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Abstract 
 
The retrospective problem involves systematic differences in sequential population 
analysis (SPA) estimates of stock size or some other quantity in a reference year. The  
differences  occur  as  successively  more  data  are  used  for  estimation,  and appear  to  
be  structural  biases  that  result  from a mis-specification of  the SPA. In some cases the 
retrospective problem is so severe that the SPA is considered to be too unreliable for 
stock assessment purposes. This was the case in  the 2002 assessment of the fall 
spawning herring stock in the southern Gulf of St. Lawrence (4T  fall  herring;  see  
LeBlanc,  MacDougall,  and  Poirier,  2002).  There  are  many possible  causes  of  
retrospective  patterns,  and  it  is  usually  difficult  in  practice  to determine which 
causes are more likely. In  this paper we show how  to  use  local influence diagnostics to 
investigate whether small changes or perturbations to SPA input  components  such  as  
catches  or  natural  mortalities  can  remove  or  reduce retrospective patterns. The 
plausibility of the perturbations can be used to assess the  likelihood  that  the  component  
is  the  source  of  the  retrospective  pattern.  We apply  these  local  influence 
diagnostics to the 4T  fall  herring SPA. We show  that reasonable changes in the SPA 
assumption about the relationship between catch per  unit  effort  (CPUE)  and  stock  
size  is  a  plausible  source  of  the  retrospective pattern. Catches, natural mortality 
assumptions, or the weighting of SPA residuals in estimation appear to be less plausible 
sources of the retrospective patterns. 

 
Résumé 

 
Le profil rétrospectif implique des différences systématiques dans les évaluations de la 
taille des stocks ou d'autres paramètres obtenues avec l'analyse séquentielle de population 
(ASP) pour une année de référence donnée. Les écarts, qui surviennent lorsque davantage 
de données sont successivement utilisées dans l’évaluation, semblent être des biais 
structurels résultant d'une erreur de spécification de l’ASP. Dans certains cas, le profil 
rétrospectif est tellement marqué que l’on considérera l’ASP comme étant trop incertaine 
pour l'évaluation des stocks. C’est ce qui s’est produit dans l'évaluation 2002 du stock de 
harengs reproducteurs d'automne du sud du golfe du Saint-Laurent (4T, hareng 
d’automne; voir LeBlanc, MacDougall et Poirier, 2002). Le profil rétrospectif peut être 
causé par de nombreux facteurs, mais il est d’ordinaire difficile dans la pratique de 
déterminer quelles en sont les causes les plus probables. Dans cet article, nous 
démontrons comment utiliser les diagnostics d'influence locale pour déterminer si des 
faibles changements ou perturbations aux données d’entrée pour l’ASP, tels que les prises 
ou les mortalités naturelles, peuvent éliminer ou réduire les profils rétrospectifs. On peut 
s’appuyer sur la plausibilité des perturbations pour évaluer la probabilité qu’une donnée 
d’entrée particulière soit la source du profil rétrospectif. En appliquant le diagnostic 
d'influence locale à l’ASP des harengs d’automne de 4T, nous démontrons que des 
changements raisonnables dans les prémisses de l’ASP concernant le rapport entre les 
prises par unité effort (PUE) et la taille du stock peuvent être la cause du profil 
rétrospectif. Les prises, les hypothèses relatives à la mortalité naturelle ou la pondération 
des résidus de l’ASP dans l'évaluation semblent toutefois être des sources moins 
plausibles de profil rétrospectif. 
 





1. Introduction

The retrospective problem in sequential population analysis (SPA) has received consid-
erable attention in Þsh stock assessments. SPA is an analytical model of Þshery catch
data which can be used to estimate stock size. Based on a time series of annual catch
numbers-at-age a in year y, denoted as Ca,y, SPA produces time series estimates of pop-
ulation numbers-at-age, Na,y, and other derived quantities such as total biomass and
spawner biomass (SSB). Once Þshery catch statistics have been compiled in a given year
to estimate Ca,y�s, an SPA can be performed on the updated catch time series to produce
new estimates of the Na,y�s. The retrospective problem involves a systematic pattern in
stock estimates as catches and other stock data are updated. More speciÞcally, let Sy,t
denote an SPA estimate of stock size in year y based on data up to year t ≥ y. A ret-
rospective problem is said to exist if successive estimates Sy,t, Sy,t+1, Sy,t+2, and so on
deviate systematically in a decreasing or increasing trend. This problem can be so severe
that the SPA is considered to be too unreliable for stock assessment.
A substantial retrospective problem exists in the SPA for the fall spawning herring

stock in the southern Gulf of St. Lawrence (see Figure 41 in LeBlanc et al., 2003). This
stock, found off the north coast of Nova Scotia, Canada, in NAFO Division 4T (see Figure
1), is commonly referred to as 4T fall herring. Details about the SPA for this stock are
provided in Section 3. Retrospective estimates of total abundance for ages 5-10 (N+),
average Þshing mortality for ages 7-10 (F̄ ), and total biomass for ages 5-10 (B+) are
shown in Figure 2 in the Appendix. The estimates cover the years y = 1978, ..., t, for
t = 1998, ..., 2002, where t indicates the last year of catches and other Þshery data used to
estimate population size. The SPA structure we employ closely resembles that of LeBlanc
et al. (2003); our retrospective patterns are also similar. Notice that the estimates of N+
and B+ for year y usually decrease as t increases and more data are used. For example, the
estimate of B+ in 1998 based on data up to 1998 is 224 KT; if data up to 2002 are used to
obtain an updated 1998 estimate, the result is 131 KT, which is almost 50% lower. This
consistently decreasing trend indicates a structural bias in the population size estimators
caused by model mis-speciÞcation (Evans, 1996). The retrospective patterns shown in
Figure 2 are severe, but not uniquely so. For example, a haddock stock considered by
Sinclair et al. (1991) exhibited similar symptoms, while another stock considered in Mohn
(1999) possessed a more severe retrospective pattern.
A common perception in stock assessments is that historic estimates of stock size are

