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ABSTRACT 

 
Three limit reference point estimators which may indicate recruitment-overfishing 
are evaluated using stock-recruit data simulated from a Beverton-Holt model with 
lognormal error.  The estimators are the spawner biomass corresponding to 50% 
of maximum recruitment from Beverton-Holt and changepoint regression model fits 
to the simulated data, and the spawner biomass corresponding to the intercept of 
the 50th percentile recruitment value and the 90th percentile of the recruit to 
spawner biomass ratio (Serebryakov method).   The sensitivity of the estimators to 
a range of data contrast in SSB values and recruitment noise levels is evaluated 
for data series 20 and 30 years in length.  In addition to examining the limit 
reference points, estimates of the slope of the spawner-recruit relationship near the 
origin are evaluated for the three methods, since the slope is important in 
determining population resilience and recovery rates.  It is concluded that the LRP 
estimated from the Beverton-Holt fit to data generated from a Beverton-Holt model 
is least sensitive to low data contrast and high noise, but that the ability of the 
nonlinear estimation procedure to find plausible parameter estimates deteriorates 
with increasing noise and at both low and high levels of data contrast.  In 
comparison, when data are generated from a Beverton-Holt model, both the 
changepoint regression and Serebryakov methods tend to give risk-prone 
estimates of the LRP in the sense that the limit reference point is lower than the 
true spawner biomass corresponding to 50% of maximum recruitment and 
application in fisheries management may thus not prevent recruitment-overfishing.  
Estimates of the slope parameter from changepoint regression tend to be lower 
than the true slope while estimates from Berverton-Holt and Serebryakov methods 
may be positively biased at high levels of noise.  Changepoint regression therefore 
provides a relatively risk-averse estimate of population resilience. 
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RÉSUMÉ 
 
Trois estimateurs des points de référence limites susceptibles de révéler une 
surpêche des recrues sont évalués à l’aide de données stocks-recrues dérivées 
d’un modèle de Beverton-Holt avec erreur lognormale. Les estimateurs sont, d’une 
part, la biomasse reproductrice correspondant à 50 % du recrutement maximal 
indiqué par le modèle de Beverton-Holt avec ajustements apportés aux données 
ainsi obtenues avec un modèle de régression par points d’inflexion et, d’autre part, 
la biomasse reproductrice correspondant au point d’intersection de la valeur de 
recrutement au 50e percentile et au 90e percentile du rapport biomasse 
reproductrice-recrues (méthode de Serebryakov). La sensibilité des estimateurs à 
une plage de contrastes de données dans les valeurs de la biomasse du stock 
reproducteur et à des niveaux de bruits de recrutement est évaluée pour la série 
sur des périodes de 20 et 30 ans. En plus d’examiner les points de référence 
limite, on évalue les estimations de la pente du rapport reproducteurs-recrues près 
de l’origine établies avec les trois méthodes, puisque la pente est importante pour 
la détermination des taux de résilience et de rétablissement des populations. On 
conclut que les points de référence limites estimés à partir d’un ajustement de 
Beverton-Holt apporté aux données produites avec le modèle de Beverton-Holt 
sont moins sensibles au faible contraste dans les données et au bruit élevé, mais 
que la capacité de la méthode d’évaluation non-linéaire d’établir des estimations 
plausibles des paramètres se détériore avec l’augmentation du bruit et à des 
niveaux faibles et élevés de contraste dans les données. Dans la comparaison, 
lorsque les données sont produites avec un modèle de Beverton-Holt, la 
régression par points d’inflexion et les méthodes de Serebryakov ont tendance à 
donner des estimations plus risquées des points de référence limites en ce sens 
que le point de référence limite est inférieur à la biomasse reproductrice réelle 
correspondant à 50 % du recrutement maximal et que, par la suite, l’application de 
ces estimations à la gestion des pêches risque de ne pas empêcher la 
surexploitation des recrues. Les estimations du paramètre de pente de la 
régression par points d’inflexion ont tendance à être inférieures à la pente réelle, 
tandis que les estimations obtenues avec les méthodes de Berverton-Holt et de 
Serebryakov peuvent présenter un biais positif à des niveaux de bruit élevés. La 
régression par points d’inflexion multiple fournit par conséquent une estimation 
relativement prudente de la résilience des populations. 
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INTRODUCTION 

