

CSAS

SCCS

 Canadian Science Advisory Secretariat
 Secrétariat canadien de consultation scientifique

 Research Document 2003/084
 Document de recherche 2003/084

 Not to be cited without
 Ne pas citer sans autorisation des auteurs *

Newfoundland East and Southeast Coast Herring – An Assessment of Stocks to the Spring of 2002

Hareng des côtes est et sud-est de Terre-Neuve – Évaluation des stocks jusqu'au printemps 2002

J. P. Wheeler, B. Squires, and P. Williams

Science, Oceans, and Environment Branch Northwest Atlantic Fisheries Center Department of Fisheries and Oceans P. O. Box 5667 St. John's, Newfoundland and Labrador A1C 5X1

* This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

* La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at: Ce document est disponible sur l'Internet à: http://www.dfo-mpo.gc.ca/csas/

> ISSN 1499-3848 (Printed) © Her Majesty the Queen in Right of Canada, 2003 © Sa majesté la Reine, Chef du Canada, 2003

ABSTRACT

Results of data analysis from 2000 to the spring of 2002 are presented for four herring stocks along the east and southeast coasts of Newfoundland. Commercial landings in 2000 (3500 t) and 2001 (2300 t) continued to be low due to poor market conditions and price. Spring spawners dominated the catches; however, there was no dominant year class common to all areas. Three series of abundance indices were available for each of the stock areas including research gill net catch rates and acoustic survey biomass estimates extending back to the early 1980's, and commercial gill net catch rates commencing in 1996. Gill net and purse seine fisher observations were also available since 1996. The methodology to describe stock status differed from recent assessments. For each area, current status and future prospects were summarized in a performance report based upon interpretation of abundance indices, biological characteristics, and ecological considerations. For White Bay - Notre Dame Bay, stock status has not changed since the last assessment in 2000 and continues to be poor. The Bonavista Bay -Trinity Bay stock status is also poor; this represents a decline since the 2000 assessment. The status of the St. Mary's Bay - Placentia Bay and Fortune Bay stocks remain unchanged from 2000 and continue to be moderate to good.

RÉSUMÉ

Les résultats de l'analyse des données pour quatres stocks de hareng des côtes est et sud-est de Terre-Neuve de 2000 au printemps 2002 sont présentés dans ce document. Les débarquements commerciaux en 2000 (3500 t) et en 2001 (2300 t) sont demeurés peu élevés en raison de mauvaises conditions de marché et de faibles prix. Les prises étaient dominées par les géniteurs printaniers, mais il n'y avait aucune classe d'âge dominante commune à toutes les zones. Pour chaque zone de stock, trois séries d'indices d'abondance étaient disponibles, soit les taux de capture scientifique au filet maillant et les biomasses estimées par relevé acoustique, séries qui remontent toutes deux au début des années 1980, ainsi que les taux de capture commerciale au filet maillant (depuis 1996). Des observations faites par les pêcheurs au filet maillant et à la senne étaient aussi disponibles depuis 1996. La méthode utilisée pour décrire l'état des stocks diffère des évaluations récentes. L'état actuel et les perspectives des stocks dans chaque zone ont été résumés dans un rapport de performance selon l'interprétation des indices d'abondance, des caractéristiques biologiques et des considérations écologiques. L'état du stock des baies White et Notre Dame est toujours mauvais, comme au moment de la dernière évaluation en 2000. L'état du stock des baies Bonavista et Trinity est également mauvais, avant empiré depuis l'évaluation de 2000. L'état du stock des baies St. Mary's et Placentia et de celui de la baie Fortune reste modéré à bon, comme en 2000.

INTRODUCTION

There are five herring stocks distributed along the east and southeast coasts of Newfoundland (Figure 1): White Bay - Notre Dame Bay (WB-NDB), Bonavista Bay - Trinity Bay (BB-TB), Conception Bay - Southern Shore (CB-SS), St. Mary's Bay - Placentia Bay (SMB-PB), and Fortune Bay (FB). This document provides an assessment of four of these stocks to the spring of 2002; CB-SS was excluded from the analysis due to the limited commercial fishery and lack of scientific data.

In recent years, east and southeast Newfoundland herring stocks have been assessed bi-annually; the previous most recent assessment was conducted in the fall of 2000 (Wheeler et al. 2001). Although the data sources in the current assessment are similar to those in 2000, the assessment methodology differs considerably.

This document is divided into several sections, outlining the steps taken to assess these herring stocks in 2002. The first section examines the commercial fishery data and the associated biological sampling used to calculate the 2000 and 2001 commercial catches at age. The next section examines the abundance indices for each of the stocks. This section is sub-divided as several series of abundance indices were available, including research gill net catch rates and acoustic survey biomass estimates extending back to the early 1980's, commercial gill net catch rates commencing in 1996, and gill net and purse seine fisher observations, also available since 1996. The third section examines biological and ecological data and their effects on stock status. The document concludes with performance reports on the current status and future prospects of each stock.

Section 1.0 - Description of the 2000 and 2001 Commercial Fisheries and Catches at Age

1.1 Biological Sampling

Biological samples are collected each year from the east and southeast Newfoundland commercial herring fisheries. These data provide information on the age distribution of commercial landings.

Policy and Economics Branch provide commercial catch data (t), by bay, month and gear type. Data for recent years are considered preliminary, as catch statistics have not been finalized for these years. Commercial catch statistics since 1996 are not inclusive, as they do not include catches used for bait purposes.

1.2 The 2000 Fishery

Fisheries Management Branch formulated a two year (1999 and 2000) management plan for east and southeast Newfoundland herring based upon the 1998 SSR released by Science Branch after the 1998 herring stock assessment meetings (Wheeler et al. 1999). As defined by the stock status classification system, the 2000 plan allowed for a restricted fishery in WB-NDB and a commercial fishery in BB-TB, SMB-PB and FB. A restricted fishery was established in WB-NDB as the status of this stock was considered *poor to moderate* and a fishing mortality of 5% to 10% was recommended. The status of BB-TB and SMB-PB was considered to be *moderate to good* with recommended fishing mortalities of 10% to 20%. FB was considered to be *good to very good* with a recommended fishing mortality of 20%.

The TAC's for the 2000 fisheries were the same as in 1999 for all areas except WB-NDB where they were reduced (Table 1). Quotas were not taken in any of the stock areas and 2000 landings (3500 t) were similar to those in 1999 (3300 t) (Tables 2 - 5 and Figure 2).

The level of biological sampling was more than adequate as 1490 herring were sampled from the 2000 fisheries (Table 6).

Spring spawners accounted for greater than 74% of the catch in all areas; no single year class dominated (Tables 8 - 10 and Figure 3). In WB-NDB, the 1995 year class of spring spawners dominated, followed by the 1994 year class. This was similar to the 1999 fishery. In BB-TB, a broad range of year classes was represented in the 2000 fishery. This differed from 1999 when the 1991 year class dominated. In SMB-PB, the 1996 year class of spring spawners dominated, followed by fish aged 11+. This differed from 1999, when the 1991 year class was dominant in the fishery. In FB, spring spawners of the 1992 year class dominated, as was the case in 1999.

Mean weights at age (Table 11 and Figure 4) in WB-NDB and BB-TB showed an increasing trend for most ages from 1999 to 2000 but were still less than during the 1980's. Mean weights at age for older fish in SMB-PB and FB continued to decrease from 1999 to 2000. However, there was evidence of increased growth for some younger ages.

1.3 The 2001 Fishery

Prior to the 2001 fishery, Fisheries Management Branch formulated a new two year (2001 and 2002) integrated management plan for east and southeast Newfoundland herring. This was based upon the 2000 SSR released by Science Branch after the 2000 herring stock assessment meetings (Wheeler et al. 2001). As defined by the stock status classification system, the plan allowed for a scientific fishery in WB-NDB and commercial fisheries in BB-TB, SMB-PB and FB. A scientific fishery was established for the northern area as the status of this stock was considered *very poor* and a fishing mortalities of less than 5% was recommended. The status of BB-TB was considered to be *good* with a recommended fishing mortality of 20%. The status of SMB-PB and FB was considered to be *good* with a moderate to good; fishing mortalities of 10% to 20% were recommended.

TAC's decreased from 2000 to 2001 in WB-NDB and FB, increased in BB-TB, and remained the same in SMB-PB (Table 1). Quotas were not taken in any of the stock areas and 2001 landings (2300 t) were lower than in 2000 (3500 t) (Tables 2 - 5 and Figure 2).

The level of biological sampling was again more than adequate in 2001 as 838 herring were sampled from the fisheries (Table 12).

Spring spawners accounted for greater than 88% of the catch in WB-NDB and FB; in BB-TB and SMB-PB, spring spawners accounted for 53% and 63% of the respective catch. As in 2000, there was no dominant year class in all areas. In WB-NDB, the 1999 year class replaced the 1995 year class in dominance. In BB-TB, as in 2000, there was a broad range of year classes in the commercial catch. In SMB-PB, the distribution was similar to 2000, dominated by the 1996 year class and fish aged 11+. In FB, the 1996 year class replaced the 1992 year class in dominance.

Mean weights at age exhibited similar trends to 2000 (Table 11 and Figure 4).

Section 2.0 - Abundance Indices

2.1 Research Gill Net Program

The research gill net program was initiated in 1982 to provide age disaggregated abundance indices independent of the commercial fishery. There is a fifteen year time series for WB-NDB an BB-TB, and a twenty-one year time series for SMB-PB and FB. Each year, commercial fishers are contracted to provide catch rate data and biological samples of their catch. In 2002, twenty-nine fishers participated in the program (Figure 5), nine in WB-NDB, ten in BB-TB, six in SMB-PB and four in FB. This represented an increase of six fishers from 2001.

Age distributions of herring (by number) from the research gill net program were available up to and including 2001; biological samples from the 2002 program were not processed in time for this assessment. In all areas, spring spawners accounted for greater than 82% of the catch in 2001. As in the commercial fishery, no single year class dominated (Figure 6), and with minor differences, the age distribution of the catch was similar in 2000 and 2001. In WB-NDB, and BB-TB the 1995 year class was dominant; in SMB-PB and FB, the 1996 year class was dominant. The 1994 year class, which accounted for 30% to 40% of the 2000 catch in WB-NDB and BB-TB, accounted for less than 20% of the 2001 catch in each area.

Year classes are normally recruited to the research gill nets by age three or four years (Wheeler et al. 1997). There was substantial recruitment of the 1997 year class as 4 year olds in 2001 in WB-NDB, where it accounted for 35% of the catch. Similarly, there was recruitment of the 1997 and 1998 year classes in BB-TB where each accounted for approximately 10% of the 2001 catch. There was no evidence of recruitment of year classes since that of 1996 in SMB-PB and FB.

Catch rates at age for spring spawning herring only from the research gill net program are presented by stock area in Table 13 and Figure 7. Catch rates only are available for 2002, as these biological samples have not yet been processed. Catch rates and age distributions by bay are presented in Figures 8 - 10.

Catch rates for WB-NDB have continued to decline since last examined in 2000 (Figure 7). This decline has been continuous since 1992; catch rates in 2002 were the lowest in the time series and were 4% of the peak in 1992. When examined by bay (Figure 8), catch rates have declined in both WB and NDB.

Catch rates for BB-TB have also continued to decline since last examined in 2000 (Figure 7). Catch rates in 2002 were the lowest in the time series and were 8% of the peak in 1997. In recent years, there have been different trends in each bay (Figure 9). From 2000 to 2002, catch rates increased marginally in BB; during the same period, catch rates decreased in TB.

Catch rates for SMB-PB increased from 2000 to 2002 and are currently the highest in the time series (Figure 7). Although trends differed between bays from 2000 to 2001, 2002 catch rates were high in both bays (Figure 10).

There has been a declining trend in FB catch rates since 1998 (Figure 7). However, catch rates are still higher than in any other area and are supported by a broad range of ages including substantial numbers of fish age 11+ years.

Estimates of relative year class size were derived from research gill net catches at age 4 (Figure 11). In WB-NDB and BB-TB, all year classes through the 1990's (to 1997) were considered to be small. In SMB-PB and FB, the 1996 year class was estimated to be less than half that of the 1982 year class, which, in previous assessments (Wheeler et al. 2001), was estimated to be moderate strength.

2.2 Acoustic Survey Biomass Estimates

Acoustic surveys were conducted from 1983 to 2001 to assess Atlantic herring stocks within the Newfoundland Region. Biomass estimates, distribution and behavioral information are available from two surveys since the last assessment, one conducted in WB-NDB in the fall of 2000, and one conducted in FB during the winter of 2001.

The design of the acoustic surveys remained unchanged from recent surveys (Wheeler et al. 2001) and followed that described by Anderson et al. (1998).

The 2000 fall WB-NDB survey was conducted from the *Valerie Amanda II*, a chartered commercial purse-seining vessel. The survey commenced in Great Harbour Deep, White Bay on November 6, 2000 and terminated at Fogo Island, Notre Dame Bay on December 7, 2000. The total length of transects surveyed was 482 n.mi. The survey

averaged 17.3 n.mi. of transects per twelve hour day and all strata were surveyed. During the survey, there was 25% downtime, including one lay day, and two days due to storms.

The 2001 winter FB survey was conducted from the *Three T's 1*, a chartered commercial purse seining vessel. The survey commenced at Pass Island on March 14, 2001 and terminated at Fortune on April 5, 2001. The total length of transects surveyed was 373 n.mi. The survey averaged 23.1 n.mi. of transects per twelve hour day and all strata were surveyed. During the survey, there was 16% downtime, including two days due to storms.

A *Femto* Model 9001 acoustic data acquisition system was used in both surveys in conjunction with a *BioSonics* Model 105 echo sounder and 120 kHz transducer (operating in single beam mode). The transducer, mounted in a v-fin, was deployed at a depth of approximately 3 m astern and abeam of the vessel.

The acoustic system was calibrated in April 2000 and June 2001. The calibration parameters were as follows:

Parameters	Apr. 2000 (1)	Apr. 2000 (2)	June 2001
Source Level / Receive Sensitivity: Fixed Receiver Gain: TVG Gain: Attenuation Coefficient: Pulse Length: Average Beam Factor:	42.23 dB 10.828 dB 20 log R 0.0347 dB/m 0.4 ms -28.35 dB	43.98 dB 10.828 dB 20 log R 0.0347 dB/m 0.4 ms -28.04 dB	43.05 dB 10.914 dB 20 log R 0.0347 dB/m 0.4 ms -28.04 dB
/ Wordgo Doann raoton.	20.00 aB	20.01 02	20.01 02

The April 2000 (1) calibration parameters were used for the WB-NDB survey until November 25th at which time the 120 kHz transducer failed. The transducer was replaced and the April 2000 (2) parameters were then applied for the remainder of the survey. The June 2001 calibration parameters were used for the FB survey.

During the surveys, a detailed log record was maintained for each transect and also while steaming between transects. Observations were recorded of all fish concentrations (pelagic and groundfish) detected on both the echogram and oscilloscope.

The acoustic data, as recorded in the detailed log, were edited subsequent to the surveys, using a *Femto* acoustic data editing system. All bottom signals were removed and only those fish concentrations considered being herring (from visual inspection of oscilloscope and echogram images) were included in the analyses.

Where concentrations warranted, and depth and weather conditions permitted, biological samples of herring were collected during the surveys using a purse seine.

Acoustic back-scatter was converted to herring density using the following target strength - fish length relationship calculated for herring by Wheeler et al. (1994):

Mean fish lengths were derived from biological samples collected during the survey. Target strength per fish was converted to target strength per unit fish weight using mean fish weights from the biological samples. Age distributions were also calculated from the samples.

Formulas used to calculate mean densities, variances, and biomass estimates remained unchanged from previous surveys and are described in Wheeler (1991).

For the purpose of plotting herring distributions, mean densities (g/m^2) were calculated per 10 sec. (~30 m) intervals along each transect for the surveys.

2.2.1 White Bay - Notre Dame Bay

During this survey, 292 transects were surveyed (Figure 12). Herring were acoustically detected in 7 of the 21 strata surveyed. Concentrations of herring were detected and integrated near Jackson's Cove, in Southern Arm, in Little Bay Arm, near Little Bay Island, in Badger Bay, and in the Bay of Exploits.

One purse seine set was made during the survey; no herring were caught. However, samples from the commercial fishery were available from two locations (Table 14). As mean lengths and weights from these samples were similar, the samples were combined to calculate one target strength for the entire survey (Table 15).

A biomass estimate of 312 t was derived from the survey area (Table 16), all of which was in Notre Dame Bay and Green Bay (Figure 13).

Spring spawners accounted for 72.0% of the population numbers (Figure 14). The estimate of spring spawners (230 t) represented a substantial decrease from the last acoustic survey of the area in 1998 (Table 17). The 1995 year class accounted for approximately 55% of the population estimate; there was also limited evidence of recruitment of the 1996 and 1997 year classes which each accounted for less than 10% of the population estimate (Figure 14).

2.2.2 Fortune Bay

During this survey, 378 transects were surveyed (Figure 15). Herring were acoustically detected in 2 of the 12 strata surveyed. Concentrations of herring were detected and integrated in Long Harbour and near Harbour Breton.

Herring were sampled by purse seine in one location during the survey (Table 18). Mean lengths and weights from this sample were used to calculate a target strength for the entire survey (Table 19).

A biomass estimate of 3452 t was derived from the survey area (Table 20). Greater than 99% of the estimated biomass was detected in Long Harbour (Figure 16).

Spring spawners accounted for 94% of the population numbers (Figure 17). The estimate of spring spawners (3215 t) represented a substantial decrease from the last acoustic survey of the area (Table 21) and was the second lowest in the time series. The 1996 year class dominated, accounting for approximately 50% of the population estimate (Figure 17).

2.3 Commercial Gill Net Logbook Program

In 1996, Science, Oceans, and Environment Branch started a program to increase the scientific information derived from the fixed gear herring fishery and to allow for the quantitative input of commercial fishers in the assessment process.

The long-term goal of this program is to develop a time series of catch per unit effort (CPUE) data from the commercial fixed gear fishery. These data will complement information derived from the research gill net program that has been used to track herring year class abundance since the early 1980's.

From 1996 to 1999, logbooks, prepared by Science, Oceans, and Environment Branch, were distributed by Fisheries Management Branch to greater than 2000 fishers along the east and southeast coasts of Newfoundland as part of the fisher's fixed gear herring license package. Commencing in 2000, logbooks were mailed directly to approximately 2800 fishers in an effort to ensure that all fixed gear and bait fishers received a logbook.

The logbook, the format of which has been described in Wheeler et al. (1999), was designed to be completed by gill net fishers involved in the spring commercial (food fish) fishery, spring bait (lobster) fishery, and/or fall commercial fishery. Subsequent to the 1998 fishery, the logbook was revised to allow fishers to indicate the number of nights that each net was fished each time that it was hauled.

In 2000, a standardized panel area was calculated for each mesh size net by calculating the mean net panel area by mesh size for data collected from all areas between 1996 and 1999. Catch rates for the entire time series were then standardized to allow for comparisons between areas and years.

Prior to this assessment, historical data from 1981 and 1983 were included for WB-NDB, BB-TB and SMB-PB. These data were derived from logbooks completed by fishers at that time, which have since been coded and incorporated into the current database. In the original 1981 and 1983 logbooks, fishers recorded the mesh size of nets fished, but did not record the length and depth of nets fished. Consequently, when these data were incorporated in the current database, it was assumed that each net fished had the standardized panel area, as calculated above.

Depending upon the area fished, most logbooks were from winter / spring / early summer fisheries. Logbooks from fall fisheries were limited in number and were not included in the analysis. All logbooks received to September 2002 have been included.

2.3.1 White Bay - Notre Dame Bay

The number of logbook returns increased from 8 in 2000 to 10 in 2001 and then decreased to 6 in 2002 (Table 22 and Figure 18). The age range of fishers remained relatively stable over the same time period. The total number of nets fished decreased from 19 in 2000 to 14 in 2002. Similarly, the number of nights fished also decreased, from 306 in 2000 to 188 in 2002. The mean mesh size of nets fished decreased by 4% from 2000 to 2002. Mean panel area also decreased over the period and was 15% smaller in 2002 than in 2000. The spatial distribution of fishing effort represented by the logbooks was similar in all years and was restricted primarily to the eastern portion of Notre Dame Bay (Figure 19). The temporal distribution of fishing effort was also similar over the time period but shoed some contraction in 2002 (Figure 18). Catch rates, which increased from 1998 to 2001, decreased sharply in 2002 and are currently the lowest in the time series (Figure 20). The decline in catch rates was consistent with the observations of fishers who indicated a decline in abundance from below average in 2001 to well below average in 2002 (Figure 20). Fishers also indicated that spawning intensity has been below average each year since 1998 (Figure 20).

