence regarding whether populations of cod currently inhabiting inshore waters are self-sustaining and distinct from populations that historically overwintered and spawned in the offshore and migrated seasonally to the inshore."

The only new data or analyses presented to the meeting was the information from the Smith Sound mass mortality (see below). However, evidence presented during previous stock assessment meetings was reviewed. Much of this information has recently been summarized by Lilly and Murphy (2004), and the following text and additional details (Appendix 4) are taken largely from that source.

Numerous studies have indicated the likelihood of substock structure within the northern cod stock complex (see, for example, overviews by Lear 1986; deYoung and Rose 1993; Smedbol and Wroblewski 2002). The evidence includes a north-south cline in size-at-age and time of spawning, and a change in vertebral counts at approximately the north slope of Grand Bank. Cod tagged at specific locations in the offshore in winter tended to migrate to specific but broad areas of the inshore during summer and then returned to approximately the area of tagging in subsequent winters. It was also known that cod overwintered in various locations inshore and that some spawning occurred inshore.

Since the mid-1990s, there has been a dichotomy between the offshore and the inshore. In the offshore, research bottom-trawl surveys have found cod to be at very low density. The fish are small and young, especially in Div. 2J and 3K. In contrast, aggregations sampled inshore since the mid-1990s by commercial fisheries, sentinel surveys, and research bottom-trawling within Smith Sound in winter contain a high proportion of individuals that are older and larger than those taken by the offshore surveys. A larger run of fish has also been evident in the winter codseal events and the mass mortality of cod in Smith Sound in April 2003 (Lilly et al. 2004).

Tagging studies conducted subsequent to the collapse indicate that the inshore of 3 KL is currently inhabited by at least two groups of cod: (1) a northern resident coastal group that inhabits an area from western Trinity Bay northward to western Notre Dame Bay and (2) a migrant group that overwinters in inshore and offshore areas of 3Ps, moves into 3L during late spring and summer, and returns to 3Ps during the autumn. Tagging studies also indicate considerable movement of cod among Trinity, Bonavista and Notre Dame bays. This stock structure was not evident historically because the majority of fish observed during inshore fisheries were migrants from the offshore.

Additional support for the existence of a resident coastal group comes from examination of the tagging information associated with the mass mortality event in Smith Sound (Fig. 1g) during April 2003 (Brattey and Healey 2005). Most of the 418 tags recovered during the event had been applied in the local area encompassing Smith Sound itself, the waters around Cape Bonavista
and southern Bonavista Bay. No tags had been applied in 3Ps or 3Pn4RS, despite intensive tagging programmes in both of those stock areas. Only one tag had been applied in 3K, and only one tag had been applied in southern 3L (Conception Bay and southward). This is consistent with previous conclusions that Smith Sound is an overwintering area for a group of cod that during late spring and summer moves northward along the north side of Trinity Bay and may round Cape Bonavista, with some individuals moving into southern 3 K . The absence of fish that had been tagged in 3Ps, and the recapture of only one fish that had been tagged in southern 3L, indicates that the cod that move from 3Ps into 3L in summer return to 3Ps in winter.

It is not known if there is currently movement of adult cod between the inshore and the offshore of 2J3KL. There has been only one reported offshore recapture of a cod tagged inshore after the mid-1990s, but of course there has been no directed offshore cod fishery during this period, so recaptures could come only from fisheries directed at other species. It is thought that migrants from offshore 2J3KL currently contribute little to the biomass of cod in the inshore of 2J3KL.

Several additional sources of information are consistent with the hypothesis that there are distinct inshore or bay stocks along the east coast of Newfoundland. The information includes the presence of cod inshore in the winter, the historic existence of spring fisheries in the inner reaches of Bonavista and Trinity bays before cod arrived at the headlands from the offshore, and the occurrence of spawning within the bays. See Appendix 4 for additional details regarding the biology and distinctiveness of cod in the inshore.

Genetic studies suggest that the northern cod conforms to an isolation-by-distance structure, with cod from more distant locations tending to be more distinct (Beacham et al. 2002). There appear to be differences between the inshore and the offshore, and among various areas of the offshore (Ruzzante et al. 1998; Beacham et al. 2002; but see Carr et al. 1995). Subpopulation structure at the level of individual bays is less strongly supported.

In summary, various observations, both historic and recent, are consistent with the hypothesis that there are populations in the inshore that are functionally distinct from those in the offshore. It is thought that these inshore populations have historically been small relative to the populations that migrated into the inshore from the offshore during spring/summer.

## 5 Population indices

### 5.1 Bottom-trawl surveys

### 5.1.1 Survey design

Research vessel surveys have been conducted by Canada during the autumn in Divisions 2J, 3K and 3L since 1977, 1978 and 1981 respectively. No autumn survey was conducted in Division 3L in 1984, but the results of a summer (August-September) survey in 1984 have been used for some analyses. The 1995, 2002, 2003 and 2004 autumn surveys continued into late January of
the following years. Spring surveys have been conducted by Canada in Division 3L during the years 1971-1982 and 1985-present.

The autumn surveys in Divisions 2J and 3K were conducted by RV Gadus Atlantica until 1994. In 1995-2000 they were conducted mainly by RV Teleost, although RV Wilfred Templeman surveyed part of Division 3K. Surveys in Division 3L were conducted by RV A.T. Cameron (1971-1982) and RV Wilfred Templeman or its sister ship RV Alfred Needler (1985-2000 for spring and 1983-2000 for autumn). In recent years, RV Teleost occupied some of the 3L stations, particularly those in deep water. The surveying in Divisions 2J and 3K became increasingly complex in 2001-2004, with more individual trips required to complete the surveys and increased incidence of more than one ship contributing to the surveying of each Division.

During the autumn of 1995 both ships used for the first time the Campelen 1800 shrimp trawl with rockhopper footgear, replacing the Engel 145 Hi-rise trawl that had been used since the start of the surveys in 2 J and 3 K and since the change to the RV Wilfred Templeman in Division 3L. In addition, the Campelen trawl was towed at 3.0 knots for 15 min instead of 3.5 knots for 30 min . The selectivities of the two nets were found through comparative fishing experiments in 1995 and 1996 to be markedly different, with the Campelen being far more effective at catching small cod (Warren 1997; Warren et al. 1997). There were limited data for the comparison of larger cod. Conversion of Engel catches to Campelen equivalent catches was reported by Stansbury $(1996,1997)$.

The survey stratification scheme, illustrated in Fig. 10-12, is based on depth intervals intersected by lines of latitude and longitude (Doubleday 1981; Bishop 1994). The strata used in 1996 were similar to those in previous years except that the survey was extended to 1500 m and 25 new strata were added to the inshore in Divisions 3K and 3L to obtain an estimate of the cod landward of the standard survey area. The survey in 1997 was similar to that in 1996, except that some of the new inshore strata were modified and one stratum was added. The survey in 1998 was as in 1997. The survey in 1999 was as in 1997 and 1998 except that the new inshore strata were not fished. The surveys in 2000-2004 were similar to those in 1997-1998.

Prior to 1988, set allocation was proportional to stratum area, with the provision that each stratum be allocated at least 2 sets. In 1989 and 1990 an "adaptive design" was introduced in an attempt to minimize variance. It was found that this method introduced a bias and the additional sets fished during the second phase of these surveys have been excluded from analyses. In 19911994, additional sets were allocated in advance to certain strata based on past observed stratum variance (Gagnon 1991). In 1995-2004, set allocation was based once again on stratum area alone (with the provision that there be at least 2 sets in each stratum).

Additional details on the surveys conducted since the introduction of the Campelen trawl in 1995 are provided by Brodie (2005).

Incomplete coverage during the autumn 2004 survey
During the 2004 autumn survey in 2J3KL, several strata in Div. 3L were not fished. These included 7 strata that would normally be included within the offshore index ( $<=200 \mathrm{f}$ ) (strata

365, 366, 368-370, 386, 387), 1 stratum in the 201-300 fath range (stratum 735), 2 strata within the 301-400 fath range (strata 734, 736), and all strata deeper than 400 fath (Fig. 13). The strata deeper than 400 fath did not yield any cod in any of the years when they were fished (19962003). However, the shallower strata certainly did contain cod in at least some of the years since the introduction of the Campelen trawl in 1995.

The number and weight of cod that might have been in the missed strata at the time of the survey have not been estimated. See Section 5.1.2.3 for a brief discussion.

### 5.1.2 Autumn bottom-trawl surveys

### 5.1.2.1 Autumn abundance and biomass

Abundance and biomass have been estimated by areal expansion of the stratified arithmetic mean catch per tow (Smith and Somerton 1981). To account for incomplete coverage of some strata in some years, estimates of biomass and abundance for non-sampled strata were obtained using a multiplicative model.

Estimates of abundance and biomass from the autumn surveys in 1978-1994 (Divisions 2J and 3K) and 1981-1994 (Division 3L) may be found in Tables 12-19 of Shelton et al. (1996). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented in this paper along with the actual Campelen data from 1995-2004. Data for Division 2J are in Tables 11-14 and data for Division 3K are in Tables 15-18. Note that data for 1993-2004 are presented separately from earlier years for Divisions 2J and 3K because of the change in stratification scheme introduced in 1993 (Bishop 1994). Estimates for surveys in Division 3L are in Tables 19-20 for strata in depths $<=200$ fathoms ( 366 m ) and Tables 21-22 for strata in depths $>200$ fathoms.

Because there have been changes over time in the depths fished, annual variability in the abundance and biomass of cod has been monitored for those strata that have been fished most consistently since the start of the surveys. These "index" strata are those in the depth range 100500 m in Divisions 2J and 3K and 55-366 m (30-200 fathoms) in Division 3L. The inshore strata fished in 1996-1998 and 2000-2004 are not included in the index. Because an index has also been calculated for the inshore strata, the former "index" will be referred to in this paper as the "offshore index".

Changes in abundance and biomass in the offshore index strata are shown by Division for the years 1983-2004 in Fig. 14. The patterns in abundance and biomass differ in detail, reflecting changes in the relative abundance of small and large fish. Of note are the strong positive anomaly in 2 J and 3 K in 1986, the very large increase in 3 K in 1989 and the rapid decline during the early 1990s. Abundance and biomass have remained at extremely low levels in all Divisions since 1993.

Abundance and biomass estimates for the new inshore strata that were fished in 1996-1998 and 2000-2004 are provided in Tables 23 and 24.

The total abundance and biomass of all strata fished in 1983-2004 are provided by Division and year in Table 25.

The abundance and biomass for offshore index strata, deep offshore strata and inshore strata are provided in Table 26 by Division and year for the 10 years since introduction of the Campelen trawl. The highest abundance and biomass has generally been found in the offshore index strata. The quantities found in the offshore deep strata have been highly variable, and always less than in the offshore index strata. The quantities found in the inshore strata have also been highly variable. During 1996 and 2003, the abundance in the inshore strata of Division 3L exceeded the abundance found in the offshore index strata.

Abundance in offshore index strata declined from 1995 to 1997, increased from 1998 to 1999, and then fluctuated without trend (Table 26; Fig. 14). Biomass in offshore index strata increased from 1995 to 1997-1998, nearly doubled in 1999, remained relatively constant in 2000-2001, and then fluctuated at a lower level. The average biomass in offshore index strata during 2002-2004 was about $18,500 \mathrm{t}$, which is about $1.5 \%$ of the average biomass of about $1,200,000 \mathrm{t}$ (in Campelen equivalents) in the period 1983-1988 (excluding the high value in 1986).

It is not known if the continuation of the surveys into January has created a bias in estimation of abundance and biomass. However, the continuation of the surveys into January does have an effect on the perceived depth distribution of fish. The estimates of the number and biomass of cod in depths greater than 500 m were greater when the surveys were extended beyond the end of the year, viz in 1995 and 2002 in Division 2J and in 1995, 2002, 2003 and 2004 in Division 3K (Fig. 15).

### 5.1.2.2 Autumn mean catch at age per tow

### 5.1.2.2.1 Offshore index strata

The divisional mean number caught at age per tow in offshore index strata during autumn surveys from 1979 (1981 in Division 3L) to 1994, and the mean number per tow for Divisions 2J, 3K and 3L combined, may be found in Tables 3-6 of Bishop et al. (1995b). The data from 1983 to 1994 have been converted to Campelen equivalents and are presented along with the actual Campelen data from 1995-2004 in Table 27 for Divisions 2J, 3K and 3L separately and for all three Divisions combined. Mean catch per tow has continued to be very low for each age in each Division during the past few years when compared with many years in the 1980s and early 1990s.

The matrix of mean number caught at age per tow for all divisions combined is used to provide information on spawner biomass, recruitment and mortality in the offshore (Section 7.1).

### 5.1.2.2.2 Inshore strata

Inshore strata in 3K and 3L were fished in 1996-1998 and 2000-2004. The mean catch at age per tow was calculated for 3 K and 3L separately and for 3 KL combined (Table 28). Each 3KL value is the mean of the divisional means, weighted by the divisional survey areas (where the area of inshore strata is $3,235 \mathrm{sq} \mathrm{n}$ miles in 3 K and $3,107 \mathrm{sq} \mathrm{n}$ miles in 3 L ).

### 5.1.2.3 Effect of strata missed during autumn 2004

As described above and in Brodie (2005), several strata in eastern Div. 3L were not surveyed during the autumn 2004 survey. Seven of these strata are in depths less than 200 fathoms (366 $\mathrm{m})$ and are considered part of the offshore index area.

The number of fish that may have been missed was evaluated by a simple examination of the results of the previous nine surveys conducted with the Campelen trawl (1995-2003). (Note that all these surveys have occurred since the collapse of the stock.) The number of fish computed to be within the seven strata missed during 2004 was expressed as a percentage of the number of fish computed to be within all index strata in Div. 3L. This percentage varied from $9 \%$ to $37 \%$ (median $=15 \%$ ). Percentages in the most recent two years (2002 and 2003) were $35 \%$ and $12 \%$ respectively.

Two approaches to estimating the abundance/biomass of cod that might have been in the missed strata were considered.

One method is to use the by-stratum pattern in population distribution from previous years, together with the abundance in those strata fished during 2004, to estimate the abundance of cod in those strata that were missed during 2004. This approach (a multiplicative model) had been employed in the past. However, an examination of the tables of estimated abundance/biomass by stratum and year, plus an inspection of distribution plots, indicated that the magnitude of catches within individual strata varied considerably among years. It was decided that there was too much year-to-year variability to fill each missed stratum from a multiplicative model.

A similar approach would be to estimate the abundance of cod in the missed strata by assuming that the abundance in those strata combined was more stable across years than the abundance in individual strata, and by comparing the historic (1995-2003) abundance in the missed strata with the comparable abundance in strata that had not been missed. One possibility for this approach would be to compare the abundance in the missed strata with the abundance in all other 3L strata. However, it was thought that the abundance of cod in the northeastern portion of Div. 3L might vary somewhat independently of the abundance of cod on the plateau of Grand Bank, which might be influenced by fish crossing the 3NO boundary, and might also vary independently of the abundance of cod in the Avalon Channel, which might be influenced by cod migrating from Subdiv. 3Ps. It was decided to look at the abundance of cod in the missed strata in relation to the abundance of cod in adjacent strata (viz. 346-348, 364, 371, 385, 388, 389, 733, 638, 650-652). (This includes 4 strata in Div. 3K.)

For the 9 years since the introduction of the Campelen trawl (1995-2003), the number of cod estimated to be in those strata that were missed in 2004, expressed as a proportion of the number in those strata plus the adjacent strata (as defined above), varied from 0.16 to 0.51 (median $=$ 0.24). It was concluded that there was insufficient consistency to justify increasing the 2004 catch by some specific proportion.

It was therefore decided that population estimates would be reported for those strata that were fished during the 2004 survey, without any adjustment. It was also decided that the estimates of stratified arithmetic mean catch at age per tow would be reported for only those strata that were fished.

### 5.1.2.4 Autumn distribution

The distribution of cod at the time of the autumn surveys has been illustrated in numbers per standard tow (Shelton et al. 1996; Murphy et al. 1997) and in weight (kg) per standard tow (Lilly 1994, 1995). The catch from each tow in the period 1983-1994 has been recalculated to Campelen equivalents, and plots of these recalculated catches for 1985-1994 are illustrated in Lilly et al. (1999).

For the period 1980-1988, catches were widespread over the survey area, with larger catches tending to occur in four loosely defined areas: (1) from the northern limit of the survey to the coastal shelf off northern Newfoundland, especially the northern tip of Hamilton Bank and near the isthmus leading to Belle Isle Bank; (2) the outer trough between Belle Isle Bank and Funk Island Bank; (3) the outer trough between Funk Island Bank and Grand Bank, and from there southeastward along the northeastern slope of Grand Bank; and (4) the plateau of Grand Bank (Fig. 16). The first indication of the big changes to come occurred in 1988, when almost no fish were caught in the area of Harrison Bank in northwestern Division 2J (Lilly et al. 1999). Commencing in 1989 the fish in Divisions 2J and 3K became increasingly concentrated toward the edge of the bank. By 1991, concentrations on Hamilton Bank and the plateau of Grand Bank disappeared, leaving fish in inner Hawke Saddle and in the saddles between Belle Isle Bank and Funk Island Bank and between Funk Island Bank and Grand Bank. In 1992, only the concentration between Funk Island Bank and Grand Bank remained. This concentration was smaller in 1993 and disappeared in 1994.

Catches from 1995 onward (Fig. 17) tended to be very small. (See Fig. 16 for a comparison between the average catches in 1980-1988 and the catches taken during 2002.). On the southern Labrador Shelf and the Northeast Newfoundland Shelf (Div. 2J,3K) the larger catches were broadly spread, with a tendency toward occurrence off the banks. The area with the most consistent relatively large catches has been around Funk Island Bank, particularly to the east and southeast.

As noted above, the 1995 and 2002-2004 surveys were not completed during the calendar year, and some of the strata were fished early in the following year. Each of these four surveys is again illustrated in Fig. 18, where the sets before and after the end of the calendar year are displayed separately. As noted by Lilly et al. (2004), the degree of aggregation on the outer flanks of the
banks may appear higher in years when these areas are surveyed after the end of the calendar year. This is not surprising in an historic context. Prior to the collapse of the stock, there were large winter (January-April) fisheries on overwintering aggregations along the shelf break. The extent to which the surveying after January 1 may create a bias in the population estimates remains unknown at this time.

### 5.1.3 Spring 3L bottom-trawl surveys

### 5.1.3.1 Spring 3L abundance and biomass

Abundance and biomass of cod in Division 3L in the spring have been estimated by areal expansion of the stratified arithmetic mean catch per tow. Estimates for the surveys from 1978 to 1995 may be found in Tables 20-21 of Shelton et al. (1996). The data from 1985 to 1995 have been converted to Campelen equivalents. Estimates of abundance and biomass for the index strata (depths <= 366 m or 200 fathoms) during 1985-2004 are provided in Tables 29 and 30 respectively and illustrated in Fig. 19. The indices declined very rapidly from 1990 to 1993. However, there was a considerable quantity of fish in deeper strata during 1992 (see below). There are indications from other sources that the cod were distributed more deeply during the early 1990s than they had been during the 1980s, so the rapid decline in the spring indices during the early 1990s may reflect in part a movement to depths beyond the index strata.

The indices have remained very low since the mid-1990s (Fig. 19). The biomass index during 2002-2004 was less than $1 \%$ of the average in the period 1986-1989.

Surveying in waters deeper than 200 fathoms started on a regular basis in 1991 (Table 31). In some years, most notably 1992, a substantial biomass was estimated to lie in these deeper strata. There may have been a large biomass in the deeper water in 1991 as well. Stratum 735 (201-300 fath), which was estimated to contain $50,000 \mathrm{t}$ in 1992, was not fished in 1991 because of ice cover. The percentage of the total estimated biomass found in depths greater than 200 f has been as high as $92 \%$ in 1994 and as low as $2 \%$ in 1999. The values in 2001-2003 were $43 \%$, $49 \%$ and $65 \%$, respectively. There were no cod caught in these deeper strata in 2004.

### 5.1.3.2 Spring 3L mean catch at age per tow

The mean numbers caught at age per tow in index strata during 3L spring surveys from 1985 to 2004 are presented in Table 32. The values from 1985 to 1995 are Campelen equivalents and those from 1996 onward are based on actual Campelen catches. Mean catch per tow declined precipitously in the early 1990s and values continue to be well below levels obtained prior to 1993.

### 5.1.3.3 Spring 3L distribution

The distribution of cod during spring surveys in Division 3L is shown together with distribution in Divisions 3NO for the years 1984-2000 in Figs. 18-20 of Lilly et al. (2001). During the second half of the 1980s the spring distribution in Division 3L was similar to that observed during the autumn, in that the highest densities were generally on the plateau of the bank and along the northern and northeastern slopes of the bank. However, in some years there were also moderately large catches in the area between the northern slope and the plateau, a situation much less evident in the autumn. The spring of 1990 was unusual, in that few cod were taken on the plateau but very large catches were taken along the full length of the northeastern slope. Much of the northeastern slope could not be surveyed in 1991 because of ice cover, but catches seemed to be smaller. Catches continued to decline until 1995 when very few cod were caught.

Catch rates increased with the introduction of the Campelen trawl in 1996 (Fig. 20a), but have remained far below the levels of the 1980s. Starting in 1996 the cod in 3NO appeared to be further onto the bank at the time of the surveys than they were in the early 1990s. In 1999 there was a hint, for the first time in many years, of a continuous distribution of cod from the southwestern part of 30 across the 3L/3NO boundary into the area of the Virgin Rocks. In 2000 cod were caught around the periphery of the bank, from the southernmost part of the Northeast Newfoundland Shelf in northern 3L, along the northeastern slope of Grand Bank to the Nose of the Bank, and southward to the 3L/3NO boundary. Small catches were also taken on the plateau of the bank and in the Avalon Channel. In 2001, 2002 and 2003, the distribution was similar to that in 2000, except that there appeared to be fewer cod on the plateau of Grand Bank and in the Avalon Channel (Fig. 20b). In 2004 there were very few cod caught along the northeastern and eastern slopes (Fig. 21). No cod were caught in depths greater than 200 fathoms ( 366 m ).

### 5.2 Sentinel surveys

Sentinel surveys for cod were conducted by fishing enterprises operating from many communities (Fig. 1f) in Divisions 2J, 3K and 3L at various times during summer and autumn 1995-2004. The number of enterprises varied between 53 and 59 during 1995-2002, but was reduced to 44 in 2003 and 45 in 2004. Since 1999 sampling has been conducted for a minimum of 10 weeks at each site.

The primary goal of these surveys when they were initiated was to obtain information on catch rates on traditional inshore fishing grounds during the moratorium. The surveys continued during the period of index/commercial fishing (1998-2002). The surveys have been conducted primarily with gillnets ( $51 / 2$ inch mesh). Linetrawls have been used extensively in only a few areas, and indeed the use of linetrawls has declined over time. Handlines and cod traps have been used much less. Small mesh ( $311 / 4$ inch) gillnets were introduced at many sites in 1996 to provide information on the relative size of incoming year-classes.

The sentinel surveys were also intended to provide samples that would yield information on various aspects of the biology of cod in the inshore, including age compositions, size-at-age, condition, maturity and feeding. Various analyses were conducted on data collected in 19951997 (Lilly 1997; Lilly et al. 1998a), but these have not been updated. However, age compositions for the full time period are now available in the form of standardized catch rates at age (see Section 5.2.2).

Note that sampling for lengths and ages has been relatively intensive in the sentinel surveys. Without this sampling, it would have been very difficult to decompose the catch from the index/commercial fisheries into catch at age, particularly in 2002.

### 5.2.1 Sentinel catch rates by site and Division

Maddock Parsons et al. (2000) provided weekly average catch rates by sentinel survey site, gear and year (1995-1999). There is considerable among-site variability in the timing of fishing effort and in the seasonal and annual patterns in fishing success. Catch rates have been relatively low since the start of the survey in 2J and in 3K north of White Bay.

Maddock Parsons and Stead (2005) presented weekly average catch rates and annual relative length frequencies (number of fish at length divided by amount of gear) by gear, NAFO division, and year (1995-2004).

The $51 / 2$ inch gillnet has the narrowest range of selectivity ( $50-80 \mathrm{~cm}$ ). Catch rates have been lowest in 2J and highest in 3L. In all Divisions, catch rates declined from 1998 to 2002 and then increased in 2003 and 2004.

Catches in the small mesh ( $31 / 4$ inch) gillnet are characterized by two modes; the smaller (approximately $34-44 \mathrm{~cm}$ ) is represented by fish that are meshed in the net and the larger by fish that are entangled in the net. Catches in this gear tend to be variable over time and space. In 2 J the smaller mode declined from 1997 to 1999 and has been variable since then. In 3K the smaller mode declined from 1996 to 1999 and remained at the lower level except in 2003, when there was an increase. In 3L the smaller mode was relatively stable over time, except for a decline in 1999 and an increase in 2003. The catches of the larger fish declined from 1998 to 2001 in all divisions, and increased in 2003 and 2004.

Linetrawl has the widest range of fish sizes. In 2J, catch rates were lower than in 3K and 3L. Linetrawl has not been deployed in 2J since 2001. In 3K, catch rates declined from 1997 to 2000 and then increased to 2004.

### 5.2.2 Sentinel standardized (modelled) CPUE

An age-disaggregated index of standardized relative abundance for cod in the inshore of 2J3KL was calculated from data gathered from sentinel fishing with gillnets and linetrawls (Stansbury et al. 2000). The catch from 2J3KL was divided into cells defined by gear type (gillnet $51 / 2$ inch, gillnet $31 / 4$ inch and linetrawl), NAFO Division (2J, 3K, 3L), statistical unit area (e.g. 3Ki, 3Lh),
year (1995-2004) and quarter. Age-length keys were generated for each cell using fish sampled from both fixed and experimental sites. There were no fixed sites using $31 / 4$ inch gillnets. Length frequencies and age-length keys are combined within cells. Numbers of fish at length were assigned ages using an age-length key. Because there were few or no discards in the sentinel fishery and the fish harvesters measured the length of all the fish caught with linetrawl and gillnet, obtaining catch numbers-at-age was relatively straight forward [see Stansbury et al. (2000) for details].

## Methods

The catch per unit effort (CPUE) at age data were standardised to remove site and seasonal effects. For gillnets, only sets fished during July to November with a soak time between 12 and 32 hours were included in the analysis. (Note that Lilly et al. (2003) stated that only sets with soak times between 18 and 24 hours were included in the analysis. This is an error. The 2003 analysis incorporated sets with soak times between 12 and 32 hours.) For linetrawl, sets fished during August to November with a soak time less than or equal to 12 hours were selected. Sets with effort and no catch for some or all ages were considered valid entries in the model. Ages in the model ranged from 3 to 10 for $51 / 2$ inch gillnet, 2 to 10 for $31 / 4$ inch gillnet and 3 to 9 for linetrawl. Fish older than age 10 were not included because of their rarity.

A generalized linear model (McCullagh and Nelder 1989) was applied to the catch and effort data for each gear and survey method. The response distribution was specified as Poisson and the link function was chosen to be log. That is, the Poisson mean parameter $\mu_{i}$ is related to the linear predictor by

$$
\log \left(\mu_{i}\right)=\mathrm{X}_{i}^{\prime} \beta
$$

where $X_{i}$ is a vector of explanatory factors for catch observation $i$ (i.e. month, site, age and year) and $\beta$ is a vector of coefficients to be estimated from the data.

Thus catch is assumed to have a Poisson probability distribution with the mean $\mu_{i}$ related to the factors month nested within site and age nested within year by

$$
\log \left(\mu_{j k l m}\right)=\log \left(E_{j k l m}\right)+\beta_{j k}\left(\text { month }_{j} \times \text { site }_{k}\right)+\beta_{l m}\left(\text { age }_{l} \times \text { year }_{m}\right)
$$

where $E$ is an offset parameter for fishing effort and the subscripts $j, k, l, m$ indicate the level for month, site, age and year, repectively. For example, for the factor month

$$
\text { month }_{j}=\left\{\begin{array}{l}
1 \text { if month }=j \\
0 \text { if month } \neq j
\end{array} .\right.
$$

The levels for month, site and age vary across gear type.
Site/month combinations in which fewer than 5 fish were landed in all years combined were deleted from the analysis because of difficulties with estimation. (This differs from the analysis
in 2003, when site/month combinations in which no fish were landed in all years were deleted from the analysis.)

The model was fit using the SAS procedure GENMOD. Amount of gear is expressed as number of nets for gillnet and number of hooks for line trawl. Estimates for age nested in year were adjusted for month nested in site effects (i.e. least-squares means) and transformed to a linear scale to give the relative index at age for each year.

Additional details regarding the models (proportion of available data that was actually included, model output and residual plots) were reviewed but are not provided in the present paper. Such information from an earlier analysis of the 1995-1999 data are described in detail by Stansbury et al. (2000).

Age-aggregated indices were computed by summing the age within year effects for each year.
Catch rates from the whole of the inshore

The standardized catch rates from the $51 / 2$ inch gillnets (Fig. 22) increased from 1995 to 1998, declined to 2002 and increased in more recent years so that the level in 2004 was similar to that during 1995, the year that the surveys started. Linetrawl catch rates (Fig. 22) showed relatively little change from 1995 to 1996, increased in 1997, declined to a low in 2000, and then increased irregularly so that the level in 2004 was similar to that in 1995. It is emphasized that the linetrawl catch rates are based on relatively small sample sizes.

The standardized catch rates at age from the $51 / 2$ inch gillnets (Fig. 23) illustrate that the 1990 and 1992 year-classes were relatively strong. Subsequent year-classes appear to have been weaker. However, for those more recent year-classes, the number of fish surviving to ages 6-8 would have been influenced by the commercial and recreational fisheries during 1998-2002. The catch rates at age started to increase again for some ages in 2003 and 2004. This might indicate increasing strength of the year-classes recruiting to the gear, but undoubtedly it also reflects the reduction in mortality following the reimposition of the moratorium in 2003. Thus, the index from the $51 / 2$ inch gillnets may provide a good index of abundance, but not necessarily a good measure of relative year-class strength at the older ages that are most strongly selected by the gear.

There are questions regarding the extent of competition between commercial gear and sentinel gear. It is possible that the increase in catch rates in 2003 and 2004 might reflect a reduction in competition. Such competition could include competition for fish and competition for space on the fishing grounds. Questions regarding competition between commercial and sentinel fishing gear have not yet been adequately addressed.

Another factor that might affect sentinel catch rates is the distribution of fish on the fishing grounds. It was frequently stated during the period of declining catch rates that the declines might reflect a decreased availability of fish to the gear, perhaps because the fish were distributed over a greater range of depths. One must ask, then, whether the recent increase in catch rates reflects an increasing availability of fish to the gear. This question of whether there
are among-year differences in fish distribution, and whether such differences might affect catch rates, has not yet been adequately addressed.

Small mesh ( $31 / 4$ inch) gillnets were introduced at many sites in 1996 to provide information on recruitment. As noted above, the size distribution of cod caught by this gear tends to have two modes. The smaller mode tends to be represented primarily by cod of ages 3 and 4 . To provide information regarding incoming recruitment, standardized catch rates were computed for cod of ages 3 and 4 combined (Fig. 24). This index declined from 1996 to 1999 and then increased to a level in 2003 that was approximately equal to that in 1996. The index declined again in 2004.

## Gillnet catch rate indices by inshore area

As described in Section 7.2.2.2, the inshore of 2J3KL was subdivided into 3 areas (Fig. 1h) for the purposes of this assessment. Standardized catch rates from the $51 / 2$ inch gillnets were computed for each of these areas (Fig. 25). In the northern area, mean catch rates have been low since 1995, but were somewhat higher during the late 1990s than during the 2000s. In the central and southern areas, the trends over time were very similar to one another and to the trend in the combined index. In addition, the magnitude of catch rates in the central and southern areas were very similar.

Standardized catch rates were not computed for smaller areas within the three areas reported above. However, information reported by Maddock Parsons and Stead (2005) leads one to suspect that both the central area and the southern area would have regional variability. For the central area, catch rates in Trinity and Bonavista bays would be higher than catch rates in southern 3K, particularly the western side of Notre Dame Bay. For the southern area, catch rates would be higher in St. Mary's Bay than along the eastern Avalon Peninsula and Conception Bay.

### 5.3 Hydroacoustic survey of Smith Sound

Hydroacoustic studies have been conducted in Smith Sound in western Trinity Bay (Fig. 1g) at various times since the spring of 1995. The quantity of cod detected in the Sound at any specific time will depend not only on the size of the population but also the stage of the seasonal migration pattern. Fish overwinter in deep water in the Sound. Most of them move into shallow water and northward along the coast from late spring to early autumn, and then return to the Sound in late autumn or early winter.

Estimates of the biomass of cod within Smith Sound have varied considerably (Lilly et al. 2003). If one focuses on recent hydroacoustic surveys in January-February, the average index of biomass increased rapidly from about $15,000 \mathrm{t}$ in 1999 to $26,000 \mathrm{t}$ in 2001 and then declined to $23,000 \mathrm{t}$ in 2002, 20,000 t in 2003 and $18,000 \mathrm{t}$ in 2004 (Rose 2003; G. Rose, Memorial University of Newfoundland, St. John's, NL, pers. comm.). The fish sampled during the 2004 survey were of a wide size range ( $35-120 \mathrm{~cm}$ ). There was no comparable January-February survey of Smith Sound during 2005.

It is thought that there are additional overwintering aggregations in inlets from Trinity Bay to western Notre Dame Bay (see Appendix 4), but there are no estimates of their size. They are thought to be much smaller than the aggregation in Smith Sound.

## 6 Population biology

The information on maturity, growth and condition reported in this section is derived from sampling during the autumn offshore bottom-trawl surveys. Additional data are available from sampling of spring surveys in the offshore and sentinel surveys in the inshore, but analyses based on these data were not presented during the 2005 assessment meeting.

### 6.1 Maturity

The gonads of samples of cod collected during annual DFO autumn bottom-trawl surveys were visually inspected and assigned to the category "immature" or "mature" according to the criteria of Templeman et al. (1978). Visual inspection is not always totally accurate and there can be difficulties in classifying some stages; for example, mature fish that are skipping a spawning year may be erroneously classified as immature or vice-versa, and mature fish that have recently shed a batch of hydrated eggs may be classified as maturing when they are in fact spawning. The extent to which these errors influence the estimation of proportion mature and proportion at each stage of maturation has not been fully evaluated. However, Bolon and Schneider (1999) showed using histological methods that the visual method of classification was reasonably accurate, but tended to slightly underestimate the proportion of spawning fish and overestimate the proportion of maturing fish when spawning was occurring in Placentia Bay (NAFO Subdiv. 3Ps).

Annual estimates of age at $50 \%$ maturity (A50) for females from the 2J3KL cod stock, collected during annual autumn DFO research bottom-trawl surveys, were calculated as described by Morgan and Hoenig (1997). Maturation is estimated by cohort rather than by year (Table 33); prior to the 2001 assessment maturation was estimated by year. In addition, data extending back to 1960 have been included in the current analyses. The estimated age at $50 \%$ maturity (A50) was generally between 6.0 and 7.0 among cohorts produced in the mid-1950s and around 6.0 among those produced during the late 1960s to the early 1980s, but declined dramatically thereafter to a low of 5.0 for the 1989 cohort (Fig. 26). Age at maturity remained low but variable (4.9-5.7) for the 1990-2000 cohorts, with no clear trend. Males show a similar trend over time (data not shown), but tend to mature about one year earlier than females.

The annual estimates of proportion mature for ages 3-8 show a similar increasing trend (i.e. increasing proportions of mature fish at young ages) through the late 1970s and 1980s, particularly for ages 5, 6, and 7 (Fig. 27). For example, the proportion of 6 yr olds that are mature has increased from about $15 \%$ during the early 1960's to $50 \%$ in the 1970's and 1980's and to about $80 \%$ during the 1990 's. The overall age at maturity remains low among 2J3KL cod.

Currently, the age composition of the offshore components of 2 J 3 KL cod remain extremely protracted with very few cod older than age 6 . A spawning stock biomass that consists mainly of older fish, or a broad age range, may result in a longer time span of spawning (Hutchings and

Myers 1993; Trippel and Morgan 1994). Older, larger fish also produce more viable eggs and larvae (Solemdal et al. 1995; Kjesbu et al. 1996; Trippel 1998).

Portions of the inshore of 2J3KL have a more extended age distribution with some larger, older cod, particularly around the Bonavista Peninsula, where the ages of cod in the catch extend out to about age 14 or 15 . Maturities are available from sampling the sentinel catch in the inshore of 3KL, mainly for cod aged 4 and older. A previous analysis of data collected by the inshore sentinel survey during 1995-1997, fitted by year rather than by cohort, showed a similar low age at maturity to that observed for the offshore portion of the stock (Lilly et al. 1998a).

### 6.2 Growth

The lengths-at-age and weights-at-age of cod sampled during the autumn surveys confirm the general pattern of a decline in the 1980s and early 1990s as observed in commercial weights-atage (Fig. 9). The research survey data (Tables 34, 35; Figs. 28, 29) illustrate that the changes varied with Division; there was a strong decline in Division 2J, a lesser decline in Division 3K, and little or no decline in Division 3L. These divisional differences are more apparent in Fig. 30, which focuses on changes in mean lengths and weights of cod of ages 4 and 6 . Superimposed on the long-term decline are periods of relatively quicker or slower growth associated with changes in water temperature (Shelton et al. 1999). The trend toward low mean lengths-at-age and weights-at-age in the early 1990s appears to have been reversed during the latter half of the 1990s. Size-at-age has varied without trend in the past few years. Sample sizes at ages greater than age 4 have been very small since about 1992-1994 (Lilly 1998a), so the accuracy of these estimates is likely to be poor

### 6.3 Condition

Condition can be expressed in various formulations. In this paper it is presented as ( $\mathrm{W} / \mathrm{L}^{3} * 10^{5}$ ), where W is either the gutted weight of the fish or the liver weight in kg , and L is the length in cm . Arithmetic means by Division, year and age are presented for gutted condition (Table 36; Fig. 31) and liver index (Table 37; Fig. 32).

In Division 2J, both gutted condition and liver index declined in the early 1990s. During the second half of the 1990s gutted condition returned to approximately normal, whereas the liver index improved but did not fully recover. There has been variability with little trend since the mid-1990s.

In Division 3K, gutted condition declined during the early 1990s and improved during the latter half of the 1990s. Liver index changed little during the 1990s. As in Division 2J, there has been variability with little trend since the mid-1990s.

In Division 3L, gutted condition has remained relatively unchanged over time whereas liver index increased considerably in the early 1990s and has since declined to an intermediate level.

Historic trends in condition indices are complex and poorly understood (Lilly 1996, 1997, 2001).

## 7 Stock trends

As discussed in Section 4, cod in the inshore of Div. 3KL appear to have experienced different dynamics than cod in the offshore of Div. 2J3KL since at least the mid-1990s. In recognition of these differences, the status of cod in the offshore has been presented separately from that of cod in the inshore since the late 1990s.

### 7.1 Offshore

Information regarding trends in the dynamics of cod in the offshore has come primarily from the research bottom-trawl surveys. Trends in total abundance and biomass in index strata are reported for the autumn surveys in Section 5.1.2.1 and for the spring surveys in Section 5.1.3.1. The present section provides information on spawner stock biomass, recruitment and mortality.

### 7.1.1 Spawner stock biomass in the offshore

An index of spawner stock biomass in the offshore was derived from catches and sampling during autumn bottom-trawl surveys. Because the surveys were conducted during the autumn, it was thought that the population biomass estimated in a given year would provide an appropriate index for spawner biomass in the following spring. The spawner biomass on January 1 in year y was computed as

$$
\sum_{a=1}^{20}\left(N_{a-1, y-1} \times P m_{a-1, y-1} \times W_{a, y}\right)
$$

where N is population number, Pm is proportion mature, W is individual weight, a is index of age ( $a=1-20$ ) and year is index of year ( $\mathrm{y}=1984-2005$ ). N was computed by areal expansion of the stratified arithmetic mean catch at age per tow in index strata in Div. 2J, 3K and 3L combined (Table 27). Pm is the proportion of female cod that were mature, as estimated from a probit model fitted by cohort to observed proportions mature at age (see Section 6.1). W is the weight on January 1 as estimated from mid-year commercial weights (updated from Table 11 of Lilly et al. 2003). Weights derived from sampling of the commercial catch are used so as to be consistent with the weights used in the inshore SPA (see Section 7.2.2.2). Note that the computation of spawner biomass as described here differs from computation of the total biomass as illustrated in Fig. 14 in the use of commercial weights-at-age, rather than the actual weights-at-age in the survey catches, and in extrapolation from a mean catch per tow rather than a summation of biomass estimates calculated for individual strata. (Recall that some strata were not surveyed in some years.)

The index (Fig. 33) declined quickly after 1990 to reach a minimum in 1995. There was a slight increase during the late 1990s followed by greater among-year variability in more recent years. Despite the increase in proportion of fish mature at age (Section 6.1) and the increase in
commercial weights at age (Section 2.6), the average index during the most recent three years was only $1 \%$ of the average index in the period 1984-1989 (excluding the high value in 1987).

### 7.1.2 Recruitment in the offshore

The weakness of recent year-classes is emphasized when mean catch at age per tow (Table 27) is plotted for the 1976-2003 year-classes at ages 1-3 (Fig. 34). For age 1, year-class strength declined from 1994 to 1996, increased to 1999, and then fluctuated without trend. The catch rates of some of these year-classes appear strong at age 1 compared with year-classes prior to 1994, but of course this is simply a reflection of the weak ability of the Engels trawl to catch small fish. The catch rates of many of the earlier year-classes appear much stronger when converted to Campelen equivalents, and even this underrepresents their relative strength, because zero catches cannot be converted.

By age 3 all year-classes from 1992 to 2001 look weak even when compared with unconverted catches of some of the year-classes from the early and late 1980s. Note that the 1994 and 1999 year-classes, which were relatively strong at age 1 , do not appear relatively strong by age 3 .

### 7.1.3 Mortality in the offshore

Information on the rate at which fish are dying is available from a number of sources, including total mortality estimated from offshore survey data (this section), fishing mortality and natural mortality estimated for fish in the inshore from tag return data (Section 7.2.1) and fishing mortality estimated for fish in the inshore from an inshore SPA (Section 7.2.2.2).

Total mortality rates at age in each year, $Z_{a, y}$ (Fig. 35) were estimated from catch rate at age per tow during the autumn research bottom-trawl surveys in 2J3KL (combined) by applying the following equation:

$$
Z_{a, y}=-\ln \left(R V_{a, y} / R V_{a-1, y-1}\right)
$$

where ages $(a)=2$ to 15 and years $(y)=1984$ to 2004. For example, mortality of the 1991 yearclass from the autumn of 1996 to the autumn of $1997(\mathrm{Z}=2.16)$ is referenced to age 6 in 1997. This is intended to reflect the likelihood that most of the deaths experienced by the 1991 yearclass from autumn 1996 to autumn 1997 will have occurred in 1997.

There is considerable variability in these data (Fig. 35). Prior to the collapse the various age groups tended to follow the same pattern, reflecting both trends in mortality and among-year variability (year effects). The most extreme instance of a year effect was the anomalously high index value in 1986, which resulted in the appearance of production of fish (negative mortality) from 1985 to 1986 and the appearance of very high mortality from 1986 to 1987. Since the collapse of the stock, the Z's are characterized by some year effects, but none as dramatic as in
the latter half of the 1980s. This is considerable additional variability which is probably a consequence of sampling error associated with very low population level.

To illustrate more clearly the trend in total mortality over time, the data for just two ages (4 and 6) are isolated in Fig. 36. In this figure the data are presented as age specific mortality rates (proportion of fish dying in a year) rather than as instantaneous rates because it was thought that many people may be better able to interpret a death rate of 0.88 than an instantaneous rate of 2.16. Note that only data collected since the change to the Campelen trawl are illustrated in the Stock Status Report.

Despite the absence of a directed fishery in the offshore, mortality at younger ages has remained very high (0.4-0.6 per year at age 4 and $0.6-0.9$ per year at age 6 ). Note that the mortalities computed from survey catches should be interpreted as indicators of trends over time, rather than absolute values. Rates calculated for younger ages (e.g. from age 2 to age 3) may underestimate mortality for two reasons: the proportion of a year-class available to the survey increases with age as the fish move to the offshore from inshore nursery grounds, and the proportion of the available fish caught by the trawl increases with fish length.

Factors that may be contributing to the high apparent mortality in the offshore are not well understood. Some of the hypotheses that have been proposed are discussed in Appendix 6.

### 7.2 Inshore

### 7.2.1 Exploitation rates from tagging

This section discusses only those tagging studies conducted since the collapse of the stock. Some tagging studies were conducted by sentinel fish harvesters during 1995 and 1996, and DFO technical staff conducted tagging in Trinity Bay in 1995. A new series of tagging studies, conducted entirely by experienced DFO technical staff, was initiated in 2J3KL and 3Ps in 1997. These studies provide information on migration patterns and exploitation rates.

Within the northern cod area, cod aggregations of sufficient size to warrant tagging have not been found in the offshore or in the inshore of 2 J and northern 3 K . However, 134 individual tagging studies comprising almost 38,000 tagged cod have been conducted since 1995 in the inshore from central Notre Dame Bay in 3K to St. Mary’s Bay in southern 3L. For the experiments conducted from 1997 onward, almost 28,000 cod were tagged and released and approximately 5,100 were reported as recaptured by early 2005 (Brattey and Healey 2005).

As described by Lilly et al. (2003), two approaches have been employed to estimate exploitation rate from the tag return data. One method (Brattey and Healey 2003) estimates annual exploitation of the fish tagged within each tagging experiment. This calculation takes into account all recaptures, irrespective of where and when the recaptures occurred. (For example, for a tagging experiment conducted in Smith Sound, the exploitation rate for that experiment would be calculated from all recaptures within a specific year. This would include not only those fish
recaptured within Smith Sound, but also all those recaptured as the fish went through their annual migration out of Smith Sound, perhaps as far as Notre Dame Bay, and then back to the Sound.) The second approach attempts to estimate the exploitation rate of cod within a specific area and time when the commercial fishery has been open. With this approach, the exploitation is calculated from the recovery rate of all fish that are estimated to be within the area during the specified period. (For example, the exploitation rate that is calculated for 3 K for a specific period in time would be based not only on fish that were tagged within 3 K , but also fish that were estimated to have moved into 3 K from other areas, such as northern 3L, southern 3L and even 3Ps. There would also be allowance for fish that were tagged within 3K but moved elsewhere.)

### 7.2.1.1 Exploitation rates from individual tagging studies

The annual exploitation rate was estimated for each tagging experiment in 3KL and summarized by geographic area (Brattey and Healey 2003, 2005). Fisheries were very small in 2003 and 2004, so the number of tag returns was small.

A total of 497 tags were returned from 3KL in 2003 (418 of these came from the Smith Sound mass mortality). Estimates of exploitation for cod tagged in 3K or 3La were low ( $<5 \%$ ), but were marginally higher ( $5-8 \%$ ) for some groups of cod tagged in southern 3L (3Lq) due to recaptures in 3Ps where the directed cod fishery remains open. A notable result was the high 2003 estimates (10-24\%) for 11 of 22 experiments that involved release of tagged cod in 3Lb during 1999-2002. Most of the tag returns came from the mass mortality of cod in Smith Sound in April. This event resulted in mortality of a substantial proportion of the cod that had been tagged in the local area in recent years.

Only 66 tags were returned during 2004, and all estimates of exploitation were low (<6\%).

### 7.2.1.2 Exploitation rates and exploitable biomass in specific areas

Exploitation rates and exploitable biomass were estimated by Cadigan and Brattey (2003) for specific areas during periods when the commercial fishery was open in 1999-2002. The exploitation rates were estimated as the number of tagged fish caught and reported, divided by the number of tagged fish estimated to be available, with adjustments for reporting rate, tagging mortality and tag loss. The number of tagged fish available to be caught by a specific gear type within a specific area and time interval was estimated from the tagging data, individual growth, gear selectivity and a model of rates of movement of fish among areas. There were eight geographic areas in the model. Three of these are within the northern cod stock area: inshore Div. 3K, inshore northern Div. 3L (Bonavista and Trinity bays) and inshore southern Div. 3L (Conception Bay, the eastern Avalon Peninsula, and St. Mary's Bay).

The results, as reported by Cadigan and Brattey (2003), are complex. In brief, the results of the analysis indicate that harvest rates averaged $10 \%$ of the exploitable biomass (approximately ages $4+$ ) in the central inshore region from 1999 to 2002 associated with an average reported catch of $5,000 \mathrm{t}$. Based on these harvest rate estimates, exploitable biomass from 1999 to 2002 averaged
approximately 50,000 t with no clear trend. See Cadigan and Brattey (2003) and Lilly et al. (2003) for additional discussion.

It was not possible to estimate exploitation, natural mortality, and migration rates for 2003 and 2004 from tagging information because of the limited catch, tag returns and much reduced tagging of cod in those years.

### 7.2.1.3 Evidence of high natural mortality based on tagging data

The exploitation rates estimated from tagging experiments that were conducted in Notre Dame Bay (3K) and Bonavista Bay (3La) up to 2002 (Brattey and Healey 2003) tended to be high in the year of tagging and then to decline in subsequent years, even though exploitation rates from tagging in later years tended to be high in the year when those additional tags were applied. For example, for cod tagged in 3K in 1999 the estimates of exploitation for 1999 varied among experiments from $30 \%$ to $63 \%$, but the estimates declined to zero by 2002 when none of the cod tagged in 1999 were recovered. However, additional cod were tagged in 3K in 2002 and the estimates of exploitation during 2002 ranged from $12 \%$ to $20 \%$. This indicates that the cod tagged in 1999 disappeared or were no longer available to the fishery by 2002. This phenomenon was more evident in 3K than in 3La. One possible explanation is that the proportion of the cod available to the fishery declined faster than estimated. This could be due to a movement out of the area, perhaps to the south or even to the offshore. A movement southward, perhaps to the Smith Sound population, is possible. A movement to the offshore seems unlikely, since very few cod of commercial size have been caught during the offshore research vessel surveys. A second possible explanation for the phenomenon above is that the level of natural mortality (assumed to be 0.2 ) has been set too low.

In contrast to findings in 3K and 3La, exploitation rates from specific tagging experiments in Trinity Bay (3Lb), and especially in Smith Sound, tended to increase over time. It seems that "disappearance" of cod was less noticeable for cod in Smith Sound.

This problem of the "disappearance" of cod was addressed by Cadigan and Brattey (2003), who made ad hoc adjustments to the level of natural mortality in their model to improve the fit between model output and the input data. They found that the best fit was achieved with an instantaneous natural mortality (M) of 0.8 in inshore 3 K and 0.4 in both inshore northern 3L and inshore southern 3L.

The exercise of trying to determine the value of natural mortality (Cadigan and Brattey 2003) was repeated for the present assessment. This involved adjusting values for natural mortality (M) to remove trends in the number of tagged cod returned compared to estimates of the returns based on the assumed M. For example, in Figs 37 and 38 residuals are shown for returns from cod tagged in 3K_IN and 3L_INN based on $\mathrm{M}=0$. Most cod tagged in these regions were also recaptured in these regions. The results for 2003-04 are discounted because of the low numbers of tag-returns in these years. Decreasing trends are clearest for 3L_INN in the bottom panel of Fig. 38. This indicates that the tagging model predicts more recaptures than observed as time-atliberty (i.e. years) increases. The tagging model does not apply sufficient mortality to "explain"
or match the observed decline in tag-recaptures. Over time this causes the model to under-predict the number of recaptures from more recent experiments because each year the total residual is zero; that is, the exploitation rate in a year is based on recaptures from all previous releases, and by construction the total observed recaptures from all previous releases must equal the total predicted recaptures. The trends in the bottom panel of Fig. 38 are consistent with a misspecification of M and suggest that $\mathrm{M}>0$. Note that there are similar trends in 3K_IN (top panel of Fig. 38) and this suggests that the residual trends for 3L_INN are not because more fish have moved to $3 \mathrm{~K} \_$IN than the model has estimated. Decreasing trends in residuals are also evidence for recaptures of cod tagged in 3K_IN (Fig. 37; top panel), although the trends are not as consistent as in Fig. 38.

In the 2003 assessment the values of M were adjusted to reduce or remove the residual patterns. The values selected were $\mathrm{M}=0.8$ for $3 \mathrm{~K} \_I N$ and $\mathrm{M}=0.4$ for 3L_INN. Residuals for these values are shown in Figs 39 and 40. The M value for 3L_INN may be too high because the residuals trends (Fig. 40; bottom panel) increase which suggests that too much mortality is applied in the tagging model because the predicted recaptures over time are less than the observed recaptures. There is also some evidence that $\mathrm{M}=0.8$ is too high in 3K_IN (Fig. 39; top panel) because residuals tend to increase in the first year after release. The 3K_IN results are more variable because of the lower numbers of tagged cod in this area.

Residuals were examined based on $\mathrm{M}=0.5$ in $3 \mathrm{~K} \_I N$ and $\mathrm{M}=0.2$ in 3L_INN (Figs 41 and 42). Decreasing trends were still apparent, although less than in Figs $37-38$ when $\mathrm{M}=0$ in both regions.

The conclusion for the above analyses was that M in 3 K _IN was between 0.5 and 0.8 , and M in 3L_INN was between 0.2 and 0.4 . Values of $\mathrm{M}=0.65$ (annual mortality rate of 48\%) in 3K_IN and $\mathrm{M}=0.3$ (26\%) in 3L_INN were considered to be appropriate for the period 1997-2002.

### 7.2.2 Sequential population analysis (SPA)

### 7.2.2.1 Very brief history of SPAs for 2J3KL cod

## Whole-stock SPAs

The history of assessments of 2J3KL cod, from 1977 until the moratorium in 1992, is reported in considerable detail by Bishop and Shelton (1997). Results from the various SPAs explored during the assessment meetings in 1992 were used in projections of stock size under different levels of fishing mortality, even though a problem of lack of model fit in the most recent years was a serious concern (Baird et al. 1992a). The SPA in 1993 (Bishop et al. 1993) had a severe residual pattern and was not used as a basis for projection. By 1994 the residual pattern was so strong (Bishop et al. 1994) that it was concluded that the results did not adequately represent stock abundance. That is, the SPA was rejected. An SPA was again attempted in 1996 (Shelton et al. 1996), and again the residual pattern was so severe that it was considered that the results were "illustrative" of the population dynamics, but were not sufficiently well estimated to allow the projection of stock size. "Illustrative" SPAs were explored again in 1997, when the results
were used as the basis for a projection to evaluate an F0.1 control rule (Murphy et al. 1997), and in 1998, when a tentative risk analysis was attempted (Lilly et al. 1998b).

An analytical assessment was not attempted in 1999 (Lilly et al. 1999). The inability to reconcile reported catches and the research vessel index in the late 1980s and early 1990s had not been resolved. In addition, it was felt that the research vessel bottom-trawl index, the only longstanding fishery-independent index available for this stock, may no longer be representative of the stock as a whole. It was thought that the index was adequately reflecting the status of the stock in the offshore, which constitutes the vast bulk of the stock area, but was not reflecting the status of cod found on traditional inshore fishing grounds from White Bay to St. Mary’s Bay. It was decided that an analytical assessment of the inshore alone was not possible because inshore catches prior to the moratorium could not be apportioned into those coming from inshore components and those coming from components that migrated into the inshore from the offshore.

An analytical assessment was not attempted in 2000 (Lilly et al. 2000b).
In 2001, several attempts were made to combine catch data and various indices in an SPA for the whole stock (Lilly et al. 2001; Morgan 2001). The formulations incorporated new indices from the inshore (research vessel inshore, sentinel gillnet and sentinel linetrawl) along with the autumn and spring research vessel offshore indices, but the attempts were considered unsuccessful. As noted above, during the latter half of the 1990s and early 2000s a high (but unquantified) proportion of the cod in the stock area was in the inshore, and almost all the catch was taken in the inshore. Thus, the offshore bottom-trawl survey no longer reflected a consistent proportion of the stock. Various new indices from the inshore were now available, but these were of short duration. Even if these indices were of longer duration, it is likely that they too would be considered not to reflect a consistent proportion of the stock because of their limited geographic coverage.

It is important to note that one of the models examined during the 2001 assessment meeting addressed the concern regarding the poor fit between SPA model estimates and the offshore research vessel index. Shelton and Lilly (2000) computed the number and age of fish that would have to be added to the reported catch during several years in the early 1990s to make the catch fit the survey index, without relaxing standard assumptions regarding natural mortality and catchability. P. Shelton has used this "missing fish" model in various exercises, most notably for computing metrics of population change in the provision of information to COSEWIC (Smedbol et al. 2002). Assumptions in this model result in the appearance of a stock collapse that was a little later than the collapse depicted by models that did not have added catch (e.g. Bishop et al. 1993; Lilly et al. 1998b). In addition, the 1986 and 1987 year-classes, which initially seemed to be strong at age 3 in SPA estimates (Baird et al. 1991a) but later (after their rapid disappearance from the surveys) seemed much weaker (Bishop et al. 1993, Lilly et al. 1998b), appear in the "missing fish" model to be strong (Morgan et al. 2000; Smedbol et al. 2002). This variability in perception is particularly dramatic for the 1987 year-class. Thus, the history of stock dynamics during the latter half of the 1980s and the early 1990s differs between the "missing fish" model and models that have not been altered by the addition of a substantial quantity of unreported catch.

## Inshore SPA

During the 2001 assessment meeting (Morgan 2001), it was suggested that, with additional time, it may be possible to use the inshore bottom-trawl survey and the sentinel surveys to tune an inshore SPA. A suggested approach would be to ignore the historic catch data and construct an inshore assessment using the most recent data in isolation. This was attempted in 2003.

Several models and formulations were explored. An analysis using ADAPT incorporated catch at age for ages 2 to 10 for years 1995-2002, mean numbers per tow from the autumn stratified random bottom trawl survey in inshore strata for ages 2 to 9 and years 1996 to 2002 (with the exception of 1999 when no survey was carried out), sentinel survey $51 / 2$ inch gillnet catch rate index for ages 3 to 9 for years 1995 to 2002, sentinel survey $31 / 4$ inch gillnet catch rate index for ages 2 to 9 for years 1996 to 2002, and sentinel line trawl catch rate index for ages 3 to 9 for years 1995 to 2002. It should be noted that this SPA was based on all catches taken in 2J3KL, including cod that overwintered in 3Ps. That is, the SPA represents more than the resident coastal group that overwinters within 3K and 3L (primarily northern 3L).

### 7.2.2.2 SPA for resident inshore cod

## Determination of geographic area for SPA

The remit for this assessent (Appendix 1) requests a determination of the current status of cod in the inshore and an assessment of the implications of inshore fishery removals varying from zero to $5,000 \mathrm{t}$ annually in 2005 and the medium term. As noted in Section 4, tagging studies have revealed that in southern 3K and in 3L there are currently two main groups of cod in the inshore; (1) resident fish that overwinter in northern 3L and southern 3K and undertake seasonal migrations among Trinity, Bonavista and Notre Dame bays and (2) migratory fish that overwinter in inshore and offshore areas of 3Ps, move into southern 3L in the spring-summer and return to 3Ps in the autumn. It is thought that migrants from offshore 2J3KL currently contribute little to the biomass of cod in the inshore of 2J3KL.

The concensus of the meeting was that it was not possible with current information to predict the quantity of cod that will move into 3KL from 3Ps in any given year. (The quantity migrating from 3Ps to 3KL would depend on the size of each of the various stock components that occur within 3Ps in winter and the proportion of each component that crosses the 3Ps/3L boundary during spring/summer.) Therefore, for the purpose of the present assessment, the inshore is subdivided into three areas (Fig. 1h): 1) a northern area (2J and northern 3 K ) that contains relatively few cod; 2) a central area (southern 3 K and northern 3L) where most of the resident inshore fish are located; and 3) a southern area (southern 3L) that is, at present, largely dependent on cod that overwinter in inshore and offshore areas of 3Ps, move into southern 3L in the spring-summer and return to 3Ps in the autumn.

The boundary line between the northern and central areas was placed at Partridge Point, which is the headland of demarcation between statistical unit areas 3Kh and 3Ki (see Fig. 1d for an illustration of the unit areas). This headland was chosen based on visual inspection of various
plots of the return patterns from tagging studies in southern 3K and 3L. It was found that very few cod were recaptured in unit areas to the north (Brattey and Healey 2005). The boundary line between the central and southern areas was placed at Grates Point, which is the headland of demarcation between statistical unit areas 3Lb and 3Lf. This headland was chosen based on tag return patterns, which illustrate that few fish tagged within and to the north of Trinity Bay (3Lb) are recaptured to the south.

## SPA model structure

Several SPA analyses were evaluated by the RAP meeting; the agreed ADAPT inputs and run structure follow.

The catch at age matrix was recomputed for all 3K plus 3L north (3La and 3Lb). The matrix has ages 2 to 10+ (where 10+ is 10-20) for years 1995-2004 (Table 38). Note that this catch includes a small quantity from 3 Ka and 3 Kd , which are outside the central inshore area. The catch from these external areas contributed on average just $3 \%$ of the total annual catch used in the modelling.

The standardized sentinel catch rate at age indices were recomputed for just sites within the central inshore area (3Kh, 3Ki, 3La, 3Lb). These sites were Coachman's Cove to Heart's Content, inclusive. All three sentinel catch rate indices were used to estimate population abundance: the $51 / 2$ inch gillnet index (ages 3-9), the 3114 inch gillnet index (ages 3-9), and the linetrawl index (ages 3-7) (Table 39). Note that the age ranges included are somewhat different from those included in the 2003 assessment formulation. The age 2 estimates for the $31 / 4$ inch gillnet index were excluded due to poor fit in previous analyses. The linetrawl indices at ages 8 and 9 were excluded because half of the data values are zero; these are treated as missing data within ADAPT.

Note as well that the index of catch rates at age from the research vessel inshore strata in 3KL, which had been incorporated in the SPA during the 2003 assessment, has not been included. During visual inspection of plots of the inshore catch rates at age, it was noted that year effects were stronger than cohort effects. There was also concern that the spatial coverage of this index does not overlap with the spatial distribution of the majority of the landings from the central inshore portion of the stock area. Nevertheless, the index was recomputed for just those strata in the inshore of 3 K plus 3 L north (3La and 3Lb). The recomputed index was included in some ADAPT runs, but was found to have a severe residual pattern. For the above reasons, the inshore research vessel index was omitted from the SPA.

An average of the natural mortality (M) values for 3K_IN and 3L_INN (see section 7.2.1.3) was used for the SPA. In the 2003 assessment the overall M was taken as $25 \%$ of M in $3 \mathrm{~K} \_$IN plus $75 \%$ of M in 3L_INN, and the result was 0.5 . Based on the new values of M inferred from tagging in this assessment, the weighted-average is $0.25 \times 0.65+0.75 \times 0.3=0.39$. It was considered that a value of 0.4 (33\%) is appropriate for cod in the central portion of the inshore. (Note that if all high-reward tags on captured cod are reported so that reporting rate estimates are reliable then the M inferred from tagging only represents "true" natural mortality, and not
mortality due to unreported catch. The latter mortality, if it exists, would still need to be accounted for in SPA, and if not the SPA may be biased.)

The abundance of age classes 4-10+ are estimated for Jan.1, 2005.
F-constraints using the FRATIO method of ADAPT are applied to complete the remaining cohorts. Using this method, the ratio of the fishing mortality on the plus-group (10+) relative to the oldest true age (age 9) is estimated or assigned. In this analysis, there are three FRATIO parameters: a common F-ratio over 1995-2002, an F-ratio parameter for 2003, and an F-ratio parameter for 2004. The 2003 and 2004 parameters are considered separately due to unusual catch circumstances in those years: in 2003, the majority of the catch came from the Smith Sound mass mortality; in 2004, removals were primarily by-catches from a winter (blackback) flounder fishery that used gillnets of larger mesh size than those typically employed in directed cod fisheries (Section 2.3). Based upon results of previous ADAPT analyses considered at the RAP meeting (not shown), these F-ratio parameters were fixed at values of $0.67,1.58$ and 1.00 , respectively.