 
The Department of Fisheries and Oceans (DFO) Precautionary Approach (PA) 
framework (Fig. 1) describes three zones with respect to spawning stock 
biomass (SSB).  These zones are separated by an upper or “buffer” reference 
point (URP or Bbuf) and a lower limit reference point (LRP or Blim).  When the 
stock is estimated to be in the Healthy Zone it is above Bbuf and therefore has a 
low probability of being below Blim at the present time or falling below Blim in the 
short-term.  A typical target fishing mortality (F) in this zone would be F0.1, but F 
should be below Flim, which is typically defined as Fmsy.  When the stock is in the 
Cautious Zone there is an increased probability of being below Blim at the present 
time or falling below Blim in the short-term, and F should be reduced, typically to 
below F0.1 according to prescribed harvest control rules.  A PA-compliant 
rebuilding plan may specify rebuilding the stock to above Bbuf (i.e. to the Healthy 
Zone) in a specific period of time by reducing F to a predefined level.  When the 
stock is in the Critical Zone it is below Blim and F should be reduced to as close to 
zero as possible to promote stock rebuilding.  Typically this would mean no 
directed fishing and minimum bycatch.  The SSB limit reference point (LPR) or 
Blim is thus pivotal in the application of the DFO PA Framework.  The DFO PA 
Framework has yet to be applied in fisheries management in Canada. 
 
Blim is generally considered to mark a boundary below which “serious harm” is 
occurring.  In terms of a typical groundfish stock, serious harm would be 
consistent with severe recruitment overfishing, i.e. a level of spawner biomass 
depletion which results in much reduced recruitment.  In the absence of a 
depensatory functional response in the stock-recruit relationship, the definition of 
serious harm or severe recruitment overfishing is somewhat subjective.   
 
A number of candidate SSB LRPs have been suggested (see partial review in 
Shelton and Rice 2002).  One candidate is the SSB corresponding to 50% of the 
estimated maximum recruitment (Mace 1994, Myers et al. 1994), here termed 
B50.  This can be estimated by fitting a stock-recruit model to the available data.  
As an alternative to B50, I consider an approach suggested by Serebryakov 
(1991) and Shepherd (1991) based on percentiles of recruitment (R) and recruits 
per spawner (R/S).  A version of the Serebryakov percentile LRP proposed at the 
November 2002 DFO Precautionary Approach Workshop in Ottawa, (DFO, 2002) 
was based on the SSB corresponding to the 50th percentile of R and the 90th 
percentile of R/S, here termed 50/90B . 
 
In this research document I attempt to evaluate some of the properties of three 
Blim estimators through simulation experiments using simulated data generated 
from a Beverton-Holt model with lognormal error.  B50 is estimated from the 
simulated data by fitting a Beverton-Holt model with unknown parameters (B1) 
and by changepoint regression using numerical optimization (Julious 2001; B2).  

50/90B  is estimated from the computation of the appropriate percentiles and 
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determining their point of intersection (B3).  Conclusions are drawn regarding the 
potential usefulness of these three LRP estimators in any future implementation 
of the Precautionary Approach in Canada on stocks for which stock-recruit data 
are available. 
 
The three methods also provide estimates of the slope at low stock size, which is 
of additional interest (in the case of the Serebryakov method the slope is the 90th 
percentile R/S and is taken here to be an estimate of recruitment rate at low 
stock size).  The slope in the S-R relationship at low stock size is a major 
determinant of potential recovery rates in depleted stocks and of the extinction 
threshold or resilience for stocks which continue to be heavily fished at low stock 
size.  
 
 

METHODS 
 
Generating fake data  
 
In each simulation experiment, 1000 replicate samples of simulated spawning 
stock biomass (S) and recruit (R) data y years in length were generated 
randomly with lognormal error from the predicted R in the Beverton-Holt model:    

 exp(ln( ) ))
1 ( / )

SR
S K
α ε= +

+
,  

where α and K are parameters and ε  is drawn randomly from 2N(0, )σ .  In this 
formulation of the Beverton-Holt model, maximum recruitment or Rmax = Kα  and 
B50 = K.  Values of S  in each experiment were drawn randomly from a uniform 
distribution U[Min, Max] with Min = 0.1% of the SSB corresponding to p*Rmax and 
Max = SSB corresponding to p*Rmax where p is the proportion of the true Rmax.  
Simulated data were generated for experiments which comprised all 
combinations of the following values of p, σ and y: 

 
p = 0.4, 0.6, 0.8, 0.9, 0.95 
σ  = 0.2, 0.4, 0.6, 0.8, 1.0 
y = 20, 30 
 

These values broadly bracket commonly experienced values in real data for 
groundfish stocks.  The underlying Beverton-Holt model used to generate the 
fake data had α =1 and K = 20,000.  Note that it is not necessary to explore the 
sensitivity of Blim estimators over a range of α  and K  because these parameters 
merely scale the SSB axis relative to Rmax (Shelton and Healey 1999).   What is 
important is the range of SSB that is explored relative to the SSB at Rmax.  This is 
illustrated graphically by superimposing proportions of Rmax on the plot of the 
Beverton-Holt model used to generate the fake data (Fig. 2).  Note that at p = 0.4 
the range from which random SSB values are drawn falls entirely to the left of B50 
and therefore not very informative regarding the asymptote.  Conversely, at high 
values of p, a large portion of the data may be drawn from the near-asymptotic 
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portion of the S-R curve which is relatively uninformative about the slope near the 
origin.  
 
