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Abstract 
 
 Regression tree analysis with coastal exposure (fetch distance) as a predictor of fish 
biomass was used to evaluate the productive capacity of near shore habitat in the Great Lakes. 
Regression tree models were developed using survey data collected at coastal wetlands, harbours 
and natural shorelines in 1994 (n=100) and validated using data from other areas surveyed in other 
years (1990 to 1999, n=273). Coastal habitat characteristics that influence fish distribution, 
including the occurrence and abundance of aquatic macrophytes, water temperature and substrate 
characteristics, were related to maximum fetch distance in a consistent manner in the model and 
validation data sets.  Three classes of macrophyte density (absent, moderate and dense cover), 
were predicted from substrate size and fetch distance: plant cover was highest where the 
predominant particle size was fine (silt or smaller) and maximum fetch was < 12.6 km. Fetch was a 
significant predictor of the biomass of three species (Lepomis gibbosus, Perca flavescens, and 
Alosa pseudoharengus), each with different habitat preferences, and two fish community indices 
(Index of Biotic Integrity [IBI], and the Habitat Productivity Index [HPI]). IBI and HPI were used as 
measures of the diversity and production components of habitat productive capacity, respectively. 
For all fish response variables, classification was improved if fetch was used together with 
associated habitat attributes as predictors. The degree of resolution of habitat classification 
(number of classes that were distinct) was limited to 2 to 4 classes, depending on the fish response 
variable.  Proportional reduction in error for the regression trees ranged between 0.30 and 0.76. 
Four classes of L. gibbosus habitat were determined and validated, but the number of habitat 
classes for P. flavescens and A. pseudoharengus was less. For the whole fish assemblage, four 
habitat classes were identified using IBI and HPI together in a two-axes approach for evaluating 
productive capacity, along with fetch and water temperature as predictors.  Knowledge of site 
exposure and the associated habitat covariates can be used to determine and map first-order 
estimates of coastal habitat productive capacity in the Great Lakes.    
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Résumé 
 

Pour évaluer la capacité de production des habitats littoraux des Grands Lacs, nous nous 
sommes servis de la technique d’arbre de régression avec l’exposition du littoral au vent (fetch) 
comme variable explicative de la biomasse des poissons. Nous avons élaboré des modèles 
d’arbres de régression à l’aide de données recueillies en 1994 dans des terres humides 
littorales, des zones portuaires et le long de berges naturelles (n = 100), et nous avons validé ces 
modèles au moyen de données recueillies dans d’autres secteurs ayant fait l’objet de relevés 
durant d’autres années (de 1990 à 1999, n = 273).  Dans le modèle et les jeux de données de 
validation, les caractéristiques des habitats littoraux qui influent sur la répartition des poissons, 
notamment la présence et l’abondance de macrophytes aquatiques, la température de l’eau et les 
caractéristiques du substrat, présentaient une relation systématique avec le fetch maximal.  Trois 
classes de densité des macrophytes (couvert absent, modéré et dense) ont été prédites à partir de 
la taille du substrat et du fetch : le couvert végétal était le plus dense là où le substrat était dominé 
par des particules fines (limon ou plus petit) et le fetch maximal était inférieur à 12,6 km.  Le fetch a 
permis de prédire significativement la biomasse de trois espèces (Lepomis gibbosus, Perca 
flavescens et Alosa pseudoharengus), chacune ayant différentes préférences en matière d’habitat, 
ainsi que deux indices de communauté de poissons, soit l’indice d’intégrité biotique (IIB) et l’indice 
de productivité de l’habitat (IPH).  L’IIB et l’IPH ont respectivement servi de mesures des 
composantes diversité et production de la capacité de production de l’habitat. Pour toutes les 
variables dépendantes concernant les poissons, la classification était meilleure lorsque les 
variables indépendantes comprenaient des attributs de l’habitat en plus du fetch.  Selon la variable 
dépendante concernant les poissons, la résolution de la classification des habitats (nombre de 
classes distinctes) n’était que de 2 à 4 classes.  La réduction proportionnelle de l’erreur associée 
aux arbres de régression variait de 0,30 à 0,76.  Nous avons déterminé et validé quatre classes 
d’habitats pour L. gibbosus, mais moins pour P. flavescens et A. pseudoharengus.  Pour tout 
l’assemblage de poissons, nous avons établi quatre classes d’habitats en utilisant à la fois l’IBI et 
l’IPH dans une méthode à deux axes pour évaluer la capacité de production, ainsi que le fetch et la 
température de l’eau comme variables explicatives.  La connaissance de l’exposition du site et des 
covariables associées décrivant l’habitat peut servir à déterminer et à cartographier des 
estimations de premier ordre de la capacité de production des habitats littoraux des Grands Lacs.      
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Introduction 
 
 Coastal exposure refers to the extent that a shoreline habitat and its fauna are subjected to 
the physical stress of wave energy. Exposure and morphometry affects water retention time and 
ecological function in coastal marine areas (Håkanson et al 1986). In large lakes, exposure 
influences the nature of the near shore habitat, affecting aquatic plant growth, substrate 
characteristics and water temperature. Wave energy affects the occurrence and density of aquatic 
macrophytes both directly by the physical action of waves and indirectly by its influence on the 
sediment characteristics (Chambers 1987). Sediment transport and deposition based on wave 
energy and water currents were modeled in the Great Lakes by W.F. Baird and Associates (1996). 
Thermal habitat in the nearshore will also be linked to wind generated currents and to offshore-
onshore wave action. Although the associations are complex, coastal exposure is a proxy for these 
thermal and structural habitat attributes, all of which affect the occurrence and distribution of fishes 
that use shallow coastal water during all or part of their life history.  
        
 Fetch distance as a measure of coastal exposure has been shown to be a significant 
predictor of physical habitat conditions and fish abundance in the Great Lakes (Randall et al. 1996; 
Randall et al. 1998). For whole fish assemblages, fish abundance decreased but average fish size 
increased with increases in exposure (Randall et al. 1996). Fetch, together with related habitat 
attributes was a significant predictor of the occurrence of individual species in Severn Sound, 
Georgian Bay (Randall et al. 1998). The spatial resolution for discerning fish-habitat linkages was 
limited to two or three habitat classes (i.e., the power of resolution of classes that could be shown 
to be statistically different was 2 or 3). Nevertheless, Minns and Moore (2003) showed that 
although fish habitat associations are often uncertain, robust management decisions can be made 
with limited habitat classifications.     
 