## SPA model output

Table 40 provides the ADAPT estimates, with associated bias and standard errors. The relative error of most parameters is about $20 \%$. However, the abundance estimates for ages 4 and the $10+$ group have relative errors of approximately 30\%. Estimates of bias-adjusted abundance at age and fishing mortality at age are given in Tables 41 and 42, respectively. Spawning stock biomass was computed from the bias-corrected numbers at age at the beginning of the year, cohort model estimates of proportion mature at age from survey data, and beginning of year weights-at-age derived from commercial sample data.

Both 4+ biomass and spawner biomass increased during the first moratorium on directed commercial fishing, but subsequently declined as commercial fisheries reopened (Fig. 43, 44). After the imposition of the second moratorium, the 4+ biomass and spawner biomass increased once again.

Estimates of fishing mortality (average of ages 5-10+, Fig. 45) were low from 1995 to 1997 when the directed fisheries were closed (except for a small food/recreational fishery in 1996). During the period of the index/commercial fisheries (1998-2002) there was a variable but increasing trend in fishing mortality. Landings from the mass mortality event in Smith Sound during the spring of 2003 indicate a level of "fishing" mortality comparable to that during 1998 when the directed fishery was first reopened. This reflects not only the number of fish killed during the event but the fact that a high proportion of the fish were relatively old (see Sections 2.3 and 2.6). The fishing mortality estimated for 2004 is relatively low.

Estimates of recruitment at age 3 (Fig. 46) suggest that the 1992 and 2000 year-classes have been substantially stronger than all other year-classes throughout the time period of this SPA.

Residual plots from the ADAPT analysis are presented in Fig. 47. These plots suggest that the model fit is acceptable; however there is some evidence of year effects (Fig. 47c).

## 8 Conclusions and advice

This section focuses on the implications of reopening an inshore fishery.

### 8.1 Inshore fishery and inshore population growth

One of the many uncertainties regarding this exercise is the magnitude of the year-classes that will enter the exploitable portion of the stock over the next few years. The $31 / 4$ inch mesh sentinel gillnet index was designed to provide an index of incoming year-classes but, as noted above, age 2 estimates from this index were excluded from the SPA tuning due to poor fit. Catch rate information is also available for ages $0-2$ from the inshore portion of the research bottom-trawl survey (Section 5.1.2.2.2), and catch rates at ages 0 and 1 are available from beach seining in Bonavista Bay (Gregory et al. 2006). Some data from the various indices suggest that the 2002 year-class was at least moderately strong, but other data do not indicate such strength. The beach seining indicates that the 2003 and 2004 year-classes may be weak.

## Inshore central area

Deterministic projections of stock size from 2005 to 2006, 2007 and 2008 were computed from the SPA results for the inshore central area (southern 3K and northern 3L). Projections were conducted under catch options of $0 \mathrm{t}, 2,500 \mathrm{t}$, and $5,000 \mathrm{t}$. Due to uncertainties in future recruitment, three values (low, medium, and high) were considered in the projections. The low recruitment value was the minimum estimate from 1995 to 2003 of age 2 abundance from the SPA; medium recruitment was the 2001-2003 geometric mean; and high recruitment was the maximum estimated value (at age 2 ) in the SPA. The value of natural mortality used in the projections was the same as that in the SPA ( $\mathrm{M}=0.4$ ). An average partial recruitment vector from 2000-2002 (i.e. prior to the second moratorium) was applied in the projection. The projection weights at age are averages of the values in 2002 to 2004. The above input parameters are summarized in Table 43.

The projection of spawner biomass from 2005 to 2006 is insensitive to the assumed value of recruitment. With no removals or a catch option of $2,500 \mathrm{t}$, spawner biomass is projected to increase, regardless of the assumed recruitment level (Table 44a). This is the result of the relatively strong 2000 year-class entering into the spawner biomass. At a catch option of $5,000 \mathrm{t}$, spawner biomass is projected to decrease.

In the three year projection (from 2005-2008), assuming no removals, spawner biomass is projected to increase for each recruitment assumption (Table 44b). At a catch option of 2,500 t, spawner biomass is projected to decrease if recruitment is low, but increase if recruitment is medium or high. At a catch option of $5,000 \mathrm{t}$, spawner biomass is projected to decrease for each of the recruitment scenarios. Trajectories of spawner biomass for each recruitment option and catch option are illustrated in Fig. 48.

Projection results are dependent, of course, on the values of all variables used in the computations, but particular note is made of the high (0.4) value of natural mortality applied in both the SPA and the projections. There is insufficient information on spatial and temporal variability in natural mortality to explore informative alternatives. However, if future natural mortality differs from the assumed value, then the projected changes in SSB will differ from the above results.

## Inshore northern area.

For the inshore northern area ( 2 J plus northern 3 K ), it is inferred from the low catch rates in the sentinel surveys (1995-2004) and the commercial fishery (1998-2002) that cod densities are very low. Any catch option would likely impose high fishing mortality and further reduce stock size in this area.

## Inshore southern area

For the inshore southern area (southern 3L), it is clear that catch rates have been relatively high at certain times and in some areas. The tagging data illustrated that fisheries in the area during 1998-2002 were primarily dependent on seasonal immigration. Since the magnitude of immigration in future years cannot be predicted, the effect of removals of various levels cannot be estimated. However, fisheries in southern 3L will contribute additional mortality to groups of fish that migrate between Placentia Bay and southern 3L. These fish already experience high fishing mortality within Placentia Bay.

### 8.2 Inshore fishery and offshore recovery

Under a precautionary approach, conservation limit reference points indicate when a stock is considered to have impaired productivity and is thus in a situation in which serious harm has occurred. The biomass of the 2J3KL cod stock as a whole is not known, but it is clearly far below any limit reference point. A spawning stock biomass limit reference point has not been identified for 2J3KL cod, but it was anticipated that the limit would be higher than 300,000 t for the stock as a whole (Rivard and Rice 2002). Given the lack of any recovery in the offshore during the past decade, it is clear that the productivity of the stock as a whole is seriously impaired.

The risk of fishing the inshore populations extends beyond a consideration of limit reference points. There is a strong possibility that cod currently offshore in 2J3KL undergo spring/summer feeding migrations to the inshore. At current offshore population levels, the capture of any offshore fish in an inshore fishery could further impede recovery in the offshore. Many of the fish historically caught in the inshore were immature, so inshore removals may capture some offshore fish before they have a chance to spawn.

The potential for cod currently in the inshore to repopulate the offshore of 2J3KL remains uncertain. Genetic studies using microsatellites have demonstrated a population substructure between most inshore and offshore areas. It has been suggested that this substructure indicates a low likelihood that inshore-spawning cod will contribute to offshore recovery (Beacham et al.
2002). However, evidence of substructure may not preclude inshore-spawning cod playing a role in future offshore recovery. If fish currently in the inshore could recolonize the shelf, then allowing the inshore biomass to increase makes it more likely that inshore fish may move offshore.

In consideration of the above, there is a risk that fishing in the inshore will impede recovery in the offshore.

### 8.3 Regional vulnerability to exploitation

There may be numerous over-wintering inshore populations, with the largest by far being that in Smith Sound. Small populations of cod residing adjacent to large populations of fish harvesters (such as in parts of Notre Dame Bay) are more vulnerable to over-exploitation than the relatively large population in Smith Sound. To protect small populations, it is essential that removals be kept low in areas of low cod density.

## 9 Other considerations

The ecosystem in which the 2J3KL cod stock is but one component has experienced dramatic changes since the 1980s. The relative importance of fishing, physical environment and biological interactions in causing and sustaining those changes is difficult to discern.

### 9.1 Physical oceanography

The marine environment off Labrador and eastern Newfoundland has experienced considerable variability since the start of standardized measurements in the mid-1940s (Colbourne and Anderson 2003; Colbourne 2003). A general warming phase reached its maximum by the mid1960s. Beginning in the early 1970s there was a general downward trend in ocean temperatures, with particularly cold periods in the early 1970s, early to mid-1980s and early 1990s. Ocean temperatures started to warm in 1995. The decade of the 1990s experienced some of the greatest extremes, with particularly cold conditions in 1991 and very warm conditions in various years of the late 1990s. There have also been extremes within a year, as illustrated by the particularly cold winter and unusually warm summer/autumn of 2003.

Water temperatures remained above normal in 2004, reaching record highs in some areas (Colbourne et al. 2005). Ice coverage during 2004 was the second lowest in 42 years, and its duration was generally less than average (Petrie et al. 2005).

No new information regarding the influence of physical oceanography on cod biology and dynamics was presented to the meeting. An overview of studies regarding the role of the environment in the collapse of 2J3KL cod is provided in Appendix 5, and an overview of hypotheses concerning the non-recovery of 2J3KL cod is provided in Appendix 6.

### 9.2 Predators

A wide variety of predators are known to consume cod, mainly during the cod's juvenile stages (Pálsson 1994; Bundy et al. 2000). Cannibalism is well documented for 2J3KL cod and is thought to be an important source of mortality in some cod stocks (Bogstad et al. 1994). However, the predator that has attracted the most interest and concern in recent years is the harp seal.

No new information regarding the impact of seals on the dynamics of cod was presented to the meeting. Previous cod assessments (DFO 2003) have concluded, based on seal feeding behaviour and trends in the abundance of both seals and cod, that predation by seals is a factor contributing to the high total mortality of cod in the offshore and the high natural mortality of adult cod in the inshore.

Estimates of the quantity of cod consumed by harp seals are based on estimates of harp seal population numbers, energy requirements of individual seals, the average duration of seal occurrence within 2J3KL, the relative distribution of seals between inshore and offshore, and stomach contents of seals sampled in the inshore and offshore in winter and summer. A major shortcoming is that there are very few stomach samples from the offshore, where most of the feeding by seals occurs. A two-year programme of enhanced study of seals is in progress. This programme includes new population surveys, new studies of distribution, and new studies of diet, both inshore and offshore.

The estimates of prey consumption by seals rely on the presence and identification of hard parts (such as cod otoliths) in the seal stomachs. Seals also prey on cod by belly-feeding, a mode of predation on fish which are usually too large to be consumed whole. The seal takes a bite from the belly of the fish, removing the liver and gut, but not consuming the muscle or hard parts. Observations of belly-feeding were more frequent during 1998-2000 than in recent years, and occurred mainly in Notre Dame Bay and southern Bonavista Bay. A participant in this cod assessment meeting reported that belly-feeding is still occurring in Smith Sound (Trinity Bay).

A pilot study on the efficacy of seal exclusion zones is currently underway in Smith Sound (Bowen 2004).

Some discussion regarding the interaction between seals and cod is presented in an overview of hypotheses concerning the non-recovery of 2J3KL cod (Appendix 6). Additional information regarding seals and cod is presented in Appendix 7.

### 9.3 Prey

Cod feed on a wide variety of prey (Lilly 1987). The major prey for small cod are planktonic crustaceans, notably hyperiid amphipods in the north and euphausiids on Grand Bank. For medium-size cod the major prey are schooling planktivorous fish. The most important of these is capelin, but Arctic cod are eaten in the north, herring are consumed in inshore waters, and sand lance are important on Grand Bank. Larger cod tend to feed on medium-sized fish and crabs,
especially toad crabs and small snow crabs. Shrimp are consumed by a broad size range of cod. Cod also feed on smaller cod, but cannibalism is not an important aspect of the diet of northern cod.

The prey that has received most attention is capelin. The trend in biomass of capelin, historically the major prey of cod in 2J3KL, has been uncertain since the late 1980s. Biomass estimates from hydroacoustic surveys in the offshore have been much lower since the early 1990s compared with the 1980s, but indices of capelin biomass from the inshore have not shown such extensive declines. Some studies of cod condition and feeding indicate that cod may not be faring well in certain seasons and areas, and that this is due to low availability of capelin. Other studies and observations do not suggest any concerns at present about cod growth or condition. Whatever the present circumstances, there remains concern that there may not be sufficient capelin to support a recovery of the cod stock, especially in the offshore and in the north.

Some discussion regarding the interaction between cod and capelin is presented in an overview of hypotheses concerning the non-recovery of 2J3KL cod (Appendix 6). Additional information regarding cod and capelin is presented in Appendix 8.

## References

(NOTE: This reference list includes papers cited in the Appendices.)

Alverson, D.L., et al. 1987. A study of trends of cod stocks off Newfoundland and factors influencing their abundance and availability to the inshore fishery. Report of the Task Group on Newfoundland Inshore Fisheries. Ottawa, Canada. (available from the Regional Library, Department of Fisheries and Oceans, St. John’s, NL, Canada).

Anderson, J.T., and Rose, G.A. 2001. Offshore spawning and year-class strength of northern cod (2J3KL) during the fishing moratorium, 1994-1996. Can. J. Fish. Aquat. Sci. 58: 1386-1394.

Atkinson, D.B. 1994. Some observations on the biomass and abundance of fish captured during stratified-random bottom trawl surveys in NAFO Divisions 2J and 3KL, autumn 1981-1991. NAFO Sci. Coun. Studies 21: 43-66.

Atkinson, D.B., and Bennett, B. 1994. Proceedings of a northern cod workshop held in St. John's, Newfoundland, Canada, January 27-29, 1993. Can. Tech. Rep. Fish. Aquat. Sci. 1999: 64 p.

Atkinson, D.B., Rose, G.A., Murphy, E.F., and Bishop, C.A. 1997. Distribution changes and abundance of northern cod (Gadus morhua), 1981-1993. Can. J. Fish. Aquat. Sci. 54 (Suppl. 1): 132-138.

Baird, J.W., Bishop, C.A., Brodie, W.B., and Murphy, E.F. 1992a. An assessment of the cod stock in NAFO Divisions 2J3KL. NAFO SCR Doc. 92/18, Serial No. N2063. 69 p.

Baird, J.W., Bishop, C.A., and Murphy, E.F. 1991. An assessment of the cod stock in NAFO Divisions 2J3KL. CAFSAC Res. Doc. 91/53.

Baird, J.W., Stevens, C.R., and Murphy, E.F. 1992b. A review of hydroacoustic surveys conducted during winter for 2J3KL cod, 1987-1992. CAFSAC Res. Doc. 92/107. 14 p.

Beacham, T.D., Brattey, J., Miller, K.M., Le, K.D., and Withler, R.E. 2002. Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES J. Mar. Sci. 59: 650-665.

Bentzen, P., Tagggart, C.T., Ruzzante, D.E., and Cook, D. 1996. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 53: 2706-2721.

Bishop, C.A. 1994. Revisions and additions to stratification schemes used during research vessel surveys in NAFO Subareas 2 and 3. NAFO SCR Doc. 94/43, Serial No. N2413. 23p.

Bishop, C.A., Anderson, J., Dalley, E., Davis, M.B., Murphy, E.F., Rose, G.A., Stansbury, D.E., Taggart, C., and Winters, G. 1994. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 94/40, Serial No. N2410. 50 p.

Bishop, C.A., Murphy, E.F., Davis, M.B., Baird, J.W., and Rose, G.A. 1993. An assessment of the cod stock in NAFO Divisions 2J+3KL. NAFO SCR Doc. 93/86, Serial No. N2271. 51 p.

Bishop, C.A., and Shelton, P.A. 1997. A narrative of NAFO Divs. 2J3KL cod assessments from extension of jurisdiction to moratorium. Can. Tech. Rep. Fish. Aquat. Sci. 2199: 66 p.

Bishop, C.A., Stansbury, D.E., and Murphy, E.F. 1995. An update of the stock status of Div. 2J3KL cod. DFO Atlantic Fisheries Research Document 95/34.

Bogstad, B., Lilly, G.R., Mehl, S., Pálsson, Ó.K., and Stefánsson, G. 1994. Cannibalism and year-class strength in Atlantic cod (Gadus morhua L.) in Arcto-boreal ecosystems (Barents Sea, Iceland and eastern Newfoundland). ICES mar. Sci. Symp. 198: 576-599.

Bolon, A. D., and Schneider, D.C. 1999. Temporal trends in condition, gonado-somatic index and maturity stages of Atlantic cod (Gadus morhua) from Placentia Bay (subdivision 3Ps), Newfoundland, during 1998. DFO Can. Stock Assess. Sec. Res. Doc. 99/45.

Bowen, W.D. (Chairperson). 2004. Report of the seal exclusion zone workshop. 11-13 May 2004, Cambridge Suites, Halifax, N.S. DFO Can. Sci. Advis. Sec. Proceed. Series 2004/022.

Bowering, W.R., Morgan, M.J., and Brodie, W.B. 1997. Changes in the population of American plaice (Hippoglossoides platessoides) off Labrador and northeastern Newfoundland: a collapsing stock with low exploitation. Fisheries Research 30: 199-216.

Bowering, W.R., and Orr, D.C. 2004. By-catch of Greenland halibut (Reinhardtius hippoglossoides, Walbaum) in the Canadian fishery for northern shrimp (Pandalus borealis, Koyer) in NAFO Subarea 2 and Divisions 3KL. NAFO SCR Doc. 04/67.

Brattey, J. 1997. Biological characteristics of Atlantic cod (Gadus morhua) from three inshore areas of northeastern Newfoundland. NAFO Sci. Coun. Studies 29: 31-42.

Brattey, J., and Healey, B.P. 2003. Exploitation rates and movements of Atlantic cod (Gadus morhua) in NAFO Divs. 3KL based on tagging experiments conducted during 1997-2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/032.

Brattey, J., and Healey, B.P. 2005. Exploitation and movements of Atlantic cod (Gadus morhua) in NAFO Divs. 3KL : further updates based on tag returns during 1995-2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/047.

Brattey, J., and Porter, D. 1997. An acoustic survey of Atlantic cod (Gadus morhua) in three inshore areas of western Trinity Bay (NAFO Division 3L). NAFO SCR Doc. 97/49, Serial No. N2883. 22 p.

Brattey, J., Porter, D., and George, C. 2001. Stock structure, movements, and exploitation of Atlantic cod (Gadus morhua) in NAFO Divs. 2J+3KL based on tagging experiments conducted during 1999-2000. DFO Can. Stock Assess. Sec. Res. Doc. 2001/072.

Brodie, W. 2005. A description of the autumn multispecies surveys in SA2+ Divisions 3KLMNO from 1995-2004. NAFO SCR Doc. 05/8.

Bundy, A., Lilly, G.R., and Shelton, P.A. 2000. A mass balance model of the NewfoundlandLabrador Shelf. Can. Tech. Rep. Fish. Aquat. Sci. 2310: xiv + 157 p.

Cadigan, N., and Brattey, J. 2003. Analyses of stock and fishery dynamics for cod in 3Ps and 3KL based on tagging studies in 1997-2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/037.

Carr, S.M, and Crutcher, D.C. 1998. Population genetic structure in Atlantic cod (Gadus morhua) from the North Atlantic and Barents Sea: contrasting or concordant patterns in mtDNA sequence and microsatellite data?, p. 91-101. In I. Hunt von Herbing, I Kornfield, M. Tupper and J. Wilson [eds.] The implications of localized fishery stocks. Northeast Regional Agricultural Engineering Service, New York. 200 p.

Carr, S.M., Snellen, A.J., Howse, K.A., and Wroblewski, J.S. 1995. Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf. Molecular Ecology 4: 79-88.

Carscadden, J.E., Frank, K.T., and Leggett, W.C. 2001. Ecosystem changes and the effects on capelin (Mallotus villosus), a major forage species. Can. J. Fish. Aquat. Sci. 58: 73-85.

Carscadden, J.E., Montevecchi, W.A., Davoren, G.K., and Nakashima, B.S. 2002. Trophic relationships among capelin (Mallotus villosus) and seabirds in a changing ecosystem. ICES. J. Mar. Sci. 59: 1027-1033.

Carscadden, J.E., and Vilhjálmsson, H. 2002. Capelin - what are they good for? Introduction. ICES J. mar. Sci. 59: 863-869.

Colbourne, E. 2003. Physical oceanographic conditions on the Newfoundland and Labrador Shelf during 2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/020.

Colbourne, E.B., and Anderson, J.T. 2003. Biological response in a changing ocean environment in Newfoundland waters during the latter decades of the 1900s. ICES mar. Sci. Symp. 219: 169-181.

Colbourne, E.B., Brattey, J., Lilly, G., and Rose, G.A. 2003. The AZMP program contributes to the scientific investigation of the Smith Sound mass fish kill of April 2003. DFO Atlantic Zone Monitoring Program Bulletin 3: 45-48. http://www.meds-sdmm.dfo-mpo.gc.ca/zmp/Documents/AZMP_bulletin_3.pdf

Colbourne, E., Fitzpatrick, C., Senciall, D., Stead, P., Craig, J., and Bailey, W. 2005. An assessment of the physical environment on the Newfoundland and Labrador Shelf during 2004. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/014.

Colbourne, E.B., Narayanan, S., and Prinsenberg, S. 1994. Climate changes and environmental conditions in the Northwest Atlantic, 1970-1993. ICES mar. Sci. Symp. 198: 311-322.

Davis, M.B. 1996. The 1995 inshore sentinel survey for cod in NAFO Divisions 2J3KL. NAFO SCR Doc. 96/52, Serial No. N2728. 14 p.
deYoung, B., and Rose, G.A. 1993. On recruitment and distribution of Atlantic cod (Gadus morhua) off Newfoundland. Can J. Fish. Aquat. Sci. 50: 2729-2741.

Doubleday, W.G. (ed.) 1981. Manual on groundfish surveys in the Northwest Atlantic. NAFO Sci. Coun. Studies 2: 7-55.

DFO, 2000. Capelin in SA2+Di 3KL. DFO Can. Stock Status Report B2-02 (2000).
DFO, 2001a. Northern (2J+3KL) cod. DFO Science Stock Status Report A2-01 (2001).
DFO 2001b. Capelin in Subarea 2 + Div. 3KL. DFO Science Stock Status Report B2-01 (2001).
DFO, 2002a. Northern (2J+3KL) cod Stock Status Update. DFO Science Stock Status Report A2-01 (2002).

DFO, 2002b. Newfoundland and Labrador snow crab. DFO Science Stock Status Report C2-01 (2002).

DFO, 2002c. Northern shrimp (Pandalus borealis) - Div. 0B to 3K. DFO Science Stock Status Report C2-05 (2002).

DFO, 2003. Northern (2J+3KL) cod. DFO Can. Sci. Advis. Sec. Stock Status Report 2003/018.
DFO, 2004. Northern (2J+3KL) cod Stock Status Update. DFO Can. Sci. Advis. Sec. Stock Status Report 2004/011.

DFO, 2005. Stock assessment report on northern (2J+3KL) cod. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2005/024.

Dickson, R.R., and Brander, K.M. 1993. Effects of a changing windfield on cod stocks of the North Atlantic. Fish. Oceanogr. 2: 124-153.

Drinkwater, K.F. 2000. Changes in ocean climate and its general effect on fisheries: examples from the north-west Atlantic, p. 116-136. In D. Mills [ed.] The ocean life of Atlantic salmon: environmental and biological factors influencing survival. Fishing News Books, Oxford. 228 p.

Drinkwater, K.F. 2002. A review of the role of climate variability in the decline of northern cod. Amer. Fish. Soc. Symp. 32: 113-130.

Dutil, J-D., and Lambert, Y. 2000. Natural mortality from poor condition in Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 57: 826-836.

Fleming, A. M. 1965. Trends in catch, age, and size of cod from the commercial longline fishery at Bonavista, Newfoundland, 1952-62. J. Fish. Res. Board Can. 22: 465-474.

Fleming, A.M. 1967. East Newfoundland (Division 3L). Ann. Rept. Fish. Res. Board Can. Biol. Sta., St. John's, Newfoundland for 1967 (mimeographed), App. No. 4, p. 8-13.

Fleming, A.M. 1968. Cod of the eastern Newfoundland area. Ann. Rept. and Investigators' Summaries, Fish. Res. Board Can. Biol. Sta., St. John's, Newfoundland, 1968 (mimeographed), p. 4-6.

Gagnon, P. 1991. Optimization des campagnes d'échantillonnage: les programmes REGROUP et PARTS. Rapp. tech. can. sci. halieut. aquat. 1818: iii+20 p.

Gavaris, S., and Gavaris, C. A. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region. In Sampling commercial catches of marine fish and invertebrates. Edited by W. G. Doubleday and D. Rivard. Can. Spec. Publ. Fish. Aquat. Sci. 66. pp. 178-182.

Gomes, M.C., Haedrich, R.L., and Villagarcia, M.G. 1995. Spatial and temporal changes in the groundfish assemblages on the north-east Newfoundland/Labrador Shelf, north-west Atlantic, 1978-1991. Fish.. Oceanogr. 4: 85-101.

Green, J.M., and Wroblewski, J.S. 2000. Movement patterns of Atlantic cod in Gilbert Bay, Labrador: evidence for bay residency and spawning site fidelity. J. Mar. Biol. Ass. U.K. 80: 1077-1085.

Gregory, R.S., Morris, C., Sheppard, G.L., Thistle, M.E., Linehan, J.E., and Schneider, D.C. 2006. Relative strength of the 2003 and 2004 year-classes, from nearshore surveys of demersal age $0 \& 1$ Atlantic cod in Newman Sound, Bonavista Bay. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/038.

Haedrich, R.L., and Barnes, S.M. 1997. Changes over time of the size structure in an exploited shelf fish community. Fisheries Research 31: 229-239.

Haedrich, R.L., and Fischer, J. 1996. Stability and change of exploited fish communities in a cold ocean continental shelf ecosystem. Senckenbergiana maritima 27: 237-243.

Haedrich, R.L., Fischer, J., and Chernova, N.V. 1997. Ocean temperatures and demersal fish abundance on the northeast Newfoundland continental shelf, p. 211-221. In L.E. Hawkins and S. Hutchinson, with A.C. Jenson, M. Sheader, and J.A. Williams [eds.] The responses of marine organisms to their environment. University of Southampton.

Hammill, M.O., and Stenson, G.B. 2000. Estimated prey consumption by harp seals (Phoca groenlandica), hooded seals (Cystophora cristata), grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina) in Atlantic Canada. J. Northw. Atl. Fish. Sci. 26: 1-23.

Healey, B.P., and Stenson, G.B. 2000. Estimating pup production and population size of the northwest Atlantic harp seal (Phoca groenlandica). DFO Can. Stock Assess. Sec. Res. Doc. 2000/081.

Hodder, V.M. 1965. Trends in the cod fishery off the east coast of Newfoundland and Labrador. ICNAF Res. Bull. 2: 31-41.

Hutchings, J.A. 1996. Spatial and temporal variation in the density of northern cod and a review of hypotheses for the stock's collapse. Can J. Fish. Aquat. Sci. 53: 943-962.

Hutchings, J.A., and Ferguson, M. 2000. Temporal changes in harvesting dynamics of Canadian inshore fisheries for northern Atlantic cod, Gadus morhua. Can. J. Fish. Aquat. Sci. 57: 805814.

Hutchings, J.A., and Myers, R.A. 1993. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 50: 2468-2474.

Hutchings, J.A., and Myers, R.A. 1994a. What can be learned from the collapse of a renewable resource? Atlantic cod, Gadus morhua, of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci. 51: 2126-2146.

Hutchings, J.A., and Myers, R.A. 1995. The biological collapse of Atlantic cod off Newfoundland and Labrador: an exploration of historical changes in exploitation, harvesting technology, and management, p. 39-93. In R. Arnason and L. Felt [eds.] The north Atlantic fisheries: successes, failures, and challenges. The Institute of Island Studies, Charlottetown, Prince Edward Island.

Hutchings, J.A., Myers, R.A., and Lilly, G.R. 1993. Geographic variation in the spawning of Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 50: 24572467.

ICNAF (International Commission for the Northwest Atlantic Fisheries). 1973. Redbook 1973, Part 1. p.68-69.

Jarvis, H., and Stead, R. 2001. Results of the 2000 Fish Harvesters Committees' questionnaire and a comparison of sentinel and commercial catch rates for NAFO Divisions 2J3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2001/077.

Jarvis, H., and Stead, R. 2005. Results of the 2005 Fish Harvesters' Telephone Survey on the status of northern (2J3KL) Cod. DFO Can. Stock Assess. Sec. Res. Doc. 2005/092.

Kjesbu, O.S., Solemdal, P., Bratland, P., and Fonn, M. 1996. Variation in annual egg production in individual captive Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 53: 610-620.

Krohn, M., Reidy, S., and Kerr, S. 1997. Bioenergetic analysis of the effects of temperature and prey availability on growth and condition of northern cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 54(Suppl. 1): 113-121.

Kulka, D.W. 1998. Update of discarding of cod in the shrimp and cod directed fisheries in NAFO Divisions 2J, 3K, and 3L. DFO Can. Stock Assess. Sec. Res. Doc. 98/12.

Kulka, D.W., Stead, R., Lane, D., and Russell, L. 1995a. Summary of the food fishery for cod in NAFO Divisions 2J, 3K 3L and 3Ps in 1993 and 1994. DFO Atlantic Fisheries Research Document 95/47.

Kulka, D.W., Wroblewski, J.S., and Narayanan, S. 1995b. Recent changes in the winter distribution and movements of northern Atlantic cod (Gadus morhua Linnaeus, 1758) on the Newfoundland-Labrador Shelf. ICES J. mar. Sci. 52: 889-902.

Lear, W.H. 1986. A further discussion of the stock complex of Atlantic cod (Gadus morhua) in NAFO Div. 2J, 3K and 3L. NAFO SCR Doc. 86/118.

Lear, W.H. 1998. History of fisheries in the Northwest Atlantic: the 500-year perspective. J. Northw. Atl. Fish. Sci. 23: 41-73.

Lear, W.H., and Parsons, L.S. 1993. History and management of the fishery for northern cod in NAFO Divisions 2J, 3K and 3L, p. 55-89. In L.S. Parsons and W.H. Lear [eds.] Perspectives on Canadian marine fisheries management. Can. Bull. Fish. Aquat. Sci. 226.

Lilly, G.R. 1982. Influence of the Labrador Current on predation by cod on capelin and sand lance off eastern Newfoundland. NAFO Sci. Coun. Studies 3: 77-82.

Lilly, G.R. 1987. Interactions between Atlantic cod (Gadus morhua) and capelin (Mallotus villosus) off Labrador and eastern Newfoundland: a review. Can. Tech. Rep. Fish. Aquat. Sci. 1567: vii + 37 p.

Lilly G.R. 1991. Interannual variability in predation by cod (Gadus morhua) on capelin (Mallotus villosus) and other prey off southern Labrador and northeastern Newfoundland. ICES Mar. Sci. Symp. 193:133-146.

Lilly, G.R. 1994. Predation by Atlantic cod on capelin on the southern Labrador and Northeast Newfoundland shelves during a period of changing spatial distributions. ICES mar. Sci. Symp. 198: 600-611.

Lilly, G.R. 1995. Did the feeding level of the cod off southern Labrador and eastern Newfoundland decline in the 1990s? DFO Atl. Fish. Res. Doc. 95/74. 25 p.

Lilly, G.R. 1996. Observations on cod in the inshore environment of eastern Newfoundland. NAFO SCR Doc. 96/59, Serial No. N2735. 10 p.

Lilly, G.R. 1997. Size and condition of cod in Divisions 2J+3KL during 1978-1996. NAFO SCR Doc. 97/62, Serial No. N2896. 21 p.

Lilly, G.R. 2001. Changes in size at age and condition of cod (Gadus morhua) off Labrador and eastern Newfoundland during 1978-2000. ICES CM 2001/V:15. 34 p.

Lilly, G.R. 2002. Ecopath modelling of the Newfoundland Shelf: observations on data availability within the Canadian Department of Fisheries and Oceans. In Information supporting past and present ecosystem models of northern British Columbia and the Newfoundland Shelf. Edited by T. Pitcher, M. Vasconcellos, S. Heymans, C. Brignall and N. Haggan. Fisheries Centre, University of British Columbia, Canada. Fisheries Centre Research Reports 200210 (1) pp. 22-27.

Lilly, G.R. 2004. The distribution of northern (2J+3KL) cod, with emphasis on the inshore and Smith Sound, and notes regarding cod-seal events. p. 44-51, In. W.D. Bowen (Chairperson). Report of the seal exclusion zone workshop. 11-13 May 2004, Cambridge Suites, Halifax, N.S. Can. Sci. Adv. Sec. Proceed. Series 2004/022.

Lilly, G.R., Brattey, J., and Davis, M.B. 1998a. Age composition, growth and maturity of cod in inshore waters of Divisions 2J, 3K and 3L as determined from sentinel surveys (1995-1997). Department of Fisheries and Oceans Canadian Stock Assessment Secretariat Res. Doc. 98/14.

Lilly, G.R., and Carscadden, J.E. 2002. Predicting the future of marine fish and fisheries off Labrador and eastern Newfoundland under scenarios of climate change; information and thoughts for the Arctic Climate Impact Assessment (ACIA). DFO Can. Sci. Adv. Sec. Res. Doc. 2002/111.

Lilly, G.R., and Murphy, E.F. 2004. Biology, fishery and status of the 2GH and 2J3KL (northern) cod stocks: information supporting an assessment of allowable harm under the Species at Risk Act for the COSEWIC-defined Newfoundland and Labrador population of Atlantic cod (Gadus morhua). Can. Sci. Adv. Sec. Res. Doc. 2004/102.

Lilly, G.R., Murphy, E.F., Healey, B.P., Maddock Parsons, D., and Stead, R. 2004. An update of the status of the cod (Gadus morhua) stock in NAFO Divisions 2J+3KL in March 2004. Can. Sci. Adv. Sec. Res. Doc. 2004/023. 55 p.

Lilly, G.R., Parsons, D.G., and Kulka, D.W. 2000. Was the increase in shrimp biomass on the Northeast Newfoundland Shelf a consequence of a release in predation pressure from cod? J. Northw. Atl. Fish. Sci. 27: 45-61.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., and Stansbury, D.E. 2001. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2001/044. 148 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N., Murphy, E.F., Stansbury, D.E., Davis, M.B., and Morgan, M.J. 1998b. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Assess. Sec. Res. Doc. 98/15. 102 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Murphy, E.F., and Stansbury, D.E. 1999. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Assess. Sec. Res. Doc. 99/42. 165 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Murphy, E.F., and Stansbury, D.E. 2000. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2000/063. 123 p.

Lilly, G.R., Shelton, P.A., Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., Stansbury, D.E., and Chen, N. 2003. An assessment of the cod stock in NAFO Divisions 2J+3KL in February 2003. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/023.

Lilly, G.R., and Simpson, M. 2000. Distribution and abundance of capelin, Arctic cod and sand lance on the Northeast Newfoundland Shelf and Grand Bank as deduced from bottom-trawl surveys. DFO Can. Stock Assess. Sec. Res. Doc. 2000/091. 40 p.

Livingston, P.A., and Tjelmeland, S. 2000. Fisheries in boreal ecosystems. ICES J. mar. Sci. 57: 619-627.

McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. London, Chapman and Hall.

McLaren, I., Brault, S., Harwood, J., and Vardy, D. 2001. Report of the eminent panel on seal management. Department of Fisheries and Oceans. Ottawa, Canada.

Maddock Parsons, D., Stead, R., and Stansbury, D. 2000. Sentinel surveys 1995-1999: catch per unit effort in NAFO Divisions 2J3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2000/102.

Maddock Parsons, D., and Stead, R. 2005. Sentinel surveys 1995-2004: catch per unit effort in NAFO Divisions 2J3KL. DFO Can. Sci. Adv. Sec. Res. Doc. 2005/044.

Mann, K.H., and Drinkwater, K.F. 1994. Environmental influences on fish and shellfish production in the Northwest Atlantic. Environ. Rev. 2: 16-32.

May, A.W. 1967. Effect of offshore fishing on the inshore Labrador cod fishery. ICNAF Res. Bull. 4: 67-75.

May, A.W., Pinhorn, A.T., Wells, R., and Fleming, A.M. 1965. Cod growth and temperature in the Newfoundland area. ICNAF (International Commission for the Northwest Atlantic Fisheries) Spec. Pub. 6: 545-555.

Molenaar, E.J. 2002. Ecosystem-based fisheries management, commercial fisheries, marine mammals and the 2001 Reykjavik Declaration in the context of international law. International Journal of Marine and Coastal Law 17: 561-595.

Molenaar, E.J. 2003. Marine mammals: the role of ethics and ecosystem considerations. Journal of International Wildlife Law and Policy 6: 31-51.

Morgan, J. 2001. Proceedings of the Newfoundland Regional Advisory Process for Div. 2J3KL cod, March 2001, Airport Plaza Hotel, St. John’s. DFO Can. Stock Assess. Sec. Proceed. Ser. 2001/10.

Morgan, M.J., and Brattey, J. 1997. Maturity of female cod in Divisions 2J+3KL with a comparison of fish from inshore and offshore Division 3L. NAFO Sci. Coun. Studies 29: 6165.

Morgan, M.J., Brodie, W.B., and Kulka, D.W. 2002. Was over-exploitation the cause of the decline of the American plaice stock off Labrador and northeast Newfoundland? Fisheries Research 57: 39-49.

Morgan, M.J., DeBlois, E.M., and Rose, G.A. 1997. An observation on the reaction of Atlantic cod (Gadus morhua) in a spawning shoal to bottom trawling. Can. J. Fish. Aquat. Sci. 54(Suppl. 1): 217-223.

Morgan, M.J., and Hoenig, J.M. 1997. Estimating maturity-at-age from length stratified sampling. J. Northw. Atl. Fish. Sci. 21: 51-63.

Morgan, M.J., Shelton, P.A., Stansbury, D.P., Brattey, J., and Lilly, G.R. 2000. An examination of the possible effect of spawning stock characteristics on recruitment in 4 Newfoundland groundfish stocks. DFO Can. Stock Assess. Sec. Res. Doc. 2000/028.

Morgan, M.J., Wilson, C.E., and Crim, L.W. 1999. The effect of stress on reproduction in Atlantic cod. J. Fish Biol. 54: 477-488.

Morris, C.J., and Green, J.M. 2002. Biological characteristics of a resident population of Atlantic cod (Gadus morhua L.) in southern Labrador. ICES J. mar. Sci. 59: 000-000.

Morris, C.J., Green, J.M., and Simms, J.M. 2003. Abundance of resident Atlantic cod in Gilbert Bay, Labrador, based on mark recapture, sampling catch per unit effort and commercial tag return data collected from 1998 to 2002. DFO Can. Sci. Adv. Sec. Res. Doc. 2003/039.

Mowbray, F.K. 2002. Changes in the vertical distribution of capelin (Mallotus villosus) off Newfoundland. ICES J. Mar. Sci. 59: 942-949.

Murphy, E.F., Stansbury, D.E., Shelton, P.A., Brattey, J., and Lilly, G.R. 1997. A stock status update for NAFO Divisions 2J+3KL cod. NAFO SCR Doc. 97/59, Serial No. N2893. 58 p.

Myers, R.A., Barrowman, N.J., Hoenig, J.M., and Qu, Z. 1996a. The collapse of cod in Eastern Canada: the evidence from tagging data. ICES J. mar. Sci. 53: 629-640.

Myers, R.A., Barrowman, N.J., and Hutchings, J.A. 1997a. Inshore exploitation of Newfoundland Atlantic cod (Gadus morhua) since 1948 as estimated from mark-recapture data. Can. J. Fish. Aquat. Sci. 54(Suppl. 1): 224-235.

Myers, R.A., Drinkwater, K.F., Barrowman, N.J., and Baird, J.W. 1993a. Salinity and recruitment of Atlantic cod (Gadus morhua) in the Newfoundland region. Can. J. Fish. Aquat. Sci. 50: 1599-1609.

Myers, R.A., Hutchings, J.A., and Barrowman, N.J. 1996b. Hypotheses for the decline of cod in the North Atlantic. Mar. Ecol. Prog. Ser. 138: 293-308.

Myers, R.A., Hutchings, J.A., and Barrowman, N.J. 1997b. Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecological Applications 7: 91-106.

NAFO (Northwest Atlantic Fisheries Organization). 1982. NAFO Scientific Council Reports, 1982. Report of Standing Committee on Fishery Science. p. 34.

Nakashima, B.S., and Wheeler, J.P. 2002. Capelin (Mallotus villosus) spawning behaviour in Newfoundland waters- the interaction between beach and demersal spawning. ICES J. Mar. Sci. 59: 909-916.

Narayanan, S., Carscadden, J., Dempson, J.B., O’Connell, M.F., Prinsenberg, S., Reddin, D.G., and Shackell, N. 1995. Marine climate off Newfoundland and its influence on Atlantic salmon
(Salmo salar) and capelin (Mallotus villosus). In Climate change and northern fish populations. Edited by R.J. Beamish. Can. Spec. Publ. Fish. Aquat. Sci. 121. pp. 461-474.

Neilsen, A. 1895. Operations at Dildo Island Marine Hatchery, p. 26-48. In Annual report of the Newfoundland Department of Fisheries for the year 1894. J.W. Withers, St. John’s, Nfld.

Neis, B., Felt, L., Schneider, D.C., Haedrich, R., Hutchings, J., and Fischer, J. 1996. Northern cod stock assessment: what can be learned from interviewing resource users? NAFO SCR Doc. 96/22, Serial No. N2695. 22 p.

Neis, B., Schneider, D.C., Felt, L., Haedrich, R.L., Fischer, J., and Hutchings, J.A. 1999. Fisheries assessment: what can be learned from interviewing resource users? Can. J. Fish. Aquat. Sci. 56: 1949-1963.

O’Driscoll, R.L., Schneider, D.C., Rose, G.A., and Lilly, G.R. 2000. Potential contact statistics for measuring scale-dependent spatial pattern and association: an example of northern cod (Gadus morhua) and capelin (Mallotus villosus). Can. J. Fish. Aquat. Sci. 57: 1355-1368.

Orr, D.C., Kulka, D., and Firth, J. 2002. Groundfish by-catch in the Canadian small (<500 tons; LOA $<100$ ') and large (=>500 tons) vessel Division 3L shrimp fishery, during 2000 and 2001. NAFO SCR Doc. 02/6, Serial No. N4607. 6 p.

Pálsson, Ó.K. 1994. A review of the trophic interactions of cod stocks in the North Atlantic. ICES mar. Sci. Symp. 198: 553-575.

Parsons, L.S., and Lear, W.H. 2001. Climate variability and marine ecosystem impacts: a North Atlantic perspective. Progress in Oceanography 49: 167-188.

Pepin, P., and Carr, S.M. 1993. Morphological, meristic, and genetic analysis of stock structure in juvenile Atlantic cod (Gadus morhua) from the Newfoundland Shelf. Can. J. Fish. Aquat. Sci. 1924-1933.

Petrie, B., Pettipas, R.G., and Petrie, W.M. 2005. An overview of meteorological, sea ice and sea-surface temperature conditions off eastern Canada during 2004. NAFO SCR Doc. 05/5, Ser. No. N5080.

Pinhorn, A.T. 1976. Living marine resources of Newfoundland-Labrador. Bull. Fish. Res. Board Can. 194: 64 p.

Planque, B., and Frédou, T. 1999. Temperature and the recruitment of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 56: 2069-2077.

Porter, D., Brattey, J., and Anderson, J. 1998. Acoustic surveys for cod in Trinity Bay and Bonavista Bay (NAFO Div. 3L) during spring 1997. DFO Can. Stock Assess. Sec. Res. Doc. 98/27. 34 p.

Postolakii, A.I. 1966. Results of cod tagging in the Labrador and North Newfoundland Bank regions, 1960-1964. Results of investigations in the Barents, Norwegian, White seas and the Northwest Atlantic in 1964, Murmansk 1966, PINRO 6:80-90. (Trans. From Russian by Fish. Res. Board Can., Transl. Series No. 859, 1967).

Reddin, D.G., Johnson, R., and Downton, P. 2002. A study of by-catches in herring bait nets in Newfoundland, 2001. DFO Can. Sci. Adv. Sec. Res. Doc. 2002/031. 19 p.

Rice, J. 2002. Changes to the Large Marine Ecosystem of the Newfoundland-Labrador Shelf. In Large Marine Ecosystems of the North Atlantic. Edited by K. Sherman and H.R. Skjoldal. Elsevier Science. pp. 51-103

Rice, J.C., and Evans, G.T. 1988. Tools for embracing uncertainty in the management of the cod fishery of NAFO divisions 2J+3KL. J. Cons. Int. Explor. Mer 45: 73-81.

Rice, J., and Rivard, D. (Chairpersons) 2003. Proceedings of the zonal assessment meeting Atlantic cod. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2003/021.

Rice, J.C., Shelton, P.A., Rivard, D., Chouinard, G.A., and Fréchet, A. 2003. Recovering Canadian Atlantic cod stocks: the shape of things to come? ICES CM 2003/U:06.

Rivard, D., and Rice, J. (Chairpersons) 2002. National workshop on reference points for Gadoids. Ottawa, November 5-8, 2002. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2002/033.

Rose, G.A. 1996. Cross-shelf distributions of cod in NAFO Divisions 2J3KL in May and June 1995: some preliminary findings of a longer term study. NAFO SCR Doc. 96/57, Serial No. N2733. 12 p.

Rose, G.A. 2003. Monitoring coastal northern cod: towards an optimal survey of Smith Sound, Newfoundland. ICES J. mar. Sci. 60: 453-462.

Rose, G.A., Atkinson, B.A., Baird, J., Bishop, C.A., and Kulka, D.W. 1994. Changes in distribution of Atlantic cod and thermal variations in Newfoundland waters, 1980-1992. ICES mar. Sci. Symp. 198: 542-552.

Rose, G.A., deYoung, B., Kulka, D.W., Goddard, S.V., and Fletcher, G.L. 2000. Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean. Can. J. Fish. Aquat. Sci. 57: 644-663.

Rose, G.A., and O’Driscoll, R.L. 2002. Capelin are good for cod: can the northern stock rebuild without them? ICES J. mar. Sci. 59: 1018-1026.

Rose, G.A., and Kulka, D.W. 1999. Hyperaggregation of fish and fisheries: how catch-per-uniteffort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Sci. 56(Suppl. 1): 118-127.

Ruzzante, D. E., Taggart, C.T., and Cook, D. 1998. A nuclear DNA basis for shelf- and bankscale population structure in northwest Atlantic cod (Gadus morhua): Labrador to Georges Bank. Molecular Ecology 7: 1663-1680.

Ruzzante, D.E., Taggart, C.T., and Cook, D. 1999. A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence. Fisheries Research 43: 79-97.

Ruzzante, D.E., Taggart, C.T., Cook, D., and Goddard, S. 1996. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite DNA variation and antifreeze level. Can. J. Fish. Aquat. Sci. 53: 634-645.

Ruzzante, D.E., Taggart, C.T., Cook, D., and Goddard, S.V. 1997. Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: a test and evidence of temporal stability. Can. J. Fish. Aquat. Sci. 54: 2700-2708.

Ruzzante, D.E., Wroblewski, J.S., Taggart, C.T., Smedbol, R.K., Cook, D., and Goddard, S.V. 2000. Bay-scale population structure in coastal Atlantic cod in Labrador and Newfoundland, Canada. J. Fish Biol. 56: 431-447.

Shelton, P.A., and Atkinson, D.B. 1994. Failure of the Div. 2J3KL cod recruitment prediction using salinity. DFO Atl. Fish. Res. Doc. 94/66.

Shelton, P.A., and Lilly, G.R. 2000. Interpreting the collapse of the northern cod stock from survey and catch data. Can. J. Fish. Aquat. Sci. 57: 2230-2239.

Shelton, P.A., Lilly, G.R., and Colbourne, E. 1999. Patterns in the annual weight increment for Div. 2J+3KL cod and possible prediction for stock projection. J. Northw. Atl. Fish. Sci. 25: 151-159.

Shelton, P.A., Stansbury, D.E., Murphy, E.F., Lilly, G.R., and Brattey, J. 1996. An assessment of the cod stock in NAFO Divisions 2J+3KL. DFO Atl. Fish. Res. Doc. 96/80 (also NAFO SCR Doc. 96/62.)

Smedbol, R.K., Shelton, P.A., Swain, D.P., Fréchet, A., and Chouinard, G.A. 2002. Review of population structure, distribution and abundance of cod (Gadus morhua) in Atlantic Canada in a species-at-risk context. DFO Can. Sci. Adv. Sec. Res. Doc. 2002/082.

Smedbol, R.K., and Wroblewski, J.S. 1997. Evidence for inshore spawning of northern Atlantic cod (Gadus morhua) in Trinity Bay, Newfoundland, 1991-1993. Can. J. Fish. Aquat. Sci. 54:(Suppl. 1): 177-186.

Smedbol, R.K., and Wroblewski, J.S. 2002. Metapopulation theory and northern cod population structure: interdependency of subpopulations in recovery of a groundfish population. Fish. Res. 55: 161-174.

Smith, S. J., and G. D. Somerton. 1981. STRAP: A user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030: iv + 66 p.

Solemdal, P., Kjesbu, O.S., M. Fonn, M. 1995. Egg mortality in recruit- and repeat-spawning cod - an experimental study. ICES C.M. G:35: 14 pp.

Stansbury, D.E. 1996. Conversion factors from comparative fishing trials for Engels 145 otter trawl on the FRV Gadus Atlantica and the Campelen 1800 shrimp trawl on the FRV Teleost. NAFO SCR Doc. 96/77, Serial No. N2752. 15 p.

Stansbury, D.E. 1997. Conversion factors for cod from comparative fishing trials for Engel 145 otter trawl and the Campelen 1800 shrimp trawl used on research vessels. NAFO SCR Doc. 97/73, Serial No. N2907. 10 p.

Stansbury, D.E., Maddock Parsons, D., and Shelton, P.A. 2000. An age disaggregate index from the sentinel program for cod in 2J3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2000/090. 64 p .

Stenson, G.B., Hammill, M.O., Kingsley, M.C.S., Sjare, B., Warren, W.G., and Myers, R.A. 2002. Is there evidence of increased pup production in northwest Atlantic harp seals, Pagophilus groenlandicus? ICES J. mar. Sci. 59: 81-92.

Stenson, G.B., and Perry, E.A. 2001. Incorporating uncertainty into estimates of Atlantic cod (Gadus morhua), capelin (Mallotus villosus) and Arctic cod (Boreogadus saida) consumption by harp seals (Pagophilus groenlandicus) in NAFO Divisions 2J3KL. DFO Can. Sci. Adv. Sec. Res. Doc. 2001/074.

Sutcliffe, W.H., Loucks, R.H., Drinkwater, K.F., and Coote, A.R. 1983. Nutrient flux onto the Labrador Shelf from Hudson Strait and its biological consequences. Can. J. Fish. Aquat. Sci. 40: 1692-1701.

Swain, D.P., and Sinclair, A.F. 2000. Pelagic fishes and the cod recruitment dilemma in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 57: 1321-1325.

Taggart, C.T. 1997. Bank-scale migration patterns in northern cod. NAFO Sci. Coun. Studies 29: 51-60.

Taggart, C.T., Anderson, J., Bishop, C., Colbourne, E., Hutchings, J., Lilly, G., Morgan, J., Murphy, E., Myers, R., Rose, G., and Shelton, P. 1994. Overview of cod stocks, biology, and environment in the Northwest Atlantic region of Newfoundland, with emphasis on northern cod. ICES Mar. Sci. Symp. 198: 140-157.

Taggart, C.T., Ruzzante, D.E., and Cook, D. 1998. Localised stocks of cod (Gadus morhua L.) in the northwest Atlantic: the genetic evidence and otherwise, p. 65-90. In I. Hunt von Herbing, I Kornfield, M. Tupper and J. Wilson [eds.] The implications of localized fishery stocks. Northeast Regional Agricultural Engineering Service, New York. 200 p.

Templeman, W. 1958. Distribution of the inshore catch of cod in Newfoundland and Labrador in the years 1947 to 1949. Fish. Res. Board Can., Atlantic Prog. Rep., No. 70. p. 3-9.

Templeman, W. 1962. Divisions of cod stocks in the Northwest Atlantic. ICNAF Redbook III: 79-123.

Templeman, W. 1966. Marine resources of Newfoundland. Fish. Res. Board Can. Bull. 154.
Templeman, W. 1974. Migrations and intermingling of Atlantic cod (Gadus morhua) stocks of the Newfoundland area. J. Fish. Res. Board Can. 31: 1073-1092.

Templeman, W. 1979. Migration and intermingling of stocks of Atlantic cod, Gadus morhua, of the Newfoundland and adjacent areas from tagging in 1962-66. ICNAF Res. Bull. 14: 5-50.

Templeman, W. 1981. Vertebral numbers in Atlantic cod, Gadus morhua, of the Newfoundland and adjacent areas, 1947-71, and their use for delineating cod stocks. J.Northw.Atl.Fish.Sci. 2: 21-45.

Templeman, W., and A. M. Fleming. 1956. The Bonavista longlining experiment, 1950-1953. Bull. Fish. Res. Board Can. 109. 55 p.

Templeman, W., and A. M. Fleming. 1963. Longlining experiments for cod off the east coast of Newfoundland and southern Labrador, 1950-1955. Bull. Fish. Res. Board Can. 141. 65 p.

Templeman, W., Hodder, V.M., and Wells, R. 1978. Sexual maturity and spawning in haddock, Melanogrammus aeglefinus, of the southern Grand Bank. ICNAF Res. Bull. 13: 53-65.

Trippel, E.A. 1998. Egg size and viability and seasonal offspring production of young Atlantic cod. Trans. Amer. Fish. Soc. 127: 339-359.

Trippel, E.A., and Morgan, M.J. 1994. Age-specific paternal influences on reproductive success of Atlantic cod (Gadus morhua L.) of the Grand Banks, Newfoundland. ICES mar. Sci. Symp. 198: 414-422.

Warren, W.G. 1997. Report on the comparative fishing trial between the Gadus Atlantica and Teleost. NAFO Sci. Coun. Studies 2: 81-92.

Warren, W.G., Brodie, W., Stansbury, D., Walsh, S., Morgan, J., and Orr, D. 1997. Analysis of the 1996 comparative fishing trial between the Alfred Needler with the Engel 145 trawl and the Wilfred Templeman with the Campelen 1800 trawl. NAFO SCR Doc. 97/68.

Wroblewski, J.S., Bailey, W.L., and Howse, K.A. 1994. Observations of adult Atlantic cod (Gadus morhua) overwintering in nearshore waters of Trinity Bay, Newfoundland. Can. J. Fish. Aquat. Sci. 51: 142-150.

Wroblewski, J.S., Goddard, S.V., Smedbol, R.K., and Bailey, W.L. 1995a. Movements of Atlantic cod (Gadus morhua) within the spring thermocline in Trinity Bay, Newfoundland. J. mar. biol. Ass. U.K. 75: 265-284.

Wroblewski, J.S., Kulka, D.W., Narayanan, S., Oake, A.M., Collier, A.G., and McGrath, B.D. 1995b. Winter distribution and movements of northern Atlantic cod (Gadus morhua) along the Newfoundland-Labrador continental shelf edge derived from observations on commercial trawlers. Fish. Oceanogr. 4: 128-146.

Table 1. Landings ( t ) of cod from NAFO Divisions 2J3KL for the period 1959-2004.

cont'd

Table 1. (cont'd)

| Year | 2 J |  |  |  | 3K |  |  |  | 3L |  |  |  | 2 J 3 KL |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Offshore mobile gear |  | $\begin{gathered} \hline \text { Fixed } \\ \text { gear } \\ \hline \end{gathered}$ | Total | Offshore mobile gear |  | Fixed <br> gear <br> Canada | Total | Offshore mobile gear |  | $\begin{gathered} \hline \text { Fixed } \\ \text { gear } \end{gathered}$ | Total | Total Canada | Total Other | Total | TAC |
|  | Canada | Other | Canada |  | Canada | Other |  |  | Canada | Other | Canada |  |  |  |  |  |
| 1991 | 621 | 82 | 2214 | 2917 | 30112 | 311 | 13332 | 43755 | 30264 | $49660{ }^{2}$ | $45416^{3}$ | 125340 | 121959 | 50053 | 172012 | 190000 |
| 1992 | 0 | 0 | 18 | 18 | 584 | 273 | 884 | 1741 | 13627 | $14610{ }^{4}$ | $10960{ }^{5}$ | 39197 | 26073 | 14883 | 40956 | 0 |
| 1993 | 0 | 0 | 13 | 13 | 0 | 0 | 541 | 541 | 2 | $2425{ }^{6}$ | $8411{ }^{7}$ | 10838 | 8967 | 2425 | 11392 | 0 |
| 1994 | 0 | 0 | 9 | 9 | 0 | 0 | 368 | 368 | 0 | 1 | 936 | 937 | 1313 | 1 | $1314{ }^{8}$ | 0 |
| $1995{ }^{13}$ | 0 | 0 | 0 | 1 | 0 | 0 | 122 | 122 | 1 | 0 | 290 | 290 | 413 | 0 | $413{ }^{9}$ | 0 |
| $1996{ }^{13}$ | 0 | 0 | 3 | 3 | 0 | 0 | 961 | 961 | 1 | 1 | 908 | 910 | 1874 | 1 | $1875{ }^{10}$ | 0 |
| $1997{ }^{\text {13 }}$ | 0 | 0 | 4 | 4 | 0 | 0 | 280 | 280 | 0 | 0 | 592 | 593 | 877 | 0 | 877 | 0 |
| $1998{ }^{\text {13 }}$ | 0 | 0 | 16 | 16 | 0 | 0 | 1994 | 1994 | 1 | 6 | 2491 | 2497 | 4501 | 0 | 4507 | 4000 |
| $1999{ }^{\text {13 }}$ | 0 | 0 | 33 | 33 | 0 | 0 | 3554 | 3554 | 0 | 1 | 4938 | 4939 | 8525 | 1 | 8526 | 9000 |
| $2000{ }^{1}$ | 0 | 0 | 3 | 3 | 0 | 0 | 1410 | 1410 | 26 | $54{ }^{12}$ | 3937 | 4017 | 5376 | 54 | 5430 | 7000 |
| $2001{ }^{1}$ | 0 | 0 | 21 | 21 | 0 | 0 | 1736 | 1736 | 7 | $82^{12}$ | 5124 | 5212 | 6887 | 82 | 6969 | 5600 |
| 2002 | 0 | 0 | 13 | 13 | 0 | 0 | 647 | 647 | 3 | $50^{12}$ | 3533 | 3586 | 4196 | 50 | 4246 | 5600 |
| 2003 | 0 | 0 | 2 | 2 | 0 | 0 | 29 | 29 | 3 | $23{ }^{12}$ | $937{ }^{11}$ | 963 | 971 | 23 | 994 | 0 |
| $2004{ }^{1}$ | 0 | 0 | 3 | 3 | 0 | 0 | 152 | 152 | 6 | 0 | 482 | 488 | 643 | 0 | 643 | 0 |

${ }^{1}$ Provisional catches.
${ }^{2}$ Includes French catch and other foreign catch as estimated by Canadian surveillance.
${ }^{7}$ Includes 5053 t estimated for the recreational fishery additional to that recorded by Canadian statistics.
${ }^{3}$ Figure is 4000 t less than Canadian statistics (this quantity is considered 3NO catch misreported as 3
${ }^{4}$ Derived from reported catch and Canadian surveillance estimate of foreign catch.
${ }^{5}$ Includes 5000 t catch from the recreational fishery after the moritorium was declared.
${ }^{6}$ Canadian surveillance estimate of foreign catch .
$3^{8} 1300 t$ is from the food fishery; the remainder is bycatch
${ }^{9}$ Includes 275 t caught in the sentinel survey and 138 t caught as bycatch.
${ }^{10}$ Comprised of a sentinel survey catch of $296 t$, a food fishery catch of $1155 t$ and bycatch of 422 t .
${ }^{11} 780 \mathrm{t}$ of this catch was the result of a mass mortality in Smith Sound
${ }^{4}$ NAFO Scientific Council agreed catches.
${ }^{13}$ Canadian catches have been updated based on most recent catch data

Table 2. Fixed gear landings (t) by Division and gear type in Divisions 2J, 3K and 3L in 1975-2004. Landings from statistical areas other than Newfoundland are not included.

|  | 2 J |  |  |  |  | 3K |  |  |  |  | 3L |  |  |  |  | 2J3KL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Trap | GN | LL | HL | Total | Trap | GN | LL | HL | Total | Trap | GN | LL | HL | Total | Total |
| 1975 | 642 | 2304 | 0 | 54 | 3000 | 4662 | 8645 | 565 | 1646 | 15518 | 10390 | 7552 | 1641 | 3112 | 22695 | 41213 |
| 1976 | 1022 | 2787 | 6 | 36 | 3851 | 7056 | 10666 | 718 | 2439 | 20879 | 18404 | 9066 | 2904 | 4835 | 35209 | 59939 |
| 1977 | 1285 | 2076 | 37 | 125 | 3523 | 11501 | 11611 | 1294 | 4412 | 28818 | 20988 | 8852 | 3591 | 6851 | 40282 | 72623 |
| 1978 | 2872 | 3376 | 55 | 335 | 6638 | 11329 | 11445 | 3647 | 3202 | 29623 | 23218 | 9023 | 5114 | 7839 | 45194 | 81455 |
| 1979 | 1333 | 5663 | 175 | 1274 | 8445 | 3532 | 11474 | 8414 | 3605 | 27025 | 20785 | 13488 | 7022 | 9064 | 50359 | 85829 |
| 1980 | 4679 | 11414 | 204 | 913 | 17210 | 12732 | 13549 | 8059 | 2675 | 37015 | 12871 | 11231 | 9394 | 8802 | 42298 | 96523 |
| 1981 | 3893 | 10105 | 72 | 181 | 14251 | 3952 | 10679 | 6360 | 2011 | 23002 | 10177 | 13579 | 11425 | 7646 | 42827 | 80080 |
| 1982 | 4464 | 9121 | 114 | 730 | 14429 | 16415 | 17571 | 6101 | 2054 | 42141 | 24248 | 20295 | 5704 | 6243 | 56490 | 113060 |
| 1983 | 3870 | 4854 | 842 | 1182 | 10748 | 10490 | 18305 | 2560 | 9328 | 40683 | 25690 | 16446 | 3834 | 9031 | 55001 | 106432 |
| 1984 | 5618 | 6116 | 379 | 1037 | 13150 | 9957 | 14362 | 2499 | 8325 | 35143 | 23103 | 14985 | 3824 | 7439 | 49351 | 97644 |
| 1985 | 4973 | 2992 | 252 | 1994 | 10211 | 13310 | 8082 | 2352 | 6624 | 30368 | 21594 | 8760 | 3245 | 5707 | 39306 | 79885 |
| 1986 | 4373 | 7804 | 109 | 630 | 12916 | 14555 | 7626 | 1555 | 4648 | 28384 | 15669 | 9865 | 2492 | 4176 | 32202 | 73502 |
| 1987 | 5158 | 9228 | 218 | 1418 | 16022 | 11278 | 10223 | 1590 | 4351 | 27442 | 11370 | 17419 | 3338 | 4616 | 36743 | 80207 |
| 1988 | 5907 | 9183 | 272 | 1750 | 17112 | 16261 | 11898 | 935 | 4726 | 33820 | 22148 | 18576 | 4004 | 6677 | 51405 | 102337 |
| 1989 | 6713 | 14846 | 290 | 1455 | 23304 | 8189 | 7921 | 700 | 3901 | 20711 | 23964 | 22231 | 4676 | 8367 | 59238 | 103253 |
| 1990 | 3616 | 9364 | 653 | 872 | 14505 | 11201 | 7726 | 3838 | 4751 | 27516 | 32158 | 28936 | 4545 | 9627 | 75266 | 117287 |
| 1991 | 1016 | 271 | 93 | 834 | 2214 | 7696 | 1384 | 1851 | 2401 | 13332 | 26524 | $11696{ }^{2}$ | 1247 | 5949 | $45416{ }^{2}$ | 60962 |
| 1992 | 0 | 0 | 2 | 16 | 18 | 27 | 103 | 9 | 745 | 884 | 1173 | 1131 | 16 | $8640{ }^{3}$ | $10960{ }^{3}$ | 11862 |
| 1993 | 0 | 0 | 1 | 12 | 13 | 3 | 37 | 9 | 492 | 541 | 11 | 93 | 80 | $8227{ }^{3}$ | $8411{ }^{3}$ | 8965 |
| 1994 | 0 | 0 | 0 | 9 | 9 | 0 | 8 | 0 | 359 | 367 | 6 | 38 | 22 | 870 | 936 | 1312 |
| 1995 | 0 | 0 | 0 | 0 | 0 | 25 | 65 | 31 | 1 | 122 | 23 | 207 | 41 | 20 | 291 | 413 |
| 1996 | 0 | 0 | 0 | 3 | 3 | 65 | 184 | 31 | 680 | 959 | 42 | 335 | 30 | 501 | 656 | 1870 |
| 1997 | 0 | 2 | 0 | 0 | 2 | 57 | 150 | 63 | 8 | 278 | 71 | 427 | 42 | 45 | 585 | 865 |
| 1998 | 0 | 3 | 5 | 8 | 16 | 24 | 1081 | 245 | 644 | 1994 | 31 | 1377 | 284 | 798 | 2490 | 4501 |
| $1999{ }^{\text { }}$ | 0 | 20 | 4 | 9 | 33 | 14 | 3080 | 110 | 350 | 3554 | 35 | 4469 | 70 | 365 | 4938 | 8525 |
| $2000{ }^{1}$ | 0 | 4 | 0 | 1 | 5 | 15 | 1126 | 43 | 275 | 1459 | 63 | 2954 | 189 | 684 | 3891 | 5354 |
| $2001{ }^{1}$ | 0 | 3 | 1 | 17 | 21 | 28 | 796 | 90 | 822 | 1735 | 175 | 2844 | 110 | 1994 | 5124 | 6880 |
| $2002{ }^{1}$ | 0 | 7 | 0 | 6 | 13 | 2 | 272 | 30 | 342 | 647 | 128 | 2517 | 30 | 858 | 3533 | 4193 |
| $2003{ }^{1}$ | 0 | 2 | 0 | 0 | 2 | 0 | 25 | 4 | 0 | 29 | 0 | 152 | 4 | 781 | 937 | 968 |
| $2004{ }^{1}$ | 0 | 1 | 0 | 0 | 1 | 0 | 146 | 5 | 0 | 152 | 0 | 479 | 2 | 0 | 481 | 635 |

${ }^{1}$ Provisional catches.
${ }^{2}$ Catch is $4000(\mathrm{t})$ less than Canadian statistics as this quantity is considered 3 NO gillnet catch misreported in 3L
${ }^{3}$ Estimate for recreational fishery has been reported as 3L Handline.
${ }^{4}$ Comprised of sentinel survey catch of $294 t$, a food fishery catch of 1155 t and by-catch 142 t .
An amount of 103 t must still be allocated by gear type and division from the sentinel catches.
${ }^{5} 780$ t of this catch was the result of a mass mortality in Smith Sound. (Actual gear used was gaff or dip net).