 
Estimating the LRPs 
 
B1 was estimated by fitting a Beverton-Holt model to the simulated data using 
maximum likelihood estimation assuming lognormal error (see Myers et al. 1995 
for a description of the approach).  This estimation method thus matches the data 
generation method.  Parameter estimates were obtained by applying Proc NLP in 
SAS (SAS/OR © SAS Institute Inc. USA).  There is no back-transformation bias 
adjustment required for the estimate of log(K).  As σ increases, there is an 
increasing proportion of runs in which the estimation procedure failed to 
converge on feasible estimates of the parameters.  Replicate S-R datasets for 
which the estimated 50% Rmax> three times the true 50% Rmax, estimated B1 > 
three times the true B50 or B1 < 5% of the true B50, were discarded.  The number 
of discarded replicates out of the 1000 replicates in each experiment was 
recorded as an additional indicator of performance of B1.  In practice it would 
seem that a subjective constraint on Rmax (i.e. Kα ) needs to be imposed to 
obtain reliable estimates, but no formal approach for doing this has been 
routinely implemented in Canadian Atlantic groundfish assessments. 
 
B2 was estimated by fitting a changepoint regression model using the numerical 
optimization approach outlined by Julious (2001), hereafter referred to as the 
Julious Algorithm.  SAS code was written to do the estimation.  Changepoint 
regression, also referred to as segmented regression and “hockey-stick” has 
been applied to stock-recruit data by Butterworth and Bergh (1993) and 
Barrowman and Myers (2000), and considered in the context of Blim estimation by 
O’Brien et al. (2003).  The changepoint regression model is  
 

  
 when 0 ,  and

     when .
R Se S

e S

ε

ε

α δ

β δ

= ≤ ≤

= ≥
 

 
On the logarithmic scale, this becomes  
  

  
log log log  when 0 ,  and
        log   when .

R S S
S

α ε δ
β ε δ

= + + ≤ ≤
= + ≥

 

α  and δ , and hence β , ( )β αδ= , were estimated by applying the sequence of 
steps comprising the Julious Algorithm outlined in Fig. 3.  2 0.5B δ= .  The 
application to data from a Beverton-Holt model is illustrated in Fig. 4.  In this 
example p=0.95 and there is no error around the Beverton-Holt model.  SSB 
values are equally spaced between 0 and SSB corresponding to 0.95 of Rmax.  B2 
is much less than B50 for this example, with δ being just above B50.  The 
tendency for B2 to under-estimate B50 is explored more fully in the simulation 
experiments. 
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B3 required the computation the appropriate percentiles, 50th percentile R and 
90th percentile R/S.  The spawner biomass corresponding to the intersection of 
these two lines demarcates the estimate of B3.  An example application is 
illustrated in Fig. 5.  
 
In addition to estimation of LRPs, the distributions of estimates of the slope at low 
stock size from the three methods were also examined, but not as fully as the 
LRPs.   The slope at low stock size has important implications in terms of 
population resilience and recovery rates.   The Beverton-Holt model and 
changepoint regression estimates of α have to be corrected for bias when back-

transformed from the log estimates.  The bias correction is 
2

exp( )
2
σ

− .  More 

information on bias correction of back-transformed log estimates in stock-recruit 
model estimation can be found in MacCall and Ralston (2002).  The slope from 
the Serebryakov percentile method is a simple computation that does not require 
bias correction for log-transformation.  Bias in B1 arising from non-linearity in the 
model (Gavaris 1999) is not considered in this analysis.  
   

 
RESULTS 

 
Examples of single replicates of simulated S-R data generated for experiments 
with y = 30, σ  = 0.4 and p = 0.6, 0.8 and 0.95 are given in Figs 6, together with 
the estimates of the three LRPs based on the data and the true B50.  The plot for 
p = 0.95 is enlarged to reveal the lower left portion of the plot.   At p=0.6, all three 
estimators give values that are lower than the true B50.  At p=0.8, the estimate of 
B1 is slightly above B50, whereas the other two estimates are below B50.  At 
p=0.95, B1 and B2 are slightly below B50 in this example replicate, although, as 
will be shown below, the mean of 1000 replicates of B1 is slightly above B50.  The 
estimate of B3 is somewhat higher than B50 in this example. 
 
As an example of the differences in the three estimators, distributions for 1000 
replicate estimates of the LRP are plotted for y=30, p=0.8 and σ =0.6 (Fig. 7).  
Clearly the distribution of estimates of B1 has a long tail to the right of the true 
value of B50 (20,000).   The distribution of estimates of B2 is tighter, but has a 
mode that is considerably below  B50.  The distribution of B3 is the tightest, and 
has a mode somewhat below B50.  These results are explored in more detail 
below. 
 