 The specific objectives of this study were to use a large near shore fish-habitat database 
to: 1) quantify and model the relationship between site exposure (measured as fetch distance) and 
the habitat features of surface water temperature, macrophyte abundance, and substrate size; 2) 
develop and validate empirical models to assess habitat productive capacity, and to compare the 
efficacy of fetch alone and together with other habitat attributes as predictors of habitat productive 
capacity; and 3) compare the accuracy of predicting individual species biomass versus fish 
assemblage indices of productive capacity. We define habitat productive capacity as the sum of 
production of all co-habiting species in a particular area, with the additional qualifier that the fish 
community should reflect the natural biodiversity for that area (Minns 1995; Minns 1997; Randall 
2003).  Productive capacity is measured by linking biological indices of fish production and diversity 
(biomass, P/B, species composition and richness) to habitat surrogates or classes with different 
capacities (Randall 2003). The general goal was to determine the spatial resolution of habitat 
classes that was achievable using regression tree analysis. The expectation was that, although 
limited in number, habitat classes would be spatially robust, and that the relationship between 
habitat features and fish abundance is likely more evident for individual species than for fish 
assemblages. The regression tree models will be used in future to determine and map first order 
estimates of coastal habitat productive capacity from knowledge of site exposure and the habitat 
covariates.       
 
 
 

Methods 
 
Database: Data collected during electrofishing surveys from 1990 to 1999 were used to determine 
associations between shallow coastal habitat and fish catches. Data were collected from three  
Great Lakes’ Areas of Concern (Hamilton Harbour, Bay of Quinte and Severn Sound; Minns et al. 
1994; Randall et al. 1996), coastal habitats in the vicinity of harbours and coastal wetlands in lakes 
Erie and Ontario (Randall and Minns 2002), and from Prince Edward County, Lake Ontario 
(Randall;  ongoing project). During this time period, a total of 373 transects were surveyed on a 
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seasonal basis (Fig. 1 and Table 1).  As explained below (Statistical Methods), the dataset was 
divided into two subsets, where the first subset was used for model building, and a second subset 
was used for validation. The number of surveys at each transect varied from 2 to 4 per year, usually 
at monthly intervals beginning in early summer and ending in early autumn. Survey objectives 
differed over the years but a standard and consistent field protocol was used to collect the fish and 
habitat data for all surveys (below). Although data were collected during a number of years from 
Hamilton Harbour as part of an ongoing monitoring project (Smokorowski et al. 1998), only two 
years of data were used for this study (1990 and 1997). Species richness was lower at Hamilton 
than elsewhere, probably because of degraded habitat and water quality at this Great Lakes’ Area 
of Concern (Minns et al. 1994; Randall et al. 1993). A remedial action plan was initiated in Hamilton 
Harbour in 1992 to restore habitat at six shoreline areas (Smokorowski et al. 1998). Two years of 
data were used in this study to measure fish-habitat associations in the Harbour before (1990) and 
after (1997) habitat restoration.   
 
Fish data: Fish were captured by boat electrofishing along 100 metre line transects at 1.5 metre 
water depth. Electrofishing settings were: pulsed DC, 120 pps, and an output of about 8 amperes.  
Information was recorded on species richness (number of species per transect), and the number of 
fish and total biomass (g wet weight). For each transect sample, each fish was identified and 
measured (weight in g, fork length in mm) up to a total of 20 specimens per species. If the catch for 
an individual species exceeded 20, remaining fish were counted and weighed in batches. Further 
details of the survey and sampling protocol are given by Valere (1996). 
 
 For this study, fish-habitat associations were examined for both individual species and for  
fish assemblages. Catches (biomass) of three species (Perca flavescens, Lepomis gibbosus, and 
Alosa pseudoharengus) were used separately in the analysis; these three species were the most 
abundant and ubiquitous species captured at the coastal habitats (Randall et al. 1996 and 1998) 
and they had contrasting physical and thermal habitat preferences (Table 2). For the whole fish 
assemblage, both an Index of Biotic Integrity (IBI) and a Habitat Productivity Index (HPI) were used 
as multi-metric measures of composition and size structure (Randall and Minns 2002). An IBI score 
(Minns et al. 1994) was calculated for each electrofishing sample for each date, using the software 
described by Stoneman (1998).  IBI scores were based on three categories and 12 fish metrics.  
The categories and metrics were: species richness – 5 metrics, including numbers of native, 
centrarchid, intolerant, nonindigenous and cyprinid species; trophic structure - three metrics, 
including percent (biomass) of species which were piscivores, generalists and specialists; and 
abundance and condition – 4 metrics, including the number of native individual fish, biomass of 
native fish, the percent nonindigenous numbers and the percent nonindigenous biomass. Intolerant 
species were species that were intolerant of high turbidity (Minns et al. 1994). Piscivore species 
consumed fish prey as adults, generalists had multitrophic, adaptable diets (omnivores), and 
specialists had specialized diets (insectivore, planktivore). IBI metrics for each species are listed in 
Minns et al. (1994). Four of the 12 metrics negatively affected the final IBI score (3 metrics dealing 
with nonidigenous species and the percent generalists), while the remaining 8 metrics were 
positively related to the final score. IBI metrics were standardized and summed to produce an IBI 
score that ranged between 0 and 100. Further details of the individual metrics and the algorithms 
used to determine the IBI value are provided by Minns et al. (1994). A final annual transect IBI was 
calculated as the arithmetic mean of the individual IBI scores for each transect at each location for 
each year (number of samples per year ranged from 2 to 4; Table 1).   

 
Fish data from seasonal samples per transect (n = 2 to 4) were pooled to calculate a 

Habitat Productivity Index (HPI). For each sample, biomass density was estimated by assuming a 
survey width of 10 m, and a capture efficiency of 0.3 (Randall et al. 1993). For each species, an 
average biomass (kg ha-1) was calculated for the 2-4 seasonal samples. A production index for 
each species was calculated as the product of the average biomass (Baverage) and a species P/B 
ratio (y-1) (Randall and Minns 2000). The species P/B ratio was calculated as P/B = 2.64 W-0.35 
(Randall and Minns 2000), where W was the average weight (g) of each species captured at the 
transect (total biomass/ total number of fish).  A final HPI (kg ha-1 y-1) for each transect was 
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calculated as the sum of the production indices of all species captured at the transect (Randall and 
Minns 2000).  

 
In the Great Lakes dataset, HPI was strongly correlated with fish biomass, and IBI was 

correlated with species richness (Fig. 2). HPI and IBI were weakly but significantly correlated 
(P<0.01).    
 
Habitat: Water temperature (oC) was recorded at the time of survey (mid transect at 0.5 m depth). 
For each transect, an average seasonal water temperature was calculated (n = 2 to 4).  
 
 Transect locations were recorded using a Global Positioning System (GPS). Using GIS 
generated maps of the lake shoreline and the transect locations, effective fetch was calculated for 
each of 16 compass directions as: (Sum(Cos(a)*Fetch(a))/(Sum(Cos(a)) for a range of angles (a) 
+-45° of the compass direction (Scheffer et al. 1992). Fetch was the distance from the transect to 
the shoreline at angle a (km). The maximum effective fetch value (km), the maximum of the 16 
effective fetch values, was used to measure site exposure.  Maximum effective fetch rather than 
effective fetch in the direction of prevailing wind was used because single wind events from any 
direction can influence site conditions (W.F. Baird and Associates 1996).   
 