more accurate than recent ones. This will tend to be true for stocks that are heavily
exploited, and for which accurate catch data exists (Pope, 1972). Hence, when a retro-
spective problem as in Figure 2 is present, the common perception is that current stock
size is over-estimated. This is important because current stock size and trends in recent
stock size are usually required for Þshery management decisions such as setting the total
allowable catch (TAC) for next year. If current stock size is over-estimated then this may
mean that the TAC will be set too high and not be sustainable. However, as pointed out
by Sinclair et al. (1991), for certain types of SPA model mis-speciÞcations the historic
estimates may be less accurate than the current estimates. Mohn (1999) also demon-
strated this using simulated data with model mis-speciÞcations. He showed that certain
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types of model mis-speciÞcations tend to compound over time such that adding more data
produces more biased estimates of historic stock size. However, even in these situations
the current trends in stock size estimated by SPA may be overly optimistic and lead to a
TAC that is too high.
Mohn (1999) presented simulation results to explore the types of retrospective patterns

that might arise from various SPA model mis-speciÞcations. He also presented ad hoc
diagnostics to help discriminate between the possible sources of mis-speciÞcation that
cause the retrospective problem. He applied these diagnostics to a cod stock off the
east coast of Canada (i.e. eastern Scotian Shelf cod). One type of diagnostic involved
examining the magnitude of perturbations to model components required to remove the
retrospective pattern. Mohn (1999) considered simple perturbations that involved adding
a common �effect� to part of a model component. For example, he considered catch
perturbations of the form

Ca,y(ω) =

½
Ca,y, y < yo,
Ca,yωφa, y ≥ yo,

where Ca,y and Ca,y(ω) are the observed and perturbed catch at age a in year y. The
perturbation ωφa was applied only after some speciÞed year yo. The magnitude of the
perturbation was controlled by ω, while φa was an age effect that was Þxed in all per-
turbations. This analysis was used to explore whether unreported discarding of catches
starting in year yo could be the source of the retrospective problem. The magnitude and
timing of the perturbation required to remove the pattern was used to assess whether
discarding was a plausible causal mechanism. Mohn (1999) considered perturbations to
other model components as well. The �parameters� of his perturbation analyses were ω
and yo, which he proÞled over to Þnd values that removed the retrospective problem. He
measured the retrospective problem using

ρ =
YX

y=yo

Sy,y − Sy,Y
Sy,y

, (1)

where yo and Y are the Þrst and last years for which the retrospective pattern was assessed.
Recall that Sy,Y is the estimate of stock size in year y based on all catch and other stock
data up to year Y . If the retrospective estimates for year y based on data only up to year
y (i.e. Sy,y) ßuctuate randomly about Sy,Y then ρ is approximately zero.
For 4T fall herring we assessed the retrospective pattern for yo = 1998 and Y = 2002.

The values of ρ forN+, F̄ , andB+ are shown in the upper left hand corners of each panel in
Figure 2. The ρ�s for N+ and B+ are nearly identical, while ρ for F̄ is larger in magnitude
and negative. If ρ is positive for stock size then we expect ρ to be negative for Þshing
mortality because this is essentially catch divided by population size, and overestimation
of population size leads to underestimation of Þshing mortality.
In this paper we also use perturbation analyses to diagnose more likely causes of the

retrospective pattern. We improve upon Mohn (1999) by using less constrained pertur-
bations that may be more informative; for example, we investigate catch perturbations of
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the form
Ca,y(ω) = Ca,y × ωa,y. (2)

In (2) we perturb each Ca,y separately, whereas Mohn (1999) considered more simple
perturbations. We also Þnd perturbations that remove the retrospective pattern. The
advantage of searching over a higher dimensional perturbation space is the potential of
Þnding smaller and more realistic perturbations to remove the retrospective pattern than
those presented in Mohn (1999).
We use the local inßuence approach for perturbation analyses. This method is brießy

described in Section 2, and more fully discussed in Cadigan and Farrell (2002). Similar
to Cook (1986), we use basic concepts in differential geometry to study the effect of a
perturbation on ρ. Our approach is based on the slope of the perturbation (inßuence)
surface near the origin, which is why it is referred to as local inßuence. This approach
is computationally more convenient for perturbation analyses because it is based only
on slopes at the origin which can be computed using the unperturbed SPA parameter
estimates. It does not require re-estimation of the SPA at many points in the perturbation
space. For example, if we examined the local effects of catch on SPA output for Þve
perturbations like those in (2), e.g. ω = 0.9, 0.95, 1, 1.05, 1.1, and if there were 100 Ca,y�s
for all ages and years to perturb, we would then have to re-estimate the SPA a total
of 4100 ' 1.6 × 1060 times. This is practically impossible in most situations. The local
inßuence approach we use is much more feasible, but our diagnostics are useful only when
the perturbation surface of ρ around a relevant neighborhood of the origin is fairly linear.
When the inßuence surface has substantial nonlinearity then second-order properties such
as the local curvature can be investigated, although we do not pursue this here. We show
in Section 4 that for some perturbations of the 4T herring SPA the inßuence surface
of ρ appears to be reasonably linear. We have also observed this in analyses of the cod
stock considered in Mohn (1999). We Þnd the direction of maximum slope for ρ at the
perturbation origin which is also the local direction of greatest change in ρ. We then
examine perturbations in this direction that reduce ρ to near zero. This involves re-
estimating the SPA a small number of times, but the directions themselves only require
the unperturbed SPA parameter estimates. When the perturbation surface of ρ is linear,
our method Þnds the smallest perturbation that removes the retrospective pattern, as
measured by ρ. In Section 4, we consider this for four distinct perturbation schemes
on catches, mortality, survey catchability, and case weights in order to determine if the
retrospective pattern in the 4T fall herring SPA is more likely caused by any of these
components.

