Not to be cited without permission of author(s)

Canadian Atlantic Fisheries

Scientific Advisory Committee

CAFSAC
Res. Doc. 81/ 58

Redfish Assessment for Divisions 4RST
by
W. D. McKone, C. Gavaris and W. E. Legge

Research and Resource Services
Department of Fisheries and Oceans P.O. Box 5667

St. John,s, Newfoundland A1C 5X1

Abstract

Poor year-classes during the 1960's led to a decline in the TAC's-set for the Gulf redfish stock from $30,000 \mathrm{t}$ in 1976 to $16,000 \mathrm{t}$ in 1980. The standardized CPUE series has shown an increase in recent years, attributable to the recruitment of the relatively successful 1970-72 year-classes to the fishery. A cohort run with terminal $F=0.075$ was chosen for projections based on agreement with trends in the CPUE series and a 1980 research survey. Assuming the 1981 TAC of $20,000 \mathrm{t}$ is caught and fishing at $\mathrm{F}_{0 \cdot 1}=0.121$ in 1982, the projected catch in 1982 was $31,000 \mathrm{t}$. A large proportion of the projected catch would be comprised of the 1970-72 year-classes (53\%). Thus the present analysis is sensitive to the accurate estimation of the strength of these year-classes. In addition, the long term prospects of a yield about the $30,000 \mathrm{t}$ level would be dependent on the continued strength of these year-classes and eventual replacement by future successful recruitment.

RESUME

Par suite de la faiblesse des classes d'âge dans les années 1960, les TPA fixés pour le stock de sébastes du Golfe ont dû être réduits. De 30000 t qu'il était en 1976, le TPA a passé à 16000 t en 1980. La série des PUE standardisées démontre qu'il y eut augmentation en ces dernières années. Cette augmentation est attribuable au fait que des classes d'âge relativement abondantes en 1970-72 ont rallié le stock exploitable. Une analyse des cohortes avec un F de dernière année de 0,075 a servi à des projections fondées sur l'accord entre les tendances de la série des PUE et un relevé par navire de recherche en 1980. Dans l'hypothèse que le TPA de 1981 de 20000 t est capturé et que la pêche se fasse à $F_{0,1}=0,121$ en 1982 , les prises projetēes pour 1982 sont de 31000 t. Ces prises seraient constituées, dans une forte proportion (53%) par les classes d'âge de 1970-72. La prêsente analyse est donc sensible à l'estimation précise de l'abondance de ces classes d'âge. En outre, les perspectives à long terme d'un rendement d'environ 30000 t dépendraient de leur abondance soutenue et de leur éventuel remplacement par des recrues également abondantes.

INTRODUCTION

Landings of redfish in Divisions 4RST increased dramatically in the 1ate '60's and early ${ }^{1} 70$'s. A maximum catch of $130,000 \mathrm{t}$ was landed in 1973 consisting mainly of the 1956 and 1958 year-classes. These two year-classes are generally thought to be extremely large relative to other year-classes in recent history of the stock. Since the large landing in 1973 the stock has continued to decline mainly due to small year-classes during the '60's. In 1976 a TAC of $30,000 \mathrm{t}$ was set but in subsequent years it has been necessary to reduce the TAC to $16,000 \mathrm{t}$ ' in 1980 mainly as a result of poor recruitment. Recruitment improved in the early ' 70^{\prime} 's and the stock has shown some recovery as these year-classes entered the fishery. The 1981 TAC was set at $20,000 t$.

Using traditional methods, commercial catch rates were thought to be suspect mainly as a result of regulations which restrict the composition and size of the large offshore fleet fishing in the Gulf for redfish. This assessment attempts to introduce multiple regression techniques to better use all of the catch data available.

METHODS AND RESULTS

SAMPLING DATA FROM COMMERCIAL FISHERY

Length frequencies were collected throughout the Maritimes and Newfoundland during the 1980 fishery (Table 1). No length frequencies were available from the Quebec fishery although half the landings were reported from Quebec.

Similarly, otoliths were collected from the Maritime fishery but were not available from the Quebec fishery. A total of 319 male and 404 female otoliths were read. The sample was taken by selecting otoliths from throughout the season of the fishery. Sample size was restricted mainly due to the difficulty in determining the age of long-lived slow growing species such as redfish.