Table 3. Fixed gear landings in Div. 3L, by broad area (inshore vs offshore) and gear (gillnet vs other). The numbers do not match those in Table 2 because they are extracted from a different statistical source. (from Shelton et al. 1996)

|  | Inshore |  |  | Offshore |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | Gillnet | Other |  | Gillnet | Other |
| 1975 | 7,440 | 14,908 |  | 0 | 0 |
| 1976 | 9,012 | 26,141 |  | 8 | 0 |
| 1977 | 8,768 | 31,433 |  | 46 | 0 |
| 1978 | 9,024 | 36,237 |  | 0 | 18 |
| 1979 | 13,486 | 36,876 |  | 1 | 32 |
| 1980 | 11,228 | 31,061 |  | 0 | 9 |
| 1981 | 12,117 | 29,243 |  | 1,630 | 3 |
| 1982 | 20,274 | 36,184 |  | 1,049 | 0 |
| 1983 | 16,451 | 38,557 |  | 0 | 1,148 |
| 1984 | 14,947 | 34,121 |  | 808 | 898 |
| 1985 | 8,753 | 29,688 |  | 1,590 | 856 |
| 1986 | 8,277 | 21,953 |  | 1,652 | 387 |
| 1987 | 11,660 | 17,946 |  | 5,752 | 194 |
| 1988 | 9,143 | 30,648 |  | 9,422 | 887 |
| 1989 | 8,329 | 34,682 |  | 13,890 | 558 |
| 1990 | 7,174 | 43,841 |  | 21,721 | 157 |
| 1991 | 2,219 | 33,657 |  | 9,499 | 2 |

Table 4a. Catch (t) in 2003 from all sources (by-catch, sentinel surveys and mass mortality), by gear, unit area and month. The 780 t in 3Lb in April is recorded as taken by handline, but this is the quantity of fish obtained from the mass mortality in Smith Sound. It was taken by gaff or dipnet.


| Gillnet (small mesh) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2JM |  | 0.04 | 0.40 | 0.52 |  |  |  | 0.96 |
| 3KA |  | 0.01 | 0.40 | 0.12 |  |  |  | 0.52 |
| 3KD | 0.00 | 0.08 | 0.28 | 0.31 | 0.13 |  |  | 0.80 |
| 3KH |  | 0.20 | 0.29 | 0.05 | 0.16 | 0.21 |  | 0.91 |
| 3KI | 0.05 | 0.27 | 0.25 | 0.05 | 0.16 | 0.35 | 0.16 | 1.28 |
| 3LA |  | 0.25 | 0.56 | 0.28 |  | 0.29 |  | 1.37 |
| 3LB | 0.06 | 0.35 | 0.94 | 0.72 | 0.01 | 0.18 |  | 2.25 |
| 3LF | 0.00 | 0.28 | 0.20 | 0.06 |  |  |  | 0.54 |
| 3LJ | 0.01 | 0.12 | 0.06 |  |  |  |  | 0.19 |
| 3LQ | 0.01 | 0.08 | 0.17 |  |  |  |  | 0.26 |
| Total | 0.13 | 1.68 | 3.54 | 2.10 | 0.46 | 1.02 | 0.16 | 9.08 |
| Linetrawl |  |  |  |  |  |  |  |  |
| 3KH |  |  | 0.01 | 1.73 | 0.24 |  |  | 1.97 |
| 3KI |  |  | 0.32 | 1.02 | 0.30 | 0.12 |  | 1.75 |
| 3LA |  |  | 0.70 | 0.39 |  |  |  | 1.09 |
| 3LF |  |  |  | 0.11 | 0.15 |  |  | 0.26 |
| 3LJ |  |  | 0.22 |  |  | 2.29 |  | 2.51 |
| 3LQ |  |  | 0.08 | 0.40 | 0.01 |  |  | 0.49 |
| Total |  |  | 1.32 | 3.65 | 0.69 | 2.41 |  | 8.08 |


| Handline |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 2JM |  |  | 0.10 |  |
| 3KH |  |  | 0.34 | 0.10 |
| 3KI | 0.50 |  |  | 0.34 |
| 3LA | 780.33 | 0.02 | 0.06 |  |
| 3LB |  |  | 0.50 |  |
| 3LQ | 780.82 | 0.02 | 0.43 | 780.35 |
| Total |  |  | 0.22 | 0.29 |


| Otter trawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3KG |  |  |  |  | 0.00 |  |  |  |  |  |  |  | 0.00 |
| 3LC |  |  |  |  |  |  |  |  |  | 0.01 |  |  | 0.01 |
| 3LD |  |  |  |  |  | 0.00 |  |  |  | 0.02 |  |  | 0.02 |
| 3LG |  |  |  |  |  |  |  |  |  | 0.01 |  |  | 0.01 |
| 3LH |  |  |  |  |  |  |  |  |  | 0.01 |  |  | 0.01 |
| 3LI |  |  |  |  |  |  |  |  |  | 0.00 |  |  | 0.00 |
| 3LQ |  |  |  |  |  |  |  |  |  | 0.01 |  |  | 0.01 |
| 3LR |  |  |  |  | 0.00 |  |  | 1.08 |  | 0.57 |  |  | 1.65 |
| 3LS |  |  |  |  |  |  | 0.10 | 0.70 |  | 0.46 |  |  | 1.26 |
| Total |  |  |  |  | 0.00 | 0.00 | 0.10 | 1.78 |  | 1.09 |  |  | 2.97 |
| All gears | 0.00 | 0.00 | 0.00 | 780.82 | 0.03 | 11.82 | 94.42 | 48.90 | 20.54 | 4.31 | 9.80 | 0.16 | 970.79 |

Table 4b. Catch (t) in 2004 from all sources (by-catch and sentinel surveys), by gear, unit area and month.

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gillnet |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2Jm |  |  |  |  |  |  | 0.06 | 0.68 | 0.43 |  |  |  | 1.17 |
| 3Ka |  |  |  |  |  |  | 0.08 | 0.51 | 0.05 |  |  |  | 0.64 |
| 3Kb |  |  |  |  |  |  | 0.16 | 0.22 |  |  |  |  | 0.38 |
| 3Kc |  |  |  |  |  |  | 0.05 |  |  |  |  |  | 0.05 |
| 3Kd |  |  |  |  |  |  | 0.67 | 1.75 | 0.45 | 0.08 | 0.10 |  | 3.05 |
| 3Kf |  |  |  |  |  |  |  | 0.46 | 0.07 |  |  |  | 0.54 |
| 3 Kg |  |  |  |  |  |  |  | 0.02 |  |  |  |  | 0.02 |
| 3Kh |  |  |  |  |  | 0.10 | 9.16 | 11.08 | 1.16 | 0.81 | 0.18 | 0.04 | 22.53 |
| 3 Ki |  |  |  |  |  | 3.14 | 36.87 | 72.09 | 0.57 | 0.60 | 2.68 |  | 115.96 |
| 3La |  |  |  |  |  | 6.43 | 89.87 | 59.63 | 0.61 |  | 2.32 |  | 158.86 |
| 3Lb |  |  |  |  |  | 17.80 | 51.89 | 60.68 | 4.71 |  | 2.03 |  | 137.10 |
| 3Lc |  |  |  |  |  |  |  | 0.10 | 1.19 | 0.10 |  |  | 1.39 |
| 3Ld |  |  |  |  |  |  |  | 0.05 | 0.32 | 0.49 | 0.15 |  | 1.01 |
| 3Lf |  |  |  |  |  | 0.95 | 29.36 | 36.99 | 1.47 |  |  |  | 68.78 |
| 3Lj |  |  |  |  |  | 3.10 | 32.40 | 49.25 | 1.06 |  |  |  | 85.82 |
| 3Lq |  |  |  |  |  | 4.32 | 8.38 | 8.63 | 0.01 |  |  |  | 21.33 |
| Total |  |  |  |  |  | 35.84 | 258.96 | 302.14 | 12.10 | 2.08 | 7.45 | 0.04 | 618.61 |


| Gillnet (small mesh) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2Jm |  |  | 0.22 | 0.54 | 0.54 |  |  |  | 1.31 |
| 3 Ka |  |  | 0.02 | 0.31 | 0.05 |  |  |  | 0.38 |
| 3Kd |  |  | 0.09 | 0.28 | 0.11 | 0.01 | 0.00 |  | 0.50 |
| 3Kh |  |  | 0.17 | 0.24 | 0.03 | 0.12 | 0.00 |  | 0.57 |
| 3Ki |  | 0.14 | 0.41 | 0.33 | 0.03 | 0.13 | 0.34 | 0.50 | 1.87 |
| 3La |  | 0.01 | 0.34 | 0.66 | 0.03 |  | 0.13 |  | 1.17 |
| 3Lb |  | 0.12 | 0.49 | 1.00 | 0.58 |  | 0.35 |  | 2.55 |
| 3Lf |  | 0.41 | 0.11 | 0.12 | 0.18 |  |  |  | 0.83 |
| 3Lj |  | 0.00 | 0.15 | 0.10 |  |  |  |  | 0.25 |
| 3Lq |  | 0.02 | 0.11 | 0.05 |  |  |  |  | 0.17 |
| Total |  | 0.70 | 2.12 | 3.63 | 1.55 | 0.26 | 0.82 | 0.50 | 9.59 |
| Linetrawl |  |  |  |  |  |  |  |  |  |
| 3Kh |  |  |  | 0.19 | 1.64 | 0.15 |  |  | 1.98 |
| 3Ki |  |  |  | 0.16 | 1.32 | 0.38 |  | 0.11 | 1.96 |
| 3La |  |  |  | 0.62 | 0.32 |  |  |  | 0.95 |
| 3Lf |  |  |  |  | 0.35 | 0.42 | 0.05 |  | 0.81 |
| 3Lq |  |  |  | 1.24 |  | 0.07 |  |  | 1.30 |
| 3Lt | 0.01 |  |  |  |  |  |  |  | 0.01 |
| Total | 0.01 |  |  | 2.22 | 3.63 | 1.01 | 0.05 | 0.11 | 7.02 |


| Handline | 0.44 |
| :--- | :--- | :--- |
| 3 Kh | 0.44 |
| Total | 0.44 |



Table 5a. Number of fish measured in 2003 from all sources (by-catch, sentinel surveys and mass mortality), by gear, unit area and month. The sampling in 3Lb in April is recorded as taken by handline, but it is from the fish obtained during the mass mortality in Smith Sound. It was taken by gaff or dipnet.

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gillnet |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JM |  |  |  |  |  |  | 8 | 299 | 137 |  |  |  | 444 |
| 3KA |  |  |  |  |  |  | 31 | 440 | 77 |  |  |  | 548 |
| 3KD |  |  |  |  |  | 6 | 231 | 463 | 247 | 113 |  |  | 1060 |
| 3KH |  |  |  |  |  | 50 | 479 | 762 | 414 | 299 | 398 |  | 2402 |
| 3KI |  |  |  |  |  | 207 | 1122 | 998 | 96 | 177 | 589 |  | 3189 |
| 3LA |  |  |  |  |  |  | 1414 | 1617 | 214 |  | 867 |  | 4112 |
| 3LB |  |  |  |  |  | 627 | 3401 | 2759 | 1619 | 40 | 558 |  | 9004 |
| 3LF |  |  |  |  |  | 79 | 1051 | 1978 | 344 |  |  |  | 3452 |
| 3LJ |  |  |  |  |  | 73 | 1524 | 958 | 86 |  |  |  | 2641 |
| 3LQ |  |  |  |  |  | 836 | 3088 | 2058 |  |  |  |  | 5982 |
| Total |  |  |  |  |  | 1878 | 12349 | 12332 | 3234 | 629 | 2412 |  | 32834 |
| Gillnet-small mesh |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JM |  |  |  |  |  |  | 48 | 569 | 786 |  |  |  | 1403 |
| 3KA |  |  |  |  |  |  | 16 | 681 | 180 |  |  |  | 877 |
| 3KD |  |  |  |  |  | 2 | 104 | 366 | 450 | 221 |  |  | 1143 |
| 3KH |  |  |  |  |  |  | 382 | 569 | 73 | 266 | 334 |  | 1624 |
| 3KI |  |  |  |  |  | 63 | 385 | 451 | 59 | 282 | 523 | 243 | 2006 |
| 3LA |  |  |  |  |  |  | 409 | 955 | 431 |  | 340 |  | 2135 |
| 3LB |  |  |  |  |  | 78 | 394 | 1231 | 1030 | 10 | 105 |  | 2848 |
| 3LF |  |  |  |  |  | 4 | 408 | 365 | 86 |  |  |  | 863 |
| 3LJ |  |  |  |  |  | 28 | 231 | 97 |  |  |  |  | 356 |
| 3LQ |  |  |  |  |  | 9 | 81 | 270 |  |  |  |  | 360 |
| Total |  |  |  |  |  | 184 | 2458 | 5554 | 3095 | 779 | 1302 | 243 | 13615 |
| Linetrawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3KH |  |  |  |  |  |  |  | 9 | 1758 | 262 |  |  | 2029 |
| 3KI |  |  |  |  |  |  |  | 291 | 883 | 292 | 126 |  | 1592 |
| 3LA |  |  |  |  |  |  |  | 636 | 448 |  |  |  | 1084 |
| 3LF |  |  |  |  |  |  |  |  | 108 | 132 |  |  | 240 |
| 3LJ |  |  |  |  |  |  |  | 147 |  |  |  |  | 147 |
| 3LQ |  |  |  |  |  |  |  | 27 | 206 | 4 |  |  | 237 |
| Total |  |  |  |  |  |  |  | 1110 | 3403 | 690 | 126 |  | 5329 |
| Handline |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JM |  |  |  |  |  |  |  |  | 109 |  |  |  | 109 |
| 3KH |  |  |  |  |  |  |  |  | 317 |  |  |  | 317 |
| 3LB |  |  |  | 395 |  |  |  |  |  |  |  |  | 395 |
| Total |  |  |  | 395 |  |  |  |  | 426 |  |  |  | 821 |
| All gears | 0 | 0 | 0 | 395 | 0 | 2062 | 14807 | 18996 | 10158 | 2098 | 3840 | 243 | 52599 |

Table 5b. Number of fish measured in 2004 from all sources (by-catch and sentinel surveys), by gear, unit area and month.

|  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gillnet |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JM |  |  |  |  |  |  | 29 | 357 | 227 |  |  |  | 613 |
| 3KA |  |  |  |  |  |  | 44 | 300 | 26 |  |  |  | 370 |
| 3KD |  |  |  |  |  |  | 305 | 698 | 196 | 34 | 45 |  | 1278 |
| 3KF |  |  |  |  |  |  |  | 136 | 3 |  |  |  | 139 |
| 3KH |  |  |  |  |  | 32 | 928 | 1679 | 584 | 424 | 89 |  | 3736 |
| 3KI |  |  |  |  |  | 1228 | 3218 | 4210 | 250 | 301 | 1392 |  | 10599 |
| 3LA |  |  |  |  |  | 85 | 3160 | 2398 | 123 |  | 806 |  | 6572 |
| 3LB |  |  |  |  |  | 884 | 2806 | 2783 | 1792 |  | 710 |  | 8975 |
| 3LC |  |  |  |  |  |  |  | 68 | 66 |  |  |  | 134 |
| 3LF |  |  |  |  |  | 420 | 2723 | 1874 | 642 |  |  |  | 5659 |
| 3LJ |  |  |  |  |  | 1277 | 3256 | 3126 | 487 |  |  |  | 8146 |
| 3LQ |  |  |  |  |  | 715 | 3607 | 2040 | 3 |  |  |  | 6365 |
| Total | 0 | 0 | 0 | 0 | 0 | 4641 | 20076 | 19669 | 4399 | 759 | 3042 | 0 | 52586 |
| Gillnet- small mesh |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JM |  |  |  |  |  |  | 345 | 799 | 760 |  |  |  | 1904 |
| 3KA |  |  |  |  |  |  | 33 | 424 | 70 |  |  |  | 527 |
| 3KD |  |  |  |  |  |  | 128 | 415 | 155 | 14 | 3 |  | 715 |
| 3KH |  |  |  |  |  |  | 249 | 367 | 34 | 110 | 7 |  | 767 |
| 3KI |  |  |  |  |  | 170 | 555 | 435 | 24 | 192 | 419 | 70 | 1865 |
| 3LA |  |  |  |  |  | 8 | 484 | 902 | 27 |  | 91 |  | 1512 |
| 3LB |  |  |  |  |  | 89 | 575 | 1001 | 520 |  | 196 |  | 2381 |
| 3LF |  |  |  |  |  | 53 | 127 | 112 | 233 |  |  |  | 525 |
| 3LJ |  |  |  |  |  | 3 | 179 | 84 |  |  |  |  | 266 |
| 3LQ |  |  |  |  |  | 17 | 116 | 64 |  |  |  |  | 197 |
| Total | 0 | 0 | 0 | 0 | 0 | 340 | 2791 | 4603 | 1823 | 316 | 716 | 70 | 10659 |
| Linetrawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3KH |  |  |  |  |  | 188 | 1393 | 149 |  |  |  |  | 1730 |
| 3KI |  |  |  |  |  | 140 | 1123 | 317 |  |  |  |  | 1580 |
| 3LA |  |  |  |  |  | 565 | 306 |  |  |  |  |  | 871 |
| 3LF |  |  |  |  |  |  | 265 | 351 | 34 |  |  |  | 650 |
| 3LQ |  |  |  |  |  | 552 |  | 34 |  |  |  |  | 586 |
| Total | 0 | 0 | 0 | 0 | 0 | 1445 | 3087 | 851 | 34 | 0 | 0 | 0 | 5417 |
| Handline |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3KH |  |  |  |  |  |  | 354 |  |  |  |  |  | 354 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 354 | 0 | 0 | 0 | 0 | 0 | 354 |
| Ottertrawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3KF |  |  |  |  |  |  | 150 |  |  |  |  |  | 150 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 150 | 0 | 0 | 0 | 0 | 0 | 150 |
| Twin trawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JB | 5 | 12 |  |  |  |  |  |  |  | 8 |  |  | 25 |
| 2JC |  | 14 | 2 |  |  |  |  |  |  |  |  |  | 16 |
| 2JF | 2 |  |  | 16 |  |  |  |  | 16 |  |  |  | 34 |
| 2JN | 4 | 23 |  |  |  |  |  |  |  |  |  |  | 27 |
| 3KC |  |  | 53 | 36 |  |  |  |  |  |  |  |  | 89 |
| 3LE |  |  |  | 4 |  |  |  |  |  |  |  |  | 4 |
| 3LI |  |  |  | 4 | 13 |  |  |  |  |  |  |  | 17 |
| Total | 11 | 49 | 55 | 60 | 13 | 0 | 0 | 0 | 16 | 8 | 0 | 0 | 212 |
| Shrimp Trawl |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2JB |  | 10 |  |  |  |  |  |  |  |  |  |  | 10 |
| 2JC |  | 19 | 4 | 14 |  |  |  |  |  |  |  |  | 37 |
| 2JF |  |  | 4 | 3 |  |  |  |  |  |  |  |  | 7 |
| 2 JN |  | 16 | 59 |  |  |  |  |  |  |  |  |  | 75 |
| 3KC |  | 22 | 36 | 10 |  |  | 6 | 11 |  |  |  |  | 85 |
| 3KF |  |  |  |  |  |  | 48 | 7 |  |  |  |  | 55 |
| 3KG |  | 48 | 69 |  |  |  | 3 |  |  |  |  |  | 120 |
| 3LE | 2 |  |  |  |  |  |  |  |  |  |  |  | 2 |
| Total | 2 | 115 | 172 | 27 | 0 | 0 | 57 | 18 | 0 | 0 | 0 | 0 | 391 |
| All gears | 13 | 164 | 227 | 87 | 13 | 6426 | 26515 | 25141 | 6272 | 1083 | 3758 | 70 | 69769 |

Table 6a. Number of fish aged in 2003 from all sources (by-catch, sentinel surveys and mass mortality), by gear, unit area and month. Quarter 1 is January-February, Quarter 2 is MarchMay, Quarter 3 is June-August and Quarter 4 is September-December.The sample of 171 in 3Lb in Quarter 2 is recorded as taken by handline, but it is from the fish obtained during the mass mortality in Smith Sound. It was taken by gaff or dipnet.

| Quarter |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | Total |


| Gillnets |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| 2JM |  | 244 |  | 244 |
| 3KA |  | 38 |  | 38 |
| 3KD | 8 | 262 | 32 | 302 |
| 3KH | 15 | 443 | 83 | 541 |
| 3KI | 58 | 283 | 95 | 436 |
| 3LA | 37 | 263 | 64 | 327 |
| 3LB | 43 | 372 | 54 | 1033 |
| 3LF | 21 | 95 | 8 | 427 |
| 3LJ | 75 | 167 |  | 116 |
| 3LQ | 257 | 3113 | 336 | 3706 |


| Linetrawl |  |  |  |
| :--- | ---: | ---: | ---: |
| 3KH | 154 | 11 | 165 |
| 3KI | 35 | 22 | 57 |
| 3LA | 31 |  | 31 |
| 3LF | 35 | 21 | 56 |
| 3LQ | 25 |  | 25 |
|  | 280 | 54 | 334 |

Handline

| 3LJ |  | 7 | 7 |  |
| :--- | ---: | ---: | ---: | ---: |
| 3LB | 171 |  | 171 |  |
| Total | 171 | 7 |  | 178 |
|  |  |  |  |  |
| All gears | 0 | 428 | 3400 | 390 |

Table 6b. Number of fish aged in 2004 from all sources (by-catch and sentinel surveys), by gear, unit area and month. Quarter 1 is January-February, Quarter 2 is March-May, Quarter 3 is JuneAugust and Quarter 4 is September-December.


| $\begin{array}{l}\text { Handline } \\ 2 \mathrm{JM}\end{array}$ |  |  |  | 2 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | 2 | 0 | 0 | 2 |


| Ottertrawl |  |  |  |  | 42 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 KF |  |  | 42 |  |  |
| Total | 0 | 0 | 42 | 0 | 42 |


| Twin trawls |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 2JB | 6 | 1 |  | 8 | 15 |
| 2JF | 2 |  | 19 |  | 21 |
| 3KC | 53 | 32 | 4 |  | 89 |
| 3LE |  | 3 |  |  | 3 |
| 3LI |  | 17 |  |  | 17 |
| Total | 61 | 53 | 23 | 8 | 145 |


| Shrimp trawl |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 2JB | 5 | 3 |  |  | 8 |
| 2JC | 11 | 14 |  |  | 25 |
| 2JF | 3 | 3 |  |  | 6 |
| 2JN | 42 |  |  |  | 42 |
| 3KB | 1 |  | 11 |  | 86 |
| 3KC | 66 | 9 | 52 |  | 52 |
| 3KF |  |  |  |  | 110 |
| 3KG | 110 |  | 2 |  |  |
| 3LE | 2 | 1 |  | 4 |  |
| 3LI |  | 32 | 63 | 0 | 335 |
| Total | 240 | 32 |  |  |  |
|  |  | 90 | 4139 | 740 | 5270 |
| All gears | 301 |  |  |  |  |

Table 7a. Estimated average weight (kg), length (cm) and number (plus standard error and coefficient of variation) of the 2004 catch at age, for all gears combined and for gillnet and linetrawl separately.

|  | $\begin{gathered} \text { WEIGHT } \\ \text { (kg.) } \\ \hline \end{gathered}$ | LENGTH |  |  | NUMBER |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE |  | (cm.) |  | (000'S) | STD ERR. | CV |
| Total stock area; all gears combined |  |  |  |  |  |  |
| 1 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| 2 | 0.33 | 34.07 | 0.29 | 0.9 | 0.34 | 0.39 |
| 3 | 0.56 | 39.88 | 5.75 | 10.3 | 1.17 | 0.11 |
| 4 | 0.87 | 45.82 | 20.54 | 23.7 | 1.43 | 0.06 |
| 5 | 1.54 | 55.40 | 51.41 | 33.4 | 1.17 | 0.03 |
| 6 | 2.12 | 61.70 | 100.62 | 47.4 | 1.25 | 0.03 |
| 7 | 2.73 | 66.83 | 162.45 | 59.5 | 1.52 | 0.03 |
| 8 | 3.33 | 71.24 | 105.67 | 31.7 | 1.18 | 0.04 |
| 9 | 4.18 | 76.69 | 58.78 | 14.1 | 0.78 | 0.06 |
| 10 | 5.02 | 81.44 | 35.08 | 7.0 | 0.57 | 0.08 |
| 11 | 5.46 | 83.56 | 15.69 | 2.9 | 0.35 | 0.12 |
| 12 | 6.34 | 87.77 | 33.50 | 5.3 | 0.47 | 0.09 |
| 13 | 6.26 | 87.22 | 13.39 | 2.1 | 0.29 | 0.14 |
| 14 | 6.56 | 88.87 | 12.79 | 2.0 | 0.26 | 0.13 |
| 15 | 6.81 | 90.36 | 2.33 | 0.3 | 0.12 | 0.36 |
| Total |  |  |  | 240.6 |  |  |
| Total stock area; gillnet |  |  |  |  |  |  |
| 1 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| 2 | 0.33 | 34.06 | 0.28 | 0.8 | 0.35 |  |
| 3 | 0.53 | 39.40 | 4.61 | 8.6 | 1.18 | 0.14 |
| 4 | 0.86 | 45.65 | 17.26 | 20.1 | 1.44 | 0.07 |
| 5 | 1.56 | 55.68 | 46.82 | 30.0 | 1.16 | 0.04 |
| 6 | 2.13 | 61.80 | 98.01 | 45.9 | 1.26 | 0.03 |
| 7 | 2.74 | 66.87 | 161.56 | 59.0 | 1.54 | 0.03 |
| 8 | 3.34 | 71.33 | 104.74 | 31.3 | 1.20 | 0.04 |
| 9 | 4.18 | 76.70 | 58.42 | 14.0 | 0.79 | 0.06 |
| 10 | 5.02 | 81.43 | 34.94 | 7.0 | 0.58 | 0.08 |
| 11 | 5.45 | 83.57 | 15.72 | 2.9 | 0.36 | 0.12 |
| 12 | 6.32 | 87.67 | 33.01 | 5.2 | 0.47 | 0.09 |
| 13 | 6.26 | 87.22 | 13.57 | 2.2 | 0.30 | 0.14 |
| 14 | 6.56 | 88.86 | 12.92 | 2.0 | 0.26 | 0.13 |
| 15 | 6.81 | 90.36 | 2.36 | 0.3 | 0.12 | 0.36 |
| Total |  |  |  | 229.3 |  |  |
| Total stock area; linetrawl |  |  |  |  |  |  |
| 1 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| 2 | 0.33 | 33.76 | 0.01 | 0.0 | 0.01 |  |
| 3 | 0.75 | 44.00 | 0.76 | 1.0 | 0.13 | 0.12 |
| 4 | 0.93 | 47.25 | 1.79 | 1.9 | 0.14 | 0.07 |
| 5 | 1.37 | 53.50 | 1.84 | 1.3 | 0.15 | 0.11 |
| 6 | 1.86 | 59.27 | 1.30 | 0.7 | 0.09 | 0.13 |
| 7 | 2.34 | 63.58 | 0.55 | 0.2 | 0.03 | 0.11 |
| 8 | 2.93 | 68.40 | 0.31 | 0.1 | 0.01 | 0.11 |
| 9 | 3.64 | 73.45 | 0.10 | 0.0 | 0.01 | 0.19 |
| 10 | 4.63 | 79.42 | 0.06 | 0.0 | 0.00 | 0.28 |
| 11 | 4.05 | 74.48 | 0.01 | 0.0 | 0.00 | 0.63 |
| 12 | 7.46 | 92.49 | 0.06 | 0.0 | 0.00 | 0.31 |
| 13 | 7.62 | 94.00 | 0.00 | 0.0 | 0.00 | 1.19 |
| 14 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| 15 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| Total |  |  |  | 5.4 |  |  |

Table 7b. Estimated average weight (kg), length (cm) and number (plus standard error and coefficient of variation) of the 2004 catch at age, all gears combined, for the total stock area, for the central portion of the inshore, and for the southern portion of the inshore.

| AGE | $\begin{gathered} \hline \text { WEIGHT } \\ (\mathrm{kg} .) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { LENGTH } \\ (\mathrm{cm} .) \\ \hline \end{gathered}$ |  | NUMBER |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (000'S) | STD ERR. | CV |
| Total stock area; all gears combined |  |  |  |  |  |  |
| 1 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |
| 2 | 0.33 | 34.07 | 0.29 | 0.9 | 0.34 | 0.39 |
| 3 | 0.56 | 39.88 | 5.75 | 10.3 | 1.17 | 0.11 |
| 4 | 0.87 | 45.82 | 20.54 | 23.7 | 1.43 | 0.06 |
| 5 | 1.54 | 55.40 | 51.41 | 33.4 | 1.17 | 0.03 |
| 6 | 2.12 | 61.70 | 100.62 | 47.4 | 1.25 | 0.03 |
| 7 | 2.73 | 66.83 | 162.45 | 59.5 | 1.52 | 0.03 |
| 8 | 3.33 | 71.24 | 105.67 | 31.7 | 1.18 | 0.04 |
| 9 | 4.18 | 76.69 | 58.78 | 14.1 | 0.78 | 0.06 |
| 10 | 5.02 | 81.44 | 35.08 | 7.0 | 0.57 | 0.08 |
| 11 | 5.46 | 83.56 | 15.69 | 2.9 | 0.35 | 0.12 |
| 12 | 6.34 | 87.77 | 33.50 | 5.3 | 0.47 | 0.09 |
| 13 | 6.26 | 87.22 | 13.39 | 2.1 | 0.29 | 0.14 |
| 14 | 6.56 | 88.87 | 12.79 | 2.0 | 0.26 | 0.13 |
| 15 | 6.81 | 90.36 | 2.33 | 0.3 | 0.12 | 0.36 |
| Total |  |  |  | 240.6 |  |  |


| Inshore central area; all gears combined |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 1 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 |  |  |
| 2 | 0.34 | 34.08 | 0.29 | 0.9 | 0.34 | 0.39 |  |
| 3 | 0.55 | 39.72 | 4.98 | 9.0 | 1.16 | 0.13 |  |
| 4 | 0.86 | 45.80 | 15.36 | 17.8 | 1.40 | 0.08 |  |
| 5 | 1.57 | 55.82 | 35.55 | 22.6 | 1.04 | 0.05 |  |
| 6 | 2.18 | 62.23 | 66.13 | 30.3 | 1.05 | 0.03 |  |
| 7 | 2.95 | 68.64 | 99.50 | 33.7 | 1.31 | 0.04 |  |
| 8 | 3.53 | 72.71 | 76.77 | 21.8 | 1.05 | 0.05 |  |
| 9 | 4.35 | 77.85 | 43.20 | 9.9 | 0.69 | 0.07 |  |
| 10 | 4.96 | 81.14 | 25.48 | 5.1 | 0.50 | 0.10 |  |
| 11 | 5.40 | 83.59 | 13.01 | 2.4 | 0.32 | 0.13 |  |
| 12 | 6.10 | 86.79 | 22.85 | 3.7 | 0.40 | 0.11 |  |
| 13 | 6.09 | 86.47 | 12.19 | 2.0 | 0.29 | 0.14 |  |
| 14 | 6.37 | 88.20 | 11.80 | 1.9 | 0.26 | 0.14 |  |
| 15 | 6.80 | 90.31 | 2.30 | 0.3 | 0.12 | 0.36 |  |
|  |  |  |  | 161.5 |  |  |  |



Table 8. Catch numbers (thousands) at age for cod in 2J3KL in 1962-2004. Note that much of the "catch" in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay.

| Age | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 301 | 1446 | 2872 | 85 | 819 | 790 | 288 | 59 | 6819 | 33 | 236 | 0 | 473 | 420 | 15 |
| 3 | 8666 | 5746 | 19338 | 5177 | 14057 | 15262 | 6142 | 4330 | 18104 | 12876 | 6737 | 3963 | 3231 | 3968 | 13767 |
| 4 | 26194 | 27577 | 27603 | 28709 | 65992 | 77873 | 94291 | 39626 | 60102 | 71557 | 79809 | 40785 | 13201 | 14101 | 33727 |
| 5 | 64337 | 60234 | 57757 | 46800 | 93687 | 100339 | 205805 | 100858 | 82357 | 95384 | 116562 | 94844 | 34927 | 25370 | 28049 |
| 6 | 58163 | 118112 | 60681 | 66946 | 62812 | 96759 | 150541 | 163228 | 101249 | 98111 | 76196 | 59503 | 74403 | 34426 | 20898 |
| 7 | 47314 | 58996 | 100147 | 64360 | 59312 | 54996 | 83808 | 107509 | 85696 | 57865 | 55984 | 35464 | 60539 | 39105 | 16811 |
| 8 | 27521 | 29349 | 50865 | 68176 | 30423 | 38691 | 39443 | 52661 | 29218 | 25055 | 29553 | 27351 | 35687 | 36485 | 16022 |
| 9 | 20142 | 15520 | 20892 | 33819 | 23844 | 17146 | 23171 | 19651 | 10857 | 11732 | 11750 | 14153 | 18854 | 13421 | 10931 |
| 10 | 18036 | 11612 | 12264 | 14913 | 8762 | 16084 | 10984 | 12370 | 3825 | 4470 | 6393 | 7566 | 10492 | 7514 | 4637 |
| 11 | 10444 | 8248 | 8698 | 6945 | 4528 | 5949 | 5591 | 6389 | 2000 | 2223 | 2987 | 3815 | 5818 | 2315 | 1462 |
| 12 | 9468 | 4204 | 6352 | 3729 | 2280 | 3367 | 5249 | 4479 | 1200 | 1287 | 1660 | 2153 | 2934 | 1179 | 631 |
| 13 | 7778 | 3942 | 4989 | 3948 | 1825 | 2108 | 1939 | 3004 | 507 | 1140 | 1388 | 1173 | 1078 | 808 | 292 |
| 14 | 5785 | 2933 | 4036 | 3730 | 1186 | 1529 | 1334 | 1557 | 224 | 720 | 725 | 450 | 652 | 372 | 251 |
| 15 | 4669 | 2928 | 2703 | 2722 | 967 | 685 | 818 | 622 | 214 | 355 | 748 | 278 | 249 | 165 | 100 |
| 16 | 3888 | 1737 | 1456 | 1859 | 806 | 424 | 610 | 567 | 244 | 474 | 606 | 309 | 338 | 82 | 50 |
| 17 | 3955 | 1263 | 1918 | 575 | 416 | 193 | 127 | 319 | 124 | 124 | 452 | 85 | 162 | 5 | 40 |
| 18 | 2161 | 1352 | 1154 | 971 | 279 | 107 | 89 | 100 | 32 | 128 | 136 | 27 | 113 | 8 | 64 |
| 19 | 232 | 328 | 501 | 183 | 486 | 72 | 83 | 46 | 10 | 148 | 195 | 38 | 45 | 22 | 30 |
| 20 | 403 | 182 | 312 | 226 | 178 | 211 | 26 | 99 | 34 | 78 | 36 | 8 | 20 | 1 | 20 |
| Total | 319457 | 355709 | 384538 | 353873 | 372659 | 432585 | 630339 | 517474 | 402816 | 383760 | 392153 | 291965 | 263216 | 179767 | 147797 |
| Age | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 2 | 108 | 0 | 0 | 92 | 0 | 0 | 18 | 3 | 0 | 1 | 42 | 25 | 8 | 58 | 35 |
| 3 | 7128 | 1323 | 1152 | 2554 | 2185 | 1702 | 2585 | 782 | 650 | 831 | 2329 | 2779 | 1696 | 7693 | 3111 |
| 4 | 65510 | 17556 | 12361 | 12025 | 7172 | 31286 | 13616 | 14871 | 14824 | 15219 | 9217 | 14651 | 17639 | 40557 | 31654 |
| 5 | 40462 | 39206 | 37493 | 28814 | 13191 | 19003 | 42602 | 31760 | 36614 | 44168 | 32340 | 20184 | 21150 | 36410 | 53805 |
| 6 | 12107 | 20319 | 29202 | 30016 | 24800 | 14397 | 19028 | 38624 | 33922 | 45869 | 49061 | 47917 | 25212 | 22695 | 29553 |
| 7 | 5397 | 7711 | 10982 | 18017 | 22014 | 25435 | 12044 | 12503 | 28006 | 26025 | 28469 | 45725 | 38708 | 16390 | 9064 |
| 8 | 3396 | 3078 | 3460 | 4830 | 11848 | 16930 | 14701 | 7246 | 7050 | 14722 | 19505 | 18608 | 28499 | 17940 | 6164 |
| 9 | 2730 | 1530 | 1300 | 1217 | 3175 | 11936 | 8934 | 8910 | 3836 | 3104 | 5818 | 9026 | 8696 | 9156 | 4745 |
| 10 | 1381 | 1083 | 757 | 520 | 779 | 1923 | 6341 | 4227 | 5162 | 2000 | 1346 | 4337 | 3640 | 2865 | 1696 |
| 11 | 532 | 437 | 560 | 232 | 309 | 338 | 1018 | 2536 | 2905 | 1977 | 676 | 774 | 1695 | 1084 | 641 |
| 12 | 296 | 219 | 183 | 229 | 195 | 156 | 248 | 451 | 1681 | 1101 | 873 | 422 | 572 | 478 | 250 |
| 13 | 149 | 105 | 116 | 56 | 125 | 90 | 90 | 146 | 254 | 574 | 391 | 366 | 244 | 103 | 88 |
| 14 | 75 | 62 | 51 | 65 | 48 | 153 | 41 | 48 | 107 | 116 | 200 | 223 | 180 | 98 | 39 |
| 15 | 42 | 40 | 43 | 37 | 14 | 40 | 29 | 41 | 39 | 29 | 37 | 100 | 94 | 36 | 21 |
| 16 | 21 | 21 | 38 | 13 | 28 | 12 | 11 | 30 | 20 | 18 | 22 | 32 | 43 | 25 | 9 |
| 17 | 20 | 7 | 7 | 10 | 20 | 13 | 9 | 7 | 17 | 11 | 3 | 5 | 4 | 8 | 3 |
| 18 | 14 | 8 | 7 | 14 | 5 | 4 | 6 | 7 | 1 | 9 | 1 | 10 | 9 | 7 | 2 |
| 19 | 2 | 2 | 4 | 4 | 5 | 0 | 2 | 4 | 3 | 2 | 4 | 5 | 0 | 1 | 2 |
| 20 | 6 | 7 | 9 | 10 | 5 | 0 | 3 | 3 | 5 | 2 | 0 | 5 | 1 | 0 | 0 |
| Total | 139376 | 92714 | 97725 | 98755 | 85918 | 123418 | 121326 | 122199 | 135096 | 155778 | 150334 | 165194 | 148090 | 155604 | 140882 |
| Age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |  |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 7 | 5 | 10 | 6 | 0.2 | 0.9 |  |  |
| 3 | 430 | 940 | 105 | 12 | 35 | 12 | 96 | 70 | 141 | 249 | 166 | 9.4 | 10.3 |  |  |
| 4 | 3860 | 4993 | 379 | 41 | 157 | 39 | 229 | 238 | 258 | 778 | 296 | 11.1 | 23.7 |  |  |
| 5 | 14535 | 3343 | 575 | 93 | 304 | 92 | 395 | 638 | 419 | 710 | 399 | 18.8 | 33.4 |  |  |
| 6 | 12211 | 1940 | 177 | 76 | 401 | 95 | 689 | 795 | 437 | 611 | 335 | 53.4 | 47.4 |  |  |
| 7 | 4526 | 700 | 74 | 25 | 131 | 148 | 384 | 1157 | 328 | 365 | 235 | 44.1 | 59.5 |  |  |
| 8 | 1372 | 147 | 22 | 10 | 24 | 35 | 236 | 370 | 294 | 190 | 124 | 27.7 | 31.7 |  |  |
| 9 | 376 | 21 | 2 | 2 | 7 | 5 | 74 | 253 | 151 | 272 | 77 | 22.3 | 14.1 |  |  |
| 10 | 199 | 0 | 0 | 0 | 2 | 2 | 10 | 52 | 136 | 80 | 113 | 9.5 | 7.0 |  |  |
| 11 | 104 | 0 | 0 | 0 | 0 | 0 | 5 | 13 | 33 | 117 | 50 | 32.3 | 2.9 |  |  |
| 12 | 18 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 5 | 33 | 52 | 20.3 | 5.3 |  |  |
| 13 | 9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 3 | 10 | 26.8 | 2.1 |  |  |
| 14 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 6.7 | 2.0 |  |  |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.0 | 0.3 |  |  |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 |  |  |
| 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0 |  |  |
| 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
| 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 0 | 0 |  |  |
| Total | 37644 | 12084 | 1334 | 259 | 1062 | 429 | 2125 | 3596 | 2210 | 3418 | 1866 | 286 | 241 |  |  |

Table 9. Catch weights-at-age (kg) for cod caught in 2J3KL in 1962-2004.

| Age | 1962 | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |  | 0.11 | 0.26 | 0.25 |
| 3 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.44 | 0.32 | 0.35 | 0.45 | 0.45 |
| 4 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.53 | 0.47 | 0.68 | 0.63 | 0.61 |
| 5 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.64 | 0.71 | 0.91 | 0.96 | 0.93 |
| 6 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.23 | 1.08 | 0.96 | 1.11 | 1.18 | 1.32 |
| 7 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.66 | 1.52 | 1.30 | 1.27 | 1.39 | 1.75 |
| 8 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.12 | 2.13 | 1.80 | 1.56 | 1.74 | 2.07 |
| 9 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 2.86 | 2.20 | 2.05 | 2.21 | 2.24 |
| 10 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.18 | 3.29 | 2.82 | 2.75 | 2.61 | 2.99 |
| 11 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.76 | 3.95 | 3.19 | 3.13 | 3.34 | 3.67 |
| 12 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.15 | 4.12 | 3.79 | 3.41 | 3.66 | 4.56 |
| 13 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 6.06 | 5.00 | 4.53 | 4.92 | 4.78 | 6.18 |
| 14 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 5.54 | 9.32 | 6.93 | 4.40 | 5.20 | 8.19 |
| 15 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 6.11 | 9.40 | 7.22 | 6.33 | 5.20 | 9.77 |
| 16 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 5.83 | 6.89 | 7.05 | 5.50 | 5.46 | 11.23 |
| 17 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 6.44 | 14.67 | 9.45 | 7.57 | 8.51 | 12.44 |
| 18 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 6.07 | 12.04 | 11.16 | 11.07 | 9.24 | 11.16 |
| 19 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 6.61 | 7.62 | 7.62 | 7.62 | 7.62 | 7.62 |
| 20 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 17.46 | 17.46 | 17.46 | 17.46 | 17.46 |
| Age | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| 2 | 0.09 |  |  | 0.41 | 0.00 |  | 0.31 | 0.34 |  | 0.21 | 0.32 | 0.29 | 0.26 | 0.29 | 0.17 |
| 3 | 0.45 | 0.40 | 0.46 | 0.53 | 0.55 | 0.53 | 0.62 | 0.59 | 0.48 | 0.51 | 0.43 | 0.49 | 0.48 | 0.42 | 0.36 |
| 4 | 0.60 | 0.72 | 0.74 | 0.77 | 0.78 | 0.84 | 0.87 | 0.88 | 0.73 | 0.72 | 0.66 | 0.73 | 0.74 | 0.69 | 0.61 |
| 5 | 0.97 | 1.04 | 1.13 | 1.16 | 1.17 | 1.20 | 1.32 | 1.20 | 1.10 | 1.04 | 1.03 | 1.08 | 1.03 | 1.06 | 0.97 |
| 6 | 1.66 | 1.58 | 1.67 | 1.71 | 1.64 | 1.77 | 1.75 | 1.79 | 1.43 | 1.54 | 1.32 | 1.38 | 1.44 | 1.50 | 1.41 |
| 7 | 2.33 | 2.46 | 2.46 | 2.38 | 2.23 | 2.10 | 2.28 | 2.28 | 2.06 | 1.85 | 1.87 | 1.67 | 1.83 | 1.94 | 1.88 |
| 8 | 2.82 | 3.26 | 3.57 | 3.56 | 2.86 | 2.66 | 2.61 | 2.71 | 2.66 | 2.35 | 1.93 | 2.21 | 2.07 | 2.22 | 2.27 |
| 9 | 3.46 | 4.05 | 4.41 | 5.01 | 3.81 | 3.09 | 3.18 | 2.96 | 3.23 | 2.94 | 2.80 | 2.51 | 2.64 | 2.44 | 2.63 |
| 10 | 3.88 | 4.46 | 5.25 | 5.49 | 5.32 | 4.18 | 3.50 | 3.65 | 3.32 | 3.47 | 3.51 | 3.04 | 3.02 | 3.06 | 3.14 |
| 11 | 4.78 | 5.02 | 5.80 | 6.72 | 6.29 | 6.16 | 4.79 | 4.28 | 4.06 | 3.80 | 4.80 | 4.37 | 3.96 | 3.58 | 3.80 |
| 12 | 6.13 | 6.72 | 7.03 | 7.87 | 7.06 | 7.19 | 7.76 | 6.19 | 4.55 | 4.54 | 4.64 | 5.49 | 5.41 | 4.68 | 4.96 |
| 13 | 7.31 | 8.10 | 8.96 | 8.38 | 7.32 | 8.00 | 9.07 | 8.39 | 7.03 | 5.34 | 5.74 | 6.55 | 7.50 | 6.23 | 5.49 |
| 14 | 8.40 | 7.42 | 8.54 | 10.03 | 10.01 | 8.36 | 9.14 | 10.26 | 9.67 | 7.12 | 6.13 | 8.60 | 9.24 | 8.51 | 7.61 |
| 15 | 8.81 | 8.20 | 9.46 | 11.31 | 8.99 | 7.86 | 10.62 | 11.44 | 11.37 | 11.77 | 8.53 | 9.76 | 10.05 | 9.78 | 11.58 |
| 16 | 11.75 | 11.26 | 10.70 | 13.87 | 11.54 | 7.91 | 10.57 | 11.61 | 11.27 | 11.24 | 13.51 | 9.73 | 9.34 | 12.58 | 11.01 |
| 17 | 10.63 | 11.61 | 13.12 | 10.68 | 10.48 | 9.58 | 13.13 | 17.47 | 12.68 | 14.15 | 9.10 | 12.58 | 15.74 | 15.45 | 12.82 |
| 18 | 12.27 | 8.92 | 13.49 | 16.09 | 11.15 | 12.95 | 15.97 | 12.94 | 12.42 | 16.14 | 21.77 | 16.01 | 18.66 | 13.58 | 13.00 |
| 19 | 7.62 | 10.57 | 15.51 | 12.04 | 9.82 | 0.00 | 9.73 | 15.21 | 14.38 | 12.30 | 17.66 | 16.60 |  | 17.26 | 13.10 |
| 20 | 17.46 | 16.00 | 14.77 | 11.37 | 12.59 | 0.00 | 15.88 | 12.81 | 19.49 | 15.72 | 0.00 | 11.03 | 17.64 |  |  |
| Age | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |  |
| 2 |  |  |  | 0.22 | 0.37 | 0.32 | 0.29 | 0.32 | 0.26 | 0.38 | 0.41 | 0.31 | 0.33 |  |  |
| 3 | 0.29 | 0.57 | 0.40 | 0.49 | 0.70 | 0.54 | 0.63 | 0.59 | 0.66 | 0.63 | 0.63 | 0.50 | 0.56 |  |  |
| 4 | 0.58 | 0.71 | 0.68 | 0.80 | 1.01 | 0.88 | 0.94 | 1.05 | 0.97 | 0.91 | 0.91 | 0.82 | 0.87 |  |  |
| 5 | 0.81 | 0.97 | 0.98 | 1.47 | 1.42 | 1.46 | 1.51 | 1.62 | 1.71 | 1.36 | 1.56 | 1.41 | 1.54 |  |  |
| 6 | 1.19 | 1.25 | 1.41 | 1.91 | 2.04 | 1.98 | 2.14 | 2.12 | 2.14 | 2.02 | 2.09 | 2.03 | 2.12 |  |  |
| 7 | 1.73 | 1.59 | 1.85 | 2.27 | 2.51 | 2.44 | 2.48 | 2.51 | 2.79 | 2.54 | 2.70 | 2.54 | 2.73 |  |  |
| 8 | 2.05 | 8.40 | 2.05 | 2.62 | 2.77 | 2.91 | 3.02 | 2.96 | 3.39 | 3.24 | 3.24 | 3.03 | 3.33 |  |  |
| 9 | 2.66 | 9.23 | 3.05 | 3.02 | 3.22 | 3.63 | 3.35 | 3.66 | 3.95 | 3.93 | 3.83 | 3.64 | 4.18 |  |  |
| 10 | 2.24 |  |  | 2.81 | 3.87 | 4.25 | 4.18 | 4.70 | 4.54 | 4.43 | 4.45 | 4.36 | 5.02 |  |  |
| 11 | 2.68 |  |  | 4.67 | 5.18 | 4.36 | 4.01 | 5.17 | 4.88 | 5.06 | 4.77 | 4.91 | 5.46 |  |  |
| 12 | 4.95 |  |  | 0.00 | 4.04 | 6.06 | 3.80 | 5.57 | 6.03 | 6.56 | 5.13 | 5.72 | 6.34 |  |  |
| 13 | 5.34 |  |  | 0.00 | 7.62 | 6.22 | 6.42 | 6.23 | 5.63 | 7.21 | 5.90 | 5.92 | 6.26 |  |  |
| 14 | 7.02 |  |  | 0.00 | 4.46 | 0.00 | 0 | 7.66 | 4.80 | 5.46 | 5.70 | 6.07 | 6.56 |  |  |
| 15 |  |  |  | 0.00 | 0.00 |  | 0 |  | 9.42 | 7.62 | 6.10 | 5.38 | 6.81 |  |  |
| 16 |  |  |  |  |  |  |  |  |  | 0.00 | 0.00 | 0.00 |  |  |  |
| 17 |  |  |  |  |  |  |  |  | 11.28 | 0.00 | 0.00 | 6.90 |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  | 0 | 8.40 |  |  |  |  |
| 19 20 |  |  |  |  |  |  |  |  |  | 0 |  |  |  |  |  |

Table 10. Catch biomass ( t ) at age for cod caught in 2J3KL in 1962-2004.



${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{5 0 0}$ meter depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 12. Estimates of cod biomass ( t ) from surveys in Division 2J in 1983-1992, in Campelen equivalent units.

| Stratum | Stratum | Area sq. | Gadus |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| depth | number | nautical | 86-88 | 101-102 | 116-118 | 131-132 | 145-146 | 159-160 | 174-176 | 190-191 | 208-209 | 224-226 |
| (meters) |  | miles | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
|  | survey d |  | 05-Nov-83 | 05-Nov-84 | 30-Oct-85 | 11-Nov-86 | 06-Nov-87 | 14-Nov-88 | 10-Nov-89 | 12-Nov-90 | 14-Nov-91 | 05-Nov-92 |
| 101-200 | 201 | 1427 | 61842 | 41743 | 58556 | 88676 | 27395 | 208 | 0 | 0 | 0 | 0 |
|  | 205 | 1823 | 53701 | 95026 | 30679 | 38754 | 31421 | 61555 | 691 | 182 | 0 | 0 |
|  | 206 | 2582 | 33286 | 121643 | 49111 | 123683 | 16999 | 92563 | 38555 | 661 | 1333 | 1489 |
|  | 207 | 2246 | 46134 | 55054 | 107180 | 25989 | 36773 | 18803 | 2352 | 6370 | 0 | 649 |
| 201-300 | 202 | 440 | 8365 | 7647 | 3064 | 32711 | 11398 | 1874 | 0 | 0 | 0 | 0 |
|  | 209 | 1608 | 127333 | 17017 | 35398 | 119210 | 56901 | 28242 | 52339 | 1670 | 3966 | 990 |
|  | 210 | 774 | 241006 | 21752 | 1521 | 87332 | 737 | 10667 | 36642 | 12536 | 13406 | 1116 |
|  | 213 | 1725 | 50086 | 27703 | 55229 | 98497 | 41997 | 53146 | 120476 | 34360 | 11859 | 587 |
|  | 214 | 1171 | 19316 | 104048 | 77051 | 189715 | 170212 | 137161 | 56924 | 13766 | 1018 | 399 |
|  | 215 | 1270 | 30986 | 31690 | 30602 | 379256 | 36553 | 146322 | 315 | 8508 | 1073 | 760 |
|  | 228 | 1428 | 8049 | 7695 | 1244 | 52833 | 4800 | 10296 | 12552 | 8973 | 65772 | 672 |
|  | 234 | 508 | 16910 | 11930 | 9173 | 22705 | 7342 | 5157 | 0 | 0 | 0 | 68 |
| 301-400 | 203 | 480 | 2250 | 3445 | 582 | 7875 | 6300 | 9640 | 0 | 0 | 45 | 77 |
|  | 208 | 448 | 7465 | 1115 | 4301 | 8575 | 16641 | 3653 | 22845 | 3699 | 455 | 1091 |
|  | 211 | 330 | 6334 | 1570 | 3287 | 4661 | 7667 | 7283 | 56896 | 10465 | 35048 | 3629 |
|  | 216 | 384 | 52 | 1592 | 429 | 435 | 13557 | 2201 | 3178 | 255 | 287 | 25 |
|  | 222 | 441 | 0 | 32 | 784 | 59 | 1192 | 247 | 9028 | 2559 | 579 | 175 |
|  | 229 | 567 | 2354 | 263 | 3823 | 2399 | 340 | 1889 | 6166 | 4265 | 4906 | 595 |
| 401-500 | 204 | 354 | 2458 | 5863 | 0 | 2174 | 1732 | 8318 | 36 | 37 | 0 | 48 |
|  | 217 | 268 | 0 | 60 |  | 0 | 211 | 0 | 0 | 0 | 45 | 0 |
|  | 223 | 180 | 0 | 0 | 0 | 0 | 0 | 57 | 23 | 212 | 107 | 13 |
|  | 227 | 686 | 217 | 0 | 0 | 224 | 341 | 353 | 5407 | 17904 | 4643 | 311 |
|  | 235 | 420 | 4348 | 332 | 133 | 0 | 1090 | 717 | 962 | 1930 | 5594 | 101 |
| total strata | ished <= | meters | 722492 | 557160 | 472147 | 1285763 | 491599 | 598478 | 425387 | 128352 | 150136 | 12795 |
| 1 STD strata | shed <= | meters | 177183 | 83218 | 65293 | 325107 | 31381 | 97959 | 218324 | 25701 | 72612 | 2315 |
| 501-750 | 212 | 664 | 0 | nf | 0 | 0 | 0 | 0 | 0 | 2196 | 20693 | 159 |
|  | 218 | 420 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 0 |
|  | 224 | 270 | 0 | 0 | 0 | 0 | 0 | 193 | 0 | 0 | 0 | 0 |
|  | 230 | 237 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1395 | 0 | 0 |
| 501-750 |  | 1591 | 0 | $0^{1}$ | 0 | 0 | 0 | 193 | 0 | 3591 | 20755 | 159 |
| 751-1000 | 219 | 213 | 0 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 231 | 182 | 0 | 0 | 0 | 0 | 0 | 0 | nf | 0 | 0 | 144 |
|  | 236 | 122 | 0 | 0 | 0 | 62 | 0 | 0 | nf | 0 | 0 | 0 |
| 751-1000 |  | 517 | 0 | 0 | 0 | 62 | 0 | 0 | $0^{1}$ | 0 | 0 | 144 |
| total strata fis | ed >500 | ters | 0 | 0 | 0 | 62 | 0 | 193 | 0 | 3591 | 20755 | 303 |
| total all strata | fished |  | 722491 | 557302 | 472214 | 1287042 | 492144 | 599436 | 425874 | 131943 | 170892 | 13096 |
| 1 STD all str | a fished |  | 177183 | 83218 | 65293 | 325108 | 84935 | 97963 | 85921 | 25746 | 74135 | 2326 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=500$ meter depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.