2. Local Inßuence Approach

Cadigan and Farrell (2002), hereafter referred to as C&F, considered local inßuence diag-
nostics for problems that involved estimating a p × 1 parameter vector θ by maximizing
a Þt function l(θ) that had basic smoothness properties. The estimate of θ, denoted as �θ,
was the solution to

úl(�θ) =
∂l(θ)

∂θ

¯̄̄̄
θ=�θ

= 0.
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They perturbed model components with a k × 1 perturbation vector ω and studied the
inßuence of the perturbations on key model results. The perturbation ω was of the form
ω = ω(h) = ωo + hd, where ωo was the null perturbation, d was a Þxed direction vector
of length one, and h was a scalar that determined the magnitude of the perturbation.
Usually for multiplicative perturbations ωo = 1, and for additive perturbations ωo = 0.
The dimension of k could be large; for example, in one of the SPA applications in C&F,
k was equal to 520.
C&F measured inßuence on g(�θ), an important but arbitrarily speciÞed scalar SPA

result. They considered some basic geometric properties of the inßuence surface of gω(�θω)
versus ω near the origin, ωo. The primary diagnostic used by C&F was the local slope in
the direction d,

S(d) =
∂gω(�θω)

∂h

¯̄̄̄
¯
h=0

= d
0 ∂gω(�θω)

∂ω

¯̄̄̄
¯
ω=ωo

= d
0
úgo.

A particularly interesting diagnostic was the direction of maximum slope,

smax = úgo/
p
úg0o úgo. (3)

Further computational details are given in Section 2.1 of C&F.
Some minor modiÞcations of the methods in C&F are required to study local inßuence

for ρ. The inßuence measure gω(�θω) used by C&F involved parameter estimates from the
optimization of a single Þt function, whereas ρ is based on parameter estimates from
multiple optimizations. For example, the ρ�s in Figure 2 are based on Þve optimizations.
Let Sy,t(ω) denote a perturbed estimate of stock size. Using Sy,t(ω)�s in (1) gives the
perturbed value, ρ(ω). Note that Sy,t(ω) is a particular form for g(�θ) using the notation
in C&F. Let

úSo y,t = d
0 ∂Sy,t(ω)

∂ω

¯̄̄̄
ω=ωo

be a vector of local derivatives. Each úSo y,t can be computed using the methods in C&F.
The local slope of ρω in the direction d is given by

úρo = d
0
(X

y

³
So y,Y S

−1
o y,y

úSo y,y − úSo y,Y

´
S−1o y,y

)
, (4)

where Y is the last year under consideration. Let úρmax denote the maximum local slope.
The direction of maximum slope, smax, can be found using (3) with úgo equal to the {·}
term in (4). Additional computational information is provided in the Appendix (see
Section 6).

3. SPA for 4T fall herring

We used essentially the same SPA formulation for 4T fall herring as outlined in LeBlanc
et al. (2003). SpeciÞcally, we employed the cohort model

Na,y =
¡
Na+1,y+1e

M/2 + Ca,y
¢
eM/2, (5)
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where M = 0.2 is the annual mortality rate due to sources other than the reported catch.
The catches are presented in Table 26 in LeBlanc et al. (2003). Equation (5) can be
used to estimate the Na,y �s for all ages and years if the NA,y�s (numbers at the oldest age
A for all years) and the survivors in the last year Y , the Na,Y �s, are both known. The
4T fall herring SPA covered the years 1978 to 2002, and ages 4 to 10; that is, Y = 2002
and A = 10. Similar to LeBlanc et al. (2003), all of the NA,y �s were approximated using
assumptions about Þshing mortalities; that is, F10y = (F8y + F9y)/2, where

Fa,y = log(
Na,y

Na+1,y+1
)−M.

Hence, the only cohort parameters to estimate were N4,2002, ..., N9,2002.
A catch per unit of effort (CPUE) index of stock abundance was used to estimate

survivors (see LeBlanc et al., 2003, Table 33). The CPUE-at-age (i.e. Ra,y) was assumed
to be proportional to stock abundance; that is, Ra,y ≈ qaNa,y, where qa is the unknown
age-dependent catchability coefficient of the index. The catchabilities for ages 4 to 10
were also estimated. The total number of parameters (θ) to be estimated was 13 for the
seven catchabilities and six Na,Y �s. The Þt function was

l(θ) =
X
a,y

[log(Ray)− log(qa)− log {Nay(t)}]2 , (6)

where log {Na,y(t)} = 1
4
log(Na,y) +

3
4
log(Na+1,y+1) was a cohort approximation of log

September abundance, which coincides with the timing of the Þshery used to derive the
CPUE index.
LeBlanc et al. (2003) extended their SPA beyond age 10 to include some plus group

catches; hence, some of their stock size estimates cover ages greater than 10. We did not
include this step; hence, estimates in Figure 2 only cover ages 5-10. Note that estimates at
age 4 in the last year are more imprecise compared to other ages; therefore, it is common
to exclude this age when examining retrospective patterns. Estimates of survivors are
not affected by including the plus group catches in the manner of LeBlanc et al. (2003).
Thus, it seems unlikely that including these catches would signiÞcantly alter the results
of the inßuence analyses, or lead to different conclusions.

4. Results

4.1. SPA for 4T fall herring

We present some summaries of the SPA estimates of 4T fall herring stock size in Figure 3
based on the entire time series of catch and survey data. Estimates of recruitment (N5, y)
and total abundance (

P10
a=4Na,y) for the entire time series are plotted in the top panel.