2.3.2 Bonavista Bay - Trinity Bay (BB-TB)

The number of logbook returns increased from 9 in 2000 to 10 in 2001, but decreased to 7 in 2002 (Table 22 and Figure 21). The age range of fishers increased slightly over the same time period. The total number of nets fished decreased from 29 in 2000 to 14 in 2002. The number of nights fished exhibited similar trends. The mean mesh size of nets fished increased marginally (2%) from 2000 to 2002 whereas mean panel area decreased 8% over the same time period. The spatial distribution of fishing effort represented by the logbooks has been widespread and similar in most years (Figure 22). The temporal distribution of fishing effort contracted from 2000 to 2002, commencing later and ending earlier (Figure 21). Catch rates decreased from 2000 to 2002 and are currently the lowest in the time series (Figure 23). The decline in catch rates was consistent with the observations of fishers who indicated a decline in abundance from below average in 2001 to well below average in 2002 (Figure 23). Fishers also indicated that spawning intensity has been below average each year since 1998 (Figure 23).

The number of logbook returns increased from 1 in 2000 to 3 in 2001 and 2002 (Table 22 and Figure 24); any conclusions regarding 2000 are limited. The age range of fishers was similar from 2000 to 2002. The total number of nets fished and nights fished increased over the time period. The mean mesh size of nets fished decreased marginally (1.3%) from 2000 to 2002; mean panel area of nets decreased by 21% over the same time period. The spatial distribution of fishing represented by the logbooks was similar in 2001 and 2002 (Figure 25). The temporal distribution of fishing effort was broader in 2002 than in 2000 and 2001 (Figure 25). Catch rates were stable from 2000 to 2001 and increased from 2001 to 2002; current catch rates are the second highest in the time series (Figure 26). Fishers indicated that abundance increased from 2001 to 2002 but was still below average (Figure 26). They also indicated that spawning intensity increased from 2001 to 2002 but was still below average (Figure 26).

2.3.4 Fortune Bay (FB)

The number of logbook returns decreased from 11 in 2000 to 8 in 2001 and to 5 in 2002 (Table 22 and Figure 27). The mean age of fishers increased from 2000 to 2002. The total number of nets fished and nights fished decreased over the time period. The mean mesh size of nets decreased by 4.1% from 2000 to 2002, whereas the mean panel area increased by 10.2% over the same time period. Although the number of logbooks in 2002 was reduced, the spatial distribution of returns was broad and similar to previous years (Figure 25). The temporal distribution of fishing effort was also similar across the time series (Figure 27). Catch rates decreased from 2000 to 2001 but increased again in 2002; current catch rates are the second highest in the time series (Figure 28). This was comparable with the observations of fishers who indicated that abundance had increased slightly from 2001 to 2002 and was still above average (Figure 28). Similarly, they also indicated that spawning intensity increased and was above average (Figure 28).

2.4 Commercial Purse Seine Questionnaire

In 1996, a questionnaire was designed to quantitatively evaluate biological and fishery related information obtained from east and southeast Newfoundland herring purse seine fishers.

Each year, Fisheries Management Branch provides a list of all east and southeast Newfoundland herring purse seine fishers who have participated in the current year fishery. An attempt is made to contact all fishers. To minimize time and costs, the surveys are conducted by telephone.

For the three northern areas, there is a fall purse seine fishery only and survey results are available to 2001. For St. Mary's Bay - Placentia Bay, there is a late winter / early spring fishery and survey results are available to 2002.

In 2000, 15 of 20 fishers (75%) who participated in the fishery (all areas) were contacted. In 2001, 6 of 7 fishers (86%) were contacted, and to date in 2002, all 5 (100%) fishers who participated in the winter / spring purse seine fishery in St. Mary's Bay - Placentia Bay were contacted (Table 23). In all years, a minimum of three attempts was made to contact the remaining fishers.

The number of participants in the WB-NDB and BB-TB purse seine fisheries decreased from 2000 to 2001; in SMB-PB, the number of participants increased from 2000 to 2002. Overall, the numbers of fishers participating in the purse seine fishery decreased by 60% from 2000 to 2001 and the number of participants in 2001 was the lowest in the time series (Table 23).

2.4.1 Questions Regarding Herring Abundance

Three questions were asked to compare herring abundance in one's home bay in current and previous years (Figure 29). Fishers in all areas indicated that herring abundance continued to be above average in 2000. Fishers in BB-TB and SMB-PB indicated that abundance increased from 2000 to 2001. Fishers were also asked to retrospectively estimate abundance in their home bay in the previous year. For all stock areas, the retrospective abundance estimates for 1999 from the 2000 survey and for 2000 from the 2001 survey were variable. However, retrospective estimates tended to be higher. When asked to compare abundance in the most recent year to when they started fishing herring by purse seine (Figure 29), BB-TB fishers indicated that current abundance was the same as when they first started fishing. SMB-PB fishers indicated that current abundance was higher than when they started fishing.

2.4.2 Fleet Characteristics

All respondents were asked a series of questions to characterize the demographics of the population of purse seine fishers; these were designed to monitor changes in fishing experience and fleet capacity.

Responses indicated that the mean age of fishers increased over the time period in all areas, with most now in the age 50 – 60 range (Figure 30). Responses also indicated that participants in the 2001 and 2002 fisheries had substantial experience and had fished, on average, since the early 1980's (Figure 30).

The average fishing vessel length and capacity increased marginally from 2000 to 2001 (Table 24).

2.4.3 Questions on the Fishery

Fishers were asked questions regarding the bays and the months in which they fished (Figure 31). For WB-NDB, in 2000 there was approximately an equal distribution of fishers in WB and NDB; in 2001 there was no purse seine fishery. The 2000 fall fishery commenced earlier than in previous years as fishers pursued mackerel and herring simultaneously. For BB-TB, the 2000 and 2001 fall fisheries occurred entirely in the northern part of BB; the timing of these fisheries was similar to previous years. For SMB-PB, the 2000 fishery occurred entirely within PB. In 2001, it occurred primarily in SMB; in 2002, it switched back and occurred on the eastern side of PB. During this period, the timing of the fishery did not change, occurring primarily in March.

Three questions were asked regarding abundance of herring during the current fishery compared to previous years (Figure 32). When asked to compare the number and size of herring schools detected in the current year fishery with the previous year, respondents in 2000 in all areas indicated that the number of schools either decreased or remained the same. Results regarding size of schools in 2000 was more variable, up in WB-NDB, down in BB-TB, and no change in SMB-PB. In 2001, the number and size of schools was up or the same in all areas. Results were similar for SMB-PB in 2002.

A series of questions was asked to determine the distribution of fishing effort. To facilitate analysis, each stock area was divided into geographical sub-areas or strata (Figure 33). In all areas and years, successful sets continued to be restricted to a few strata within each stock area; successful fishing sets were not widely distributed throughout the stock areas. The percentage of successful sets remained high in all areas. The majority of successful sets also occurred during daylight hours.

The total landings of the purse seine fleet (Table 25) decreased in WB-NDB and BB-TB from 2000 to 2001 but increased in SMB-PB. In most areas and years, total landings matched the commercial landing data. However, in at least three instances (BB-TB 1996, SMB-PB, 1997, and SMB-PB 2000) landings reported from questionnaires were substantially higher than those from commercial landing data (Figure 34). The ratio of removals to landings remained similar in most areas but increased substantially in BB-TB in 2001. This was due to an increase in the level of discarding due to the size of the fish (Figures 35 and 36).

2.4.4 Biological Events

A question was asked to quantify observations regarding the seasonal timing of herring migration in the current year compared to the previous year (Figure 36). For BB-TB, the timing in 2001 was considered the same. For SMB-PB, the timing in 2002 was considered to be earlier.

Section 3.0 – Biological and Ecological Data

3.1 Water Temperatures

It has been shown (Winters and Wheeler 1987) that when good survival of young herring (i.e. recruitment) occurred through the 1960's to 1980's, it was largely influenced by suitable environmental conditions, principally warm over-wintering water temperatures and high salinities prior to spawning. Ocean temperatures and salinities in the early to mid 1990's were below average and year classes produced during this period were weak. Since 1997, ocean temperatures in coastal Newfoundland waters have been warmer and similar to the long-term average (Figure 37); however, salinities have remained low. There has been no evidence of strong recruitment of year classes during this period (Figure 38).

3.2 Length and Age at Maturity

When compared to the early 1980's, in most areas, the age at which herring mature has remained stable (Figures 39 - 42). Most herring are mature by age 6 and can live in excess of 11 years. However, due to reduced growth rates (Figure 4), herring are smaller at age in recent years. Consequently, the length at which fish mature is smaller in most areas (Figures 39 - 42). This affects fecundity, i.e. the number of eggs produced. A 1 cm reduction in the length at which herring mature results in a 12% to 16% reduction in fecundity (Hodder 1972). The impact of a reduction in number of eggs deposited due to lower fecundity is uncertain.

3.3 Predation

Quantitative information on the predation of herring is available only for seals. It has been estimated (Hammill and Stenson 2000) that, in 1996, seals consumed 36000 t of herring in NAFO Divs. 2J3KL, an area encompassing all east and southeast Newfoundland herring stocks, except Fortune Bay. From 1990 to 1996, it was estimated that the consumption of herring by seals in Atlantic Canada increased by 40%. Most of the herring consumed are less than 30 cm in length. The proportion of herring in harp seal diet in the near shore Newfoundland waters has also increased since the 1980's (Figure 43). This has led to increased mortality of herring by harp seals. However, other changes in predation mortality are unknown.

Section 4.0 – Stock Status

4.1 Methodology

The methodology used to describe stock status in this assessment differs substantially from the previous most recent assessment in 2000 (Wheeler et al. 2001). For

each stock area, current stock status and future prospects were summarized in a performance report (Tables 26 - 29). Observations on abundance indices, biological characteristics, and ecological considerations were interpreted and then evaluated using the traffic light method (Caddy 1998). This method uses a system of red (-), yellow (?), and green (+) lights to categorize indicators as 'cause for concern', 'uncertain', or 'positive'. In this assessment, 'uncertain' was defined as 'uncertainty of an interpretation' rather than precautionary uncertainty.

Five series of abundance indices were evaluated for each stock including: research gill net catch rates, acoustic survey biomass estimates, commercial gill net catch rates, gill net fisher observations, purse seine fisher observations, and recruitment estimates. Purse seine fisher observations were not available for Fortune Bay, as there is no purse seine fishery in the area.

Biological characteristics, including age compositions, weights at age, and length and age at maturity were evaluated. Ecological considerations included predation by harp seals, and changes in water temperature and salinity.

In evaluating current stock status and future prospects, only abundance indices and age compositions were considered. Current stock status was described based upon a qualitative evaluation of age composition data (range of mature age groups) and all abundance indices (excluding recruitment data).

Age compositions from research gill nets were considered to best represent population age structure, but age composition data from acoustic surveys and the commercial fishery were also included in the analysis.

Future prospects were described by evaluating the strength of the mature year classes and of recruiting year classes (since 1988). Recruitment data were available from research gill net catch rates at age, from acoustic surveys, and from the commercial fishery.

4.2 White Bay – Notre Dame Bay

4.2.1 The Fishery

Landings decreased from 1093 t in 2000 to 22 t in 2001; 2% of the TAC was taken in 2001 (Table 2). In 2002, the catch (to June 30th) was 17 t. In addition to reported landings, since 1996 an unknown amount of herring (considered to be less than 500 t) is caught annually in the gill net bait fishery.

Effort was less in the 1990's than in the 1980's and has continued to decline. Purse seine effort in the fall fishery as defined by 'sets per fisher' decreased by 88% from 1997 to 2000 (Table 30); there was no purse seine fishery in the fall of 2001. Gillnet effort (net nights fished per fisher) in the spring fishery decreased by 86% from 1996 to 2002 (Table 31).

There was no purse seine fishery in 2001. The 2002 gill net fishery, from early May to mid June, was mostly in eastern Notre Dame Bay (Figure 19).

4.2.2 Abundance Indices

Research gill net catch rates (number of fish per nights fished) have decreased continuously since 1992; catch rates in 2002 were the lowest in the 15 year time series and were 3% of the peak in 1992 (Figure 7). This suggests that current abundance is very low and decreasing.

The biomass (t) estimated from an acoustic survey in the fall of 2000 was the lowest in the time series (Table 17). There has been a decreasing trend in 10 surveys conducted between 1983 and 2000. The 2000 estimate was less than 1% of the peak in 1985. A current evaluation could not be made, as more recent data were not available; however, abundance in 2000 was very low and much lower than in the 1980's.

Commercial gillnet catch rates (kilograms per net per nights fished) have exhibited a decreasing trend in the 7 year time series (Figure 20). There was a large decrease from 2001 to 2002; the 2002 catch rate was the lowest in the series, and was 3% of the peak in 1996. This suggests that current abundance is very low and decreasing.

Gillnet fishers indicated (on a ten point scale) that herring abundance in 2002 was below average and decreasing (Figure 20), also suggesting that current abundance is low and decreasing.

Purse seine fishers indicated (on a ten point scale) that herring abundance in 2000 was above average and stable (Figure 29). There was no purse seine fishery in the fall of 2001. A current evaluation could not be made, as more recent data were not available. However, their observations suggested that abundance in 2000 was stable and no cause for concern.

Most observations indicate poor recruitment of recent year classes. Herring of the 1998 or subsequent year classes were not detected in the 2001 research gillnet program (Figure 6). Samples from 2002 have not yet been processed. Similarly, they were not detected in the 2000 acoustic purse seine survey (Figure 14). No abundance estimates are available; however, this suggests that recent year classes are not strong.

4.2.3 Biological Characteristics

The age composition from the 2001 research gillnet catch was dominated by the 1995 and 1997 year classes with each accounting for approximately 35% of the catch (Figure 6). There were very few younger mature fish and few fish older than age 7. This was consistent with the age distribution from the 2000 acoustic survey (Figure 14). A truncated age composition is considered a cause for concern.

Weights at age have decreased continuously during the 1980's and 1990's and, in 2001, were approximately 9% less than in the early 1990's and 25% less than in the early 1980's (Figure 4). This can potentially lead to an increase in fishing mortality per tonne of fish caught.

Herring are smaller at age than in the early 1980's. The length at which 50% of herring matured in 1982-1984 was approximately 31 cm; this decreased to 29 cm in 1999-2001 and would result in a concurrent reduction in fecundity. The age at which 50% of herring mature remained relatively consistent at 4.5 to 5.0 years (Figure 39). The impact of a reduction in number of eggs deposited due to lower fecundity is uncertain.

4.2.4 Ecological Considerations

The proportion of herring in the diet of harp seals, in inshore areas of NAFO Div. 2J3KL, increased between the late 1980's and the mid 1990's, during a time when the harp seal population increased by approximately 44%, from 3.5 million to 5.2 million seals (Figure 43). It is not clear if this resulted in an increase in consumption of herring from the area due to the high variance associated with diet estimates and changes in sampling over this time period. Although there was increased mortality by harp seals, other changes in predation mortality are unknown, as no other predation information was available for this assessment.

Mean annual water temperatures (at 10 m) in Notre Dame Bay decreased from 5°C in 1990 to 3°C in 1992, but then increased gradually to 6°C in 1999, similar to the long-term average (Figure 37). Lower water temperatures in the 1990's may have lead to reduced herring growth rates. Lower temperatures may also adversely affect recruitment (Winters and Wheeler 1987).

Mean annual salinities (at 10 m) at Station 27 off St. John's decreased between 1990 and 1991 and have remained at levels lower than in the 1980's (Figure 38). Lower salinities may also adversely affect recruitment (Winters and Wheeler 1987).

4.2.5 Current Stock Status

With one exception (purse seine fisher observations in 2000), all abundance indices show that this stock is at a very low level, possibly the lowest since the stock was closed to fishing in the early 1980's (Table 26). Mature year classes in the population are considered to be weak, contributing to this decline. The spawning stock is dominated by two age groups, with very few younger or older mature fish. Mean weights at age have decreased since the 1980's, and this may have resulted in increased fishing mortality per tonne of catch.

During this same period, there has been an increase in the proportion of herring in the diet of harp seals, at a time when the seal population is increasing.

Stock status has not changed since the last assessment in 2000 when it was classified as very poor.

4.2.6 Stock Outlook

There is no evidence of strong recruitment of recent year classes from research gill net catches, the acoustic survey, or the commercial fishery.

The reduction in mean weights at age during the 1990's was coincident with a reduction in fecundity (ie. eggs deposited per female). Given the uncertainty in the relationship between fecundity and egg survival, the impact of this on recruitment is unknown.

Recruitment has been shown to be positively influenced by warm over-wintering temperatures and high salinities during the over-wintering period prior to spawning. Although recent water temperatures have been similar to long term averages, salinities have been below normal. Mature biomass will not increase in the near future.

4.3 Bonavista Bay – Trinity Bay

4.3.1 The Fishery

Landings decreased from 1090 t in 2000 to 486 t in 2001; 14% of the TAC was taken in 2001 (Table 3). In 2002, the catch (to June 30th) was 391 t. In addition to reported landings, an unknown amount of herring (considered to be less than 300 t) is caught annually in the gill net bait fishery. Mortality from discards in the 2001 fall purse seine fishery, due entirely to small fish, was reported to be approximately 350 t (Table 25).

Overall, effort was less in the 1990's than in the 1980's. Gill net effort (net nights fished per fisher) in the spring fishery declined by 79% from 1996 to 2002 (Table 31). However, purse seine effort in the fall fishery (sets per fisher) increased since 1996 and was the highest in 2001 (Table 30).

The 2001 fall purse seine fishery, in October and November, was concentrated in the northern part of Bonavista Bay (Figure 33). The 2002 spring gill net fishery, from mid April to mid June, was distributed throughout Bonavista and Trinity Bays (Figure 22).

4.3.2 Abundance Indices

Research gill net catch rates (number of fish per nights fished) have decreased continuously since 1997; catch rates in 2002 were the lowest in the 15 year time series and

were 8% of the peak in 1997 (Figure 7). This suggests that current abundance is very low and decreasing.

There was a decreasing trend in the biomass (t) estimates from 10 acoustic surveys conducted between 1984 and 1999 (Figure 44). A current evaluation could not be made, as more recent data were not available; however, abundance in 1999 was low and much lower than in the 1980's.

Commercial gill net catch rates (kilograms per standard net per nights fished) exhibited a large decrease from 2001 to 2002 (Figure 23). The 2002 catch rate was the lowest in the 7 year time series, and was 10% of the peak in 1996. This suggests that current abundance is very low and decreasing.

Gill net fishers indicated (on a ten point scale) that herring abundance in 2002 was below average and decreasing (Figure 23), also suggesting that current abundance is low and decreasing.

Purse seine fishers indicated (on a ten point scale) that herring abundance in 2001 was above average and increasing (Figure 29). Their observations suggest that current abundance is increasing and no cause for concern.

There is some evidence of recruitment of recent year classes. Herring from the 1998 year class were caught in the 2001 research gillnet program. Similarly, 1998 and 1999 year class fish were caught in the 2001 commercial fishery. The research gillnet catch rates at age (age 3 only), indicate that the 1998 year class is weak. The size of the 1999 year class has not been quantified but may be considered small since it has not appeared in the research gillnet catches.

4.3.3 Biological Characteristics

The age composition from the 2001 research gillnet catch was dominated by the 1995 year class which accounted for approximately 40% of the catch (Figure 6). Younger mature fish and fish older than age 7 were also well represented in the catch. This was consistent with the age distribution from the 2001 commercial fishery (Figure 3). This is considered to be positive as the spawning biomass consists of a broad age composition.

Weights at age have decreased continuously during the 1980's and 1990's and, in 2001, were approximately 8% less than in the early 1990's and 28% less than in the early 1980's (Figure 4). This can potentially lead to an increase in fishing mortality per tonne of fish caught.