 Macrophyte density was measured as percent bottom cover during the year of survey. 
Visual estimates (Minns et al. 1993) or echogram records (Randall et al. 1998; Randall and Minns 
2002) were used to estimate bottom cover. Observations of macrophyte cover were made in late 
summer or autumn. For the 1999 survey, transects were assigned one of four categories of 
macrophyte density (0 =  0%; 1 = 1 to 19%; 2 = 20 to 80%; and 3 = > 80%) based on visual 
observation at two locations at each transect; the percent cover of each of the 4 categories was 
assigned 0%, 10%, 50%, and 90%, respectively.  
 
 Substrate size was determined by visual observation (gravel or coarser) or by Ekman or 
grab samples (sand or finer substrate). During 1990, substrate samples were collected at 6 
locations at a subset of the transects (Randall et al. 1996); during subsequent years only two 
samples per transect were collected. Substrate samples were usually recorded during the year of 
survey, except for 1990 and 1998 when substrate was measured in the year following the fish 
survey.   Substrate was assigned to one of seven categories based on particle size:  mud 1; 
clay/silt 2; sand 3; gravel/pebble 4; cobble 5; boulder/armour stone 6; and bedrock 7.  For each 
transect, the two (or more) substrate samples were averaged to determine an overall transect 
substrate score.  
 
Statistical methods: Before statistical analyses, the biomass of the three individual species and 
HPI were transformed [log10 (catch +1)] to normalize the distribution of the catch data.  The Index of 
Biotic Integrity was arcsine square root transformed. In addition, both maximum fetch and 
macrophyte percent cover were transformed (log10 and arcsine square root, respectively).  
 
 Initially, relationships between fish catches and the coastal habitat features (fetch, water 
temperature, macrophytes density, and substrate) were illustrated using scatterplots and trend lines 
generated using a locally weighted robust regression (LOWESS procedure, SYSTAT 2000) 
procedure (tension = 0.8). LOWESS smoothing reveals potential functional relationships between 
variables without prejudging the shape of the relationship. Principal Components Analysis (PCA) 
was used to identify interrelationships among the four habitat variables and to compare the data 
structure in the model and the validation data sets (see below).   
 
 Linkages between fish catches and habitat attributes were quantified using regression tree 
analysis (TREES procedure; SYSTAT 2000). Regression tree analysis does not assume a linear 
relationship between the predictor variables and the response variable (Brieman et al. 1984), and 
preliminary examination of the habitat-fish scatterplots indicated that the correlations were non-
linear.  For the tree models, IBI, HPI and individual species biomass were used as response 
variables, and fetch by itself and then together with the three other habitat features were used as 
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predictor variables.  In addition to separate models for IBI and HPI, a 2-axis response approach 
was used (Randall and Minns 2002), where the two indices were combined into one model with 
HPI, temperature and fetch as predictors of IBI.   
 
 For the regression tree method, a least squares loss function was used to estimate the 
PRE statistic (proportional reduction in error) attributable to the predictive model. The PRE value is 
a goodness of fit statistic equivalent  to multiple R2 in regression models (SYSTAT 2000). TREES 
produced graphical trees beginning with one root node (entire sample) and branching (splitting) to 
two or more terminal nodes (subsets), each with similar habitat attributes. The TREES process is 
binary because each node is split into only two subsamples. Each split was determined by one 
habitat predictor (split variable) which divides the nodes using a split value. For example, as will be 
seen later, temperature was a split variable for L. gibbosus biomass, with a critical split value of 
19.7oC; L. gibbosus biomass was high if the water temperature was > 19.7oC. At the end of each 
branch is a terminal node box showing the average and SD of the response variable and the 
number of observations (transect samples) for that node.  Nodes were split using a forward 
stepwise procedure and algorithms from Brieman et al. (1984). For the tree stopping criteria,  a 
minimum proportion reduction in error (PRE) allowed at any split was set at 0.05,  and the minimum 
number of cases for the terminal nodes was set at 10. Branches stopped splitting if these criteria 
were not achieved. Stopping criteria are needed to avoid large tree structures with many terminal 
nodes. The goal of this study was to develop robust predictor models that could potentially be 
applied to a large geographic scale in the Great Lakes. Learning from past studies (Randall et al. 
1998), our strategy was to minimize the number of nodes to a practical level of 2 to 4 terminal 
nodes;  i.e., subsets of habitat-related transects that can be demonstrated to have biological 
significance, as discussed later.    
  
 Regression trees were cross validated by dividing the dataset (n = 373) into model and 
validation subsets. To generate preliminary predictor models, data from the 1994 survey (n = 100 
transects) were used (henceforth termed the ‘model’ dataset).  The 1994 data were used for 
modeling because a comprehensive survey was conducted in that year which covered a broad 
range of habitat and exposure conditions in both Lake Ontario and Lake Erie (Randall and Minns 
2002). The SYSTAT TREES procedure generated a BASIC program for classifying (coding) new 
observations. Models were cross-validated by classifying transect samples from other years and 
locations (total n = 273 transects; henceforth called the ‘validation’ dataset). Classified assemblage 
data (HPI and IBI) were tested for significance using analysis of variance (ANOVA) and the 
Bonferroni post-hoc test. Although fetch and water temperature data were available from most 
transects, substrate and macrophyte data were available from only a subset of the validation 
transects. However, the validation sample size was always at least 130, and was often higher.   
 
 For individual species, the proportion of samples with zero catch of a particular species 
was significant (i.e., the distribution of the species catch data was positively skewed). The 
classification of biomass of individual species was therefore cross-validated using a two-step 
approach. First, a Chi-square analysis was used to test if the occurrence of 0 catches differed 
among the tree nodes. Second, if the Chi-square was significant, differences in average biomass of 
the species where present (i.e, 0 catches excluded) was tested using ANOVA.     
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Results 
 
Comparison of model and validation data 
 
 Results of the PCA analysis indicated both similarities and dissimilarities in the structure of 
the model and validation habitat data. The model data resulted in only one component with an 
eigenvalue > 1 while the validation data had two components (Table 3). Coefficient loadings on the 
first component were similar for both data sets, showing a contrast in loadings between fetch and 
substrate (both negative) and temperature and cover (both positive). Water temperature was the 
highest coefficient for the second factor of the validation data. For both data sets, water 
temperature and macrophyte cover were negatively associated with exposure, and substrate size 
was positively associated with exposure (Fig. 3 and 4). The relationships between fetch and habitat 
were non-linear. The component loadings explained 58% and 86% of the variance in the model and 
validation data, respectively. For the model data, the percent variance explained by the PCA 
analysis was higher (80%) if the harbour breakwalls were excluded from the analysis (Table 1).  
Although PCA indicated redundancy and covariance in the habitat data, habitat variables were 
used separately as predictors in the tree analysis. 
 