TRENDS IN LANDINGS AND CATCH PER UNIT EFFORT

Historical landings were derived from ICNAF statistical bulletins and the 1979 and 1980 figures have been supplied from preliminary data from NAFO and CAFSAC respectively (Table 3).

The 1980 monthly landings for the three divisions in the Gulf of St. Lawrence for the Maritimes and Newfoundland are given in Table 2. Total landings (8573 t.) from the Quebec redfish fishery were available but the landings were not available by division as for the other fleets. Catch per hour was determined using the method described by Gavaris (1980). All vessels which reported redfish as being greater than 50% of the catch are considered as directed effort. By including all vessel categories, gear types, months, divisions and years, a greater use of the data could be obtained over the historical method of using tonnage class 4 vessels only. By including all vessel types the new catch rate represented a greater proportion of the total landings (Table 3). The 1980 estimate should be treated with some caution, however, as catch rates were not available for the Quebec redfish fleet. Catch rate data separated into Maritimes and Quebec was available in

1979 and the catch rate for the Maritime fleet was about twice that of the Quebec fleet.

NUMBERS AT AGE

Commercial length frequencies and age/length keys for male and female redfish were applied to the reported commercial catches to obtain the numbers at age by sex and the males and females were then combined. Additionally, estimated removals of small redfish ages 5-8 from the Port au Choix shrimp fishery were added to the catch matrix for 1976-80 (Table 4).

AVERAGE WEIGHT AT AGE

The average weights at age for males and females were averaged to obtain a combined weight at age (Table 5). A check was made to determine if the reported weight caught agreed with weight caught by applying the age/weight relationship to the catch at age. The two estimates were found to be in reasonably good agreement with each other.

PARTIAL RECRUITMENT

Partial recruitment was calculated assuming research survey frequencies represented the proportions at age in the population. The numbers at age (sexes combined) from 1980 Beothic Venture and A. T. Cameron cruises for ages $5-29$ were averaged and ratios calculated with the numbers at age from the commercial catch. The percent caught was determined by assuming all ages over 12 years-old were fully recruited to the fishery (Table 5). No changes were made to the partial recruitment for the projection, although the Port au Choix removals were included in the estimated numbers removed.

ABUNDANCE INDICES

As in 1979, stratified-random surveys of the Gulf of St. Lawrence were carried out in 1980 by the Beothic Venture, Gadus Atlantica and A. T. Cameron (McKone et a1. 1980). Catchability differences occur between the different vessels, thus, the numbers at age were summed for $5-9$ years-old and 10-29 years-old. Additionally, for comparative purposes, the numbers of 5-9 year-olds and 10-29 year-olds, as estimated by cohort for 1980 at various terminal F's, were determined (Table 6).

TERMINAL FISHING MORTALITY

A number of methods were used in an effort to determine terminal fishing mortality. The new CPUE standard was considered to be representative of the fishery, although the 1980 point, being preliminary, was suspect (Table 3; Fig. 1). Correlations were attempted between age $5+$ biomass from cohort and CPUE for year 1972-79. The r^{2} values for various terminal F values were generally low and the predictive ability of the regressions was poor (Table 7). A plot of the points indicated little dispersion among the observations for
these years. The preliminary catch rate for 1980 was considerably outside the range of values observed from 1972-79. Predictive regressions of various weighted fishing mortalities with effort were attempted. The r^{2} were all high but the predicted values of F were always considerably smaller than the estimated, for regressions predicting the 1979 and 1980 F value. Further, two-year Paleheimo Z's were attempted for ages 12-26 in 1978 and $14-28$ in 1980. The catch rate was found to increase over the two-year period.

As the above techniques failed to determine an appropriate terminal F value, the following criteria were proposed. Catch rates for 1973 and 1979 were approximately equal and would reflect similar stock abundance levels, assuming catch rates to be an accurate index of stock levels. Biomass estimates (ages 5+) for 1973 and 1979 from various cohort runs were examined for a similar trend (Table 7). Of the three surveys conducted in 1980, the Beothic Venture was considered to provide the most reliable estimate of stock abundance due to its extensive coverage of the region and consistent daily fishing pattern. Therefore the cohort run which provided the best agreement with population estimates from the Beothic Venture survey was determined. Although the cohort run with a terminal F of 0.05 showed a close correspondence between the 1973 and 1979 biomass estimates of ages 5+, the estimate of population numbers in 1980 was larger than that of the Beothic Venture. Thus, considering both criteria, the cohort run with a terminal F of 0.075 in 1980 was selected as the best estimate of the status of the stock (Tables 8, 9 and 10).