The number of successful Beverton-Holt model fits for y =20 and 30, based on 
the discarding criteria outlined above, are given in Table 1.  The number of 
successful fits decreases with increasing σ  and is also lower at the highest and 
lowest p values.  The number of successful fits are somewhat lower for y=20 
compared with y=30. 
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Table 1.  Number of successful Beverton-Holt fits out of 1000 based on criteria 
outlined in the text for experiments at various levels of σ  and p at y = 20 and 30. 
 

20 years
sigma p=0.4 p=0.6 p=0.8 p=0.9 p=0.95

0.2 969 999 1000 997 986
0.4 833 937 979 968 892
0.6 728 827 922 892 786
0.8 651 788 806 776 697

1 604 670 710 682 608

30 years
sigma p=0.4 p=0.6 p=0.8 p=0.9 p=0.95

0.2 992 1000 1000 1000 998
0.4 898 972 995 994 972
0.6 790 895 948 959 889
0.8 707 780 888 878 788

1 633 708 787 786 664  
 
For changepoint regression, the number of cases in which δ coincides with the 
first data point, the last data point or the second last data point is informative 
regarding evidence of density dependence in the data.  If δ coincides with the 
first data point then the regression is interpreting the data to be from a population 
in which recruitment does not decline with stock size, i.e. strong density 
dependence and no evidence that recruitment-overfishing occurs.  If δ coincides 
with the last data point, then change-point regression is interpreting the data to 
be from a population with no density-dependence in the S-R relationship.  
Similarly, δ coinciding with the second last data point would indicate very weak 
density dependence. 
 
The incidence ofδ coinciding with the smallest SSB data point increased with 
increasing σ  and p, being highest at σ =1 and p=0.95 (Table 2). The incidence 
of δ coinciding with the largest or second largest SSB data point increased with 
increasing σ and decreasing p, being highest at σ =1 and p=0.4. 
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Table 2.  Number of changepoint regression cases out of 1000 in which δ  
coincided with the first (min) largest (max) or second larges (max-1) SSB data 
points for experiments with y=30 and a range of σ and p. 
 

y=30 min
Prop 0.4 0.6 0.8 0.9 0.95

sigma
0.2 0 0 0 1 5
0.4 0 0 1 8 45
0.6 0 2 10 25 60
0.8 1 7 19 54 95

1 1 15 32 79 153

y=30 max-1
Prop 0.4 0.6 0.8 0.9 0.95

sigma
0.2 4 0 0 0 0
0.4 43 3 0 0 0
0.6 41 18 1 0 0
0.8 53 32 4 0 1

1 56 30 11 4 1

y=30 max
Prop 0.4 0.6 0.8 0.9 0.95

sigma
0.2 10 0 0 0 0
0.4 29 8 0 0 0
0.6 51 22 1 0 0
0.8 55 33 4 1 1

1 67 31 14 1 5  
 
 
 
Plots of mean, median and CV for each of the three LRP estimators in each 
simulation experiment (combination of p, σ  and y) against p and σ  are given in 
Figs. 8-13.  For y = 20 (Fig. 8), the mean of the replicate estimates of B1 based 
on the fit of the Beverton-Holt model, is close to the true B50 for experiments at 
intermediate to high values of p when σ  is low, but slightly above B50 at low p.  B1 
slightly overestimates B50 at the highest value of p at all σ  levels.  The mean of 
the estimates tends to decrease with increasingσ , particularly at low levels of p.  
The lowest estimate occurs at the highest σ  and lowest p.  For changepoint 
regression, means of the replicate estimates of B2 are below B50 except at high p, 
and exceed B50 at the highest p at intermediate to high σ  levels.  The means of 
B2 increase with increasing p at all values ofσ .  There appears to be little effect of 
increasing σ  on the mean of the estimates, except at higher values of p.  For the 
Serebryakov percentile method, the means of the replicate estimates of B3 are 
generally well below B50 but increase abruptly to exceed the true B50 at high p.  
The mean of the estimates generally decreases with increasingσ .  Note that, 
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unlike the Beverton-Holt and changepoint estimates, the comparison here is 
between two different definitions of Blim, i.e. B3 is not an estimator of B50.  
 
Results are generally similar when y = 30 (Fig. 9).  The means of the B1 and B2 
estimates are somewhat closer to the true B50 in general, but not substantially so.  
There is almost no difference in estimates of B3 for 30 years of simulated data 
compared to 20 years.   
 