 Habitat differed significantly among the survey areas. Macrophyte cover was highest at the 
coastal wetlands and within the Severn and Quinte Areas’ of Concern, and was lowest at the shore 
sites (Fig. 5). Differences in percent cover were significant (ANOVA F7,282 = 36.3, P < 0.01),  and 
were higher at the coastal wetlands in the model data than elsewhere (Bonferroni post hoc P < 
0.05). Substrate size varied among transects and among survey areas, particularly in the validation 
data, but generally increased with coastal exposure (Fig. 3). Substrates were coarser at the shore 
and harbour transects than elsewhere (ANOVA F7,242 = 40.9, P< 0.01). Within the coastal wetlands 
and AOC areas, the average substrate category was 3 or less (sand or finer). Coastal exposure 
varied among survey areas (ANOVA F7,272 = 30.6; P < 0.01), being highest at the shore sites (Fig. 
5), but with no difference in average fetch between the model and validation shore sites (Bonferroni 
P > 0.05). Although the range in exposure conditions was roughly similar in the model and 
validation data sets, a higher proportion of validation transects were in protected bays with low or 
moderate exposure than the model transects (Fig. 3). Average seasonal water temperature varied 
among survey locations from 16.4 to 22.7 oC (ANOVA F 7,354 = 38.9, P < 0.01) and was lowest at 
the shore and harbour sites, and highest at the coastal wetlands and the three Areas of Concern. 
Generally, the range in habitat conditions in the validation data equaled or was less than the range 
for the model data.  
 
 Both average HPI and IBI differed by survey area (Fig. 6). HPI was lowest at the shore 
sites, and highest at the wetlands, harbours and the three AOC areas. Average IBI was also low at 
the shore sites, but in contrast to HPI, was relatively low at the harbours and Hamilton Harbour. 
Generally, the range in HPI and IBI values was similar for both the model and validation data (Fig. 
6). A list of fish species captured during the electrofishing surveys is provided by Randall and 
Minns (2002).       
 
Classification  
 
Habitat: Macrophyte density is an important determinant of fish occurrence at inshore areas of the 
Great Lakes and a habitat model to predict the presence and density of macrophytes would be 
useful for developing habitat maps of plant cover in the littoral zone.  In regression tree analysis,  
percent cover of macrophytes was related to effective fetch and substrate size for both the model 
and validation data sets (PRE = 0.62, N = 92, Fig. 7). Preliminary analysis using fetch alone as a 
predictor resulted in a model that could not be properly validated; the fetch cut value was 28 km, 
and this cut value was exceeded in only 6 validation transects. The regression tree model using all 
habitat predictors was more useful than the model with fetch by itself; three categories of 
macrophyte cover (low, medium and high) were predicted with confidence (Fig. 7). Applied to the 
validation data, the model effectively classified new transects and there was good agreement 
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between the predicted and observed average density of macrophytes (ANOVA F 2,118 = 49.8, 
P<0.01).  Macrophyte percent cover was highest where substrate was fine (< 2.7) and fetch was 
low (< 12.6 km).  Average percent cover in each of the three terminal nodes was 0%, 30% and 
78%, respectively (Fig. 7). This regression tree model can be used to predict and classify habitats 
of varying macrophyte abundance in the lower Great Lakes if the substrate and fetch conditions are 
known.  
 
Fish: For each of the fish response variables below (3 fish species, HPI and IBI), results are 
presented for two regression tree models: 1) using fetch alone as a predictor and 2) using fetch 
together with the habitat attributes of percent cover, temperature and substrate size as predictors. 
Results are summarized in Table 5.  
 
Lepomis gibbosus: Using fetch as the predictor, 3 nodes or habitat classes with different 
pumpkinseed  biomasses were produced by TREE analysis (PRE = 0.44; n = 98). Two fetch cut 
values resulted in an increasing biomass of pumpkinseeds with decreases in fetch. Chi-square 
analysis confirmed that the low sunfish node had a higher proportion of zero catches than the 
medium and high nodes (χ2

2 = 44.0, P < 0.01; subscript denotes the degrees of freedom in the Chi-
square analysis). For the validation data set, although L. gibbosus were captured at a high 
proportion of the transects (Table 4),  only two samples (2 of 255) were classified in the low node 
with high fetch, effectively leaving only two groups. Chi-square analysis confirmed that the 
occurrence data was different among the remaining 2 nodes (χ2

1 = 16.1, P < 0.01), but most of the 
transects were classified into the high group (235 of 253).  At transects where pumpkinseeds 
occurred, there was no significant difference in the biomass between the two groups (ANOVA F1,217 
= 1.9). Fetch alone was a limited predictor of pumpkinseed biomass. 
   
 Three habitat features were predictors of pumpkinseed biomass in the TREE analysis 
using both habitat and fetch as predictors: macrophyte cover, water temperature and fetch (PRE = 
0.76; n = 92; Fig. 8). Pumpkinseed biomass was high at sites where cover was high (> 10.5% 
cover), water temperature was warm (>  19.7o C) and fetch was low (< 1.7 km).  Presence-absence 
data indicated a significantly greater proportion of zero catches in the low category compared to the 
other 3 groups (χ2

3 = 38.2, P < 0.01). At sites where pumpkinseeds were present, average biomass 
differed among the four nodes (ANOVA F3,148 = 13.6, P < 0.01), although the two lower biomass 
groups were not significantly different (Bonferonni P > 0.05). Evidently, habitat predictors can be 
used to identify at least three habitat classes with different biomasses of pumpkinseeds (Table 5).  
 
Perca flavescens: Regression tree analysis to predict yellow perch biomass from fetch resulted in 
a four node model (PRE = 0.55, n = 98). However, this model was not useful for predicting the 
occurrence or biomass of perch for the validation data set. The first node for the model tree had a 
high fetch cut value of > 31 km, which included most transects with nil catches of perch. Only a 
small number of transects (6) in the validation set had fetch values exceeding this cut value. A large 
number of the remaining transects had a catch of zero as well. When the first two nodes were 
pooled in the validation data set to avoid low frequencies, there was no significant difference in the 
occurrence of 0 catches in the remaining three nodes (χ2

2 = 0.13, P = 0.94).  
 