Estimates of total biomass (
P10

a=4wa,yNa,y) are plotted in the bottom panel. Note that
wa,y is the beginning-of-year weight-at-age. Some trends in average F �s for ages 7-10 and
ages 4-6 are shown in Figure 4. The estimated CPUE catchabilities (×103) are shown in
Figure 5. The q�s increase until ages 7 or 8, then decline slightly.
Standardized residuals based on (6) using the estimated q�s and N �s are shown in

Figure 6. The residuals are standardized by their estimated standard deviation. In the
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top panel, residual trends are apparent after 1995. Age dependent patterns (middle panel)
in the residuals are not apparent. There appears to be a decrease in the residual variation
as �Ray increases (bottom panel), although the trend is not substantial. More detailed
time series plots of the residuals are shown in Figure 7. Age dependent time trends are
apparent. Age and year patterns in residuals are also evident in Figure 8. These residual
plots suggest that assumptions are mis-speciÞed in the 4T fall herring SPA. This is also
evident in Figure 2.
Retrospective patterns in abundance at age estimates ( �Nay) are shown in Figure 9.

The trends are similar at all ages except age four, where the retrospective patterns are less
pronounced. Retrospective patterns in the model predicted total CPUE indices (Ry =P

aRay) are shown in Figure 10. In 1998 the SPA did not Þt R1997 and R1998 very well.
In 2001 and 2002 the SPA could not match the decline in Ry and this has lead to an
increasingly worse Þt after 1995.
We have shown residual and retrospective plots that suggest the 4T fall herring SPA

is mis-speciÞed; however, these graphics provide little insight about the source of the
model mis-speciÞcation. In the next four sections we present diagnostics that can assist
in identifying the source of the mis-speciÞcation.

4.2. Catch perturbations

In this section we present the direction of maximum slope for ρ, i.e. smax, based on
catch perturbations described by equation (2). We do this using ρ�s for the retrospective
patterns in N+, F̄ , and B+. We also use the smax perturbation of B+ to Þnd a catch
time series that results in reduced retrospective patterns. Let ω(h) = ωo + hsmax and
let ρω(h) = ρ{ω(h)} denote the ρ value based on ω(h) perturbed catches, Ca,y(h) =
Ca,y × {1 + hsa,y} where sa,y is the element of the vector smax that corresponds to Ca,y.
Note that the inßuence graph of ρ(ω) is a k + 1 dimensional surface where k = dim(ω),
and ρω(h) is called the lifted line that is the intersection of ρ(ω) and the vertical plane at
smax (or the plane containing all vectors orthogonal to smax). If the inßuence surface in
the direction of smax is linear, then ρω(h) = ρ+ úρmaxh, which implies that ρω(h) = 0 when
h = hmax = −ρ/ úρmax. In this case using ω(hmax) gives the smallest perturbation to catches
that remove the retrospective pattern, as measured by ρ. When the inßuence graph has
some nonlinearity, ω(hmax) may not completely remove the retrospective patterns. In this
situation, a value close to hmax will usually be a better choice for h instead of hmax.
The elements of the three smax�s are shown in Figure 11. They are similar for N+

(panel a) and B+ (panel c). At the top of each panel we show −h−1max = úρmax/ρ in percent.
Values for úρmax can be derived from hmax and the respective ρ�s shown in Figure 2. By
construction the úρmax�s are always positive, which indicates that perturbations in these
directions will increase ρ. Hence, these results suggest that increasing reported catches
from the 1993-1996 cohorts, increasing catches at age 10 prior to 2001, and decreasing
most other catches will result in relatively large reductions in retrospective patterns. The
elements of smax for F̄ tend to be opposite in sign to those for N+ and B+, although not
always. This is because the retrospective trends in F̄ (ρ = −3.36) are the reverse of the
trends in N+ (ρ = 1.27) and B+ (ρ = 1.30). Changes to the catches in the direction of
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smax in panel b of Figure 11 will increase ρ towards zero and reduce the retrospective
pattern in F̄ .
The practical utility of smax for Þnding perturbations that remove or substantially

reduce retrospective patterns depends on the linearity of the inßuence surface. To in-
vestigate this, in Figure 12 we plot the percent change in the three ρ statistics, 100 ×
{ρ(ω)− ρ} /ρ, based on perturbations to some individual catches and perturbations to
all catches using smax. We used equation (2) for the perturbations, with ω = 1 + h for
individual catch perturbations and {ωa,y} = 1 + hsmax for perturbations in the direction
smax. The value of h controlled the amount of perturbation; for example, h = −0.5 with
an individual catch perturbation meant that the catch was reduced by 50%, whereas h = 1
meant that the catch was doubled. The results suggest that there is some nonlinearity
in the inßuence curves. Perturbations in the direction of smax deviate from a linear trend
when |h| > 0.5.
If we reduce catches in the direction of smax in Figure 11 (panel c) by hmax = −5.6

then ρ should be near zero for this perturbation. However, as is evident in Figure 12
the inßuence surface in the direction smax is somewhat nonlinear and we found that a
perturbation with h = −5.6 was infeasible because it resulted in negative catches. The
smallest value for h we could use was h = −2.5. These perturbations are shown in
Figure 13; they are simply the results in panel c of Figure 11 scaled by −2.5. The change
in most catches is less than ±25%, but a small number of catches are altered by more
than ±50%. Differences between the total observed and perturbed catches are shown in
Figure 14. Perturbed catches are substantially larger in total after 1997. The perturbed
retrospective patterns are shown in Figure 15. These catch perturbations reduced the
retrospective patterns in N+ and B+. The ρ statistics dropped from 1.27 to 0.41 for N+,
and from 1.3 to 0.47 for B+. However, retrospective patterns in N+ and B+ still exist,
and the retrospective pattern in F̄ was worse; that is, ρ decreased from −3.4 to −6.0.
The catch perturbations resulted in a poorer Þt; the mean square error (MSE) increased
from 0.22 to 0.29. These results suggest that small changes to the catches cannot account
for the retrospective problem.