The medians of replicates for the 3 estimators at y = 20 (Fig. 10) are overall 
similar to the plots for the means.  The medians of the estimates of B1 are closer 
to the true B50 than the means at lowσ , but decrease more with increasing σ  at 
low p compared with the mean.  The medians of the estimates of B2 do not 
increase as much as the means at high p.  The plot of the medians of the 
estimates of B3 is very similar to the plot of the means.  At y = 30, the medians of 
B1 estimates (Fig. 11) tend to be closer to the true B50 compared with 
experiments at y = 20.  The medians of the estimates of B2 are not as close to 
the true B50 at higher values of p at y = 30 as they are at y = 20 at intermediate to 
high σ  levels.  Again, there is little difference in the medians of the B3 estimates 
at y=30 compared to y=20. 
 
The CVs at y = 20 and y = 30 reflect considerable variability in the estimates of 
B1 and B2 (Figs. 12 and 13).  The CVs increase with increasing σ  as expected, 
and in the case of B2, also increase with increasing p at intermediate to high σ .  
There is also some increase in B1 at the lowest levels of σ  and highest p.  At 
lower values ofσ , there is a slight valley in the surfaces causes by smaller CVs at 
intermediate values of p for both B1 and B2.  The reason that the CV increases at 
the highest values of p is because more of the data points are gathered from the 
near-asymptotic area of the S-R function which means greater uncertainty 
regarding the slope near the origin and hence greater uncertainty in the 
estimation of B50.  CVs on B1 and B2 are somewhat lower at y = 30 compared 
with y = 20, but not substantially so.  The CVs associated with the estimates of 
B3 are a lot smaller than CVs on both B1 and B2 and also decrease somewhat at 
y = 30 compared to y = 20. 
 
The mean, median and CV for y = 30 experiments are plotted for each value of p 
against σ  to allow more direct comparison of the estimates from the three 
methods (Fig. 14-16).  Fig. 14 illustrates that the mean B1 remains close to the 
true B50 with slight under-estimation at low p and high σ , changing to general 
small over-estimation at higher p.  In contrast, the means of B2 shift steadily 
higher towards B50 with increasing p.  The means of B3 also shift upwards with 
increasing p, but because of a negative relationship withσ , estimates go from 
being less than B50 at low p to being greater than B50 at higher p and low σ , but 
lower at higherσ .  At p=0.95 the means of B3 are all above B50.  As pointed out 
above, the plots of the medians show generally similar trends (Fig. 15) to those 
described for the means.  CVs all increase with increasing σ  as might be 
expected (Fig. 16) with B1 having the highest CV at p=0.4 and 0.6, changing to 
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B2 having the higher CVs at high σ  and high p.  CVs for B3 are smaller than for 
the other two estimators and increase at a slower rate with increasingσ . 
 
The mode for the distribution of estimates of α  (bias-corrected) from fitting the 
Beverton-Holt model to the 1000 simulated data sets at y=30, p=0.8 and σ =0.6 
(Fig. 17) is centered close to the trueα , whereas the tail of the distribution 
extends beyond 3xα .  The mode of the distribution of estimates of slope from 
changepoint regression (bias-corrected) occurs around 0.5, i.e. well below the 
true slope of the Beverton-Holt model used to generate the data.  The distribution 
is somewhat tighter than for the Beverton-Holt fits.  For Serebryakov’s percentile 
approach, the mode of the estimates of the 90th percentile R/S is slightly lower 
than 1.0 and the distribution is quite compact.   
 
Although equivalent surface plots to those provided for the estimators of B50 were 
not constructed for slope estimates, values are plotted for a range of σ  values at 
p=0.8, y=30 and for a range of p values at σ =0.6, y=30 (Fig. 18) to illustrate a 
subset of the results.  With respect to increasing noise at p=0.8, means of the 
estimates of the slopes increase with increasing σ  for Beverton-Holt and 
Serebryakov approaches but remain reasonably constant for changepoint 
regression.  For the Beverton-Holt model, the mean increases from near 1 (true 
slope value) to about 1.6 with increasing noise.  For the Serebryakov method, the 
increase is from 0.7 to about 1.6.  For change point regression the values are 
relatively constant in the range of 0.6 to 0.7, i.e. well below the true value.  At 
σ =0.6, the mean of the slope estimates from the Serebryakov method are 
greatest at 1.7 with p=0.4, but decrease rapidly to 0.4 with further increase in p.  
Estimates from the Beverton-Holt model are fairly constant at about 1.1-1.2 for p 
between 0.4 and 0.8, but increase to above 1.4 at higher p.  The mean of the 
estimates from changepoint regression are relatively constant between 0.65 and 
0.73 except at p=0.95 where the mean drops to below 0.6.  
 
 

DISCUSSION 
 
There is little information in the literature on the evaluation of reference points 
based on fish stock-recruit data.  Myers et al. (1994) and Mace (1994) provided 
some empirical evidence and analytical support for suggesting B50 based on the 
Beverton-Holt model as an LRP.  It is the SSB below which the population fails, 
on average, to produce half of the maximum possible recruitment.  An alternative 
LRP evaluated in this study is Serebryakov’s B50/90.  Although this approach was 
endorsed by Shepherd (1991), there has been no formal testing of B50/90.  It is 
considered to be the point below which the population is unlikely to produce 
average recruitment under good early life-history stage survival conditions. 
 