 For the second model with all habitat predictors, macrophyte density was the primary 
habitat factor affecting the catch of yellow perch. Tree analysis of the model data resulted in three 
nodes of perch biomass (PRE = 0.73; n = 92), that corresponded to low (<10.5 percent cover), 
moderate (11-70%) and high (>71%) percent cover. Chi-square analysis of both the model and 
validation data sets indicated that the proportion of zero catches was significantly higher in the low 
node and lower in the moderate and high biomass nodes than expected (χ2

2 = 51.7 and 38.4, 
respectively, both P <  0.01).  For transects where yellow perch were captured, average biomass 
was significantly different among the predicted tree nodes (F2,153 = 5.89, P < 0.01), although the 
post hoc Bonferroni test indicated a significant difference between the low and high nodes only. 
Three classes of habitat were identified with different yellow perch biomasses, although the 
moderate and high nodes could be combined.   
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Alosa pseudoharengus: Based on the model with fetch as the only predictor, three nodes of 
alewife biomass (low, medium, high) were identified in the regression tree analysis (PRE = 0.36, n 
= 98). High abundance of alewife occurred in areas of high fetch, in contrast to yellow perch and 
pumpkinseed which occurred less frequently or were absent at sites with high exposure. Chi-
square analysis of the presence - absence data was significant for both the model (χ2 2 = 16.3, 
P<0.01) and the validation data sets (χ2 2 = 8.3, P<0.05), indicating a higher proportion of zero 
catches in the low node than in the moderate or high nodes.  The latter test was weak as the high 
node had a low frequency of samples (n = 6). When the moderate and high nodes were pooled, the 
chi-square test remained significant (χ2 1 = 12.6, P<0.01). Analysis of samples where alewife were 
present showed significant differences in mean biomass among groups (ANOVA F2,136 = 4.1, P < 
0.05), but the difference was significantly different between the low and high nodes only (Bonferroni 
P< 0.01). Fetch was of limited use for predicting alewife biomass in the validation data set, as only 
6 of 255 samples were in the high node (Table 5).  
 
 Only two nodes of alewife biomass were produced from the tree analysis that included all 
habitat predictors, with water temperature being the only significant predictor (PRE = 0.71, n = 92). 
For the model data set, alewife biomass was high at transects where the water temperature was 
less than 16.7oC. The occurrence of 0 catches was significantly higher in the low node for both the 
model (χ2 1 = 24.8, P<0.01) and validation data set (χ2 1 = 5.6, P<0.05). However, the results were 
similar to the fetch model above, in that the high node had a low frequency of samples (n = 10 of 
244 samples). For transects where alewife were present, there was no significant difference in the 
average biomass of alewife between the two nodes (P > 0.05). Possibly this result was related to 
the schooling behaviour of alewife, suggesting that alewife occurrence may best be best predicted 
with presence/absence data.  
 
Habitat Productivity Index: Tree analysis of the Habitat Productivity Index with fetch as the 
predictor produced four nodes with the model data (PRE = 0.38, n = 98), but only two nodes were 
significantly different in the validation data (ANOVA F1,153 = 33.1; P =  0.01; Fig. 9). A fetch cut 
value of 4 km separated transects into groups of low (mean 26.0 kg ha yr-1) or high (48.2 kg ha yr-1) 
productivity. Average HPI was about 1.9 times greater in the low fetch node (Table 5).  
 
 For the model with all habitat predictors, macrophyte density, substrate and fetch were 
significant predictors of productivity, resulting in four nodes (PRE = 0.59, n=98). However, only two 
nodes were significantly different in the validation data set (Bonferonni post hoc analysis,  P<0.05).   
Consequently the data were pooled into two significant nodes based on the first tree cut value of > 
7 percent macrophtyte cover  (ANOVA F1,119 = 9.5; P < 0.01). The average HPI in the low and high 
nodes was 24.7 and 40.6 kg ha yr-1, respectively, similar to the values above. Fetch and 
macrophyte density yielded similar results as classification variables and resulted in only two 
classes of habitat productivity.      
 
Index of Biotic Integrity: With IBI as the response variable and fetch as the predictor variable, two 
groups were identified in the model data, with a fetch cut value of 31 km (PRE = 0.30, n = 98). 
Using this fetch criterion, two significant nodes were produced in the validation data as well 
(ANOVA F 1,253 = 15.7, P < 0.01). However, only 6 of 255 transects in the validation data had a 
fetch value exceeding the cut value and were classified in the low IBI group. The large proportion of 
the samples in the high IBI group could not be classified further using fetch.  
 
 The habitat predictor variables of percent cover and water temperature produced 3 IBI 
groups (PRE = 0.50, n = 92). The high IBI group resulted from a percent cover cut value of > 19%, 
and the low IBI group occurred at transects where the water temperature was < 19.7 o C (Fig. 10). 
The resulting TREES model successfully classified three groups in the validation data (ANOVA F 
2,187 = 32.8) (Table 5); however, the low and moderate groups were not significantly different 
(Bonferroni P > 0.05).        
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Two-axes Index of Habitat Capacity: The above results indicated that both HPI and IBI were 
related in a non-linear but consistent manner to fetch (Fig. 11) and percent cover (Fig. 12) in the 
model and validation datasets. There was considerable variability in both indices along the two 
habitat gradients, and the two indices were to some extent independent, as shown below.     
  
 For the 2-axes approach, IBI was predicted from fetch, thermal conditions and fish 
biomass. Water temperature,  fetch and HPI were significant grouping variables for identifying 
areas of high, moderate and low IBI for both the model data (Fig. 13; PRE = 0.46) and the 
validation data (F3,240 = 18.2; n = 244; P < 0.01). Post hoc testing of the validation data indicated 
that most group averages were significantly different (Bonferroni P < 0.01), with the exception of 
the two moderate groups which were only marginally different (P = 0.08). Based on these results, 
all data were pooled (model plus validation), and all four groups significantly different from one 
another (ANOVA F3,338 = 43.2; n = 342; P < 0.01; group means different at  P < 0.01).  
 
 Average IBI scores in the 2-axes groups increased significantly from about 36 to 67 from 
the low to the high group (Fig. 13; Table 5). Of special interest was the moderate-high IBI group: 
although IBI was relatively high, HPI was relatively low in this group. For individual species, the 
average biomass of yellow perch and pumpkinseed increased with the IBI groups as expected,  
and the biomass of alewife declined. P/B ratios of perch and alewife were significantly higher in the 
medium-high or high IBI group. The low 2-axes group included shore and a few harbour sites, the 
low-medium group included harbours, shore and many Hamilton sites, the medium-high group 
included some wetlands and Severn Sound sites, and the high group was primarily wetlands and 
high productivity areas of Quinte, Severn Sound and a few Hamilton sites (Table 6). For the pooled 
data, the medium-high and high IBI groups could be separated on the basis of cover; average 
percent cover was 40% and 58%, for the medium-high and high groups, respectively.        
 
 
 

Discussion 
 
 The near shore habitat features of macrophyte cover, water temperature, and substrate 
size were related to coastal exposure in the Great Lakes, and this resulted in a discernible link 
between fetch and the catch of fish at the coastal areas. All three hypotheses addressed in this 
study were supported to a varying extent with the field data:  (1) the association between fetch and 
habitat characteristics was quantifiable; (2) fetch, directly or together with habitat attributes, was 
used to predict fish catch metrics; and (3) individual species abundance was predicted more 
accurately than assemblage indices, although the results were species-dependent and preliminary 
(only 3 species were examined). Each of these hypotheses are discussed individually below, 
following an evaluation of the regression tree method for classifying coastal habitat.  Results of the 
habitat classification models can be used to map the productive capacity of coastal habitat in the 
Great Lakes.  
 