RECRUITMENT ESTIMATES

Recruitment at age 5 for 1981 and 1982, calculated as the geometric mean of the 1967 to the 1975 year-classes at age 5 (Table 8) as estimated by cohort, was 129 million fish. Year-classes over this period were weak in the late sixties and in the most recent years but appeared to be better than average from 1970 to 1973.

PROJECTIONS

An estimate of $\mathrm{F}_{0.1}=0.121$ used for the projections was calculated from yield per recruit using mean weights and partial recruitment from Table 5 (Table 11). The same partial recruitment which was calculated including Port au Choix numbers, was used in the projections. The numbers added to 5-8 year-olds in 1980 constituted less than 0.01% by weight and therefore were insignificant.

Projections were made to 1982 assuming the TAC in 1981 of $20,000 \mathrm{t}$ would be caught and fishing would be at $F_{0.1}=0.121$ in 1982. Population numbers and catch numbers and biomass for 1980-82 are shown in Tables 12 and 13 respectively. The projected catch biomass in 1982 was $30,584 \mathrm{t}$, a substantial increase over the present TAC of 20,000 t. The 1970-72 year-classes would be mainly responsible for the increase, constituting 53% of the projected catch biomass. Thus the projections are dependent on the accurate estimation of the strength of these year-classes. According to the partial selection vector used in this analysis, only the 1970 year-class would be fully recruited in 1982. A yield about the level of $31,000 \mathrm{t}$ could only be sustained in the long term if these year-classes continued in importance and were eventually replaced by equally successful year-classes. However, indications are that the prospects for good recruitment have been poor since the early seventies.

CONCLUSIONS

The standardized CPUE series indicated an improvement in the stock from 1976 to 1979. This trend continued in 1980 according to catch and effort data from Newfoundland and Maritime vessels. However since data were not available from Quebec, the magnitude of the increase in 1980 could not be confirmed. The increase in the latest years has been attributed to the recruitment of the relatively successful 1970-1972 year-classes to the fishery.

Catch projections to 1982 indicated a yield of $31,000 \mathrm{t}$ fishing at $\mathrm{F}_{0}=0.121$ and provided the TAC of $20,000 \mathrm{t}$ was caught in 1981. The 1970-1972 year-classes were the main cause of the increase, making up 53% of the catch biomass. The long term prospects of a yield at about $31,000 \mathrm{t}$ level for the Gulf redfish stock would be dependent on other successful year-classes recruiting to the fishery to replace the 1970-1972 year-classes.

REFERENCES

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

McKone, W.D., D.B. Atkinson and W.E. Legge. 1980. Gulf of St. Lawrence redfish assessment. CAFSAC Res. Doc. 80/60.

Table 1. Redfish length frequencies collected in 1980 for Division 4RST

Month	$\frac{4 \mathrm{R}}{0 \mathrm{~T}}$	$\frac{4 \mathrm{~S}}{0 \mathrm{~T}}$	$\frac{4 \mathrm{~S}}{\text { MWT }}$	$\frac{4 \mathrm{~S}}{0 \text { ther }}$	$\frac{4 T}{0 T}$	$\frac{4 \mathrm{RS}}{0 \mathrm{~T}}$	$\frac{4 \mathrm{RT}}{0 \mathrm{~T}}$	$\frac{4 \mathrm{RST}}{0 T}$	Total
Jan	1								1
Feb	4								4
Mar									
April									
May									
June					2				2
Juty		4				1		1	6
Aug	6	1	2				1		10
Sept	3		1	2					6
Oct									
Nov									
Dec									
Total	14	5	3	2	2	1	1	1	29

Tab.le 2. Redfish landings for Maritimes and Newfoundland in 1980 in Diyision 4RST. (t)