4.3. M perturbations

The M perturbations we considered were of the form

Mω a,y =M × ωa,y,
where ωo = 1. These are multiplicative perturbations of M , which was set at 0.2. This is
the same value used in LeBlanc et al. (2003).
The elements of the direction vectors are shown in Figure 16. They are broadly similar

to the catch perturbation results in Figure 11 for N+ and B+, although the inßuence of
M and C at age 10 differs. The results in Figure 16 suggest that an increase in M
for the 1992-1996 cohorts and a decrease in M for most other cohorts will reduce the
retrospective pattern. The inßuence curves based on selected M perturbations appear
linear (see Figure 17), although a small departure from linearity is evident in the smax
direction when |h| > 0.75. The results for B+ suggests that a perturbation in the direction
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shown in panel c of Figure 16 and h around hmax = −8.5 will reduce ρ to near zero. After
a few trials we chose h = −6.5. The trials involved selecting a value for h near −8.5,
changing the values for M using {Ma,y} = 0.2× (1 + hsmax), and then re-computing ρ to
see if it was close to zero. The value of h we selected was smaller in absolute value than
the local approximation of −8.5 because of the nonlinearity in the inßuence curve. Panel
c of Figure 16 shows that ρ decreases faster than the linear approximation prediction
based on M perturbations in the direction of smax, which is why h = −6.5 resulted in a
smaller |ρ| than hmax. The perturbations based on h = −6.5 are shown in Figure 18. The
perturbations are large; that is, many of them are greater than 50% in absolute value,
and some perturbations are greater than 150%. The perturbed retrospective patterns are
shown in Figure 19. They are substantially reduced for N+, F̄ , and B+ compared to those
in Figures 2 and 15, although the relative magnitude of the perturbations required to give
these reductions is large (i.e. |h| = 6.5).
The MSE for the perturbed SPA dropped slightly from 0.22 to 0.2. This is another

difference compared to the catch perturbations in Section 4.2. TheM and catch perturbed
SPA�s give substantially different estimates of population size; for example, the maximum
absolute difference in total annual biomass for ages 4-10 from the catch andM perturbed
SPA�s is 260 KT in 2002, which is 54% of the unperturbed value.

4.4. Catchability perturbations

Another interesting perturbation scheme involves the survey catchabilities. A common
assumption used in the 4T fall herring SPA is that the CPUE indices are proportional
to absolute stock numbers-at-age. The constant of proportionality, q, was assumed to
depend on age but not year. This assumption may not be true; for example, it is possible
that CPUE catchability changes over time due to changes in Þshing practices, etc. Mohn
(1999) showed that violations of the constant catchability assumption could cause retro-
spective patterns. To assess the potential for this we examined inßuence diagnostics for
multiplicative q perturbations,

qω a,y = qaωa,y, (7)

where ωo = 1. This involved perturbations to unknown model parameters. We estimated
the qa�s in (7) using the perturbed Þt function,

lω(θ) =
X
a,y

[log(Ray)− log(qω a,y)− log {Nay(t)}]2

=
X
a,y

[log(Ray)− log(ωa,y)− log(qa)− log {Nay(t)}]2 .

The perturbed catchabilities were estimated as �qω a,y = �qaωa,y. However, the ωa,y�s were
Þxed and obtained from the local inßuence diagnostics.
The elements of smax for the three retrospective measures (ρ�s) are shown in Figure

20. They suggest that a trend in the CPUE catchability in 1996-2002 can reduce the
retrospective pattern. Global inßuence curves are shown in Figure 21. As with the M
perturbations, the inßuence curve in the direction of smax is reasonably linear within the
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range of h we considered. We applied the smax perturbation of B+ with h = −2 (see
Figure 22). On a relative scale these are much smaller perturbations than those in Figure
18. The estimates of qa in (7) were almost identical to the unperturbed estimates; for
example, the unperturbed �q10 in Figure 5 was 2.562× 10−3, while the perturbed estimate
was 2.517 × 10−3. Differences for other ages were of similar or smaller magnitude. The
perturbed retrospective patterns are presented in Figure 23. The q perturbations based on
smax for B+ greatly reduced the retrospective patterns inN+ and B+. The q perturbations
improved the Þt as well, decreasing the MSE from 0.22 to 0.20.
Age speciÞc retrospective patterns based on the q-perturbations are shown in Figure

24. They are substantially improved compared to the unperturbed results shown in Figure
9 for ages 6 and 7 and marginally improved for ages 8-10. For age 5 the retrospective pat-
terns are about the same magnitude but reversed in sign. The q-perturbed retrospective
patterns are worse for age 4.

4.5. Case weight perturbations

Many methods for assessing inßuence involve the perturbation of case weights. A case
refers to a term in the sum in (6), and is the SPA squared residual. A case weight is an
extrinsic weight of the squared residual in the Þt function, which we perturb as

lω(θ) =
X
a,y

ωa,y [log(Ra,y)− log(qa)− log {Na,y(t)}]2 .

This perturbation scheme can be used to assess, for example, the impact of deleting CPUE
indices for a particular year. In this section we assess whether changes in case weights
can reduce retrospective patterns. The results in Figure 25 suggest that, compared to
the catchability perturbations, larger changes to case weights are required to reduce the
retrospective problem. This is because the values of úρmax are larger; however, smaller
changes to case weights are required compared to C and M perturbations (see Figures 11
and 16). Global inßuence curves are shown in Figure 26. Figures 27 and 28 demonstrate
that case weight perturbations with h = −5 are sufficient to remove the retrospective
pattern. One of the main effects of the case weight perturbations shown in Figure 27 is
to down-weight the 2001 and 2002 CPUE indices of abundance. The importance of this
part of the CPUE data on the retrospective pattern is also obvious in Figure 10.