 The relationship between fish biomass and fetch was spatially robust as the survey data 
used to develop and validate the models were temporally and spatially extensive, covering both 
impacted and natural shorelines that varied in the nature of the physical habitat and the extent of 
exposure. Using the 1994 survey data to develop regression tree models, which were then applied 
to and tested on the remaining survey data, had both advantages and disadvantages. An 
advantage was that the model data included a range of habitat conditions that equaled or exceeded 
conditions at the other sites which allowed validation of the models without extrapolating to new 
conditions.  The model data were collected from both lakes Erie and Ontario, and previous analysis 
indicated that the fish-habitat associations were similar at each lake (Randall and Minns 2002). In 
addition, survey data from harbour breakwalls in the model dataset provided information from areas 
with altered habitat. The harbour breakwalls were man-made structures that provided an 
‘experimental’ situation for examining the effect of reduced fetch on fish catches at exposed 
shoreline areas. A disadvantage, however, was that break-wall transects were rare in the validation 
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data set, and there was a much higher proportion of low or moderate fetch sites in the validation 
data than in the model data. Much of the validation data came from wind-protected bays. Generally, 
however, the models generated from the extreme conditions of the shore-harbour-wetland data 
collected in 1994 provided robust and generic guidelines on the factors that influence fish 
distribution.  
 
 Regression tree analysis, although related to other statistical methods (discriminate 
function analysis, regression), was useful for classifying the fish-habitat data as it does not assume 
a linear or even monotonic relationship between the predictor variables and the response variable 
(Brieman et al. 1984; Systat 2000). Regression tree analysis is non-parametric and it is robust to 
outliers (LeBlanc 2002). For the Great Lakes dataset, scatterplots of fish density or diversity 
showed non-linear and highly variable patterns along the gradients in habitat conditions. 
Regression tree procedures provided an objective method of quantifying cut points, the threshold 
habitat values that significantly influenced the response variable. Threshold values are critical for 
developing fish-habitat linkage models, but importantly, the cut values depended on the dataset 
being modeled.  For this reason, validation of the test models using new data was a key component 
of this study. The number of validated classes was often less than the number generated by the 
model data. Also, variability within tree nodes was high and although average response variables 
were significantly different among the nodes, classification of individual sites remained uncertain.        
 
 Linkages between coastal exposure and habitat attributes were quantifiable. As expected, 
substrate particle size increased and percent cover and water temperature decreased with 
increased fetch distance at the sites. Substrate size and percent cover were probably functionally 
related to fetch through the effect of wave energy, but identifying whether the relationship was 
functional or simply correlative was beyond the objective of this study. PCA analysis confirmed that 
the fetch-habitat relationships were consistent between the model and validation data. The 
occurrence and density of aquatic macrophytes is a primary factor affecting the distribution and 
abundance of fishes in the littoral zone of the Great Lakes (Jude and Pappas 1992), and aquatic 
plants are a useful indicator of habitat productive capacity (Randall et al. 1996).  Although the 
associations between fetch, substrate and percent cover were variable, three macrophyte classes 
of low, moderate or high plant density were successfully predicted and validated with new data.  
Plant occurrence and maximum fetch were inversely related, but the predictive model was 
improved significantly when both substrate and fetch were used together as predictors, as 
macrophyte abundance and substrate size were also related. Fetch distance below a threshold of 
12.6 km increased the likelihood of plant occurrence but fine substrate was also critical for plant 
growth. The resulting regression tree model can be used to quantify and map the occurrence and 
abundance of aquatic macrophytes at 1.5 metre water depth from knowledge of coastal exposure 
and substrate conditions. In future, this plant-habitat model can be improved and the application 
extended by incorporating measures of water clarity, as irradiance determines the maximum depth 
of aquatic plant colonization in the littoral zone of lakes (Chambers 1987; Chambers and Kalff 
1985).  
 
 Fish species occurrence was significantly related to fetch distance, but as was the case 
with macrophytes, fetch alone was a limited predictor of fish biomass, resulting in only two classes 
of low and high biomass. The degree of resolution of habitat classes increased if additional habitat 
attributes were used as predictors. In some cases, both habitat and fetch were significant 
predictors ( e.g., L. gibbosus habitat was best classified with cover, temperature and fetch), in other 
cases, habitat attributes classified the response variable more effectively than fetch (cover and 
water temperature for P. flavescens and A. pseudoharengus, respectively).  Proportional reduction 
in error (PRE) for the habitat models was higher (0.50 to 0.76) than for the fetch models (0.36 to 
0.55). Also, the number of validated habitat classes was greater if habitat attributes (2 to 4 classes) 
rather than fetch (usually 2 classes) was used to predict fish abundance or diversity.  Validated 
fetch-based models were often rated as poor because, despite the large validation sample size, the 
high fetch node had few cases (< 10), and fetch was not a good discriminator or predictor variable 
for fish biomass within the protected bays with low to intermediate fetch. L. gibbosus, a species that 
resides solely in warm shallow areas, was classified more successfully using habitat information 
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than A. pseudoharengus, an offshore pelagic species. Generally, the PRE values for individual 
species were higher than for the assemblage response variables, but the results were species-
dependent and preliminary (only 3 species were examined).      
 
 As a first order estimate of habitat productive capacity, fish community measures are more 
generally applicable for habitat management than individual species metrics. Using IBI and HPI 
indices together in a two-axes approach for determining productive capacity has potential merit. 
Productive capacity by definition has both a fish production and a biodiversity component (Minns 
1997), and IBI and HPI account for both the diversity and production components, respectively 
(Randall and Minns 2002). Although both indices responded to fetch and cover in a consistent 
manner, cut values were index-dependent; that is, threshold values for both fetch and cover tended 
to be higher for IBI than HPI (Fig. 11). If biomass and species richness are used as indicators of 
productive capacity, the highest capacity occured in areas with high IBI and high HPI. Areas with 
high HPI (fish biomass) but only moderate diversity as measured by IBI were ranked lower than 
areas with moderate HPI but high IBI (Randall and Minns 2002). The 2-axis regression tree method 
produced four habitat classes, ranging from low IBI in areas of cold water and high maximum fetch 
to high IBI in low exposure areas with warm water and high HPI. Interestingly, the second highest 
IBI group occurred where IBI was high, but HPI was only moderate. Coastal wetland sites were 
classified into one of these two groups, with the high group occurring in areas with more 
macrophytes than the medium-high group. The two-axes tree model illustrated in Fig. 13 is a 
potentially useful first-order estimate of the productive capacity of inshore habitat in the Great 
Lakes.                
  