Herring are smaller at age than in the early 1980's. The length at which 50% of herring matured in 1982-1984 was approximately 30 cm; this decreased to 29 cm in 1999-2001 and would result in a concurrent reduction in fecundity. The age at which 50% of

herring mature remained relatively consistent at 4.0 to 4.5 years (Figure 40). The impact of a reduction in number of eggs deposited due to lower fecundity is uncertain.

4.3.4 Ecological Considerations

The proportion of herring in the diet of harp seals, in inshore areas of NAFO Div. 2J3KL, increased between the late 1980's and the mid 1990's, during a time when the harp seal population increased by approximately 44%, from 3.5 million to 5.2 million seals (Figure 43). It is not clear if this resulted in an increase in consumption of herring from the area due to the high variance associated with diet estimates and changes in sampling over this time period. Although there was increased mortality by harp seals, other changes in predation mortality are unknown as no other predation information was available for this assessment.

Mean annual water temperatures (at 10 m) in Bonavista Bay decreased from 5.5°C in 1990 to 3.5°C in 1992, but then gradually increased to 4.5°C in 2000, similar to the long term average (Figure 37). Lower water temperatures in the 1990's may have lead to reduced herring growth rates. Lower temperatures may also adversely affect recruitment (Winters and Wheeler 1987).

Mean annual salinities (at 10 m) at Station 27 off St. John's decreased between 1990 and 1991 and have since remained at levels lower than in the 1980's (Figure 38). Lower salinities may also adversely affect recruitment (Winters and Wheeler 1987).

4.3.5 Current Stock Status

With one exception (purse seine fisher observations in 2001), all abundance indices show that this stock is at a low level, possibly the lowest in 20 years (Table 27). Although the population age structure is considered to be stable, mature year classes in the population are considered to be weak, contributing to this decline. Mean weights at age, reduced during the 1990's compared to the 1980's, may have led to increased fishing mortality per weight of fish caught.

During this period, there has been an increase in the proportion of herring in the diet of harp seals, at a time when the seal population is increasing.

Stock status has declined since the last assessment in 2000 when it was classified as good. Since then, mature year classes in the population have been shown to be weak, and there has been a substantial decrease in commercial and research gillnet catch rates.

4.3.6 Stock Outlook

Recent year classes (1998 and 1999) were found in research gillnet catches, the acoustic survey, and the commercial fishery. The research gillnet data (age 3 only), indicate that the 1998 year class is weak, while the abundance of the 1999 year class has not been quantified.

The reduction in mean weights at age during the 1990's was coincident with a reduction in fecundity (ie. eggs deposited per female). Given the uncertainty in the relationship between fecundity and egg survival, the impact of this on recruitment is unknown.

Recruitment has been shown to be influenced by warm over-wintering temperatures and high salinities during the over-wintering period prior to spawning. Although recent water temperatures have been similar to long term averages, salinities have been below normal.

Any increase in mature biomass in the near future will depend upon the strength of the 1998 and 1999 year classes. As noted above, it appears the 1989 year class is weak.

4.4 St. Mary's Bay – Placentia Bay

4.4.1 The Fishery

Landings in 2000 and 2001 were approximately 500 t; 25% of the TAC was taken in 2001 (Table 4). In 2002, the catch (to June 30th) was 1120 t, over double the catch in all of 2001. In addition to reported landings, since 1996 an unknown amount of herring (considered to be less than 150 t) is caught annually in the gill net bait fishery. There was minimal reported discard mortality in the 2002 winter/spring purse seine fishery (Table 25).

Effort increased from the 1980's to the 1990's. Purse seine effort (sets per fisher) peaked in 1997 and has since declined by 71% (Table 30). Gillnet effort (net nights fished per fisher) peaked in 1998 and has since declined by 89% (Table 31).

The purse seine fishery, in March 2002, was concentrated along the eastern side of Placentia Bay, similar to recent years (Figure 33). The 2002 gillnet fishery, from mid February to early June, was mostly in Placentia Bay (Figure 25).

4.4.2 Abundance Indices

Research gillnet catch rates (number of fish per nights fished) decreased from 1996 to 1998 but have shown an increasing trend since 2000 and are currently the highest in the 21 year time series (Figure 7). This suggests a recent increase in abundance, a positive stock signal.

The biomass (t) estimated from the most recent acoustic survey in the winter of 2000 was the lowest in the time series (Figure 45). There was a decreasing trend in 10 surveys conducted between 1984 and 2000. The 2000 estimate was 5% of the peak in 1984. A current evaluation could not be made, as more recent data were not available; however, abundance in 2000 was low and much lower than in the 1980's.

Commercial gillnet catch rates (kilograms per standard net per nights fished) were stable at a low level from 1999 to 2001. They increased from 2001 to 2002 and the 2002 estimate was the second highest in the 7 year time series (Figure 26). This suggests a recent increase in abundance, a positive stock signal.

Gillnet fishers indicated (on a ten point scale) that herring abundance in 2002 was below average and either stable or increasing marginally (Figure 26). This negative signal suggests that current abundance is low but not decreasing.

Purse seine fishers indicated (on a ten point scale) that herring abundance in 2002 was above average and increasing (Figure 29). Their observations suggest that current abundance is increasing and no cause for concern.

Most observations suggest possible poor recruitment of recent year classes. Herring from the 1998 year class were caught in the 2001 research gillnet program (Figure 6). Fish younger than 3 years of age were not caught in the 2001 commercial fishery, and were not detected in the 2000 acoustic survey (Figure 17). The research gillnet catch rates at age (age 3 only) indicate that the 1998 year class is weak (Table 13).

4.4.3 Biological Characteristics

The age composition from the 2001 research gillnet catch was dominated by the 1996 year class which accounted for approximately 55% of the catch (figure 6). Older fish were not evident in the research gill net catch but were represented in the 2001 commercial fishery (Figure 3). Younger fish were not evident in any of the catches. Although there was a fairly broad population age structure, there is concern regarding the apparent lack of younger fish.

Weights at age have decreased continuously during the 1980's and 1990's and, in 2001, were approximately 19% less than in the early 1990's and 24% less than in the early 1980's (Figure 4). This can potentially lead to an increase in fishing mortality per weight of fish caught.

Herring are smaller at age than in the early 1980's. The length at which 50% of herring matured in 1982-1984 was approximately 30 cm; this decreased to 29 cm in 1999-2001 and would result in a concurrent reduction in fecundity. The age at which 50% of herring mature remained relatively consistent at 4.0 to 4.5 years (Figure 41). The impact of a reduction in number of eggs deposited due to lower fecundity is uncertain.

4.4.4 Ecological Considerations

No predation information was available for this stock.

Mean annual water temperatures (at 10 m) in Placentia Bay decreased rapidly from 6.5°C in 1990 to 5.0°C in 1992, but then increased gradually to 7.0°C in 2000, similar to the long term average (Figure 37). Lower water temperatures in the 1990's may have lead to reduced herring growth rates. Lower temperatures may also adversely affect recruitment (Winters and Wheeler 1987).

Mean annual salinities (at 10 m) at Station 27 off St. John's decreased between 1990 and 1991 and have since remained at levels lower than in the 1980's (Figure 38). Lower salinities may also adversely affect recruitment (Winters and Wheeler 1987).

4.4.5 Current Stock Status

Most data show that this stock is increasing due to the recruitment of the 1996 year class (Table 28). Data from research gill net catch rates at age, indicate that this year class is of moderate strength, at best. Other mature year classes in the population are considered to be weak. Although a single age group dominates the mature population, a wide range of ages is present.

Mean weights at age have decreased since the 1980's, and this may have resulted in increased fishing mortality per tonne of catch.

Although current stock status has been given a positive rating, this should be treated with caution because the mature biomass is largely dependent upon one year class. All other mature year classes are considered to be weak.

The status of this stock has not changed since the last assessment in 2000 when it was classified as moderate to good.

4.4.6 Stock Outlook

The recruiting 1998 year class was present only in the research gillnet catches. Based upon these data it appears to be weak. There is no evidence of the recruitment of subsequent year classes.

The reduction in mean weights at age during the 1990's was coincident with a reduction in fecundity (ie. eggs deposited per female). Given the uncertainty in the relationship between fecundity and egg survival, the impact of this on recruitment is unknown.

Recruitment has been shown to be influenced by warm over-wintering temperatures and high salinities during the over-wintering period prior to spawning. Although recent water temperatures have been similar to long term averages, salinities have been below normal. Any increase in mature biomass, in the near future, will depend upon the strength of the 1998 year class.

4.5 Fortune Bay

4.5.1 The Fishery

Landings increased from 846 t in 2000 to 1272 t in 2001; 47% of the TAC was taken in 2001 (Table 5). In 2002, the catch (to June 30th) was 2711 t, over double the catch in all of 2001. In addition to reported landings, since 1996 an unknown amount of herring (considered to be less than 400 t) is caught annually in the gill net bait fishery in Fortune Bay.

Effort in the 1980's and 1990's was very low. Gillnet effort (net nights fished per fisher) in the spring fishery peaked in 1997 but has since declined by 87% (Table 31). No effort information is available from the bar seine fishery. There is no purse seine fishery in Fortune Bay.

In recent years, most landings have been by bar seine; in the spring of 2002, this fishery was concentrated in the Long Harbour area. The 2002 gillnet fishery, from early April to late June, was distributed throughout Fortune Bay (Figure 25).

4.5.2 Abundance Indices

Research gill net catch rates (number of fish per nights fished) decreased from 2001 to 2002. Although below average for the 21 year time series, catch rates are still high compared to those for other stocks (Figure 7). This is thought to be reflective of abundance relative to other areas.

The biomass (t) estimated from an acoustic survey in the winter of 2001 was the second lowest in the time series (Table 21). There had been an increasing trend in six surveys conducted between 1986 and 1999. The 2001 estimate was 11% of the peak in 1999. It was concluded that abundance in 2001 was lower than in the 1980's.

Commercial gill net catch rates (kilograms per standard net per nights fished) exhibited no trend and have fluctuated at high levels for several years (Figure 28), suggesting that current abundance is stable at a high level.

Gill net fishers indicated (on a ten point scale) that herring abundance in 2002 was above average and either stable or decreasing marginally (Figure 28). This also suggests that current abundance is high and stable or decreasing marginally.

There was nominal evidence of recruitment. Two recruiting (1998 and 1999) year classes were caught in the 2001 bar seine fishery (Figure 3). Neither year class was caught in the 2001 research gillnets (Figure 6), nor were they detected in the 2001 acoustic survey (Figure 17) suggesting that neither year class is large.

4.5.3 Biological Characteristics

The age composition from the 2001 research gillnet catch was dominated by fish aged 11+ which accounted for approximately 40% of the catch (Figure 6). The 1996 year class was the most dominant individual year class for ages 10 and less, accounting for approximately 20% of the catch. This year class was also dominant in the 2001 fishery (Figure 3) and acoustic survey (Figure 17). The population age structure is considered to be stable due to the substantial contribution of older fish.

Weights at age have decreased continuously during the 1980's and 1990's and, in 2001, were approximately 19% less than in the early 1990's and 24% less than in the early 1980's (Figure 4). This can potentially lead to an increase in fishing mortality per tonne of fish caught.

Herring are smaller at age than in the early 1980's. The length at which 50% of herring matured in 1982-1984 was approximately 31 cm; this decreased to 29 cm in 1999-2001 and would result in a concurrent reduction in fecundity. The age at which 50% of herring mature increased from 4 to 5 (Figure 42). The impact of a reduction in number of eggs deposited due to lower fecundity is uncertain.

4.5.4 Ecological Considerations

No predation information was available for this stock.

Water temperature data were not available for Fortune Bay. However, mean annual water temperatures (at 10 m) in Placentia Bay decreased rapidly from 6.5°C in 1990 to 5.0°C in 1992. Temperatures increased gradually to 7.0°C in 2000, similar to the long-term average (Figure 37). Lower water temperatures in the 1990's may have lead to reduced herring growth rates. Lower temperatures may also adversely affect recruitment (Winters and Wheeler 1987).

Mean annual salinities (at 10 m) at Station 27 off St. John's decreased between 1990 and 1991 and have remained at levels lower than in the 1980's (Figure 38). Lower salinities may also adversely affect recruitment (Winters and Wheeler 1987).

4.5.5 Current Stock Status

Most data show that this stock is still at a high level but it may be decreasing (Table 29). From research gillnet catch rates at age, the 1996 year class has been shown to be of moderate strength, at best. Other mature year classes in the population are considered to be weak.

The status of this stock has not changed since the last assessment in 2000 when it was classified as moderate to good.

4.5.6 Stock Outlook

Given that older fish (age 11+) dominated the research gillnet catch in 2001, it is likely that mature biomass will decrease as these year classes die of natural causes. The 1998 year class was evident only as a small percentage of the commercial catch. There is no evidence of strong recruitment from more recent year classes. Therefore, any change in mature biomass, in the near future, will depend upon the strength of the 1998 year class. Its strength has not been quantified.

The reduction in mean weights at age during the 1990's was coincident with a reduction in fecundity (i.e. eggs deposited per female). Given the uncertainty in the relationship between fecundity and egg survival, the impact of this on recruitment is unknown.

Recruitment has been shown to be influenced by warm over-wintering temperatures and high salinities during the over-wintering period prior to spawning. Although recent water temperatures have been similar to long term averages, salinities have been below normal.

ACKNOWLEDGEMENTS

We would first like to gratefully acknowledge the co-operation and information provided by fish harvesters and processors involved in the commercial sampling program, the research gill net program, the commercial gill net logbook program, the commercial purse seine questionnaire, and the Herring Working Group. It is only through such cooperation and collaboration between the industry and Science that our herring stocks can be properly assessed and conserved.

We would also like to thank the crews of the chartered commercial purse seine vessels, *Three T's 1*, and *Valerie Amanda 2*, for their assistance in conducting the acoustic surveys. The skill and knowledge of all crews contributed greatly to the success of these surveys.

And finally, we would like all those who participated in the assessment meetings.

REFERENCES CITED

- Anderson, J. T., J. Brattey, E. Colbourne, D. S. Miller, D. R. Porter, C. R. Stevens, and J. P. Wheeler. 1998. Distribution and abundance of Atlantic Cod from the 1997 Div. 3KL inshore acoustic survey. DFO Atl. Fish. Res. Doc. 98/49, 85 p.
- Caddy, J. F. 1988. A short review of precautionary reference points and some proposals for their use in data-poor situations. FAO Fisheries Technical Paper No. 379, 30 pp.
- Hammill, M. O. and G. B. Stenson. 2000. Estimated prey consumption by harp seals (Phoca groenlandica), hooded seals (Cystophora cristata), grey seals (Halichoerus grypus), and harbour seals (Phoca vitulina) in Atlantic Canada. J. Northw. Atl. Fish. Sci., Vol. 26: 1-23.
- Hodder, V. M. 1972. The fecundity of herring in some parts of the Newfoundland area. ICNAF Research Bulletin No. 9: 99-107.
- Wheeler, J. P. 1991. Newfoundland east coast herring 1990 acoustic survey results. CAFSAC Res. Doc. 91/1, 43 p.
- Wheeler, J. P., G. H. Winters, and R. Chaulk. 1994. Newfoundland east and southeast coast herring an assessment of stocks in 1992 and 1993. DFO Atl. Fish. Res.
- Wheeler, J. P., G. H. Winters, and B. Squires. 1997. Newfoundland east and southeast coast herring - an assessment of stocks to the spring of 1996. DFO Atl. Fish. Res. Doc. 97/56, 67 p.

- Wheeler, J. P., B. Squires, and P. Williams. 1999. Newfoundland east and southeast coast herring an assessment to the spring of 1998. C.S.A.S. Res. Doc. 99/13, 171 p.
- Wheeler, J. P., B. Squires, and P. Williams. 2001. Newfoundland east and southeast coast herring an assessment of stocks to the spring of 2000. C.S.A.S. Res. Doc. 01/018, 129 p.
- Winters, G. H. and J. P. Wheeler. 1987. Recruitment dynamics of spring-spawning herring in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 44: 882-900.

	WB-	WB-NDB		-TB	SM	B-PB	F	FB		
Year	Catch	TAC	Catch	TAC	Catch	TAC	Catch	ТАС		
1979	15.7	11.5	9.8	8.4	3.6	3.4	1.2	1.0		
1980	6.5	5.3	5.4	4.4	2.5	2.5	0.5	1.0		
1981	4.7	5.3	4.0	4.8	0.6	1.2	0.1	0.2		
1982	2.0	1.2	0.5	0.7	0.1	0.0	0.1	0.0		
1983	0.4	0.0	0.1	0.0	0.1	0.0	0.1	0.0		
1984	1.5	1.5	0.2	0.4	0.1	0.0	0.1	0.0		
1985	1.8	2.0	0.6	0.8	0.1	0.6	0.1	0.3		
1986	2.8	5.5	1.8	3.8	0.1	2.1	0.1	0.7		
1987	13.5	32.5	6.1	13.7	0.3	2.5	0.1	2.4		
1988	7.4	34.7	11.7	16.2	1.1	8.9	0.1	4.7		
1989	6.4	14.0	4.9	6.9	0.4	1.5	0.1	1.5		
1990	5.1	16.5	3.7	23.4	0.5	1.5	0.1	1.5		
1991	8.7	13.5	9.1	10.0	1.0	1.5	0.1	1.5		
1992	5.6	13.5	4.6	10.0	0.9	1.5	0.1	1.5		
1993	1.7	13.5	2.3	10.0	1.1	1.5	0.2	1.5		
1994	1.4	13.5	2.7	10.0	1.0	1.5	0.3	1.5		
1995	1.6	1.2	1.5	1.0	0.8	1.1	0.5	1.5		
1996	0.7	1.6	1.1	1.4	0.5	0.7	0.1	0.5		
1997	2.5	4.9	1.1	1.6	4.0	6.6	0.1	5.4		
1998	0.7	2.5	1.0	2.5	2.3	2.0	0.1	5.4		
1999	1.1	2.5	1.4	2.5	0.3	2.0	0.5	5.4		
2000	1.1	1.1	1.1	2.5	0.5	2.0	0.8	5.4		
2001	0.02	1.1	0.5	3.5	0.5	2.0	1.3	2.7		

Table 1. Landings and TAC's ('000 t) of east and southeast Newfoundland herring, by stock area.

Year	Area	Purse Seine	N Ringnet	1idwater Trawl	Bar Seine	Gillnet	Trap	Total	TAC
1990	WB NDB	108 3398	-	-	1 30	90 1289	21 151	220 4868	
	Combined	3506	-	-	31	1379	172	5088	16500
1991	WB	1318	-	-	2	311	23	1654	
	NDB Combined	6026 7344	-	-	80 82	946 1257	41 64	6872 8526	13500
1992	WB	1252	-	-	-	252	4	1508	
1002	NDB	2964	-	-	6	1102	48	4120	
	Combined	4216	-	-	6	1354	52	5628	13500
1993	WB	121	-	-	-	34	-	155	
	NDB	686	-	-	104	739	2	1531	10-05
	Combined	807	-	-	104	773	-	1686	13500
1994	WB	145	-	-	5	20	59	229	
	NDB	234	-	-	84	859	-	1177	12500
	Combined	379	-	-	89	879	59	1406	13500
1995	WB	201	-	-	1	15	9	225	
	NDB	454	-	-	25	890 895	-	1369	1000
	Combined	655	-	-	26	905	9	1594	1200
1996	WB	184	-	-	-	1	-	185	
	NDB	252	-	-	-	229	-	481	4000
	Combined	435	-	-	-	230	-	665	1600
1997	WB	11	-	-	-	10	57	78	
	NDB	2364	-	-	-	11	7	2382	
	Combined	2375	-	-	-	21	64	2460	4900
1998*		106	-	-	-	1	7	114	
	NDB Combined	500	-	-	7	30	2	539	0500
	Combined	606	-	-	7	31	9	653	2500
1999*		-	-	-	-	-	-	-	
	NDB	1011	-	-	-	34	-	1045	0500
	Combined	1011	-	-	-	34	-	1045	2500
2000*		74	-	-	-	3	2	79	
	NDB	997	-	-	-	16	1	1014	0.500
	Combined	1071	-	-	-	19	3	1093	2500
2001*		13	-	-	-	4	4	21	
	NDB	-	-	-	-	-	1	1	
	Combined	13	-	-	-	4	5	22	1100

Table 2. White Bay (WB) - Notre Dame Bay (NDB) herring landings and TAC's (t), by gear, 1990-2001.