Table 13. Estimates of cod abundance (thousands) from surveys in Division 2J in 1993-2004, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2004.

| Stratum depth (meters) | Stratum number | Area sq. nautical miles | $\begin{array}{r} \text { GADUS } \\ 236-238 \\ 1993 \end{array}$ | $\begin{array}{r} \text { GADUS } \\ 250-252 \\ 1994 \end{array}$ | $\begin{array}{r} \hline \text { TELEOST } \\ 20-23 \\ 1995-6 \end{array}$ | TELEOST 39 1996 | TELEOST $54-54$ 1997 | TELEOST $72-73$ 1998 | $\begin{array}{r} \hline \text { TELEOST } \\ 86-88 \\ 1999 \end{array}$ | $\begin{array}{r} \hline \text { TELEOST } \\ 340-343 \\ 2000 \end{array}$ | TEL 361 AN $399-400$ 2001 | TEL 415,454, TEL457 2002 | $\begin{gathered} \hline \text { Teleost } \\ 509-510 \\ 2003 \end{gathered}$ | $\begin{array}{r} \hline \text { Teleost } \\ 537-539 \\ 2004 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean survey date |  |  | 7-Nov-93 | 17-Nov-94 | 28-Dec-95 | 30-Oct-96 | 27-Oct-97 | 27-Oct-98 | 13-Nov-99 | 7-Nov-00 | 28-Nov-01 | 24-Dec-02 | 8-Dec-03 | 10-Nov-04 |
| 101-200 | 201 | 633 | 0 | 0 | nf | 0 | 0 | 44 | 44 | 0 | 0 | 0 | 44 | 44 |
|  | 205 | 1594 | 63 | 219 | nf | 110 | 110 | 32 | 37 | 37 | 37 | 0 | 0 | 37 |
|  | 206 | 1870 | 547 | 0 | 0 | 184 | 257 | 294 | 110 | 115 | 171 | 37 | 110 | 220 |
|  | 207 | 2246 | 2128 | 2699 | 350 | 588 | 138 | 751 | 666 | 1280 | 447 | 1032 | 1122 | 623 |
|  | 237 | 733 | 151 | 0 | 273 | 134 | 0 | 34 | 0 | 101 | 25 | 307 | 2041 | 178 |
|  | 238 | 778 | nf | 0 | nf | 107 | 36 | 0 | 0 | 0 | 36 | 0 | 306 | 41 |
| 201-300 | 202 | 621 | 0 | 0 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 209 | 680 | 374 | 514 | 327 | 249 | 62 | 243 | 374 | 187 | 28 | 218 | 258 | 234 |
|  | 210 | 1035 | 5731 | 854 | 1424 | 320 | 214 | 178 | 854 | 676 | 261 | 269 | 473 | 570 |
|  | 213 | 1583 | 871 | 0 | 2504 | 835 | 1085 | 871 | 290 | 1161 | 416 | 954 | 1327 | 617 |
|  | 214 | 1341 | 1771 | 338 | 323 | 959 | 406 | 451 | 221 | 517 | 823 | 833 | 148 | 1402 |
|  | 215 | 1302 | 1719 | 358 | 90 | 2917 | 1381 | 498 | 788 | 609 | 191 | 466 | 1197 | 2006 |
|  | 228 | 2196 | 436 | 0 | 949 | 2068 | 1347 | 2001 | 868 | 944 | 1847 | 1729 | 874 | 1284 |
|  | 234 | 530 | 0 | 0 | nf | 73 | 142 | 36 | 32 | 36 | 36 | 146 | 0 | 146 |
| 301-400 | 203 | 487 | 0 | 301 | 0 | 335 | 234 | 67 | 100 | 0 | 0 | 33 | 0 | 67 |
|  | 208 | 588 | 0 | 162 | 809 | 566 | 0 | 40 | 40 | 335 | 144 | 0 | 352 | 243 |
|  | 211 | 251 | 414 | 322 | 708 | 483 | 0 | 192 | 383 | 533 | 78 | 72 | 104 | 138 |
|  | 216 | 360 | 0 | 173 | 927 | 715 | 99 | 74 | 275 | 198 | 303 | 297 | 57 | 371 |
|  | 222 | 450 | 279 | 846 | 495 | 543 | 1021 | 272 | 371 | 495 | 954 | 836 | 340 | 464 |
|  | 229 | 536 | 590 | 295 | 627 | 946 | 205 | 74 | 442 | 184 | 1180 | 885 | 442 | 332 |
| 401-500 | 204 | 288 | 0 | 0 | 16 | 20 | 0 | 0 | 14 | 0 | 0 | 20 | 0 | 0 |
|  | 217 | 241 | 66 | 55 | 561 | 63 | 0 | 166 | 33 | 33 | 15 | 715 | 38 | 83 |
|  | 223 | 158 | 0 | 0 | 880 | 91 | 54 | 19 | 0 | nf | 0 | 73 | 54 | 54 |
|  | 227 | 598 | 795 | 0 | 370 | 1207 | 41 | 247 | 0 | 55 | 0 | 329 | 0 | 247 |
|  | 235 | 414 | 1044 | 1006 | 541 | 101 | 85 | 85 | 0 | 0 | 0 | 159 | 28 | 85 |
|  | 240 | 133 | 9 | 0 | 123 | 9 | 18 | 0 | 128 | 18 | 42 | 125 | 0 | 18 |
| total strata fished $<=500$ meters <br> upper <br> t-value <br> 1STD strata fished $<=500$ meters |  |  | 16989 | 8145 | 12346 | 13625 | 6936 | 6669 | 6074 | 7516 | 7033 | 9534 | 9315 | 9503 |
|  |  |  | 28803 | 16368 | 16367 | 17716 | 9046 | 8575 | 8163 | 10007 | 9222 | 12588 | 13125 | 11582 |
|  |  |  | 2.571 | 3.182 | 2.228 | 2.179 | 2.11 | 2.07 | 2.18 | 2.2 | 2.14 | 2.09 | 2.365 | 2.05 |
|  |  |  | 4595 | 2584 | 1805 | 1877 | 1000 | 921 | 958 | 1132 | 1023 | 1461 | 1611 | 1014 |
| 501-750 | 212 | 557 | 77 | 128 | 69 | 136 | 77 | 0 | 0 | 38 | 0 | 72 | 82 | 0 |
|  | 218 | 362 | 0 | 50 | 1660 | 75 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 25 |
|  | 224 | 228 | 0 | 0 | 596 | 0 | 0 | 0 | 42 | 0 | 0 | 233 | 47 | 0 |
|  | 230 | 185 | 0 | 34 | 13 | 0 | 0 | 0 | 13 | 13 | 0 | 480 | 0 | 0 |
|  | 239 | 120 | 17 | 17 | 0 | 8 | 7 | 0 | 0 | 0 | 7 | 8 | 0 | 8 |
| 751-1000 | 219 | 283 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 231 | 186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 236 | 193 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1001-1250 | 220 | 330 | nf | nf | nf | 0 | 0 |  | nf |  | 0 | 0 | 0 | 0 |
|  | 225 | 195 | nf | nf | nf | 0 | 0 |  | 0 |  | 0 | 0 | 0 | 0 |
|  | 232 | 228 | nf | nf | nf | 0 | 0 |  | 0 |  | 0 | 0 | 0 | 0 |
| 1001-1250 ${ }^{1}$ |  | 753 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 1251-1500 | 221 | 330 | nf | nf | nf | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 226 | 201 | nf | nf | nf | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 233 | 237 | nf | nf | nf | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 |
| 1251-1500 ${ }^{1}$ |  | 768 | nf | nf | nf | 0 |  | 0 | 0 |  | 0 |  |  |  |
| total strata fished >500 meters |  |  | 94 | 229 | 2350 | 219 | 84 | 0 | 55 | 51 | 7 | 893 | 129 | 33 |
| total all strata fishedupper |  |  | 17082 | 8373 | 14654 | 13844 | 7020 | 6636 | 6129 | 7567 | 7040 | 10427 | 9445 | 9536 |
|  |  |  | 28898 | 16608 | 19098 | 17946 | 9136 | 8538 | 8220 | 10060 | 9230 | 13495 | 13254 | 11615 |
| t -value |  |  | 2.571 | 3.182 | 2.16 | 2.179 | 2.11 | 2.07 | 2.18 | 2.2 | 2.14 | 2.09 | 2.365 | 2.05 |
| 1 STD all strata fished |  |  | 4596 | 2588 | 2057 | 1883 | 1003 | 919 | 959 | 1133 | 1023 | 1468 | 1611 | 1014 |

Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 14. Estimates of cod biomass (t) from surveys in Division 2J in 1993-2004, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2004.

| $\begin{aligned} & \hline \text { Stratum } \\ & \text { depth } \\ & \text { (meters) } \end{aligned}$ | Stratum number survey da | Area sq nautical miles | GADUS $236-238$ 1993 7-Nov-93 | GADUS $250-252$ 1994 17 -Nov-94 | TELEOST $20-23$ $1995-6$ $28-$ Dec-95 | TELEOST 39 1996 30-Oct-96 | TELOST $54-55$ 1997 $27-\mathrm{Oct-97}$ | TELOST $72-73$ 1998 $27-$ Oct-98 | TELOST $86-88$ 1999 13-Nov-99 | $\begin{array}{r} \text { TELEOST } \\ 340-343 \\ 2000 \\ 7-\mathrm{NOv}-00 \end{array}$ | $\begin{array}{r} \text { TEL } 361 \\ \text { AN } 399-400 \\ 2001 \\ \text { 28-Nov-01 } \end{array}$ | TEL 415,454, TEL457 2002 $24-$ Dec-02 | $\begin{array}{r} \hline \text { Teleost } \\ 509-510 \\ 2003 \\ \text { 8-Dec-03 } \\ \hline \end{array}$ | $\begin{array}{r} \hline \text { Teleost } \\ 537-539 \\ 2004 \\ \text { 10-Nov-04 } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101-200 | 201 | 633 | 0 | 0 | nf | 0 | 0 | 30 | 6 | 0 | 0 | 0 | 44 | 24 |
|  | 205 | 1594 | 63 | 151 | nf | 16 | 42 | 5 | 4 | 42 | 41 | 0 | 0 | 5 |
|  | 206 | 1870 | 155 | 0 | 0 | 62 | 125 | 186 | 24 | 47 | 90 | 20 | 7 | 76 |
|  | 207 | 2246 | 452 | 507 | 44 | 57 | 110 | 406 | 156 | 220 | 107 | 26 | 204 | 114 |
|  | 237 | 733 | 83 | 0 | 13 | 8 | 0 | 2 | 0 | 3 | 8 | 2 | 23 | 22 |
|  | 238 | 778 | nf | 0 | nf | 21 | 27 | 0 | 0 | 0 | 11 | 0 | 2 | 59 |
| 201-300 | 202 | 621 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 209 | 680 | 100 | 67 | 52 | 20 | 44 | 162 | 86 | 60 | 7 | 56 | 82 | 79 |
|  | 210 | 1035 | 1158 | 139 | 108 | 26 | 112 | 98 | 168 | 271 | 77 | 72 | 121 | 254 |
|  | 213 | 1583 | 346 | 0 | 336 | 214 | 586 | 639 | 180 | 398 | 208 | 389 | 715 | 410 |
|  | 214 | 1341 | 700 | 174 | 39 | 273 | 186 | 289 | 127 | 303 | 355 | 460 | 122 | 878 |
|  | 215 | 1302 | 443 | 210 | 21 | 959 | 586 | 404 | 625 | 436 | 88 | 371 | 646 | 1207 |
|  | 228 | 2196 | 294 | 0 | 263 | 665 | 747 | 1258 | 280 | 433 | 514 | 613 | 329 | 572 |
|  | 234 | 530 | 0 | 0 | nf | 22 | 83 | 3 | 1 | 3 | 17 | 31 | 0 | 54 |
| 301-400 | 203 | 487 | 0 | 220 | 0 | 136 | 157 | 67 | 107 | 0 | 0 | 23 | 0 | 26 |
|  | 208 | 588 | 0 | 41 | 123 | 200 | 0 | 4 | 12 | 268 | 63 | 0 | 149 | 142 |
|  | 211 | 251 | 241 | 110 | 141 | 81 | 0 | 139 | 71 | 208 | 36 | 17 | 27 | 43 |
|  | 216 | 360 | 0 | 96 | 234 | 194 | 54 | 73 | 82 | 95 | 148 | 134 | 33 | 186 |
|  | 222 | 450 | 146 | 276 | 124 | 290 | 495 | 194 | 200 | 193 | 363 | 374 | 257 | 297 |
|  | 229 | 536 | 109 | 124 | 184 | 305 | 138 | 54 | 172 | 63 | 469 | 339 | 216 | 190 |
| 401-500 | 204 | 288 | 0 | 0 | 1 | 8 | 0 | 0 | 19 | 0 | 0 | 25 | 0 | 0 |
|  | 217 | 241 | 67 | 19 | 135 | 26 | 0 | 177 | 14 | 7 | 10 | 401 | 37 | 40 |
|  | 223 | 158 | 0 | 0 | 135 | 32 | 35 | 25 | 0 | nf | 0 | 47 | 43 | 42 |
|  | 227 | 598 | 441 | 0 | 109 | 748 | 33 | 197 | 0 | 23 | 0 | 146 | 0 | 115 |
|  | 235 | 414 | 318 | 559 | 175 | 84 | 30 | 71 | 0 | 0 | 0 | 58 | 8 | 74 |
|  | 240 | 133 | 13 | 0 | 68 | 2 | 19 | 0 | 192 | 10 | 32 | 77 | 0 | 13 |
| total strata fished <= 500 meters upper <br> t -value |  |  | 5129 | 2693 | 2312 | 4261 | 3609 | 4483 | 2527 | 3082 | 2646 | 3680 | 3065 | 4921 |
|  |  |  | 7096 | 3824 | 2905 | 6472 | 4574 | 5924 | 4023 | 4171 | 3345 | 4790 | 4226 | 5996 |
|  |  |  | 2.228 | 2.201 | 2.179 | 2.776 | 2.086 | 2.08 | 2.45 | 2.23 | 2.09 | 2.13 | 2.262 | 2.07 |
|  |  |  | 883 | 514 | 272 | 796 | 463 | 693 | 611 | 488 | 334 | 521 | 513 | 519 |
| 501-750 | 212 | 557 | 93 | 89 | 15 | 22 | 49 | 0 | 0 | 10 | 0 | 45 | 115 | 0 |
|  | 218 | 362 | 0 | 51 | 519 | 12 | 0 | 0 | 0 | 0 | 0 | 77 | 0 | 31 |
|  | 224 | 228 | 0 | 0 | 205 | 0 | 0 | 0 | 45 | 0 | 0 | 152 | 68 | 0 |
|  | 230 | 185 | 0 | 32 | 14 | 0 | 0 | 0 | 18 | 6 | 0 | 307 | 0 | 0 |
|  | 239 | 120 | 17 | 11 | 0 | 2 | 3 | 0 | 0 | 0 | 1 | 7 | 0 | 1 |
| 751-1000 | 219 | 283 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 231 | 186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 236 | 193 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1001-1250 | 220 | 330 | nf | nf | nf | 0 | 0 | 0 | nf | 0 | 0 | 0 | 0 | 0 |
|  | 225 | 195 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 232 | 228 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\frac{1001-1250^{1}}{1251-1500}$ |  | 753 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|  | 221 | 330 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 226 | 201 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 233 | 237 | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $1251-1500^{1} 768$ |  |  | nf | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| total strata fished > 500 meters |  |  | 110 | 183 | 755 | 36 | 52 | 0 | 63 | 16 | 1 | 588 | 183 | 32 |
| total all strata fished |  |  | 5238 | 3448 | 3067 | 4484 | 3662 | 4483 | 2590 | 3098 | 2647 | 4270 | 3248 | 4953 |
| upper |  |  | 7217 | 4019 | 3927 | 6621 | 4629 | 5924 | 4091 | 4187 | 3346 | 5387 | 4411 | 6028 |
| t-value |  |  | 2.228 | 2.179 | 2.262 | 2.776 | 2.08 | 2.08 | 2.45 | 2.23 | 2.09 | 2.12 | 2.262 | 2.07 |
| 1 STD all strata fished |  |  | 888 | 262 | 380 | 770 | 465 | 693 | 613 | 488 | 334 | 527 | 514 | 519 |

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 15. Estimates of cod abundance (thousands) from surveys in Division 3K in 1983-1992, in Campelen equivalent units.

| Stratum depth (meters) | Stratum | Area sq. | GADUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | number | nautical | 87-88 | 101-103 | 117-118 | 131-132 | 146-147 | 160-161 | 175-176 | 191-192 | 209-210 | 224-226 |
|  |  | miles | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Mean survey date |  |  | 26-Nov-83 | 23-Nov-84 | 18-Nov-85 | 01-Dec-86 | 27-Nov-87 | 05-Dec-88 | 05-Dec-89 | 04-Dec-90 | 04-Dec-91 | 26-Nov-92 |
| 101-200 | 618 | 1455 | 17028 | 24569 | 26453 | 64689 | 14954 | 57577 | 14811 | 13210 | 721 | 1268 |
|  | 619 | 1588 | 3835 | 9955 | 1155 | 17476 | 6826 | 19598 | 63705 | 2578 | 0 | 218 |
| 201-300 | 620 | 2709 | 126888 | 110535 | 4685 | 135397 | 32793 | 100337 | 253826 | 11304 | 3780 | 2236 |
|  | 621 | 2859 | 33593 | 32109 | 8338 | 27811 | 16059 | 32525 | 44025 | 14230 | 2517 | 131 |
|  | 624 | 668 | 10016 | 9786 | 2550 | 2573 | 1746 | 3982 | 4901 | 24948 | 7076 | 735 |
|  | 632 | 447 | 30765 | 9851 | 4591 | 4735 | 7410 | 51959 | 4888 | 22044 | 10336 | 1438 |
|  | 634 | 1618 | 61564 | 31160 | 29182 | 323578 | 60702 | 21441 | 269092 | 4610 | 99321 | 694 |
|  | 635 | 1274 | 7711 | 29442 | 4682 | 14225 | 3593 | 9534 | 5934 | 3505 | 1490 | 701 |
|  | 636 | 1455 | 8807 | 17788 | 3828 | 21566 | 6777 | 12743 | 13850 | 715 | 1134 | 133 |
|  | 637 | 1132 | 31704 | 73889 | 15928 | 46132 | 15805 | 24915 | 13766 | 6634 | 5320 | 156 |
| 301-400 | 623 | 1027 | 29291 | 51057 | 3697 | 4026 | 11782 | 23649 | 102872 | 50690 | 3155 | 5557 |
|  | 625 | 850 | 4677 | 1988 | 7156 | 3196 | 11400 | 5554 | 21251 | 11693 | 1676 | 546 |
|  | 626 | 919 | 6953 | 3266 | 2705 | 62324 | 5815 | 5006 | 12566 | 9260 | 1264 | 632 |
|  | 628 | 1085 | 7935 | 4670 | 6617 | 2687 | 1582 | 18448 | 12575 | 5522 | 9303 | 4179 |
|  | 629 | 495 | 2357 | 2557 | 1647 | 5720 | 938 | 7276 | 3135 | 6521 | 978 | 1853 |
|  | 630 | 544 | 1497 | 2170 | 262 | 262 | 524 | 524 | 7009 | 1085 | 499 | 150 |
|  | 633 | 2179 | 15312 | 21312 | 38293 | 96780 | 49404 | 15737 | 220703 | 243039 | 185926 | 7410 |
|  | 638 | 2059 | 53867 | 17476 | 37259 | 36467 | 24472 | 23650 | 137139 | 360185 | 200000 | 7511 |
|  | 639 | 1463 | 12449 | 5283 | 8780 | 15127 | 5980 | 12176 | 19270 | 52757 | 91771 | 2262 |
| 401-500 | 622 | 632 | 304 | 1434 | 283 | 1652 | 174 | 3188 | 21561 | 12476 | 1449 | 1594 |
|  | 627 | 1194 | 1032 | 1038 | 372 | 4658 | 2633 | 1173 | 10505 | 85313 | 4506 | 3692 |
|  | 631 | 1202 | 1025 | 33 | 472 | 207 | 3059 | 6063 | 42471 | 28964 | 15157 | 992 |
|  | 640 | 198 | 194 | 0 | 9 | 14 | 0 | 109 | 2982 | 150 | 1970 | 17459 |
|  | 645 | 204 | 0 | 0 | 9 | 90 | 112 | 28 | 4686 | 379 | 0 | 75 |
| total strata fished <=500 meters |  |  | 447748 | 451517 | 208952 | 891302 | 284541 | 457191 | 1307523 | 971810 | 649350 | 61622 |
| 1 STD strata fished <=500 meters |  |  | 61132 | 68574 | 27228 | 321032 | 44267 | 73335 | 270219 | 184614 | 159892 | 17726 |
| $501-750^{1}$ |  | 917 | 0 | 0 | 0 | nf | 107 | nf | nf | 92 | 122 | 263 |
| $751-1000^{1}$ |  | 1340 | nf | nf | 0 | nf | nf | nf | nf | 128 | 56 | 0 |
| total strata fished > 500 meters |  |  | 0 | 0 | 0 | 0 | 107 | 0 | 0 | 220 | 178 | 263 |
| total all strata fished |  |  | 447748 | 451517 | 208952 | 891302 | 284648 | 457191 | 1307523 | 972029 | 649529 | 61886 |
| 1 STD all strata fished |  |  | 61132 | 68574 | 27228 | 321032 | 44267 | 73335 | 270219 | 184614 | 159892 | 17726 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{5 0 0}$ meter depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 16. Estimates of cod biomass (t) from surveys in Division 3K in 1983-1992, in Campelen equivalent units.

| Stratum depth (meters) | Stratum | Area sq. | GADUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | number | nautical | 87-88 | 101-103 | 117-118 | 131-132 | 146-147 | 160-161 | 175-176 | 191-192 | 209-210 | 224-226 |
|  |  | miles | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 |
| Mean survey date |  |  | 26-Nov-83 | 23-Nov-84 | 18-Nov-85 | 01-Dec-86 | 27-Nov-87 | 05-Dec-88 | 05-Dec-89 | 04-Dec-90 | 04-Dec-91 | 26-Nov-92 |
| 101-200 | 618 | 1455 | 7987 | 18702 | 24894 | 53641 | 10200 | 2443 | 1575 | 1514 | 261 | 450 |
|  | 619 | 1588 | 1491 | 4801 | 1113 | 3157 | 2538 | 1212 | 3363 | 154 | 0 | 119 |
| 201-300 | 620 | 2709 | 67557 | 87523 | 8223 | 131461 | 27088 | 13232 | 24447 | 1636 | 1158 | 847 |
|  | 621 | 2859 | 18041 | 25813 | 6216 | 19356 | 3294 | 11590 | 7313 | 1021 | 359 | 194 |
|  | 624 | 668 | 3920 | 3082 | 2340 | 2798 | 802 | 3087 | 1660 | 8649 | 3809 | 331 |
|  | 632 | 447 | 33968 | 10779 | 4106 | 4540 | 7824 | 51549 | 2030 | 8677 | 5581 | 663 |
|  | 634 | 1618 | 56301 | 24843 | 28663 | 436500 | 80357 | 19008 | 322401 | 1976 | 77639 | 450 |
|  | 635 | 1274 | 4940 | 11970 | 3551 | 16754 | 3329 | 3843 | 2609 | 998 | 617 | 319 |
|  | 636 | 1455 | 11657 | 13899 | 3977 | 13264 | 5871 | 9229 | 3577 | 431 | 334 | 138 |
|  | 637 | 1132 | 36769 | 75369 | 15341 | 50718 | 15913 | 29982 | 13010 | 2665 | 2332 | 85 |
| 301-400 | 623 | 1027 | 23690 | 46679 | 5155 | 4602 | 17254 | 3662 | 22849 | 12857 | 1130 | 1960 |
|  | 625 | 850 | 5410 | 2474 | 7062 | 3405 | 11136 | 5766 | 12105 | 4049 | 861 | 291 |
|  | 626 | 919 | 5565 | 3377 | 4274 | 41267 | 4852 | 1188 | 5858 | 718 | 345 | 218 |
|  | 628 | 1085 | 8807 | 4909 | 7807 | 2564 | 1484 | 7998 | 7102 | 2184 | 4028 | 1345 |
|  | 629 | 495 | 2506 | 1739 | 955 | 5557 | 907 | 1391 | 1550 | 2003 | 95 | 535 |
|  | 630 | 544 | 1452 | 1564 | 435 | 292 | 743 | 863 | 9065 | 644 | 267 | 85 |
|  | 633 | 2179 | 15440 | 23201 | 39817 | 115810 | 66782 | 15297 | 148660 | 169097 | 132091 | 4366 |
|  | 638 | 2059 | 56662 | 12773 | 35965 | 37822 | 31829 | 18946 | 184194 | 353107 | 150413 | 3564 |
|  | 639 | 1463 | 17739 | 5242 | 8657 | 14185 | 6332 | 7526 | 7803 | 24244 | 74514 | 941 |
| 401-500 | 622 | 632 | 541 | 1487 | 215 | 1307 | 163 | 847 | 8794 | 2974 | 498 | 564 |
|  | 627 | 1194 | 970 | 772 | 360 | 5307 | 1150 | 1208 | 4805 | 13523 | 1248 | 765 |
|  | 631 | 1202 | 2700 | 138 | 493 | 273 | 3049 | 6448 | 31211 | 11300 | 8691 | 732 |
|  | 640 | 198 | 385 | 0 | 16 | 22 | 0 | 299 | 2436 | 204 | 1231 | 16334 |
|  | 645 | 204 | 0 | 0 | 50 | 255 | 139 | 122 | 1628 | 368 | 0 | 48 |
| total strata fished <=500 meters |  |  | 374634 | 370356 | 209686 | 964600 | 303038 | 216734 | 830045 | 624993 | 467505 | 35346 |
| 1 STD strata fished $<=500$ meters |  |  | 51399 | 58138 | 26560 | 428297 | 61366 | 50225 | 289567 | 207590 | 128742 | 16146 |
| $501-750^{1}$ |  | 917 | 0 | 0 | 0 | nf | 174 | nf | nf | 72 | 133 | 258 |
| $751-1000^{1}$ |  | 1340 | nf | nf | 0 | nf | nf | nf | nf | 70 | 39 | 0 |
| total strata fished > 500 meters |  |  | 0 | 0 | 0 | 0 | 174 | 0 | 0 | 142 | 172 | 258 |
| total all strata fished |  |  | 374634 | 370356 | 209686 | 964600 | 303212 | 216734 | 830045 | 645136 | 649529 | 35604 |
| 1 STD all strata fished |  |  | 51399 | 58138 | 26560 | 428297 | 61366 | 50225 | 289567 | 198748 | 159892 | 16146 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=500$ meter depth range have been filled using a multiplicative model using data to $\mathbf{1 9 9 2}$. Std are for strata fished in the depth range.

Table 17. Estimates of cod abundance (thousands) from surveys in Division 3K in 1993-2004, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2004.

| Depth range meters | Stratum number | Stratum area sq. mi. | GADUS GADUS WT 176-81 WT 196-199 |  |  |  | WT 217 TELOEST | TELEOST | TELEOST | TELEOST | WT 376, 398 TEL 362397 | TEL 415,457 | TEL 509,510 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | WT431,455 |  |  |  |  | 513,514 | -el 539-542 |
|  |  |  | 236-238 | 250-252 | 20-23 | 40-42 |  | 55-57 | 73-75 | 86-88 | 340-343 | AN 399 | WT 456 | WT 511, 515 | WT 588 |
|  |  |  | 1993 | 1994 | 1995-6 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002-3 | 2003-4 | 2004-5 |
|  | Mean survey date |  | 23-Nov-93 | 7-Dec-94 | 26-Dec-95 | 14-Nov-96 | 18-Nov-97 | 14-Nov-98 | 30-Nov-99 | 23-Nov-00 | 8-Dec-01 | 20-Dec-02 | 15-Jan-04 | 14-Dec-04 |
| 101-200 | 618 | 1347 | 2409 | 159 | 1170 | 1887 | 1174 | 1065 | 865 | 2038 | 812 | 388 | 1346 | 1544 |
|  | 619 | 1753 | 965 | 0 | 655 | 218 | 448 | 2411 | 281 | 2097 | 1021 | 512 | 1131 | 693 |
| 201-300 | 620 | 2545 | 3268 | 350 | 1465 | 915 | 764 | 1814 | 2514 | 3383 | 3172 | 1246 | 3214 | 2976 |
|  | 621 | 2736 | 0 | 251 | 2580 | 303 | 444 | 494 | 1301 | 1700 | 1196 | 988 | 979 | 3403 |
|  | 624 | 1105 | 391 | 152 | 813 | 2432 | 395 | 973 | 472 | 456 | 1277 | 924 | 213 | 730 |
|  | 634 | 1555 | 468 | 642 | 214 | 1246 | 31 | 672 | 397 | 616 | 1497 | 937 | 299 | 1176 |
|  | 635 | 1274 | 467 | 0 | 88 | 386 | 243 | 491 | 245 | 361 | 70 | 257 | 70 | 0 |
|  | 636 | 1455 | 734 | 200 | 286 | 133 | 267 | 367 | 300 | 291 | 392 | 371 | 272 | 534 |
|  | 637 | 1132 | 4983 | 389 | 242 | 810 | 125 | 529 | 1093 | nf | 352 | 775 | 436 | 799 |
| 301-400 | 617 | 593 | 1876 | 184 | 693 | 109 | 1006 | 160 | 547 | 1332 | 2882 | 236 | 109 | 1224 |
|  | 623 | 494 | 1138 | 0 | 578 | 510 | 136 | 217 | 34 | 136 | 1446 | 755 | 442 | 1665 |
|  | 625 | 888 | 285 | 0 | 342 | 131 | 305 | 329 | 1160 | 275 | 912 | 1000 | 92 | 1530 |
|  | 626 | 1113 | 714 | 204 | 2709 | 1415 | 31 | 1868 | 4651 | 1217 | 3253 | 2927 | 1654 | 7196 |
|  | 628 | 1085 | 1443 | 299 | 1556 | 826 | 358 | 1151 | 2507 | 2478 | 1791 | 2047 | 1944 | 2158 |
|  | 629 | 495 | 908 | 375 | 545 | 68 | 69 | 102 | 272 | 393 | 230 | 847 | 306 | 180 |
|  | 630 | 332 | 0 | 0 | 41 | 0 | 69 | 23 | 69 | 95 | 15 | 0 | 0 | 23 |
|  | 633 | 2067 | 1153 | 2218 | 851 | 1381 | 885 | 695 | 1788 | 853 | 876 | 2428 | 903 | 2514 |
|  | 638 | 2059 | 8780 | 1187 | 1252 | 2155 | 472 | 661 | 5413 | 7308 | 5119 | 13407 | 3191 | 3682 |
|  | 639 | 1463 | 1489 | 1711 | 712 | 1025 | 537 | 503 | 1540 | 786 | 690 | 7864 | 973 | 738 |
| 401-500 | 622 | 691 | 1141 | 57 | 542 | 230 | 63 | 507 | 405 | 665 | 602 | 383 | 289 | 475 |
|  | 627 | 1255 | 2992 | 604 | 4924 | 1918 | 514 | 414 | 2463 | 9091 | 699 | 1746 | 886 | 863 |
|  | 631 | 1321 | 0 | 182 | 501 | 273 | 84 | 0 | 784 | 54 | 99 | 199 | 346 | 91 |
|  | 640 | 69 | 228 | 16 | 218 | 25 | 43 | 47 | 66 | 47 | 19 | 71 | 100 | 20 |
|  | 645 | 216 | 79 | 119 | 134 | 30 | 15 | 43 | 59 | 104 | 66 | 45 | 178 | 193 |
|  | 650 | 134 | 995 | 65 | 276 | 92 | 350 | 74 | 78 | nf | 46 | 1501 | 535 | 65 |
| total strata fished $<=500$ meters upper |  |  | 36906 | 9364 | 23387 | 18518 | 8828 | 15610 | 29304 | 35776 | 28534 | 41854 | 19908 | 34468 |
|  |  |  | 49711 | 14727 | 27099 | 22878 | 10868 | 19783 | 35059 | 59488 | 35927 | 64414 | 23813 | 41996 |
| t -value |  |  | 2.201 | 2.228 | 2.086 | 2.06 | 2.16 | 2.12 | 2.04 | 2.78 | 2.13 | 2.2 | 2.017 | 2.12 |
| 1 STD strata fished <= 500 meters |  |  | 5818 | 2407 | 1779 | 2117 | 944 | 1968 | 2821 | 8529 | 3471 | 10255 | 1936 | 3551 |
| 501-750 | 641 | 230 | 11 | 21 | 63 | 47 | 0 | 16 | 0 | nf | 16 | 662 | 158 | 16 |
|  | 646 | 325 | 75 | 0 | 0 | 0 | 22 | 0 | 89 | 0 | 0 | 45 | 224 | 1565 |
|  | 651 | 359 | 16 | 123 | 691 | 25 | 0 | 198 | 0 | nf | 28 | 85 | 1580 | 0 |
| 751-1000 | 642 | 418 | 115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 647 | 360 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 652 | 516 | 142 | 106 | 0 | 0 | 0 | 71 | 35 | 0 | 0 | 0 | 0 | 0 |
| 1001-1250 | 643 | 733 | nf | nf | 0 | 0 |  | 0 | 0 |  | 0 | 0 | 0 | 0 |
|  | 648 |  |  |  |  |  |  |  | 0 |  | 16 | 0 | 0 | 0 |
|  | 653 | 531 | 0 | nf | 0 | 0 |  | 0 | 0 |  | 0 | 0 | 0 | 0 |
| 1001-1250 ${ }^{3}$ |  | 1264 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |  |
| 1251-1500 | 644 | 474 | nf | nf | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 649 | 212 |  |  |  |  |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 654 | 479 | nf | nf | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1251-1500 ${ }^{3}$ |  | 1165 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| total strata fished > 500 meters |  |  | 359 | 250 | 754 | 72 | 22 | 285 | 124 | 0 | 60 | 792 | 1962 | 1581 |
| total all strata fished |  |  | 37265 | 9612 | 24142 | 18590 | 8850 | 15896 | 29433 | 39110 | 28595 | 42644 | 21868 | 36049 |
| upper |  |  | 50073 | 14985 | 27956 | 22950 | 10891 | 20071 | 35187 | 61174 | 35987 | 65206 | 25860 | 44372 |
| t-value |  |  | 2.201 | 2.228 | 2.08 | 2.06 | 2.16 | 2.12 | 2.04 | 2.57 | 2.13 | 2.2 | 2.014 | 2.14 |
| 1 STD all strata fished |  |  | 5819 | 2412 | 1834 | 2117 | 945 | 1969 | 2821 | 8585 | 3470 | 10255 | 1982 | 3889 |

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 18. Estimates of cod biomass (t) from surveys in Division 3K in 1993-2004, in Campelen equivalent units for 1993 and 1994 and actual Campelen units for 1995-2004.

|  |  |  |  |  | WT 176-181 | WT 196-199 | WT 217 |  |  |  | WT 376/398 | TEL 415,457 | TEL 509,510 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Depth |  | Stratum | GADUS | GADUS | TELEOST | TELEOST | teloest | teleost | TELEOST | TELE | TEL 362397 | WT431,455 | 513,514 | 539-542 |
| range | Stratum | area | 236-238 | 250-252 | 20-23 | 40-42 | 55-57 | 73-75 | 86-88 | 340-343 | AN 399 | WT 456 | WT 511, 515 | WT 588 |
| meters | number | sq. mi. | 1993 | 1994 | 1995-6 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002-3 | 2003-4 | 2004-5 |
|  | n survey |  | 23-Nov-93 | 7-Dec-94 | 26-Dec-95 | 14-Nov-96 | 18-Nov-97 | 14-Nov-98 | 30-Nov-99 | 23-Nov-00 | 8-Dec-01 | 20-Dec-02 | 15-Jan-04 | 4-Dec-04 |
| 101-200 | 618 | 1347 | 721 | 40 | 87 | 221 | 291 | 170 | 56 | 252 | 99 | 72 | 85 | 170 |
|  | 619 | 1753 | 708 | 0 | 32 | 42 | 36 | 158 | 20 | 154 | 97 | 101 | 38 | 80 |
| 201-300 | 620 | 2545 | 614 | 118 | 238 | 230 | 203 | 471 | 245 | 415 | 649 | 164 | 595 | 671 |
|  | 621 | 2736 | 0 | 267 | 302 | 77 | 202 | 207 | 296 | 397 | 169 | 186 | 44 | 567 |
|  | 624 | 1105 | 177 | 85 | 251 | 714 | 207 | 752 | 263 | 225 | 492 | 364 | 64 | 342 |
|  | 634 | 1555 | 189 | 417 | 97 | 391 | 7 | 300 | 178 | 152 | 637 | 424 | 219 | 481 |
|  | 635 | 1274 | 189 | 0 | 10 | 94 | 208 | 322 | 76 | 104 | 17 | 82 | 6 | 0 |
|  | 636 | 1455 | 334 | 141 | 92 | 39 | 234 | 303 | 171 | 260 | 96 | 93 | 49 | 131 |
|  | 637 | 1132 | 2039 | 74 | 74 | 358 | 38 | 321 | 575 | nf | 168 | 235 | 109 | 253 |
| 301-400 | 617 | 593 | 383 | 74 | 97 | 14 | 359 | 95 | 212 | 237 | 748 | 97 | 53 | 306 |
|  | 623 | 494 | 213 | 0 | 32 | 144 | 37 | 70 | 10 | 41 | 309 | 153 | 107 | 272 |
|  | 625 | 888 | 229 | 0 | 99 | 66 | 139 | 166 | 573 | 173 | 296 | 342 | 75 | 658 |
|  | 626 | 1113 | 468 | 89 | 289 | 340 | 6 | 1034 | 1217 | 259 | 716 | 543 | 156 | 1366 |
|  | 628 | 1085 | 736 | 80 | 353 | 409 | 274 | 647 | 837 | 524 | 953 | 588 | 171 | 554 |
|  | 629 | 495 | 343 | 20 | 70 | 12 | 45 | 54 | 116 | 192 | 97 | 176 | 69 | 21 |
|  | 630 | 332 | 0 | 0 | 11 | 0 | 53 | 14 | 30 | 38 | -8 | 0 | 0 | 3 |
|  | 633 | 2067 | 502 | 1067 | 420 | 535 | 516 | 624 | 1138 | 615 | 543 | 1105 | 534 | 1114 |
|  | 638 | 2059 | 3913 | 401 | 635 | 720 | 232 | 593 | 3372 | 3974 | 2863 | 3385 | 1080 | 1691 |
|  | 639 | 1463 | 622 | 761 | 290 | 415 | 260 | 494 | 1124 | 780 | 418 | 2542 | 422 | 265 |
| 401-500 | 622 | 691 | 299 | 32 | 68 | 55 | 19 | 143 | 178 | 138 | 214 | 70 | 218 | 106 |
|  | 627 | 1255 | 891 | 226 | 702 | 466 | 211 | 150 | 825 | 2917 | 135 | 438 | 194 | 166 |
|  | 631 | 1321 | 0 | 208 | 99 | 45 | 90 | 0 | 481 | 27 | 59 | 36 | 218 | 36 |
|  | 640 | 69 | 131 | 11 | 90 | 13 | 30 | 71 | 96 | 37 | 13 | 35 | 58 | 29 |
|  | 645 | 216 | 84 | 87 | 48 | 14 | 11 | 44 | 62 | 84 | 63 | 48 | 111 | 254 |
|  | 650 | 134 | 441 | 43 | 112 | 40 | 292 | 76 | 78 | nf | 30 | 613 | 236 | 72 |
| total strata fis | ed <= 50 | ters | 14227 | 4241 | 4600 | 5455 | 3998 | 7280 | 12230 | 11994 | 9890 | 11889 | 4912 | 9609 |
| upper |  |  | 18515 | 6644 | 5485 | 6692 | 5034 | 9559 | 14902 | 19284 | 12834 | 18138 | 6118 | 11713 |
| t-value |  |  | 2.228 | 2.262 | 2.056 | 2.037 | 2.145 | 2.23 | 2.07 | 2.45 | 2.14 | 2.18 | 2.023 | 2.05 |
| 1 STD strata | fished <= | meters | 1925 | 1062 | 430 | 607 | 483 | 1022 | 1291 | 2976 | 1376 | 2867 | 596 | 1026 |
| 501-750 | 641 | 230 | 16 | 18 | 83 | 101 | 0 | 13 | 0 | nf | 14 | 438 | 175 | 17 |
|  | 646 | 325 | 51 | 0 | 0 | 0 | 42 | 0 | 200 | 0 | 0 | 41 | 208 | 749 |
|  | 651 | 359 | 25 | 116 | 317 | 30 | 0 | 133 | 0 | nf | 35 | 78 | 1274 | 0 |
| 751-1000 | 642 | 418 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 647 | 360 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 652 | 516 | 208 | 62 | 0 | 0 | 0 | 96 | 89 | 0 | 0 | 0 | 0 | 0 |
| $\overline{1001-1250}$ | 643 | 733 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 648 |  |  |  |  |  |  | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
|  | 653 | 531 | 0 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1001-1250 ${ }^{3}$ |  | 1264 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |  |
| 1251-1500 | 644 | 474 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 649 | 212 |  |  |  |  |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 654 | 479 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1251-1500 ${ }^{3}$ |  | 1165 | nf | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| total strata fis | ed > 500 |  | 372 | 196 | 400 | 131 | 42 | 242 | 289 | 0 | 56 | 557 | 1657 | 766 |
| total all strata | fished |  | 14598 | 4437 | 5000 | 5586 | 4040 | 7522 | 12519 | 12585 | 9946 | 12446 | 6569 | 10375 |
| upper |  |  | 18892 | 6848 | 6010 | 6825 | 5081 | 9812 | 15222 | 19889 | 12892 | 18696 | 8435 | 13381 |
| t-value |  |  | 2.228 | 2.262 | 2.11 | 2.037 | 2.145 | 2.23 | 2.06 | 2.45 | 2.14 | 2.18 | 2.365 | 2.36 |
| 1 STD all str | a fished |  | 1927 | 1066 | 479 | 608 | 485 | 1027 | 1312 | 2981 | 1377 | 2867 | 789 | 1274 |

${ }^{1}$ Not all strata in the depth range have been fished. Because of the short time series with the revised stratification scheme and a switch
in 1995 to a different vessel and gear no attempt has been made to use a multiplicative model to fill strata which were not fished.

Table 19. Estimates of cod abundance (thousands) from surveys in Division 3L in 1992-2004 in depths $<=200$ fathoms. The 19921994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum depth | Stratum number | Area sq. nautical | WT | WT | WT | AN | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (fath) |  | miles | 7-9 | 16-18 | 37-39 | 72 | 65 | 78 | 87 | 101 | 114-115 | 129-130 | 145-146 | 160-162 |
|  |  |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| Mean survey date |  |  | 27-Oct-83 | 15-Aug-84 | 27-Oct-85 | 21-Nov-86 | 24-Oct-87 | 3-Nov-88 | 20-Oct-89 | 5-Nov-90 | 21-Nov-91 | 16-Nov-92 | 23-Nov-93 | 22-Nov-94 |
| 31-50 | 350 | 2071 | 26886 | 62391 | 66442 | 43614 | 15131 | 13276 | 10854 | 5911 | 5359 | 1140 | 1804 | 122 |
|  | 363 | 1780 | 38933 | 73152 | 143316 | 6156 | 21384 | 23286 | 43993 | 52247 | 3702 | 13036 | 408 | 367 |
|  | 371 | 1121 | 20972 | 36304 | 5199 | 565 | 3547 | 4472 | 193 | 7556 | 411 | 1079 | 103 | 0 |
|  | 372 | 2460 | 157018 | 160636 | 65709 | 16318 | 57710 | 16269 | 32627 | 141824 | 3774 | 2919 | 299 | 0 |
|  | 384 | 1120 | 29119 | 73645 | 1560 | 801 | 34383 | 1489 | 986 | 41791 | 1061 | 146 | 154 | 0 |
| 51-100 | 328 | 1519 | 6868 | 1985 | 1802 | 37264 | 2507 | 8806 | 1224 | 2090 | 279 | 1114 | 488 | 139 |
|  | 341 | 1574 | 14723 | 8401 | 4949 | 6124 | 337 | 1245 | 298 | 1985 | 505 | 217 | 1516 | 0 |
|  | 342 | 585 | 2837 | 4466 | 912 | 885 | 1073 | 429 | 80 | 2052 | 161 | 54 | 0 | 80 |
|  | 343 | 525 | 915 | 14408 | 1517 | 1974 | 337 | 650 | 24 | 1372 | 481 | 722 | 72 | 96 |
|  | 348 | 2120 | 8934 | 34810 | 6978 | 6008 | 3143 | 3995 | 6189 | 6389 | 1896 | 3208 | nf | 219 |
|  | 349 | 2114 | 9306 | 62170 | 15645 | 8724 | 2472 | 7302 | 1745 | 4736 | 3722 | 58 | 1939 | 208 |
|  | 364 | 2817 | 25576 | 97381 | 20064 | 3720 | 4789 | 10048 | 1656 | 13595 | 291 | 388 | 1421 | 323 |
|  | 365 | 1041 | 7074 | 102281 | 4242 | 8821 | 1456 | 1690 | 573 | 895 | 1575 | 286 | 95 | 95 |
|  | 370 | 1320 | 5811 | 52295 | 2865 | 2905 | 1059 | 623 | 121 | 1888 | 121 | 484 | 666 | 0 |
|  | 385 | 2356 | 5445 | 20391 | 756 | 4497 | 972 | 25 | 29 | 1713 | 389 | 648 | 0 | 0 |
|  | 390 | 1481 | 815 | 33751 | 553 | 5229 | 23276 | 3107 | 2183 | 1290 | 0 | 136 | 0 | 0 |
| 101-150 | 344 | 1494 | 5823 | 15722 | 10733 | 8250 | 5600 | 4874 | 4580 | 9454 | 3186 | 5446 | 2363 | 771 |
|  | 347 | 983 | 5995 | 11719 | 3056 | 3651 | 2502 | 10628 | 4571 | 30560 | 609 | 676 | 439 | 34 |
|  | 366 | 1394 | 11314 | 56011 | 51115 | 59062 | 25367 | 66130 | 17888 | 9812 | 19359 | 44544 | 2972 | 115 |
|  | 369 | 961 | 9628 | 14919 | 5222 | 53011 | 11336 | 12241 | 1005 | 2809 | 12559 | 1884 | 227 | 0 |
|  | 386 | 983 | 10318 | 8587 | 4327 | 14705 | 7167 | 4895 | 6464 | 7099 | 135 | 766 | 135 | 0 |
|  | 389 | 821 | 10850 | 3614 | 4518 | 4179 | 49636 | 13270 | 10023 | 2936 | 10842 | 0 | 0 | 0 |
|  | 391 | 282 | 16778 | 291 | 6440 | 485 | 2289 | 427 | 1028 | 1629 | 233 | 129 | 116 | 0 |
| 151-200 | 345 | 1432 | 6821 | 7936 | 14730 | 12410 | 8963 | 11285 | 5881 | 11977 | 4432 | 985 | 1510 | 542 |
|  | 346 | 865 | 17634 | 9023 | 9567 | 14120 | 30253 | 27058 | 9073 | 14517 | 37387 | 33292 | 1417 | 136 |
|  | 368 | 334 | 21257 | 2688 | 6524 | 12497 | 3101 | 5008 | 1861 | 11555 | 27437 | 30338 | 15627 | 88 |
|  | 387 | 718 | 12466 | 19062 | 3704 | 22519 | 4708 | 1753 | 1350 | 3325 | 2963 | 2864 | 2601 | 779 |
|  | 388 | 361 | 5572 | 4817 | 1341 | 3629 | 844 | 1813 | 5761 | 1962 | 1556 | 579 | 414 | 177 |
|  | 392 | 145 | 150 | 1107 | 339 | 110 | 10 | 289 | 40 | 598 | 259 | 20 | 27 | 0 |
| total strata fished <= 200 fathoms |  |  | 428505 | 993964 | 464125 | 358606 | 325352 | 256383 | 172299 | 395569 | 144684 | 147159 | 36813 | 4292 |
| ADJUSTED |  |  | 495838 | 993963 | 464125 | 362233 | 325352 | 256383 | 172300 | 395567 | 144684 | 147158 | 36813 | 4291 |
| upper |  |  | 531562 | 1232300 | 652696 | 472366 | 434746 | 312134 | 235628 | 525307 | 181155 | 215462 | 65605 | 6233 |
| t -value |  |  | 2.16 | 2.228 | 2.131 | 2.262 | 2.16 | 2.069 | 2.06 | 2.201 | 2.08 | 2.012 | 2.306 | 2.042 |
| 1 STD strata fished <= 200 fathon |  |  | 47712 | 106973 | 88489 | 50292 | 50645 | 26946 | 30742 | 58945 | 17534 | 33948 | 12486 | 951 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the <= $\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.
cont'd

Table 19 (cont’d). Estimates of cod abundance (thousands) from surveys in Division 3L in 1992-2004 in depths <= 200 fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum depth (fath) | Stratum number | Area sq. nautical miles | Tel 41 Tel 55-57 |  |  |  |  |  | AN 399 el 412 ,413 Tel 513/T 558-559 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WT | WT | WT | WT | WT | NT 321-323 |  | WT 373-376 | Tel 415/ | T 487-489 | WT 587 |
|  |  |  | 176-181 | 196-198 | 213-217 | 230-233 | 245-247 | Tel 342-343 | TEL | 357-358 361 I | T 428-431 | WT 511 | Tel 540 |
|  |  |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |  | 2001 | 2002-3 | 2003 | 2004 |
| Mean survey date |  |  | 27-Nov-95 | 2-Nov-96 | 27-Nov-97 | 15-Nov-98 | 29-Nov-99 | 28-Nov-00 |  | 15-Nov-01 |  | 5-Dec-03 | 5-Dec-04 |
| 31-50 | 350 | 2071 | 1045 | 285 | 570 | 773 | 1587 | 936 |  | 1420 | 512 | 692 | 1750 |
|  | 363 | 1780 | 365 | 82 | 1306 | 481 | 367 | 184 |  | 245 | 408 | 245 | 542 |
|  | 371 | 1121 | 31 | 0 | 0 | 0 | 39 | 0 |  | 0 | 77 | 77 | 77 |
|  | 372 | 2460 | 353 | 414 | 42 | 1114 | 1269 | 1523 |  | 926 | 550 | 296 | 296 |
|  | 384 | 1120 | 0 | 0 | 0 | 0 | 385 | 77 |  | 0 | 39 | 0 | 77 |
| 51-100 | 328 | 1519 | 0 | 334 | 376 | 334 | 1226 | 209 |  | 5391 | 775 | 3636 | 1319 |
|  | 341 | 1574 | 36 | 289 | 54 | 223 | 1256 | 476 |  | 1261 | 558 | 693 | 1291 |
|  | 342 | 585 | 40 | 121 | 40 | 80 | 724 | 201 |  | 188 | 40 | 201 | 483 |
|  | 343 | 525 | 36 | 0 | 68 | 0 | 361 | 397 |  | 36 | 36 | 144 | 144 |
|  | 348 | 2120 | 250 | 393 | 167 | 194 | 767 | 292 |  | 1333 | 287 | 329 | 1280 |
|  | 349 | 2114 | 122 | 166 | 344 | 162 | 955 | 614 |  | 706 | 291 | 706 | 1015 |
|  | 364 | 2817 | 43 | 116 | 525 | 0 | 775 | 1163 |  | 388 | 172 | 400 | 2177 |
|  | 365 | 1041 | 215 | 207 | 191 | 0 | 0 | nf |  | 95 | 239 | 0 |  |
|  | 370 | 1320 | 73 | 0 | 91 | 0 | 0 | 257 |  | 45 | 40 | 52 |  |
|  | 385 | 2356 | 0 | 36 | 0 | 41 | 41 | 0 |  | 162 | 0 | 0 | 41 |
|  | 390 | 1481 | 34 | 0 | 0 | 0 | 204 | 0 |  | 0 | 0 | 41 | 41 |
| 101-150 | 344 | 1494 | 530 | 2950 | 914 | 715 | 1548 | 2023 |  | 968 | 1219 | 2089 | 4091 |
|  | 347 | 983 | 199 | 391 | 541 | 406 | 316 | 371 |  | 496 | 225 | 406 | 406 |
|  | 366 | 1394 | 230 | 236 | 652 | 443 | 345 | 671 |  | 5420 | 3209 | 920 |  |
|  | 369 | 961 | 78 | 0 | 220 | 39 | 1332 | 0 |  | 176 | 44 | 176 |  |
|  | 386 | 983 | 0 | 45 | 0 | 0 | 45 | 0 |  | 45 | 45 | 0 |  |
|  | 389 | 821 | 38 | 0 | 38 | 0 | 151 | 113 |  | 38 | 0 | 0 | 225 |
|  | 391 | 282 | 0 | 0 | 19 | 0 | 97 | 19 |  | 0 | 17 | 19 | 39 |
| 151-200 | 345 | 1432 | 2780 | 433 | 302 | 653 | 2863 | 4436 |  | 3467 | 1055 | 1435 | 2272 |
|  | 346 | 865 | 754 | 379 | 1269 | 297 | 881 | 4557 |  | 3570 | 806 | 535 | 801 |
|  | 368 | 334 | 299 | 128 | 459 | 368 | 980 | 9396 |  | 694 | 184 | 436 |  |
|  | 387 | 718 | 66 | 44 | 1514 | 132 | 527 | 494 |  | 329 | 88 | 99 |  |
|  | 388 | 361 | 99 | 0 | 135 | 0 | 5313 | 472 |  | 221 | 50 | 0 | 199 |
|  | 392 | 145 | 19 | 18 | 20 | 0 | 928 | 130 |  | 104 | 18 | 9 | 38 |
| total strata fished <= 200 fathoms |  |  | 7732 | 7066 | 9859 | 6454 | 25281 | 29010 |  | 27724 | 10984 | 13638 | 18605 |
| ADJUSTED |  |  | 7735 | 7067 | 9859 | 6454 | 25281 | 29010 |  | 27724 | 10984 | 13638 |  |
| upper |  |  | 12328 | 12052 | 15027 | 8524 | 95232 | 52913 |  | 42861 | 15550 | 18275 | 22936 |
| t-value |  |  | 2.306 | 2.571 | 2.776 | 2.05 | 12.71 | 4.3 |  | 2.23 | 2.36 | 2.365 | 2.06 |
| 1 STD strata fished <= 200 fathon |  |  | 1993 | 1939 | 1862 | 1010 | 5504 | 5559 |  | 6788 | 1935 | 1961 | 2102 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 20. Estimates of cod biomass ( t ) from surveys in Division 3L in 1992-2004 in depths $<=200$ fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum Stratum <br> depth number <br> (fath)  |  | Area sq. nautical | WT | WT | WT | AN | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | miles | 7-9 | 16-18 | 37-39 | 72 | 65 | 78 | 87 | 101 | 114-115 | 129-130 | 145-146 | 160-162 |
|  |  |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| Mean survey date |  |  | 27-Oct-83 | 15-Aug-84 | 27-Oct-85 | 21-Nov-86 | 24-Oct-87 | 3-Nov-88 | 20-Oct-89 | 5-Nov-90 | 21-Nov-91 | 16-Nov-92 | 23-Nov-93 | 22-Nov-94 |
| 31-50 | 350 | 2071 | 18204 | 42081 | 35227 | 46248 | 14242 | 16885 | 10769 | 6602 | 6434 | 1877 | 1522 | 179 |
|  | 363 | 1780 | 36935 | 50726 | 103274 | 9116 | 22124 | 30177 | 33959 | 35121 | 4266 | 7504 | 344 | 211 |
|  | 371 | 1121 | 13316 | 24055 | 3285 | 366 | 4935 | 7746 | 457 | 9110 | 481 | 893 | 91 | 0 |
|  | 372 | 2460 | 100388 | 74560 | 62776 | 22328 | 68454 | 19194 | 29816 | 177108 | 3164 | 1896 | 287 | 0 |
|  | 384 | 1120 | 15999 | 57404 | 1314 | 163 | 27226 | 1681 | 223 | 61815 | 674 | 127 | 67 | 0 |
| 51-100 | 328 | 1519 | 2634 | 832 | 1378 | 11971 | 603 | 3397 | 1101 | 415 | 185 | 1748 | 166 | 248 |
|  | 341 | 1574 | 4517 | 5043 | 2694 | 4218 | 473 | 1273 | 198 | 1237 | 920 | 253 | 289 | 0 |
|  | 342 | 585 | 752 | 1733 | 554 | 588 | 451 | 583 | 114 | 1029 | 383 | 123 | 0 | 36 |
|  | 343 | 525 | 1341 | 6036 | 518 | 1930 | 404 | 661 | 90 | 653 | 132 | 459 | 79 | 34 |
|  | 348 | 2120 | 6763 | 24084 | 4851 | 5686 | 3229 | 3906 | 4158 | 2995 | 1666 | 1504 | nf | 322 |
|  | 349 | 2114 | 5245 | 23149 | 9512 | 7711 | 2203 | 8207 | 2690 | 3630 | 5454 | 66 | 1755 | 54 |
|  | 364 | 2817 | 5306 | 21027 | 4966 | 2813 | 3463 | 7216 | 1681 | 6851 | 915 | 526 | 873 | 302 |
|  | 365 | 1041 | 2101 | 20303 | 2383 | 4292 | 2116 | 1961 | 797 | 509 | 2814 | 347 | 54 | 114 |
|  | 370 | 1320 | 2403 | 21444 | 1579 | 579 | 1605 | 1128 | 224 | 1159 | 189 | 673 | 171 | 0 |
|  | 385 | 2356 | 1719 | 5657 | 316 | 2583 | 1624 | 303 | 110 | 1620 | 300 | 735 | 0 | 0 |
|  | 390 | 1481 | 1366 | 6250 | 108 | 561 | 1850 | 516 | 294 | 283 | 0 | 81 | 0 | 0 |
| 101-150 | 344 | 1494 | 3698 | 12067 | 9056 | 7635 | 4726 | 2746 | 2435 | 5079 | 809 | 3003 | 988 | 382 |
|  | 347 | 983 | 6183 | 10733 | 2265 | 3960 | 1906 | 9386 | 5239 | 18473 | 369 | 181 | 351 | 20 |
|  | 366 | 1394 | 15941 | 18725 | 54100 | 70142 | 28721 | 76378 | 18189 | 8194 | 15225 | 40824 | 2426 | 116 |
|  | 369 | 961 | 9321 | 8962 | 8086 | 65455 | 19792 | 12361 | 3266 | 3223 | 13072 | 937 | 180 | 0 |
|  | 386 | 983 | 8056 | 5281 | 6595 | 23005 | 5487 | 6410 | 7472 | 10209 | 124 | 366 | 194 | 0 |
|  | 389 | 821 | 5277 | 4726 | 5017 | 3420 | 9036 | 2951 | 5134 | 3838 | 3388 | 0 | 0 | 0 |
|  | 391 | 282 | 1418 | 157 | 1522 | 711 | 400 | 76 | 158 | 577 | 74 | 18 | 53 | 0 |
| 151-200 | 345 | 1432 | 10540 | 7499 | 15729 | 16629 | 9962 | 14557 | 7883 | 7575 | 1775 | 736 | 957 | 245 |
|  | 346 | 865 | 14781 | 6034 | 10546 | 15984 | 36414 | 33516 | 14619 | 13512 | 27945 | 29383 | 702 | 91 |
|  | 368 | 334 | 23841 | 2557 | 10438 | 21732 | 7227 | 7539 | 4904 | 13883 | 26629 | 29646 | 10776 | 80 |
|  | 387 | 718 | 13000 | 14254 | 7063 | 37565 | 5152 | 2623 | 1146 | 9129 | 3515 | 2018 | 1984 | 321 |
|  | 388 | 361 | 5572 | 1730 | 3116 | 3629 | 389 | 1067 | 3506 | 1564 | 740 | 390 | 268 | 119 |
|  | 392 | 145 | 172 | 245 | 251 | 43 | 15 | 110 | 55 | 276 | 117 | 9 | 19 | 0 |
| total strata fished <= 200 fathoms |  |  | 278412 | 477355 | 368514 | 387438 | 284230 | 274553 | 160688 | 405668 | 121761 | 126323 | 24594 | 2873 |
| ADJUSTED |  |  | 336789 | 477354 | 368519 | 391063 | 284229 | 274554 | 160687 | 405669 | 121759 | 126323 | 24596 | 2874 |
| upper |  |  | 361946 | 559984 | 491927 | 534112 | 349929 | 337286 | 205564 | 592708 | 154941 | 193308 | 44710 | 3895 |
| t-value |  |  | 2.365 | 2.04 | 2.12 | 2.365 | 2.056 | 2.086 | 2.069 | 2.306 | 2.131 | 2.014 | 2.306 | 2.035 |
| 1 STD strata fished <= 200 fathoms |  |  | 35321 | 40504 | 58214 | 62019 | 31955 | 30073 | 21690 | 81110 | 15570 | 33260 | 8723 | 502 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.