 Although the degree of resolution of habitat classes was limited, the ability to determine 
productive capacity from habitat attributes has potential utility and application for habitat 
management. In addressing the role of uncertainty and complexity in habitat management decision 
making, Minns and Moore (2003) concluded that ‘despite the broad uncertainty surrounding many 
fish-habitat associations, simple habitat classifications involving as few as three or four levels of 
productive capacity can provide a basis for robust decisions’. The first-order model of productive 
capacity described in this study provides such a habitat classification scheme. Fetch measures can 
be determined using GIS information for the Great Lakes. Substrate characteristics are known for 
some areas, or it may be predicted from erosion-transport deposition (ETD; Franzin et al. 2001) or 
other coastal process models.  Macrophyte occurrence and density is known for Areas of Concern 
(Minns et al.1999; Project Quinte 2001), or cover can be predicted using the habitat model from this 
study.  Thermal habitat in shallow water coastal areas can possibly be predicted from air 
temperature data, as is done in streams (Stoneman and Jones 1996), together with other 
governing factors such as surface water currents (C. Chu, personal communication). All of the 
habitat characteristics used in the regression tree predictive model are known or can be generated 
for large areas of coastal habitat.  
 
 Evaluation of habitat productive capacity can be viewed as a two-stage task, where first-
order evaluations (this study) could be followed by more detailed site-specific evaluations 
(Defensible Methods; Minns 1997) if warranted by the nature of the project. For both stages, 
significant evaluations can be made on the productive capacity of Great Lakes shoreline habitat 
from knowledge of the coastal exposure and the associated  habitat covariates.    
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Table 1. Summary of survey areas for the model and validation databases. The number of 
transects (N) in indicated by year. 
 
Database Area Year N Notes 
    
Model Harbour 1994 51 Surveyed exposed outside and protected inside of harbour 

breakwalls (armour stone); Port Dover and Port Colbourne, 
Lake Erie; Port Dalhousie, and Bronte Harbour, Lake Ontario 

     
 Shore 1994 30 Exposed shores to each side of harbours 
     
 Wetland 1994 19 Long Point, Lake Erie and Presqu’ile, Lake Ontario 
     
  Total model 100 1The number of samples per year (n=2, 3 or 4) was 2, 98 and 

0 
     
Validate Wetland 1998 11 Black River bay, West Lake 
     
  1999 12 Black River bay, West Lake 
     
 Shore 1998 12 McMahon Bluff, Little Bluff, Bronte shore 
     
  1999 12 McMahon Bluff, Little Bluff, Bronte shore 
     
 Severn Sound 

(AOC) 
1990 55 AOC monitoring; protected bays of Penetang, Hog and 

Matchedash 
     
  1992 20 Exposed outer areas of Penetang and Hog bays; Sturgeon 

Bay 
     
  1995 18 Green Island (Canadian Shield) and Hog Bay 
     
 Bay of Quinte 

(AOC) 
1990 20 AOC monitoring at Trenton, Belleville and Big Island  

     
  1992 23 Hay and Carnachan bays, Conway 
     
  1999 26 AOC monitoring at Trenton, Belleville and Big Island 
     
 Hamilton Harbour 

(AOC) 
1990 20 AOC monitoring, protected or moderately exposed shoreline 

     
  1997 44 AOC monitoring as above, after habitat restoration 
     
  Total validate 273 1Seasonal samples per year (n=2, 3 or 4): 101, 107 and 65 
    
 
1 number of surveys per transect per year ranged from 2 (summer) to 4 (late spring, summer and early autumn) depending 
on the location, year and survey objectives (Valere 1995).  
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Table 2. Preferred temperature, habitat preference, and feeding location of the three most 
abundant fish species captured in near shore areas of the Great Lakes. From Coker et al. (2001) 
and Lane et al. (1996).  
 
Species Preferred 

Temperature 
(oC) 

Habitat 
Preference 
(depth, cover and 
substrate) 

Feeding Location Description 

     
Lepomis gibbosus 26.0 (warm) 0 to 2 m, high 

preference for 
macrophyte 
cover; sand and 
silt 

bottom and 
pelagic 

Near shore  

Perca flavescens 21.4 (cool) 0 to >10 m, 
medium 
preference for 
macrophyte 
cover; sand and 
silt  

bottom and 
pelagic 

Near shore - 
off shore 

Alosa 
pseudoharengus 

18.8 (cold)  0 to > 10m; no 
cover; rubble, 
gravel, sand  

pelagic and  
bottom 

Off shore  

     
 
 
 
Table 3. PCA analysis of the four habitat variables used in this study after selection of the 
components with eigenvalues > 1. Results for both the model and validation data sets are 
compared. For the validation data set, the highest component coefficient for each variable is in bold 
font.  For the model data, results are shown both including and excluding (values in parenthesis) 
survey transects from the harbour breakwalls (with armour stone).  
 

 Principal Components and Loadings 
Data set  Model Validate Validate 
Component 1 1 2 
    
Eigenvalue  2.31 (3.19) 2.36 1.08 
    
% variance explained  57.7(79.6) 58.9 26.9 
Cumulative  58.9 85.8 
    
Variable coefficients    

Water temperature 0.86 (0.92)  0.45 -0.87 
Maximum effective fetch -0.51(-0.90) -0.90 0.15 

Substrate category -0.78(-0.89) -0.87 -0.12 
Macrophyte cover 0.84 (0.87) 0.76 0.54 
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Table 4. Presence-absence frequency of Lepomis gibbosus, Perca flavescens and Alosa 
pseudoharengus at the survey locations.   
 
Species Database 
 Model (n=100) Validate (n=273) 
 Absent Present Absent Present 
     
Lepomis gibbosus 56 44 40 233 
Perca flavescens 54 46 55 218 
Alosa pseudoharengus 46 54 122 151 
     
 
 
 
Table 5. Summary of regression tree classification of species biomass and fish assemblage 
measures (response variable) of habitat productive capacity using habitat attributes as predictors. 
Results of the tree model to predict percent macrophyte cover are also shown. 
  

Response 
variable1 

Predictors1 Model Validation2 Validation notes3 

  PRE Nodes Nodes Capacity  
       
L. gibbosus 1) Fetch 0.44 3 2 1.0\2.6 Poor 
 2) Habitat   

(C,T,F) 
0.76 4 3-4 1.0\1.9\2.7\5.