* provisional

_

Year	Area	Purse Seine		idwater Trawl	Bar Seine	Gillnet	Тгар	Total	TAC
1990	BB TB Combined	904 1819 2723	- - -	- - -	2 721 723	126 84 210	7 24 31	1039 2648 3687	23400
1991	BB TB Combined	4458 3760 8218	- - -	- -	7 567 574	147 85 232	43 - 43	4655 4412 9067	10000
1992	BB TB Combined	4209 51 4260	- -	-	3 63 66	197 44 241	2 - 2	4411 158 4569	10000
1993	BB TB	2001 31	- -	-	4 2 6	234 72	- 1	2239 106	
1994	Combined BB TB	2032 1984 39	-	-	1 235	306 357 71	1 1 1	2345 2342 346	10000
1995	Combined BB TB	2023 427 271	- - -	-	236 6 133	428 520 91	2 - 2	2688 954 497	10000
1996	Combined BB	698 345	-	-	139 -	611 300	2 1	1451 645	1000
1997	TB Combined BB	13 358 321	-	-	13 13 -	78 378 72	- - 1	410 1054 394	1400
	TB Combined	329 650	-	-	211 211	129 201	41 42	710 1104	1600
1998*	BB TB Combined	331 333 661	- -	- -	96 8 104	148 22 170	22 22	575 385 960	2500
1999*	BB TB Combined	564 245 809	- - -	- - -	222 208 430	95 100 195	- -	881 553 1434	2500
2000*	BB TB Combined	493 2 495	- -	- -	195 190 385	135 67 202	8 -	831 259 1090	2500
2001*	BB TB	241 18	-	-	16 155	37 19	-	294 192	
	Combined	259	-	-	171	56	-	486	3500

Table 3. Bonavista Bay (BB) - Trinity Bay (TB) herring landings and TAC's (t), by gear, 1990-2001.

Year	Area	Purse Seine	N Ringnet	lidwater Trawl	Bar Seine	Gillnet	Trap	Total	TAC
1990	SMB	-				18	_	18	
1990	PB	379	-	-	-	144	-	523	
	Combined	379	-	_	-	162	-	541	1500
	Combined	010				102		011	1000
1991	SMB	-	-	-	-	16	-	16	
	PB	742	-	-	110	104	34	990	
	Combined	742	-	-	110	120	34	1006	1500
						_		_	
1992	SMB	-	-	-	-	2	-	2	
	PB	781	-	-	2	125	-	908	4500
	Combined	781	-	-	2	127	-	910	1500
1993	SMB	262	_	-	_	3	_	265	
1000	PB	667	-	-	84	119	_	870	
	Combined	929	-	-	84	122	-	1135	1500
	Sementod	020			01				
1994	SMB	-	-	-	-	1	-	1	
	PB	681	-	-	78	194	10	962	
	Combined	681	-	-	78	195	10	963	1500
4005	0145	0.40							
1995	SMB	219	-	-	-	1	-	220	
	PB	332	-	-	76	135	-	543	1100
	Combined	551	-	-	76	136	-	763	1100
1996	SMB	217	-	-	_	1	-	217	
	PB	229	-	-	15	37	-	282	
	Combined	446	-	-	15	37	-	499	700
1997	SMB	1650	-	-	-	1	-	1651	
	PB	2186	-	-	100	20	-	2306	
	Combined	3836	-	-	100	21	-	3957	6600
1998*	SMB	740	_	_	_	14	_	754	
1000	PB	1570	-	-	-	5	-	1575	
	Combined	2310	-	-	-	19	-	2329	2000
	50.101100	2010				10		2020	2000
1999*	SMB	-	-	-	-	-	-	-	
	PB	330	-	-	-	1	-	331	
	Combined	330	-	-	-	1	-	331	2000
0000	01/5								
2000*		-	-	-	-	-	-	-	
	PB	448	-	-	41	2 2	-	491	0000
	Combined	448	-	-	41	2	-	491	2000
2001*	SMB	57	_	-	-	_	-	57	
	PB	394	-	-	26	39	-	459	
	Combined	451	_	-	26	39	-	516	2000
								- · · ·	

Table 4. St. Mary's Bay (SMB) - Placentia Bay (PB) herring landings and TAC's (t), by gear, 1990-2001.

Year	Purse Seine	N Ringnet	lidwater Trawl	Bar Seine	Gillnet	Тгар	Total	TAC
1990	-	-	-	-	92	-	92	1500
1991	-	-	-	-	123	-	123	1500
1992	-	-	-	-	130	-	130	1500
1993	-	-	-	-	175	-	175	1500
1994	1	-	-	2	250	-	253	1500
1995	5	-	-	4	460	-	469	1500
1996	-	-	-	35	31	4	70	500
1997	-	-	-	92	28	23	143	5400
1998*	-	-	-	-	1	-	1	5400
1999*	-	-	-	338	29	89	455	5400
2000*	-	-	-	796	16	34	846	5400
2001*	-	-	-	1081	-	190	1272	2700

Table 5. Fortune Bay (FB) herring landings and TAC's (t), by gear, 1990-2001.

AREA	GEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
WB-NDB	Gillnet					16 50			1	2			50
	Purse seine								ŗ	1	74 50	996 150	
	Bar Seine												
	Trap									1	2 50		
BB-TB	Gillnet				118 100	60 50	2			[12 50	10 50	2 50
	Purse seine									261	234 150	50	
	Bar Seine				299 100	4					22	61	
	Trap					2					2	3	
SMB-PB	Gillnet				2 50								
	Purse seine]	188 150	260 50								
	Bar Seine			9 50	[32 50							
	Trap												
FB	Gillnet		1	8	4 40	4							
	Purse seine												
	Bar Seine]	101 50	514	180 50							
	Trap			11 50	6	17							

Table 6. Commercial catch (t) and number of fish sampled (bold print) for 2000, by stock area, gear type and month. Boxed areas indicate the catch – sample combinations used for calculating commercial catch at age.

Table 7. Commercial catch at age of spring and autumn spawning herring for White Bay – Notre Dame Bay, 1972-2001.

	Sp	oring Sp	awners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	195
2	5 290	1 727	1 4	2 128	56 24	50 1671	1 55	1 60	115 46	445 152	76 371	1 38	6 12	3 187	29 975
4	2396	1411	123	215	506	107	2034	50	1240	41	332	46	124	350	2945
5	353	2825	3142	453	237	468	317	2928	92	1231	59	23	1218	240	308
6 7	69 122	761 719	5446 1193	5438 7069	868 10893	184 793	1034 517	323 1410	1080 17	63 805	268 34	14 93	73 114	1486 108	667 1258
8	403	654	697	1123	17145	7363	2509	767	496	64	258	1	157	275	198
9	1363	416	1506	838	1328	12675	10807	2222	179	344	19	26	37	94	162
10	205	1685	858	810	3364	1055	11756	14413	1450	194	192	4	122	81	179
11+ Total	808 6015	794 9994	2378 15349	3999 20076	8535 42957	15707 40074	<u>14379</u> 43410	27508 49683	14653 19369	10908 14248	4059 5669	805 1052	1938 3802	2110 4935	1973 8889
	b	c										a	a	a	a
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	26	3113	1	1	2273	1	1	1	1	1	1	1	1	1	1
2	1105 324	407 1044	23 128	1 1936	29 386	940 207	1 96	1 1	1 96	159 1	2 698	1 796	1 75	1 404	116 8
4	7201	291	613	285	16183	942	31	1054	609	3	2	921	1666	175	12
5	25843	2984	124	637	1542	8940	263	121	2747	484	63	20	1383	1747	2
6 7	1651	11819	3106	240	553	483	3614	1674	129	1194	3420	16	5 5	946	14
8	1067 2088	1036 1137	10566 370	2451 7360	103 2145	371 211	75 199	2199 108	701 1513	23 162	2939 51	351 224	110	2 1	1
9	399	1454	1081	532	4432	722	70	192	183	474	209	213	222	57	1
10	442 4566	315 2943	844	1132	537	2796	544	49	127	1	359	41 90	5 17	28 62	1
11+ Total	4300	26543	2178 19034	1148 15723	2201 30384	3509 19122	861 5755	441 5841	337 6444	91 2593	427 8171	2674	3490	3424	158
						-								-	
Age	1972	1973 Jumn S	pawners 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1072	1070	10/4	1070	1070	1077	1070	1073	1000	1001	1002	1000	1004	1000	1000
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	53 17	1 7	1 11	6 64	1 31	1 45	1 6	1 1	71 13	1 13	72 26	1 74	1 60	1 29	10 67
5	74	22	124	3	35	35	24	10	13	86	20 62	25	409	29 94	69
6	79	25	10	25	51	85	155	267	23	11	16	23	66	333	79
7 8	67	60	48	16	20	54	171	172	272	1	12	1	30	137	373 68
o 9	1 164	25 13	2 46	21 3	40 46	1 94	24 2	160 133	4 19	100 1	9 42	1 6	8 7	32 23	6
10	81	97	7	2	4	1	130	1	1	4	1	1	3	10	1
11+	562	298	346	302	329	182	238	298	450	65	23	404	24	74	42
Total	1100	550	597	444	559	500	753	1045	868	284	265	134	610	735	717
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	a 1998	a 1999	2000	a 2001
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	11	1	1	1	1	1	1
3	2 297	1 92	1 65	1 130	1 188	1 109	1	1 7	1 11	19 1	1 56	1 106	1 192	28 176	7
5	469	115	12	65	450	187	48	70	37	1	72	26	120	613	1
6	156	45	5	52	98	172	78	80	2	80	20	1	152	169	1
7	112 630	20 7	574 70	84 37	36 128	48 46	113 79	137 25	120 3	16 3	233 1	1 13	40 1	139 2	1
9	152	, 560	1	1	249	80	42	4	24	3	69	20	1	28	1
10	10	6	533	4	120	19	21	1	1	3	1	1	1	1	1
11+ Total	108 1938	306 1154	29 1292	<u>577</u> 953	2733 4005	613 1277	349 734	14 341	204 415	1 129	34 489	1 172	115 625	28 1186	1 17
iotai	1900		1232	300	4000	1211	7.04	170	-13	120	-03	112	023	1100	17
├ ──┼	Spring a 1972	and Autu 1973	umn Spav 1974	vners 1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Total	7115	10544	15946	20520	43516	40574	44163	50728	20237	14532	5934	1186	4412	5670	1980
% SS	84.5	94.8	96.3	97.8	98.7	98.8	98.3	97.9	95.7	98.0	95.5	88.7	86.2	87.0	93.3
% AS	15.5	5.2	3.7	2.2	1.3	1.2	1.7	2.1	4.3	2.0	4.5	11.3	13.8	13.0	6.7
	b	C	4000	4000	4004	4000	4000	4004	4005	4000	4007	a	a	a	a
Total	1987 46650	1988 27697	1989 20326	1990 16676	1991 34389	1992 20399	1993 6489	1994 6182	1995 6859	1996 2722	1997 8660	1998 2846	<u>1999</u> 4115	2000 4610	2001 175
% SS	95.8	95.8	93.6	94.3	88.4	93.7	88.7	94.5	94.0	95.3	94.4	2040 94.0	84.8	74.3	90.3
% AS	4.2	4.2	6.4	5.7	11.6	6.3	11.3	5.5	6.0	4.7	5.6	6.0	15.2	25.7	9.7
a - prelin	ninary														

a - preliminary
b - also 4475 age 0 SS
c - also 10 age 0 SS

Table 8. Commercial catch at age of spring and autumn spawning herring for Bonavista Bay - Trinity Bay, 1972-2001.

<u> </u>	Sp	oring Sp	pawners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1	1	1	1	5	10	1	1	1	1	1	1	1	1	151
2	1 10	1	1	1 392	14 77	16 248	22 26	6 286	15 13	136 246	1 8	1 4	4 22	13 175	207 443
4	1347	60	2	134	493	135	357	167	195	53	11	34	35	70	4445
5	389	4887	235	163	123	759	122	765	43	256	2	7	210	87	261
6	91 75	126 96	4795 424	2564 14330	166 4897	227 50	251 112	19 436	293 52	26 288	30 5	2 15	9 5	351 37	161 262
8	88	30 1	151	455	20697	6209	598	101	264	200	35	1	12	27	38
9	480	48	294	995	909	23206	4412	530	75	321	5	8	2	13	10
10	14	271	69	727	854	774	13394	5575	967	88	65	2	2	22	31
11+ Total	213 2709	1 5493	1849 7822	1679 21441	4306 32541	5890 37524	5956 25251	19994 27880	12259 14177	11762 13200	<u>1186</u> 1349	159 234	154 456	797 1593	657 6666
Total		3433	1022	21441	52541	57524	20201	27000	14177	15200	10-13				0000
Age	<u>с</u> 1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	a 1998	<u>a</u> 1999	2000	a 2001
1	296	717	1	1	115	1	1	1	4	1	1	1	1	48	1
2	1352	6612	563	58	689	499	354	1	1	1	75	57	50	355	197
3	413 2845	9910 267	1043 3323	3094 422	210 13551	1056 271	621 160	394 819	107 2645	23 63	302 13	533 507	47 746	205 218	252 188
5	16208	3674	264	2350	2586	12612	344	303	349	2638	96	93	545	764	33
6	334	21739	1428	94	3859	2422	3779	1072	64	345	3230	135	9	388	54
7	359	782	8639	629	347	579	422	3878	152	46	182	1388	14	48	139
8	126 33	713 8	13 216	4439 235	1550 7505	194 1394	385 132	479 471	978 172	157 430	7 1	98 4	1537 895	23 904	39 1
10	6	55	100	325	447	2054	657	530	163	11	29	4	55	111	5
11+	956	1247	508	466	891	653	1092	2614	649	300	94	88	104	223	137
Total	22928	45724	16098	12113	31750	21735	7947	10562	5284	4015	4030	2908	4003	3287	1046
		utumn S	Spawners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1	1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1
3	1	1	1	1	10	1	1	1	14	6	3	1	1	1	1
4	1	1	1	26	22	55	16	1	11	115	1	10	3	5	51
5	1	1	1	30	77	16	14	27	17	106	8	2	84	18	80 59
6 7	1 2	1	1 16	1 22	23 66	176 86	61 58	114 30	83 188	33 83	10 3	5 2	14 17	203 96	292
8	2	48	2	41	34	112	28	175	45	283	8	1	3	54	149
9	5	1	1	6	62	30	23	13	112	36	25	1	5	22	24
10 11+	1 33	1 1	1 1216	19 259	8 1069	73 1069	82 417	16 800	3 463	4 230	1 37	1 3	1 9	10 29	1 30
Total	49	58	1242	407	1373	1620	702	1179	938	898	98	28	139	440	689
												а	а	а	а
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	19	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	253	1	1	1	1	1	1	13	1	1	1	22	1	1
3	1 2	54 22	1 55	5 139	6 140	1 10	11 1	1	6 39	1 1	33 63	1 239	58 61	41 77	74 28
5	391	88	76	55	837	219	146	53	90	119	26	324	184	137	57
6	237	357	136	9	152	205	205	168	4	126	88	121	249	110	224
7	87 360	216 202	237 18	61 50	17 99	118 1	163 121	27 114	1 48	16 29	39 3	138 76	38 56	174 103	116 165
9	138	818	83	58	104	5	39	114	40 24	29 11	6	2	61	103	64
10	2	2	697	19	125	1	14	1	1	1	19	35	57	37	13
11+ Total	156	237	193	89	481	167	376	79	206	20	4	16	20	165	177
Total	1394	2250	1498	487	1963	729	1078	446	433	326	283	954	807	857	920
			umn Spav											b	
—	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Total % SS	2758 98.2	5551 99.0	9064 86.3	21848 98.1	33914 96.0	39144 95.9	25953 97.3	29059 95.9	15115 93.8	14098 93.6	1447 93.2	262 89.3	595 76.6	2033 78.4	7355 90.6
% AS	90.2 1.8	99.0 1.0	13.7	1.9	90.0 4.0	95.9 4.1	97.3 2.7	95.9 4.1	93.8 6.2	93.0 6.4	93.2 6.8	10.7	23.4	21.6	90.0 9.4
:	с											а	а	а	а
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Total	24322	47974	17596	12600	33713	22464	9025	11008	5717	4341	4313	3862	4810	4144	1966
% SS % AS	94.3 5.7	95.3 4.7	91.5 8.5	96.1 3.9	94.2 5.8	96.8 3.2	88.1 11.9	95.9 4.1	92.4 7.6	92.5 7.5	93.4 6.6	75.3 24.7	83.2 16.8	79.3 20.7	53.2 46.8
· · · · · · · · ·	minary	7.7	0.0	0.0	5.0	0.2	11.3	7.1	7.0	1.0	0.0	27.1	10.0	20.1	-10.0
	10 000 0 00														

a - preliminary
b - also 10 age 0 SS
c - also 3124 age 0 SS

Table 9. Commercial catch at age of spring and autumn spawning herring for St. Mary's Bay - Placentia Bay, 1972-2001.

	S	pring Sp	awners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1
2	1 207	76 326	995 280	74 2234	365 391	52 1423	30 175	87 663	133 332	1 193	1 1	1 5	8 9	1 7	1
4	20375	77	234	471	1906	1423	1817	279	133	42	2	2	24	18	143
5	725	15470	126	147	208	736	123	2263	153	111	3	3	36	27	19
6	5154	566	14328	1591	267	87	596	96	1270	51	8	2	6	21	28
7	365	6757	436	13858	862	50	64	614	57	338	3	4	3	15	9
8 9	650 352	93 224	6049 138	146 3391	5622 201	1039 3830	106 512	85 66	470 38	28 80	14 4	1 9	24 1	3 25	4
10	73	193	238	350	2256	134	3827	501	237	6	4	1	10	23 5	5
11+	403	315	624	1323	1361	2448	2185	4785	2971	466	69	39	44	125	30
Total	28306	24098	23451	23586	13440	9940	9436	9440	5795	1317	110	68	166	248	242
												а	а	а	a
Age	<u>1987</u> 1	<u>1988</u> 1	<u>1989</u> 1	<u>1990</u> 1	<u>1991</u> 1	<u>1992</u> 1	<u>1993</u> 1	1994 13	<u>1995</u> 1	<u>1996</u> 1	<u>1997</u> 1	<u>1998</u> 1	<u>1999</u> 1	2000	2001
2	34	1	22	1	37	68	5	24	1	19	235	151	1	1	1
3	19	1	48	115	1	47	62	137	333	19	125	487	21	12	1
4	2	22	9	189	222	7	34	5	1418	224	1	205	21	579	11
5	502	163	1	64 15	160	363	11	36	37	1187	1656	61	1	156	329 80
6 7	29 47	2457 119	24 463	15 30	170 12	231 55	187 118	6 225	1	94 43	8237 465	873 3222	1 84	63 60	80 64
8	9	213	34	494	110	53	74	60	63	32	134	299	292	290	39
9	3	16	100	45	493	74	63	98	1	51	76	186	42	127	268
10	1	36	5	172	88	383	56	172	16	16	50	43	21	35	153
11+ Total	11 658	147 3176	34 741	128 1254	948 2242	965 2247	1174 1785	1042 1818	416 2288	177 1863	280 11260	109 5637	63 548	391 1715	354 1301
Total				1204		2271	1700	1010	2200	1000	11200	0001	0+0	1710	1001
			pawners												
Age	1972	1973	1974	<u>1975</u> 1	1976	1977	<u>1978</u> 1	<u>1979</u> 1	<u>1980</u> 1	<u>1981</u> 1	1982 1	<u>1983</u> 1	<u>1984</u> 1	1985	1986
2	1	1 1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1
3	24	5	2	1	11	1	1	1	1	1	1	1	1	1	1
4	61	150	2	7	4	47	23	11	96	139	1	18	17	9	16
5	175	52	96	68	214	52	435	143	35	116	7	6	101	20	24
6 7	15 61	71 10	146 80	182 89	67 32	209 81	92 244	598 73	52 419	10 11	1	12 4	32 21	86 46	15 97
8	37	54	95	206	17	69	122	216	79	50	1	1	5	36	28 16
9	101	17	93	6	94	26	38	21	126	7	1	1	3	10	16
10	71	68	51	37	11	22	52	2	25	1	1	1	1	3	4
11+ Total	539 1086	737 1166	970 1537	677 1275	<u>329</u> 781	526 1035	561 1570	348 1415	492 1327	29 366	<u>2</u> 18	4 50	<u>8</u> 191	24 237	15 218
Total	1000	1100	1001	1210	701	1000	1070	1110	1021	000	10				
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	a 1998	<u>a</u> 1999	2000	a 2001
1	1	1000	1000	1000	1	1	1000	1	1000	1000	1001	1000	1000	1	1
2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	4	1	5	7	1	1	1	7	1	19	76	61	1	11	1
4	12 32	20 30	5 18	37 61	14 87	7 8	2 208	7 62	105 112	40 82	295 188	231 445	1	16 72	2 83
6	32 80	239	8	54	40	50	208	116	35	102	1231	273	42	46	209
7	30	90	56	24	23	33	173	182	106	10	1361	764	63	96	185
8	82	35	43	47	65	27	41	231	99	19	229	694	104	30	174
9 10	24 3	270 5	67 178	58 17	98 40	64 1	41 3	182 1	87 78	9 1	306 50	376 23	63 104	26 9	2 7
11+	3 12	5 53	178	173	40 495	479	863	411	282	74	730	25 255	104	9 89	103
Total	282	745	546	480	865	672	1573	1201	907	358	4468	3124	506	397	768
	Spring	and Aut	umn Sno	whore											
	1972	1973	umn Spav 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
Total	29392	25264	24988	24861	14221	10975	11006	10855	7122	1683	128	118	357	485	460
% SS	96.3	95.4	93.8	94.9	94.5	90.6	85.7	87.0	81.4	78.3	85.9	57.6	46.5	51.1	52.6
% AS	3.7	4.6	6.2	5.1	5.5	9.4	14.3	13.0	18.6	21.7	14.1	42.4	53.5	48.9	47.4
	1007	1988	1989	1000	1991	1992	1993	1994	1995	1996	1997	a 1998	<u>a</u> 1999	a 2000	a 2001
Total	1987 940	3921	1989	1990 1734	3107	2919	3358	3019	3195	2221	15728	8761	1999	2000	2001
% SS	70.0	81.0	57.6	72.3	72.2	77.0	53.2	60.2	71.6	83.9	71.6	64.3	52.0	81.2	62.9
% AS	30.0	19.0	42.4	27.7	27.8	23.0	46.8	39.8	28.4	16.1	28.4	35.7	48.0	18.8	37.1
	iminary	-				-	-								

a - preliminary

Table 10. Commercial catch at age of spring and autumn spawning herring for Fortune Bay, 1972-2001.