5. Discussion

We have presented a practical methodology based on local inßuence diagnostics to
assess the potential magnitude of changes in SPA inputs required to reduce or remove
retrospective patterns. In the context of a data example, we illustrated how these methods
can be employed to identify relatively small perturbations to SPA component inputs that
result in greatly reduced retrospective patterns. The diagnostics can identify more likely
causes of the retrospective patterns, or at least identify some components that are an
unlikely source of the patterns. That is, if the smallest perturbation that removes the
retrospective pattern is unrealistic then we can reasonably conclude that the pattern is
not caused by the component. Although this is obviously not as desirable as identifying
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the components that are at the root of the retrospective pattern, the determination of
which components that are unlikely to have caused the problem is nevertheless useful.
We have applied the proposed methods to the 4T fall herring SPA, and studied the

inßuence of commercial catches, natural mortality, survey catchability, and estimation
case weights on retrospective patterns. We concluded that relatively small perturbations
to assumptions about the catchability of CPUE indices could remove the retrospective
patterns. Larger changes to case weights or the assumptions about M were required to
remove the patterns, while local catch perturbations were not able to completely eliminate
them. The plausibility of the perturbations, or the SPA perturbed stock estimates, are
best assessed by 4T herring experts who are knowledgeable about the Þshery and other
scientiÞc information for this stock.
Although our local inßuence analyses have produced a large amount of output to

examine, our main conclusion is based on only the values of úρmax for the four perturbation
schemes. For B+, these slopes in percent of ρ are 18%, 12%, 40%, and 19% for the C, M ,
q, and case weight perturbations, respectively. These slopes suggest that smaller changes
to the CPUE catchability model are required to reduce the retrospective pattern than for
the other SPA model components. The N+ ρ slopes lead to the same conclusion. Note
that a different conclusion is reached from the F̄ ρ slopes; however, as is evident in Figure
12, there is substantial nonlinearity in the inßuence surface for this ρ and perturbation
scheme, and this reduces the utility of local inßuence diagnostics.
Before local inßuence diagnostics are interpreted it is important to check the �near-

local� linearity of the inßuence surface, which we did in Figures 12, 17, 21, and 26. An
alternative option is to develop local curvature diagnostics to indicate when the inßuence
surface is locally nonlinear. This is a useful area for future research.
Retrospective-corrected stock scenarios are shown in Figure 29. It is interesting that

catch and M perturbations lead to somewhat different estimated stock trajectories, since
they both play a very similar role in SPA by accounting for population deaths; however,
an important difference in their roles involves the constraints on Þshing mortalities at
the oldest age A. These constraints are commonly used and often make an SPA more
sensitive to errors in catches at age A than similar sized errors inM at that age. It is also
interesting that the CPUE q and case weight perturbations resulted in stock trajectories
that are very similar to the unperturbed result. The conclusion we draw from this is
that a retrospective-corrected SPA may not produce lower estimates of stock size. This
is contrary to the common perception that a retrospective problem implies that the SPA
will over-estimate current stock size.
We also conducted the retrospective local inßuence analysis on the data and model

structure used in the 2002 assessment of the 4T herring stock (see LeBlanc, MacDougall,
and Poirier, 2002). The main difference in the 2002 and 2003 SPA formulations was that
in 2002 the CPUE time series was split (1978-1991, 1992-2001) and treated as two dif-
ferent indices. The local inßuence q-perturbations for ages 5 and greater �attempted�
to re-connect the catchabilities for the 1978-1991 and 1992-2001 periods. This suggested
that splitting the CPUE index series may have contributed to the retrospective prob-
lem. Indeed, when the CPUE time series was not split then the retrospective pattern
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was substantially reduced; however, with the addition of the 2002 data the retrospective
pattern increased again. Our conclusion from this was that in the �split-q� formulation,
some of the retrospective pattern resulted from confounding between stock size and CPUE
catchability in the 1992-2001 period. In the �constant-q� formulation (i.e. constant q for
1978-2001) there was less confounding, which in turn reduced the retrospective pattern.
However, this did not mean that the �constant-q� formulation was reasonable. All that
happened was that the evidence of model mis-speciÞcation was transferred from the ret-
rospective plots to the residuals plots; that is, residuals looked worse for the �constant-q�
formulation compared to the �split-q� formulation. The 2002 CPUE values were also
inconsistent with the SPA, similar to the 2001 values, and this caused the residuals and
retrospective patterns to look worse compared to 2002 assessment results; that is, the
addition of more inconsistent data to the SPA increased the evidence of model mis-
speciÞcation. To their credit, LeBlanc et al. (2003) have attempted to conservatively
adjust for the mis-speciÞcation.
We found that the retrospective diagnostics were fairly similar when ρ was based on

different stock quantities (e.g. N+, F̄ , or B+), although we observed some differences in
the effect of the perturbations on retrospective patterns. One would expect the diagnostics
based on N+ and B+ to be similar. Perhaps a better set of diagnostics would involve the
numbers of young and old Þsh instead of N+ and B+. In many applications spawner
biomass would be an appropriate way to quantify the numbers of old Þsh. Another factor
to consider is the number of years used to measure the retrospective pattern. Also, the
retrospective metric proposed by Mohn (1999) and used in this paper (equation 1) is a
relative average which may not be appropriate in some cases, especially when some Sy,y�s
are large.
It is possible that retrospective patterns are caused by mis-speciÞcations of two or

more model components. For example, the retrospective patterns could be caused by mis-
reported catches and incorrect assumptions about CPUE catchabilities. Local inßuence
diagnostics based on perturbations to multiple components are relatively straightforward
to implement; however, scaling the perturbations is a problem. For example, multiplica-
tive perturbations to catches may not be comparable to multiplicative perturbations to
survey catchabilities. Local inßuence diagnostics based on multiple component perturba-
tions will likely be very sensitive to the relative scaling of the perturbations to different
components. This problem also affects separate perturbations to model components such
as the ones we have presented. If the perturbation schemes are not comparable then
the local slopes (e.g. úρmax) are also not comparable and are subsequently not useful for
determining which perturbations are more likely. This is discussed further in C&F.
The local inßuence diagnostics can be improved by utilizing more realistic perturba-

tion schemes. For example, potential errors in catches may not be entirely multiplicative
in nature because the magnitude of errors in large reported landings could be larger or
smaller than the errors in small reported landings. Also, completely independent pertur-
bations of M may not be realistic, and smoother perturbations may be more appropriate.
Such modiÞcations are relatively straight-forward to implement within the diagnostic
framework we have presented.
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6. Appendix

In this section we provide additional information on how we compute local inßuence
diagnostics. We Þrst consider inßuence for a scalar statistic from an SPA, and then we
consider the retrospective ρ�s which are scalar statistics computed from more than one
SPA. Let θ = {q4, ..., q10, N4,2002, ..., N10,2002} denote the parameters to estimate in the 4T
herring SPA. Also, let g(θ) = g(θ;C,M) denote some function of the SPA output, where
C and M are age by year matrices of catches and other mortality rates that are inputs to
the model. For example, g(θ) could be the total abundance in year t; that is,

g(θ) =
X
a

Na,t.