Month	$\begin{array}{r} 4 \mathrm{R} \\ \text { Maritimes } \end{array}$			Nfld. OT	4S Maritimes			Nfid. OT	$4 T$ Maritimes			Total
	OT	MWT	Other		OT	MWT	Other		OT	MWT	Other	
Jan.	58			14	6							78
Feb.	119			338	92			117				660
Mar.	30			83	21			61				195
Apr.	5		5	108				12	7			137
May				44	1		7		2			54
June	250	148	12	19	152		8		183	9		781
July	554		15	18	299		24		46			956
Aug.	336		32	9	449		64		116			1006
Sept.	351	42	3	30	381		118		62		136	1123
Oct.	197	45	4	34	516		29		29			854
Nov.	147	63		12	207	54	13		43	11		550
Dec.		59		5							3	67
Total	2047	357	71	714	2124	54	263	184	488	20	139	6461

Table 3. Trends in catch and standardized catch per unit effort and effort for Redfish in Divisions 4RST for years 19.54-1980.

Year	Catch	\% caught by standard of total catch	t/hr	Std. error	Effort hrs
1954	32,768				
1955	49,857				
1956	46,854				
1957	34,331				
1958	22,570				
1959	16,978	58	0.692	0.042	24,535
1960	12,218	58	0.591	0.043	20,673
1961	10,391	54	0.605	0.048	71,175
1962	6585	69	0.674	0.045	9770
1963	19,794	57	0.689	0.039	28,729
1964	29,700	47	0.893	0.047	33,259
1965	48,827	52	0.979	0.044	49,874
1966	65,215	66	T. 128	0.045	57,815
7967	70,036	73	1.227	0.046	57,079
7968	90,963	79	1.109	0.038	82,023
7969	88,875	82	0.975	0.030	97,131
7970	87,588	83	0.730	0.024	119,983
1971	79,406	79	0.659	0.021	120,494
1972	80,329	90	0.607	0.022	132,338
1973	130,164	92	0.555	0.020	234,530
1974	63,458	90	0.399	0.015	159,043
1975	65,401	94	0.413	0.015	158,356
1976	37,983	88	0.401	0.018	94,721
1977	15,840	82	0.455	0.023	34,813
1978	13,591	75	0.529	0.034	25,692
1979	15,034*	72	0.566*	0.038*	26,562*
1980	15,038*	32^{1}	1.167*	0.152*	12,886*

*Provisional landings, CPUE and effort.
'Catch and effort data from Maritimes and Newfoundland vessels only.

Table 4. Numbers at age landed (10-3) for 4RST redfish from 1972-1980.

Age '	1.972	1973	1974	1.975	1976	1977	1978	1.979	1980
51	142	273	170	355	7359	380%	3368	2266	127
61	1272	639	698	620	1.482	2119	2656	2378	290
71	784	3112	292	290	1.073	824	511	2233	2781
81	944	2380	44^{4}	401.	372	669	280	2979	7950
91	1887	803	510	448	188	620	800	2373	8081
101	4297	3434	216	286	44	41.6	708	2753	5833
11.	2936	8043	403	1.61	1.46	409	49.1	1902	2182
121	6366	2497	463	329	125	236	372	1838	1545
1.31	2588	12 EFO	2240	974	383	171	131	931.	869
1.41	1.4034	7060	5381	1654	71.6	1.77	131	51.0	542
151	797.	76633	6364	2956	1.836	79	1.53	326	54.1
161	66593	8222	28739	4572	3913	123	86	346	270
171	5102	88382	7953	25149	4025	509	247	887	312
1.81	$76: 59$	5583	37269	5771	15642	379	1.003	1131	306
191	4299	9916	2989	41020	3380	2959	1399	2392	51.0
201	3697	7166	3387	41.56	16519	1273	3621	1943	1632
21	2471	4548	1.371.	3453	1533	5259	1294	3376	939
221	2598	4333	1233	3489	2131	251.9	3468	1.542	2493
231	2366	4934	471.	2634	1.431	2314	4425	3048	12374
241	1168	1.306	11. 168	1632	1.317	1814	1027	1013	2262
251	5840	2277	825	1356	543	11.60	725	869	838
26	,	7963	1815	1186	430	1.027	222	905	51.5
271	1.	,	5844	2080	408	229	222	506	304
281	1.	,	,	7259	659	515	31.5	522	239
291	,	1.	,	,	2370	1.96	103	102	79

Table 5. Average weight at age of males and females combined and the proportion recruited for Division 4RST redfish.