	Sp	oring Sp	awners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	617	23	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1515 256	2210 925	389 1314	2 277	82 15	27 2103	1 42	1 1	25 16	1 144	1 1	1 2	2 1	1 54	1
4	19690	67	552	581	318	25	2677	183	3	16	3	2	4	3	145
5	2896	5694	130	112	228	327	62	3833	69	4	3	1	3	39	4
6	10767	475	4435	87	129	166	237	15	1122	3	1	1	2	12	69
8	351 4432	1712 73	250 1094	1490 16	11 338	26 43	43 139	165 5	7 183	21 2	2 36	1 1	1 2	2 1	20 6
9	991	282	36	142	36	188	52	24	1	23	1	10	1	1	1
10	34	558	117	22	188	4	326	1	11	1	5	1	2	1	2
11+ Total	366 41915	173 12192	255 8573	201 2931	140 1486	244 3154	302 3882	167 4396	50 1488	12 228	5 59	18 39	23 42	15 130	14 264
TOLA	41915	12192	6575	2931	1400	3104	3002	4390	1400	220	59				
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	a 1998	a 1999	2000	a 2001
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	464
3	1	1	1	1 1	1 23	1	2 1	6 1	1	1 201	1	1	108 27	1 193	112 122
5	304	1	1	2	8	3	1	2	14	12	1	1	1	100	3159
6	11	219	18	2	1	1	327	1	14	17	1	1	48	18	196
7	49	7	274	12	1	1	2	24	24	1	1	1	816	102	94 215
9	18 4	26 6	1 17	155 17	6 274	1 2	3 8	9 23	569 36	1 47	1	1	152 120	1239 195	215 540
10	1	1	11	20	1	75	10	8	36	6	15	1	1	191	151
11+	38	10	24	1	72	266	217	647	728	38	355	1	478	830	712
Total	429	274	350	213	389	353	573	723	1425	326	379	11	1753	2772	5766
	Αι	utumn S	pawners												
Age	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986
1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1 1	1	1
3	1	1	7	1	7	1	1	1	1	5	1	1	1	1	1
4	1	48	9	22	9	23	1	7	4	64	1	1	1	17	3
5	84	50	87	12	38	19	36	5	3	16	7	1	9	4	8
0	25 185	79 8	65 12	39 19	26 13	19 1	6 25	50 1	3 3	1	2 1	2 1	4 6	26 12	16 38
8	44	32	27	20	1	1	12	17	1	1	1	1	1	7	12
9	310	15	5	11	27	1	6	12	1	1	1	1	1	4	5
10 11+	125 793	27 97	1 85	7 45	1 9	1 2	1 18	1 12	1	1 1	1	1 1	1	1 2	1 5
Total	1570	359	300	178	133	70	108	108	20	93	18	12	27	76	91
. <u></u>												а	а	а	а
Age	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1 1	1	1 1	1 1	1 1	1	1	1	1	1	1 1	1	1 1	1 10
4	1	2	3	10	1	1	1	1	1	1	1	1	1	8	1
5	4	1	6	5	1	4	1	1	1	1	1	1	1	25	65
6	7	5	1	12	8	5	3	1	1	1	1	1	1	26	205
7	11 25	5 1	6 31	17 7	1	3 1	11 1	1	25 31	1	1	1	27 1	44 36	75 65
9	10	13	3	, 54	1	1	1	1	10	2	1	1	1	6	1
10	5	1	17	1	3	1	1	1	1	1	1	1	1	16	84
11+ Total	14 80	10 41	5 75	5 114	1 22	5 24	26 48	14 24	1 74	1 12	<u>1</u> 11	<u>1</u> 11	2 38	148 312	251 759
iual	00	41	15	114	22	24	40	24	/4	12	11	11	50	512	159
			Imn Spaw		4070	1077	4070	1070	4000	1001	4000	1000	1001	4005	4000
Total	<u>1972</u> 43485	1973 12551	1974 8873	1975 3109	1976 1619	1977 3224	1978 3990	1979 4504	1980 1508	1981 321	1982 77	1983 51	1984 69	1985 206	1986 355
% SS	43485 96.4	97.1	96.6	94.3	91.8	97.8	97.3	97.6	98.7	71.0	76.6	76.5	60.9	63.1	74.4
% AS	3.6	2.9	3.4	5.7	8.2	2.2	2.7	2.4	1.3	29.0	23.4	23.5	39.1	36.9	25.6
												а	а	а	a
<u> </u>															
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Total	509	315	425	327	411	377	621	747	1499	338	390	22	1791	3084	6525
Total % SS % AS															

Stock Area	Age	1996	1997	1998	1999	2000	2001
WB-NDB	0 1 2 3 4 5 6 7 8 9 10 11+	 		112 (33) 147 (375) 170 (1) 201 (3) 227 (42) 237 (160) 248 (5) 283 (21) 363 (185)	 155 (277) 176 (363) 216 (5) 245 (3) 254 (58) 259 (85) 294 (12) 340 (78)	116 (6) 170 (37) 193 (184) 214 (130) 261 (2) 302 (2) 300 (4) 320 (6) 378 (44)	106 (1) 134 (12) 149 (204) 185 (51) 215 (325) 238 (120) 265 (2) 330 (3) 327 (2) 336 (5)
BB-TB	0 1 2 3 4 5 6 7 8 9 10 11+	 161 (7) 189 (827) 215 (127) 258 (31) 271 (40) 280 (135) 308 (20) 345 (194)	115 (13) 203 (19) 214(1044) 235 (128) 272 (36) 287 (33) 301 (91) 341 (179)	143 (12) 172 (60) 219 (2) 238 (18) 245 (746) 254 (59) 256 (2) 293 (16) 339 (74)	- - 168 (1) 187 (262) 207 (108) 234 (6) 246 (12) 275 (574) 282 (26) 287 (4) 340 (34)	101 (4) 139 (4) 186 (26) 225 (209) 243 (122) 251 (15) 276 (8) 312 (450) 325 (50) 332 (53)	97 (1) 145 (45) 164 (44) 194 (24) 243 (182) 261 (72) 283 (12) 288 (18) 304 (106) 328 (208)
SMB-PB	0 1 2 3 4 5 6 7 8 9 10 11+	 170 (179) 224 (499) 270 (34) 301 (16) 353 (4) 349 (21) 388 (2) 426 (97)	71 (4) 122 (19) 112 (1) 211 (134) 251 (562) 278 (64) 312 (16) 317 (8) 331 (4) 413 (126)	79 (7) 130 (161) 178 (37) 205 (4) 258 (37) 286 (376) 300 (57) 328 (14) 326 (7) 424 (68)	157 (4) 143 (266) 175 (72) 198 (27) 264 (50) 309 (147) 298 (17) 322 (8) 394 (57)	113 (6) 135 (56) 170 (219) 192 (50) 228 (130) 239 (7) 271 (38) 300 (53) 306 (24) 352 (66)	79 (5) 138 (15) 166 (16) 189 (170) 244 (104) 266 (32) 289 (13) 280 (25) 312 (37) 341 (120)
FB	0 1 2 3 4 5 6 7 8 9 10 11+	 167 (61) 205 (89) 237 (77) 256 (8) 292 (12) 309 (150) 337 (16) 391 (257)	121 (7) 168 (4) 190 (274) 226 (152) 262 (90) 285 (12) 287 (14) 317 (66) 384 (326)	99 (1) 186 (2) 227 (302) 250 (71) 281 (90) 292 (11) 320 (13) 360 (185)	103 (787) 152 (38) 185 (23) 217 (18) 249 (285) 279 (113) 303 (37) 323 (17) 373 (242)	- - 148 (94) 186 (25) 218 (9) 226 (8) 255 (126) 296 (137) 311 (36) 361 (232)	79 (10) 128 (2) 177 (7) 179 (365) 214 (69) 251 (57) 260 (60) 278 (133) 303 (75) 338 (287)

Table 11. Mean weights at age (g) of spring-spawning herring, by stock area, from samples collected January to June, 1996 – 2001. Sample sizes are in parenthesis.

Table 12. C month. Box	commercial ca ed areas indi	atch (t) a cate the	and nu e catch	mber of – samp	f fish sa ble com	ampled ibinatio	(bold pi ins used	rint) for 1 for ca	2001, Iculatin	by stock g comm	c area, g ercial c	gear typ atch at	be and age.	
AREA	GEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.	

AREA	GEAR	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	NOV.	DEC.
WB-NDB	Gillnet						50		4		1	50	
	Purse seine										13	50	
	Bar Seine												
	Тгар									5	50		
BB-TB	Gillnet				3	26 98	1				6	19 50	1
	Purse seine										134 50	125	
	Bar Seine				141	14	1				12	4	
	Trap												
SMB-PB	Gillnet	1			7	31 50							
	Purse seine				423 50	29 50							
	Bar Seine					26 40							
	Trap												
FB	Gillnet												
	Purse seine												
	Bar Seine			1	229 100	853 100							
	Тгар				13	177			1		50		

Table 13. Spring research gill net catch rates at age (numbers per days fished), spring spawners only, by stock area and year.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						•						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Age	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								0.0	0.0	0.0	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2						0.0	0.0	0.0	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3						4.7	16.0	83.5	11.0	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1.9	43.3	51.6	247.1	21.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	5						22.2	11.2	52.9	28.8	493.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	6						59.6	126.9	16.3	13.7	33.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	7						5.6	182.9	144.6	7.5	13.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								4.7	9.7	195.5	84.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								12.0	16.0	11.5	164.3	47.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	D						1.8	24.3	26.5	21.9	127.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11+	-						34.1	56.4	97.1	106.1	110.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tota	I						146.4	486.4	678.8	684.6	858.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	8 1.2	0.6	0.0	0.0	3.2	7.9	6.5	0.3	0.6		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	10.9	232.0	18.5	0.9	0.6	117.6	70.3	2.6	46.4		
7 18.8 182.7 45.9 12.7 139.5 10.3 0.4 0.3 16.4 8 6.7 14.1 104.1 21.6 8.6 43.3 9.5 2.3 0.1 9 13.4 7.6 8.4 74.2 17.6 1.7 15.0 0.9 0.2 10 29.7 12.9 9.5 5.2 31.0 6.9 2.8 0.3 0.7 11+ 115.9 69.1 52.1 21.1 39.4 56.8 18.0 0.6 0.1	5	5 51.0	14.6	300.1	47.9	3.2		85.1	14.7	9.3		
8 6.7 14.1 104.1 21.6 8.6 43.3 9.5 2.3 0.1 9 13.4 7.6 8.4 74.2 17.6 1.7 15.0 0.9 0.2 10 29.7 12.9 9.5 5.2 31.0 6.9 2.8 0.3 0.7 11+ 115.9 69.1 52.1 21.1 39.4 56.8 18.0 0.6 0.1	6	359.9	52.1	20.2	286.0	77.1	1.2	1.0	16.8	39.9		
9 13.4 7.6 8.4 74.2 17.6 1.7 15.0 0.9 0.2 10 29.7 12.9 9.5 5.2 31.0 6.9 2.8 0.3 0.7 11+ 115.9 69.1 52.1 21.1 39.4 56.8 18.0 0.6 0.1	7	' 18.8	182.7	45.9	12.7	139.5	10.3	0.4	0.3	16.4		
10 29.7 12.9 9.5 5.2 31.0 6.9 2.8 0.3 0.7 11+ 115.9 69.1 52.1 21.1 39.4 56.8 18.0 0.6 0.1												
11+ 115.9 69.1 52.1 21.1 39.4 56.8 18.0 0.6 0.1	g	13.4	7.6			17.6	1.7		0.9	0.2		
						31.0						
Total 606.9 585.7 559.8 469.5 320.0 246.0 202.1 48.8 113.6 32.8	11+	115.9	69.1	52.1	21.1	39.4	56.8	18.0	0.6	0.1		
	Tota	l 606.9	585.7	559.8	469.5	320.0	246.0	202.1	48.8	113.6	32.8	

White Bay - Notre Dame Bay

Bonavista Bay - Trinity Bay

				Bonath	olu Buy		Duj				
Age	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1							0.0	0.0	0.0	0.0	0.0
2							0.1	0.1	0.0	0.0	0.0
3							5.6	2.3	8.8	0.9	0.3
4							0.3	21.8	8.2	50.1	1.2
5							2.3	0.9	27.7	12.0	46.2
6							29.2	5.5	4.5	27.9	8.1
7							0.5	57.7	12.2	3.2	10.3
8							0.4	0.9	60.8	19.8	2.3
9							0.6	0.6	0.8	62.3	17.6
10							0.0	0.7	3.2	3.8	34.8
11+							12.2	5.5	8.9	8.3	16.8
Total							51.2	96.1	135.1	188.2	137.6

Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	
3	2.6	0.7	0.0	0.0	2.8	1.2	0.1	0.1	4.1	
4	1.7	16.6	34.3	0.9	0.0	5.7	17.6	2.6	4.4	
5	8.2	9.6	8.2	140.9	3.3	0.2	7.2	11.9	2.9	
6	50.6	12.6	1.7	20.8	181.9	1.7	0.4	5.8	14.2	
7	6.4	65.0	4.6	5.3	23.7	62.3	0.8	0.4	3.5	
8	7.0	6.5	19.9	5.5	5.6	4.6	29.8	0.2	0.6	
9	3.7	8.9	2.6	20.8	7.0	2.1	1.4	12.7	1.1	
10	13.1	7.5	3.0	3.7	16.7	1.3	0.3	4.1	4.5	
11+	20.2	40.1	25.0	31.4	38.2	5.9	2.3	2.6	5.7	
Total	113.5	167.6	99.2	229.1	278.9	83.0	59.9	40.5	41.1	22.4

Table 13 (cont.'). Spring research gill net catch rates at age (numbers per days fished), spring spawners only, by stock area and year.

				ou mary	o Bay						
Age	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.2	1.6	0.7	0.0	0.0	0.0	0.4	0.2	0.1	0.1	0.0
3	0.2	10.2	18.6	59.3	0.3	13.7	2.3	23.5	11.2	0.9	2.7
4	0.6	1.8	21.9	5.9	125.6	1.7	4.2	6.0	19.5	16.5	0.7
5	0.4	0.9	7.0	9.9	8.5	152.1	2.7	1.8	5.7	7.1	21.8
6	1.4	1.0	2.7	6.9	17.4	11.6	100.2	3.5	2.4	1.9	3.8
7	0.2	3.2	0.9	2.4	3.4	17.7	6.2	64.3	5.0	0.5	2.4
8	1.7	0.4	7.3	2.1	2.6	4.0	14.4	3.3	69.9	1.1	1.0
9	0.4	4.7	0.2	8.6	0.1	2.1	3.0	12.6	2.4	8.3	1.6
10	0.4	0.5	10.1	2.7	2.4	0.6	0.1	3.1	16.7	1.1	7.5
11+	6.5	19.4	47.0	45.4	12.1	7.4	7.2	4.9	6.8	4.8	13.1
Total	11.9	43.8	116.3	143.1	172.5	210.7	140.7	123.2	139.5	42.3	54.8
Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
2	0.2	0.0	0.0	0.0	0.0	0.6	1.1	0.2	0.4		
3	3.5	15.6	11.3	0.0	4.1	22.6	67.7	11.6	6.2		
4	3.3	25.4	49.2	54.9	0.3	5.5	21.4	74.2	7.0		
5	1.5	2.9	1.8	159.8	20.4	0.3	8.0	13.8	122.7		
6	12.1	0.4	0.4	9.3	66.7	10.1	0.0	6.1	35.3		
7	2.4	6.9	0.8	5.9	12.6	26.2	13.0	0.1	13.0		
8	2.7	2.1	1.8	1.9	2.4	4.4	31.2	2.2	6.6		
9	1.1	3.8	1.2	5.9	2.2	1.3	4.4	3.2	8.7		
10	2.1	3.2	0.3	0.8	0.5	1.0	2.1	1.5	8.8		
11+	17.2	45.6	3.5	28.0	26.8	7.9	15.1	11.6	2.8		
Total	46.2	105.9	70.3	266.3	135.8	79.8	164.3	124.7	212.7	373.8	

Fortune Bay

	Age 1 2	1982 0.0	1983 0.0	1984	1985	1986	1987	1000	1000	1000	4004	1000
	2		0.0			1900	1907	1988	1989	1990	1991	1992
		~ .	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0
	3	0.6	8.4	0.0	14.3	0.0	0.0	0.0	12.1	98.8	0.6	0.3
	4	0.8	6.0	22.1	2.8	224.0	0.0	0.0	0.9	1.4	54.4	3.6
	5	0.6	3.9	15.0	204.5	8.8	532.2	3.1	0.9	0.0	16.8	61.3
	6	0.1	3.1	6.1	69.2	69.9	11.7	420.7	15.8	0.0	2.2	11.6
	7	0.2	2.4	1.4	15.7	48.3	48.3	9.8	659.3	6.2	1.7	1.3
	8	6.0	2.7	4.1	4.6	10.0	20.7	50.6	14.8	236.8	21.9	1.7
	9	0.3	44.0	0.3	8.8	0.8	4.8	11.4	64.9	19.7	283.8	6.3
	10	0.8	4.6	4.4	6.5	2.0	1.4	2.1	33.4	59.0	38.1	70.3
	11+	0.8	53.7	102.5	135.3	35.9	71.8	19.6	124.3	56.1	141.4	175.0
Т	otal	10.3	128.7	156.0	461.6	399.3	690.2	516.8	927.3	479.4	560.9	331.4
	Age	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	3	0.0	1.3	0.0	0.0	0.0	2.4	82.8	0.0	0.0		
	4	0.0	32.1	22.6	19.0	0.0	3.7	36.7	124.2	1.2		
	5	9.1	14.0	85.4	134.5	89.2	0.0	21.3	40.7	257.5		
	6	140.4	21.4	8.9	112.1	193.1	514.2	15.4	8.7	54.8		
	7	5.0	252.5	19.8	12.1	103.9	144.5	245.8	10.9	66.4		
	8	3.7	3.3	258.4	19.0	19.6	161.6	161.3	124.2	78.1		
	9	0.0	12.0	39.0	187.1	17.6	19.6	40.1	109.7	124.7		
	10	9.5	12.0	12.3	19.0	104.9	28.2	21.3	55.9	117.7		
	11+	245.3	319.3	237.2	360.4	451.8	350.2	230.4	251.4	464.8		
Т	otal	413.0	668.0	683.6	862.3	980.0	1224.3	853.5	726.6	1165.0	512.8	

Table 14. Biological sampling details of herring, *Valerie Amanda II*, Trip #2, White bay – Notre Dame Bay, November – December, 2000.