Fitting a Beverton-Holt model, carrying out changepoint regression or applying 
Serebryakov’s percentile method provide three approaches for estimating LRPs 
from S-R data.  The Beverton-Holt and changepoint regression approaches can 
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be used to estimate B50 or SSB corresponding to some other percentage of Rmax.  
ICES has considered the change point itself as an LRP (O’Brien et al. 2003).  It 
would be difficult to defend the point at which recruitment begins to become 
impaired (change point) as an LRP under the Canadian precautionary approach 
(see for example Shelton and Rivard, 2003).  Canada defines an LRP as the 
point at which serious harm is considered to have commenced.  The LRP derived 
from Serebryakov’s percentile method, B50/90 is similarly arbitrary.  In the absence 
of depensation in the S-R relationship, all LRPs are going have associated with 
them some degree of arbitrariness. 
 
In this study the true process assumed to be generating S-R data is Beverton-
Holt with lognormal error.  While the Beverton-Holt model is widely applied in 
fisheries assessments and related analysis, a variety of other generating models 
could be considered.  Lognormal error is also widely applied in modeling S-R 
data but other error structures may be appropriate in some cases.  In this study, 
arbitrary choices for deriving LRPs from the three methods are considered – 
estimates of B50 for the Beverton-Holt and changepoint regression methods and 
the intersection of the 90th percentile R/S and 50th percentile R for the 
Serebryakov approach.  A large number of alternative generating models, error 
structures and derived LRPs could be considered in a simultaneous analysis.  
The results of a more thorough analysis of this kind are currently being 
documented by colleagues (Noel Cadigan and Brian Healey, pers. comm.  
Science Branch, Dept. of Fisheries and Oceans, PO Box 5667, St. John’s NL, 
Canada A1C 5X1). 
 
Although restricted to a single generating model and error assumption, and to 
just two LRPs (B50 and B50/90), the results from this limited study provide some 
insight into the problems of estimating LRPs from S-R data.  Estimates of B50 
obtained by fitting the Beverton-Holt model with lognormal error to the simulated 
data were overall the most satisfactory, as might be expected given that the 
simulated data were generated by a Beverton-Holt model with lognormal error.  
However, as σ increased in the simulated data, the proportion of acceptable fits 
decreased to as low as 60%, indicating that in practice, with large error around 
the S-R relationship, it might be necessary to constrain the estimation to get 
acceptable fits.  The number of acceptable fits (based on the predefined 
acceptability criteria described in the methods) decreased at low and high p 
levels as well.  Low p provides little data contrast for estimating K and high p 
provides little information aboutα .  B1 became negatively biased with respect to 
B50 at high σ  and low p.  This is of some concern because it implies a smaller 
SSB value for the reference point, the greater the noise in the S-R relationship, 
which is risk-prone (in the sense of setting an LRP lower than it should be, 
thereby increasing the risk of serious harm in making management decisions).  It 
is some consolation that this effect is greatest at low p, and so should not have 
as large an impact on stocks which have traversed a wide range of spawner 
biomass levels, provided the S-R relationship has been stationary.  The tendency 
in some assessments to restrict the analysis to more recent data would 
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exacerbate the bias.  At p=0.4 all the simulated data are to the left of B50.  
Estimating B50 from such data would be expected to lead to biases and should be 
avoided.   However, in practice, with noisy data, it may not be obvious that all the 
data are from below B50.    
 
In comparison to the LRP based on fitting the Beverton-Holt model, estimating 
B50 from the changepoint regression performed quite poorly.  Estimates of B2 
were substantially negatively biased with respect to B50 except at the highest 
data contrast situations (high p).  This would imply that if the true process was 
Beverton-Holt, application of changepoint regression would give estimates of B50 
that are much lower than they should be – a risk-prone situation.  On the positive 
side, estimates of B2 appeared to be relatively robust to increasing levels of error 
around the S-R relationship.   
 
The Serebryakov percentile approach also performed poorly relative to the true 
B50.  Estimates of B3 were well below B50 for low data contrast situations but were 
higher than B50 at the highest levels of data contrast.  In addition, estimates of B3 
decreased with increasing error in the S-R relationship.  A lower estimate of an 
LRP when the S-R relationship is noisy, is risk-prone.  
 
The CVs of the LRP estimators increased with increasing noise in the S-R 
relationship, as would be expected.  Changepoint regression estimates were 
most sensitive to increasing noise and had particularly high CVs for noisy S-R 
data under high data contrast conditions.  The simulated data from the Beverton-
Holt model at high p is randomly selected over a range of SSB from near the 
origin to the SSB at which 0.95 of maximum recruitment occurs.  In this situation 
a greater proportion of the data points come from the near-asymptotic portion of 
the relationship, which is relatively uninformative regarding the slope at the 
origin.  The LRP estimated by the Serebryakov percentile method was most 
robust to noise in the S-R relationship.  Note that in the case of B1 the distribution 
of simulated estimates is trimmed by the application of the discarding rule for 
extreme low and high estimates. 
 