Age	Average weight gms	Proportion recruited
5	90.00	.100
6	103.00	.150
7	135.00	.180
8	169.00	.230
9	205.00	.390
10	243.00	.670
11	281.00	.900
12	322.00	1.000
13	362.00	1.000
14	394.00	1.000
15	443.00	1.000
16	482.00	1.000
17	521.00	1.000
18	559.00	1.000
19	596.00	1.000
20	631.00	1.000
21	665.00	1.000
22	698.00	1.000
23	730.00	1.000
24	759.00	1.000
25	788.00	1.000
26	815.00	1.000
27	841.00	1.000
28	866.00	1.000
29	889.00	
1000		

Table 6. Total numbers (10^{-3}) from cohorts for ages. 5-9 and 10-29 for various terminal F's in 1980 as compared to the total numbers from stratified-random research cruises from 1979 and 1980, for Division 4RST Redfish.

Age	Cohort terminal F				Research vessel		
	. 05	. 075	. 10	. 15	A. T. Cameron	Gadus	B. Venture
				1979			
5-9					532,916	464,563	1,417,022
10-29					345,959	152,860	290,127
Total					878,875	617,423	1,707,149
	1980						
5-9	1,147,665	1,045,938	786,956	389,259	650,243	175,983	922,460
10-29	560,163	377,579	292,942	195,086	498,718	47,552	448,129
Tota 1					1,148,961	223,535	1,370,589
					Average of 3 research vessels for 1979-80		
					Ages		
					$\begin{gathered} 5-9 \\ 10-29 \end{gathered}$	$\begin{aligned} & 693 \\ & 297 \end{aligned}$	$\begin{aligned} & 864 \\ & 224 \end{aligned}$
					Tota	991	088

Table 7. Trends in catch rate and mean biomass of ages $5+$ from cohort for different F values for Divs. 4RST Redfish. Regression results are listed below. 1980 was omitted from the regression calculations.

Year	CPUE	$F=0.025$	$F=0.050$	$F=0.075$	$F=0.100$
1972	0.607	850,687	621,720	545,387	507,222
1973	0.555	754,304	520,508	442,426	403,338
1974	0.399	669,869	430,926	351,233	311,373
1975	0.413	650,119	387,490	299,831	255,955
1976	0.401	707,283	390,889	285,369	232,583
1977	0.455	851,932	449,203	314,954	247,831
1978	0.529	929,986	480,768	331,023	256,149
1979	0.566	967,758	491,892	333,259	253,936
(1980	1.167	1,001,475	500,737	333,825	250,369)
	r^{2}	0.45	0.80	0.46	0.30
Predicted bio-mass for 1980 1,502,580 1,039,744 805,502 808,417					

Table 8. Population numbers (10^{-3}) from 1972-1980 for DiV. 4RST redfish from cohort with terminal F:0.075.