Table 20 (cont’d). Estimates of cod biomass (t) from surveys in Division 3L in 1992-2004 in depths <= 200 fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum depth (fath) | Stratum number | Area sq. nautical miles | Teleost 41 |  | Tel 55-57 |  |  |  | AN 399 | Tel 412,413 | Tel 513/T 558-559 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WT | WT | WT | WT |  | WT 321-323 | WT 373-376 | Tel 415 | WT 487-489 | WT 587 |
|  |  |  | 176-181 | 196-199 | 213-217 | 230-233 | 246-248 | Tel 342-343 | TEL 357-358 361 | WT 428-431 | WT 511 | Tel 540 |
|  |  |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002-3 | 2003 | 2004 |
| Mean survey date |  |  | 27-Nov-95 | 2-Nov-96 | 27-Nov-97 | 15-Nov-98 | 29-Nov-99 | 28-Nov-00 | 15-Nov-01 | 12-Nov-02 | 5-Dec-03 | 5-Dec-04 |
| 31-50 | 350 | 2071 | 1276 | 362 | 1355 | 997 | 1342 | 842 | 2442 | 367 | 1181 | 179 |
|  | 363 | 1780 | 506 | 224 | 2895 | 152 | 80 | 28 | 588 | 1230 | 232 | 42 |
|  | 371 | 1121 | 10 | 0 | 0 | 0 | 26 | 0 | 0 | 73 | 51 | 11 |
|  | 372 | 2460 | 54 | 557 | 29 | 431 | 608 | 66 | 1303 | 1074 | 49 | 127 |
|  | 384 | 1120 | 0 | 0 | 0 | 0 | 212 | 4 | 0 | 0 | 0 | 33 |
| 51-100 | 328 | 1519 | 0 | 537 | 1014 | 144 | 195 | 41 | 3995 | 145 | 407 | 394 |
|  | 341 | 1574 | 2 | 248 | 16 | 290 | 1043 | 120 | 475 | 272 | 304 | 181 |
|  | 342 | 585 | 22 | 184 | 66 | 5 | 164 | 135 | 79 | 13 | 74 | 54 |
|  | 343 | 525 | 18 | 0 | 45 | 0 | 69 | 130 | 5 | 6 | 44 | 31 |
|  | 348 | 2120 | 181 | 326 | 144 | 191 | 144 | 55 | 583 | 174 | 122 | 300 |
|  | 349 | 2114 | 88 | 117 | 327 | 357 | 531 | 228 | 658 | 114 | 88 | 313 |
|  | 364 | 2817 | 1 | 95 | 353 | 0 | 331 | 403 | 59 | 82 | 97 | 712 |
|  | 365 | 1041 | 129 | 147 | 72 | 0 | 0 | nf | 72 | 72 | 0 |  |
|  | 370 | 1320 | 72 | 0 | 41 | 0 | 0 | 107 | 17 | 22 | 2 |  |
|  | 385 | 2356 | 0 | 11 | 0 | 57 | 13 | 0 | 77 | 0 | 0 | 2 |
|  | 390 | 1481 | 13 | 0 | 0 | 0 | 81 | 0 | 0 | 0 | 8 | 16 |
| 101-150 | 344 | 1494 | 233 | 2214 | 221 | 409 | 802 | 908 | 274 | 601 | 765 | 1343 |
|  | 347 | 983 | 99 | 324 | 259 | 407 | 81 | 87 | 224 | 175 | 109 | 144 |
|  | 366 | 1394 | 121 | 87 | 264 | 223 | 58 | 321 | 2527 | 1572 | 292 |  |
|  | 369 | 961 | 174 | 0 | 170 | 4 | 1048 | 0 | 64 | 15 | 71 |  |
|  | 386 | 983 | 0 | 20 | 0 | 0 | 26 | 0 | 18 | 10 | 0 |  |
|  | 389 | 821 | 12 | 0 | 35 | 0 | 58 | 54 | 9 | 0 | 0 | 102 |
|  | 391 | 282 | 0 | 0 | 21 | 0 | 178 | 1 | 0 | 31 | 6 | 4 |
| 151-200 | 345 | 1432 | 1441 | 370 | 76 | 512 | 1301 | 1299 | 2178 | 709 | 658 | 627 |
|  | 346 | 865 | 459 | 243 | 466 | 287 | 414 | 1359 | 2350 | 394 | 77 | 618 |
|  | 368 | 334 | 129 | 48 | 181 | 240 | 954 | 8268 | 290 | 169 | 201 |  |
|  | 387 | 718 | 25 | 19 | 851 | 99 | 284 | 227 | 180 | 30 | 2 |  |
|  | 388 | 361 | 35 | 0 | 78 | 0 | 3080 | 335 | 140 | 97 | 0 | 23 |
|  | 392 | 145 | 15 | 7 | 10 | 0 | 489 | 51 | 97 | 10 | 7 | 11 |
| total strata fished <= 200 fathoms |  |  | 5114 | 6140 | 8991 | 4804 | 13611 | 15070 | 18706 | 7460 | 4849 | 5266 |
| ADJUSTED |  |  | 5115 | 6140 | 8991 | 4804 | 13611 | 15070 | 18706 | 7460 | 4849 |  |
| upper |  |  | 7661 | 9799 | 13920 | 6901 | 56006 | 83892 | 27204 | 10528 | 7539 | 6640 |
| t-value |  |  | 2.145 | 2.306 | 2.228 | 2.04 | 12.71 | 12.71 | 2.12 | 2.13 | 2.228 | 2.09 |
| 1 STD strata fished <= 200 fathoms |  |  | 1187 | 1587 | 2212 | 1028 | 3336 | 5415 | 4008 | 1440 | 1207 | 657 |

Table 21. Estimates of cod abundance (thousands) from surveys in Division 3L in 1992-2004 in depths $>200$ fathoms. The 19921994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum depth | Stratum number | Area sq. nautical | WT | WT | WT | AN | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (fathoms) |  | miles | 7-9 | 16-18 | 37-39 | 72 | 65 | 78 | 87 | 101 | 114-115 | 129-130 | 145-146 | 160-162 |
|  |  |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| Mean survey date |  |  | 27-Oct-83 | 15-Aug-84 | 27-Oct-85 | 21-Nov-86 | 24-Oct-87 | 3-Nov-88 | 20-Oct-89 | 5-Nov-90 | 21-Nov-91 | 16-Nov-92 | 23-Nov-93 | 22-Nov-94 |
| 201-300 | 729 | 186 | nf | 320 | 0 | 0 | nf | nf | nf | 38 | 0 | 13 | 213 | 0 |
|  | 731 | 216 | nf | 15 | 30 | nf | nf | nf | nf | 15 | 30 | 168 | 277 | 21 |
|  | 733 | 468 | nf | 1481 | 43 | nf | nf | nf | nf | 386 | 21 | 494 | 1223 | 107 |
|  | 735 | 272 | nf | 25 | 94 | 0 | nf | nf | nf | nf | 923 | 886 | 9155 | 180 |
| 301-400 | 730 | 170 | nf | 0 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 8 |
|  | 732 | 231 | nf | 0 | 0 | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | nf | 0 | 0 | nf | nf | nf | nf | 0 | 0 | 0 | 31 | 42 |
|  | 736 | 175 | 0 | nf | 0 | 0 | nf | nf | nf | 0 | 24 | 0 | 96 | 28 |
| 401-500 | 737 | 227 | nf |
|  | 741 | 223 | nf |
|  | 745 | 348 | nf |
|  | 748 | 159 | nf |
| 401-500 |  | 957 | nf |
| 501-600 | 738 | 221 | nf |
|  | 742 | 206 | nf |
|  | 746 | 392 | nf |
|  | 749 | 126 | nf |
| 501-600 |  | 945 | nf |
| 601-700 | 739 | 254 | nf |
|  | 743 | 211 | nf |
|  | 747 | 724 | nf |
|  | 750 | 556 | nf |
| 601-700 |  | 1745 | nf |
| 701-800 | 740 | 264 | nf |
|  | 744 | 280 | nf |
|  | 751 | 229 | nf |
| 701-800 |  | 773 | nf |
| total strata fished > 200 fathioms |  |  | 0 | 1841 | 167 | 0 | 0 | 0 | 0 | 439 | 998 | 1561 | 10995 | 386 |
| total all strata fished offshore |  |  | 428505 | 995804 | 464291 | 358606 | 325352 | 256383 | 172299 | 396008 | 145682 | 148719 | 47809 | 4678 |
| upper |  |  | 531562 | 1234157 | 652863 | 472366 | 434746 | 312134 | 235628 | 525748 | 182099 | 217045 | 77554 | 6627 |
| t-value |  |  | 2.16 | 2.228 | 2.131 | 2.262 | 2.16 | 2.069 | 2.06 | 2.201 | 2.074 | 2.012 | 2.228 | 2.042 |
| 1 STD all strata fished offshore |  |  | 47712 | 106981 | 88490 | 50292 | 50645 | 26946 | 30742 | 58946 | 17559 | 33959 | 13351 | 954 |

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 21 (cont'd). Estimates of cod abundance (thousands) from surveys in Division 3L in 1992-2004 in depths > 200 fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratumdepth(fathoms) | Stratum | Area sq. |  | eleost 41 | Tel 55-57 |  |  |  | AN 399 | Tel 412 ,41: | Tel 513 | T 558-559 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | number | nautical | WT | WT | WT | WT |  | WT 321-323 | WT 373-376 | Tel 415 | WT 487-48 | WT 587 |
|  |  | miles | 176-181 | 196-198 | 213-217 | 230-233 | 246-249 | Tel 342-343 | TEL 357-358 361 V | VT 428-431 | WT 511 | Tel 540 |
|  |  |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002-3 | 2003 | 2004 |
| Mean survey date |  |  | 27-Nov-95 | 2-Nov-96 | 27-Nov-97 | 18-Nov-98 | 29-Nov-99 | 28-Nov-00 | 15-Nov-01 | 12-Nov-02 | 5-Dec-03 | 5-Dec-04 |
| 201-300 | 729 | 186 | 0 | 0 | 13 | 0 | 38 | 0 | 38 | 0 | 13 | 36 |
|  | 731 | 216 | 13 | nf | 178 | 0 | 40 | 208 | 106 | 0 | 0 | 17 |
|  | 733 | 468 | 32 | 0 | 193 | 61 | 64 | 101 | 444 | 29 | 322 | 0 |
|  | 735 | 272 | 187 | 0 | 449 | 112 | 67 | 3528 | 692 | 83 | 337 |  |
| 301-400 | 730 | 170 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | 0 | 167 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 736 | 175 | 32 | 0 | 144 | 0 | 24 | 0 | 12 | 0 | 139 |  |
| 401-500 | 737 | 227 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 741 | 223 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 745 | 348 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 748 | 159 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 401-500 |  | 957 | 16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 501-600 | 738 | 221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 742 | 206 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 746 | 392 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 749 | 126 | nf | 0 | 0 | 0 | nf | 0 | 0 | 0 | 0 |  |
| 501-600 |  | 945 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 601-700 | 739 | 254 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 743 | 211 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 747 | 724 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 750 | 556 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 601-700 |  | 1745 | nf | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
| 701-800 | 740 | 264 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 744 | 280 | nf | 0 | 0 | 0 | nf | 0 | 0 | 0 | 0 |  |
|  | 751 | 229 | nf | 0 | 0 | 0 | nf | 0 | 0 | 0 | 0 |  |
| 701-800 |  | 773 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| total strata fished > 200 fathioms |  |  | 280 | 0 | 1144 | 173 | 233 | 3837 | 1292 | 112 | 811 | 53 |
| total all strata fished offshore |  |  | 8013 | 7066 | 11003 | 6628 | 25514 | 32846 | 29017 | 11096 | 14448 | 18657 |
| upper |  |  | 12630 | 12052 | 19944 | 8699 | 95474 | 58560 | 44211 | 15667 | 19068 | 22989 |
| t-value |  |  | 2.306 | 2.571 | 2.447 | 2.05 | 12.71 | 4.3 | 2.23 | 2.36 | 2.306 | 2.06 |
| 1 STD all strata fished offshore |  |  | 2002 | 1939 | 3654 | 1010 | 5504 | 5980 | 6813 | 1937 | 2003 | 2103 |

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 22. Estimates of cod biomass (t) from surveys in Division 3L in 1992-2004 in depths > 200 fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratum depth | Stratum number | Area sq. nautical | WT | WT | WT | AN | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (fathoms) |  | miles | 7-9 | 16-18 | 37-39 | 72 | 65 | 78 | 87 | 101 | 114-115 | 129-130 | 145-146 | 160-162 |
|  |  |  | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| Mean survey date |  |  | 27-Oct-83 | 15-Aug-84 | 27-Oct-85 | 21-Nov-86 | 24-Oct-87 | 3-Nov-88 | 20-Oct-89 | 5-Nov-90 | 21-Nov-91 | 16-Nov-92 | 23-Nov-93 | 22-Nov-94 |
| 201-300 | 729 | 186 | nf | 206 | 0 | 0 | nf | nf | nf | 107 | 0 | 45 | 208 | 0 |
|  | 731 | 216 | nf | 92 | 248 | nf | nf | nf | nf | 19 | 49 | 131 | 177 | 23 |
|  | 733 | 468 | nf | 1678 | 461 | nf | nf | nf | nf | 937 | 28 | 316 | 837 | 85 |
|  | 735 | 272 | nf | 276 | 466 | 0 | nf | nf | nf | nf | 1214 | 1233 | 4809 | 91 |
| 301-400 | 730 | 170 | nf | 0 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 8 |
|  | 732 | 231 | nf | 0 | 0 | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | nf | 0 | 0 | nf | nf | nf | nf | 0 | 0 | 0 | 18 | 42 |
|  | 736 | 175 | 0 | nf | 0 | 0 | nf | nf | nf | 0 | 56 | 0 | 51 | 28 |
| 401-500 | 737 | 227 | nf |
|  | 741 | 223 | nf |
|  | 745 | 348 | nf |
|  | 748 | 159 | nf |
| 401-500 |  | 957 | nf |
| 501-600 | 738 | 221 | nf |
|  | 742 | 206 | nf |
|  | 746 | 392 | nf |
|  | 749 | 126 | nf |
| 501-600 |  | 945 | nf |
| 601-700 | 739 | 254 | nf |
|  | 743 | 211 | nf |
|  | 747 | 724 | nf |
|  | 750 | 556 | nf |
| 601-700 |  | 1745 | nf |
| 701-800 | 740 | 264 | nf |
|  | 744 | 280 | nf |
|  | 751 | 229 | nf |
| 701-800 |  | 773 | nf |
| total strata fished > 200 fathoms |  |  | 0 | 2252 | 1175 | 0 | 0 | 0 | 0 | 1063 | 1347 | 1725 | 6100 | 277 |
| total all strata fished offshore |  |  | 278412 | 479606 | 369689 | 387438 | 284230 | 274553 | 160688 | 406730 | 123108 | 128048 | 30694 | 3149 |
| upper |  |  | 361946 | 562277 | 493108 | 534112 | 349929 | 337286 | 205564 | 593770 | 156389 | 195072 | 51127 | 4178 |
| t-value |  |  | 2.365 | 2.04 | 2.12 | 2.365 | 2.056 | 2.086 | 2.069 | 2.306 | 2.131 | 2.014 | 2.262 | 2.032 |
| 1 STD all strata fished offshore |  |  | 35321 | 40525 | 58217 | 62019 | 31955 | 30073 | 21690 | 81110 | 15618 | 33279 | 9033 | 506 |

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 22 (cont’d). Estimates of cod biomass (t) from surveys in Division 3L in 1992-2004 in depths > 200 fathoms. The 1992-1994 data are in Campelen equivalent units and the 1995-2004 data are in actual Campelen units.

| Stratumdepth(fathoms) | Stratum | Area sq. |  | leost 41 | Tel 55-57 |  |  |  | AN 399 | Tel 412 ,41: | Tel 513 | T 558-559 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | number | nautical | WT | WT | WT | WT |  | WT 321-323 | WT 373-376 | Tel 415 | WT 487-48 | WT 587 |
|  |  | miles | 176-181 | 196-198 | 213-217 | 230-233 | 246-249 | Tel 342-343 | TEL 357-358 361 NT | VT 428-431 | WT 511 | Tel 540 |
|  |  |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002-3 | 2003 | 2004 |
| Mean survey date |  |  | 27-Nov-95 | 2-Nov-96 | 27-Nov-97 | 18-Nov-98 | 29-Nov-99 | 28-Nov-00 | 15-Nov-01 | 12-Nov-02 | 5-Dec-03 | 5-Dec-04 |
| 201-300 | 729 | 186 | 0 | 0 | 19 | 0 | 67 | 0 | 45 | 0 | 42 | 30 |
|  | 731 | 216 | 5 | nf | 178 | 0 | 20 | 165 | 108 | 0 | 0 | 4 |
|  | 733 | 468 | 14 | 0 | 161 | 68 | 66 | 110 | 261 | 36 | 156 | 0 |
|  | 735 | 272 | 109 | 0 | 369 | 167 | 104 | 3973 | 697 | 155 | 226 |  |
| 301-400 | 730 | 170 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | 0 | 313 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 736 | 175 | 15 | 0 | 169 | 0 | 37 | 0 | 7 | 0 | 164 |  |
|  |  |  |  |  |  |  |  |  | 0 |  |  |  |
| 401-500 | 737 | 227 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 741 | 223 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 745 | 348 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | 748 | 159 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 401-500 |  | 957 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 501-600 | 738 | 221 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 742 | 206 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 746 | 392 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 749 | 126 | nf | 0 | 0 | 0 | nf |  | 0 | 0 | 0 |  |
| 501-600 |  | 945 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 601-700 | 739 | 254 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 743 | 211 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 747 | 724 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 750 | 556 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
| 601-700 |  | 1745 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 701-800 | 740 | 264 | nf | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
|  | 744 | 280 | nf | 0 | 0 | 0 | nf |  | 0 | 0 | 0 |  |
|  | 751 | 229 | nf | 0 | 0 | 0 | nf |  | 0 | 0 | 0 |  |
| 701-800 |  | 773 | nf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| total strata fished > 200 fathoms |  |  | 160 | 0 | 1209 | 235 | 294 | 4248 | 1118 | 191 | 588 | 34 |
| total all strata fished offshore |  |  | 5275 | 6140 | 10200 | 5039 | 13904 | 19318 | 19824 | 7652 | 5438 | 5300 |
| upper |  |  | 7834 | 9799 | 19797 | 7148 | 56316 | 91155 | 28382 | 10721 | 8157 | 6675 |
| $t$-value |  |  | 2.145 | 2.306 | 2.447 | 2.07 | 12.71 | 12.71 | 2.12 | 2.12 | 2.201 | 2.09 |
| 1 STD all strata fished offshore |  |  | 1193 | 1587 | 3922 | 1019 | 3337 | 5652 | 4037 | 1448 | 1235 | 658 |

nf Not all strata in the depth range hav been fished. Strata not fished in the greater than $\mathbf{2 0 0}$ fathom depth range have not been filled using a multiplicative model.

Table 23. Estimates of cod abundance (thousands) from surveys in inshore strata of divisions 3 K and 3L in 1996-1998 and 2000-2004. Also shown are totals for offshore strata and for all strata fished.

| Division 3K |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stratum depth (meters) | Stratum number | Area sq. <br> nautical miles | WT 196-199 | WT 217 | WT 233 |  |  |  |  |  |
|  |  |  | TELEOST | TELEOST |  | WT 321-323 | WT 372-376 | WT 428-431 | WT 515 | Tel 539-542 |
|  |  |  | 40-42 | 55-57 |  | Tel 342-343 | WT 398 |  | TEL 514 | WT 588 |
|  |  |  | 1996 | 1997 | 1998 | 2000 | 2001 | 2002 | 2003 | 2004-5 |
| Mean survey date |  |  | 14-Nov-96 | 18-Nov-97 | 2-Dec-98 | 28-Nov-00 | 15-Nov-01 | 6-Dec-02 | 13-Jan-04 | 14-Dec-04 |
| abundance |  |  |  |  |  |  |  |  |  |  |
| 101-200 | 608 | 798 | 915 | 1061 | 1647 | 2023 | 3732 | 951 | 7191 | 1536 |
|  | 612 | 445 | 510 | 92 | 367 | 184 | 284 | 153 | 1377 | 551 |
|  | 616 | 250 | 103 | 52 | 206 | 103 | 209 | 52 | 79 | 59 |
| 201-300 | 609 | 342 | 436 | 329 | 155 | 188 | 588 | 518 | 2315 | 338 |
|  | $611{ }^{3}$ | 600 | 122 | 578 | 169 | 428 | 254 | 631 | 1826 | 275 |
|  | 615 | 251 | 0 | 17 | 104 | 86 | 86 | 17 | 92 | 35 |
| 301-400 | 610 | 256 | 31 | 405 | 493 | 317 | 345 | 247 | 149 | 194 |
|  | 614 | 263 | 16 | 0 | 18 | 0 | 0 | 0 | 0 | 36 |
| 401-500 | 613 | 30 | 0 | 0 | 12 | 7 | 0 | 0 | 2 | 4 |
| total inshore strata |  |  | 2134 | 2534 | 3171 | 3336 | 5498 | 2568 | 13032 | 3030 |
| total offshore |  |  | 18622 | 8450 | 15896 | 35774 | 28595 | 42934 | 21868 | 36049 |
| total all strata fished |  |  | 20756 | 10984 | 19067 | 39110 | 34093 | 45502 | 34899 | 39079 |
| upper |  |  | 25281 | 13883 | 23352 | 61173 | 41607 | 68034 | 41513 | 47477 |
| t -value |  |  | 2.048 | 2.101 | 2.1 | 2.57 | 2.12 | 2.2 | 2.306 | 2.13 |
| STD all strata fished |  |  | 2209 | 1380 | 2040 | 8585 | 3544 | 10242 | 2868 | 3943 |

## Division 3L

| Stratum depth (fathoms) | Stratum number | Area sq. nautical miles | Teleost 41 WT 213-217 |  | WT 233 |  | WT 372-376 | WT 428-431 | $\begin{array}{rr} \text { WT 558-559 } \\ \text { WT488-489 } & \text { WT } 587 \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | WT | TELEOST |  | WT 321-323 |  |  |  |  |
|  |  |  | 196-198 | 57-58 |  | Tel 342-343 | WT 398 |  | WT 511 | Tel 540 |
|  |  |  | 1996 | 1997 | 1998 | 2000 | 2001 | 2002 | 2003 | 2004 |
| Mean survey date |  |  | 2-Nov-96 | 27-Nov-97 | 28-Nov-98 | 28-Nov-00 | 15-Nov-01 | 12-Nov-02 | 18-Nov-04 | 5-Dec-04 |
|  |  |  | abundance |  |  |  |  |  |  |  |
| 16-30 | 784 | 268 | 1161 | 995 | 203 | 1419 | 4737 | 250 | 276 | 977 |
| 31-50 | 785 | 465 | 3998 | 1279 | 352 | 1567 | 2910 | 959 | 192 | 1983 |
| 51-100 | 786 | 84 | 12 | 97 | 532 | 58 | 56 | 116 | 1375 | 20 |
|  | 787 | 613 | 42 | 84 | 4005 | 1288 | 201 | 422 | 12522 | 421 |
|  | $788{ }^{1}$ | 252 | 2409 | 323 | 144 | 1849 | 1387 | 156 | 2549 | 1562 |
|  | 790 | 89 | 55 | 444 | 61 | 208 | 318 | 402 | 4440 | 631 |
|  | 793 | 72 | 599 | 119 | 64 | 337 | 1362 | 594 | 1766 | 203 |
|  | 794 | 216 | 609 | 97 | 104 | nf | 1997 | 1119 | 396 | 893 |
|  | 797 | 98 | 20 | 27 | 101 | 440 | 162 | 150 | 620 | 329 |
|  | 799 | 72 | 857 | 30 | 39 | 89 | 312 | 11 | 299 | 114 |
| 101-150 | 795 | 164 | 11 | 64 | 163 | 1277 | 429 | 654 | 14900 | 256 |
|  | $791{ }^{2}$ | 227 |  | 200 | 94 | 710 | 1102 | 281 | 687 | 734 |
| 101-200 | $789{ }^{1}$ | 81 | 0 | 0 | 0 | 4 | 10 | 0 | 20 | 10 |
|  | $791{ }^{2}$ | 308 | 191 | X | X | X | X | X | X |  |
|  | 798 | 100 | 14 | 0 | 34 | 107 | 227 | 360 | 104 | 110 |
| 151-200 | 796 | 175 | 0 | 23 | 12 | 138 | 686 | 300 | 226 | 144 |
|  | $800{ }^{2}$ | 81 |  | 6 | 49 | 94 | 95 | 40 | 61 | 67 |
| 201-300 | 792 | 50 | 0 | 0 | 3 | 3 | 10 | 3 | 7 | 14 |
| total inshore strata |  |  | 9978 | 3788 | 5960 | 9588 | 16002 | 5817 | 40442 | 8467 |
| total offshore |  |  | 7066 | 11004 | 6628 | 32846 | 29017 | 11096 | 14448 | 18657 |
| total all strata fished |  |  | 17044 | 14792 | 12588 | 42435 | 45019 | 17024 | 54890 | 27124 |
| upper |  |  | 27958 | 19944 | 61095 | 62955 | 61291 | 22146 | 120325 | 35275 |
| t-value |  |  | 2.776 | 2.447 | 12.71 | 3.18 | 2.14 | 2.2 | 4.303 | 2.45 |
| STD all strata fished |  |  | 3932 | 2105 | 3816 | 6453 | 7604 | 2328 | 15207 | 3327 |

[^1]Table 24. Estimates of cod biomass (t) from surveys in inshore strata of divisions 3K and 3L in 1996-1998 and 2000-2004. Also shown are totals for offshore strata and for all strata fished.

| Division 3K |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stratum depth (meters) | Stratum number | Area sq. | WT 196-199 | WT 217 | WT 233 | WT 321-323 |  |  |  |  |
|  |  | nautical | TELEOST | TELEOST |  |  | WT 372-376 | WT 428-431 | WT 515 | Tel 539-542 |
|  |  | miles | 40-42 | 55-57 |  |  | WT 398 |  | TEL 514 | WT 588 |
|  |  |  | 1996 | 1997 | 1998 | 2000 | 2001 | 2002 | 2003 | 2004-5 |
| Mean survey date |  |  | 14-Nov-96 | 18-Nov-97 | 2-Dec-98 | 28-Nov-00 | 15-Nov-01 | 6-Dec-02 | 13-Jan-04 | 14-Dec-04 |
| biomass |  |  |  |  |  |  |  |  |  |  |
| 101-200 | 608 | 798 | 201 | 142 | 113 | 288 | 431 | 86 | 401 | 135 |
|  | 612 | 445 | 111 | 3 | 18 | 7 | 20 | 8 | 36 | 71 |
|  | 616 | 250 | 4 | 0 | 5 | 9 | 6 | 11 | 2 | 30 |
| 201-300 | 609 | 342 | 108 | 64 | 30 | 79 | 188 | 128 | 162 | 60 |
|  | $611{ }^{3}$ | 600 | 25 | 129 | 9 | 136 | 83 | 118 | 82 | 20 |
|  | 615 | 251 | 0 | 0 | 61 | 8 | 14 | 1 | 4 | 2 |
| 301-400 | 610 | 256 | 3 | 117 | 50 | 63 | 58 | 55 | 14 | 29 |
|  | 614 | 263 | 2 | 0 | 33 | 0 | 0 | 0 | 0 | 3 |
| 401-500 | 613 | 30 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
| total inshore strata |  |  | 454 | 455 | 320 | 592 | 800 | 408 | 701 | 351 |
| total offshore |  |  | 5588 | 4020 | 7521 | 11994 | 9946 | 12523 | 6569 | 10375 |
| total all strata fished |  |  | 6039 | 4475 | 7843 | 12585 | 10746 | 12931 | 7270 | 10726 |
| upper |  |  | 7036 | 5583 | 10141 | 19889 | 13694 | 19174 | 9115 | 13740 |
| t-value |  |  | 2.032 | 2.11 | 2.23 | 2.45 | 2.14 | 2.18 | 2.306 | 2.36 |
| STD all strata fished |  |  | 491 | 525 | 1030 | 2981 | 1378 | 2864 | 800 | 1277 |

## Division 3L

| Stratum depth (fathoms) | Stratum number | Area sq. | Teleost 41 V | /T 213-217 | WT 233 | T 321-323 |  |  |  | WT 558-559 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | nautical | WT | TELEOST |  |  | WT 372-376 | WT 428-431 | IT 488-489 | WT 587 |
|  |  | miles | 196-198 | 57-58 |  |  | WT 398 |  | WT 522 | Tel 540 |
|  |  |  | 1996 | 1997 | 1998 | 2000 | 2001 | 2002 | 2003 | 2004 |
| Mean survey date |  |  | 2-Nov-96 | 27-Nov-97 | 28-Nov-98 | 28-Nov-00 | 15-Nov-01 | 20-Dec-02 | 18-Nov-04 | 5-Dec-04 |
|  |  |  | biomass |  |  |  |  |  |  |  |
| 16-30 | 784 | 268 | 80 | 40 | 3 | 597 | 378 | 6 | 54 | 38 |
| 31-50 | 785 | 465 | 6627 | 1786 | 109 | 564 | 181 | 150 | 53 | 75 |
| 51-100 | 786 | 84 | 2 | 36 | 54 | 43 | 17 | 39 | 56 | 24 |
|  | 787 | 613 | 135 | 61 | 105 | 214 | 28 | 264 | 794 | 117 |
|  | $788{ }^{1}$ | 252 | 177 | 232 | 92 | 79 | 208 | 85 | 79 | 162 |
|  | 790 | 89 | 56 | 222 | 24 | 67 | 53 | 181 | 161 | 156 |
|  | 793 | 72 | 155 | 56 | 24 | 35 | 84 | 171 | 209 | 30 |
|  | 794 | 216 | 84 | 122 | 31 | nf | 474 | 229 | 138 | 123 |
|  | 797 | 98 | 11 | 13 | 24 | 25 | 8 | 25 | 19 | 28 |
|  | 799 | 72 | 410 | 19 | 9 | 9 | 43 | 7 | 17 | 7 |
| 101-150 | 795 | 164 | 5 | 50 | 58 | 69 | 80 | 145 | 385 | 41 |
|  | $791{ }^{2}$ | 227 |  | 154 | 53 | 274 | 626 | 148 | 224 | 252 |
| 101-200 | $789{ }^{1}$ | 81 | 0 | 0 | 0 | 1 | 2 | 0 | 5 | 1 |
|  | $791{ }^{2}$ | 308 | 114 | X | X | X | X | X | X | X |
|  | 798 | 100 | 47 | 0 | 11 | 33 | 53 | 173 | 26 | 16 |
| 151-200 | 796 | 175 | 0 | 8 | 2 | 34 | 136 | 85 | 11 | 53 |
|  | $800{ }^{2}$ | 81 |  | 2 | 60 | 21 | 34 | 14 | 35 | 30 |
| 201-300 | 792 | 50 | 0 | 0 | 3 | 1 | 7 | 1 | 1 | 1 |
| total inshore strata |  |  | 7903 | 2801 | 662 | 2066 | 2412 | 1719 | 2266 | 1154 |
| total offshore |  |  | 6140 | 10200 | 5039 | 19318 | 19824 | 7652 | 5438 | 5300 |
| total all strata fished |  |  | 14044 | 13000 | 5702 | 21386 | 22236 | 9099 | 7705 | 6454 |
| upper |  |  | 92802 | 19797 | 7837 | 93444 | 30832 | 12376 | 10466 | 7923 |
| t-value |  |  | 12.706 | 2.447 | 2.06 | 12.71 | 2.11 | 2.11 | 2.179 | 2.07 |
| STD all strata fished |  |  | 6198 | 2778 | 1036 | 5669 | 4074 | 1553 | 1267 | 710 |

changes below were made before 1997 fall survey
${ }^{1}$ Area of stratum 788 was increased by 9 sq. n. mi and the area of stratum 789 was decreased by 9 sq.n. mi.
2 Stratum 791 in the 100-200 depth range was divided into two separate strata; 791 101-150
with area $=227$ sq. n. mi.and stratum 800 151-200 area $=81$ sq. n.mi.
${ }^{3}$ Stratum 611 area was decreased by 27 sq. n. mi.

Table 25. Summary of estimates of cod abundance (thousands) and biomass (t) for all strata fished in 1983-2004. Data from 19831994 are in Campelen equivalent units and data from 1995-2004 are in actual Campelen units.

| DIVISION | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total abundance all strata fished |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 J | 1,124,317 | 743,328 | 615,304 | 1,249,871 | 410,936 | 509,360 | 647,797 | 264,807 | 365,191 | 31,560 | 17,082 | 8,373 |
| 3K | 447748 | 451,517 | 208,952 | 891,302 | 284,648 | 457,191 | 1,307,523 | 972,029 | 649,529 | 61,886 | 37,265 | 9,612 |
| 3L | 428505 | 995,804 | 464,291 | 358,606 | 325,352 | 256,383 | 172,299 | 396,008 | 145,682 | 148,719 | 47,809 | 4,678 |
| 2J3KL | 2,000,570 | 2,190,649 | 1,288,547 | 2,499,779 | 1,020,936 | 1,222,934 | 2,127,619 | 1,632,844 | 1,160,402 | 242,165 | 102,156 | 22,663 |
| Total biomass all strata fished |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 J | 722,491 | 557,302 | 472,214 | 1,287,042 | 492,144 | 599,436 | 425,874 | 131,943 | 170,892 | 13,096 | 5,238 | 2,877 |
| 3K | 374,634 | 370,356 | 209,686 | 964,600 | 303,212 | 216,734 | 830,045 | 645,136 | 649,529 | 35,604 | 14,598 | 4,437 |
| 3L | 278,412 | 479,606 | 369,689 | 387,438 | 284,230 | 274,553 | 160,688 | 406,730 | 123,108 | 128,048 | 30,694 | 3,149 |
| 2J3KL | 1,375,537 | 1,407,264 | 1,051,589 | 2,639,080 | 1,079,586 | 1,090,723 | 1,416,607 | 1,183,809 | 943,529 | 176,748 | 50,530 | 10,463 |


| Percent abundance |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 J | 56 | 34 | 48 | 50 | 40 | 42 | 30 | 16 | 31 | 13 | 17 | 37 |
| 3K | 22 | 21 | 16 | 36 | 28 | 37 | 61 | 60 | 56 | 26 | 36 | 42 |
| 3L | 21 | 45 | 36 | 14 | 32 | 21 | 8 | 24 | 13 | 61 | 47 | 21 |
| Percent biomass |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 J | 53 | 40 | 45 | 49 | 46 | 55 | 30 | 11 | 18 | 7 | 10 | 27 |
| 3K | 27 | 26 | 20 | 37 | 28 | 20 | 59 | 54 | 69 | 20 | 29 | 42 |
| 3L | 20 | 34 | 35 | 15 | 26 | 25 | 11 | 34 | 13 | 72 | 61 | 30 |


| DIVISION | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Total abundance all strata fished |  |  |  |  |  |  |  |  |  |  |
| 2J | 14,654 | 13,300 | 7,020 | 6,636 | 6,129 | 7,567 | 7,040 | 10,427 | 9,945 | 9,536 |
| 3K | 23,954 | 20,756 | 10,984 | 19,067 | 29,433 | 39,110 | 34,093 | 45,212 | 34,889 | 39,079 |
| 3L | 8,013 | 17,044 | 14,774 | 12,588 | 25,514 | 42,435 | 45,019 | 17,024 | 54,890 | 27,124 |
| 2J3KL | 46,621 | 51,100 | 32,778 | 38,291 | 61,076 | 89,112 | 86,152 | 72,663 | 99,724 | 75,739 |
| Total biomass all strata fished |  |  |  |  |  |  |  |  |  |  |
| 2J | 3,067 | 4,298 | 3,662 | 4,483 | 2,590 | 3,098 | 2647 | 4270 | 3248 | 4953 |
| 3K | 4,978 | 6,039 | 4,475 | 7,842 | 12,519 | 12,585 | 10746 | 12854 | 7270 | 10,726 |
| 3L | 5,275 | 14,044 | 13,000 | 5,701 | 13,904 | 21,386 | 22236 | 9099 | 7705 | 6454 |
| 2J3KL | 13,320 | 24,381 | 21,137 | 18,026 | 29,013 | 37,069 | 35,629 | 26,223 | 18,223 | 22,133 |


| Percent abundance |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2J | 31 | 26 | 21 | 17 | 10 | 8 | 8 | 14 | 10 | 13 |
| 3K | 51 | 41 | 34 | 50 | 48 | 44 | 40 | 62 | 35 | 52 |
| 3L | 17 | 33 | 45 | 33 | 42 | 48 | 52 | 23 | 55 | 36 |
|  |  |  |  |  |  |  |  |  |  |  |
| Percent biomass | 23 | 18 | 17 | 25 | 9 | 8 | 7 | 16 | 18 | 22 |
| 2J | 37 | 25 | 21 | 44 | 43 | 34 | 30 | 49 | 40 | 48 |
| 3K | 40 | 58 | 62 | 32 | 48 | 58 | 62 | 35 | 42 | 29 |
| 3L |  |  |  |  |  |  |  |  |  |  |

Table 26. Summary of estimates of cod abundance (thousands) and biomass (t) for divisions 2J, 3K and 3L separately and combined in 1995-2004. Strata are aggregated into offshore index strata; those strata deeper than the offshore index strata and seaward of them; and those strata inshore of the offshore index strata. There are no inshore strata in Division 2J.

| Division | Grouping | Abundance (thousands) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2J |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|  | index | 12,305 | 13,081 | 6,936 | 6,636 | 6,074 | 7,516 | 7,033 | 9,534 | 9,315 | 9,503 |
|  | offshore deep | 2,350 | 219 | 84 | 0 | 55 | 51 | 7 | 893 | 129 | 33 |
|  | total | 14,654 | 13,300 | 7,020 | 6,636 | 6,129 | 7,567 | 7,040 | 10,427 | 9,444 | 9,536 |
| 3 K | index | 23,200 | 18,550 | 8,428 | 15,612 | 29,308 | 35,774 | 28,535 | 41,853 | 19,908 | 34,468 |
|  | offshore deep | 754 | 72 | 22 | 285 | 124 | 0 | 60 | 792 | 1,962 | 1,581 |
|  | inshore | nf | 2,133 | 2,534 | 3,171 | nf | 3,336 | 5,498 | 2,569 | 13,032 | 3,030 |
|  | total | 23,954 | 20,755 | 10,984 | 19,068 | 29,432 | 39,110 | 34,093 | 45,214 | 34,902 | 39,079 |
| 3L | index | 7,735 | 7,067 | 9,859 | 6,454 | 25,281 | 29,010 | 27,724 | 10,984 | 13,638 | 18,605 |
|  | offshore deep | 280 | 0 | 1,144 | 173 | 233 | 3,837 | 1,293 | 112 | 811 | 53 |
|  | inshore | nf | 9,978 | 3,770 | 5,960 | nf | 9,588 | 16,002 | 5,817 | 40,442 | 8,467 |
|  | total | 8,015 | 17,045 | 14,773 | 12,587 | 25,514 | 42,435 | 45,019 | 16,913 | 54,891 | 27,125 |
| 2 J 3 KL | index | 43,240 | 38,698 | 25,223 | 28,702 | 60,663 | 72,300 | 63,292 | 62,371 | 42,861 | 62,576 |
|  | offshore deep | 3,384 | 291 | 1,250 | 458 | 412 | 3,888 | 1,360 | 1,797 | 2,902 | 1,667 |
|  | inshore | nf | 12,111 | 6,304 | 9,131 | nf | 12,924 | 21,500 | 8,386 | 53,474 | 11,497 |
|  | total | 46,624 | 51,100 | 32,777 | 38,291 | 61,075 | 89,112 | 86,152 | 72,554 | 99,237 | 75,740 |
| Division | Grouping | Biomass (t) |  |  |  |  |  |  |  |  |  |
| 2 J |  | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|  | index | 2,312 | 4,261 | 3,609 | 4,483 | 2,527 | 3,082 | 2,646 | 3,680 | 3,065 | 4,921 |
|  | offshore deep | 755 | 36 | 52 | 0 | 63 | 16 | 1 | 588 | 183 | 32 |
|  | total | 3,067 | 4,298 | 3,662 | 4,483 | 2,590 | 3,098 | 2,647 | 4,268 | 3,248 | 4,953 |
| 3K | index | 4,578 | 5,457 | 3,978 | 7,280 | 12,230 | 11,994 | 9,890 | 11,889 | 4,912 | 9,609 |
|  | offshore deep | 400 | 131 | 42 | 242 | 289 | 0 | 56 | 557 | 1,657 | 766 |
|  | inshore | nf | 454 | 455 | 320 | nf | 592 | 800 | 408 | 701 | 351 |
|  | total | 4,978 | 6,042 | 4,475 | 7,842 | 12,519 | 12,586 | 10,746 | 12,854 | 7,270 | 10,726 |
| 3L | index | 5,115 | 6,140 | 8,991 | 4,804 | 13,611 | 15,070 | 18,706 | 7,460 | 4,849 | 5,266 |
|  | offshore deep | 160 | 0 | 1,209 | 235 | 294 | 4,282 | 1,118 | 191 | 588 | 34 |
|  | inshore | nf | 7,903 | 2,801 | 662 | nf | 2,066 | 2,412 | 1,719 | 2,266 | 1,154 |
|  | total | 5,275 | 14,043 | 13,001 | 5,701 | 13,905 | 21,418 | 22,236 | 9,370 | 7,703 | 6,454 |
| 2 J 3 KL | index | 12,005 | 15,858 | 16,578 | 16,567 | 28,368 | 30,146 | 31,242 | 23,029 | 12,826 | 19,796 |
|  | offshore deep | 1,315 | 167 | 1,303 | 477 | 646 | 4,298 | 1,175 | 1,336 | 2,428 | 832 |
|  | inshore | nf | 8,357 | 3,256 | 982 | nf | 2,658 | 3,212 | 2,127 | 2,967 | 1,505 |
|  | total | 13,320 | 24,382 | 21,137 | 18,026 | 29,014 | 37,102 | 35,629 | 26,492 | 18,221 | 22,133 |

Table 27. Autumn bottom-trawl mean number per tow at age in offshore index strata adjusted for missing strata (1983-2004). The 2J3KL total is the mean of the divisional means, weighted by the divisional survey areas.

| 2J |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.33 | 0.74 | 0.00 |
| 1 | 46.58 | 7.57 | 1.71 | 0.65 | 1.46 | 20.52 | 4.86 | 2.75 | 0.37 | 0.00 | 0.00 | 0.18 | 2.46 | 0.52 | 0.00 | 0.10 | 0.21 | 0.57 | 0.16 | 0.43 | 0.66 | 0.38 |
| 2 | 147.86 | 41.01 | 14.01 | 18.71 | 3.03 | 17.69 | 108.44 | 13.80 | 11.17 | 0.68 | 3.22 | 1.21 | 1.24 | 2.15 | 0.41 | 0.19 | 0.79 | 0.66 | 0.69 | 0.76 | 0.47 | 1.22 |
| 3 | 61.64 | 86.28 | 48.03 | 39.16 | 8.12 | 10.83 | 33.77 | 46.34 | 19.04 | 4.45 | 1.03 | 0.83 | 0.80 | 1.24 | 1.42 | 0.72 | 0.56 | 0.77 | 1.25 | 0.8 | 0.79 | 0.70 |
| 4 | 61.08 | 38.75 | 74.50 | 97.79 | 12.11 | 12.14 | 16.27 | 12.48 | 60.31 | 1.70 | 1.05 | 0.34 | 0.31 | 0.49 | 0.39 | 0.89 | 0.30 | 0.45 | 0.19 | 0.78 | 0.31 | 0.58 |
| 5 | 25.59 | 53.27 | 28.44 | 153.27 | 50.67 | 16.35 | 10.85 | 4.79 | 14.89 | 3.29 | 0.32 | 0.15 | 0.08 | 0.13 | 0.11 | 0.29 | 0.17 | 0.04 | 0.06 | 0.10 | 0.13 | 0.24 |
| 6 | 10.44 | 14.98 | 27.11 | 68.45 | 43.15 | 41.46 | 12.35 | 2.39 | 1.73 | 0.31 | 0.27 | 0.01 | 0.02 | 0.02 | 0.00 | 0.04 | 0.00 | 0.04 | 0.01 | 0.01 | 0.02 | 0.06 |
| 7 | 4.87 | 2.87 | 9.75 | 29.99 | 9.98 | 42.71 | 17.99 | 1.44 | 0.70 | 0.01 | 0.02 | 0.02 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
| 8 | 12.46 | 1.83 | 1.35 | 10.84 | 6.58 | 6.93 | 11.13 | 2.35 | 0.42 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 9 | 5.05 | 3.46 | 0.83 | 0.70 | 2.64 | 4.27 | 1.45 | 1.08 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 10 | 2.87 | 1.49 | 1.14 | 0.64 | 0.41 | 2.06 | 0.77 | 0.23 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0.58 | 0.54 | 0.39 | 0.55 | 0.04 | 0.28 | 0.35 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 12 | 0.04 | 0.12 | 0.17 | 0.29 | 0.16 | 0.11 | 0.12 | 0.05 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 13 | 0.03 | 0.02 | 0.03 | 0.07 | 0.06 | 0.08 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 14 | 0.02 | 0.00 | 0.00 | 0.02 | 0.04 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| TOTAL | 379.11 | 252.19 | 207.46 | 421.13 | 138.45 | 175.48 | 218.36 | 87.76 | 109.11 | 10.44 | 5.91 | 2.74 | 4.96 | 4.57 | 2.33 | 2.24 | 2.04 | 2.55 | 2.37 | 3.21 | 3.12 | 3.18 |
| 3K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.08 | 0.15 | 0.28 | 0.71 | 0.05 | 0.04 | 0.54 | 0.03 |
| 1 | 22.84 | 8.27 | 0.28 | 7.91 | 7.35 | 37.54 | 36.91 | 22.21 | 0.59 | 0.65 | 0.28 | 0.20 | 2.77 | 0.70 | 0.07 | 1.13 | 1.07 | 2.61 | 1.46 | 2.09 | 2.35 | 2.58 |
| 2 | 32.49 | 32.45 | 5.07 | 18.35 | 6.63 | 29.28 | 111.95 | 32.45 | 15.74 | 2.85 | 4.67 | 0.39 | 1.56 | 2.28 | 0.92 | 0.80 | 2.71 | 2.33 | 2.22 | 5.19 | 0.88 | 4.04 |
| 3 | 27.87 | 24.34 | 13.32 | 21.13 | 8.34 | 18.49 | 58.16 | 83.98 | 23.97 | 4.12 | 2.24 | 1.16 | 0.98 | 1.20 | 0.85 | 0.92 | 2.01 | 2.24 | 2.37 | 2.03 | 0.85 | 1.10 |
| 4 | 15.09 | 22.21 | 12.39 | 65.26 | 10.01 | 8.40 | 44.92 | 48.74 | 70.05 | 2.33 | 1.27 | 0.38 | 0.34 | 0.34 | 0.20 | 0.59 | 0.87 | 1.17 | 0.71 | 0.92 | 0.27 | 0.66 |
| 5 | 17.24 | 11.98 | 10.93 | 56.87 | 17.27 | 6.92 | 25.69 | 23.11 | 37.29 | 4.01 | 0.30 | 0.14 | 0.10 | 0.10 | 0.09 | 0.20 | 0.36 | 0.27 | 0.30 | 0.21 | 0.10 | 0.17 |
| 6 | 4.39 | 8.97 | 4.13 | 29.01 | 11.21 | 7.54 | 17.17 | 12.35 | 9.09 | 1.16 | 0.34 | 0.02 | 0.02 | 0.00 | 0.00 | 0.06 | 0.03 | 0.05 | 0.03 | 0.02 | 0.00 | 0.04 |
| 7 | 2.58 | 3.12 | 3.23 | 13.32 | 4.17 | 3.70 | 14.93 | 7.74 | 2.80 | 0.16 | 0.09 | 0.03 | 0.00 | 0.01 | 0.00 | 0.05 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 |
| 8 | 4.26 | 1.41 | 0.86 | 6.66 | 2.67 | 1.00 | 7.06 | 7.62 | 1.03 | 0.03 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 |
| 9 | 2.98 | 2.12 | 0.65 | 2.41 | 1.21 | 0.44 | 2.54 | 2.35 | 0.56 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
| 10 | 0.91 | 1.06 | 0.55 | 0.64 | 0.52 | 0.22 | 1.41 | 0.68 | 0.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
| 11 | 0.22 | 0.34 | 0.40 | 0.79 | 0.21 | 0.04 | 0.65 | 0.22 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 12 | 0.12 | 0.11 | 0.09 | 0.58 | 0.08 | 0.04 | 0.16 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 13 | 0.02 | 0.05 | 0.01 | 0.09 | 0.06 | 0.01 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 14 | 0.01 | 0.02 | 0.00 | 0.07 | 0.02 | 0.02 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 15 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| TOTAL | 131.02 | 116.45 | 51.91 | 223.09 | 69.75 | 113.64 | 321.74 | 241.51 | 161.39 | 15.31 | 9.20 | 2.34 | 5.82 | 4.63 | 2.21 | 3.91 | 7.36 | 9.39 | 7.16 | 10.50 | 4.99 | 8.66 |

(cont'd)

Table 27 (cont'd). Autumn bottom-trawl mean number per tow at age in offshore index strata adjusted for missing strata (1983-2002). The 2J3KL total is the mean of the divisional means, weighted by the divisional survey areas.

| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.32 | 0.30 | 0.04 | 0.03 | 0.03 | 0.17 | 0.27 |
| 1 | 17.62 | 7.68 | 0.15 | 1.03 | 3.87 | 1.26 | 0.54 | 0.82 | 1.06 | 0.08 | 0.00 | 0.00 | 0.11 | 0.04 | 0.07 | 0.14 | 0.79 | 1.18 | 0.67 | 0.30 | 1.54 | 0.98 |
| 2 | 27.24 | 75.48 | 11.11 | 9.71 | 22.54 | 12.57 | 5.36 | 6.54 | 5.27 | 3.25 | 1.66 | 0.19 | 0.34 | 0.21 | 0.64 | 0.17 | 1.51 | 1.59 | 1.66 | 0.90 | 0.32 | 2.64 |
| 3 | 40.89 | 56.42 | 32.05 | 9.02 | 7.70 | 13.43 | 12.73 | 22.12 | 5.02 | 8.14 | 2.44 | 0.28 | 0.52 | 0.36 | 0.61 | 0.32 | 1.86 | 1.62 | 1.49 | 0.37 | 0.40 | 0.33 |
| 4 | 9.53 | 35.05 | 24.62 | 22.23 | 6.96 | 4.08 | 7.03 | 24.38 | 7.89 | 7.96 | 2.46 | 0.23 | 0.27 | 0.43 | 0.27 | 0.17 | 0.20 | 0.98 | 0.95 | 0.31 | 0.13 | 0.12 |
| 5 | 9.21 | 6.44 | 13.18 | 13.13 | 10.93 | 5.57 | 2.17 | 11.06 | 5.59 | 5.64 | 0.79 | 0.09 | 0.15 | 0.19 | 0.15 | 0.04 | 0.15 | 0.31 | 0.45 | 0.18 | 0.06 | 0.08 |
| 6 | 1.50 | 10.12 | 5.23 | 10.20 | 6.81 | 5.91 | 2.30 | 5.29 | 2.66 | 3.07 | 0.32 | 0.04 | 0.11 | 0.09 | 0.04 | 0.03 | 0.08 | 0.09 | 0.10 | 0.05 | 0.03 | 0.03 |
| 7 | 1.45 | 1.48 | 3.04 | 2.97 | 2.86 | 4.19 | 2.20 | 3.21 | 0.44 | 0.79 | 0.05 | 0.02 | 0.03 | 0.05 | 0.07 | 0.01 | 0.01 | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 |
| 8 | 2.36 | 1.02 | 0.57 | 2.09 | 1.10 | 1.86 | 0.81 | 2.38 | 0.22 | 0.06 | 0.01 | 0.00 | 0.01 | 0.01 | 0.09 | 0.05 | 0.02 | 0.03 | 0.01 | 0.00 | 0.00 | 0.01 |
| 9 | 1.26 | 0.88 | 0.69 | 0.80 | 0.85 | 0.90 | 0.56 | 1.31 | 0.23 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 |
| 10 | 0.44 | 0.94 | 0.35 | 0.32 | 0.09 | 0.46 | 0.17 | 0.51 | 0.09 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0.13 | 0.38 | 0.25 | 0.41 | 0.12 | 0.12 | 0.06 | 0.24 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.06 | 0.00 | 0.01 | 0.00 |
| 12 | 0.06 | 0.22 | 0.11 | 0.22 | 0.19 | 0.10 | 0.03 | 0.15 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 |
| 13 | 0.02 | 0.04 | 0.04 | 0.09 | 0.10 | 0.12 | 0.03 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 |
| 14 | 0.05 | 0.03 | 0.01 | 0.03 | 0.03 | 0.07 | 0.04 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 |
| 15 | 0.00 | 0.03 | 0.01 | 0.03 | 0.01 | 0.03 | 0.01 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16 | 0.01 | 0.03 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 17 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 18 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 20 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 21 | 0.03 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| TOTAL | 111.87 | 196.27 | 91.42 | 72.30 | 64.19 | 50.68 | 34.04 | 78.19 | 28.59 | 29.08 | 7.73 | 0.85 | 1.54 | 1.39 | 1.95 | 1.28 | 4.98 | 5.88 | 5.48 | 2.18 | 2.69 | 4.49 |

2J3KL

| Age | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.03 | 0.18 | 0.22 | 0.26 | 0.03 | 0.11 | 0.43 | 0.12 |
| 1 | 26.49 | 7.85 | 0.58 | 3.23 | 4.44 | 18.12 | 13.75 | 8.44 | 0.73 | 0.25 | 0.09 | 0.11 | 1.58 | 0.38 | 0.05 | 0.46 | 0.74 | 1.51 | 0.81 | 0.93 | 1.59 | 1.37 |
| 2 | 58.68 | 52.62 | 9.81 | 14.81 | 12.42 | 19.41 | 66.33 | 16.98 | 10.22 | 2.48 | 3.05 | 0.51 | 0.97 | 1.38 | 0.68 | 0.39 | 1.73 | 1.61 | 1.61 | 2.30 | 0.54 | 2.76 |
| 3 | 41.65 | 53.05 | 29.73 | 20.48 | 8.02 | 14.48 | 33.08 | 48.74 | 14.80 | 5.89 | 2.03 | 0.71 | 0.74 | 0.86 | 0.89 | 0.62 | 1.59 | 1.62 | 1.72 | 1.03 | 0.65 | 0.68 |
| 4 | 24.08 | 31.67 | 32.81 | 55.20 | 9.25 | 7.51 | 21.96 | 29.59 | 41.55 | 4.54 | 1.72 | 0.31 | 0.30 | 0.41 | 0.28 | 0.49 | 0.45 | 0.91 | 0.68 | 0.63 | 0.22 | 0.41 |
| 5 | 15.93 | 19.82 | 16.18 | 62.23 | 22.83 | 8.67 | 12.16 | 13.54 | 18.47 | 4.52 | 0.51 | 0.12 | 0.12 | 0.15 | 0.12 | 0.15 | 0.23 | 0.23 | 0.30 | 0.17 | 0.09 | 0.15 |
| 6 | 4.67 | 10.93 | 10.25 | 30.82 | 17.22 | 15.21 | 9.74 | 6.93 | 4.58 | 1.75 | 0.31 | 0.03 | 0.06 | 0.04 | 0.02 | 0.04 | 0.04 | 0.06 | 0.05 | 0.03 | 0.02 | 0.04 |
| 7 | 2.67 | 2.37 | 4.76 | 13.08 | 5.05 | 13.51 | 10.34 | 4.29 | 1.29 | 0.39 | 0.06 | 0.02 | 0.01 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 | 0.02 |
| 8 | 5.48 | 1.35 | 0.86 | 5.77 | 2.97 | 2.82 | 5.44 | 4.12 | 0.54 | 0.04 | 0.01 | 0.01 | 0.00 | 0.00 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 |
| 9 | 2.77 | 1.93 | 0.71 | 1.31 | 1.41 | 1.58 | 1.44 | 1.60 | 0.35 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
| 10 | 1.20 | 1.12 | 0.61 | 0.51 | 0.31 | 0.77 | 0.73 | 0.50 | 0.15 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 11 | 0.27 | 0.41 | 0.33 | 0.57 | 0.13 | 0.13 | 0.33 | 0.19 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
| 12 | 0.07 | 0.16 | 0.12 | 0.36 | 0.15 | 0.08 | 0.10 | 0.10 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |
| 13 | 0.02 | 0.04 | 0.03 | 0.09 | 0.08 | 0.07 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 14 | 0.03 | 0.02 | 0.00 | 0.04 | 0.03 | 0.04 | 0.04 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 15 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 16 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 17 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 20 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 21 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| 25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| TOTAL | 184.04 | 183.38 | 106.79 | 208.52 | 84.33 | 102.43 | 175.50 | 135.09 | 92.76 | 19.89 | 7.77 | 1.81 | 3.79 | 3.25 | 2.10 | 2.21 | 5.05 | 6.23 | 5.28 | 5.21 | 3.56 | 5.56 |

Table 28. Autumn bottom-trawl mean catch (number) per tow at age in inshore strata in 3 K and 3L, and 3K and 3L combined, in 1996-1998 and 2000-2004. For each year and Division, an agelength key was constructed from sampling conducted both inshore and offshore, and this key was applied to the catch rate at length from the inshore strata in the appropriate year and Division.

|  | 3K |  |  |  |  |  |  |  |  | 3L |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 0 | 0.04 | 0.70 | 0.64 |  | 0.48 | 0.15 | 0.46 | 7.03 | 0.12 | 0.04 | 1.53 | 6.54 |  | 2.34 | 1.79 | 1.69 | 14.00 | 5.71 |
| 1 | 1.87 | 2.15 | 4.76 |  | 3.27 | 7.38 | 2.73 | 21.32 | 4.09 | 10.28 | 1.31 | 4.77 |  | 10.83 | 23.63 | 3.77 | 74.93 | 7.61 |
| 2 | 1.70 | 2.19 | 1.33 |  | 2.43 | 2.55 | 2.29 | 0.56 | 2.25 | 5.67 | 1.39 | 1.47 |  | 6.20 | 7.86 | 5.66 | 2.60 | 5.52 |
| 3 | 0.76 | 0.49 | 0.31 |  | 1.15 | 1.79 | 0.19 | 0.28 | 0.33 | 2.50 | 1.75 | 0.57 |  | 2.90 | 2.07 | 1.39 | 2.30 | 0.44 |
| 4 | 0.33 | 0.05 | 0.08 |  | 0.10 | 0.51 | 0.09 | 0.27 | 0.07 | 2.12 | 1.54 | 0.34 |  | 1.18 | 1.31 | 0.61 | 0.58 | 0.18 |
| 5 | 0.10 | 0.07 | 0.04 |  | 0.12 | 0.07 | 0.05 | 0.07 | 0.01 | 1.49 | 0.86 | 0.08 |  | 0.32 | 0.57 | 0.30 | 0.15 | 0.18 |
| 6 | 0.02 | 0.00 | 0.02 |  | 0.00 | 0.00 |  | 0.00 |  | 2.06 | 0.12 | 0.10 |  | 0.12 | 0.09 | 0.08 | 0.02 | 0.05 |
| 7 |  | 0.08 | 0.02 |  |  | 0.00 |  | 0.00 |  | 1.10 | 0.15 | 0.02 |  | 0.09 | 0.03 | 0.00 | 0.01 | 0.05 |
| 8 |  |  |  |  |  |  |  |  |  | 0.54 | 0.11 | 0.02 |  | 0.07 | 0.01 | 0.02 | 0.00 | 0.06 |
| 9 |  |  |  |  |  |  |  |  |  | 0.48 | 0.10 | 0.02 |  | 0.03 | 0.04 | 0.03 | 0.01 | 0.01 |
| 10 |  |  |  |  |  |  |  |  |  | 0.11 |  |  |  | 0.00 | 0.02 | 0.01 | 0.00 | 0.01 |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.01 | 0.03 | 0.00 | 0.00 |  |
| 12 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.00 | 0.00 |  |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.00 | 0.03 |  |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.00 |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.01 |  |  |
| Total | 4.82 | 5.73 | 7.20 |  | 7.55 | 12.45 | 5.81 | 29.53 | 6.87 | 26.39 | 8.86 | 13.93 |  | 24.09 | 37.45 | 13.57 | 94.63 | 19.82 |
|  |  |  | 3KL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Age | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |  |  |  |  |  |  |  |  |  |
| 0 | 0.04 | 1.11 | 3.53 |  | 1.39 | 0.95 | 1.06 | 10.44 | 2.86 |  |  |  |  |  |  |  |  |  |
| 1 | 5.99 | 1.74 | 4.76 |  | 6.97 | 15.34 | 3.24 | 47.58 | 5.81 |  |  |  |  |  |  |  |  |  |
| 2 | 3.64 | 1.80 | 1.40 |  | 4.28 | 5.15 | 3.94 | 1.56 | 3.85 |  |  |  |  |  |  |  |  |  |
| 3 | 1.61 | 1.11 | 0.44 |  | 2.01 | 1.93 | 0.78 | 1.27 | 0.38 |  |  |  |  |  |  |  |  |  |
| 4 | 1.21 | 0.78 | 0.21 |  | 0.63 | 0.90 | 0.34 | 0.42 | 0.12 |  |  |  |  |  |  |  |  |  |
| 5 | 0.78 | 0.46 | 0.06 |  | 0.22 | 0.31 | 0.17 | 0.11 | 0.09 |  |  |  |  |  |  |  |  |  |
| 6 | 1.02 | 0.06 | 0.06 |  | 0.06 | 0.04 | 0.04 | 0.01 | 0.02 |  |  |  |  |  |  |  |  |  |
| 7 | 0.54 | 0.11 | 0.02 |  | 0.04 | 0.01 | 0.00 | 0.00 | 0.02 |  |  |  |  |  |  |  |  |  |
| 8 | 0.26 | 0.05 | 0.01 |  | 0.03 | 0.00 | 0.01 | 0.00 | 0.03 |  |  |  |  |  |  |  |  |  |
| 9 | 0.24 | 0.05 | 0.01 |  | 0.01 | 0.02 | 0.01 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| 10 | 0.05 | 0.00 | 0.00 |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| 11 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| 12 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| 13 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |  |  |  |  |  |  |  |  |  |
| 14 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| 15 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |  |  |  |  |  |  |  |  |  |
| Total 0+ | 15.39 | 7.26 | 10.50 |  | 15.65 | 24.70 | 9.61 | 61.42 | 13.21 |  |  |  |  |  |  |  |  |  |
| Total 1+ | 15.35 | 6.16 | 6.97 |  | 14.26 | 23.74 | 8.55 | 50.98 | 10.36 |  |  |  |  |  |  |  |  |  |
| Total 5+ | 2.89 | 0.73 | 0.16 |  | 0.37 | 0.42 | 0.25 | 0.14 | 0.18 |  |  |  |  |  |  |  |  |  |

Table 29. Estimates of cod abundance (thousands) from spring surveys in Division 3L in 1985-2004 in depths <= 200 fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units.

| Depthrange(fath) $\quad$ St |  | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stratum | area | 28-30 | 48 | 59-60 | 70-71 | 83 | 96 | 106-107 | 119-122 | 137-138 | 152-154 | 168-170 |
|  | number | sq mi. | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| Mean Date |  |  | 7-May-85 | 16-May-86 | 23-May-87 | 15-May-88 | 18-May-89 | 26-May-90 | 20-May-91 | 24-May-92 | 31-May-93 | 1-Jun-94 | 6-Jun-95 |
| 31-50 | 350 | 2071 | 52111 | 14685 | 17275 | 90559 | 24682 | 8018 | 748 | 414 | 32 | 0 | 0 |
|  | 363 | 1780 | 25710 | 24878 | 27778 | 46453 | 21738 | 3918 | 1504 | 789 | 306 | 0 | 0 |
|  | 371 | 1121 | 29035 | 2262 | 3503 | 3115 | 4086 | 3315 | 32260 | 123 | 93 | 0 | 0 |
|  | 372 | 2460 | 83387 | 37973 | 21684 | 37778 | 17675 | 2852 | 541 | 34 | 62 | 0 | 0 |
|  | 384 | 1120 | 591 | 4442 | 5238 | 1078 | 1566 | 193 | 270 | 0 | 31 | 0 | 0 |
| 51-100 | 328 | 1519 | 5642 | 2113 | 2866 | 522 | 0 | 3194 | 1846 | 0 | 453 | 0 | 0 |
|  | 341 | 1574 | 17899 | 5678 | 14651 | 20425 | 7984 | 2436 | 469 | 0 | 0 | 736 | 0 |
|  | 342 | 585 | 3702 | 1127 | 1328 | 402 | 5445 | 523 | 0 | 1314 | 322 | 188 | 0 |
|  | 343 | 525 | 9076 | 4496 | 1300 | 2744 | 8065 | 891 | 2239 | 1565 | 614 | 361 | 361 |
|  | 348 | 2120 | 38479 | 16258 | 21435 | 19062 | 12022 | 6575 | 73 | 227 | 109 | 365 | 510 |
|  | 349 | 2114 | 32383 | 21146 | 12795 | 14649 | 25115 | 10986 | 1066 | 711 | 905 | 0 | 0 |
|  | 364 | 2817 | 38614 | 10691 | 21365 | 13718 | 24050 | 4456 | 1902 | 0 | 97 | 0 | 0 |
|  | 365 | 1041 | 22237 | 6272 | 15466 | 15931 | 8306 | 2076 | 322 | 36 | 0 | 0 | 0 |
|  | 370 | 1320 | 57062 | 2973 | 16783 | 8861 | 18226 | 1219 | 34833 | 0 | 91 | 0 | 0 |
|  | 385 | 2356 | 22038 | 997 | 1886 | 5736 | 25360 | 7808 | 17055 | 97 | 383 | 0 | 0 |
|  | 390 | 1481 | 2513 | 484 | 320 | 0 | 891 | 41 | 122 | 34 | 102 | 0 | 0 |
| 101-150 | 344 | 1494 | 10481 | 21142 | 3288 | 4110 | 31503 | 4864 | 986 | 1165 | 514 | 0 | 822 |
|  | 347 | 983 | 7221 | 14225 | 7077 | 11981 | 6694 | 913 | 1690 | 34 | 304 | 0 | 0 |
|  | 366 | 1394 | 207996 | 63401 | 41749 | 8885 | 33414 | 15053 | 12651 | 415 | 384 | 0 | 0 |
|  | 369 | 961 | 58351 | 33952 | 16392 | 28158 | 13021 | 6134 | 3701 | 198 | 0 | 0 | 0 |
|  | 386 | 983 | 46544 | 12395 | 14766 | 26504 | 37547 | 32048 | 32544 | 68 | 54 | 0 | 0 |
|  | 389 | 821 | 70767 | 10458 | 8150 | 11181 | 13214 | 5788 | 9524 | 75 | 0 | 0 | 56 |
|  | 391 | 282 | 5916 | 4442 | 2812 | 1494 | 2819 | 45154 | 6750 | 0 | 0 | 0 | 0 |
| 151-200 | 345 | 1432 | 16153 | 41480 | 60278 | 19723 | 29548 | 14232 | 3217 | 492 | 525 | 2167 | 197 |
|  | 346 | 865 | 10650 | 63279 | 18991 | 11602 | 9965 | 145882 | 10812 | 1577 | 833 | 278 | 476 |
|  | 368 | 334 | 10154 | 10912 | 14289 | 414 | 4150 | 51551 | 4992 | 10866 | 1355 | 184 | 23 |
|  | 387 | 718 | 131461 | 22816 | 691 | 2272 | 16336 | 241169 | 93995 | 23145 | 6288 | 0 | 560 |
|  | 388 | 361 | 2955 | 11496 | 25 | 1738 | 1606 | 36947 | 10809 | 4618 | 2235 | 0 | 174 |
|  | 392 | 145 | 6642 | 1855 | 20 | 2094 | 645 | 22130 | 4618 | 40 | 479 | 0 | 110 |
| total strata fished <= 200 fath |  |  | 1025769 | 468328 | 374201 | 411190 | 405673 | 680365 | 263087 | 48038 | 16569 | 4278 | 3289 |
| ADJUSTED |  |  | 1025770 | 468328 | 374201 | 411189 | 405673 | 680366 | 291539 | 48037 | 16571 | 4279 | 3289 |
| upper <br> t-value |  |  | 1335489 | 548125 | 506851 | 521077 | 475378 | 1169116 | 395962 | 105950 | 29261 | 7094 | 5694 |
|  |  |  | 2.16 | 2.037 | 2.571 | 2.16 | 2.04 | 2.776 | 2.365 | 4.303 | 3.182 | 2.201 | 2.306 |
| 1 STD strata fished <= 200 fath |  |  | 143389 | 39174 | 51595 | 50874 | 34169 | 176063 | 56184 | 13459 | 3989 | 1279 | 1043 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

[^2]Table 29 (cont'd). Estimates of cod abundance (thousands) from spring surveys in Division 3L in 1985-2004 in depths <= 200 fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units.

| Depth  <br> range  <br> (fath) S |  | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stratum | area | 189-191 | 207-208 | 223-224 | 240-241 | 317-318 | 365-370 | 422-424 | 479-482 | 546-549 |
|  | number | sq mi. | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| Mean Date |  |  | 14-Jun-96 | 15-Jun-97 | 19-Jun-98 | 22-Jun-99 | 17-Jun-00 | 11-Jun-01 | 10-Jun-02 | 15-Jun-03 |  |
| 31-50 | 350 | 2071 | 412 | 122 | 47 | 1268 | 71 | 297 | 81 | 163 | 285 |
|  | 363 | 1780 | 111 | 0 | 0 | 281 | 420 | 82 | 0 | 41 | 122 |
|  | 371 | 1121 | 0 | 0 | 0 | 0 | 0 | 39 | 39 | 0 | 39 |
|  | 372 | 2460 | 217 | 0 | 42 | 602 | 1203 | 42 | 0 | 42 | 381 |
|  | 384 | 1120 | 102 | 0 | 0 | 0 | 77 | 0 | 0 | 39 | 0 |
| 51-100 | 328 | 1519 | 90 | 35 | 125 | 376 | 1254 | 139 | 84 | 507 | 79 |
|  | 341 | 1574 | 340 | 1728 | 172 | 577 | 476 | 909 | 43 | 173 | 433 |
|  | 342 | 585 | 0 | 121 | 80 | 121 | 322 | 241 | 40 | 80 | 201 |
|  | 343 | 525 | 36 | 0 | 217 | 108 | 72 | 36 | 0 | 0 | 144 |
|  | 348 | 2120 | 151 | 65 | 328 | 231 | 109 | 0 | 167 | 333 | 232 |
|  | 349 | 2114 | 424 | 145 | 73 | 646 | 332 | 249 | 166 | 249 | 291 |
|  | 364 | 2817 | 234 | 49 | 106 | 201 | 155 | 254 | 129 | 0 | 43 |
|  | 365 | 1041 | 58 | 0 | 0 | 95 | 0 | 48 | 48 | 0 | 95 |
|  | 370 | 1320 | 61 | 0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 |
|  | 385 | 2356 | 30 | 0 | 0 | 46 | 81 | 46 | 41 | 0 | 81 |
|  | 390 | 1481 | 59 | 0 | 0 | 150 | 0 | 122 | 0 | 0 | 0 |
| 101-150 | 344 | 1494 | 565 | 300 | 355 | 509 | 260 | 392 | 485 | 870 | 575 |
|  | 347 | 983 | 0 | 34 | 203 | 336 | 135 | 676 | 45 | 180 | 90 |
|  | 366 | 1394 | 245 | 447 | 141 | 133 | 1630 | 230 | 3545 | 652 | 1432 |
|  | 369 | 961 | 30 | 33 | 66 | 39 | 132 | 196 | 206 | 264 | 118 |
|  | 386 | 983 | 0 | 30 | 34 | 265 | 406 | 260 | 45 | 0 | 40 |
|  | 389 | 821 | 0 | 33 | 33 | 113 | 1412 | 1016 | 75 | 0 | 376 |
|  | 391 | 282 | 0 | 0 | 0 | 19 | 0 | 78 | 19 | 39 | 0 |
| 151-200 | 345 | 1432 | 773 | 972 | 460 | 1121 | 2151 | 2053 | 2403 | 906 | 2430 |
|  | 346 | 865 | 487 | 579 | 71 | 670 | 948 | 996 | 2248 | 1282 | 363 |
|  | 368 | 334 | 402 | 158 | 46 | 92 | 863 | 1330 | 578 | 347 | 523 |
|  | 387 | 718 | 142 | 1037 | 1635 | 684 | 3556 | 307 | 285 | 198 | 1054 |
|  | 388 | 361 | 84 | 0 | 72 | 372 | 564 | 695 | 290 | 770 | 221 |
|  | 392 | 145 | 111 | 0 | 80 | 41 | 195 | 150 | 748 | 140 | 70 |
| total strata fished <= 200 fath |  |  | 5166 | 5888 | 4386 | 9096 | 16860 | 10884 | 11810 | 7277 | 9718 |
| ADJUSTED |  |  | 5164 | 5888 | 4386 | 9096 | 16860 | 10884 | 11810 | 7277 | 9718 |
| upper |  |  | 6223 | 10529 | 10169 | 11449 | 52643 | 14422 | 16092 | 9317 | 14260 |
| t-value |  |  | 2.023 | 2.447 | 4.30 | 2.05 | 12.71 | 2.31 | 2.33 | 2.12 | 2.26 |
| 1 STD strata fished <= 200 fath |  |  | 522 | 1897 | 1345 | 1148 | 2815 | 1532 | 1838 | 962 | 2010 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=200$ fathom depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.