Stratum	Survey Date(s)	Sample Date	Sample Location	Gear Type	Sample #'s	n	Mean Lgt. (mm)	Mean Wgt. (g)
22	Nov. 28 - Dec. 3	Nov. 25	Change Islands	Comm. PS	203	50	304	231
24	Dec. 1 - 3	Nov. 16 and 29	Fogo Island	Comm. PS	202, 198	100	308	244

Table 15. Mean lengths and weights, by stratum, used to calculate target strengths for 2000 White Bay – Notre Dame Bay survey.

Stratum	Combined Samples	Mean Lgt. (mm)	Mean Wgt. (g)	TS / fish (dB)	TS / g
22 and 24	203,202,198	307	240	-35.76	-59.56

	STRATUM		TRANSECT			MEASURED			STRATUM
	AREA	TRANSECT			WEIGHTING	DENSITY		WEIGHTED	
STRATUM	(sq. m.)	NUMBER	(n.mi.)	UNIT	FACTOR	(g/sq. m.)	(g/sq. m.)	DENSITY	(t)
9	4.90E+07	40	0.50						
		41	0.40						
		42	1.20						
		43	1.30		1.110	0.0000	0.0000		
		44	0.25						
		45	0.21						
		46	0.20		0.705	0 0000	0 0000		
		47	0.20		0.705	0.0000	0.0000	-	
		48 49	1.20 0.70						
		49 50	1.00						
		50	1.00		1.384	5.9283	8.2077		
		52	0.80		1.004	0.9200	0.2011		
		53	0.90						
		54	0.75						
		55	0.00		0.800	0.0000	0.0000	2.0519	101
10	8.80E+07	56	0.10						
		57	0.10						
		58	0.10						
		70	0.10						
		59	0.15		0.079	0.0000	0.0000		
		61	0.10						
		60	0.41						
		62	0.75						
		71	1.00		0.505	0.0400	0 4455		
		63	1.37		0.525	0.8493	0.4455		
		64 65	2.53 2.15						
		66	1.85						
		72	2.07						
		67	2.99		1.675	0.3675	0.6155		
		68	3.05						
		69	2.78						
		73	2.60						
		74	2.74						
		75	2.20		1.932	2.3375	4.5162		
		76	1.93						
		77	1.68						
		78	0.80						
		79	0.60						
	7.005.07	80	0.45		0.789	0.0000	0.0000	1.1155	98
12	7.20E+07	85	0.93						
		86 87	1.07		0.070	0 4460	0 2020		
			<u>1.28</u> 1.56		0.879	0.4469	0.3930		
		88 89	2.05						
		89 90	2.05		1.121	0.0000	0.0000	0.1965	14
13	8.40E+07	90 91	0.39		1.121	0.0000	0.0000	0.1900	14
13		91	1.05		0.502	0.0000	0.0000		
		92	0.46		0.002	0.0000	0.0000		
		93 94	3.84		1.498	1.3073	1.9587	0.9793	82

Table 16. White Bay – Notre Dame Bay herring biomass estimate from the 2000 acoustic survey.

STRATUM (sq. m.) NUMBER (n.mi.) UNIT FACTOR (g/sq. m.) (g/sq. m.) DEN 16 1.53E+08 103 0.59	HTED BIOMAS	
STRATUM (sq. m.) NUMBER (n.mi.) UNIT FACTOR (g/sq. m.) (g/sq. m.) DEN 16 1.53E+08 103 0.59		
16 1.53E+08 103 0.59 104 1.49 105 2.07 106 2.26 107 2.63 1 1.419 0.0000 0.0000 108 1.03 109 0.93 1 1.419 0.0000 0.0000 110 1.28 1 1.1419 0.0000 0.0000		
104 1.49 105 2.07 106 2.26 107 2.63 108 1.03 109 0.93 110 1.28 111 1.49		
105 2.07 106 2.26 107 2.63 108 1.03 109 0.93 110 1.28 111 1.49		
106 2.26 0.0000 0.0000 107 2.63 1 1.419 0.0000 0.0000 108 1.03 1 1.419 0.0000 0.0000 109 0.93 1 1.28 1 <td></td> <td></td>		
107 2.63 1 1.419 0.0000 0.0000 108 1.03		
108 1.03 109 0.93 110 1.28 111 1.49		
109 0.93 110 1.28 111 1.49		
110 1.28 111 1.49		
111 1.49		
112 1.40 2 0.962 0.0322 0.0310		
113 1.18		
114 1.27		
115 1.00		
116 0.38		
117 0.92 3 0.745 0.0000 0.0000		
118 0.62		
119 0.83		
120 1.60		
121 0.86		
122 0.97 4 0.766 0.0000 0.0000		
123 1.74		
124 0.84		
125 1.87		
126 1.64		
127 0.97 5 1.108 0.0000 0.0000 0	0.0062	1
17 1.25E+08 128 1.10		
129 1.20		
130 1.10		
131 1.50		
132 2.40		
133 1.50		
134 1.20		
<u>135</u> 1.00 1 1.630 0.0000 0.0000		
136 1.10		
137 1.10		
138 1.50		
139 1.50		
140 2.40		
141 2.10		
142 2.20 143 1.80 2 2.030 0.0000 0.0000		
144 1.90		
145 1.90 146 1.30		
146 1.30		
147 1.75		
140 1.75		
145 0.20		
151 0.30 3 1.385 0.0000 0.0000		

Table 16 (cont.'). White Bay – Notre Dame Bay herring biomass estimate from the 2000 acoustic survey.

	STRATUM AREA	TRANSECT	TRANSECT LENGTH		WEIGHTING	MEASURED DENSITY		MEAN WEIGHTED	STRATUM
STRATUM	(sq. m.)	NUMBER	(n.mi.)	UNIT	FACTOR	(g/sq. m.)	(g/sq. m.)	DENSITY	(t)
17	1.25E+08		0.25	•••••		(9.04)	(9/04/)		(•)
	0_ 00	153	0.45						
		154	0.45						
		155	0.90						
		156	0.70						
		157	0.35						
		158	0.20		0 507	0 0000	0.0000		
		159	0.26	4	0.527	0.0000	0.0000		
		160 161	0.50 0.80						
		162	1.00						
		163	1.00						
		164	1.10						
		165	0.00						
		166	1.20						
		167	1.00	5	1.007	0.0000	0.0000)	
		168	1.10						
		169	0.80						
		170	0.60 0.50						
		171 172	0.50						
		172	0.50						
		174	0.30						
		175	0.20	6	0.726	0.0000	0.0000)	
		176	0.40						
		177	0.70						
		178	0.20						
		179	0.50						
		180 181	0.30 0.50						
		182	0.50						
		183	0.30	7	0.519	0.0000	0.0000		
		184	0.47						
		185	1.12						
		186	0.40						
		187	0.08						
		188	0.16						
		189	0.07						
		190 191	0.10 0.17	8	0.381	3.0464	1.1599		
		191	0.17	0	0.301	3.0404	1.1099		
		193	0.30						
		194	0.58						
		195	1.08						
		196	1.04						
		197	0.90						
		198	0.67						
		199	0.29	9	0.796	0.0000			
							Tota	I Biomass =	
								S.E. =	
								C.V. =	0.389

Table 16 (cont.'). White Bay – Notre Dame Bay herring biomass estimate from the 2000 acoustic survey.

Age	1983	1984	1985	1986	1987	1988	1989	1990	1991
0	623.0	0.0	0.0	0.0	14.6	0.1			
1	979.1	187.7	0.0	12.6	0.4	29.6			
2	33.0	572.2	438.6	4.3	5.1	2.2			
3	4.5	4.6	832.5	27.1	1.6	1.3			
4	81.5	3.5	9.5	212.8	24.5	0.9			
5	4.2	34.2	0.0	17.6	65.4	9.5			
6	4.2	8.0	12.9	32.0	2.0	28.9			
7	22.2	6.1	0.0	36.2	1.8	2.0			
8	0.0	15.4	0.0	0.8	4.4	4.0			
9	9.1	0.0	0.0	0.3	1.3	5.2			
10	0.0	3.2	0.0	7.5	0.8	1.1			
11+	54.3	162.8	26.1	70.7	2.9	12.3			
Total	1815.1	997.7	1319.6	421.9	124.8	97.1			
Biomass (t)	136000	78700	198400	126200	30900	22500			

Table 17. Comparison of population numbers at age (millions) and biomass estimates (t), spring spawners only, from acoustic surveys of White Bay – Notre Dame Bay.

Age	1992	1993	1994	1995	1996	1997	1998	1999	2000
0	3226.3		0.0				28.6		0
1	0.0		0.0				29.0		0
2	70.7		0.0				1.9		0
3	2.1		0.4				53.0		0.1
4	7.2		4.2				34.1		0
5	191.5		0.1				0.0		0.5
6	22.5		0.1				0.0		0.3
7	10.1		2.9				1.0		0
8	9.3		0.1				1.9		0
9	16.4		0.2				0.8		0
10	57.2		0.2				0.4		0
11+	18.8		0.6				0.9		0
Total	3632.1		9.7				151.8		0.9
Biomass (t)	104500		2100				19200		230

Stratum	Survey Date(s)	Sample Date	Sample Location	Gear Type	Sample #'s	n	Mean Lgt. (mm)	Mean Wgt. (g)
84	Mar. 19 - 23	Mar. 22	Long Harbour	Res. PS	1, 2, 4, 5, 6	250	310	223

Table 18. Biological sampling details of herring, Three T's 1, Trip #2, Fortune Bay, March 2001.

Table 19. Mean lengths and weights, by stratum, used to calculate target strengths for 2001 Fortune Bay acoustic survey.

	Stratum	Combined Samples	Mean Lgt. (mm)	Mean Wgt. (g)	TS / fish (dB)	TS / g
-	84	1, 2, 4, 5, 6	310	223	-35.67	-59.16

	STRATUM		TRANSECT	RANDOM		MEASURED	WEIGHTED	MEAN	STRATUM
	AREA	TRANSECT	LENGTH		WEIGHTING	DENSITY	DENSITY	WEIGHTED	BIOMASS
STRATUM	(sq. m.)	NUMBER	(n.mi.)	UNIT	FACTOR	(g/sq. m.)	(g/sq. m.)	DENSITY	(t)
84	,		0.00			(3.54)	(3 1)		(1)
04	2.302.07	100	0.20						
		110	0.55						
		111	0.70						
		112	1.08						
		113	1.17						
		114	1.26		1.090	0.0000	0.0000		
		115	1.31						
		116	1.22						
		117	1.50						
		118	1.35						
		119	1.35						
		120	1.04						
		121	0.20	2	1.752	0.6958	1.2188		
		122	0.33						
		123	0.76						
		124	0.55						
		125	0.45						
		126	0.51						
		127	0.52				~~		
		128	0.63		0.824	100.4340	82.7753		
		129	0.65						
		130	0.68						
		131	0.56						
		132 133	0.56 0.51						
		133	0.51						
		134	0.47		0.890	0.0000	0.0000		
		135	0.10		0.030	0.0000	0.0000		
		130	0.38						
		138	0.40						
		139	0.40						
		140	0.28						
		141	0.24						
		142	0.18		0.444	1150.5062	510.7742	118.9537	3450
91	7.10E+07		0.20						
		316	0.30						
		317	0.33						
		318	0.37						
		319	0.40						
		320	0.39						
		321	0.37						
		322	0.35						
		323	0.37		0.543	0.0000	0.0000		
		324	0.30						
		325	0.37						
		326	0.40						
		327	0.49						
		328	0.56						
		329	0.51						
		330	0.54						
		331	0.52		0.054	0.0000	0.0000		
		332	0.50	2	0.651	0.0000	0.0000		

Table 20.	Fortune Bay	herring biomass	s estimate from	the 2001	herring acoustic survey	

	STRATUM AREA	TRANSECT	TRANSECT LENGTH	SAMPLING	WEIGHTING	MEASURED DENSITY	DENSITY	MEAN WEIGHTED	STRATUM BIOMASS
STRATUM	(sq. m.)	NUMBER	(n.mi.)	UNIT	FACTOR	(g/sq. m.)	(g/sq. m.)	DENSITY	(t)
91		333 334	0.52 0.60						
		335	0.50						
		336	0.60						
		337	0.68						
		338	0.71						
		339	0.53						
		340 341	0.51 0.39	3	0.903	0.3879	0.3504		
		342	0.33		0.903	0.3073	0.5504		
		343	0.95						
		344	0.95						
		345	1.00						
		346 347	1.10 0.74						
		347 348	0.74						
		349	0.80						
		350	0.80	4	1.346	0.0000	0.0000		
		351	0.75						
		352	0.80						
		353 354	0.88 0.99						
		355	1.00						
		356	1.20						
		357	0.98						
		358	0.94	-	4 454	0 0000	0 0000		
		359 360	0.70 0.61		1.454	0.0000	0.0000		
		361	0.01						
		362	0.46						
		363	0.23						
		364	0.00						
		365 366	0.57 0.64						
		367	0.90						
		368	0.9		0.835	0.0000	0.0000		
		369	0.9						
		370	0.82						
		371 372	0.92 0.80						
		372	0.80						
		374	0.76						
		375	0.67						
		376	0.74		4 000	0 0000	0 0000		
		377 378	0.87		1.232	0.0000	0.0000		
		378 379	0.82						
		380	0.90						
		381	0.90						
		382	0.74						
		383 384	0.85 0.72						
		385	0.72						
		391	0.80	8	1.313	0.0000	0.0000		
		392	0.76					1	
		393	0.80						
		394 205	0.80						
		395 396	0.51 0.53						
		396 397	0.53						
		398	0.00						
		399	0.00			_	_	_	
		400	0.00	9	0.723	0.0000	0.0000		
							Тс	tal Biomass =	34 34 18
								S.E. = C.V. =	0.5

Table 20 (cont.'). Fortune Bay herring biomass estimate from the 2001 herring acoustic survey.

Age	1986	1987	1988	1989	1990	1991	1992	1993
0	0.0				0.0		0.0	
1	0.0				0.0		0.2	
2	0.0				0.0		5.1	
3	0.0				22.4		0.1	
4	18.4				2.2		0.7	
5	0.6				0.3		9.2	
6	2.1				0.3		0.7	
7	1.8				7.3		0.0	
8	0.9				19.3		0.4	
9	0.6				0.8		5.6	
10	1.5				0.8		22.8	
11+	3.5				2.2		13.0	
Total	29.4				55.6		57.8	
Biomass (t)	9100				14400		18400	

Table 21. Comparison of population numbers at age (millions) and biomass estimates (t), spring spawners only, from acoustic surveys of Fortune Bay.

Age	1994	1995	1996	1997	1998	1999	2000	2001
0		0.0		0.0		0.0		
1		0.6		0.0		0.0		
2		0.0		0.0		0.0		
3		14.2		1.3		161.3		
4		1.9		1.1		5.4		
5		4.4		47.2		2.4		8.1
6		0.0		9.3		1.1		0.7
7		0.0		6.7		23.7		0.2
8		0.0		0.2		4.6		1.2
9		0.0		0.8		1.7		1.8
10		0.0		1.1		0.8		0.5
11+		0.3		5.3		10.0		2
Total		21.4		72.9		211.1		14.6
Biomass (t)		2500		15500		30000		3215

Table 22. Parameters, catch rates and abundance indices, by stock area and year, from commercial gill net logbook data.

Stock Area	Year	Number of Fishers	Age of	Fishing Start	Dates End	Total Nets Fished	Total Nights Fished	Mean Mesh Size (mm)	Panel Size	Total Logbook Catch (t)	Comm.	0	Current Year Abundance Index	Previous Year Abundance Index	Current Year Spawning Index
WBNDB	1981	8		01-Apr	23-May	110	60			50.5	5 2855	68.5			
	1983	38		18-Apr	14-Jul	78	1017			68.0	406				
	1996	16		01-Apr	18-Jun	108	440	64.7	299	68.5	5 229	38.4		5.75	
	1997	9	45.3	10-May	30-Jun	35	265	63.8	205	9.2	2 20	36.7	5.00	5.85	7.00
	1998	13	46.7	15-Apr	30-Jun	49	486	62.6	237	8.7	' 31	14.9	3.00	3.33	3.91
	1999	5	38.2	20-Apr	30-Jun	24	214	63.3	363	9.7	34	17.3	5.83	3.67	3.80
	2000	8	47.1	15-Apr	10-Jul	19	306	63.4	310	6.8	8 19	22.5	2.69	3.93	3.55
	2001	10	45.1	05-May	12-Jul	28	325	60.8	201	8.2	2 4	25.3	4.60	2.83	4.42
	2002	6	48.5	30-Apr	21-Jun	14	188	60.6	263	2.7	,	1.3	2.33		1.00
BBTB	1981	10		02-Apr	04-May	89	145			33.0) 1766	25.9			
	1983	18		18-Apr	25-Jun	30	494			11.5	69	15.5			
	1996	11		02-Apr	05-Jun	94	252	65.3	214	51.5	5 378	52.6		6.17	
	1997	6	45.0	07-Apr	27-Jun	38	287	66.1	312	39.4	201	27.9	8.00	5.80	8.33
	1998	6	45.0	02-Apr	21-Jun	52	191	66.0	245	16.3	3 170	13.5	5.00	6.00	7.33
	1999	5	51.0	02-Apr	29-Jun	19	173	66.0	330	28.7	' 195	27.8	6.00	3.70	3.50
	2000	9	48.7	08-Apr	30-Jun	29	316	65.3	349	23.6	5 202	36.7	4.27	4.45	3.71
	2001	10	46.3	13-Apr	30-Jun	27	357	66.3	298	22.3	56	33.2	3.82	2.17	3.60
	2002	7	51.8	20-Apr	21-Jun	14	227	66.4	320	1.2	2	5.5	1.40		2.00
SMBPB	1983	6		18-Apr	29-Jun	10	192			1.2	2 40	3.4			
	1996	13		19-Mar	15-Jun	54	499	67.1	261	45.3	38	31.4		5.50	
	1997	6	50.3	12-Feb	24-Jun	39	334	68.3	265	15.4	20	20.7	3.50	3.29	4.50
	1998	8	52.4	17-Mar	25-Jun	41	1046	68.2	257	25.9) 19	20.2	2.57	3.38	4.83
	1999	6	51.0	21-Feb	29-May	31	577	65.6	319	11.9) 1	12.0	2.75	4.50	1.83
	2000	1	56.5	01-Apr	26-May	5	56	66.7	334	2.7	0	10.1	4.00		2.00
	2001	3	51.6	28-Apr	23-Jun	8	88	65.3	226	2.0) 39	10.0	3.00	3.00	3.25
	2002	3	56.3	20-Feb	08-Jun	10	180	65.8	263	13.8	3	22.9	3.67		4.00
FB	1996	11		08-Apr	10-Jun	40	837	68.6	304	60) 30	37.5		7.33	
	1997	13	49.8	29-Mar	28-Jun	57	1350	66.9	271	68.9	28	39.4	7.60	6.55	8.43
	1998	11	49.3	01-Apr	17-Jun	34	898	65.2	218	41.3	3 1	54.7	7.40	8.38	7.22
	1999	8	49.0	21-Mar	15-Jun	23	498	65.8	313	36.1	29	37.9	8.14	8.10	7.14
	2000	11	49.8	25-Mar	12-Jun	28	618	68.3	274	81.3	3 16	74.0	8.45	7.63	8.09
	2001	8	53.8	28-Mar	21-Jun	20	667	65.6	311	54.6	6 0	38.2	6.75	7.40	6.00
	2002	5	54.0	28-Mar	29-Jun	11	353	65.5	302	31.4	Ļ	56.7	7.20		7.00

Table 23. Number of herring purse seine fishers who participated in the fishery and number of respondents to the questionnaire, by year, bay, and stock area.