Age ${ }^{1}$	1.972	1973	1.974	1.975	1976	1977	1978	1.979	1980
51	35792	53060	73225	213392	454329	669211	272461	32485	17880
$\therefore 1$	27152	32251	47751	66095	192748	404094	601939	243329	27238
71	24118	23358	28574	42543	59215	172996	363623	542131	217912
81	12598	21077	18.75	25577	38219	52560	155749	328534	488415
91	1.8983	10501	16807	1.6023	22761	34228	46921	140661	294512
101	29039	1538.	8738	14723	11072	20417	30331	41695	1.25018
1.1	33670	22188	10651	7701	13050	12691.	18078	26816	3510%
121	99519	27671	12426	9254	6815	11667	11094	15891	22455
131	69718	83993	22662	10803	8061	60.45	10334	9685	1.2630
141	301074	60622	63777	18375	8848	6929	5309	9226	7877
151	94027	259073	48137	52589	15053	7325	6101	4680	7863
161	400042	77197	161524	37503	44773	11874	6553	5375	3924
171	66083	298627	62301	11881.5	29585	36790	10627	5848	4535
181	56́639	54941	186138	48808	83586	23941	32805	9381	4447
1.91	38083	43964	41402	132973	38673	60562	20397	28729	7412
201	27795	30369	30346	37333	8129 \%	31778	51984	17125	23720
211	17270	21633	20663	24238	29827	57849	27543	43593	13647
221	14038	13276	15248	17392	18647	25531	47342	23691	36233
231	明14	10231	7891	12624	12418	14845	20705	39538	19970
24.1	1.0938	5635	4564	6692	8917	2876	11232	14525	32876
251	41390	8786	3856	3019	4503	681.6	7210	9186	12180
2 2 1	7	31.876	5781	2704	1442	3558	5064	5834	7485
271	5	5	21286	3507	1319	895	2242	4371	4418
281	4	4	4	13701	1195	805	592	1818	3474
291	2	2	2	2	5492	454	239	236	1148
$5+1$	1426897	1206042	914934	936388	1194848	1682771	1766528	1. 604383	1432359
$6+1$	1390907	11.52982	841709	722995	740519	1013530	1494066	1571.898	1414500
$7+1$	1363755	1120731	793958	656900	547771	609436	892127	1328569	1387261
$8+1$	1339637	1097373	765384	614357	488556	436441	528504	786438	1169350

Table 9. Population biomass (t) from 1972-1980 for Div. 4RST redfish from cohort with terminal F 0.075.

ME:AM FOFULATTOIR ETMNASS

Age ${ }_{+}$	1972	1973	1974	. 1975	1.976	1777	1978	1.979	1980
51	3059	4532	6264	18261	38585	57150	23186	2681	1524
61	2596	3129	4645	6447	18817	30501	53866	- 23730	2655
71	3046	2789	3651	5446	7536	22170	46681	69.497	2781.0
81	1947	31.88	2886	4080	6116	8397.	25025	52595	77887
91	3509	1967	3227	3080	4421	6615	9073	27201	56636
101	6187	3128	1995	3370	3249	4671	6940	9309	28207
11.1	8591	4731	2792	2037	3469	3337	4766	6904	9084
12 I	29475	8077	3734	2783	2068	3538	3340	4572	6633
1.31	23553	26579	7401	3545	2708	2053	3537	3167	4194
141	112658	21818	23375	6714	3249	2622	2010	3436	2912
151	37875	91.467	18971	21519	5937	3071	2539	1901	3196
161	1.59212	31.957	63837	15325	18659	5159	2843	2269	1.652
171	30050	1.18508	27530	49895	1.3009	17310	4976	2548	2072
181	27969	27562	68360	24341	39945	12099	17173	4672	2281
191	20312	21896	24296	62596	20927	33474	11153	15582	4053
20	1551.3	15905	17150	21101	43483	18684	30077	9667	13731
21	10098	12140	12622	14178	18369	34859	17003	26467	832 ¢
221	3400	7225	9699	10307	11638	15077	30239	1.5201	23202
231	5156	5125	5311	7784	8102	9457	12726	26356	13374
241	7455	35.59	2837	4194	5935	6431	7722	10108	22891
251	28712	5658	2558	1682	3161	4647	5120	6545	8805
2s 1	E	21381	3709	1572	935	2322	3838	4151	5596
271	4	4	14479	1806	875	617	1701	3284	3409
281	3	3	3	7777	663	403	336	1262	2750
291	1.	1.	1	1	3512	290	153	151	93尔
$5+1$	545387	442426	351233	299831	285369	31.4954	331023	333259	333825
$6+1$	542327	437894	344969	281570	246784	257805	307837	330578	332301
$7+1$	539731	434765	340324	275123	227966	218304	248971	306848	329646
$8+1$	536685	431.976	336672	269677	220431	196134	202290	237349	301836

Table 10. Fishing mortalities from 19.72-1980 for Div. 4RST redfish from cohort with terminal F 0.075 .

FTEMIMG MOFTALITT

Table 11. Summary of yield per recruit calculated from partial recruitment and average weight at age over ages 5 to 29. Div. 4RST Redfish.