This g(θ) is a function of θ and also C andM because Na,t = Na,t(θ;C,M). Note however
that N is not a function of the q�s.
Under standard conditions (see Section 2.1 in C&F) the local slope of a perturbed

g(θ) with respect to the perturbation is

∂gω(�θω)

∂ω

¯̄̄̄
¯
ω=ωo

=
∂gω(�θ)

∂ω

¯̄̄̄
¯
ω=ωo

+
∂�θ

0
ω

∂ω

¯̄̄̄
¯
ω=ωo

∂g(θ)

∂θ

¯̄̄̄
θ=�θ

, (8)

where ω is a vector of all perturbations. This equation is just a simple application of the
chain rule for differentiation. We illustrate how to compute this equation using catch per-
turbations and our total abundance example for g(θ). Each individual catch is perturbed
as Ca,y(ωi) = Ca,y×ωi, where i = 1, ..., AY and AY is the total number of ages and years
in the SPA. Any convenient mapping between i and a,y can be chosen. Let ω = {ωi}
where dim(ω) = AY . The Þrst term on the right hand side (rhs) of (8) is

∂gω(�θ)

∂ω

¯̄̄̄
¯
ω=ωo

=
X
a

∂Na,t(θ;Cω,M)

∂ω

¯̄̄̄
ω=ωo

.

It is difficult to simplify the N derivative further because of the rather complicated way
that catches determine SPA numbers depending on the type of constraints used on Þshing
mortalities, etc. In our applications we use numerical techniques to compute ∂gω(�θ)/∂ω;
that is, for the ith element in the above vector of derivatives and for some small δ (e.g.
we use δ = 10−3), we compute

∂gω(�θ)

∂ωi

¯̄̄̄
¯
ωi=ωoi

.
=
g(−2) − 8g(−1) + 8g(+1) − g(+2)

12δ
,

where g(±z) = g(�θ;C±z,M) and C±z is the observed catch matrix but with the ay-th
element equal to 1 ± zδ times the observed catch. Note that a and y are the age and
year that map to i. The derivative approximation is based on a Þve-point formula and
is reasonably accurate (i.e. O(δ4)). The value for δ we use has yielded satisfactory
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results, although better choices for δ may be available in the numerical literature. The
unperturbed SPA parameter estimates (�θ) are used in all the computations. We evaluate
∂gω(�θ)/∂ω|ωo using 4× AY SPA function evaluations.
We use a similar procedure to compute the last term on the rhs of (8), ∂g(θ)/∂θ|θ=�θ.

This derivative is very fast to evaluate. Note that if the year t that we compute total
abundance for is the last year in the SPA then ∂g(θ)/∂θ|θ=�θ = A because g(θ) is just the
sum from 1 to A of some of the θ�s. The hard part to compute in (8) is ∂�θ

0
ω/∂ω|ω=ωo .

Fortunately computing ∂�θ
0
ω/∂ω|ω=ωo does not require computing �θω. It can be shown

(see C&F) that
∂�θ

0
ω

∂ω

¯̄̄̄
¯
ω=ωo

= −F̈−1∆,

where F is the SPA Þt function used to estimate the θ (i.e. equation 6 for 4T herring),
F̈ is the Hessian matrix,

F̈ =
∂2F (θ)

∂θ∂θ0

¯̄̄̄
θ=�θ

,

and

∆ =
∂2Fω(θ)

∂θ∂ω0

¯̄̄̄
θ=�θ,ω=ωo

.

The Hessian will usually be available as a result of the estimation of θ. We also use
numerical procedures to compute both F̈ and∆. If dim(ω)×dim(θ) is large (e.g. 500×30)
then ∆ can take upwards of 30 to 60 minutes to compute with the SPA software that we
employ. However, for a simple structure like the 4T herring SPA then ∆ can be computed
quickly.
The derivative results can be collected to compute go = ∂gω(�θ)/∂ω|ωo . The maximum

local slope is S(smax) =
p
úg0o úgo, and the direction of maximum slope is given by úgo/S(smax)

(see Section 2.1 in C&F).
The local inßuence analysis of the retrospective ρ statistic is a straight-forward, al-

though somewhat tedious, extension of the methods for inßuence in a single SPA. One has
to deÞne the SPA statistic S that ρ is based on (e.g. see equation 1), and then compute
the local slope of the perturbed ρ,

ρ(ω) =
YX

y=yo

Sy,y(ω)− Sy,Y (ω)
Sy,y(ω)

,

based on the perturbed statistics S(ω). It is not difficult to show that ∂ρ(ω)/∂ω|ω=ωo
is given by (4). Note that the So�s in this equation are AY × 1 vectors for the catch
perturbations. The úSo�s are obtained using the go equations with g(θ) = S(θ). The
direction of maximum slope is smax = úρo/

pP
i ρ
2
oi, where úρoi is an element of the vector

úρ.
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Figure 1: Northwest Atlantic Fisheries Organization (NAFO) Division 4T, located in the
southern Gulf of St. Lawrence, off the east coast of Canada.