Table 30. Estimates of cod biomass ( t ) from spring surveys in Division 3L in 1985-2004 in depths $<=200$ fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units.

| Depth | Stratum number | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| range |  | area | 28-30 | 48 | 59-60 | 70-71 | 83 | 96 | 106-107 | 119-122 | 137-138 | 152-154 | 168-170 |
| (fath) |  | sq mi. | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| Mean Date |  |  | 7-May | 16-May | 23-May | 15-May | 18-May | 26-May | 20-May | 24-May | 31-May | 1-Jun | 6-Jun |
| 31-50 | 350 | 2071 | 61578 | 29203 | 32147 | 116896 | 41232 | 14057 | 1636 | 315 | 35 | 0 | 0 |
|  | 363 | 1780 | 29020 | 26035 | 38567 | 49356 | 30897 | 12388 | 2289 | 526 | 111 | 0 | 0 |
|  | 371 | 1121 | 29516 | 5426 | 7039 | 6714 | 7089 | 5149 | 44086 | 36 | 37 | 0 | 0 |
|  | 372 | 2460 | 87371 | 39729 | 37570 | 52582 | 31350 | 12849 | 1553 | 112 | 96 | 0 | 0 |
|  | 384 | 1120 | 557 | 7038 | 7416 | 1515 | 1308 | 1029 | 653 | 0 | 71 | 0 | 0 |
| 51-100 | 328 | 1519 | 568 | 1708 | 3573 | 879 | 0 | 5670 | 180 | 0 | 243 | 0 | 0 |
|  | 341 | 1574 | 11711 | 12988 | 20564 | 32613 | 9121 | 5854 | 376 | 0 | 0 | 65 | 0 |
|  | 342 | 585 | 1445 | 2669 | 1041 | 600 | 1400 | 1035 | 0 | 66 | 64 | 33 | 0 |
|  | 343 | 525 | 2833 | 3087 | 1981 | 2878 | 3927 | 255 | 207 | 70 | 52 | 46 | 42 |
|  | 348 | 2120 | 17699 | 22373 | 52505 | 40777 | 18921 | 6772 | 273 | 37 | 43 | 47 | 87 |
|  | 349 | 2114 | 31189 | 44296 | 22988 | 34821 | 50689 | 3835 | 836 | 125 | 158 | 0 | 0 |
|  | 364 | 2817 | 21165 | 17309 | 34942 | 26822 | 34642 | 15553 | 1228 | 0 | 124 | 0 | 0 |
|  | 365 | 1041 | 5934 | 6427 | 19818 | 18776 | 10427 | 2210 | 154 | 81 | 0 | 0 | 0 |
|  | 370 | 1320 | 21097 | 6523 | 16440 | 12422 | 15405 | 1288 | 29422 | 0 | 74 | 0 | 0 |
|  | 385 | 2356 | 6499 | 894 | 2131 | 4572 | 10414 | 2269 | 13797 | 95 | 256 | 0 | 0 |
|  | 390 | 1481 | 874 | 764 | 891 | 0 | 520 | 129 | 604 | 58 | 83 | 0 | 0 |
| 101-150 | 344 | 1494 | 1926 | 16730 | 1768 | 2949 | 15613 | 696 | 103 | 167 | 83 | 0 | 95 |
|  | 347 | 983 | 6837 | 19615 | 8729 | 17943 | 5283 | 669 | 199 | 35 | 83 | 0 | 0 |
|  | 366 | 1394 | 111212 | 62264 | 42788 | 15741 | 32354 | 12386 | 6899 | 111 | 121 | 0 | 0 |
|  | 369 | 961 | 36262 | 27273 | 23039 | 37815 | 18342 | 7693 | 3547 | 78 | 0 | 0 | 0 |
|  | 386 | 983 | 13632 | 5635 | 10490 | 10110 | 19985 | 59202 | 17066 | 154 | 66 | 0 | 0 |
|  | 389 | 821 | 21457 | 3540 | 2864 | 3284 | 3509 | 1529 | 1654 | 114 | 0 | 0 | 36 |
|  | 391 | 282 | 1380 | 1944 | 797 | 316 | 513 | 6018 | 1220 | 0 | 0 | 0 | 0 |
| 151-200 | 345 | 1432 | 6738 | 39168 | 63833 | 24326 | 40145 | 5601 | 466 | 332 | 120 | 437 | 108 |
|  | 346 | 865 | 1650 | 48302 | 18827 | 13037 | 10501 | 136822 | 4834 | 613 | 302 | 86 | 91 |
|  | 368 | 334 | 4237 | 13403 | 16324 | 1286 | 5297 | 41814 | 3318 | 4684 | 590 | 120 | 22 |
|  | 387 | 718 | 60424 | 16437 | 508 | 1609 | 8453 | 101468 | 37550 | 18465 | 2329 | 0 | 227 |
|  | 388 | 361 | 1143 | 5814 | 27 | 695 | 676 | 35162 | 4031 | 1078 | 1431 | 0 | 60 |
|  | 392 | 145 | 5177 | 1121 | 11 | 573 | 251 | 6418 | 1107 | 22 | 63 | 0 | 37 |
| total strata fished <= 200 fathoms |  |  | 601128 | 487714 | 489618 | 531905 | 428264 | 505819 | 164236 | 27374 | 6633 | 834 | 805 |
| ADJUSTED |  |  | 601131 | 487715 | 489618 | 531907 | 428264 | 505820 | 179288 | 27374 | 6635 | 834 | 805 |
| upper |  |  | 765217 | 563448 | 632377 | 669157 | 490124 | 742119 | 286846 | 71593 | 14791 | 1310 | 1234 |
| t-value |  |  | 2.101 | 2.02 | 2.447 | 2.16 | 1.998 | 2.228 | 2.447 | 4.303 | 4.303 | 2.365 | 2.179 |
| 1 STD strata fished <= 200 fathoms |  |  | 78100 | 37492 | 58340 | 63543 | 30961 | 106059 | 50106 | 10276 | 1896 | 201 | 197 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using
a multiplicative model using data to 1992 . Std are for strata fished in the depth range.
a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 30 (cont'd). 30. Estimates of cod biomass ( t ) from spring surveys in Division 3L in 1985-2004 in depths $<=200$ fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units.

| Depth <br> range <br> (fath) <br> Mean Date |  | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stratum | area | 189-191 | 207-208 | 223-224 | 240-241 | 317-318 | 365-370 | 422-424 | 479-482 | 546-549 |
|  | number | sq mi. | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|  |  |  | 14-Jun | 15-Jun | 19-Jun-98 | 22-Jun | 17-Jun | 11-Jun | 10-Jun | 15-Jun |  |
| 31-50 | 350 | 2071 | 359 | 135 | 6 | 3708 | 17 | 621 | 28 | 11 | 22 |
|  | 363 | 1780 | 61 | 0 | 0 | 693 | 193 | 1 | 0 | 3 | 1275 |
|  | 371 | 1121 | 0 | 0 | 0 | 0 | 0 | 25 | 1 | 0 | 1 |
|  | 372 | 2460 | 83 | 0 | 0 | 598 | 392 | 4 | 0 | 355 | 8 |
|  | 384 | 1120 | 65 | 0 | 0 | 0 | 20 | 0 | 0 | 1 | 0 |
| 51-100 | 328 | 1519 | 6 | 5 | 115 | 739 | 89 | 37 | 3 | 129 | 61 |
|  | 341 | 1574 | 127 | 4497 | 9 | 1238 | 96 | 549 | 3 | 16 | 644 |
|  | 342 | 585 | 0 | 346 | 8 | 209 | 23 | 9 | 2 | 9 | 13 |
|  | 343 | 525 | 9 | 0 | 36 | 254 | 27 | 0.361 | 0 | 0 | 11 |
|  | 348 | 2120 | 53 | 13 | 536 | 395 | 10 | 0 | 14 | 16 | 20 |
|  | 349 | 2114 | 303 | 419 | 101 | 1903 | 615 | 26 | 5 | 113 | 34 |
|  | 364 | 2817 | 20 | 11 | 225 | 683 | 43 | 15 | 3 | 0 | 3 |
|  | 365 | 1041 | 5 | 0 | 0 | 178 | 0 | 17 | 1 | 0 | 8 |
|  | 370 | 1320 | 6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
|  | 385 | 2356 | 4 | 0 | 0 | 227 | 2 | 4 | 42 | 0 | 3 |
|  | 390 | 1481 | 31 | 0 | 0 | 6 | 0 | 5 | 0 | 0 | 0 |
| 101-150 | 344 | 1494 | 111 | 115 | 124 | 496 | 152 | 126 | 71 | 307 | 128 |
|  | 347 | 983 | 0 | 8 | 150 | 52 | 9 | 182 | 3 | 32 | 13 |
|  | 366 | 1394 | 104 | 173 | 61 | 83 | 210 | 25 | 292 | 130 | 396 |
|  | 369 | 961 | 16 | 3 | 20 | 11 | 218 | 159 | 10 | 60 | 93 |
|  | 386 | 983 | 0 | 16 | 183 | 94 | 311 | 131 | 10 | 0 | 25 |
|  | 389 | 821 | 0 | 9 | 25 | 16 | 587 | 440 | 83 | 0 | 137 |
|  | 391 | 282 | 0 | 0 | 0 | 4 | 0 | 41 | 2 | 3 | 0 |
| 151-200 | 345 | 1432 | 149 | 294 | 159 | 359 | 956 | 725 | 605 | 327 | 349 |
|  | 346 | 865 | 178 | 238 | 32 | 407 | 582 | 260 | 558 | 644 | 215 |
|  | 368 | 334 | 148 | 96 | 8 | 63 | 499 | 417 | 100 | 91 | 225 |
|  | 387 | 718 | 84 | 303 | 1199 | 578 | 2057 | 191 | 112 | 34 | 325 |
|  | 388 | 361 | 12 | 0 | 27 | 167 | 251 | 176 | 147 | 497 | 67 |
|  | 392 | 145 | 18 | 0 | 23 | 30 | 19 | 74 | 332 | 13 | 16 |
| total strata fished <= 200 fathoms |  |  | 1951 | 6667 | 3048 | 12962 | 7378 | 4262 | 2428 | 2794 | 4094 |
| ADJUSTED |  |  | 1952 | 6667 | 3048 | 12962 | 7378 | 4262 | 2428 | 2794 | 4094 |
| upper |  |  | 2468 | 17631 | 6102 | 18566 | 30307 | 6164 | 3040 | 4093 | 7427 |
| t-value |  |  | 2.017 | 2.571 | 3.18 | 2.16 | 12.71 | 2.14 | 2.18 | 28 | 2.36 |
| 1 STD strata fished <= 200 fathoms |  |  | 256 | 4264 | 960 | 2594 | 1804 | 889 | 281 | 46 | 1412 |

${ }^{1}$ Not all strata in the depth range have been fished. Strata not fished in the $<=\mathbf{2 0 0}$ fathom depth range have been filled using a multiplicative model using data to 1992. Std are for strata fished in the depth range.

Table 31. Estimates of cod abundance (thousands) and biomass (t) from spring surveys in Division 3L in 1985-2004 in depths > 200 fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units.

| Depth |  | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| range | Stratum | area | 28-30 | 48 | 59-60 | 70-71 | 83 | 96 | 106-107 | 119-122 | 137-138 | 152-154 | 168-170 |
| (fath) | number | nautical miles | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 |
| Mean Date |  |  | 7-May | 16-May | 23-May | 15-May | 18-May | 26-May | 20-May | 24-May | 31-May | 1-Jun | 6-Jun |
| abundance |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 201-300 | 729 | 186 | 102 | nf | nf | nf | nf | nf | 141 | 3876 | 192 | 77 | 0 |
|  | 731 | 216 | 30 | nf | nf | nf | nf | nf | 3046 | 267 | 416 | 9701 | 0 |
|  | 733 | 468 | 1674 | nf | nf | nf | nf | nf | 7339 | 2672 | 880 | 1513 | 483 |
|  | 735 | 272 | 94 | nf | nf | nf | nf | nf | nf | 92905 | 0 | 6080 | 673 |
| 301-400 | 730 | 170 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | nf | nf | nf | nf | nf | 267 | 0 | 0 | 0 | 0 |
|  | 736 | 175 | 0 | nf | nf | nf | nf | nf | nf | 60 | 0 | 0 | 0 |
| 401-500 | 737 | 227 | nf | 0 | nf |
|  | 741 | 223 | nf | 0 | nf |
|  | 745 | 348 | nf | 0 | nf |
|  | 748 | 159 | nf | 0 | nf |
| Total >200 fa | athoms |  | 1900 | 0 | 0 | 0 | 0 | 0 | 10793 | 99780 | 1488 | 17371 | 1156 |
| Total all stra | ta fished |  | 1027668 | 468328 | 374201 | 411190 | 405673 | 680365 | 273879 | 147819 | 18056 | 21649 | 4445 |
| upper |  |  | 1337409 | 548125 | 506851 | 521077 | 475378 | 1169116 | 407660 | 1331862 | 29180 | 148586 | 7460 |
| t-value |  |  | 2.16 | 2.037 | 2.571 | 2.16 | 2.04 | 2.776 | 2.365 | 12.706 | 2.776 | 12.706 | 2.365 |
| 1 STD all st | rata fished |  | 143399 | 39174 | 51595 | 50874 | 34169 | 176063 | 56567 | 93188 | 4007 | 9990 | 1275 |


| biomass |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 201-300 | 729 | 186 | 78 | nf | nf | nf | nf | nf | 320 | 1683 | 78 | 29 | 0 |
|  | 731 | 216 | 78 | nf | nf | nf | nf | nf | 1967 | 389 | 248 | 5913 | 0 |
|  | 733 | 468 | 755 | nf | nf | nf | nf | nf | 6351 | 1959 | 345 | 556 | 219 |
|  | 735 | 272 | 894 | nf | nf | nf | nf | nf | nf | 50199 | 0 | 3238 | 386 |
| 301-400 | 730 | 170 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | nf | nf | nf | nf | nf | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | nf | nf | nf | nf | nf | 437 | 0 | 0 | 0 | 0 |
|  | 736 | 175 | 0 | nf | nf | nf | nf | nf | nf | 69 | 0 | 0 | 0 |
| 401-500 | 737 | 227 | nf | 0 | nf |
|  | 741 | 223 | nf | 0 | nf |
|  | 745 | 348 | nf | 0 | nf |
|  | 748 | 159 | nf | 0 | nf |
| Total >200 fathoms |  |  | 1805 | 0 | 0 | 0 | 0 | 0 | 9075 | 54299 | 671 | 9736 | 605 |
| Total all strata fished |  |  | 602932 | 487714 | 489618 | 531905 | 428264 | 505819 | 173311 | 81673 | 7304 | 10570 | 1410 |
| upper |  |  | 767031 | 563448 | 632377 | 669157 | 490124 | 742119 | 296576 | 729549 | 15476 | 86302 | 7004 |
| t -value |  |  | 2.101 | 2.02 | 2.447 | 2.16 | 1.998 | 2.228 | 2.447 | 12.706 | 4.303 | 12.706 | 12.706 |
| 1 STD all strata fished |  |  | 78105 | 37492 | 58340 | 63543 | 30961 | 106059 | 50374 | 50990 | 1899 | 5960 | 440 |

nf Not all strata in the depth range were fished. Strata not fished in the greater than 200 fathom depth range have not been filled using a multiplicative model.

Table 31 (cont'd). Estimates of cod abundance (thousands) and biomass (t) from spring surveys in Division 3L in 1985-2004 in depths $>200$ fathoms. The 1985-1995 data are in Campelen equivalent units and the 1996-2004 data are in actual Campelen units .

| Depth range (fath) <br> Mean Date |  | Stratum | WT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Stratum | area | 189-191 | 207-208 | 223-224 | 240-241 | 317-318 | 365-370 | 422-424 | 479-482 | 546-549 |
|  | number | nautical miles | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|  |  |  | 14-Jun | 15-Jun | 19-Jun | 22-Jun | 17-Jun | 11-Jun | 10-Jun | 15-Jun |  |
| abundance |  |  |  |  |  |  |  |  |  |  |  |
| 201-300 | 729 | 186 | 13 | 0 | 13 | 0 | 2240 | 171 | 50 | 280 | 0 |
|  | 731 | 216 | 152 | 0 | 13 | 104 | 155 | 409 | 272 | 1398 | 0 |
|  | 733 | 468 | 41 | 89 | 0 | 258 | 315 | 626 | 1094 | 5565 | 0 |
|  | 735 | 272 | 5512 | 524 | 3480 | 35 | 580 | 3792 | 3138 | 3530 | 0 |
| 301-400 | 730 | 170 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 |
|  | 736 | 175 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 401-500 | 737 | 227 | nf |
|  | 741 | 223 | nf |
|  | 745 | 348 | nf |
|  | 748 | 159 | nf |
| Total >200 fathoms |  |  | 5718 | 613 | 3506 | 397 | 3290 | 4998 | 4554 | 10787 | 0 |
| Total all strata fished |  |  | 10884 | 6501 | 7892 | 9493 | 20150 | 15881 | 16364 | 18064 | 9718 |
| upper |  |  | 21527 | 11073 | 54843 | 11907 | 58359 | 67976 | 60855 | 41584 | 14260 |
| t-value |  |  | 4.303 | 2.365 | 12.71 | 2.04 | 12.706 | 12.706 | 12.71 | 4.303 | 2.26 |
| 1 STD all strata fished |  |  | 2473 | 1933 | 3694 | 1183 | 3007 | 4100 | 3500 | 5466 | 2010 |


| biomass |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 201-300 | 729 | 186 | 2 | 0 | 31 | 0 | 858 | 78 | 15 | 108 | 0 |
|  | 731 | 216 | 69 | 0 | 15 | 57 | 51 | 321 | 117 | 1588 | 0 |
|  | 733 | 468 | 28 | 74 | 0 | 111 | 172 | 290 | 351 | 2071 | 0 |
|  | 735 | 272 | 3823 | 352 | 2646 | 24 | 270 | 2557 | 1877 | 1486 | 0 |
| 301-400 | 730 | 170 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 732 | 231 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 734 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 |
|  | 736 | 175 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 401-500 | 737 | 227 | nf |
|  | 741 | 223 | nf |
|  | 745 | 348 | nf |
|  | 748 | 159 | nf |
| Total >200 fathoms |  |  | 3922 | 426 | 2692 | 192 | 1351 | 3246 | 2360 | 5303 | 0 |
| Total all strata fished upper |  |  | 5874 | 7093 | 5740 | 13154 | 8728 | 7507 | 4788 | 8097 | 4094 |
|  |  |  | 32789 | 18073 | 41373 | 18765 | 32059 | 41939 | 27442 | 16216 | 7427 |
|  |  |  | 4.303 | 2.571 | 12.71 | 2.16 | 12.706 | 12.706 | 12.71 | 3.182 | 2.36 |
| 1 STD all strata fished |  |  | 6255 | 4271 | 2804 | 2598 | 1836 | 2710 | 1782 | 2552 | 1412 |

Table 32. Spring bottom-trawl mean number per tow at age in index strata (<=200 fath) in Division 3L adjusted for missing strata.

| Age | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |  |  |  |  |  |  |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
| 1 | 0.00 | 0.00 | 0.24 | 0.05 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.05 | 0.23 | 0.69 | 0.28 | 0.76 | 0.16 | 0.19 |
| 2 | 24.66 | 4.71 | 6.20 | 4.56 | 6.56 | 8.14 | 4.82 | 1.29 | 0.08 | 0.19 | 0.25 | 0.43 | 0.18 | 0.08 | 0.54 | 0.87 | 0.86 | 0.89 | 0.27 | 1.10 |
| 3 | 85.66 | 17.70 | 11.95 | 24.30 | 23.92 | 46.84 | 13.81 | 2.26 | 1.71 | 0.33 | 0.19 | 0.23 | 0.43 | 0.25 | 0.26 | 0.86 | 0.35 | 0.43 | 0.38 | 0.31 |
| 4 | 48.28 | 31.74 | 11.45 | 10.16 | 20.06 | 41.76 | 19.67 | 1.82 | 0.79 | 0.12 | 0.16 | 0.15 | 0.16 | 0.25 | 0.17 | 0.69 | 0.13 | 0.16 | 0.12 | 0.19 |
| 5 | 23.76 | 18.51 | 19.07 | 9.93 | 5.23 | 18.34 | 9.80 | 2.54 | 0.34 | 0.06 | 0.05 | 0.05 | 0.07 | 0.11 | 0.11 | 0.08 | 0.11 | 0.07 | 0.07 | 0.07 |
| 6 | 8.24 | 9.85 | 13.15 | 17.32 | 3.62 | 5.05 | 4.25 | 1.09 | 0.24 | 0.01 | 0.01 | 0.05 | 0.03 | 0.07 | 0.08 | 0.08 | 0.01 | 0.02 | 0.02 | 0.01 |
| 7 | 7.17 | 3.96 | 6.27 | 7.39 | 8.32 | 4.30 | 1.07 | 0.36 | 0.07 | 0.00 |  | 0.03 | 0.20 | 0.02 | 0.08 | 0.01 | 0.00 |  | 0.00 | 0.02 |
| 8 | 1.39 | 2.95 | 1.95 | 3.71 | 6.06 | 4.74 | 0.85 | 0.06 | 0.04 |  |  |  | 0.06 | 0.02 | 0.05 | 0.00 | 0.01 |  | 0.00 | 0.01 |
| 9 | 0.65 | 0.65 | 1.52 | 1.25 | 1.58 | 2.53 | 0.80 | 0.01 | 0.00 |  |  |  | 0.02 | 0.01 | 0.16 | 0.00 |  |  | 0.00 | 0.00 |
| 10 | 0.92 | 0.56 | 0.58 | 1.04 | 0.62 | 1.02 | 0.28 | 0.04 |  |  |  |  | 0.01 | 0.00 | 0.06 | 0.00 |  |  | 0.00 | 0.00 |
| 11 | 1.04 | 0.96 | 0.41 | 0.30 | 0.54 | 0.44 | 0.28 | 0.00 |  |  |  |  | 0.01 |  | 0.03 | 0.01 |  |  | 0.00 | 0.00 |
| 12 | 0.35 | 0.62 | 0.54 | 0.36 | 0.14 | 0.28 | 0.09 | 0.00 |  |  |  |  |  |  | 0.01 | 0.01 |  |  | 0.00 | 0.01 |
| 13 | 0.14 | 0.21 | 0.33 | 0.32 | 0.19 | 0.21 | 0.03 | 0.01 |  |  |  |  |  |  | 0.01 | 0.01 |  |  | 0.03 | 0.00 |
| 14 | 0.04 | 0.07 | 0.10 | 0.25 | 0.33 | 0.15 | 0.01 | 0.01 |  |  |  |  |  |  | 0.01 |  |  |  |  | 0.01 |
| 15 | 0.06 | 0.06 | 0.05 | 0.10 | 0.13 | 0.13 | 0.02 |  |  |  |  |  |  |  |  |  |  |  |  | 0.00 |
| 16 | 0.01 | 0.02 | 0.01 | 0.04 | 0.04 | 0.07 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  | 0.01 |
| 17 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.05 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | 0.01 | 0.00 |  | 0.01 |  |  | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 | 0.01 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| TOTAL | 202.41 | 92.59 | 73.84 | 81.14 | 77.40 | 134.23 | 55.80 | 9.49 | 3.27 | 0.71 | 0.66 | 1.00 | 1.17 | 0.86 | 1.80 | 3.33 | 1.75 | 2.33 | 1.05 | 1.93 |

Table 33. Estimated proportions mature for female cod from NAFO Divs. 2J3KL from DFO surveys from 1960 to 2004 projected forward to 2010. Estimates were obtained from a probit model fitted by cohort to observed proportions mature at age. Shaded cells are extrapolations of the first or last three estimates for the same age group or are the average of adjacent estimates for the same age group.

| Year/Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1958 | 0.00000 | 0.00000 | 0.00004 | 0.00067 | 0.01123 | 0.15759 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1959 | 0.00000 | 0.00000 | 0.00004 | 0.00067 | 0.01123 | 0.15759 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1960 | 0.00000 | 0.00000 | 0.00000 | 0.00067 | 0.01123 | 0.15759 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1961 | 0.00000 | 0.00000 | 0.00004 | 0.00002 | 0.01123 | 0.15759 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1962 | 0.00004 | 0.00002 | 0.00008 | 0.00076 | 0.00092 | 0.15759 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1963 | 0.00007 | 0.00022 | 0.00029 | 0.00123 | 0.01305 | 0.03961 | 0.76340 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1964 | 0.00020 | 0.00042 | 0.00146 | 0.00348 | 0.01973 | 0.18629 | 0.64934 | 0.98747 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1965 | 0.00034 | 0.00104 | 0.00262 | 0.00975 | 0.04024 | 0.24687 | 0.79859 | 0.98812 | 0.99940 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1966 | 0.00002 | 0.00166 | 0.00538 | 0.01602 | 0.06595 | 0.33472 | 0.84226 | 0.98565 | 0.99973 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1967 | 0.00000 | 0.00013 | 0.00814 | 0.02746 | 0.09165 | 0.35975 | 0.85790 | . 98863 | 0.99916 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 000 |
| 1968 | 0.00000 | 0.00002 | 0.00106 | . 03891 | 0.12901 | 0.38477 | 0.82642 | 0.98638 | 0.99929 | 0.99995 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1969 | 0.00011 | 0.00000 | 0.00030 | 0.00856 | 0.16636 | 0.44034 | 0.79494 | 0.97321 | 0.99885 | 0.99996 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1970 | 0.00023 | 0.00062 | 0.00001 | 0.00374 | 0.06565 | 0.49592 | 0.81200 | 0.96005 | 0.99609 | 0.99990 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1971 | 0.00859 | 0.00125 | 0.00345 | 0.00029 | 0.04464 | 0.36374 | 0.82906 | 0.95995 | 0.99333 | 0.99941 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1972 | 0.01696 | 0.02169 | 0.00690 | 0.01871 | 0.00849 | 0.36775 | 0.82306 | 0.95986 | 0.99246 | 0.99892 | 0.99991 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1973 | 0.00000 | 0.04213 | 0.05387 | 0.03713 | 0.09244 | 0.20038 | 0.87865 | 0.97426 | 0.99159 | 0.99860 | 0.99983 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1974 | 0.00003 | 0.00002 | 0.10084 | 0.12975 | 0.17639 | 0.37182 | 0.88003 | 0.98903 | 0.99676 | 0.99828 | 0.99974 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1975 | 0.00017 | 0.00022 | 0.00030 | 0.22237 | 0.29903 | 0.54326 | 0.87427 | 0.99536 | 0.99911 | 0.99960 | 0.99965 | 0.99995 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1976 | 0.00013 | 0.00095 | 0.00181 | 0.00364 | 0.42167 | 0.59674 | 0.86852 | 0.98441 | 0.99984 | 0.99993 | 0.99995 | 0.99993 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1977 | 0.00005 | 0.00082 | 0.00525 | 0.01501 | 0.04298 | 0.65023 | 0.84715 | 0.97346 | 0.99748 | 0.99999 | 0.99999 | 0.99999 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1978 | 0.00000 | 0.00034 | 0.00508 | 0.02847 | 0.11360 | 0.35541 | 0.82579 | 0.94852 | 0.99512 | 0.99956 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1979 | 0.00000 | 0.00001 | 0.00244 | 0.03083 | 0.13997 | 0.51879 | 0.87129 | 0.92358 | 0.98184 | 0.99912 | 0.99992 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1980 | 0.00003 | 0.00002 | 0.00022 | 0.01733 | . 16553 | . 47476 | 0.90069 | . 98811 | 0.96857 | 0.99327 | 0.99984 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.0000 | 1.00000 |
| 1981 | 0.00019 | 0.00025 | 0.00028 | 00314 | 11293 | . 55297 | . 83389 | . 98706 | 0.99902 | 0.98743 | 0.99744 | 0.99997 | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 |
| 1982 | 0.0000 | 0.00096 | 0.00217 | 0.00420 | 0.04362 | . 47885 | 0.88523 | 0.96537 | 0.99844 | 0.99992 | 0.99503 | 0.99901 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1983 | 0.00000 | 0.00003 | 0.00486 | 0.01860 | 0.05876 | 0.39791 | 0.86897 | 0.97963 | 0.99358 | 0.99981 | 0.99999 | 0.99805 | 0.99961 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1984 | 0.00001 | 0.00001 | 0.00037 | 0.02413 | 0.14166 | 0.48053 | 0.90545 | 0.97954 | 0.99668 | 0.99884 | 0.99998 | 1.00000 | 0.99923 | 0.99985 | 1.00000 | 1.00000 | 1.00000 |
| 1985 | 0.00001 | 0.00014 | 0.00018 | 0.00452 | 0.11138 | 0.58970 | 0.93200 | 0.99284 | 0.99711 | 0.99947 | 0.99979 | 1.00000 | 1.00000 | 0.99970 | 1.00000 | 1.00000 | 1.00000 |
| 1986 | 0.00004 | 0.00012 | 0.00142 | 0.00274 | 0.05334 | 0.38847 | 0.92602 | 0.99510 | 0.99950 | 0.99960 | 0.99991 | 0.99996 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1987 | 0.00003 | 0.00030 | 0.00126 | 0.01388 | 0.03944 | 0.41140 | 0.76300 | 0.99091 | 0.99967 | 0.99997 | 0.99994 | 0.99999 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1988 | 0.00000 | 0.00022 | 0.00215 | 0.01266 | 0.12231 | 0.37997 | 0.89660 | 0.94225 | 0.99895 | 0.99998 | 1.00000 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1989 | 0.00000 | 0.00005 | 0.00195 | 0.01504 | 0.11515 | 0.57977 | 0.90144 | 0.99079 | 0.98805 | 0.99988 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1990 | 0.00000 | 0.00002 | 0.00100 | 0.01679 | 0.09763 | 0.56916 | 0.93178 | 0.99273 | 0.99925 | 0.99762 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1991 | 0.00011 | 0.00005 | 0.00046 | 0.01790 | 0.13020 | 0.43385 | 0.93061 | 0.99266 | 0.99951 | 0.99994 | 0.99953 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1992 | 0.00228 | 0.00097 | 0.00138 | 0.01309 | 0.24998 | 0.56745 | 0.84443 | 0.99271 | 0.99925 | 0.99997 | 1.00000 | 0.99991 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1993 | 0.00002 | 0.00822 | 0.00856 | 0.03654 | 0.27554 | 0.85909 | 0.91998 | 0.97465 | 0.99928 | 0.99992 | 1.00000 | 1.00000 | 0.99998 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1994 | 0.00001 | 0.00024 | 0.02914 | 0.07112 | 0.51058 | 0.91603 | 0.99111 | 0.99017 | 0.99634 | 0.99993 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1995 | 0.00007 | 0.00013 | 0.00288 | 0.09803 | 0.40450 | 0.96633 | 0.99681 | 0.99951 | 0.99887 | 0.99948 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1996 | 0.00202 | 0.00075 | 0.00200 | 0.03356 | 0.28243 | 0.85767 | 0.99873 | 0.99989 | 0.99997 | 0.99987 | 0.99993 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1997 | 0.00058 | 0.00789 | 0.00784 | 0.02921 | 0.29435 | 0.58769 | 0.98164 | 0.99995 | 1.00000 | 1.00000 | 0.99999 | 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1998 | 0.00003 | 0.00288 | 0.03027 | 0.07634 | 0.31123 | 0.83363 | 0.83771 | 0.99790 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 1999 | 0.00000 | 0.00030 | 0.01419 | 0.10911 | 0.46363 | 0.87156 | 0.98366 | 0.94922 | 0.99976 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2000 | 0.00015 | 0.00000 | 0.00353 | 0.06689 | 0.32461 | 0.90040 | 0.99028 | 0.99862 | 0.98544 | 0.99997 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2001 | 0.00007 | 0.00127 | 0.00008 | 0.03963 | 0.26303 | 0.65351 | 0.98953 | 0.99935 | 0.99988 | 0.99594 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2002 | 0.00007 | 0.00081 | 0.01047 | 0.00783 | 0.32484 | 0.63988 | 0.88097 | 0.99899 | 0.99996 | 0.99999 | 0.99887 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2003 | 0.00007 | 0.00069 | 0.00902 | 0.08082 | 0.42360 | 0.84869 | 0.89844 | 0.96672 | 0.99990 | 1.00000 | 1.00000 | 0.99969 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2004 | 0.00007 | 0.00069 | 0.00652 | 0.09299 | 0.42218 | 0.98561 | 0.98494 | 0.97780 | 0.99130 | 0.99999 | 1.00000 | 1.00000 | 0.99991 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2005 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.53594 | 0.85859 | 0.99984 | 0.99869 | 0.99546 | 0.99777 | 1.00000 | 1.00000 | 1.00000 | 0.99998 | 1.00000 | 1.00000 | 1.00000 |
| 2006 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.46058 | 0.92862 | 0.98057 | 1.00000 | 0.99989 | 0.99908 | 0.99943 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2007 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.46058 | 0.92427 | 0.99322 | 0.99762 | 1.00000 | 0.99999 | 0.99982 | 0.99985 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2008 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.46058 | 0.92427 | 0.99121 | 0.99939 | 0.99971 | 1.00000 | 1.00000 | 0.99996 | 0.99996 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
| 2009 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.46058 | 0.92427 | 0.99121 | 0.99900 | 0.99995 | 0.99997 | 1.00000 | 1.00000 | 0.99999 | 0.99999 | 1.00000 | 1.00000 | 1.00000 |
| 2010 | 0.00007 | 0.00069 | 0.00652 | 0.06054 | 0.46058 | 0.92427 | 0.99121 | 0.99900 | 0.99989 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |

Table 34. Mean length (cm) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2004. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-1980 and 1984.

Division 2J

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 19.9 | 19.8 |  | 22.9 | 21.5 | 22.0 | 22.8 | 20.9 | 20.3 | 22.4 |
| 2 | 29.3 | 30.1 | 30.6 | 29.9 | 30.0 | 26.6 | 27.4 | 27.0 | 28.2 | 29.4 | 30.3 | 28.1 | 26.5 | 28.1 | 26.5 | 26.2 | 25.8 | 26.2 | 28.0 | 30.7 | 23.9 | 27.4 | 27.8 | 29.3 | 28.0 | 31.5 | 30.9 |
| 3 | 38.0 | 41.3 | 39.4 | 38.7 | 37.9 | 38.8 | 34.3 | 33.6 | 35.5 | 36.5 | 37.3 | 36.9 | 33.8 | 32.9 | 33.8 | 32.6 | 36.8 | 33.1 | 34.5 | 37.6 | 38.7 | 33.7 | 37.6 | 34.8 | 37.3 | 38.2 | 37.7 |
| 4 | 45.6 | 47.3 | 49.6 | 47.0 | 47.0 | 46.1 | 44.4 | 40.1 | 41.1 | 43.4 | 44.2 | 43.7 | 41.9 | 38.7 | 38.8 | 40.1 | 42.3 | 42.1 | 41.8 | 43.2 | 44.4 | 42.5 | 44.2 | 43.7 | 43.2 | 43.3 | 45.2 |
| 5 | 54.0 | 55.3 | 54.5 | 54.4 | 53.4 | 53.9 | 50.9 | 48.5 | 47.6 | 48.9 | 48.5 | 50.1 | 46.9 | 43.9 | 41.8 | 43.9 | 46.6 | 46.7 | 49.3 | 48.0 | 47.7 | 52.3 | 54.6 | 49.9 | 47.8 | 50.0 | 50.0 |
| 6 | 59.7 | 60.9 | 60.7 | 58.2 | 59.3 | 60.0 | 56.6 | 53.2 | 52.7 | 52.4 | 53.6 | 53.8 | 53.4 | 51.1 | 47.0 | 47.5 | 56.8 | 55.4 | 52.6 |  | 52.5 | 69.0 | 62.3 | 54.0 | 41.0 | 60.1 | 55.5 |
| 7 | 66.4 | 67.9 | 64.3 | 62.8 | 61.3 | 62.9 | 63.4 | 57.5 | 56.7 | 57.3 | 55.8 | 57.0 | 56.6 | 56.9 | 56.8 | 47.0 | 56.2 |  | 61.1 |  | 51.0 |  |  | 57.0 |  |  |  |
| 8 | 69.7 | 73.9 | 69.5 | 66.9 | 64.5 | 64.7 | 65.8 | 64.3 | 59.5 | 58.9 | 59.8 | 59.6 | 59.4 | 58.3 |  |  |  |  |  |  |  | 79.0 |  |  |  |  |  |
| 9 | 79.3 | 69.2 | 82.0 | 73.6 | 68.9 | 68.6 | 66.9 | 67.2 | 67.6 | 61.7 | 63.8 | 62.7 | 61.1 | 63.8 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 80.4 | 76.9 | 83.3 | 84.2 | 77.0 | 73.5 | 71.6 | 70.2 | 68.2 | 67.8 | 66.2 | 64.7 | 63.1 | 65.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 | 87.7 | 87.6 | 86.5 | 90.1 | 85.5 | 75.0 | 78.4 | 72.8 | 72.2 | 77.5 | 73.9 | 69.8 | 73.6 | 72.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 91.6 | 85.9 | 87.9 | 88.6 | 94.6 | 95.0 | 83.0 | 75.9 | 76.2 | 75.5 | 80.5 | 67.8 | 73.5 | 68.5 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Division 3K

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 18.6 | 19.2 | 21.6 | 19.2 | 20.5 | 20.9 | 20.1 | 22.2 | 19.2 | 20.9 |
| 2 | 27.9 | 30.9 | 30.7 | 31.3 | 29.3 | 28.5 | 26.5 | 28.7 | 29.5 | 29.7 | 25.9 | 27.3 | 28.1 | 29.2 | 28.5 | 28.5 | 29.3 | 25.6 | 28.7 | 29.5 | 25.3 | 29.1 | 27.7 | 28.1 | 28.4 | 30.6 | 28.0 |
| 3 | 37.6 | 42.1 | 39.9 | 42.2 | 40.3 | 40.5 | 36.8 | 36.0 | 36.5 | 38.1 | 36.5 | 37.2 | 36.2 | 36.6 | 36.4 | 37.5 | 36.5 | 34.2 | 34.9 | 39.2 | 39.0 | 36.8 | 36.7 | 34.6 | 35.3 | 39.0 | 34.9 |
| 4 | 47.0 | 49.5 | 47.2 | 50.4 | 50.1 | 47.9 | 47.0 | 43.9 | 43.8 | 44.6 | 44.2 | 45.0 | 44.0 | 42.7 | 42.4 | 43.6 | 42.2 | 41.8 | 43.3 | 47.9 | 45.4 | 45.7 | 45.4 | 42.6 | 41.6 | 45.6 | 43.6 |
| 5 | 54.8 | 55.4 | 54.7 | 56.1 | 54.0 | 56.2 | 54.3 | 51.8 | 49.9 | 50.9 | 51.5 | 51.5 | 49.7 | 47.9 | 47.0 | 50.0 | 51.1 | 46.8 | 50.0 | 56.2 | 51.4 | 52.5 | 52.0 | 52.1 | 47.6 | 53.9 | 49.3 |
| 6 | 62.4 | 62.8 | 61.8 | 60.3 | 60.5 | 62.3 | 61.6 | 57.3 | 56.1 | 54.3 | 56.0 | 56.3 | 56.1 | 54.9 | 51.8 | 51.4 | 53.5 | 54.7 | 58.5 |  | 58.6 | 55.7 | 60.8 | 54.9 | 56.5 |  | 57.0 |
| 7 | 69.5 | 69.9 | 69.7 | 65.2 | 64.3 | 66.8 | 64.4 | 62.5 | 58.8 | 60.1 | 58.6 | 59.9 | 58.4 | 59.7 | 57.9 | 53.0 | 58.1 |  | 69.0 |  | 62.4 | 72.9 | 73.0 |  | 57.0 |  | 59.9 |
| 8 | 74.4 | 76.8 | 76.3 | 69.2 | 69.0 | 67.7 | 68.8 | 69.6 | 64.1 | 62.9 | 66.3 | 63.1 | 61.2 | 62.7 | 65.2 | 64.0 | 61.7 |  |  | 68.0 | 83.0 |  |  | 74.0 |  |  | 81.0 |
| 9 | 76.6 | 83.3 | 86.0 | 81.7 | 74.8 | 72.5 | 72.9 | 70.2 | 67.3 | 69.7 | 73.1 | 68.1 | 63.6 | 65.6 | 64.0 |  |  | 68.0 |  |  | 80.0 | 81.0 |  | 73.0 |  |  |  |
| 10 | 81.9 | 78.3 | 87.6 | 90.5 | 79.8 | 76.4 | 78.1 | 73.1 | 76.8 | 74.5 | 78.7 | 74.0 | 64.7 | 69.1 |  |  |  |  |  |  |  | 89.0 |  |  |  |  | 58.0 |
| 11 | 88.4 | 86.0 | 103.4 | 91.6 | 89.6 | 84.9 | 84.9 | 79.2 | 75.9 | 80.8 | 82.4 | 75.7 | 69.3 | 80.7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 92.1 | 78.9 | 94.2 | 92.1 | 97.0 | 85.1 | 90.2 | 87.1 | 73.7 | 86.6 | 88.5 | 82.2 | 71 | 68.4 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Division 3L

| Age | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 16.8 | 17.7 | 19.7 | 18.4 | 19.3 | 19.3 | 18.4 | 20.6 | 17.7 | 20.1 |
| 2 | 28.5 | 28.7 | 30.1 |  | 26.8 | 27.9 | 27.5 | 28.7 | 28.7 | 27.0 | 29.7 | 27.9 | 30.1 | 28.1 | 27.8 | 30.0 | 30.3 | 31.5 | 30.0 | 28.3 | 28.8 | 29.4 | 29.0 | 28.9 |
| 3 | 40.0 | 38.2 | 39.4 |  | 36.1 | 35.4 | 34.7 | 37.4 | 37.6 | 35.3 | 36.7 | 38.5 | 38.3 | 34.8 | 36.9 | 38.3 | 38.6 | 39.9 | 39.4 | 39.4 | 36.7 | 38.7 | 39.7 | 37.3 |
| 4 | 44.8 | 50.2 | 48.0 |  | 43.7 | 43.7 | 44.2 | 44.9 | 44.2 | 44.9 | 44.4 | 44.5 | 45.2 | 45.7 | 41.7 | 44.2 | 45.9 | 46.5 | 47.2 | 45.8 | 44.8 | 47.1 | 50.0 | 47.8 |
| 5 | 52.6 | 56.4 | 56.8 |  | 52.2 | 50.3 | 52.3 | 53.1 | 52.3 | 52.7 | 51.1 | 50.4 | 51.5 | 51.8 | 49.6 | 49.3 | 54.9 | 54.5 | 55.4 | 53.3 | 51.3 | 56.2 | 51.0 | 50.1 |
| 6 | 60.6 | 63.5 | 62.4 |  | 58.0 | 58.2 | 58.9 | 58.6 | 59.0 | 59.2 | 56.5 | 54.9 | 55.8 | 57.9 | 58.6 | 58.9 | 62.3 | 58.4 | 59.7 | 58.0 | 57.9 | 62.7 | 60.5 | 58.9 |
| 7 | 66.7 | 69.7 | 64.7 |  | 65.4 | 62.6 | 65.1 | 62.4 | 63.9 | 66.4 | 61.1 | 56.8 | 61.9 | 66.7 | 66.7 | 66.7 | 68.6 | 78.0 | 64.0 | 65.4 | 65.9 | 68.0 | 71.0 | 72.0 |
| 8 | 73.1 | 73.8 | 69.5 |  | 73.3 | 69.9 | 69.0 | 66.7 | 68.7 | 70.9 | 68.0 | 66.0 | 61.4 | 67.0 | 74.0 | 70.0 | 72.6 | 74.3 | 72.9 | 77.9 | 67.9 |  |  | 57.0 |
| 9 | 82.2 | 83.0 | 73.6 |  | 72.8 | 73.1 | 75.2 | 69.6 | 74.4 | 75.3 | 71.5 | 77.3 |  |  |  | 66.0 | 72.0 |  | 86.3 | 81.0 | 75.1 |  | 70.0 | 69.0 |
| 10 | 91.2 | 93.1 | 76.3 |  | 82.6 | 77.7 | 80.8 | 74.3 | 83.7 | 76.2 | 73.2 | 70.4 | 87.0 |  |  |  |  |  | 90.7 |  |  |  |  | 82.0 |
| 11 | 103.7 | 94.1 | 90.0 |  | 86.5 | 81.5 | 87.9 | 88.9 | 88.1 | 82.5 | 74.5 | 77.1 |  |  |  |  |  |  | 79.0 |  | 91.0 |  | 89.0 |  |
| 12 | 119.2 | 110.5 | 87.5 |  | 97.8 | 86.8 | 85.4 | 96.7 | 94.1 | 86.9 | 81.1 | 94.5 |  |  |  |  |  |  | 100.0 |  | 101.0 | 98.0 |  |  |

Table 35. Mean weight (kg) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2004. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-1980 and 1984.

| Division 2J |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.06 | 0.06 |  | 0.10 | 0.09 | 0.09 | 0.10 | 0.09 |
| 2 | 0.22 | 0.26 | 0.24 | 0.23 | 0.22 | 0.18 | 0.15 | 0.20 | 0.25 | 0.27 | 0.25 | 0.20 | 0.16 | 0.19 | 0.14 | 0.15 | 0.16 | 0.16 | 0.19 | 0.26 | 0.12 | 0.20 | 0.19 | 0.23 | 0.20 |
| 3 | 0.49 | 0.68 | 0.53 | 0.55 | 0.50 | 0.59 | 0.38 | 0.36 | 0.35 | 0.55 | 0.55 | 0.49 | 0.36 | 0.31 | 0.32 | 0.30 | 0.43 | 0.32 | 0.37 | 0.48 | 0.54 | 0.36 | 0.47 | 0.38 | 0.47 |
| 4 | 0.95 | 1.02 | 1.05 | 1.08 | 0.96 | 0.96 | 0.83 | 0.62 | 0.65 | 0.91 | 0.82 | 0.81 | 0.70 | 0.52 | 0.48 | 0.58 | 0.65 | 0.67 | 0.67 | 0.73 | 0.80 | 0.76 | 0.78 | 0.73 | 0.73 |
| 5 | 1.58 | 1.59 | 1.36 | 1.66 | 1.60 | 1.55 | 1.30 | 1.14 | 1.05 | 1.36 | 1.15 | 1.26 | 0.99 | 0.74 | 0.62 | 0.75 | 0.91 | 0.90 | 1.16 | 1.05 | 1.01 | 1.38 | 1.42 | 1.17 | 1.03 |
| 6 | 2.20 | 2.38 | 2.06 | 1.98 | 2.00 | 1.85 | 1.78 | 1.49 | 1.66 | 1.48 | 1.65 | 1.57 | 1.46 | 1.14 | 0.84 | 0.92 | 1.66 | 1.54 | 1.43 |  | 1.42 | 3.21 | 2.46 | 1.34 | 0.58 |
| 7 | 2.52 | 2.75 | 2.55 | 2.52 | 2.39 | 2.25 | 2.39 | 1.88 | 1.91 | 2.07 | 1.69 | 1.91 | 1.78 | 1.54 | 1.48 | 0.86 | 1.70 |  | 2.15 |  | 1.19 |  |  | 1.64 |  |
| 8 | 3.86 | 2.75 | 3.09 | 3.20 | 2.69 | 2.77 | 2.56 | 2.50 | 2.29 | 2.41 | 2.38 | 2.26 | 2.11 | 1.69 |  |  |  |  |  |  |  | 5.18 |  |  |  |
| 9 | 4.37 | 6.19 | 5.99 | 3.94 | 3.87 | 3.35 | 3.02 | 2.65 | 3.81 | 1.82 | 2.72 | 2.62 | 2.30 | 2.37 |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 5.77 | 5.43 | 7.63 | 6.59 | 6.51 | 4.02 | 3.46 | 3.22 | 4.51 | 4.65 | 2.88 | 3.14 | 2.54 | 2.72 |  |  |  |  |  |  |  |  |  |  |  |
| 11 | 6.36 | 7.19 | 6.55 | 6.91 | 7.66 | 4.17 | 5.67 | 4.18 | 4.64 | 4.55 | 3.87 | 3.77 | 4.40 | 3.96 |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 9.74 | 6.21 | 7.72 | 10.80 | 10.06 | 8.95 | 6.54 | 4.01 | 6.16 | 4.65 | 6.73 | 3.21 | 4.34 | 3.39 |  |  |  |  |  |  |  |  |  |  |  |

Division 3K

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.05 | 0.06 | 0.09 | 0.06 | 0.07 | 0.08 | 0.07 | 0.09 |
| 2 | 0.17 | 0.21 | 0.24 | 0.28 | 0.23 | 0.23 | 0.15 | 0.21 | 0.19 | 0.20 | 0.18 | 0.19 | 0.19 | 0.21 | 0.21 | 0.21 | 0.22 | 0.15 | 0.21 | 0.23 | 0.15 | 0.24 | 0.19 | 0.20 | 0.21 |
| 3 | 0.41 | 0.58 | 0.58 | 0.72 | 0.74 | 0.54 | 0.40 | 0.47 | 0.45 | 0.49 | 0.48 | 0.49 | 0.41 | 0.42 | 0.40 | 0.47 | 0.43 | 0.36 | 0.38 | 0.54 | 0.55 | 0.47 | 0.44 | 0.36 | 0.40 |
| 4 | 0.88 | 1.19 | 0.95 | 1.22 | 1.22 | 1.12 | 0.87 | 0.89 | 0.82 | 0.90 | 0.84 | 0.87 | 0.76 | 0.71 | 0.67 | 0.74 | 0.69 | 0.65 | 0.72 | 0.98 | 0.87 | 0.89 | 0.82 | 0.71 | 0.65 |
| 5 | 1.48 | 1.64 | 1.41 | 1.73 | 1.56 | 1.67 | 1.41 | 1.22 | 1.15 | 1.35 | 1.41 | 1.33 | 1.10 | 1.01 | 0.95 | 1.12 | 1.19 | 0.91 | 1.16 | 1.62 | 1.30 | 1.35 | 1.19 | 1.26 | 1.00 |
| 6 | 2.39 | 2.26 | 2.01 | 2.05 | 1.97 | 2.11 | 2.04 | 1.82 | 1.99 | 1.41 | 1.73 | 1.82 | 1.63 | 1.52 | 1.30 | 1.30 | 1.44 | 1.53 | 1.90 |  | 1.87 | 1.56 | 2.06 | 1.50 | 1.52 |
| 7 | 2.94 | 3.16 | 3.46 | 2.62 | 2.45 | 2.80 | 2.34 | 2.59 | 2.42 | 2.58 | 2.26 | 2.19 | 1.91 | 1.92 | 1.83 | 1.46 | 1.98 |  | 3.24 |  | 2.55 | 3.74 | 3.33 |  | 1.71 |
| 8 | 5.83 | 4.28 | 3.18 | 5.05 | 3.15 | 3.44 |  | 3.40 | 3.74 | 2.78 | 3.01 | 2.57 | 2.20 | 2.27 | 2.56 | 2.29 | 2.33 |  |  | 2.61 | 6.32 |  |  | 3.45 |  |
| 9 | 4.67 | 4.86 | 6.00 | 7.33 | 4.38 | 3.74 | 3.69 | 4.15 | 3.25 | 3.40 | 4.26 | 3.23 | 2.44 | 2.63 | 2.19 |  |  | 3.28 |  |  | 5.31 | 6.13 |  | 3.71 |  |
| 10 | 6.50 | 4.61 | 7.53 | 6.32 | 6.19 | 4.86 | 4.67 | 4.89 | 4.92 | 5.35 | 4.89 | 4.20 | 2.71 | 3.11 |  |  |  |  |  |  |  | 7.27 |  |  |  |
| 11 | 5.24 | 8.37 | 13.00 | 9.33 | 6.52 | 7.51 | 6.30 | 6.52 | 5.85 | 10.63 | 5.41 | 4.60 | 3.25 | 4.93 |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 9.49 | 10.19 | 7.10 | 8.10 | 9.56 | 6.05 | 6.09 | 6.33 | 6.47 | 7.02 | 7.63 | 5.59 | 3.67 | 3.22 |  |  |  |  |  |  |  |  |  |  |  |

Division 3L

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.11 | 0.05 | 0.07 | 0.05 | 0.06 | 0.06 | 0.05 | 0.08 |
| 2 |  |  |  | 0.22 | 0.17 | 0.24 |  | 0.17 | 0.22 | 0.18 | 0.22 | 0.19 | 0.17 | 0.25 | 0.20 | 0.24 | 0.20 | 0.24 | 0.26 | 0.26 | 0.27 | 0.26 | 0.21 | 0.23 | 0.24 |
| 3 |  |  |  | 0.56 | 0.38 | 0.54 |  | 0.44 | 0.47 | 0.35 | 0.46 | 0.44 | 0.40 | 0.46 | 0.58 | 0.51 | 0.40 | 0.46 | 0.50 | 0.53 | 0.59 | 0.58 | 0.58 | 0.47 | 0.55 |
| 4 |  |  |  | 0.82 | 0.48 | 1.14 |  | 0.80 | 0.80 | 0.74 | 0.76 | 0.79 | 0.81 | 0.84 | 0.88 | 0.85 | 0.88 | 0.67 | 0.78 | 0.90 | 0.94 | 0.94 | 0.89 | 0.85 | 0.97 |
| 5 |  |  |  | 1.25 |  | 1.48 |  | 1.38 | 1.23 | 1.31 | 1.37 | 1.56 | 1.33 | 1.28 | 1.30 | 1.27 | 1.32 | 1.13 | 1.12 | 1.63 | 1.59 | 1.62 | 1.43 | 1.34 | 1.75 |
| 6 |  |  |  | 1.98 |  | 1.98 |  | 2.05 | 1.81 | 1.80 | 1.88 | 1.94 | 1.90 | 1.75 | 1.70 | 1.76 | 1.89 | 2.06 | 2.08 | 2.63 | 1.81 | 2.07 | 1.85 | 1.91 | 2.33 |
| 7 |  |  |  | 2.64 |  | 2.28 |  | 2.25 | 2.70 | 2.35 | 2.10 | 2.57 | 2.77 | 2.19 | 1.86 | 2.33 | 2.99 | 3.25 | 3.23 | 3.39 | 4.25 | 2.62 | 2.76 | 2.87 | 3.02 |
| 8 |  |  |  | 5.08 | 5.44 | 2.93 |  | 3.52 | 2.58 | 2.82 | 3.04 | 3.65 | 3.48 | 3.09 | 2.78 | 2.55 | 3.16 | 4.20 | 3.44 | 4.47 | 4.60 | 3.90 | 5.16 | 3.23 |  |
| 9 |  |  |  | 5.80 | 6.65 | 4.01 |  | 4.11 | 4.20 | 3.80 | 3.02 | 3.67 | 4.27 | 3.68 | 4.93 |  |  |  | 3.20 |  |  | 6.63 | 4.85 | 3.72 |  |
| 10 |  |  |  | 11.76 | 8.34 | 4.39 |  | 6.13 | 5.48 | 7.54 | 3.48 | 6.83 | 4.56 | 3.95 | 3.35 | 6.44 |  |  |  |  |  | 8.28 |  |  |  |
| 11 |  |  |  | 11.56 | 7.49 | 8.33 |  | 5.31 | 4.46 | 7.40 | 7.47 | 7.46 | 5.85 | 4.47 | 4.95 |  |  |  |  |  |  | 5.63 |  | 8.26 |  |
| 12 |  |  |  | 18.55 | 10.65 | 9.90 |  | 12.08 | 10.51 | 5.53 | 9.41 | 11.40 | 6.64 | 5.31 | 8.65 |  |  |  |  |  |  | 10.05 |  | 12.80 | 9.95 |

Table 36. Mean Fulton's condition (gutted weight) at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2004. Highlighted entries are based on fewer than 5 aged fish. There were no surveys in Div. 3L in 1978-1980 and 1984.