F	$Y / R(K G)$
001	.0026
. 050	. 0849
. 100	. 1178
. 150	. 5304
. 200	. 1347
. 250	. 1356
. 300	. 1351
. 350	. 1339
. 400	. 1325
. 450	. 1310
500	. 1.295
. 550	. 1281
. 600	. 1267
. 650	. 1253
. 700	. 1240
. 750	.1228
. 800	. 1217
. 850	. 1206
. 900	. 3.195
. 950	. 1186
1.000	. 1.1 .76
1.050	. 1167
1. 3.00	. 11.15
1. 150	. 1.151
1.200	. 1.443
1.250	. 11.35
1. 300	. 1129
1. 350	. 1121.
1. 400	.11.15
1.450	. 1109
1. 500	. 1.103
1.550	. 1097
1. 600	1.093
1.650	. 1086
1. 700	. 108.
1.750	. 1076
1.800	. 1071
1.850	. 1066
1.900	. 1062
1.950	. 1057
2.000	. 1.053

F0.1.15.1210

Table 12. Population numbers $\left(10^{-3}\right)$ for Div. 4RST Redfish, 1980-82, assuming the TAC of 20,000 t is caught in 1981 and fishing at $\mathrm{F}_{0.1}=0.121$ in 1982.

Age !	1980	1981	1982
5	17860	129000	129000
61	27238	16040	115703
71	217912	24370	14323
91	488416	194531	21705
91	294512	434379	172498
10	125018	258804	379803
11	35109	107577	220788
12 \|	22455	29694	89939
13 \|	12630	18850	24609
14	7877	10602	15622
15	7863	6612	8787
16	3924	6601	5480
17	4535	3294	5470
18	4447	3807	2730
19	7412	3733	3155
20	23720	6222	3094
21	13647	19912	5156
22	36233	11456	16502
23	19970	30416	9494
24	32876	16764	25207
25	12180	27598	13853
26	7485	10225	22871
27	4418	6283	8473
28	3474	3709	5207
291	1148	2916	3074
$5+1$	1432359	1383395	1322583
$6+1$	1414499	1254395	1193583
$7+1$	1387261	1238356	1077880
	1168349	1213985	106355

Table 13. Catch numbers (10^{-3}) and biomass (t) for Div. 4RST Redfish, 1980-1982, assuming the TAC of $20,000 \mathrm{t}$ is caught in 1981 and fishing at $\mathrm{F}_{0.1}=0.121$ in 1982. Recruitment in 1981-82 was 129×10^{-6}.

CATEM NUMAEES					CATEH EIOMASS		
Age ${ }^{\prime}$	1980	1981	1982	Age ${ }^{1}$	1980	1981	1982
51	127	1074	1477	51	11	97	133
61	290	200	1981	61	30	21	204
71	2781	364	294	71	375	49	40
81	7950	3704	567	81	1344	626	96
91	8081	13928	7569	91	1657	2855	1552
101	5833	14086	28164	101	1417	3423	6844
11 I	2182	7788	21699	11	613	2188	6097
12	1545	2378	9764	121	497	766	3144
131	869	1510	2672	13	315	547	967
141	542	849	1696	14	218	342	683
151	541	530	954	15	240	235	423
161	270	529	595	16	130	255	287
171	312	264	594	171	163	137	309
181	306	305	296	18	171	170	166
171	510	299	343	191	304	178	20.4
201	1632	498	336	20	1030	314	212
211	939	1595	560	21	624	1061	372
221	2493	918	1791	22	1740	640	1250
231	1374	2436	1031	23	1003	1778	752
241	2262	1343	2737	24	1717	1019	2077
251	838	2211	1508	251	660	1742	1188
261	515	819	2483	26	420	667	2024
271	304	503	920	271	256	423	774
281	239	297	535	281	207	257	490
291	79	234	334	291	70	208	297
$5+1$	42814	58661	90927	$5+1$	15212	20000	30584
$6+1$	42687	57587	89451	$6+1$	15201	19903	30451
$7+1$	42397	57367	87470	$7+1$	15171	19883	30247
$8+1$	39616	57023	87176	$8+1$	14796	19834	30208

Fig. 1. Catch per unit effort ($t / h r$) for 4RST redfish for the years 1958-80 inclusive.