		1996			1997		1	998		19	999		2	2000		2	2001		20	02	
Area	Fished	Respond	%	Fished	Respond	%	Fished Re	spond	%	Fished Re	espond	%	Fished Re	espond	%	Fished Re	espond	%	Fished Res	spond	%
WB	7	7	100	2	2	100	2	2	100	2	2	100	6	4	67	0	0		-	-	-
NDB	11	10	91	13	12	92	4	4	100	5	5	100	6	5	83	0	0		-	-	-
WB-NDB	18	17	94	15	14	93	6	6	100	7	7	100	12	9	75	0	0		-	-	-
BB	13	13	100	8	7	88	7	6	86	8	8	100	6	5	83	4	4	100	-	-	-
ТВ	8	8	100	8	8	100	6	5	83	6	6	100	1	0	0	1	0	0	-	-	-
BB-TB	21	21	100	16	15	94	13	11	85	14	14	100	7	5	71	5	4	80	-	-	-
SMB	5	4	80	5	5	100	6	5	83	0	0		0	0		1	1	100	1	1	100
PB	5	5	100	10	10	100	9	8	89	3	2	67	1	1	100	1	1	100	4	4	100
SMB-PB	10	9	90	15	15	100	15	13	87	3	2	67	1	1	100	2	2	100	5	5	100
Overall	49	47	96	46	44	96	34	30	88	24	23	96	20	15	75	7	6	86	5	5	100

Table 24. Herring purse seine fleet characteristics, average vessel length (ft.), average vessel capacity (lbs.), average seine lengths and depths (fathoms), by year and stock area.

Area	Parameter	1996	1997	1998	1999	2000	2001	20
WB-NDB	Vessel Length	54.3	51.6	50.5	47.8	52.3	-	-
	Vessel Capacity	91353	70867	67500	82000	85000	-	-
	Seine Length	150	149	145	146	147	-	-
	Seine Depth	23	22	24	21	22	-	-
BB-TB	Vessel Length	46.2	45.5	43.1	45.4	44.8	46	-
	Vessel Capacity	58095	56133	48364	59124	70000	68750	-
	Seine Length	150	141	137	136	137	140	-
	Seine Depth	24	22	22	23	23	24	-
SMB-PB	Vessel Length	49.9	50.1	50.6	43.5	42.0	48.7	4
	Vessel Capacity	74556	69800	64923	37500	38000	46667	458
	Seine Length	189	198	194	163	165	175	
	Seine Depth	33	32	30	30	25	33	

Table 25. Landings, discards, and total removals (landings plus dead discards) by stock area and year (all amounts are in metric tons).

Area	Parameter	1996	1997	1998	1999	2000	2001	2002
WB-NDB	Total Landings (questionnaire)	391.9	1800.5	301.9	882.4	651.0	-	-
	Total Landings (Statistics)	435.0	2375.0	606.0	1011.0	1071.0	13.0	
	Discarded at Sea	445.5	2045.0	540.0	115.8	130.0	-	-
	Survival of Discards (%)	48.8	96.8	93.3	39.4	100.0	-	-
	Total Removals	620.0	1865.6	338.4	952.8	651.0	-	-
	Ratio (Removals : Landings)	1.58	1.04	1.12	1.08	1.00	-	-
	Effort (Sets / Fisher)	1.5	21.0	18.0	10.0	2.4	-	-
BB-TB	Total Landings (questionnaire)	737.5	736.0	621.0	893.5	344.0	259.5	-
	Total Landings (Statistics)	358.0	650.0	661.0	809.0	495.0	259.0	
	Discarded at Sea	209.0	47.0	8.5	219.0	264.0	2030.0	-
	Survival of Discards (%)	50.0	59.8	50.0	68.8	94.8	82.5	-
	Total Removals	842.0	754.9	625.3	961.8	357.7	614.8	-
	Ratio (Removals : Landings)	1.14	1.03	1.01	1.08	1.04	2.37	-
	Effort (Sets / Fisher)	4.4	9.1	10.1	8.8	14.6	31.5	-
SMB-PB	Total Landings (questionnaire)	459.5	4400.9	1726.9	186.0	400.0	429.5	690.0
	Total Landings (Statistics)	446.0	3836.0	2310.0	330.0	0.0	451.0	-
	Discarded at Sea	225.0	403.0	790.0	0.0	105.0	100.0	150.0
	Survival of Discards (%)	50.0	81.9	98.8	-	90.0	95.0	97.5
	Total Removals	572.0	4474.0	1736.1	186.0	410.5	434.5	693.8
	Ratio (Removals : Landings)	1.24	1.02	1.01	1.00	1.03	1.01	1.01
	Effort (Sets / Fisher)	1.8	21.1	10.8	13.0	24.0	5.5	6.2

Table 26.	White Bay -	Notre Dame	Bay perfor	rmance table	to the spring of	2002.

The Fishery		Observation						
Reported Landings	Landings decreased from 1090 t in 2000 to 22 t in 2 1990's; peak landings of 15,700 t in 1979. To June 3			s of 2800 t during				
Total Removals	In addition to reported landings in 2001, an unknow gillnet bait fishery.	n amount of herring (con	sidered to be less than 500 t)	was caught in the				
Effort	Effort was less in the 1990's than in the 1980's and to 2000 and there was no fishery in 2001; gillnet effo			oy 88% from 1997				
Geographic Distribution of Fishery	There was no purse seine fishery in 2001. The 200 Dame Bay.	2 gillnet fishery, from ear	ly May to mid June, was mostl	y in eastern Notre				
Abundance Indices	Observation	Inte	erpretation	Evaluation				
Research Gillnet Catch Rates	Decreased from 2001 to 2002; lowest in 15 year time series; decreasing trend since 1992;	Current abundance very	low and decreasing.	-				
Acoustic Biomass Estimates	2000 survey estimate was lowest in time series; decreasing trend in 10 surveys since 1983;		ry low; much lower than in th ata not available; therefore, r					
Commercial Gillnet Catch Rates	Large decrease from 2001 to 2002; lowest in 7 year time series; decreasing trend in time series.	Current abundance very	low and decreasing.	-				
Gillnet Fisher Observations	Abundance in 2002 perceived to be below average and declining.	Current abundance low a	and decreasing.	_				
Purse Seine Fisher Observations	Abundance in 2000 perceived to be above average and stable.	Abundance in 2000 stab information since 2000 th	0					
Recruitment (year classes since 1998)	Most observations indicate weak incoming year classes; no abundance estimates are available.	Poor recruitment.	-					
Biological Characteristics	Observation	Inte	erpretation	Evaluation				
2001 Age Compositions (ages 4+)	Dominated by two age groups (1995 and 1997 year classes); very few younger or older fish.	Truncated age composit	ion.	-				
Weight at Age	Weights at most ages have decreased continuously since the early 1980's.	Potential increase in fish	ning mortality per tonne caught.	?				
Length and Age at Maturity	Currently maturing at smaller lengths than in the early 1980's; no change in age at maturity.	Reduction in number of fecundity.	of eggs deposited due to low	er <mark>?</mark>				
Ecological Considerations	Observation	Inte	erpretation	Evaluation				
Predation	Proportion of herring in harp seal diet has increased in near shore areas since the 1980's; no other predation data available.	Increased mortality by predation mortality unknow	harp seals; other changes own.	ⁿ ?				
Water Temperature (at 10 m in Comfort Cove, NDB)	Mean annual temperature decreased from 5°C in 1990 to 3°C in 1992; increased gradually to 6°C in 1999.	May have reduced herr lower temperatures recruitment.	ring growth rates in the 1990' may also adversely affe	s; ct ?				
Water Salinity (at Station 27, off St. John's)	Mean annual salinities decreased from 1990 to 1991 and have remained at levels lower than in the 1980's.		versely affect recruitment.	?				
STOCK STATUS	Interpretation	Evaluation						
Current	Current abundance is low, possibly lowest in 20 years; few age groups in the population.	-	Concern fo Prospect	r Current Status or				
Prospect	Current mature year classes considered to be weak; most evidence suggests that recruitment is poor.	-	? Uncertaint	y of Interpretation				

Most available data indicate that this stock is at a very low level, possibly the lowest since it was closed to fishing in the early 1980's. Overall prospects are negative due to poor recruitment. The status has not changed since the last assessment in 2000, when it was classified as very poor.

-	Concern for Current Status or Prospect
?	Uncertainty of Interpretation
+	Positive Evaluation

Table 27. Bonavista Bay – Trinity Bay performance table to the spring of 2002.

The Fishery		Observation		
Reported Landings	Landings decreased from 1090 t in 2000 to 490 t in during 1990's; peak landings of 12,000 t in 1977. To	n 2001; 14% of the TAC was taken in 2001; average land June 30, 2002 the catch was 391 t.	dings of 2600	
Total Removals	gill net bait fishery; mortality from discards in the approximately 350 t.	n amount of herring (considered to be less than 300 t) wa e purse seine fishery, due entirely to small fish, was	reported to t	
Effort	Overall, effort was less in the 1990's than in the 19 seine effort increased since 1996 and was highest in	980's; gillnet effort has continued to decline, by 79% sind a 2001.	ce 1996; pur	
Geographic Distribution of Fishery	The 2001 purse seine fishery, in October and Nover gillnet fishery, from mid April to mid June, was distributed and the second s	nber, was concentrated in the northern part of Bonavista I outed throughout Bonavista and Trinity Bays.	Bay. The 200	
Abundance Indices	Observation	Interpretation	Evaluation	
Research Gillnet Catch Rates	Decreased from 2000 to 2002; lowest in 15 year time series; decreasing trend since 1992.	Current abundance very low and decreasing.	-	
Acoustic Biomass Estimates	Decreasing trend in 10 surveys since 1984.	Abundance in 1999 low; much lower than in the 1980's. More recent information not available therefore no evaluation.		
Commercial Gillnet Catch Rates	Large decrease from 2001 to 2002; lowest in 7 year time series; 2002 = 6, mean = 28, maximum = 53.	Current abundance very low and decreasing.	-	
Gillnet Fisher Observations	Abundance in 2002 perceived to be below average and declining.	Current abundance low and decreasing.	-	
Purse Seine Fisher Observations	and increasing.	Current abundance increasing and no cause for concern.	+	
Recruitment (year classes since 1998)	1998 and 1999 year classes detected in purse seine fishery and acoustic survey; however, no estimates are available.	Some evidence of recruitment; not quantified.	?	
Biological Characteristics	Observation	Interpretation	Evaluation	
2001 Age Compositions (ages 4+)	Dominated by the 1995 year class; younger or older fish well represented.	Spawning biomass consists of a broad age composition.	+	
Weight at Age	Weights at most ages have decreased continuously since the early 1980's.	Potential increase in fishing mortality per tonne caught.	?	
Length and Age at Maturity	Currently maturing at smaller lengths than in the early 1980's; no change in age at maturity.	Reduction in number of eggs deposited due to lower fecundity.	?	
Ecological Considerations	Observation	Interpretation	Evaluation	
Predation	Proportion of herring in harp seal diet has increased in near shore areas since the 1980's; no other predation data available.	Increased mortality by harp seals; other changes in predation mortality unknown.	?	
Water Temperature (at 10 m in Stock Cove, BB)		May have reduced herring growth rates in the 1990's; lower temperatures may also adversely affect recruitment.		
Water Salinity (at Station 27, off St. John's)	Mean annual salinities decreased from 1990 to 1991 and have remained at levels lower than in the 1980's.		?	
TOCK STATUS	Interpretation	Evaluation		
Current	Population age structure is considered to be stable; however, current abundance is low, possibly lowest in 20 years.			
Prospect	Current mature year classes considered to be veak; recruitment evident but unquantified.			

Most available data indicate that this stock is at a low level. Future prospects depend upon recruitment of year classes since 1998, which are not yet quantified. Due to substantial decreases in commercial and research gillnet catch rates, stock status has changed since the last assessment in 2000, when it was classified as good.

-	or Prospect		
?	Uncertainty of Interpretation		
+	Positive Evaluation		

Table 28. St. Mary's Bay – Placentia Bay performance report to the spring of 2002.

The Fishery	Observation			
Reported Landings	Landings in 2000 and 2001 were the same, 500 t; 25% of the TAC was taken in 2001; average landings of 1200 t during 1990's; peak landings of 4000 t in 1997 (since large mobile purse seine fishery in 1960's). To June 30, 2002 the catch was 1120 t, over double the catch in all of 2001.			
Total Removals	In addition to reported landings in 2001, an unknown amount of herring (considered to be less than 150 t) was caught ir the gillnet bait fishery; there was minimal reported discard mortality in the purse seine fishery.			
Effort	Effort increased from the 1980's to the 1990's; effort peaked in 1998 and has since declined by	burse seine effort peaked in 1997 and has since declined 89%.	by 71%; gillnet	
Geographic Distribution of Fishery	The purse seine fishery, in March 2002, was of fishery, from mid February to early June, was more	concentrated along the eastern side of Placentia Bay. The stly in Placentia Bay.	he 2002 gillnet	
Abundance Indices	Observation	Interpretation	Evaluation	
Research Gillnet Catch Rates	Increased from 2001 to 2002; highest in 21 year time series; increasing trend since 2000.	Recent increase in abundance.	+	
Acoustic Biomass Estimates	2000 estimate was lowest in time series; decreasing trend in 10 surveys since 1984.	Abundance in 2000 low; much lower than in the 1980's; more recent information not available, therefore no evaluation.		
Commercial Gillnet Catch Rates	Stable at low level from 1999 to 2001: increased from 2001 to 2002 to second highest in 7 year series.	Recent increase in abundance.	+	
Gillnet Fisher Observations	Abundance in 2002 perceived to be below average and stable or increasing marginally.	Current abundance low and stable or increasing marginally.	-	
Purse Seine Fisher Observations	Abundance in 2002 perceived to be above average and increasing.			
Recruitment (year classes since 1998)	1998 year class detected in research gill net catches; initially estimated to be weak.			
Biological Characteristics	Observation	Interpretation	Evaluation	
2001 Age Compositions (ages 4+)	Dominated by the 1996 year class; representation of older fish, but few younger fish.	Fairly Broad population age structure. But concern regarding apparent lack of younger fish.	?	
Weight at Age	Weights at most ages have decreased continuously since the early 1980's.	Potential increase in fishing mortality.	?	
Length and Age at Maturity	Currently maturing at smaller lengths than in the early 1980's.	Reduction in number of eggs deposited due to lower fecundity.	?	
Ecological Considerations	Observation	Interpretation	Evaluation	
Predation	No predation data available.			
Water Temperature (at 10 m in Arnold's Cove, PB)	Mean annual temperature decreased from 6.5°C in 1990 to 5.0°C in 1992; increased gradually to 7°C in 2000. May have reduced growth rates in the 1990's; lower temperatures may also adversely affect recruitment.		?	
Water Salinity (at Station 27, off St. John's)	Mean annual salinities decreased from 1990 to 1991 and have remained at levels lower than in the 1980's.		?	
STOCK STATUS	Interpretation Evalu	Jation		
Current	Current abundance is increasing; population age structure is considered to be moderately stable.	or Pr	Current Status rospect	
Prospect		One dominant year class considered to be noderate, at best; other mature year classes ?		

considered weak; unquantified recruitment.Most available data indicate that this stock is increasing due to one year class (1996).Prospects are questionable due to potential poor recruitment of year classes since1998. Stock status has not changed since the last assessment in 2000, when it wasclassified as moderate to good.

?	Uncertainty of Interpretation
+	Positive Evaluation

Table 29. Fortune Bay performance table to the spring of 2002.

The Fishery		Observation				
Reported Landings	Landings increased from 850 t in 2000 to 1300 t in 2001; 47% of the TAC was taken in 2001; average landings of 200 t during 1990's; peak landings in 2001 (since large mobile purse seine fishery in 1960's). To June 30, 2002 the catch was 2711 t, over double the catch in all of 2001.					
Total Removals	In addition to reported landings in 2001, an unknown amount of herring (considered to be less than 400 t) was caught in the gillnet bait fishery.					
Geographic Distribution of Fishery	ffort in 1980's and 1990's was very low; gillnet effort peaked in 1997 and has since declined by 87%; there is no purse eine fishery in Fortune Bay; the current fishery is primarily by bar seine for which no effort information is available.					
Exploitation Pattern	The 2002 spring bar seine fishery was concentra June, was distributed throughout Fortune Bay.	ated in the Long	Harbour area;	the gillnet fis	hery, from ea	rly April to late
Abundance Indices	Observation		Interpreta	ation		Evaluation
Research Gillnet Catch Rates	Decreased from 2001 to 2002; catch rates below average but still very high.	Decreased from 2001 to 2002; catch rates below Recent decrease average but still very high.		ase in abundance but still at a high level,		
Acoustic Biomass Estimates	2001 estimate second lowest of 7 surveys since 1986; increasing trend until 1999.	2001 estimate second lowest of 7 surveys since Abundance in 2001 lower than 1986; increasing trend until 1999.		ו in previous surveys and		-
Commercial Gillnet Catch Rates	No trend; catch rates have fluctuated at high levels for several years.				+	
Gillnet Fisher Observations	Abundance in 2002 perceived to be above Current abundance high and stable or decreasi average and stable or decreasing marginally.			r decreasing	+	
Recruitment (year classes since 1998)	1998 and 1999 year classes detected in commercial bar seine catches; however, no Minimal evidence of recruitment; not quantified. estimates are available for these year classes.		ed.	?		
Biological Characteristics	Observation			ation	ion	
2001 Age Compositions (ages 4+)	Dominated by one age group (1996 year class); Population age structure is considered to be stable due substantial contribution of older fish.		stable due to	+		
Weight at Age	Weights at most ages have decreased continuously since the early 1980's.			ne caught.	?	
Length and Age at Maturity	Currently maturing at smaller lengths than in the early 1980's; age at maturity is older.	in the Reduction in number of eggs deposited due to lowe fecundity.		due to lower	?	
Ecological Considerations	Observation	Interpretation			Evaluation	
Predation	No predation data available.	No predation data available.				
Water Temperature (at 10 m in Arnold's Cove, PB)	Mean annual temperature decreased from 6.5°C in 1990 to 5.0°C in 1990; increased gradually to 7°C in 2000.			?		
Water Salinity (at Station 27, off St. John's)		Mean annual salinities decreased from 1990 to 1991 and have remained at levels lower than in the 1980's.		nent.	?	
STOCK STATUS	Interpretation		Evaluation			
Current	Current abundance due to one year class is a relative to the 1980's; population age structure is be stable.	s considered to	+	_		Current Status ospect
Prospect	One dominant year class considered to be moderate, at best; other mature year classes considered weak; unquantified recruitment.		?		tainty of retation	

Positive Evaluation

the past fifteen years. Prospects are questionable due to potential poor recruitment of year classes since 1998. Stock status has not changed since the last assessment in 2000, when it was classified as moderate to good.

Stock Area	Year	# of Fishers	# of Sets	Sets / Fisher
WB-NDB	1996	17	26	1.5
	1997	14	294	21.0
	1998	6	108	18.0
	1999	7	70	10.0
	2000	12	29	2.4
	2001	0	0	0.0
BB-TB	1996	21	93	4.4
	1997	15	136	9.1
	1998	11	111	10.1
	1999	14	123	8.8
	2000	5	73	14.6
	2001	4	126	31.5
SMB-PB	1996	9	16	1.8
	1997	15	316	21.1
	1998	13	141	10.8
	1999	2	26	13.0
	2000	1	24	24.0
	2001	2 5	11	5.5
	2002	5	31	6.2

Table 30. Commercial purse seine effort (sets/fisher) calculated from purse seine questionnaire data.