4 
Good; possibly 
combine 2 
moderate nodes 

       
P. flavescens 1) Fetch 0.55 4 2 1.0\5.4 Poor 
 2) Habitat (C) 0.73 3 2-3 1.0\2.3\4.3 Good; possibly 

combine moderate 
and high nodes 

       
A. 
pseudoharengus 

1)Fetch 0.36 3 2-3 1.0\1.3\6.5 Poor, even with 2 
groups 

 2) Habitat (T) 0.71 2 2 1:0\1.4 Poor 
       
HPI 1) Fetch 0.38 4 2 1.0\1.9 Good 
 2) Habitat 

(C,S,F) 
0.59 4 2 1.0\1.6 Good 

       
IBI 1) Fetch 0.30 2 2 1.0\2.0 Poor  
 2) Habitat(C,T) 0.50 3 3 1.0\1.1\1.5 Good for 2 groups; 

combine model and 
validation data?  

       
IBI (2-axes) T, F, HPI 0.46 4 4 or 3 1.0\1.4\1.6\1.

9 
Good 

       
Percent cover F, S 0.62 3 3 0%\30%\78

% cover 
Good; cut values: S 
<2.7 and F<12.6 

 
1 For each of the first 5 response variables, two predictor models were used: 1) fetch alone and 2) 
fetch together with other habitat variables. Only significant predictors are shown. Abbreviations: 
fetch (F), percent cover (C) , temperature (T), and substrate (S). 2 Capacity indicates the magnitude 
of the increase in the response variable between nodes (for percent cover, average values are 
shown) 3 For validation notes, poor indicates there are ≤ 10 transects in a node. 
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Table 6. Survey area, sample size and percent of transects in each of four IBI groups for the model 
and validation data sets by area. N is the number of transect samples in each area (column) and 
IBI group (row). IBI groups were determined by regression analysis, with temperature, HPI and 
fetch as predictor variables (see Fig. 5).   
 

Data set and 
area 

N IBI Group 

  Low Low-
medium

Medium-
high

High 

Model      
Harbour 49 20.4 53.1 4.1 22.4 

Shore 30 56.7 36.7 6.7 0.0 
Wetland 19 0.0 10.5 31.6 57.9 

   
Validate   

Wetland 23 0.0 0.0 34.8 65.2 
Shore 18 33.3 44.4 22.2 0.0 

Severn 87 0.0 23.0 39.1 37.9 
Quinte 69 0.0 1.4 18.8 79.7 

Hamilton 47 0.0 59.6 4.3 36.2 
   

N 342 33 96 71 142 
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Figure 1a).  Map of the lower Great Lakes showing the survey locations (boxes). Legend: 1 – 
Severn Sound; 2 – Long Point; 3 – Port Dover; 4 – Port Colbourne; 5 – Port Dalhousie; 6 – 
Hamilton Harbour and Bronte Harbour; 7 – Presqu’ile; 8 – Bay of Quinte.  Maps of Bay of Quinte 
and Severn Sound are enlarged below to show details. The number of electrofishing transects at 
each location are listed in Table 1.  
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Figure 1b): Enlarged map of Bay of Quinte and Prince Edward County showing the survey 
locations. Legend: 1 – Carnachan Bay; 2 – Black River mouth; 3 –McMahon Bluff; 4 – Little Bluff. 
Other locations are labelled. 1c): Enlarged map of Severn Sound showing the survey locations.  
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Figure 2.  Comparison of average fish biomass and HPI (upper); species richness and IBI (middle), 
and HPI versus IBI (lower) for both the model and validation data sets.. 
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Figure 3. Relationship between maximum effective fetch and substrate category (upper) and 
average water temperature (lower) for the model and validation data sets.  
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Figure 4. Scatter plots of macrophyte cover (ARC_PERCOVER is arcsine percent cover) versus 
substrate size (SUB_CAT) and log fetch for the model and validation data sets.  
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Figure 5. Comparison of average water temperature, macrophyte density, maximum fetch distance, 
and substrate category at the different model and validation survey areas. 
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Figure 6. Average HPI, IBI and biomass of Lepomis gibbosus, Perca flavescens and Alosa 
pseudoharengus at the different survey areas.  
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Figure 7. Upper: Regression tree (PRE = 0.62, N = 92) to classify macrophyte density 
(ARC_PERCOVER: arcsine percent cover) from substrate size (SUB_CAT) and fetch 
(LOG_FETCH). Cut values: substrate value of 2.7 is mud, silt or fine sand; fetch of 1.095 is 12.4 
km. Lower: comparison of predicted versus observed macrophyte cover for the model and 
validation data sets.  
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Figure 8. Upper: Regression tree (PRE = 0.76, N = 92) to classify pumpkinseed biomass 
(L_GIBBOSUS, log biomass) from macrophyte density  (ARC_PERCOVER: arcsine percent 
cover) water temperature (TEMP_ME) and fetch (LOG_FETCH). Cut values: 10.5% cover; 
19.7oC;  fetch of  1.7 km. Lower: comparison of predicted versus observed macrophyte cover for 
the model and validation data sets.  
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Figure 9. Upper: Regression tree (PRE = 0.38, N = 98) to classify the Habitat Productivity Index 
(LOG_HPI) from maximum fetch (LOG_FETCH). Lower: comparison of predicted versus 
observed HPI for the model and validation data sets. After pooling the medium groups, a fetch 
cut value of 4 km separated HPI into two categories of low and high.  
 



 

27 

SQRT_IBI

Mean=0.792
SD=0.193

N=94

Mean=0.697
SD=0.144

N=59

ARC_PERCOVER<0.451

Mean=0.951
SD=0.157

N=35

Mean=0.810
SD=0.153

N=11

TEMP_ME<19.667

Mean=1.015
SD=0.113

N=24
 

 
 
 
 
 
 

MODEL

Low Medium High
Predicted

0.0

0.5

1.0

1.5

O
bs

er
ve

d 
IB

I

VALIDATE

Low Medium High
Predicted

0.0

0.5

1.0

1.5

O
bs

er
ve

d 
I B

I

 
Figure 10. Upper: Regression tree (PRE = 0.50, N = 94) to classify the Index of Biotic Integrity 
(SQRT_IBI) using percent cover (ARC_PERCOVER) and water temperature (TEMP_ME) as 
predictors. Lower: comparison of predicted versus observed IBI for the model and validation 
data sets. A macrophyte cut value of >19% cover and water temperature >19.7oC produced the 
high IBI group.    
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Figure 11. Relationship between HPI (upper) and IBI (lower) and coastal exposure as measured 
by maximum fetch  in the model and validation data sets. 
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Figure 12. Relationship between HPI (upper) and IBI (lower) and macrophyte cover in the model 
and validation data sets. 
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Figure 13. Two-axes approach for determining habitat productive capacity (see text). Upper: 
Tree diagram to classify IBI groups based on water temperature, fetch and HPI. Lower: Box plot 
of IBI for each of the 4 habitat classes, all data pooled (n = 342).  
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Figure 14. Summary of IBI values, water temperature, fetch, biomass and P/B ratios of Alosa 
pseudoharengus, Lepomis gibbosus and Perca flavescens, and HPI values for the four IBI 
groups determined by tree regression analysis.   
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