Although not central to this study, the estimated slope at low stock size from the 
three LRP estimators has relevance to species-at-risk and stock-rebuilding 
considerations.  Estimates of the slope from a Beverton-Holt model fit were 
unbiased at low noise levels but became increasingly positively biased with 
increasing noise in the S-R relationship.  Thus the resilience of a population to 
overfishing, or the ability of a depleted population to rebuild, when that population 
has a Beverton-Holt-like S-R relationship, may be overestimated by a Beverton-
Hold model fit to noisy data.  This effect was relatively insensitive to the amount 
of data contrast over the range of p=0.4 to 0.8 but estimates of the slope 
increased at higher levels of contrast.  Changepoint regression, on the other 
hand, under-estimated the slope.  Estimates of the slope decreased slightly with 
increasing noise and data contrast.  Thus changepoint regression estimates 
would be relatively risk-averse with respect to resilience and recovery.   The 
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Serebryakov percentile method gave estimates that under-estimated the slope at 
low noise levels and over-estimated it at higher noise levels.  Estimates of the 
slope were highest for low data-contrast situations (most of the data from the 
lower left portion of the S-R relationship), but slope estimates decreased rapidly 
with increasing data contrast.  
 
O’Brien et al. (2003) evaluated the robustness of the change point as an LRP 
using simulated data based on model fits to North Sea cod data.  They explored 
a variety of hypotheses regarding the S-R relationship (Ricker, Beverton-Holt and 
recruitment independent of SSB) and data quality (discarding, misreporting and 
an incorrectly perceived low recruitment for the recent period).  They found that 
there were only small differences in the estimates of the LRP for data generated 
from the Beverton-Holt and SSB-independent models.  Estimates of the LRP 
from data generated from a Ricker model tended to occur at higher SSB values.   
There was minimal effect of discards on reference points but both misreporting 
and a perceived decline in recruitment biased the estimates of the LRP upwards.  
In comparison, in the present study B2 under-estimated B50 except in the highest 
data contrast situation.  Data contrast and noise effects per se were not 
examined in the O’Brien et al. (2003) study.  O’Brien et al. (2003) found that the 
estimates of the slope (Flim) were more robust.  This would appear to be 
consistent with the relative robustness of the estimates of the slope near the 
origin from the Beverton-Holt and changepoint regression models in this study.  
 
Barrowman and Myers (2000) compared the fit of the Beverton-Holt and “hockey 
stick” (changepoint regression) models on 246 S-R data sets.  They found that 
the Beverton-Holt model estimated a larger maximum reproductive rate than 
changepoint regression.  This is consistent with the results obtained for estimates 
of the slope based on simulated data in this study.  Barrowman and Myers (1999) 
also found that the Beverton-Holt model estimated a larger carrying capacity of 
recruits than changepoint regression.  This is also consistent with the estimates 
of B1 tending to be larger than B2 in the present study.   
 
Based on simulated data from a Beverton-Holt model with lognormal error, there 
does not appear to be a robust method for estimating LRPs in terms of spawner 
biomass.  If the true process is Beverton-Holt with lognormal error, then fitting a 
Beverton Holt model with lognormal error will give reasonably robust estimates of  
B50 except at highest noise levels and low data contrast.  However, the incidence 
of unacceptable model fits increases with increasing noise and at high and low 
data contrast which is likely to problematical in practice.  Both changepoint 
regression and the Serebryakov approach are likely to be risk prone (in the 
sense of providing LRP estimates that are lower than the true B50), except in the 
highest data contrast situations.  Estimates of the slope at the origin from 
changepoint regression are likely to be risk averse when data are generated by a 
population displaying Beverton-Holt type behavior and under lognormal error, 
and can thus be considered to be potentially useful in practice when deciding on 
population resilience and rebuilding rates at low stock size. 
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Although the results that are described here represent only a partial evaluation of 
selected LRPs, some serious concerns are raised.  It is commonly assumed that 
recruitment in groundfish is generated by a Beverton-Holt-like process with 
lognormal error and LRPs are commonly estimated by fitting a Beverton-Holt 
model or by changepoint regression.  The results show that these methods can 
lead to biased estimates of a proposed LRP, B50, which would be risk-prone 
when translated into a fisheries management context.  Clearly a more 
comprehensive evaluation of the precision and accuracy of various LRP 
estimators under a variety of generating models is warranted.  The ultimate aim 
is to develop LRPs which are robust to the underlying uncertainties.     
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Fig. 1.  DFO precautionary approach framework for fisheries management.  This 
paper investigates the properties of three estimators of Blim, corresponding to 
severe recruitment overfishing.
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Fig. 2.  Beverton-Holt model used to generate simulated data for evaluating the 
properties of three Blim estimators.  B50 is denoted by the bold broken vertical 
line.  The remaining vertical lines denote spawner biomass corresponding to 
proportions p of Rmax used as the upper limit of the ranges of spawner biomass in 
individual experiments.  p = 0.95 is off the plot to the right at an SSB of 380,000 t. 
 