Division 2 J

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllllllllllllllll}2 & 0.733 & 0.718 & 0.738 & 0.781 & 0.735 & 0.731 & 0.713 & 0.722 & 0.718 & 0.730 & 0.753 & 0.745 & 0.714 & 0.710 & 0.666 & 0.741 & 0.803 & 0.740 & 0.733 & 0.743 & 0.733 & 0.729 & 0.721 & 0.728 & 0.742 & 0.725 & 0.768\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}3 & 0.729 & 0.755 & 0.788 & 0.811 & 0.775 & 0.772 & 0.758 & 0.741 & 0.779 & 0.813 & 0.786 & 0.764 & 0.741 & 0.736 & 0.710 & 0.758 & 0.755 & 0.743 & 0.755 & 0.758 & 0.776 & 0.754 & 0.734 & 0.759 & 0.751 & 0.741 & 0.772\end{array}$




 $\begin{array}{llllllllllllllllll}8 & 0.722 & 0.695 & \mathbf{0 . 7 4 3} & 0.809 & 0.737 & 0.789 & 0.732 & 0.761 & 0.776 & 0.836 & 0.815 & 0.806 & 0.762 & 0.705\end{array}$
$\begin{array}{llllllllllllllllll}9 & 0.764 & 0.823 & 0.806 & 0.749 & 0.729 & 0.789 & 0.751 & 0.669 & 0.849 & 0.768 & 0.811 & 0.793 & 0.771 & 0.738\end{array}$

| 10 | 0.779 | 0.794 | 0.814 | 0.859 | 0.814 | 0.758 | 0.755 | 0.724 | 0.794 | 0.772 | 0.813 | 0.874 | 0.748 | 0.783 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |




## Division 3K

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.683 | 0.707 | 0.708 | 0.793 | 0.722 | 0.725 | 0.685 | 0.730 | 0.749 | 0.768 | 0.753 | 0.716 | 0.711 | 0.733 | 0.735 | 0.727 | 0.741 | 0.733 | 0.739 | 0.744 | 0.723 | 0.735 | 0.735 | 0.732 | 0.737 | 0.725 | 0.747 | $\begin{array}{lllllllllllllllllllllllllllll} & 0.719 & 0.741 & 0.786 & 0.793 & 0.815 & 0.742 & 0.719 & 0.744 & 0.714 & 0.757 & 0.785 & 0.750 & 0.714 & 0.719 & 0.700 & 0.741 & 0.767 & 0.744 & 0.746 & 0.758 & 0.758 & 0.761 & 0.738 & 0.728 & 0.746 & 0.736 & 0.771\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}4 & 0.747 & 0.757 & 0.805 & 0.769 & 0.758 & 0.781 & 0.733 & 0.731 & 0.774 & 0.772 & 0.796 & 0.755 & 0.724 & 0.736 & 0.711 & 0.720 & 0.768 & 0.730 & 0.753 & 0.747 & 0.761 & 0.759 & 0.740 & 0.748 & 0.751 & 0.739 & 0.762\end{array}$




 |  | 0.730 | 0.739 | 0.729 | 0.749 | 0.731 | 0.799 | 0.784 | 0.746 | 0.820 | 0.819 | 0.808 | 0.768 | 0.749 | 0.730 | 0.754 | 0.721 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | $\mathbf{0 . 7 7 3}$ | 0.746 | 0.687 | 0.751 | 0.732 | 0.809 |  | 0.764 | 0.795 | 0.788 | 0.833 | 0.779 | 0.749 | 0.738 | 0.736 | $\mathbf{0 . 7 3 2}$ |
| $\mathbf{0 . 7 9 9}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| 9 | 0.784 | 0.738 | 0.758 | 0.847 | 0.721 | 0.760 | 0.781 | 0.841 | 0.821 | 0.796 | 0.819 | 0.791 | 0.732 | 0.755 | $\mathbf{0 . 6 7 9}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

0.795

| 10 | 0.744 | 0.761 | 0.795 | 0.756 | 0.766 | 0.762 | 0.717 | 0.744 | 0.849 | 0.811 | 0.831 | 0.793 | 0.749 | 0.776 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | $\mathbf{0 . 6 4 2}$ | 0.752 | $\mathbf{0 . 8 6 1}$ | 0.836 | 0.749 | 0.838 | 0.822 | 0.778 | 0.840 | $\mathbf{0 . 8 3 2}$ | 0.788 | 0.808 | 0.771 | $\mathbf{0 . 7 4 1}$ |



## Division 3L

| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  |  |  | 0.718 | 0.707 | 0.718 |  | 0.680 | 0.769 | 0.721 | 0.748 | 0.734 | 0.716 | 0.746 | 0.744 | 0.721 | 0.750 | 0.935 | 0.772 | 0.757 | 0.744 | 0.740 | 0.715 | 0.740 | 0.749 | 0.737 | 0.763 |
| 3 |  |  |  | 0.778 | 0.803 | 0.724 |  | 0.749 | 0.765 | 0.733 | 0.781 | 0.759 | 0.734 | 0.748 | 0.801 | 0.741 | 0.784 | 0.752 | 0.749 | 0.758 | 0.751 | 0.798 | 0.757 | 0.760 | 0.762 | 0.756 | 0.786 |
| 4 |  |  |  | 0.794 | 0.765 | 0.746 |  | 0.740 | 0.757 | 0.745 | 0.730 | 0.764 | 0.729 | 0.769 | 0.788 | 0.737 | 0.741 | 0.758 | 0.770 | 0.756 | 0.748 | 0.749 | 0.762 | 0.755 | 0.757 | 0.735 | 0.754 |
| 5 |  |  |  | 0.767 |  | 0.735 |  | 0.756 | 0.790 | 0.748 | 0.781 | 0.782 | 0.752 | 0.769 | 0.795 | 0.715 | 0.758 | 0.761 | 0.760 | 0.773 | 0.814 | 0.776 | 0.750 | 0.767 | 0.785 | 0.736 | 0.725 |
| 6 |  |  |  | 0.729 |  | 0.700 |  | 0.717 | 0.781 | 0.714 | 0.796 | 0.776 | 0.742 | 0.773 | 0.796 | 0.777 | 0.776 | 0.804 | 0.806 | 0.770 | 0.751 | 0.788 | 0.754 | 0.783 | 0.739 | 0.762 | 0.871 |
| 7 |  |  |  | 0.751 |  | 0.775 |  | 0.715 | 0.816 | 0.724 | 0.741 | 0.768 | 0.763 | 0.741 | 0.793 | 0.737 | 0.775 | 0.861 | 0.847 | 0.824 | 0.748 | 0.790 | 0.771 | 0.768 | 0.776 | 0.766 | 0.723 |
| 8 |  |  |  | 0.824 | 0.767 | 0.764 |  | 0.708 | 0.730 | 0.735 | 0.758 | 0.804 | 0.777 | 0.763 | 0.723 | 0.741 | 0.725 | 0.780 | 0.825 | 0.882 | 0.861 | 0.822 | 0.806 | 0.767 |  |  | 0.740 |
| 9 |  |  |  | 0.798 | 0.800 | 0.744 |  | 0.790 | 0.775 | 0.743 | 0.781 | 0.729 | 0.773 | 0.779 | 0.803 |  |  |  | 0.939 |  |  | 0.809 | 0.743 | 0.734 |  | 0.700 | 0.834 |
| 10 |  |  |  | 0.888 | 0.827 | 0.749 |  | 0.783 | 0.808 | 0.852 | 0.746 | 0.798 | 0.785 | 0.758 | 0.743 | 0.787 |  |  |  |  |  | 0.890 |  |  |  |  | 0.851 |
| 11 |  |  |  | 0.800 | 0.807 | 0.793 |  | 0.774 | 0.775 | 0.803 | 0.736 | 0.802 | 0.795 | 0.817 | 0.814 |  |  |  |  |  |  | 0.909 |  | 0.809 |  | 0.901 |  |
| 12 |  |  |  | 0.885 | 0.771 | 0.752 |  | 0.817 | 0.811 | 0.783 | 0.828 | 0.822 | 0.792 | 0.771 | 0.808 |  |  |  |  |  |  | 0.750 |  | 0.956 | 0.813 |  |  |

Table 37. Mean liver index at age of cod sampled during autumn bottom-trawl surveys in divisions 2J, 3K and 3L in 1978-2004. Highlighted entries are based on fewer than 5 aged fish. (Instances where fewer than 5 aged fish were available are not indicated for years prior to 1995.) There were no surveys in Div. 3L in 1978-1980 and 1984.

| Division 2J |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 2 |  | 0.037 | 0.035 | 0.046 | 0.031 | 0.030 | 0.032 | 0.023 | 0.043 | 0.031 | 0.036 | 0.045 | 0.042 | 0.036 | 0.025 | 0.032 | 0.038 | 0.042 | 0.037 | 0.041 | 0.034 | 0.045 | 0.035 | 0.041 | 0.044 | 0.039 | 0.051 |
| 3 |  | 0.061 | 0.051 | 0.049 | 0.047 | 0.057 | 0.050 | 0.036 | 0.049 | 0.052 | 0.049 | 0.059 | 0.050 | 0.042 | 0.028 | 0.038 | 0.039 | 0.041 | 0.044 | 0.043 | 0.050 | 0.049 | 0.038 | 0.047 | 0.042 | 0.038 | 0.050 |
| 4 |  | 0.062 | 0.034 | 0.069 | 0.048 | 0.078 | 0.061 | 0.048 | 0.079 | 0.061 | 0.067 | 0.067 | 0.060 | 0.045 | 0.040 | 0.037 | 0.035 | 0.041 | 0.039 | 0.045 | 0.047 | 0.046 | 0.036 | 0.041 | 0.043 | 0.038 | 0.052 |
| 5 |  | 0.064 | 0.052 | 0.053 | 0.051 | 0.063 | 0.066 | 0.057 | 0.077 | 0.073 | 0.057 | 0.076 | 0.061 | 0.037 | 0.036 | 0.038 | 0.043 | 0.045 | 0.043 | 0.053 | 0.052 | 0.054 | 0.035 | 0.037 | 0.037 | 0.040 | 0.047 |
| 6 |  | 0.080 | 0.054 | 0.062 | 0.060 | 0.065 | 0.062 | 0.056 | 0.089 | 0.065 | 0.074 | 0.074 | 0.064 | 0.033 | 0.037 | 0.038 | 0.049 | 0.017 | 0.037 |  | 0.065 | 0.069 | 0.042 | 0.023 | 0.044 | 0.049 | 0.069 |
| 7 |  | 0.060 | 0.055 | 0.056 | 0.057 | 0.057 | 0.055 | 0.053 | 0.074 | 0.061 | 0.070 | 0.077 | 0.067 | 0.031 | 0.036 | 0.030 | 0.073 |  | 0.047 |  | 0.057 |  |  | 0.036 |  |  |  |
| 8 |  | 0.040 | 0.041 | 0.067 | 0.051 | 0.077 | 0.055 | 0.061 | 0.051 | 0.077 | 0.076 | 0.089 | 0.066 | 0.033 |  |  |  |  |  |  |  | 0.090 |  |  |  |  |  |
| 9 |  | 0.060 | 0.071 | 0.058 | 0.048 | 0.081 | 0.066 | 0.034 | 0.093 | 0.045 | 0.065 | 0.074 | 0.073 | 0.038 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  | 0.083 | 0.084 | 0.083 | 0.058 | 0.053 | 0.063 | 0.052 | 0.071 | 0.060 | 0.072 | 0.097 | 0.058 | 0.034 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  | 0.097 | 0.074 | 0.058 | 0.052 | 0.062 | 0.065 | 0.065 | 0.092 | 0.075 | 0.068 | 0.083 | 0.065 | 0.042 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  | 0.076 | 0.083 | 0.061 | 0.099 | 0.050 | 0.053 | 0.052 | 0.098 | 0.089 | 0.082 | 0.073 | 0.084 | 0.043 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Division 3K |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
| 2 | 0.030 | 0.019 | 0.021 | 0.040 | 0.020 | 0.024 | 0.013 | 0.035 | 0.029 | 0.029 | 0.025 | 0.032 | 0.035 | 0.037 | 0.035 | 0.042 | 0.034 | 0.045 | 0.039 | 0.040 | 0.037 | 0.046 | 0.036 | 0.042 | 0.048 | 0.038 | 0.047 |
| 3 | 0.020 | 0.033 | 0.038 | 0.044 | 0.033 | 0.039 | 0.032 | 0.053 | 0.049 | 0.046 | 0.044 | 0.047 | 0.042 | 0.044 | 0.037 | 0.043 | 0.044 | 0.046 | 0.044 | 0.045 | 0.043 | 0.052 | 0.042 | 0.041 | 0.048 | 0.039 | 0.052 |
| 4 | 0.032 | 0.054 | 0.047 | 0.041 | 0.045 | 0.052 | 0.037 | 0.053 | 0.061 | 0.049 | 0.056 | 0.056 | 0.052 | 0.052 | 0.048 | 0.045 | 0.049 | 0.047 | 0.044 | 0.045 | 0.050 | 0.054 | 0.042 | 0.044 | 0.045 | 0.041 | 0.054 |
| 5 | 0.040 | 0.066 | 0.046 | 0.035 | 0.061 | 0.047 | 0.046 | 0.054 | 0.069 | 0.056 | 0.069 | 0.057 | 0.051 | 0.054 | 0.055 | 0.051 | 0.053 | 0.050 | 0.046 | 0.049 | 0.055 | 0.052 | 0.037 | 0.039 | 0.048 | 0.044 | 0.055 |
| 6 | 0.037 | 0.062 | 0.052 | 0.054 | 0.044 | 0.035 | 0.041 | 0.054 | 0.082 | 0.064 | 0.070 | 0.071 | 0.055 | 0.052 | 0.059 | 0.058 | 0.054 | 0.048 | 0.038 |  | 0.061 | 0.055 | 0.041 | 0.053 | 0.042 |  | 0.045 |
| 7 | 0.040 | 0.061 | 0.045 | 0.043 | 0.049 | 0.035 | 0.047 | 0.044 | 0.082 | 0.078 | 0.061 | 0.071 | 0.057 | 0.043 | 0.064 | 0.050 | 0.065 |  | 0.059 |  | 0.070 | 0.056 | 0.040 |  | 0.044 |  |  |
| 8 | 0.057 | 0.058 | 0.049 | 0.049 | 0.052 | 0.066 |  | 0.055 | 0.074 | 0.051 | 0.078 | 0.072 | 0.066 | 0.046 | 0.059 | 0.032 | 0.071 |  |  | 0.032 | 0.138 |  |  | 0.037 |  |  | 0.068 |
| 9 | 0.059 | 0.055 | 0.045 | 0.070 | 0.042 | 0.046 | 0.047 | 0.075 | 0.064 | 0.053 | 0.059 | 0.072 | 0.060 | 0.052 | 0.061 |  |  | 0.036 |  |  | 0.073 | 0.113 |  | 0.030 |  |  |  |
| 10 | 0.062 | 0.061 | 0.047 | 0.059 | 0.057 | 0.049 | 0.037 | 0.049 | 0.081 | 0.070 | 0.069 | 0.071 | 0.064 | 0.054 |  |  |  |  |  |  |  | 0.096 |  |  |  |  | 0.097 |
| 11 | 0.033 | 0.066 | 0.051 | 0.077 | 0.055 | 0.063 | 0.065 | 0.066 | 0.080 | 0.091 | 0.073 | 0.075 | 0.062 | 0.038 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 | 0.071 | 0.080 | 0.066 | 0.066 | 0.062 | 0.024 | 0.046 | 0.052 | 0.097 | 0.073 | 0.070 | 0.071 | 0.079 | 0.034 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Division 3L



Table 38. Central inshore SPA. Catch numbers at age (thousands). The $10+$ group is the sum of ages 10-20.

| C@A |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $10+$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 1995 | 0.03 | 5.73 | 29.88 | 72.78 | 51.24 | 19.55 | 5.50 | 0.90 | 0.39 |
| 1996 | 0.43 | 15.07 | 85.68 | 233.86 | 323.85 | 75.09 | 11.87 | 2.18 | 0.82 |  |
|  | 1997 | 0.02 | 7.29 | 24.98 | 57.25 | 70.89 | 110.48 | 19.19 | 2.26 | 0.77 |
|  | 1998 | 2.08 | 77.77 | 174.35 | 316.19 | 546.07 | 320.19 | 190.29 | 51.74 | 14.92 |
| 1999 | 5.63 | 60.32 | 191.65 | 508.01 | 609.21 | 912.76 | 306.12 | 222.13 | 51.08 |  |
| 2000 | 3.89 | 87.34 | 168.98 | 270.52 | 297.39 | 244.20 | 219.58 | 114.07 | 141.39 |  |
| 2001 | 7.91 | 162.85 | 500.44 | 507.82 | 436.73 | 266.27 | 135.33 | 208.60 | 208.99 |  |
| 2002 | 4.86 | 126.73 | 174.43 | 239.12 | 218.55 | 179.80 | 99.83 | 69.67 | 215.31 |  |
| 2003 | 0.13 | 7.93 | 9.04 | 16.47 | 45.82 | 39.89 | 25.69 | 21.34 | 97.45 |  |
|  | 2004 | 0.87 | 9.04 | 17.78 | 22.62 | 30.34 | 33.71 | 21.76 | 9.94 | 15.49 |

Table 39. Central inshore SPA. Sentinel survey catch rate at age from three gears.

| Sent_GN_5.5 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1995.5 | 0.000 | 0.041 | 1.546 | 2.153 | 0.997 | 0.443 | 0.074 |
| 1996.5 | 0.047 | 0.234 | 1.740 | 7.743 | 2.244 | 0.522 | 0.106 |
| 1997.5 | 0.018 | 0.124 | 1.930 | 3.658 | 6.590 | 1.452 | 0.149 |
| 1998.5 | 0.074 | 0.214 | 2.061 | 7.319 | 5.469 | 3.036 | 0.809 |
| 1999.5 | 0.027 | 0.153 | 1.393 | 2.355 | 3.681 | 1.145 | 0.637 |
| 2000.5 | 0.024 | 0.105 | 1.098 | 2.058 | 1.383 | 1.607 | 0.601 |
| 2001.5 | 0.017 | 0.097 | 0.508 | 1.255 | 0.758 | 0.344 | 0.477 |
| 2002.5 | 0.014 | 0.057 | 0.758 | 0.994 | 0.780 | 0.334 | 0.205 |
| 2003.5 | 0.057 | 0.132 | 0.475 | 1.598 | 1.056 | 0.388 | 0.190 |
| 2004.5 | 0.023 | 0.184 | 1.089 | 1.740 | 1.481 | 0.507 | 0.195 |
|  |  |  |  |  |  |  |  |
| Sent GN_3.25 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1996.5 | 10.184 | 21.767 | 8.693 | 9.129 | 0.367 | 0.046 | 0.000 |
| 1997.5 | 6.335 | 12.962 | 5.351 | 5.124 | 4.132 | 0.463 | 0.019 |
| 1998.5 | 7.993 | 4.387 | 4.889 | 8.715 | 4.685 | 1.924 | 0.459 |
| 1999.5 | 9.591 | 6.415 | 4.613 | 1.882 | 1.969 | 0.365 | 0.222 |
| 2000.5 | 9.608 | 7.766 | 3.553 | 1.831 | 0.528 | 0.476 | 0.189 |
| 2001.5 | 9.187 | 8.108 | 2.798 | 1.365 | 0.320 | 0.091 | 0.131 |
| 2002.5 | 12.759 | 6.158 | 1.940 | 1.040 | 0.345 | 0.048 | 0.032 |
| 2003.5 | 21.921 | 9.749 | 2.883 | 1.395 | 0.563 | 0.093 | 0.029 |
| 2004.5 | 8.916 | 10.022 | 5.234 | 1.833 | 0.563 | 0.108 | 0.041 |
|  |  |  |  |  |  |  |  |
| Sent_LT | 3 | 4 | 5 | 6 | 7 |  |  |
| 1995.5 | 8 | 62 | 56 | 19 | 5 |  |  |
| 1996.5 | 21 | 38 | 51 | 29 | 5 |  |  |
| 1997.5 | 21 | 48 | 76 | 44 | 41 |  |  |
| 1998.5 | 19 | 34 | 25 | 15 | 6 | 1 |  |
| 1999.5 | 11 | 21 | 27 | 6 | 1 |  |  |
| 2000.5 | 6 | 9 | 8 | 5 | 1 |  |  |
| 2001.5 | 23 | 30 | 12 | 3 | 1 |  |  |
| 2002.5 | 14 | 23 | 14 | 7 | 1 | 1 |  |
| 2003.5 | 27 | 68 | 33 | 5 | 1 |  |  |
| 2004.5 | 35 | 53 | 25 | 23 | 1 |  |  |
|  |  |  |  |  |  |  |  |

Table 40. Central inshore SPA. Parameter estimates and associated standard error for the ADAPT model fit for inshore catch and survey indices.

| Parameter | Estimate | Standard Error | Bias | Rel Error | Rel Bias |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{N}[2005$ 4] | 5624.82 | 1776.90 | 310.94 | 0.32 | 0.06 |
| $\mathrm{~N}[2005$ 5] | 5541.387 | 1259.63 | 172.25 | 0.23 | 0.03 |
| $\mathrm{~N}[2005$ 6] | 2337.038 | 443.84 | 54.08 | 0.19 | 0.02 |
| $\mathrm{~N}[20057]$ | 1113.029 | 192.77 | 22.08 | 0.17 | 0.02 |
| $\mathrm{~N}[2005$ 8] | 461.2986 | 84.64 | 9.56 | 0.18 | 0.02 |
| $\mathrm{~N}[20059]$ | 209.3849 | 44.33 | 5.20 | 0.21 | 0.02 |
| $\mathrm{~N}[2005$ 10] | 250.7877 | 69.52 | 9.24 | 0.28 | 0.04 |
| Sent 5.5 GN_3 | $4.93 \mathrm{E}-06$ | $9.11 \mathrm{E}-07$ | $5.73 \mathrm{E}-08$ | 0.18 | 0.01 |
| Sent 5.5 GN_4 | $2.76 \mathrm{E}-05$ | $4.72134 \mathrm{E}-06$ | $2.62 \mathrm{E}-07$ | 0.17 | 0.01 |
| Sent 5.5 GN_5 | 0.000401 | $6.83601 \mathrm{E}-05$ | $3.76 \mathrm{E}-06$ | 0.17 | 0.01 |
| Sent 5.5 GN_6 | 0.001507 | 0.000259426 | $1.44 \mathrm{E}-05$ | 0.17 | 0.01 |
| Sent 5.5 GN_7 | 0.002208 | 0.000390968 | $2.27 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 5.5 GN_8 | 0.001777 | 0.000327538 | $2.04 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 5.5 GN_9 | 0.001185 | 0.000229062 | $1.56 \mathrm{E}-05$ | 0.19 | 0.01 |
| Sent LT_3 | 0.002576 | 0.000450144 | $2.57 \mathrm{E}-05$ | 0.17 | 0.01 |
| Sent LT_4 | 0.007808 | 0.001335907 | $7.42 \mathrm{E}-05$ | 0.17 | 0.01 |
| Sent LT_5 | 0.009398 | 0.00160158 | $8.82 \mathrm{E}-05$ | 0.17 | 0.01 |
| Sent LT_6 | 0.006804 | 0.001171008 | $6.5 \mathrm{E}-05$ | 0.17 | 0.01 |
| Sent LT_7 | 0.002918 | 0.000516535 | $3 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 3.25 GN_3 | 0.001741 | 0.000321904 | $2.02 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 3.25 GN_4 | 0.002141 | 0.000386648 | $2.37 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 3.25 GN_5 | 0.001613 | 0.000289342 | $1.76 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 3.25 GN_6 | 0.001605 | 0.000290671 | $1.78 \mathrm{E}-05$ | 0.18 | 0.01 |
| Sent 3.25 GN_7 | 0.00097 | 0.000180722 | $1.16 \mathrm{E}-05$ | 0.19 | 0.01 |
| Sent 3.25 GN_8 | 0.000418 | $8.10712 \mathrm{E}-05$ | $5.56 \mathrm{E}-06$ | 0.19 | 0.01 |
| Sent 3.25 GN_9 | 0.000317 | $6.87077 \mathrm{E}-05$ | $5.69 \mathrm{E}-06$ | 0.22 | 0.02 |

Table 41. Central inshore SPA. Estimated abundance at age (bias corrected) in thousands. Shaded values indicate cohorts without index data; geometric means are used to fill these cohorts.

| Pop \#s Bias A | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1995 | 11745 | 17133 | 8217 | 8919 | 2119 | 504 | 206 | 150 |
| 1996 | 9906 | 7873 | 11480 | 5484 | 5919 | 1379 | 322 | 133 |

Table 42. Central inshore SPA. Estimated fishing mortality at age (bias corrected).

|  |  |  |  |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| F Bias Adj(anc | 2 |  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| Fbar(5-10) |  |  |  |  |  |  |  |  |  |  |
| 1995 | 0.000 | 0.000 | 0.004 | 0.010 | 0.030 | 0.049 | 0.036 | 0.008 | 0.005 | 0.023 |
| 1996 | 0.000 | 0.002 | 0.009 | 0.053 | 0.069 | 0.068 | 0.046 | 0.018 | 0.012 | 0.044 |
| 1997 | 0.000 | 0.001 | 0.006 | 0.009 | 0.025 | 0.037 | 0.027 | 0.012 | 0.008 | 0.020 |
| 1998 | 0.000 | 0.016 | 0.049 | 0.115 | 0.139 | 0.186 | 0.101 | 0.118 | 0.079 | 0.123 |
| 1999 | 0.001 | 0.014 | 0.061 | 0.243 | 0.427 | 0.461 | 0.342 | 0.204 | 0.136 | 0.302 |
| 2000 | 0.001 | 0.020 | 0.060 | 0.143 | 0.273 | 0.384 | 0.238 | 0.257 | 0.172 | 0.245 |
| 2001 | 0.001 | 0.033 | 0.187 | 0.323 | 0.454 | 0.539 | 0.486 | 0.476 | 0.318 | 0.433 |
| 2002 | 0.000 | 0.020 | 0.055 | 0.159 | 0.282 | 0.435 | 0.512 | 0.657 | 0.440 | 0.414 |
| 2003 | 0.000 | 0.001 | 0.002 | 0.008 | 0.051 | 0.093 | 0.126 | 0.237 | 0.375 | 0.149 |
| 2004 | 0.000 | 0.001 | 0.003 | 0.008 | 0.022 | 0.059 | 0.084 | 0.081 | 0.081 | 0.056 |

Table 43. Input parameters for deterministic projection.

## Catch Options

0t, 2500t, 5000t

| Recruitment at age 2 |  |
| :--- | ---: |
| Low | 7166 |
| Medium | 12586 |
| High | 17155 |

## Natural Mortality

| M | 0.4 |
| :--- | :--- |

Projection PR at age

| Age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0.001 | 0.043 | 0.178 | 0.397 | 0.712 | 1.000 | 0.793 | 0.902 |

Stock Weights at age

| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.321 | 0.465 | 0.711 | 1.153 | 1.757 | 2.413 | 2.972 | 3.582 | 4.191 |


\section*{Catch Weights at age <br> | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0.362 | 0.560 | 0.868 | 1.524 | 2.143 | 2.784 | 3.318 | 3.943 |}

Table 44a. Deterministic projections. Percent change from 2005 to 2006 in spawner biomass relative to the 2005 estimate ( $12,800 \mathrm{t}$ ) under three recruitment options (see text), and three fixed catch options.

| \% Change in SSB between 2005-2006 (Jan.1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Catch Option |  |  |
|  |  | 0 t | $2,500 \mathrm{t}$ | $5,000 \mathrm{t}$ |
|  |  | $26 \%$ | $9 \%$ | $-7 \%$ |
|  |  | Low | $-6 \%$ |  |
|  | Medium | $27 \%$ | $10 \%$ | $-6 \%$ |
|  | High | $27 \%$ | $11 \%$ | -5 |

Table 44b. Deterministic projections. Percent change from 2005 to 2008 in spawner biomass relative to the 2005 estimate ( $12,800 \mathrm{t}$ ) under three recruitment options (see text), and three fixed catch options.

| \% Change in SSB between 2005-2008 (Jan.1) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Catch Option |  |  |
|  |  | 0t | 2,500t | 5,000t |
|  | Low | 35\% | -8\% | -50\% |
|  | Medium | 57\% | 14\% | -28\% |
|  | High | 75\% | 32\% | -10\% |



Fig. 1a. Map of the Labrador-Newfoundland area, illustrating major geographic features and NAFO Divisions and Subdivisions.


Fig. 1b. Map of the Labrador-Newfoundland area, illustrating the location of Canada's 200 nautical mile limit and various banks and bays. The bays, from north to south, are White Bay (WB), Notre Dame Bay (NDB), Bonavista Bay (BB), Trinity Bay (TB) and Conception Bay (CB).


Fig. 1c. Map of the 2J3KL cod stock area, showing physiographic features and NAFO Divisions.


Fig. 1d. Map of the 2J3KL cod stock area, showing commercial fishery statistical unit areas.


Fig. 1e. Map of the 2J3KL cod stock area, showing commercial fishery areas and statistical sections.


Fig. 1f. Map of the 2J3KL cod stock area, showing sentinel survey sites.


Fig. 1g. Map of the east coast of Newfoundland, indicating the location of Smith Sound within Trinity Bay and oceanographic Station 27 off St. John’s.


Fig. 1h. Map of the inshore of eastern Newfoundland, indicating the locations of the northern, central and southern inshore areas as defined for the present assessment. Also indicated are the locations of Smith Sound, the Avalon Peninsula, and the major bays: White Bay (WB), Notre Dame Bay (NDB), Bonavista Bay (BB), Trinity Bay (TB), Conception Bay (CB) and St. Mary’s Bay (SMB). Placentia Bay (PB) is in Subdiv. 3Ps.


Fig. 2. Cod in Div. 2J3KL. Total allowable catches (TACs) and landings (thousands of tons) by non-Canadian fleets and Canadian fleets, with the latter divided into mobile gear (offshore) and fixed gear (mainly inshore).


Fig. 3. Cod in Div. 2J3KL. Landings (thousands of tons) by Division.


Fig. 4. Cod in Div. 2J3KL. Fixed gear landings (thousands of tons) by gear type.


Fig. 5. Cod in Div. 3L. Fixed gear landings (thousands of tons) in Div. 3L (1975-1991), highlighting landings by gillnet and by other gears combined, with the gillnet landings subdivided into inshore and offshore.


Fig. 6. Cod in Div. 2J3KL. Total allowable catches (TACs) and inshore fixed-gear landings (thousands of tons) for the inshore fishery (1995-2004). The landings are subdivided into sentinel, index/commercial (including by-catch) and food/recreational. Most of the landings in 2003 came from a mass mortality of cod in Smith Sound, Trinity Bay in April.


Fig. 7a. The estimated catch at age, all gears combined and gillnet and linetrawl separately, in 2004.


Fig. 7b. The estimated catch at age, all gears combined, in 2004. The upper panel illustrates the catch from the whole of 2J3KL. The middle and lower panels illustrate the catch in the central and southern inshore areas as defined for the present assessment.


Fig. 8. The estimated catch at age for all gears combined in 1998-2004.


Fig. 9. Mean weights-at-age calculated from mean lengths-at-age in the catch, 1972-2004.


Fig. 10. Strata used for research bottom-trawl surveys in Division 2J.


Fig. 11. Strata used for research bottom-trawl surveys in Division 3K.


Fig. 12. Strata used for research bottom-trawl surveys in Division 3L.


Fig. 13. Strata on the eastern side of Div. 3L. Those indicated by shading and numbering were not surveyed during the 2004 autumn research bottom-trawl survey.


Figure 14. Trend in the index of population abundance (above) and biomass (below) computed by areal expansion of the stratified arithmetic mean catch per tow during autumn bottom-trawl surveys in 2J3KL. The scales on the right panels illustrate just the lower $10 \%$ of the left panels, in order that data from 1992-2004 may be more readily discerned. Note that the survey trawl was changed in 1995, and data collected prior to 1995 have been converted so as to be equivalent to data collected from 1995 onward.


Fig. 15. Indices of abundance (top) and biomass (bottom) of cod in strata deeper than 500 m during autumn bottom-trawl surveys in divisions 2J (left) and 3K (right). Years highlighted in black are those in which at least some strata were fished after December. Only years since the introduction of the Campelen trawl are illustrated.


Fig. 16. Cod distribution (kg per standard tow) during the autumn surveys in divisions 2J3KL. The left panel (from Lilly 1994) illustrates the average catch per 30 min tow with the Engels trawl within areas of 10' latitude amd 20' longitude. All tows during 1980-1988 were combined. The right panel shows the catches per 15 min tow with the Campelen trawl during 2002.


Fig. 17a. Cod distribution (number per standard tow) during the autumn surveys in divisions 2J3KL in 1995 and 1996.


Fig. 17b. Cod distribution (number per standard tow) during the autumn surveys in divisions 2J3KL in 1997 and 1998.


Fig. 17c. Cod distribution (number per standard tow) during the autumn surveys in divisions 2J3KL in 1999 and 2000.


Fig. 17d. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 2001 and 2002.


Fig. 17e. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 2003 and 2004.


Fig. 18a. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 1995, showing those stations occupied during 1995 (left panel) and those occupied during 1996 (right panel).


Fig. 18b. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 2002, showing those stations occupied during 2002 (left panel) and those occupied during 2003 (right panel).


Fig. 18c. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 2003, showing those stations occupied during 2003 (left panel) and those occupied during 2004 (right panel).


Fig. 18d. Cod distribution (number per standard tow) during the autumn survey in divisions 2J3KL in 2004, showing those stations occupied during 2004 (left panel) and those occupied during 2005 (right panel).


Fig. 19. Indices of abundance (above) and biomass (below) from spring bottom-trawl surveys in Division 3L. The left panels illustrate all estimates from 1985 to 2004. The right panels illustrate just the lower $5 \%$ of the left panels, in order that the 1992-2004 data may be more readily discerned.


Fig. 20a. Geographic distribution (number per standard tow) during the spring surveys in divisions 3LNO in 1996-1999.


Fig. 20b. Geographic distribution (number per standard tow) during the spring surveys in divisions 3LNO in 2000-2003.


Fig. 21. Geographic distribution (number per standard tow) during the spring survey in divisions 3LNO in 2004.


Fig. 22. Standardized catch rates from sentinel surveys in 2 J 3 KL combined; gillnets ( $51 / 2$ inch mesh) above and linetrawls below.


Fig. 23. Standardized catch rate at age for three gear types fished by the sentinel surveys in 1995-2004.


Fig. 24. Standardized catch rates at ages 3 and 4 combined from 3¼ inch sentinel gillnet surveys in 2J3KL combined.


Fig. 25. Standardized catch rates from sentinel $51 / 2$ inch gillnet surveys in the northern, central and southern areas of the inshore as defined during this assessment (Fig. 1h).


Fig. 26. Age at $50 \%$ maturity ( $\pm 95 \%$ CI) by cohort for female cod in divisions 2J3KL combined based on sampling during autumn research bottom-trawl surveys.


Fig. 27. Estimated percentage mature at ages 3-8 for female cod in divisions 2J3KL combined. The percentage mature at age estimated from sampling during the autumn research bottom-trawl survey in year t is displayed for spawning in year $\mathrm{t}+1$.


Fig. 28. Mean lengths at ages 2-8 of cod in Divisions 2J, 3K and 3L in 1978-2004, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Division 3L in 1978-1980 and 1984.


Fig. 29. Mean weights at ages 2-8 of cod in Divisions 2J, 3K and 3L in 1978-2004, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Division 3L in 1978-1980 and 1984.


Fig. 30. Mean lengths and weights at ages 4 and 6 of cod in Divisions 2J, 3K and 3L in 19782004, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Division 3L in 1978-1980 and 1984.


Fig. 31. Mean Fulton's condition (gutted weight) at ages 3-6 of cod in Divisions 2J, 3K and 3L in 1978-2004, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish are not plotted. There were no surveys in Division 3L in 1978-1980 and 1984.


Fig. 32. Mean liver index at ages 3-6 of cod in Divisions 2J, 3K and 3L in 1978-2004, as determined from sampling during bottom-trawl surveys in autumn. Values calculated from fewer than 5 aged fish in 1995-1997 are not plotted. There were no surveys in Division 3L in 19781980 and 1984.


Fig. 33. Trend in the index of spawner stock biomass (SSB) in the offshore of 2J3KL, computed from population estimates at age (from areal expansion of the stratified arithmetic mean catch at age per tow during autumn bottom-trawl surveys), the proportion mature at age, and the Jan. 1 weight at age computed from commercial weights at age. The catch in autumn of year $t$ has been used to compute biomass on Jan. 1 of year $\mathrm{t}+1$. (This is why the strong positive anomaly appears in 1987 instead of in 1986.) Note that the survey trawl was changed in 1995, and data collected prior to 1995 have been converted so as to be equivalent to data collected from 1995 onward.


Fig. 34. Mean catch per tow of the 1976-2003 year-classes at ages 1-3 during autumn bottomtrawl surveys in divisions 2J, 3K and 3L combined. Data obtained prior to the introduction of the Campelen trawl in 1995 are shown as actual (unconverted) numbers (from Shelton et al. 1996) and in numbers converted to Campelen equivalents.


Fig. 35. Instanteous total mortality rates (Z) experienced by fish aged 2 to 15 (only selected ages illustrated) as calculated from catch rate at age per tow during the autumn research bottom-trawl surveys in 2J3KL combined in 1983-2004. For example, the value of 2.16 for age 6 in 1997 is the mortality experienced by the 1991 year-class from age 5 in the autumn of 1996 to age 6 in the autumn of 1997.


Fig. 36. Age specific annual mortality rate (proportion dying from one year to the next) calculated from mean catch at age per tow during the autumn bottom-trawl surveys in 2J3KL. As an example, in the age 4 panel, the value of 0.85 in 1994 is the mortality experienced by the 1990 year-class from age 3 in 1993 to age 4 in 1994. The line is a 3 -year moving average. Data points less than -0.2 , which occurred only before 1990, are not shown. Note that the high level of variability, especially prior to the stock collapse, is a reflection of the high among-year variability in the surveys. The most extreme instance was the anomalously high index value in 1986, which resulted in the appearance of production of fish (negative mortality) from 1985 to 1986 and the appearance of very high mortality from 1986 to 1987 . Note as well that the rates should be interpreted as indicators of trends over time, rather than absolute values. Rates calculated for younger ages (e.g. from age 3 to age 4) may underestimate mortality for two reasons: the proportion of a year-class available to the survey increases with age as the fish move to the offshore from inshore nursery grounds, and the proportion of the available fish caught by the trawl increases with fish length. The latter phenomenon was especially true for the trawl that was used prior to 1995. Although the catch rates from that trawl have been adjusted to those of the new trawl with a length-based conversion formula, the success of the conversion may have declined with decreasing fish length because of an increase in the proportion of sets where fish were available but the catch was nil.

## Released in 3K_IN



## Recapture Year

Fig. 37. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3K_IN, and recaptured in 3K_IN and 3L_INN. M=0 in both regions. The symbols denote release years: $\bigcirc 1997, \triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.

## Released in 3L_INN



## Recapture Year

Fig. 38. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3L_INN, and recaptured in 3K_IN and 3L_INN. M=0 in both regions. The symbols denote release years: $\bigcirc$ 1997, $\triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.

## Released in 3K_IN



## Recapture Year

Fig. 39. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3K_IN, and recaptured in $3 \mathrm{~K} \_I N$ and $3 \mathrm{~L} \_I N N$. $\mathrm{M}=0.8$ in $3 \mathrm{~K} \_I N N$ and $\mathrm{M}=0.4$ in 3L_INN. The symbols denote release years: $\bigcirc 1997, \triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.

## Released in 3L_INN



## Recapture Year

Fig. 40. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3L_INN, and recaptured in $3 \mathrm{~K} \_$IN and 3L_INN. $\mathrm{M}=0.8$ in $3 \mathrm{~K} \_I N N$ and $\mathrm{M}=0.4$ in 3L_INN. The symbols denote release years: $\bigcirc 1997, \triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.

## Released in 3K_IN



## Recapture Year

Fig. 41. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3K_IN, and recaptured in $3 \mathrm{~K} \_I N$ and $3 \mathrm{~L} \_I N N$. $\mathrm{M}=0.5$ in $3 \mathrm{~K} \_I N N$ and $\mathrm{M}=0.2$ in 3L_INN. The symbols denote release years: $\bigcirc 1997, \triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.


## Recapture Year

Fig. 42. Annual tag-recapture residuals (square root observed minus predicted) for cod tagged in 3L_INN, and recaptured in $3 \mathrm{~K} \_$IN and 3L_INN. $\mathrm{M}=0.5$ in $3 \mathrm{~K} \_I N N$ and $\mathrm{M}=0.2$ in 3L_INN. The symbols denote release years: $\bigcirc 1997, \triangle 1998,+1999, \times 2000, \diamond 2001, \nabla 2002$. Trends in 2003-04 are discounted because of the low numbers of returns in these years.


Fig. 43. Central inshore SPA. Estimates of exploitable (4+) biomass (tons).


Fig. 44. Central inshore SPA. Estimates of spawner biomass (tons).


Fig. 45. Central inshore SPA. Estimated fishing mortality (average ages 5-10+).


Fig. 46. Central inshore SPA. Estimated recruitment (age 3; thousands).

## Mean Squared Residual



Fig. 47a. Central inshore SPA. Mean squared residual for each index-age.


Fig. 47b. Central inshore SPA. ADAPT residuals: Observed and predicted survey indices.


Fig. 47c. Central inshore SPA. ADAPT residuals: Annual residuals for each index, with symbol=age.


Fig. 48a. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming low recruitment levels in the projection period.


Fig. 48b. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming medium recruitment levels in the projection period.


Fig. 48c. Projected trajectory (deterministic) of spawner biomass under three catch options, assuming high recruitment levels in the projection period.

## Appendix 1. Objectives for the assessment

The assessment of 2J3KL cod is the result of a request for science advice from the Fisheries and Aquaculture Management (FAM) Branch - Newfoundland and Labrador Region. The Terms of Reference for the assessment were as follows:

- Review the evidence regarding whether populations of cod currently inhabiting inshore waters are self-sustaining and distinct from populations that historically overwintered and spawned in the offshore and migrated seasonally to the inshore.
- Assess current status of offshore populations, inshore populations and the stock as a whole. In particular, assess current spawning biomass, total (age 3+) biomass, exploitation rate, natural mortality and biological characteristics (including age composition, size at age, age at maturity, and distribution). Describe these variables in relation to historic observations.
- Highlight major sources of uncertainty in the assessment, and where appropriate, consider alternative analytical formulations of the assessment.
- To the extent possible with available information, provide information on the strengths of year-classes expected to enter the exploitable populations in the next 1-3 years.
- Assess the implications of inshore fishery removals varying from zero to $5,000 \mathrm{t}$ annually in 2005 and the medium term. Implications are to be assessed with respect to growth of inshore populations, growth of offshore populations, and recovery of the stock as a whole.
- Assess geographical and seasonal variability in the density and migration patterns of cod in the inshore, and the extent to which such variability affects the quantity of cod available to fish harvesters both regionally and seasonally. What are the implications for regional vulnerability to exploitation?
- The assessment will be conducted in manner which is inclusive of the principles of the precautionary approach, which acknowledges that caution must be exercised to safeguard fisheries resources and ocean ecosystems. The precautionary approach recognizes that the absence of full scientific certainty shall not be used as a reason to postpone decisions where there is risk of serious or irreversible harm.


## Appendix 2. Management regulations during 1996-2002

Table 1 summarizes management regulations in place during the five years of the inshore index/commercial fishery (1998-2002).
Table 2 provides details regarding opening and closing dates for individual geographic areas of the inshore during the 2002 fishery.
Table 3 summarizes management regulations for the recreational/food fishery in 1996-2002.

Appendix 2. Table 1. Management regulations for the inshore index/commercial fishery in Div. 2J3KL in 1998-2002 (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

| Management | 1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  <br> Fishing Regime | $$ | $$ | $$ | $$ | Same |
| Fishing Restrictions | - Core fishers only to participate. <br> - Fishers limited to the Lobster Fishing Area of their homeport (some exceptions for fishers near boundaries). <br> - Fishing restricted to less than 12 miles from land. | - Fishers limited to NAFO division of their homeport. <br> - $\quad$ Smith Sound and 5 mile buffer zone limited to residents. | - Fishers with access to Northern shrimp out of the fishery. <br> - Efforts to limit concentration of effort around Cape Bonavista (3L split N/S). | Same | Same |
| Fishing Gear | Gillnets <br> - Min $51 / 2$ inch mesh <br> - 5 nets @ 50 fathoms <br> - Gear tagging <br> Longlines <br> - \#11 circle hook or 16J <br> - 1,000 hooks | Gillnets <br> - Mesh size $5 ½$ - $61 / 2$ <br> inch <br> - 5 nets @ 50 fathoms <br> Handlines <br> - \#11 circle hook <br> - Max 3 per line <br> Longlines <br> - \#11 circle hook <br> - 2,000 hooks <br> Gear tending requirements. | $\begin{aligned} & \text { Gillnets } \\ & \text { - } 6 \text { nets permitted } \end{aligned}$ | Gillnets not permitted after September 30. | Same |
| By-Catch | - All cod charged against IQ. <br> - When IQ taken, all groundfish fisheries closed to fisher. | Same | Same | Same | Same |

cont'd

Appendix 2. Table 1 (cont’d)

| Management | 1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Small Fish Protocol | - Min 45 cm <br> - Closures when small fish $>15 \%$ of catch (min 7 days). Test fisheries prior to reopening. | - Min 43cm | Same | Same | Same |
| Monitoring | $\begin{array}{ll}\text { - } & 100 \% \text { DMP } \\ \text { - } & \text { Hail in for }>35 f t \text { vessels } \\ \text { - } & \text { Observer coverage }\end{array}$ | - 10\% Observer coverage targetted. | Same | Same | Some ports 100\% monitored, some random. |
| Seasons | Sept. 24 - Oct. 16 | $\begin{aligned} & \hline \text { July } 8 \text { - July } 31 \\ & \text { Sept. } 6 \text { - Nov. } 13 \end{aligned}$ | $\begin{aligned} & \text { June } 26 \text { - July } 29 \\ & \text { Sept. } 11 \text { - Nov. } 31 \end{aligned}$ | July 9 - Nov. 30 | Varied by area (Appendix 1 Table 2) |
| Data Collection | - Mandatory logbooks <br> - Dockside sampling | Same | Same | Same | Same |
| Administrative Sanctions | Overruns of IQ to be deducted from following year IQ. | Same | Same | Withdrawn due to legal challenge |  |

Appendix 2. Table 2. Index fishery in 2J3KL in 2002. Dates of openings, by area. (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

| AREA |  | SEASON DATES |
| :---: | :---: | :---: |
| 2J |  | July 30 - October 13, 2002 |
| 3K(a) | Cape Bauld to Harbour Deep Head | July 30 - October 13, 2002 |
| 3K(b) | Harbour Deep to Cape John | September 3 - November 10, 2002 |
|  | Cape John to Little Bay Head | August 19 - October 26, 2002 |
|  | Little Bay Head to North Head | September 16 - November 24, 2002 |
|  | North Head to Cape Freels | July 30 - October 13, 2002 |
|  | Bay of Exploits (Swan Island - Farmers Head) | July 30 - September 03, 2002 <br> October 14 - November 17, 2002 |
| 3L | Bonavista Bay | $\begin{aligned} & \hline \text { July } 30 \text { - September 1, } 2002 \\ & \text { October } 2 \text { - November 5, } 2002 \end{aligned}$ |
|  | Trinity Bay | July 30 - September 1, 2002 <br> September 16 - October 19, 2002 |
|  | Conception Bay | July 30 - October 13, 2002 |
|  | Southern Shore | July 30 - October 13, 2002 |
|  | Petty Harbor <br> ( Defined Handline Area) | $\begin{aligned} & \hline \text { July } 30 \text { - August 13, } 2002 . \\ & \text { September } 9 \text { - November } 2,2002 \end{aligned}$ |
|  | St. Mary’s Bay | July 30 - October 13, 2002 |

Appendix 2. Table 3. Management regulations for the recreational/food fishery in Div. 2J3KL in 1996-2002 (from J. Perry, Fisheries Management Branch, Newfoundland and Labrador Region, DFO).

| Management | 1996-1998 | 1999 | 2000 | 2001 | 2002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Seasons | $\begin{aligned} & 1996 \text { - two weekends } \\ & 1997 \text { - no fishery } \\ & 1998 \text { - one weekend } \end{aligned}$ | July 30 - August 1 August 28 - August 30 | August 25-27 <br> September 2-4 <br> September 23-24 <br> (added due to poor weather) | July 18 - September 19 (Introduction of Marine Recreational Groundfish Licence Pilot Program) | August 1 - September 22 (Continuation of Marine Recreational Groundfish Licence Pilot Program) |
| Fishing Gear | Permitted: <br> Hook and Line <br> Rod and reel (baited hooks and artificial lures) <br> Casting and trolling Not Permitted: Jiggers and jigging | Same | Same | Same | Same |
| Discarding | Not permitted for any species except Atlantic Halibut which must be released | Same | Same | Same | Same |
| Processing | Filleting not permitted. | Same | Same | Same | Same |
| Fishing Restrictions |  |  |  | Closure of Smith Sound and 5 mile buffer zone to non-residents | Closure of Smith Sound and 5 mile buffer zone to non-residents |
| Catch Limits | - 10 groundfish per day per individual <br> - 50 groundfish per trip per boat <br> - More than one trip per day is permitted | Same | Same | 30 tags per licence holder | - 15 cod per licence <br> holder in 2J3KL and  <br>  4RS3Pn <br> - 30 cod per licence <br> - holder in 3Ps <br> Bag limit of 10 fish <br> per person per day |
| Data Collection |  | Same | Same | Same <br> Telephone survey | Same |

## Appendix 3. Groundfish conservation harvesting plan for 2004.

# CONSERVATION HARVESTING PLAN GROUNDFISH <br> VESSELS LESS THAN 65 FEET <br> FIXED GEAR 

## NAFO AREA 2 and Divisions 3KL

This Conservation Harvesting Plan (CHP) applies to all vessels less than 65 feet in length, regardless of homeport, fishing Groundfish in NAFO Divisions 2 and 3KL using fixed gear and is effective June 1, 2004.

This CHP applies to the following species for the management cycle April 1 to March 31: 2J3KL Lumpfish
3KL Winter Flounder (Blackback)

## GENERAL PROVISIONS

The following applies to all fisheries covered by this Conservation Harvesting Plan:

A fishing trip will start from the time you leave port and end when you return to port for any reason, whether or not you have any fish.

## A) FISHING GEAR

## GILLNETS

1. When fishing any species of Groundfish, you are required to report any lost gillnets to the nearest DFO office within 72 hours, if the loss is noticed before the closure of a fishing area. If the fishing area is already closed, the loss must be reported within 24 hours.
2. You cannot fish with or have onboard your vessel a Groundfish gillnet unless a tag, issued under the authority of the Minister to you for the current year, is securely attached to the head-rope of the net in a manner for which the tag was designed.
3. The gillnet tag must be affixed to the head rope of each gillnet within 1.85 meters ( 6 feet) from the side rope on the end of the net where the float or buoy identifies the Vessel Registration number.
4. Unless otherwise stated in Species Specific conditions, all gillnets used in Groundfish fisheries cannot exceed 50 fathoms in length.

## B) FISHING RESTRICTIONS - See Species Specific Provisions

## C) MONITORING

1. With the exception of Lumpfish, all vessels are subject to $100 \%$ Dockside Monitoring.
2. Industry-funded at-sea observer coverage is required. The targeted level of coverage will be $5 \%$ of the fleet sector quota.

## Test Fisheries

1. If a fishery is closed as a result of either high incidental catch levels or small fish, reopening will only be considered following a successful, observed, industry funded test fishery.
2. Test fishing will not commence until day 9 of the closure (day 13 in the case of excessive incidental catch of crab).
3. Where test fishing is conducted, a fishing plan will be developed which will include:

- areas to be tested
- quantity of gear to be used
- depth strata to be tested
- vessels to be used
- dates when test fishing will be carried out
- provision for at-sea observer coverage

4. Test fishing will not commence until the fishing plan has been approved by DFO.

## D) INCIDENTAL CATCH

For the purposes of this CHP, the following definitions apply:
"Directed species" means the permitted species, or combination of species, retained on board and taken by the fisher at a time, in an area and by a means that is authorized in Species Specific Licence conditions.
"Incidental catch" means the catch retained on board of any species other than a directed species as defined above.

Unless otherwise stated, incidental catch restrictions are always expressed as daily limits (00:01 hours to 24:00 hours local time) and are always calculated using round weights.

Unless otherwise stated, incidental catch restrictions expressed as a percentage are always calculated as a percentage of the round weight of the directed species retained onboard.

When directing for any species of groundfish or combination of groundfish in NAFO Divisions 2GHJ3KL, the following incidental catch provisions apply:

1. Unless otherwise specified below or in species specific provisions, incidental catch of cod may not exceed $10 \%$ or 200 pounds whichever is greater.
2. When fishing in NAFO division 3L, the incidental catch of Redfish, American Plaice and Yellowtail Flounder may not exceed 5\%.

The maximum amount of cod that can be caught incidentally by individual fishers in any and all groundfish fisheries is 2000 pounds (round weight). Once a fisher has landed this amount, the fisher must cease fishing all species of groundfish in 2J3KL.

Where there are widespread incidental catch problems, an entire area may be closed to the fleet sector.

## E) DISCARDING

1. All Atlantic Halibut less than 81 cm and northern and spotted wolfish must be released to the place from which it was taken and, when alive, in a manner that causes the least harm.
2. Dogfish and Lumpfish may be returned to the water immediately, dead or alive.
3. Live Winter Flounder less than 25 cm and American Plaice less than 20 cm in length may be returned to the water immediately.

## F) OTHER

## Closures

1. If a fishery is closed due to incidental catch or small fish problems, closures will be in effect for a minimum of 10 days.
2. If a fishery is closed, it will not reopen until it can be effectively monitored and controlled (see Test Fishery Protocol above).
3. If a fishery in a particular area is closed twice during the year, it may remain closed for the remainder of the year.

## NAFO Regulatory Area

When fishing in the NAFO Regulatory area outside Canadian waters, the captain of the vessel must abide by the NAFO Conservation and Enforcement Measures.

Other conservation measures may be identified and implemented during the year as required.

## SPECIES SPECIFIC PROVISIONS - LUMPFISH

In addition to the provisions outlined for all Groundfish fisheries, the following apply to the Lumpfish fishery in 2GHJ3KL:

## A) FISHING GEAR

The maximum number of gillnets permitted is 40 .
The minimum mesh size is $101 / 2$ inches ( 268 mm )

## B) FISHING RESTRICTIONS

Fishers are restricted to fishing the lumpfish area of their homeport or an area of their choice which will be identified in their conditions of licence.

## C) MONITORING - See Also General Provisions

Although Lumpfish landings are not subject to dockside monitoring requirements, any cod landed in the directed Lumpfish fishery in Bonavista Bay South and Trinity Bay is subject to $100 \%$ DMP.

## D) INCIDENTAL CATCH

When directing for Lumpfish, incidental catch of cod may not exceed $10 \%$ or 100 pounds whichever is greater.

## E) DISCARDING - See General Provisions

F) OTHER - See General Provisions
G) VALIDITY PERIOD

| Area | Opening | Closing |
| :--- | :--- | :--- |
| Cape Bauld to Granite Point | May 24 | June 14 |
| Granite Point to Little Harbour Deep Head | May 24 | June 14 |
| Little Harbour Deep Head to Cape St. John | May 24 | June 14 |
| Cape St. John to North Head | June 5 | June 25 |
| North Head to Cape Freels | May 24 | June 14 |
| Bonavista Bay (north) | May 11 | June 4 |
| Bonavista Bay (south) | June 7 | June 28 |
| Trinity Bay | June 9 | June 29 |
| Conception Bay | June 21 | July 12 |
| Southern Shore | June 19 | July 9 |
| St. Mary’s Bay | May 17 | June 7 |

Note: The dates indicated above reflect seasons requested by industry on June 2, 2004.

## SPECIES SPECIFIC PROVISIONS - Winter Flounder(Blackback)

In addition to the provisions outlined for all Groundfish fisheries, the following apply to the Winter Flounder (Blackback) fishery in 3KL:

## A) FISHING GEAR

## GILLNETS

- The maximum number of gillets permitted is 30 .
- Minimum mesh size is $61 / 2$ inches and maximum mesh size is $81 / 2$ inches.


## B) FISHING RESTRICTIONS

Fishing is permitted only in water depths less than 15 fathoms.

Fishers are restricted to the NAFO Division of their homeport.

For fishers based in 3L, the following further restrictions apply:

1. If your homeport is in Bonavista Bay or Trinity Bay (Cape Freels to Grates Point) you are only permitted to fish north of a line drawn due east from Grates Point at 48 degrees 10 'N.
2. If your homeport is in Conception Bay, Southern Shore or St. Mary's Bay (Grates Point to Cape St. Mary's) you are only permitted to fish south of a line drawn due east of Grates Point at 48 degrees 10 'N.
3. If your homeport is Daniel's Cove or Old Perlican in Trinity Bay, you are also permitted to fish that portion of Western Conception Bay situated between Grates Point and Bay-de-Verde.
4. If your homeport is Grates Cove, Red Head Cove or Bay de Verde in Conception Bay, you are also permitted to fish that portion of Eastern Trinity Bay situated between Old Perlican and Grates Point
C) MONITORING - See General Provisions

## D) INCIDENTAL CATCH

When directing for Winter Flounder (Blackback), the incidental catch of cod cannot exceed $20 \%$ or 300 pounds per day.

Where excessive incidental catch of cod occurs in a particular area, that area will be closed to directed fishing:
E) DISCARDING - See General Provisions
F) OTHER - See General Provisions
G) VALIDITY PERIOD

July 19 to August 20

## Appendix 4. The inshore cod of Divisions 3K and 3L.

[This Appendix is reproduced from Lilly and Murphy (2004). Much of the information is extracted directly from Lilly et al. (1999), with some sections updated from Lilly et al. (2003).]

Templeman (1962, 1979, 1981) used information from vertebral numbers, tagging studies, time and location of pre-spawning and other aggregations, times and places of spawning, and ancillary information such as growth pattern and relative year-class strength, to determine stock structure within Atlantic Canada. His Labrador - East Newfoundland stock complex, which was defined largely on the basis of high vertebral averages, occupied the area from northern Labrador to Div. 3L. The two northern divisions (2GH) have been managed as a separate stock since the early 1970s, in part because some of their characteristics, such as growth rate, appeared different from fish in 2J (ICNAF 1973), and in part because the severe fishing of the 1960s had a greater impact in 2GH than in areas to the south (Pinhorn 1976).

The 2GH and 2J3KL stocks are not isolated entities. There are very few cod north of Div. 2G on the North American side of the Labrador Sea and Davis Strait, but there is some support for the hypothesis that the northern Labrador Shelf may occasionally receive larvae from West Greenland (Templeman 1981; Dickson and Brander 1993). There is no evidence that this has happened to a significant degree for several decades.

There obviously has been intermingling between the 2GH and 2J3KL stocks. Indeed, as noted above, the distinction between the two is weak.

The 2J3KL cod stock intermingles with the 3NO stock on the plateau of Grand Bank, with the 3Pn4RS stock in the area of the Strait of Belle Isle, and with the 3Ps stock near the coastal region of 3L.

The inshore region of Div. 3KL has gained a greatly increased degree of prominence in the assessment of 2J3KL cod since the mid-1990s. By the autumn of 1994 there appeared to be very few cod left within the boundaries of the 2J3KL stock complex. In spring 1995, a research vessel unexpectedly found a dense aggregation of cod in Smith Sound, Trinity Bay, and during summer/autumn of 1995 participants in the new sentinel survey program experienced good catch rates of commercial size cod over much of the area from central 3K to southern 3L. In 1998 a TAC was reintroduced to the inshore for vessels less than 65 feet in length, and this fishery continued through 2002.

Information on the general biology (e.g. distribution, spawning, feeding, growth, condition) of cod in the inshore may be found in Lilly et al. (1998a) and Lilly et al. (1999), and in the many sources cited therein. Our knowledge of the biology of cod in the inshore increased rapidly after the mid-1990s through interviews with fishermen (e.g. Neis et al. 1999; Hutchings and Ferguson 2000; Jarvis and Stead 2001) and an intensification of study, including a tagging program, sentinel surveys, a logbook program for commercial vessels under 35 feet in length, acoustic surveys in specific areas, and an extension of the autumn survey into new strata in the inshore.

## A4.1 Definitions of inshore and offshore

The terms "inshore" and "offshore" have created some confusion within assessment meetings in the past. There was a request during the 1998 cod zonal assessment meeting for clear and unambiguous definitions. This may not be possible. It is recognized that a cod trap set within a few metres of land is in the inshore and a trawler fishing on the outer edge of Funk Island Bank is in the offshore. However, there is no distinct dividing line between the two. For example, a 55 foot vessel might set gillnets at various depths and at various distances from shore, such as follows: at a depth of 40 m close to shore adjacent to gillnets set by a 30 foot vessel; at 250-300 m some 25 nautical miles northeast of Cape Bonavista; or at 40 m on the plateau of Grand Bank near grounds fished by large otter trawlers. Which of these fishing operations are inshore and which are offshore?

For many years it was the custom within the documentation of the 2J3KL assessment to refer to all landings from fixed gear (traps, gillnets, and various types of hook and line) as inshore and landings from mobile gear (otter trawls) as offshore. The terms were also used in quota allocation, whereby there was for many years a quota for the stock as a whole, but the "inshore" was given an allocation which it was permitted to overrun. In this context, only vessels less than 65 feet in length were considered to be part of the inshore fleet. (It may be noted that in some contexts there is additional classification by vessel size, so that one may see vessels less than 35 feet referred to as "inshore", vessels 35-65 feet as "nearshore" and vessels 65-100 feet as middle distance.) The definition by gear type would not be a problem if fixed gears were deployed only close to the coast. However, longliners had been introduced to eastern Newfoundland waters in the early 1950s to exploit the aggregations of cod found in the deep water off the headlands, such as off Cape Bonavista. In these waters they overlapped the fishing areas of distant-water trawler fleets. Definition by gear type became much more problematical in the mid-1980s as the longliner fleet (which became predominantly a gillnet fleet in the 1960s) started to move further offshore, especially onto the plateau of Grand Bank. The inshore component was then clearly overlapping areas that had been fished with otter trawls for decades, and some of the catch in the inshore allocation was actually coming from far offshore. (It is worth recalling that, in an historical context, the plateau of Grand Bank was fished with longlines for centuries, and dory vessels continued to fish the plateau of the bank into the 1960s.)

The terms inshore and offshore have recently been used with respect to the geographic coverage by the research trawl surveys. When the stratification scheme was established, it was decided that the strata would not include the 12-mile coastal zone (Doubleday 1981; p. 24). Starting in the autumn of 1996, new strata were established closer to shore and within the bays of Divisions 3K and 3L. These new strata have been referred to as being inshore, to distinguish them from the older strata that are referred to as offshore. However, it appears that these strata do not extend into the shallow, very near-shore coastal area in which most of the sentinel surveying has been conducted since 1995, and in which most of the commercial fishing was conducted in 1998-2002.

Thus, there is no correspondence between the inshore as defined for allocating quota, inshore as sometimes employed in assessments for aggregating the fixed gear catch, and inshore as used in discussing the research surveys. The terms "inshore" and "offshore" are widely used within the
fishing industry and are convenient terms of geographic reference in general discussion, but at present their usage is not consistent among all contexts.

## A4.2 Observations of cod in the inshore

Cod in Divisions 2J3KL historically migrated on a seasonal basis between a summer-autumn feeding area in shallow water along the coast of southern Labrador and eastern Newfoundland and an overwintering area offshore, primarily near the shelf break. However, not all cod moved offshore in the winter. Some remained near the coastal shelves in deep water below the Cold Intermediate Layer (CIL) of the Labrador Current, and some remained within the bays of eastern Newfoundland, often in narrow fjord-like environments. In recent years the quantity of cod caught during autumn research bottom-trawl surveys in offshore waters has been very low, but there have been numerous reports of cod in shallow coastal waters, catch rates have been good to excellent in sentinel surveys from White Bay south, and dense aggregations of cod have been found and studied in deep inlets in the inner reaches of Trinity Bay.

## A4.2.1 Linking the inshore to the offshore

Several studies in the 1960s demonstrated a close association between the cod caught in inshore waters and the cod caught on the outer shelf. The most compelling information was the pattern of returns from tagging studies in both the offshore and the inshore in the early to mid-1960s (Postolakii 1966; Templeman 1974) but there were also analyses of catch rates, fish size and growth rate. Fleming (1965), Hodder (1965) and May (1967) showed that the catch per fisher in the inshore declined as catches by distant-water fleets increased in the offshore in the late 1950s and early 1960s. Referring to sampling during 1955-1962, Hodder (1965) concluded: "The decreased abundance of fish older than 6 years in the inshore trap fishery is attributed to the decreased abundance of these older ages on the offshore fishing grounds as a result of increased effort by trawlers in all areas off the east coast of Newfoundland and southern Labrador in recent years." May et al. (1965) used random samples of research vessel trawl catches and catches by various gears in the inshore commercial fishery in 1960-1962 to calculate mean length-at-age of cod in ICNAF Divisions from 2H to 3Pn. They found that von Bertalanffy growth curves "... derived from the offshore data provide an adequate representation of the inshore material as well, lending evidence to the hypothesis that there is no inshore-offshore stock separation in the areas concerned." It should be noted, however, that the inshore samples came from communities on headlands and exposed coasts, and may have been dominated by migrating fish.

## A4.2.2 Cod in deep waters off headlands

The presence of cod in deep water off the coastal shelves of eastern Newfoundland has been recognised since exploratory longlining in the early 1950s (Templeman and Fleming 1956, 1963). Not all the cod in these areas, just below the depth at which the Cold Intermediate Layer of the Labrador Current impinges on the bottom, arrived from near the shelf break following spawning. In the 1980s the fishery in the deep water started each spring very soon after the disappearance of the ice, and often long before the sudden increase in landings toward the middle or end of June in adjacent shallow waters (G. Lilly, unpubl. data). In addition, research trawling off Cape Bonavista and in the mouth of Trinity Bay has yielded good catches in

February-April (Lilly 1982; unpubl. data). Thus, some cod are in this deep-water coastal environment months before the migration of cod from the offshore. Templeman (1962) presented several arguments in support of a suggestion that "... each large shelf region, such as the Bonavista Shelf, the Fogo Shelf and the St. Anthony Shelf, projecting seaward with deep water on each side has a basic stock of its own, some of which it loses temporarily in the summer by coastal or pelagic feeding migrations and in the winter by movements in the deep water, while receiving some migrants from other areas."

As reported by Hutchings et al. (1993), there is evidence of spawning in the deep water off Cape Bonavista. Cod caught in the commercial gillnet fishery northeast of the Cape in 275-350 m were sampled weekly in 1983 and 1984. A plot of a gonad-somatic index versus time illustrates that there were many cod with relatively large gonads when the first samples were collected (May 11 in 1983 and May 30 in 1984), and that the proportion of cod with elevated indices, and the maximum values of the indices, declined to a minimum by the middle or end of July (Lilly 1996). The decline in gonad indices provides only circumstantial evidence that cod spawn in deep water off the Bonavista Shelf. The cod with low gonad indices could have spawned elsewhere before migrating into the area, and cod with large gonads may have moved elsewhere to spawn if they had not been caught.

## A4.2.3 Cod in eastern bays

Reports of the presence of cod in spawning condition in the bays of eastern Newfoundland may be found in the scientific literature as early as the 1890s, when Neilsen described how he obtained fish in spawning condition for the Dildo Island Marine Hatchery in May-June in Trinity Bay. In discussing an early run of cod at the head of Trinity Bay in 1894, Neilsen (1895) was of the opinion that the "... early occurrence of fish seems clearly to indicate that those fish do not enter the bay from the outside, but that they are local-bred fish, which keep in deep water during winter, and on the first opportunity in the spring, seek the shoaler waters in the head of the bay ...".