15



1977 1980 1983 1986 1989 1992 1995 1998 2001 2004

2*
10

^5
8*

10
^5

1.27

To
ta

l A
bu

nd
an

ce
 (0

00
's

)
fo

r a
ge

s 
5-

10

1977 1980 1983 1986 1989 1992 1995 1998 2001 2004

0.
5

1.
0

1.
5 -3.36

A
ve

ra
ge

 F
is

hi
ng

M
or

ta
lit

y 
(A

ge
s 

7-
10

)

1977 1980 1983 1986 1989 1992 1995 1998 2001 2004

50
00

0
20

00
00

35
00

00

1.3

Year

To
ta

l B
io

m
as

s 
(to

nn
es

)
fo

r a
ge

s 
5-

10

Figure 2: Retrospective estimates for the 4T fall herring stock. The retrospective ρ
statistic is shown in the top left-hand corner of each panel. Top panel: N+, middle panel:
F̄ , bottom panel: B+.
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Figure 6: Standardized residuals plotted versus year plus month (e.g. 1999.75, top panel),
age (middle panel), and predicted value ( �Ray, bottom panel). The dashed line in the top
panel connects the average residual each year, and the plotting symbol is the age.
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Figure 9: Retrospective plots of 4T herring SPA stock abundance estimates. Each panel
shows the results for an age. The retrospective ρ statistic is shown in the top left-hand
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Figure 10: Observed and retrospective predicted total (ages 4-10) CPUE.
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Figure 13: Catch perturbations to reduce the retrospective pattern in B+. Each vertical
line shows the perturbation to a catch. Perturbations are clustered by year and shown
sequentially for ages 4-10. The values are −h× smax in percent with h = 2.5.
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Figure 14: Total observed annual catch (solid line), and total perturbed annual catch
(dashed line).
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Figure 15: Retrospective estimates based on B+ smax perturbed catches with h = −2.5.
The value of ρ is shown in the top left-hand corner. Top panel: N+; middle panel: F̄ ;
bottom panel: B+.
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Figure 16: M local inßuence diagnostics (LID�s) for ρ. Each panel shows the elements of
smax. The size and type of the plotting symbols are proportional to the absolute value
and sign of the elements, respectively. Negative is denoted by an ×. Panel a: N+; Panel
b: F̄ ; Panel c: B+. At the top of each panel úρmax is shown in percent of the ρ values in
Figure 2.
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Figure 17: Displacement in ρ�s based on some M global perturbations. All results are in
percent of unperturbed estimates. The (year,age) indicates a perturbation of M only for
that age and year. The dashed line is a straight line with a slope equal to úρmax. Panel a:
N+; Panel b: F̄ ; Panel c: B+.
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Figure 18: M perturbations to reduce the retrospective pattern in B+. Each vertical line
shows the perturbation to M for that age and year. Perturbations are clustered by year
and shown sequentially for ages 4-10. The values are −h× dmax in percent with h = 6.5.
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Figure 19: Retrospective estimates based on B+ smax perturbed M �s with h = −6.5. The
value of ρ is shown in the top left-hand corner. Top panel: N+; middle panel: F̄ ; bottom
panel: B+.
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Figure 20: CPUE catchability local inßuence diagnostics (LID�s) for ρ. Each panel shows
the elements of smax. The size and type of the plotting symbols are proportional to the
absolute value and sign of the elements, respectively. Negative is denoted by an ×. Panel
a: N+; Panel b: F̄ ; Panel c: B+. At the top of each panel úρmax is shown in percent of the
ρ values in Figure 2.
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Figure 21: Displacement in ρ�s based on some CPUE q global perturbations. All results
are in percent of unperturbed estimates. The (year,age) indicates a perturbation of q only
for that age and year. The dashed line is a straight line with a slope equal to úρmax. Panel
a: N+; Panel b: F̄ ; Panel c: B+.
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Figure 22: CPUE catchability perturbations to reduce the retrospective pattern in B+.
Each vertical line shows the perturbation to q. Perturbations are clustered by year and
shown sequentially for ages 4-10. The values are −h× dmax in percent with h = 2.
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Figure 23: Retrospective estimates based on B+ smax perturbed CPUE q�s with h = −2.
The value of ρ is shown in the top left-hand corner. Top panel: N+; middle panel: F̄ ;
bottom panel: B+.
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Figure 24: Retrospective estimates of 4T herring SPA stock abundance-at-age estimates
based on B+ smax perturbed CPUE q�s with h = −2. Each panel shows the results for an
age. The retrospective ρ statistic is shown in the top left-hand corner of each panel.
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Figure 25: Case weight local inßuence diagnostics (LID�s) for ρ. Each panel shows the
elements of smax. The size and type of the plotting symbols are proportional to the
absolute value and sign of the elements, respectively. Negative is denoted by an ×. Panel
a: N+; Panel b: F̄ ; Panel c: B+. At the top of each panel úρmax is shown in percent of the
ρ values in Figure 2.
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Figure 26: Displacement in ρ�s based on some case weight global perturbations. All results
are in percent of unperturbed estimates. The (year,age) indicates a perturbation of a case
weight for that age and year. The dashed line is a straight line with a slope equal to úρmax.
Panel a: N+; Panel b: F̄ ; Panel c: B+.
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Figure 27: Case weight perturbations to reduce the retrospective pattern in B+. Each
vertical line shows the perturbation to the case weight. Perturbations are clustered by
year and shown sequentially for ages 4-10. The values are −h × dmax in percent with
h = 5.
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Figure 28: Retrospective estimates based on B+ smax perturbed case weights with h = −5.
The value of ρ is shown in the top left-hand corner. Top panel: N+; middle panel: F̄ ;
bottom panel: B+.
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Figure 29: Comparison of total biomass (ages 4-10, B+) estimates: unperturbed (heavy
solid line), M -perturbed (+), catch perturbed (×), q-perturbed (4), and case-weight
perturbed (◦)
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