 
 
Fig. 3.  Julious Algorithm used to obtain an estimate of the changepoint (copied 
from Julious 2001 from which more details may be obtained). 
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Fig. 4.  Example application of changepoint regression (solid lines) to data 
generated from a Beverton-Holt model with p=0.95 and no error.  The squares 
indicate the data points.  The vertical broken line to the right indicates the 
position of B50., just below the breakpoint estimated in the segmented regression.  
The estimate of B2 is well to the left of the true B50.  

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000

Spawning stock biomass

R
ec

ru
itm

en
t

 
Fig. 5.  Schematic illustrating the estimation of the Serebryakov limit reference 
point 50/90B , here denoted as B3.  The solid line through the origin is the 90th 
percentile R/S and the horizontal broken line is the 50th percentile R.  The arrow 
indicates the point on the spawning stock biomass axis corresponding to the 
intersection of the two percentiles and is the estimate of B3. 
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Fig. 6.  Example data and estimates for one replicate at y = 30,  = 0.4 and p = 
0.6, 0.8 and 0.95.  The vertical broken line indicates the position of the ture B50.  
B1=Beverton-Holt, B2=changepoint regression and B3=Serebryakov’s percentile 
method estimates of an LRP. 
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Fig. 7.  Histograms of the distributions of the estimates of the LRPs for (a) 
Beverton-Holt, (b) changepoint regression and (c) Serebryakov’s percentile 
method, applied to simulated data generated from a Beverton-Holt model with 
y=30, p=0.8 and σ =0.6.  Log-normal distributions are fitted to the estimates.  
The true B50 = 20,000.
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Fig. 8.  Comparison of the means of the estimates of three Blim estimators 
applied to simulated stock-recruit data series 20 years in length.   The dotted line 
indicates the true B50.  The surface is based on interpolation between 
experiments.  Note that the plot is truncated at 30,000 t , as indicated by the 
malformed cells in the surface plot for some experiments. 
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Fig. 9.  Comparison of the means of the estimates of three Blim estimators 
applied to simulated stock-recruit data series 30 years in length. 
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Fig. 10.  Comparison of the medians of the estimates of three Blim estimators 
applied to simulated stock-recruit data series 20 years in length.   
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Fig. 11.  Comparison of the medians of the estimates of three Blim estimators 
applied to simulated stock-recruit data series 30 years in length.
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Fig. 12.  Comparison of the CVs of the estimates of three Blim estimators applied 
to simulated stock-recruit data series 20 years in length. 
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Fig. 13.  Comparison of the CVs of the estimates of three Blim estimators applied 
to simulated stock-recruit data series 30 years in length. 
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Fig. 14.  Plots of the means of estimates for three Blim estimators applied to 
simulated stock-recruit data.   B1=Beverton-Holt, B2= changepoint, 
B3=Serebryakov’s percentile method.  B50 is indicated by a dotted line. 
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Fig. 15.  Plots of medians of estimates for three Blim estimators applied to 
simulated stock-recruit data.   B1=Beverton-Holt, B2= changepoint, 
B3=Serebryakov’s percentile method.  B50 is indicated by a dotted line. 
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Fig. 16.  Plots of CVs of estimates for three Blim estimators applied to simulated 
stock-recruit data.   B1=Beverton-Holt, B2=changepoint, B3=Serebryakov’s 
percentile method.   
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Fig. 17.  Histograms of the distributions of the estimates of the slopes for (a) 
Beverton-Holt, (b) changepoint regression and (c) Serebryakov’s percentile 
method, applied to simulated data generated from a Beverton-Holt model with 
y=30, p=0.8 and σ =0.6.  Log-normal distributions are fitted to the estimates.  
The true slope near the origin in the Beverton-Holt model used to generate the 
data is 1.0. 
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Fig. 18.  Illustration of the relationship between the estimated slope at the origin 
and σ  (top) for y=30 and p=0.8, and estimated slope and proportion of the 
biomass corresponding to Rmax (bottom) for y=30 and σ=0.6.  BH=Beverton-Holt, 
CPR= changepoint regression, Sereb=Serebryakov’s percentile method.  The 
broken line indicates the true value of the slope at the origin.  Beverton-Holt and 
changepoint regression estimates are bias corrected for log-transformation.   The 
largest cell (3) is a plus-group. 