Additional evidence of the presence of spawning cod within eastern bays may be found in unpublished trip reports (Marinus 67-1, 68-1, 68-2) which describe the maturity of cod caught during experimental gillnetting in the deep water of Trinity and Bonavista bays. These data have been summarised by Hutchings et al. (1993). Cod were caught with 6- and 7 -inch mesh monofilament gillnets off Tickle Harbour Point and the Horse Chops in Trinity Bay and near Little Denier and Cabot Island in Bonavista Bay in April-June of 1967 and 1968. All gillnet sets were made in deep water with the nets usually running from cold water into the underlying warmer water. In 1967 many of the cod were in spawning condition or close to it (Fleming 1967), and in 1968 the cod were in maturity stages indicating spawning was soon to occur (Fleming 1968). Fleming (1968) thought that the gillnet experiments were sampling "... a segment of the stock which ... consists of large old cod which have escaped other gears, and which spawn in the coastal areas and bays in contrast to the younger fish being caught by traps and handlines which spawn before arriving in the coastal areas in the spring."

It is interesting to note that Templeman (1962) considered his Avalon-Burin stock to be "... an inshore stock ... extending from the outer coast of the Avalon Peninsula into Fortune Bay". In
concluding his discussion of the Labrador-Newfoundland stock, he stated: "Very likely in the future enough differences will be found to indicate a number of north-south and inshore-offshore sub-stocks ..." (Templeman 1962). However, Templeman did not present evidence of inshore stocks north of the Avalon Peninsula (other than the coastal shelf "sub-stocks" discussed above), and he did not speak of "bay stocks".

## A4.2.4 Cod in fjord-like environments

Cod have for many years been caught through holes cut in the ice in sheltered inlets and embayments of the east and northeast coasts (e.g. Neis et al. 1996). The only such areas that have been studied extensively using scientific techniques are the three fjord-like arms near Random Island on the western side of Trinity Bay.

Most attention in the late 1980s and early 1990s was focused on the two southern arms (Northwest Arm and Southwest Arm) where DFO and especially the Fisheries Oceanography Group at Memorial University of Newfoundland conducted tagging experiments and documented various aspects of the biology of cod that overwintered inshore, including their movements and spawning (Wroblewski, et al. 1994, 1995a; Smedbol and Wroblewski 1997).

The focus shifted to Smith Sound following discovery of a large and dense aggregation of cod in spring 1995 (Rose 1996; Brattey 1997; Morgan and Brattey 1997; Brattey and Porter 1997; Porter et al. 1998; Rose 2003) There is much evidence that cod have always overwintered in this area, but the recent winter/spring aggregations appear to be much larger than people were aware of in the past. There seems to be a general pattern of cod aggregating in the Sound in the winter and moving out sometime in spring, but the timing of these movements is not well understood.

## A4.2.5 Cod in the shallow-water fishery

Cod in shallow water along the coast of southern Labrador and eastern Newfoundland supported a fishery with hook and line for centuries. Since the late 19th century this fishery has been strongly augmented by the use of the cod trap, and since the 1960s by the use of synthetic gillnets. The geographic pattern of the catch in 1947-1949 does not support the supposition that "bay stocks" made important contributions to the total inshore catch. Templeman (1958) stated: "Within the east coast area, cod are most abundant near the projecting island and headland areas such as the Cape Bauld - St. Anthony, Fogo Island, Cape Freels, Cape Bonavista, Bay de Verde Grates Point areas and in the areas to the east of the Avalon Peninsula. ... As a rule far fewer cod are available in the deep inlets and warmer water at the heads of the east coast bays than at the headlands."

In years prior to the collapse, areas of largest catch had in common a closeness to the schools of cod migrating toward the coast from their offshore overwintering areas. If all cod caught in the inshore shallow-water fishery arrived from the offshore, then the earliest landings would be expected at the headlands. However, substantial landings occurred in the inner parts of Bonavista and Trinity Bays several weeks prior to the big increase in landings at the tips of the headlands. See Lilly (1996) for some preliminary analyses of these patterns based on purchase slips. These patterns appear to correspond to the descriptions of herring fish and capelin fish as
reported by fishers (Alverson et al. 1987, p. 28-29; Neis et al. 1996). Additional research is required to determine if the early landings (prior to about mid-June) in the inner parts of Bonavista Bay and Trinity Bay were supported by cod which remained within the bays throughout the winter and the later landings were supported by cod which migrated into the coastal areas from farther offshore.

It is tempting to speculate that cod taken in the early landings belong to "bay stocks". It would be of interest to determine if cod taken in the early landings differed from cod taken from later landings with respect to length-at-age, relative year-class strength, otolith structure, and other biological characteristics Unfortunately, the data required to conduct these analyses may not have been collected prior to the 1990's. Most routine sampling of inshore catch was conducted on the outer shores and headlands after mid-June. The early catch in the inner parts of the bays may have been rarely sampled.

## A4.2.6 Recent observations of cod in shallow water

A surprising aspect of the cod currently in coastal waters is the large number of reports of cod being seen near the surface and cod being caught in shallow-water gear, including gillnets set for herring, lumpfish and winter (blackback) flounder. Cod have even been caught in lobster pots. Such reports were common in the mid-1990s (Neis et al. 1996; Davis 1996; numerous personal communications to scientists; communications in public media, such as the Evening Telegram, St. John's, NL, 25 May 1996, p.4) and are commonly heard today.

Reports of cod in shallow water became frequent in the winters of 1997-1998 and 1998-1999. These reports came primarily from two areas: Notre Dame Bay on the northeast coast and southwestern Bonavista Bay on the east coast. Reports from Notre Dame Bay included the following. On December 30-31, 1997, cod up to 3 feet ( 91 cm ) in length were reported frozen in ice at Baytona, a community in the inner reaches of the bay. Observers noted the presence of smelt in the area. On January 6-7, 1998, cod were seen in ice near the Twillingate Causeway, which is further out in the bay. Harp seals were reported in the area. From January 11 to approximately January 16, 1999, cod were found dead and dying in and below ice in Virgin Arm, again in the outer part of the bay. It was estimated by Fishery Officers, who interviewed divers and other people who harvested the fish, that perhaps $200,000 \mathrm{lbs}(91 \mathrm{t})$ of cod died. A sample ( $\mathrm{n}=193$ ) of these fish, obtained by divers, had a mean length of 59 cm (range $35-95 \mathrm{~cm}$ ). The fish were to all appearances healthy and in good condition. Harp seals were reported in the area and some of the larger cod in the sample had bites taken from their bellies. In early February, 1999, a small number of cod were found frozen in the ice at Virgin Arm. Seals were in the area.

Reports from southwestern Bonavista Bay are similar but include more observations of predation by harp seals. On December 30, 1997, cod were observed chasing herring very close to shore in Cannings Cove. In early February, 1998, many dead cod were observed in Southern Bay Reach. Many harp seals were reported in the area. From February 28 to March 3, 1998, cod were seen swimming with fins above the surface, and 200 lbs of cod were found dead on the shore. Seals were reported in the area and an observer reported seeing a seal taking a bite out of a cod's belly. On January 11-13, 1999, many cod were observed swimming near the surface at Cannings Cove
and Jamestown. Seals were again seen in the area and an observer reported seeing seals with cod in their mouths, shaking the cod and tearing out the guts. On January 20, 1999, an observer saw a very large number of seals near Deer Island (at the headland between Goose Bay and Sweet Bay) coming to the surface with cod in their mouths. They would take a clean cut out of the belly, taking the liver but leaving the gonad. As reported by The Telegram (St. John's, NL, February 23, 1999), in February 1999 seals were observed preying on cod in a small cove on Deer Island. The seals would shake the cod "and the gut would stay in the mouth and the fish would fly off". The presence of large numbers of dead cod on the bottom was confirmed by a diver. One cod recovered with a large bite from its belly was reported to be about 3 feet ( 91 cm ) long. Divers harvesting sea urchins reported seeing large numbers of dead cod on the bottom in many parts of southwestern Bonavista Bay during the late 1990s.

## A4.3 Stock relationships of cod in the inshore

## A4.3.1 Did some migrating cod from offshore remain inshore?

It has been suggested that some of the cod that at one time migrated between the offshore and the inshore remained in the inshore in the early to mid-1990s, contributing to the dense aggregation first found in Smith Sound, Trinity Bay, in 1995 and to the high catch rates experienced by participants in the sentinel surveys. There have been several variants of this hypothesis.

One suggestion was that a major progressive change in migration behavior occurred in the early 1990s, resulting in cod remaining inshore during the entire year.

A second variant was proposed by G. Rose (Memorial University of Newfoundland, St. John’s, Canada), who has been quoted as noting that there were almost no older fish in the northern cod population by 1992, and that it is possible that the survivors, mainly younger fish, came inshore and remained there (The Evening Telegram, St. John's, NL, 24 March 1996, p. 13; Kurlansky 1997, p. 203).

A third variant was proposed by Taggart (1997), who noted that an aggregation of cod that had been found in the North Cape area of Division 3L each year during the autumn research bottomtrawl surveys was last detected in 1993 and that the large aggregation of cod in Smith Sound was first detected in spring 1995. Based on these observations and the results of genetic and parasite studies, Taggart (1997) hypothesized that "the large aggregations of cod observed in recent years in the Random Island region of Trinity Bay may be those that would normally aggregate offshore in the North Cape region but for some reason have ceased their normal migration pattern to offshore for winter." He noted that this hypothesis could be tested by sampling the large aggregation in Smith Sound and comparing it genetically with fish sampled in the offshore.

The above three variants of the altered migration hypothesis differ with respect to timing. The change could have occurred in the early 1990s when most fish disappeared from the autumn research surveys, about 1992-1993 when cod disappeared from the migration corridor east of Bonavista Bay as recorded during spring-summer acoustic studies, or about 1994 when the last aggregation of cod disappeared from the autumn research surveys. If the change occurred early
in the 1990s, then a very large quantity of cod could have been involved and these cod should have been comprised largely of the 1986 and 1987 year-classes. With increasing delay in the change, the quantity of cod available to remain inshore would decline and the age classes would be more recent.

The data available for testing the altered migration hypothesis are limited. The only sources of information on cod of commercial size in the inshore between 1991 and 1995 are the small fishery in 1992 prior to declaration of the moratorium on July 2, food fisheries in 1992-1994, bycatch in fisheries directed at other species, and the research being conducted in the arms of western Trinity Bay.

As noted above, autumn bottom-trawl surveys in the late 1980s were dominated by the 1986 and 1987 year-classes, which seemed to disappear very rapidly in 1991 and 1992. If these cod migrated to the inshore and remained there, then inshore catches and catch rates might be expected to be high and dominated by these year-classes. The 1991 inshore fishery, which was the last fishery to be unrestricted, was indeed dominated by the 1986 and 1987 year-classes, but the total catch in 1991 was dramatically lower than that in 1990, especially north of Division 3L (Baird et al. 1992a). This decline in inshore catch was not consistent with the suggestion that a large quantity of fish remained inshore. In 1992 the inshore catch, taken mainly by a "recreational fishery" using jiggers or baited hooks, was small and composed of mainly the 1985-1987 year-classes, with the 1987 year-class dominant (Bishop et al. 1993). "In both 1991 and 1992 there were some indications, based on the commercial and recreational fisheries, that cod may have remained in inshore waters later than usual and in significant numbers. During the autumn surveys, time was allotted for limited coverage (using the bridge sounder to detect fish and trawling where possible) of those areas which are not normally included in the regular survey area. The results indicated that very few cod were encountered in the inshore areas surveyed" (Bishop et al. 1993, p. 3). It may be noted, however, that experience in the late 1990s showed that cod may be shoreward of the area that can be surveyed by large vessels.

In 1993 there was a food fishery with no restrictions on season or quantity of fish taken. There is considerable uncertainty about how much fish was taken. The catch from recreational fishing and by-catch was mainly of the 1987-1989 year-classes, with the 1989 year-class at age 4 comprising $45 \%$ by number (Bishop et al. 1994). In 1994 there was a food fishery of just 1300 t . Based partly on the poor results of the 1993 food fishery (and to prevent large amounts of fish being taken) (Kulka et al. 1995a), the 1994 food fishery was limited to five Friday/Saturday periods in August and September. Most participants considered the food fishery to be a failure and it was closed a week early because of small fish and low numbers in the catches (Bishop et al. 1995; Kulka et al. 1995a). The catch from the recreational and by-catch fisheries in 1994 was mainly from the 1989 and 1990 year-classes, with the 1989 year-class at age 5 comprising 43\% by number (Bishop et al. 1995). One should not place much weight on the performance of food fisheries, since much of the effort was by non-professionals and the gear was restricted to hook and line. Nevertheless, the poor results in the 1993 and 1994 food fisheries and the dominance of the 1989 and 1990 year-classes (rather than the 1986 and 1987 year-classes) are not consistent with the hypothesis that the fish that disappeared from the offshore moved inshore and remained there.

In 1995 much more information became available from surveys in Smith Sound and catches from the sentinel surveys. The 1990 year-class was dominant in Division 3K, whereas the 1989 and 1990 year-classes were both strong in Division 3L, with the 1989 year-class more prominent toward the south (Davis 1996; Brattey 1997; Lilly et al. 1998a). These results indicate that the high catch rates in the sentinel surveys were not supported by the fish that disappeared from the offshore surveys in approximately 1990-1992. It is possible, however, that there was a change in migration pattern somewhat later as postulated by Rose and Taggart (as cited above). However, once again the match in year-classes is not correct. The bulk of the fish inshore in the mid-1990s was represented by the 1989 and 1990 year-classes, both of which had been weak at age 3 in the offshore bottom-trawl surveys. There remains the possibility that individuals of the 1989 and 1990 year-classes found inshore in the mid- and late 1990s were recruited from offshore spawning and failed to migrate offshore after spending their first few years inshore.

The age compositions from the sentinel surveys (Lilly et al. 2003), commercial fisheries (Lilly et al. 2003) and samples of cod from Smith Sound (Porter et al. 1998; Rose 2003) are consistent with the hypothesis that the buildup of biomass in the inshore during the 1990s was largely due to the recruitment and individual growth of the 1990 and 1992 year-classes. These year-classes appear to have been very weak in the offshore.

## A4.3.2 Tagging

Inshore tagging experiments prior to the late 1980s were conducted during the summer and autumn (Templeman 1974, 1979), and thus are not helpful in testing the hypothesis that there are inshore components that are distinct from components that migrate to the inshore from offshore. Recoveries from these experiments came from both the inshore and the offshore.

Tagging studies, conducted during the post-moratorium period while the overall stock size has been extremely low (Brattey et al. 2001), indicate that the inshore of 3KL is currently inhabited by at least two groups of cod: (1) a northern resident coastal group that inhabits an area from western Trinity Bay northward to western Notre Dame Bay and (2) a migrant group from inshore and offshore areas of 3Ps that moves into southern 3L and less commonly into northern 3L and 3K during late spring and summer and returns to 3Ps during the autumn. Only a small number of tagged cod from 3Ps were caught north of Trinity Bay. The tagging also indicates considerable movement of cod among Trinity, Bonavista and Notre Dame bays.

It is not known if there is currently movement between the inshore and the offshore in 2J3KL. Very few tags have been applied to cod in the offshore in recent years because no aggregations sufficiently large to warrant tagging have been located. In addition, there has been only one reported offshore recapture of a cod tagged inshore after the mid-1990s. Of course, any conclusion about the current existence or absence of inshore-offshore migration is tempered by the fact that there has been no directed fishery for cod in the offshore during this period, so recaptures could come only from fisheries directed at other species, and the by-catch of cod from these other fisheries is thought to be small relative to the cod-directed inshore catch.

## A4.3.3 Genetics

There are two conflicting interpretations of genetic studies. One is that cod in the inshore and offshore are genetically distinct from one another; the other is that there is no differentiation among groups of 2J3KL cod. These differences originate in part in methodology.

The results of studies employing microsatellite loci are interpreted to support the existence of sub-stock structure between the inshore and the offshore and in various areas of the offshore (Bentzen et al. 1996; Ruzzante et al. 1996, 1997, 1998, 1999, 2000; Taggart et al. 1998; Beacham et al. 2002). Substock structure at the level of bays is less strongly supported. Beacham et al. (2002) summed up their findings by stating that northern cod conforms to an isolation-bydistance structure, with cod from more distant locations tending to be more distinct.

In contrast to the studies with microsatellites, the results of studies with mitochondrial DNA provide no evidence of substock structure within 2J3KL (Pepin and Carr 1993; Carr et al. 1995). The conflicting interpretations of stock structure are not just a consequence of the use of different methodologies. Carr and Crutcher (1998) state that "re-evaluation of (the) microsatellite data supports the conclusion of extremely limited genetic differentiation among populations in the Northwest Atlantic". Those who support the interpretation of considerable substock structure contend that the mitochondrial DNA approach lacks the ability to detect the structure that is there.

Neither interpretation of the genetic data would preclude the possibility that functional subpopulations exist without significant genetic differentiation.

An important question is whether the fish currently inshore can contribute to the recovery of fish in the offshore. Beacham et al. (2002) contend that "given the population substructure ... detected between most inshore and offshore areas, and among offshore areas themselves, the likelihood that the inshore-spawning stock will contribute to offshore recovery is low."

## A4.3.4 Productivity

Since at least the mid-1990s, the aggregations sampled inshore by commercial fisheries, sentinel surveys, and research bottom-trawling in Smith Sound contain individuals that are much older and larger than those taken by research bottom-trawling in the offshore, especially in Divisions 2 J and 3 K . This supports the contention that the cod in the inshore are experiencing a lower mortality rate than the cod in the offshore. It also supports the contention that there has been little movement of adult cod from the inshore to the offshore in recent years.

## References

The references in this Appendix are included in the list at the end of the major portion of this paper.

## Appendix 5. The collapse of 2 J 3 KL cod. Some thoughts on the role of the environment

[This Appendix is reproduced from Lilly and Murphy (2004). The text has been extracted largely from Lilly and Carscadden (2002).]

## A5.1 Changes in the ecosystem off southern Labrador and eastern Newfoundland

The ecosystem off southern Labrador and eastern Newfoundland has been characterised by a relatively small number of species, a few of which have historically occurred in high abundance (Bundy et al. 2000; Livingston and Tjelmeland 2000; Carscadden et al. 2001). The dominant fodder fish has historically been capelin, with Arctic cod more prominent to the north and sand lance (Ammodytes dubius) more prominent to the south on the plateau of Grand Bank. Herring (Clupea harengus) is found only in the bays and adjacent waters. These four species of planktivorous fish feed mainly on calanoid copepods and larger crustaceans, the latter being predominantly hyperiid amphipods to the north and euphausiids to the south. The dominant piscivorous fish has been Atlantic cod, but Greenland halibut (Reinhardtius hippoglossoides) and American plaice (Hippoglossoides platessoides) have also been important. Snow crab (Chionoecetes opilio) and northern shrimp (Pandalus borealis) have been the dominant benthic crustaceans. The top predators are harp seals (Phoca groenlandica) and hooded seals (Cystophora cristata), which migrate into the area from the north during late autumn and leave in the spring. Other important predators include baleen whales, most of which migrate into the area from the south during late spring and leave during the autumn. Additional immigrants from the north during the winter include many birds which spend the summer in the Arctic, and additional immigrants from the south during summer include short-finned squid (Illex illecebrosus), fish such as mackerel (Scomber scombrus) and bluefin tuna (Thunnus thynnus), and several species of birds.

The Labrador/Newfoundland ecosystem experienced major changes during the last two decades of the $20^{\text {th }}$ century. Atlantic cod and most other demersal fish, including species that were not targeted by commercial fishing, experienced declines to very low levels by the early 1990s (Atkinson 1994; Gomes et al. 1995). In contrast, snow crab (DFO 2002b) and especially northern shrimp (DFO 2002c) surged during the 1980s and 1990s and now support the most important fisheries in the area. Harp seals increased in abundance from fewer than 2 million individuals in the early 1970s to more than 5 million in the late 1990s (Healey and Stenson 2000; Stenson, et al. 2002). Capelin have been found in much reduced quantities in offshore acoustic surveys since the early 1990s, but indices of capelin abundance in the inshore have not experienced similar declines, leaving the status of capelin uncertain and controversial (DFO 2000, 2001b).

The waters of eastern Newfoundland have been fished for centuries, primarily for Atlantic cod but with an increasing emphasis on other species during the latter half of the $20^{\text {th }}$ century. These fisheries have undoubtedly had an influence on both the absolute abundance of some species and the abundance of species relative to one another. However, the role of the fisheries in structuring the ecosystem is often difficult to distinguish from the role of changes in the physical environment.

The marine environment off Labrador and eastern Newfoundland has experienced considerable variability since the start of standardized measurements in the mid-1940s (Colbourne and Anderson 2003; Colbourne 2003) (Fig. A3.1). A general warming phase reached its maximum by the mid-1960s. Beginning in the early 1970s there was a general downward trend in ocean temperatures, with particularly cold periods in the early 1970s, early to mid-1980s and early 1990s. Ocean temperatures started to warm in 1995. The decade of the 1990s experienced some of the greatest extremes, with particularly cold conditions in 1991 and very warm conditions in various years of the late 1990s. There have also been extremes within a year, as illustrated by the particularly cold winter and unusually warm summer/autumn of 2003.


Fig. A5.1. An index of temperature. The light line shows the annual depth-averaged (0-176 m) temperature anomalies from Station 27, near St. John's. (See Fig. 1g for location of Station 27.) The heavy line is a 5 -year running mean. (from Colbourne 2003) Additional indices of temperature and ice coverage are available.

The decline in water temperature during the last three decades of the $20^{\text {th }}$ century was associated with an intensification of the Icelandic Low. An expression of this low that has commonly been used to correlate with physical and biological charateristics of the ecosystem is the sea-level air pressure difference between the Icelandic Low and the Bermuda-Azores High (the North Atlantic Oscillation or NAO). Off southern Labrador and northeastern Newfoundland, there is a well documented link between the positive phase of the NAO and intensified northwesterly winds, lower air temperatures, lower water temperatures and more extensive ice cover (Colbourne et al. 1994; Mann and Drinkwater 1994; Narayanan et al. 1995). These associations have become less clear since the late 1990s as the Icelandic low has been centred more to the east in some years.

Changes in the biological components of the ecosystem off northeastern Canada have been variously ascribed to overfishing, climate variability, changes in predation pressure or a combination of these factors. The relative importance of fishing and environment is difficult to determine for any species or group of species, so it is perhaps not surprising that the importance attributed to each has varied among studies. It is also perhaps not surprising, given the differences among species in the magnitude of fishery removals relative to stock size, that
opinion tends to favour fishing as the dominant factor for some species and environment as the dominant factor for others. For demersal fish, there are many statements to the effect that declines were caused entirely by overfishing. Nevertheless, there is evidence that changes in oceanographic properties contributed to changes in distribution and declines in productivity (including decreased individual growth rate and possibly decreased recruitment and increased mortality). For crab and especially shrimp, it has been suggested that increases in biomass were simply a consequence of a release in predation pressure from Atlantic cod and perhaps other demersal fish, but again there is evidence that changes in oceanographic factors contributed to an increase in reproductive success. For capelin, most information supports the hypothesis that fishing had little impact on population dynamics, and that environmental factors were the primary determinant of stock size, well-being (growth and condition), distribution and timing of migrations.

## A5.2 Environmental conditions and the collapse of 2J3KL cod

As with most heavily fished stocks, it is difficult to distinguish the influence of climate variability from the influences of intensive fishing and interactions with other species, both predators and prey. For the cod off Labrador and eastern Newfoundland, the fishery was clearly the major factor in the decline during the latter half of the $20^{\text {th }}$ century. For the ultimate collapse, there is controversy as to whether there was a rapid but progressive decline from the mid-1980s onward or a precipitous decline during the early 1990s (Atkinson and Bennett 1994; Shelton and Lilly 2000). The former would imply that the estimates from research vessel surveys were severely positively biased for several years. The latter would imply that a very large quantity of fish unaccountably disappeared, either from greatly increased natural mortality or from greatly increased unrecorded fishing mortality (including perhaps both under-reported catches and nonreported discards). Many studies (e.g. Hutchings and Myers 1994a; Myers and Cadigan 1995; Hutchings 1996; Myers et al. 1996 a,b, 1997 a,b; Haedrich et al. 1997) have concluded that the collapse was caused entirely by fishing activity (landed catch plus discards). However, several authors point to various ways in which the decline in water temperature might have contributed to the collapse, either directly by reducing productivity (Mann and Drinkwater 1994; Drinkwater 2000, 2002; Parsons and Lear 2001) or indirectly by affecting distribution (Rose et al. 2000). See also Rice (2002) for an overview.

The severe decline of Atlantic cod in the Newfoundland-Labrador area seems to have occurred from north to south. On the northern and central Labrador shelf (Div. 2GH) catches of 60-90,000 t were reported in the period 1965-1969, but catches declined to less than $5,000 \mathrm{t}$ in most years during the 1970s and early 1980s, to less than $1,000 \mathrm{t}$ during the latter half of the 1980s and to zero in 1991. There appear to be no analyses of factors that contributed to the decline in this northern area. In the area from southern Labrador to the northern Grand Bank (Div. 2J3KL), catches declined during the 1970s, improved during the 1980s, and then declined precipitously in the late 1980s and early 1990s. The period of the collapse was accompanied by a dramatic change in distribution of Atlantic cod in Div. 2J, 3K and northern 3L. The autumn research vessel surveys, winter acoustic surveys and the distribution of the winter/spring trawler fleet all indicated that the fish disappeared first from the north and west, became increasingly aggregated near the shelf break in the south and east, and finally disappeared almost completely by 1994
(Baird et al. 1992b; Lilly 1994; Kulka et al. 1995b; Wroblewski et al. 1995b; Rose and Kulka 1999). There has been controversy regarding whether this change in distribution pattern resulted from a southward shift in distribution or a pattern of fish dying out in a sequence from north to south. Various analyses have been presented in support of the hypothesis that at least some of the cod shifted southward, possibly in response to a decline in water temperature (deYoung and Rose 1993; Rose et al. 1994; Atkinson et al. 1997; Rose et al. 2000) or a southward shift in the distribution of capelin (Rose et al. 2000). Indeed, Rose et al. (1994) indicated that this final shift in the late 1980s and early 1990s was part of a pattern of north/south displacements of several degrees of latitude in response to warming and cooling of water temperature. Other analyses found no support for the southward shift hypothesis (Hutchings and Myers 1994a; Hutchings 1996; Myers et al. 1996a). It is important to know whether a southward shift actually occurred, because it is postulated that such a shift made the cod more accessible to fisheries as the stock declined (Rose and Kulka 1999; Rose et al. 2000), and because the more southerly distribution placed the cod in a position that is hypothesized to be disadvantageous for successful reproduction (deYoung and Rose 1993; Rose et al. 1994; Rose et al. 2000 ).

Temperature and other oceanographic factors have been shown or hypothesized to have influenced various elements of productivity (recruitment, individual growth and mortality) in the Atlantic cod off southern Labrador and eastern Newfoundland. Recruitment may be affected by the magnitude of the spawning stock and two easily measured oceanographic variables, temperature and salinity. Numerous studies have demonstrated a positive association between spawning stock biomass and recruitment (e.g. Rice and Evans 1988; Myers et al. 1993a; Hutchings and Myers 1994a; Morgan et al. 2000). However, Drinkwater (2002) pointed out that both spawning stock biomass and recruitment experienced a long-term decline from the 1960s to the late 1980s, and that a statistical demonstration of the influence of spawning biomass on recruitment does not hold if the data are first-differenced to remove trends. With respect to environmental influences, there is expectation that recruitment in 2J3KL cod might be positively influenced by warm temperatures, because the stock is at the northern limit of the species' range in North America (Planque and Frédou 1999), but there have been conflicting reports of whether such a relationship can be detected (deYoung and Rose 1993; Hutchings and Myers 1994a; Taggart et al. 1994; Planque and Frédou 1999). Similarly, a reported relationship between recruitment and salinity (Sutcliffe et al. 1983) was subsequently supported (Myers et al. 1993a) and later rejected (Hutchings and Myers 1994a; Shelton and Atkinson 1994) as data for additional years became available. With respect to individual growth, a negative impact of temperature has been well documented (Krohn et al. 1997; Shelton et al. 1999). With respect to mortality, the possible influence of cold water is of considerable interest because of an apparent coincidence between the rapid disappearance of cod from research surveys and the low temperature and extensive ice cover of the early 1990s. While it seems unlikely that significant numbers of fish died as a direct consequence of exposure to cold water, there is still insufficient evidence to reject the possibility that the cold water and extensive ice cover led to a reduced duration of feeding opportunity, which itself led to poor body condition and death (Dutil and Lambert 2000; Lilly 2001).

The question of whether there was an increase in natural mortality in the 1980s and early 1990s, and whether any such increase was related to environmental factors, is of great importance to understanding the dynamics of Atlantic cod and other demersal fish (Lilly 2002; Rice 2002). As
noted above, it is difficult to account for all the Atlantic cod that disappeared from the system without invoking either a considerable increase in non-reported fishing mortality or an increase in natural mortality. A similar controversy surrounds the American plaice stock off Labrador and northeastern Newfoundland (SA $2+$ Div. 3K), which declined to a very low level through the 1980s and early 1990s, a period during which reported catches were low (Bowering et al. 1997). Hutchings (1996) presented a scenario illustrating how substantial quantities of American plaice may have been caught and discarded in the Atlantic cod fishery, but Morgan et al. (2002) reexamined his analyses and concluded that fishing was not the cause of the decline. Most other species of demersal fish, including many of no commercial value, declined dramatically through the same period. It has been stated that fishing was the cause of all these declines (Haedrich and Fischer 1996; Haedrich and Barnes 1997; Haedrich et al. 1997). However, the available data consist of indices of stock abundance and estimates of removals by the fishery, with little or no information on discards and incidental fishing mortality, so it is not possible to ascertain either the number of fish initially in the water or the number killed by the fishery. Under such circumstances, it remains somewhat a matter of faith to ascribe the declines entirely to fishing and to reject the possibility that natural mortality increased.

## References

The references in this Appendix are included in the list at the end of the major portion of this paper.

## Appendix 6. Factors influencing the re-building of 2 J 3 KL cod

[This Appendix is reproduced from Lilly and Murphy (2004). It is an overview that was initially prepared for the Canada - Newfoundland and Labrador Action Team for Cod Recovery.]

The question of why cod stocks have not recovered since the imposition of moratoria in the early 1990s was addressed during the February 2003 cod zonal assessment meeting (Rice and Rivard 2003; Rice et al. 2003). Some generalities were identified. However, there is as yet no detailed critique of all factors that have been postulated to have been instrumental in impeding the recovery of 2J3KL cod. This section provides a brief overview of some of the processes and agents that may be affecting reproduction, growth and mortality. In some cases, a distinction is made between the offshore and the inshore.

## A6.1 Reproduction (to the start of the benthic juvenile stage)

The level of recruitment to the start of the benthic juvenile stage will be affected by the number and quality of eggs produced by the stock, and by the survival of eggs, larvae and pelagic juveniles.

## A6.1.1 Reproduction in the offshore

As noted in the status section, recruitment in the offshore has been very low since the early 1990s.

## A6.1.1.1 Egg production

It is expected that the number of eggs produced by the stock will be small because of the low spawning stock biomass (SSB) and the high proportion of first-time spawners in the population. That is, the expectation of a strong year-class is low.

We would like to know whether the number of recruits produced by the stock during the collapse period has been as high as might be expected, given the low stock size. That is, are there factors other than the low SSB contributing to low recruitment to the early juvenile stage?

There are suggestions that fishing activity has disrupted the spawning behaviour of cod and thereby caused a reduction in the number and quality of fertilized eggs released into the sea. It is known that trawling disrupts spawning aggregations (Morgan et al. 1997) and chronic stress in the laboratory can reduce reproductive output (Morgan et al. 1999), but it is very difficult to determine whether trawling on spawning shoals of northern cod has been sufficiently disruptive to reduce their spawning success. It may be noted that there has been no directed trawling for cod during the moratorium period, but shrimp trawlers may operate in areas where cod are spawning.

There is evidence that populations have lower reproductive success at low population size due to a variety of phenomena that are not in play when the population is larger. These phenomena, collectively referred to as Allee effects, include difficulty in finding a mate and breakdown in
social structure and migration patterns. It is not known if such effects have been influential in 2J3KL cod.

## A6.1.1.2 Survival of eggs and larvae

Survival of cod eggs and larvae is likely to vary over time and space. The low number of spawners since the mid-1990s and their relatively small size will reduce the temporal and spatial scale over which the eggs are released, and contribute to a lower likelihood that a good proportion of eggs and larvae will find suitable conditions. A more explicit variant of this concept is the "right site" hypothesis advanced by DeYoung and Rose (1993). They contend that Hamilton Bank is an advantageous site for release of northern cod eggs, and that the more southerly distribution of cod during the 1990s was disadvantageous because of an increased likelihood that the eggs would be advected off the shelf.

Predation on cod eggs and larvae: It has been hypothesized that part of the reason why large, dominant species such as cod have been successful is that their adults crop down forage species. When abundance of the adults of the large species is severely reduced, then the forage species may increase in abundance due to reduced predation pressure. The forage species then keep the once dominant piscivore in low abundance by preying on its early life stages (eggs, larvae or juveniles) or by competing with them for food. There is not a lot of direct dietary evidence for such a phenomenon, but there is evidence for predation by herring and sprat on cod larvae and especially cod eggs in the Baltic Sea. For the southern Gulf of St. Lawrence, a reciprocal relationship between biomass of pelagic fish (herring and mackerel) and recruitment of cod supports the hypothesis that predation on early life stages is impeding recovery of the cod in that area (Swain and Sinclair 2000).

For the 2J3KL area, there is no evidence that any planktivorous finfish has benefited from the collapse of cod, but there has been a surge in snow crab and especially northern shrimp. It is not clear that the surge of these species was related solely to a release in predation pressure from cod (Lilly et al. 2000b), but in any event there remains the possibility that snow crab larvae and northern shrimp may be preying on cod eggs and larvae. In addition, Anderson and Rose (2001) drew attention to the increase in Arctic cod off eastern Newfoundland during the 1990s (Lilly and Simpson 2000). Although this increase is more likely to have been related to a decrease in water temperature than to a decline in predation from cod, there remains the possibility that Arctic cod might have had a negative influence on cod because they competed with the cod for food or they preyed on larval or early juvenile cod. In the past few years, mackerel and billfish, both of which are summer migrants from the south, have been more abundant in inshore Newfoundland waters than they were for many years, and these also could be preying on cod eggs and larvae. In summary, there is a possibility that an increase in mortality rate of cod eggs and larvae is contributing to the non-recovery of 2J3KL cod, but there are no diet data to test the hypothesis, and there has been no increase in those species (such as capelin and herring) that are most likely to prey on cod eggs and larvae.

Prey for larvae and pelagic juveniles: There is very little information on trends in the abundance and distribution of the prey of larvae and pelagic juveniles. There have certainly been changes in
the overall biomass and species composition of the phytoplankton and zooplankton in the waters off Labrador and eastern Newfoundland, but the implications for cod are not well understood.

The information that bears most directly on this issue comes from pelagic net surveys conducted during 1994-1999 (Colbourne and Anderson 2003). It was found that the biomass of zooplankton and the abundance of pelagic juvenile cod on Grand Bank were very low in 1994, but that they increased as the waters warmed during the mid- to late 1990s. The abundance of pelagic juvenile cod did not increase until 2 years or so after the zooplankton started to increase. This is interpreted as evidence that the cold conditions of the early 1990s were inhibiting recruitment of cod, and that warm conditions were necessary but not sufficient for improved recruitment. Good feeding conditions were also necessary.

## A6.1.2 Reproduction in the inshore

The time-series of the sentinel surveys and the inshore SPA are too short to assess whether recruitment since 1992 has been good or bad relative to levels before 1990. Recruitment was better in the late 1990s than in the mid-1990s. This may have been related to the warmer water in the late 1990s, as discussed above.

## A6.1.3 Summary of factors affecting eggs, larvae and pelagic juveniles

As noted above, the major factor contributing to poor recruitment to the end of the larval stage has been the very low level of the spawning stock biomass (SSB). There is evidence from pelagic surveys that temperature and food availability for larvae or pelagic juveniles have also been important.

The pelagic surveys have been discontinued. It is difficult to detect factors affecting specific early life stages in the absence of surveys directed at obtaining indices of abundance for those stages. Note that it would be possible to determine if the production of older recruits (age 2 or 3 ) were good or poor relative to the size of the SSB if there were an accepted SPA spanning the pre and post-collapse periods. In such circumstances, one might use the ratio of recruits to SSB (or some such index) to assess the productivity of the stock.

## A6.2 Individual growth

Prey: The trend in biomass of capelin, historically the major prey of cod in 2J3KL, has been uncertain since the late 1980s. (Biomass estimates from hydroacoustic surveys in the offshore have been much lower since the early 1990s compared with the 1980s, but indices of capelin biomass from the inshore have not shown such extensive declines.) Some studies of cod condition and feeding indicate that cod may not be faring well in certain seasons and areas, and that this is due to low availability of capelin (Rose and O'Driscoll 2002). Other studies and observations do not suggest any concerns at present about cod growth or condition (Lilly et al. 2003). Whatever the present circumstances, there remains concern that there may not be sufficient capelin to support a recovery of the cod stock, especially in the offshore and in the north (DFO 2003). (See Appendix 8 for additional information on capelin.)

## A6.3 Natural mortality

## A6.3.1 Natural mortality in the offshore

As noted in Section 7.1.3 of the main paper, the total mortality of fish in the offshore has been very high since the start of the moratorium. Reported by-catches in the offshore have been small, so considerable attention has focused on the possibility that natural mortality is high. Most attention has focused on the impact of predators.

## A6.3.1.1 Predators

Most attention has focused on seals. The harp seal population has increased since the 1970s and estimates of consumption of cod by harp seals since the early 1990s appear high compared with the perception of cod stock size. It appears that predation by harp seals could be the major factor contributing to high mortality in the offshore, but little is known about harp seal diet in the offshore. Hooded seals may also be important predators on cod, but there are no estimates of their removals. There are also no estimates of removals by cetaceans, including minke whales and various toothed whales (e.g. pilot whales and porpoises). Various finfish are also known to feed on juvenile cod, but these species are depressed in abundance.

## A6.3.1.2 Prey

As noted above, some scientists are of the opinion that cod have been in poor condition in recent years, and that this has been caused by low availability of capelin. It is postulated that this low condition has resulted in higher over-wintering or spawning mortality.

## A6.3.2 Natural mortality in the inshore

As noted in section 7.2.1.3 of the main paper, tagging studies provide evidence for high natural mortality of adult cod in the inshore, especially in 3K.

## A6.3.2.1 Cold water and ice

A mass natural mortality of about 800 t of cod occurred in Smith Sound during April 2003. Although the cause of this event is not fully understood, it was clearly related to unusually cold temperature (Colbourne et al. 2003). This was an important event, but the recorded deaths amount to less than $5 \%$ of the biomass of cod that was estimated to be in Smith Sound during an hydroacoustic survey in January 2003.

Mass mortalities in shallow water occurred in several locations in Notre Dame Bay and Bonavista Bay during 1998-2000 (Lilly et al. 1999, 2001). These mortalities are understood to have been much smaller than the mass mortality in Smith Sound, and occurred when the inshore populations were larger. It is therefore thought that they would not have had a significant impact on the inshore cod as a whole, but they may have been important for local components that were much smaller than the Smith Sound population. The relative importance of seals and ice in causing mortality during these events is discussed in section A6.3.2.2.

## A6.3.2.2 Predators (notably seals)

There are numerous predators on cod in the inshore, including squid, several species of fish, and cetaceans. However, most attention has been focused on harp seals because of their abundance and large individual size.

The following discussion of seal-cod events is taken from Lilly (2004).
Reports of cod in shallow water became frequent in the winters of 1997-1998, 1998-1999 and 1999-2000. These reports came primarily from two areas: Notre Dame Bay on the northeast coast and southwestern Bonavista Bay on the east coast. [See Lilly et al. (1999) for a brief catalogue of some of the earlier events.]

Reports from Notre Dame Bay included the following. From January 11 to approximately January 16, 1999, cod were found dead and dying in and below ice in Virgin Arm. It was estimated by Fishery Officers, who interviewed divers and other people who harvested the fish, that perhaps 200,000 lbs ( 91 t ) of cod died. A sample ( $\mathrm{n}=193$ ) of these fish, obtained by divers, had a mean length of 59 cm (range $35-95 \mathrm{~cm}$ ). The fish were to all appearances healthy and in good condition. Harp seals were reported in the area and some of the larger cod in the sample had bites taken from their bellies.

Reports from southwestern Bonavista Bay were more frequent and included numerous descriptions of predation by harp seals on cod. In early February, 1998, many dead cod were observed in Southern Bay Reach. Many harp seals were reported in the area. From February 28 to March 3, 1998, cod were seen swimming with fins above the surface, and 200 lbs of cod were found dead on the shore. Seals were reported in the area and an observer reported seeing a seal taking a bite out of a cod's belly. On January 11-13, 1999, many cod were observed swimming near the surface at Cannings Cove and Jamestown. Seals were again seen in the area and an observer reported seeing seals with cod in their mouths, shaking the cod and tearing out the guts. On January 20, 1999, an observer saw a very large number of seals near Deer Island (at the headland between Goose Bay and Sweet Bay) coming to the surface with cod in their mouths. They would take a clean cut out of the belly, taking the liver but leaving the gonad. As reported by The Telegram (St. John’s, NL, February 23, 1999), in February 1999 seals were observed preying on cod in a small cove on Deer Island. The seals would shake the cod "and the gut would stay in the mouth and the fish would fly off". The presence of large numbers of dead cod on the bottom was confirmed by a diver. One cod recovered with a large bite from its belly was reported to be about 3 feet ( 91 cm ) long.

Observers say that they never before experienced incidents such as the above.

The following is a brief overview of information gleaned from newspaper accounts and reports by fishery officers and DFO scientific staff.

Observations of seals preying on cod by belly-feeding have been reported mainly from early winter to early spring and mainly from Notre Dame Bay (NDB), Bonavista Bay and Trinity Bay.

There have been several instances in which divers have reported cod lying on the bottom with holes in their bellies. There have been several well-documented incidents from eastern Notre Dame Bay and southwestern Bonavista Bay in which cod have been found milling about lethargically in cold shallow water. In some of these incidents seals have been observed on the periphery, especially near dawn and dusk. The most notable such incidents occurred at Virgin Arm in NDB in 1999 and at several locations in southwestern Bonavista Bay in 1998-2000. These incidents have generally occurred adjacent to deep water where the cod may have been overwintering. Some people think the cod were herded by the seals into the shallow water, where some of the cod then died from seal predation and perhaps from exposure to the cold water and ice. Cod have been harvested in a few of these situations and most such cod have been lethargic but alive. If cod die from exposure to cold and ice after fleeing from seals, then such mortality may be considered "fatal harassment" (McLaren et al. 2001). Another possible cause of incidents where cod have been found milling about in cold shallow water is that the cod entered the shallow water for some other reason, such as the pursuit of prey. Seal predation associated with such incidents might be opportunistic. Observations of belly-feeding continue to the present. There have been no recent reports of "events" as dramatic as those that occurred during 19982000.

There is evidence that natural mortality of adult cod has been high in Notre Dame Bay and Bonavista Bay. The opening of a cod-directed fishery in the inshore during 1998-2002 provided an opportunity to conduct tagging studies with the intent of estimating exploitation rates. After several years it became apparent that the returns of tags applied during specific tagging studies had declined very rapidly over time in Div. 3K (Brattey and Healey 2003). This trend was less dramatic in Bonavista Bay, and even less so in Trinity Bay. An exploration of the magnitude of natural mortality that would be consistent with such rapid disappearance of fish (Cadigan and Brattey 2003) concluded that natural mortality was likely as high as $55 \%$ per year in Div. 3K and $33 \%$ in Div. 3L as a whole

## References

The references in this Appendix are included in the list at the end of the major portion of this paper.

## Appendix 7. The role of predators, especially seals, in the dynamics of cod since the mid-1990s

[This Appendix is reproduced from Lilly and Murphy (2004). It is an overview that was initially prepared for the Canada - Newfoundland and Labrador Action Team for Cod Recovery. It was written as a series of short paragraphs, and retains that style. G. Stenson (Fisheries and Oceans Canada, St. John's, NL) provided some of the information.]

The predators of cod tend to change as the cod grow (Pálsson 1994; Bundy et al. 2000). Very small cod are eaten by squid, various groundfish (such as sculpins) and some seabirds. Larger juveniles are eaten by various groundfish (most notably Greenland halibut and cod), harp and hooded seals, certain toothed whales (e.g. harbour porpoise, pilot whales) and likely minke whales. Large cod probably have few natural predators, but seals can prey upon them by bellyfeeding.

The predator that has received most attention is the harp seal. The harp seal population declined during the 1950s and 1960s because of heavy hunting and reached a minimum of fewer than 2 million individuals in the early 1970s. The population then increased to about 5.2 million by 1996 (Healey and Stenson 2000). Larger harvests in recent years have kept the population relatively stable at this level.

It has been estimated that harp seals consumed about 3,060,000 $t$ of prey in 2J3KL and 3Ps in 2000. This is about $40 \%$ of the annual consumption of prey by the harp seal population. Approximately $50 \%$ of the annual consumption is taken in the Arctic and approximately $10 \%$ is taken in the Gulf of St. Lawrence.

Cod is a minor prey of harp seals (Hammill and Stenson 2000). The harp seal diet, as reconstructed from the hard parts of prey found in their stomachs, is mainly plankton-feeding pelagic fish. The dominant prey in 2J3KL are capelin, Arctic cod, sand lance and herring.

The quantity of cod consumed by harp seals has been computed using harp seal population numbers, energy requirements of individual seals, the average duration of seal occurrence within 2 J 3 KL , the relative distribution of seals between inshore and offshore, and average diets compiled for the inshore and the offshore.

Based on the average diets, it was calculated that harp seals consumed $37,000 \mathrm{t}$ of cod in 2000 (with a $95 \%$ confidence interval of 13,000 - 62,000 t) (Fig. A7.1).


Fig. A7.1. Consumption (with 95\% confidence intervals) of cod by harp seals in 1965-2000, based on diets averaged over 1982 and 1986-1998.

The only factor affecting among-year differences in these estimates of cod consumption is the estimate of harp seal population numbers. Consumption of cod has also been estimated using annual diets, but the large uncertainty associated with the yearly diets results in consumption estimates that are not significantly different from those computed using average diets.

Consumption estimates are imprecise due mainly to geographic, seasonal and annual variation in the diet. An important source of uncertainty is the relatively small number of harp seals that have been sampled in the offshore. In addition, the majority of those samples were obtained prior to the mid-1990s, and may not reflect more recent feeding.

The cod represented in the stomach contents of harp seals tend to be small, as indicated by the sizes of the cod otoliths (earbones). Most cod eaten from 1986 to 1996 were of ages 0 and 1, but in 1997 and 1998 older cod were dominant. It is thought that most otoliths come from cod that have been swallowed whole.

Larger cod may fall prey to belly-feeding, wherein the seal takes a bite from the cod's abdomen, consuming the liver and some of the other abdominal organs, but generally leaving the muscle and head. Instances of belly-feeding will usually not be detected by stomach content analysis. The weight of fish killed during such an incident is much greater than the weight of fish consumed.

Observations of belly-feeding have been reported mainly from early winter to early spring and mainly from Notre Dame Bay (NDB), Bonavista Bay and Trinity Bay (Lilly et al. 1999). There have been numerous reports of seals seen biting the abdomen of a cod, and there have been several instances in which divers have reported cod lying on the bottom with holes in their bellies. There have been several well-documented incidents in which cod have been found milling about lethargically in cold shallow water. In some of these incidents seals have been observed on the periphery, especially near dawn and dusk. The most notable such incidents occurred in Virgin Arm in NDB and several locations in southwestern Bonavista Bay in 19982000. These incidents have generally occurred adjacent to deep water where the cod may have been overwintering. Some people think the cod were herded by the seals into the shallow water,
where some of the cod then died from seal predation and perhaps from exposure to the cold water and ice. Cod have been harvested in such situations and most such cod have been lethargic but alive. If cod die from exposure to cold and ice after fleeing from seals, then such mortality may be considered "fatal harassment" (McLaren et al. 2001). Another possible cause of incidents where cod have been found milling about in cold shallow water is that the cod entered the shallow water for some other reason, such as the pursuit of prey. Seal predation associated with such incidents might be opportunistic. Observations of belly-feeding continue to the present. There have been no recent reports of incidents as dramatic as those that occurred during 19982000.

Analyses of survey data indicate that cod in the offshore of 2J3KL have experienced very high mortality since at least the mid-1990s (Lilly et al. 2003). Very few cod survive beyond about age 5. There is insufficient direct evidence to determine incontrovertibly whether this high mortality is associated with fishing, poor condition, predation or some other factor. However, recorded bycatches of cod in domestic and foreign fisheries for other species have been small, and most information on body size indicates that the fish have not been in unusually poor condition in recent years. Thus, it has been concluded (DFO 2003) that the high abundance of harp seals at a time of low cod abundance, together with the estimates of cod consumption by seals, indicate that predation by harp seals is a factor contributing to the high total mortality of cod in the offshore. It must be recognized, however, that only a very small number of harp seals have been sampled in the offshore, and that there was only a trace of cod in their stomachs.

Analyses of tag return data indicate that adult cod in the inshore of 3K and 3L have been experiencing high mortality in addition to that caused by fishing (Cadigan and Brattey 2003; Lilly et al. 2003). This mortality is higher in 3K than in 3L. It has been concluded (DFO 2003) that the continuing presence of cod in the stomach contents of harp seals sampled inshore, together with observations of belly-feeding on adult cod, indicate that predation by harp seals is a contributor to the high natural mortality of cod in the inshore.

Predation on cod by hooded seals is less well known. The current status of the hooded seal population is not known because there has not been a population survey since 1990. Analysis of the limited number of stomach samples collected in the late 1980s and early 1990s indicates that hooded seals could be important predators on cod (McLaren et al. 2001). However, there are no data to assess the diet of hooded seals in the offshore since the northern cod population collapsed during the early 1990s.

It has been suggested that seals might detrimentally affect cod by competing with them for food. For example, capelin has historically been the major food for cod, and it has been estimated that harp seals ate about $893,000 \mathrm{t}$ of capelin in 2J3KL in 2000 (Stenson and Perry 2001). However, there are numerous other capelin predators, including squid, other groundfish (Greenland halibut, American plaice), baleen whales (humpbacks, fins, seis and minkes), and birds (gannets, murres, puffins, shearwaters) (Bundy et al. 2000; Carscadden et al. 2001). In addition, harp seals, cod and numerous other predators share other forage fish, such as herring, Arctic cod and sand lance (Bundy et al. 2000). The complexity of the food web, and our rudimentary understanding of its dynamics, make it very difficult to assess the benefit that would accrue to cod from specific reductions in the abundance of harp seals.

There is evidence that seals are important contributers to the high mortality experienced by cod in 2J3KL. It has been stated that seal population numbers should be reduced to promote the recovery of seals. Arguments for and against this stance fall within the realms of conservation, ethics and international law (Molenaar 2002, 2003).

It is often assumed that a reduction in the number of seals will result in a decrease in the consumption of cod by seals and consequently an increase in the abundance of cod. As discussed in considerable detail by McLaren et al. (2001), this seems sensible, at least in the short term. That is, a sharp reduction of seal predation on cod of commercial size would immediately increase their availablity to a fishery (or increase the size of the spawning stock). Similarly, a reduction of predation on pre-recruit fish might give enough short-term relief to permit substantially more recruits to contribute to the spawning stock. However, other outcomes are possible, especially in the longer term. It must be recognized that the number or weight of cod consumed by seals may depend not only on seal abundance and cod abundance, but also on the distribution and degree of aggregation of the cod and the availability of alternate prey for the seals. There is also the possibility that cod saved from predation by seals may die from some other cause before they can contribute to a fishery or to the production of more cod.

Contrary to the assumption in the paragraph above, it has been suggested by some that a reduction in seals might actually cause a decline in cod, because the seals consume other species that prey on cod. McLaren et al. (2001) found no evidence to support such a scenario.

The high mortality experienced by northern cod in recent years is a major impediment to recovery. However, even if survival can be substantially improved, the stock will take a long time to reach a spawner biomass level of (say) 300,000 tons. This is because the stock is starting from a very low level, the small spawner stock biomass implies little likelihood of strong yearclasses during the early stages of recovery, and the stock has an inherently low population growth rate because of slow individual growth and relatively late age at maturity.

## References

The references in this Appendix are included in the list at the end of the major portion of this paper.

## Appendix 8. The role of prey, especially capelin, in the dynamics of cod since the mid-1990s

[This Appendix is reproduced from Lilly and Murphy (2004). It is an overview that was initially prepared for the Canada - Newfoundland and Labrador Action Team for Cod Recovery. It was written as a series of short paragraphs, and retains that style. J. Carscadden (Fisheries and Oceans Canada, St. John's, NL) provided some of the information.]

Cod feed on a wide variety of prey (Lilly 1987). The major prey for small cod are planktonic crustaceans, notably hyperiid amphipods in the north and euphausiids on Grand Bank. For medium-size cod the major prey are schooling planktivorous fish. The most important of these is capelin, but Arctic cod are eaten in the north, herring are consumed in inshore waters, and sand lance are important on Grand Bank. Larger cod tend to feed on medium-sized fish and crabs, especially toad crabs and small snow crabs. Shrimp are consumed by a broad size range of cod. Cod also feed on smaller cod, but cannibalism is not an important aspect of the cod's diet.

The prey that has received most attention is capelin. The importance of capelin to cod has long been evident from the vast shoals of cod that once migrated into the traditional inshore fishing grounds to feed on capelin that had approached the coast to spawn. In addition, a compilation of diet data for a study of biomass flows (Bundy et al. 2000) concluded that capelin contributed about $60 \%$ of the diet of large ( $>35 \mathrm{~cm}$ ) cod on an annual basis during 1985-1987. In recognition of such observations, early multispecies concerns focused on questions such as how much capelin could be harvested without reducing the proportion of the cod stock migrating inshore and without affecting cod productivity (for example, by causing a decline in cod growth).

Capelin has been considered a vital component of the ecosystem off Labrador and eastern Newfoundland. It is a dominant link between zooplankton and members of higher levels of the food web, including not only cod but invertebrates (notably squid), other fish (Greenland halibut, American plaice), marine mammals (harp and hooded seals and several species of whales) and marine birds (murres, puffins, gannets) (Bundy et al. 2000; Carscadden et al. 2001). Capelin occupys a similar role in other Arcto-boreal ecosystems (e.g. the Barents Sea and waters around Iceland).

Capelin was historically fished for bait, fertilizer, dog food and human consumption. Such domestic use may have reached 20-25,000 t annually.

Catches increased substantially when non-Canadian fleets began fishing capelin offshore (Fig. A6.1). Catches peaked in 1976 at about $250,000 \mathrm{t}$, but then declined rapidly. The non-Canadian fleet used midwater trawlers, and operated during the spring in Div. 3L and during the autumn in Div. 2J3K. The offshore 3L fishery closed in 1979, whereas the offshore 2J3K fishery continued at a relatively low level until 1991, after which it too was closed.

During the late 1970s Canadian fish harvesters started to fish mature capelin near the spawning beaches to supply a market for roe-bearing females. This fishery expanded rapidly, exhibited highest catches during the 1980s, and declined after 1990 (Fig. A8.1).


Fig. A8.1. Commercial landings and total allowable catches (TAC's) (thousands of tons) of capelin in 2J3KL. Landings are shown separately for Canadian and non-Canadian fleets. For many years capelin in SA2+Div. 3K were managed separately from those in Div. 3L.

Information on the status of the capelin stock is available since about the mid-1970s, but there is no single source of information that indicates the trend from that time to the present. The population was abundant during the mid-1970s, but declined during the late 1970s and then increased again during the 1980s. Since the early 1990s, the status of the stock has been highly uncertain (DFO 2000, 2001b). The spring offshore hydroacoustic survey in 1990 produced an estimate of 6.9 million $t$ of capelin, whereas the estimate the following spring was about 0.1 million t . Hydroacoustic surveys and studies in the offshore have failed to find much capelin since that time. In contrast, capelin indices from the inshore (e.g. commercial catch rates; school areas derived from aerial surveys) did not show such precipitous declines.

Many inshore fish harvesters think that the capelin stock has been well below its historic abundance since the early 1990s. Others think the stock is not as severely depleted, particularly in certain areas.

Perception of capelin abundance may be influenced to some extent by the many changes in capelin biology that became apparent in the early 1990s. These include a reduction in average capelin size, late arrival in coastal waters and increased spawning in deeper water (Carscadden et al. 2002; Nakashima and Wheeler 2002). These and other changes in capelin biology were originally attributed to below normal sea temperatures during the early 1990s. However, the biological characteristics have not reverted to their former status, despite a warming during the latter half of the 1990s and early 2000s, so temperature may not have been the sole reason for the changes.

The potential for the capelin fishery to affect capelin abundance is an important consideration when one wishes to take measures to promote the recovery of cod. Many people think that the fishery has an important influence on capelin status. This perception may be based not only on the magnitude of landings, but on the dumping of males and the dumping of catches because of
redfeed and other factors. However, capelin scientists concluded that there was no scientific evidence to support the perception that the capelin fishery in SA2+Div. 3KL had an impact on the population abundance of capelin (Carscadden et al. 2001). This conclusion was based on a review of information existing up to the end of the 1990s. There has been no scientific evaluation of stock status since 2000, and hence it is not possible to contemplate the extent to which exploitation has affected the capelin stock in more recent years (DFO 2001b).

The capelin stock does undergo substantial changes in biomass over time. These changes appear to be related primarily to changes in recruitment, which is influenced by wind patterns acting on spawning beaches and possibly temperature and other factors. The biomass is also influenced by the individual size of fish in the population. It has been estimated that even if there was no change in population number between the 1980s and the 1990s, the population biomass would be about $29 \%$ smaller in the 1990s due to the decline in weight of individual fish. It is also likely that the number and kind of predators could affect the survival rate of capelin (Carscadden et al. 2001).

Despite the perception of a strong dependence of cod on capelin, it has been difficult to demonstrate such a dependence with scientific data and analyses. This may be because the dependence is indeed weaker than thought, but it could also be because the data available for addressing such complex questions are insufficient and highly variable.

The role of capelin in the failure of northern cod to recover in the period since its collapse is controversial. Studies of cod condition and feeding in specific areas and seasons have been interpreted as indicating that cod have not been faring well in certain areas, most notably off southern Labrador, and that this has been due to low availability of capelin (Rose and O’Driscoll 2002). In contrast, the routine monitoring of cod during autumn research surveys in the offshore have not identified any problems with cod growth or condition in recent years (Lilly et al. 2003). Cod in the inshore appear to have been faring well. Whatever the circumstances of recent cod growth and condition, there is concern that there may not be sufficient capelin to support a recovery of northern cod to its former level of high biomass, especially in the offshore and in the north (DFO 2003).

Concerns regarding the inability of the cod stock to recover without high availability of capelin are based on the assumption that there is no species (or group of species) that can replace capelin in the diet of cod. In the Barents Sea, the growth rate and condition of cod declined considerably when capelin abundance declined during the latter half of the 1980s, but the well-being of cod declined much less during a second capelin decline during the mid-1990s. It is thought that there were more small individuals of other fish species in the Barents Sea in the mid-1990s than in the latter half of the 1980s, and that the cod were able to compensate for the low availability of capelin by preying on these other fish species rather than having to rely on crustaceans (especially hyperiid amphipods and euphausiids). In the northern cod stock area, there remains uncertainty about the status of capelin, but many people feel that the stock is less abundant than it was during the 1980s. There is no evidence that any other finfish has increased since the early 1990s when many characteristics of capelin changed. There has, however, been an increase in the abundance of snow crabs and especially northern shrimp. Before the collapse of the cod stock, both of these species were moderately important prey for cod (Lilly 1987, 1991). These
species may be less valuable than capelin as prey for cod because they are digested much more slowly and have a lower fat content.

The intensity of feeding and diet composition of northern cod has been less well studied in recent years than formerly. Observations of diet have been made since the late 1990s in specific locations and times during hydroacoustic studies conducted by scientists at Memorial University, but the collection of cod stomachs during annual DFO bottom-trawl surveys was discontinued during the latter half of the 1990s after about 20 years of continuous sampling. This makes it almost impossible to discern long-term trends in the extent to which cod have been successful in finding not only capelin (Lilly 1994; O’Driscoll et al. 2000) and shrimp (Lilly et al. 2000), but also a broad variety of other prey. Consider, for example, the larger planktonic crustaceans, notably hyperiid amphipods and euphausiids. These groups have in the past been important contributers to cod diet, but we know almost nothing about the trends in their abundance and the success with which cod have been finding them in recent years. There is evidence from examination of capelin stomachs that euphausiids may have been less available in recent years than they were in the 1980s (Mowbray 2002).

Scientists advised in the late 1970s that total allowable catches of capelin be set at a conservative exploitation rate of $10 \%$ because of poor recruitment in capelin stocks at that time. The rationale for this conservative approach to exploitation was expanded in 1982 when concern was expressed for the effect that harvesting of capelin might have on cod and other predators (NAFO 1982). Canada has not had a reduction fishery for capelin. As a consequence, the fisheries for capelin off eastern Newfoundland and Labrador have been small relative to those in waters around Iceland and in the Barents Sea (Fig. A8.2).


Figure A8.2. Catches of capelin off Labrador and eastern Newfoundland (2J3KL) compared with catches in waters around Iceland and in the Barents Sea. (modified and updated from Carscadden and Vilhjálmsson 2002)

Some of the text above discussed the extent to which the capelin fishery affected the status of the capelin stock, and thereby affected the quantity of capelin available to predators such as cod. There is also the question of the extent to which the capelin fishery might affect the immediate availability of capelin to cod. There have been no capelin fisheries in the offshore since 1991, so only the impact of the inshore fisheries need be considered. The inshore capelin fishery catches capelin only a short time before the capelin are ready to spawn. The immediate benefit to cod if those capelin are left uncaught is difficult to assess, because some of those capelin that are spared from the fishery would be eaten by predators other than cod (notably whales and birds). A high proportion of those capelin that survive the near-shore predator gauntlet die during or shortly after spawning. Only a portion of those dead capelin would be available to cod (because many remain on beaches, and there are many competitors for the dead capelin), and the duration of availability would be short, perhaps no more than a few hours or days. The capelin fishery would also reduce the quantity of spawn deposited on beaches and subtidal spawning grounds. Cod have been found to feed on subtidal capelin spawn, but spawn appears to be a minor component of their diet, so the impact of the capelin fishery on cod well-being through this process would seem to be small.

## References

The references in this Appendix are included in the list at the end of the major portion of this paper.


[^0]:    * This series documents the scientific basis for thei * La présente série documente les bases evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
    scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

    Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

    Ce document est disponible sur l'Internet à:
    po.gc.ca/csas/

[^1]:    changes below were made before 1997 fall survey
    ${ }^{1}$ Area of stratum 788 was increased by 9 sq. n. mi and the area of stratum 789 was decreased by 9 sq.n. mi.
    2 Stratum 791 in the 100-200 depth range was divided into two separate strata; 791 101-150
    with area $=227$ sq. n. mi.and stratum $800151-200$ area $=81$ sq. n.mi.
    ${ }^{3}$ Stratum 611 area was decreased by 27 sq. n. mi.

[^2]:    cont'd