Stock Area	Year	# of Fishers	# of Nets Fished	# of Nights Fished	Net Nights / Fisher
WB-NDB	1996	16	108	440	2970
	1997	9	35	265	1031
	1998	13	49	486	1832
	1999	5	24	214	1027
	2000	8	19	306	727
	2001	10	28	325	910
	2002	6	14	188	439
BB-TB	1996	11	94	252	2153
	1997	6	38	287	1818
	1998	6	52	191	1655
	1999	5	19	173	657
	2000	9	29	316	1018
	2001	10	27	357	964
	2002	7	14	227	454
SMB-PB	1996	13	54	499	2073
	1997	6	39	334	2171
	1998	8	41	1046	5361
	1999	6	31	577	2981
	2000	1	5	56	280
	2001	3	8	88	235
	2002	3	10	180	600
FB	1996	11	40	837	3044
	1997	13	57	1350	5919
	1998	11	34	898	2776
	1999	8	23	498	1432
	2000	11	28	618	1573
	2001	8	20	667	1668
	2002	5	11	353	777

Table 31. Commercial gill net effort (net nights per fisher) calculated from logbook data.

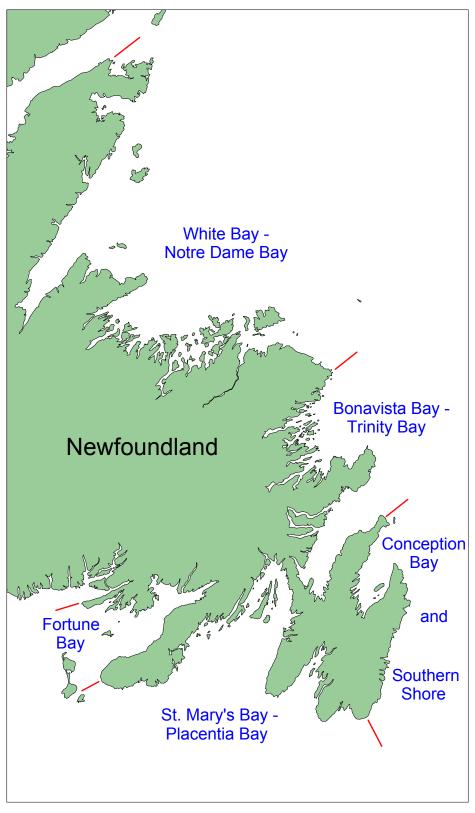


Figure 1. Area map indicating herring stock complexes within the Newfoundland Region.

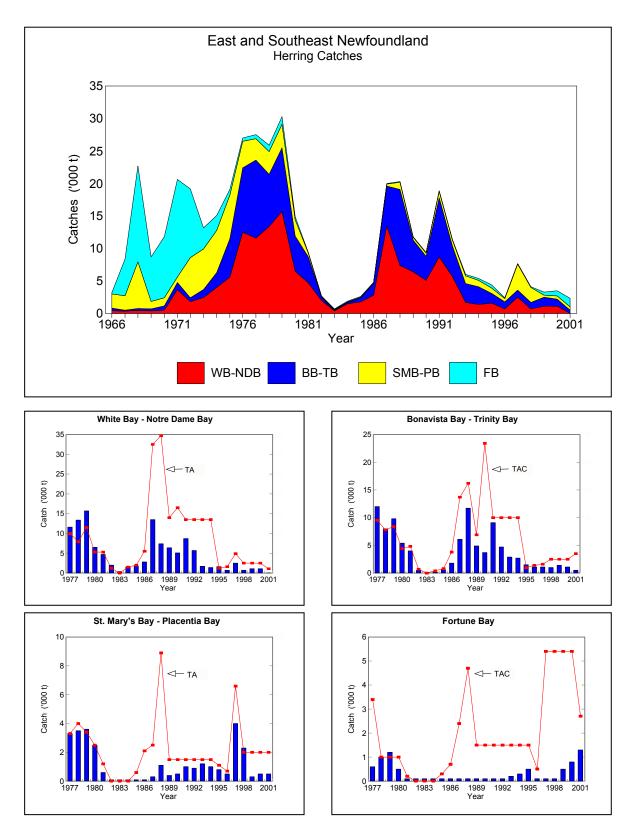


Figure 2. East and southeast Newfoundland herring catches and TAC's, by stock area.

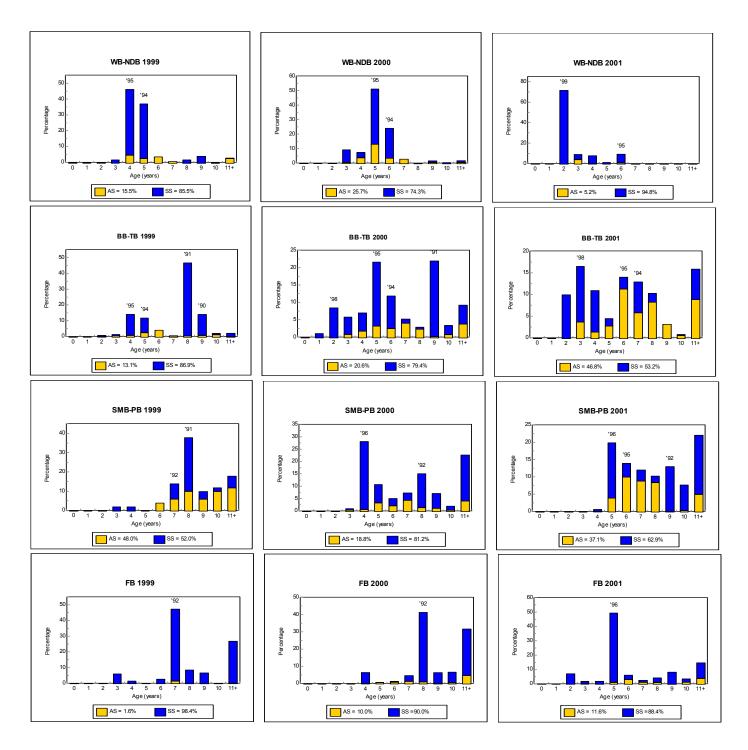


Figure 3. Age distribution of herring from the commercial fishery, White Bay – Notre Dame Bay, Bonavista Bay – Trinity Bay, St. Mary's Bay – Placentia Bay, and Fortune Bay, 1999 – 2001.

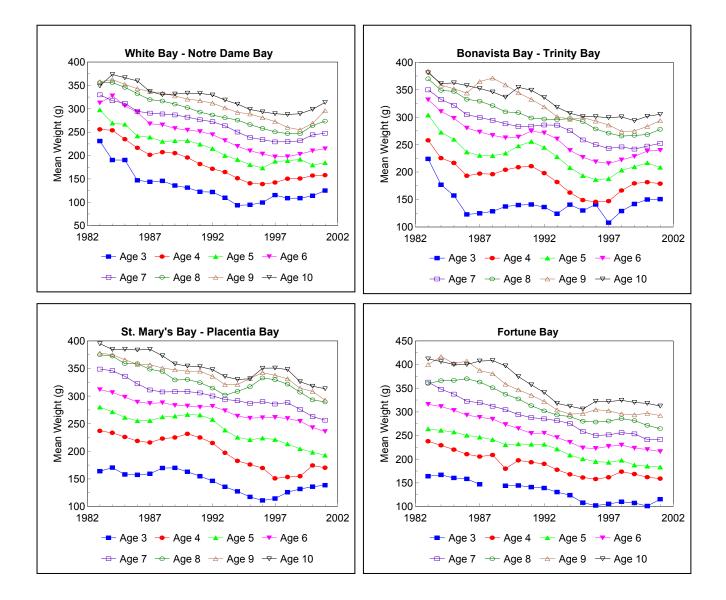


Figure 4. Mean weights at age (three year moving average) of spring spawning herring, by stock area and year, from samples collected January to June.

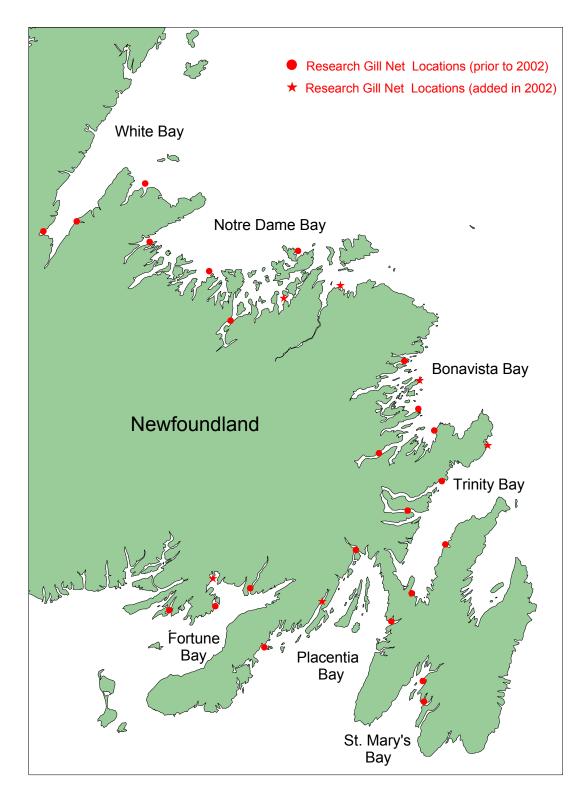


Figure 5. East and southeast Newfoundland herring research gill net locations.

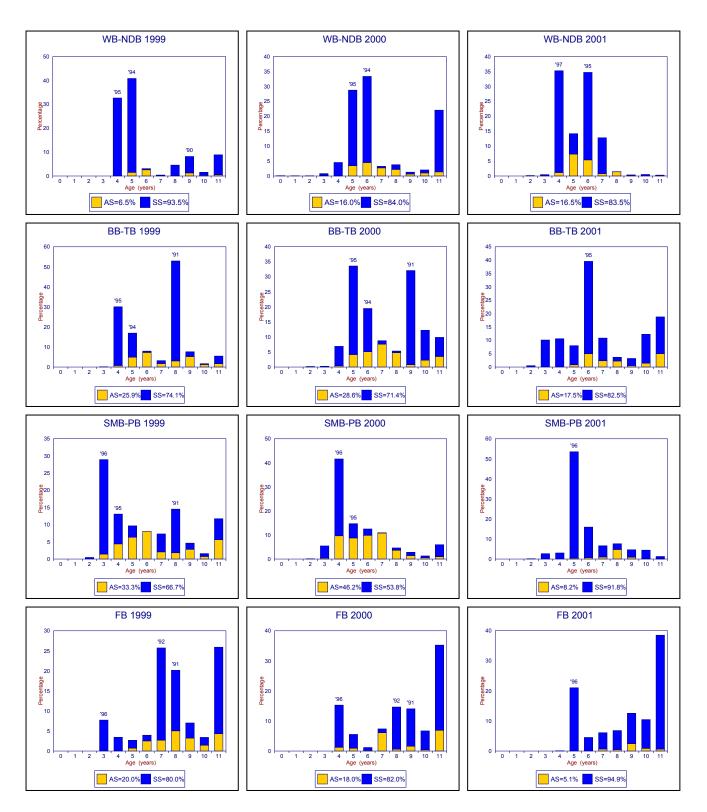


Figure 6. Age distribution (by number) of herring from the spring research gill net program, by stock area, 1999 – 2001.

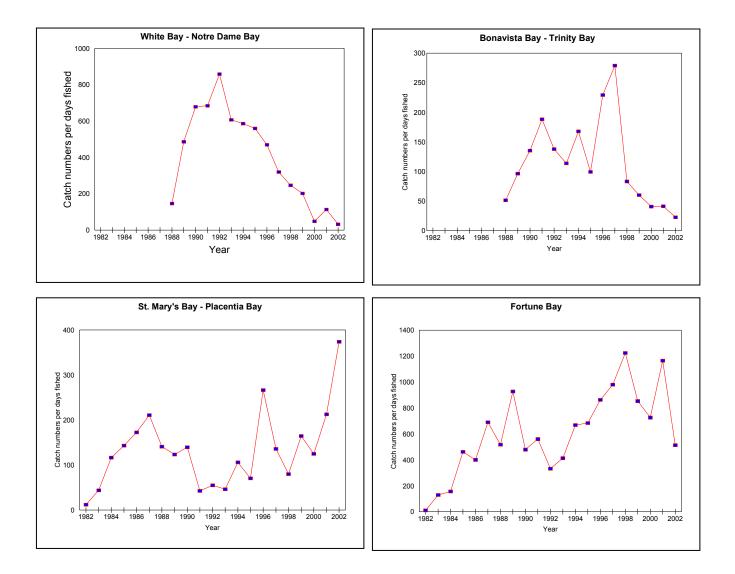


Figure 7. Spring research gill net catch rates (numbers per days fished), spring spawners only, by stock area and year.

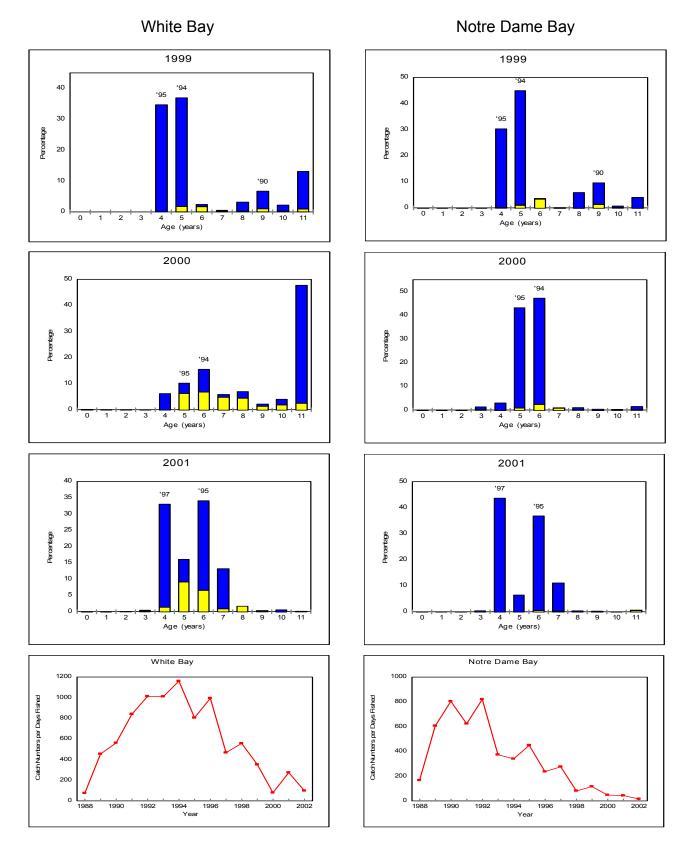


Figure 8. Herring age distributions (by number), 1999 – 2001, and catch rates (numbers per days fished), 1988 – 2002, from the spring research gill net program for WB-NDB separately.

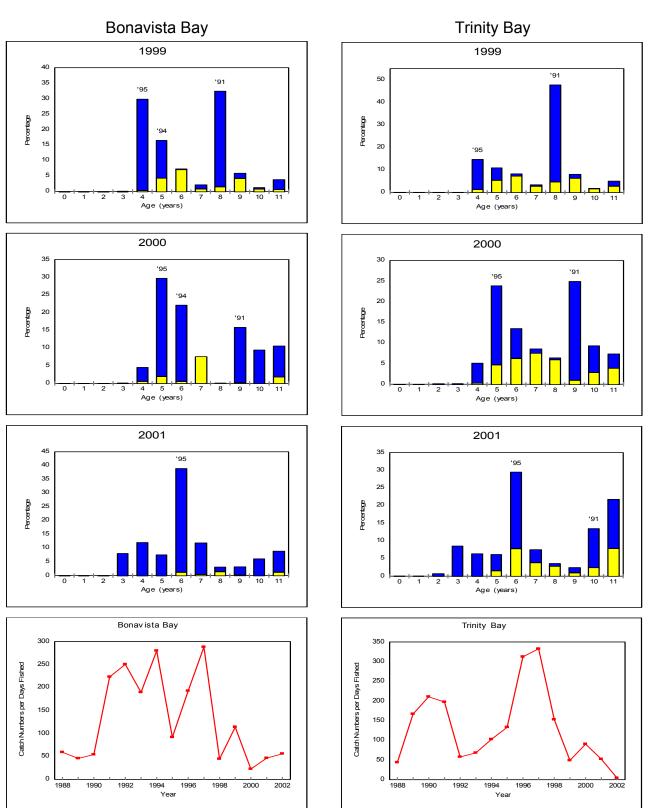


Figure 9. Herring age distributions (by number), 1999 – 2001, and catch rates (numbers per days fished), 1988 – 2002, from spring research gill net program for BB-TB separately.

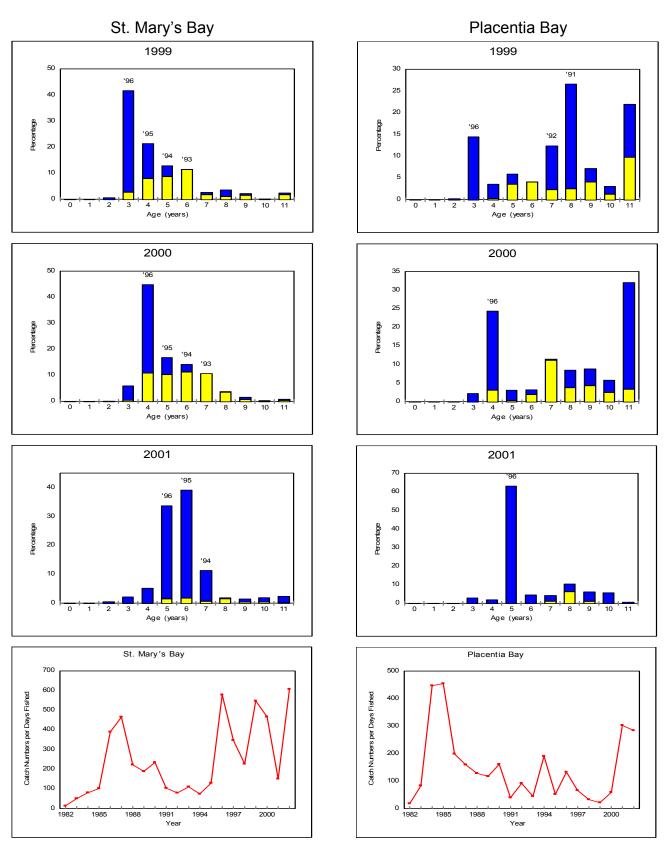


Figure 10. Herring age distributions (by number), 1999 – 2001, and catch rates (numbers per days fished), 1988 – 2002, from the spring research gill net program for SMB-PB separately.

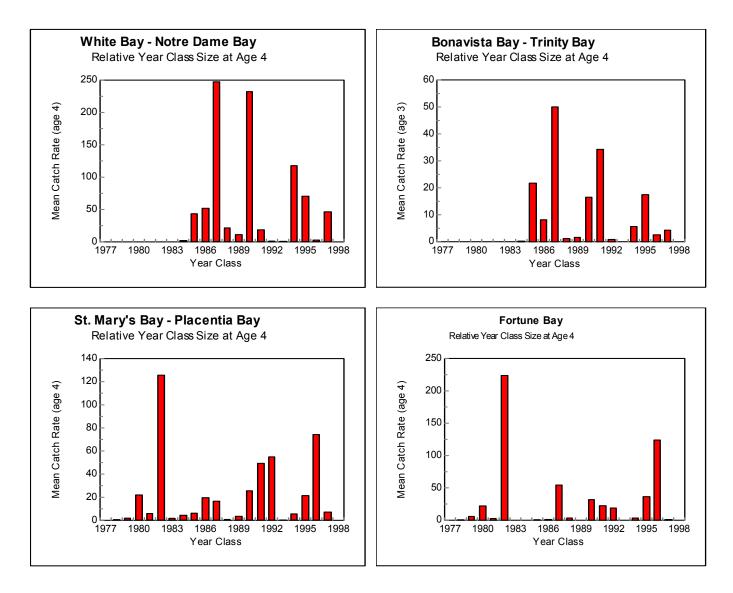


Figure 11. Estimation of relative year class sizes at age 4 from research gill net catch rates.

Figure 12. Area map of Notre Dame Bay indicating survey strata and transects for the 2000 inshore acoustic survey.

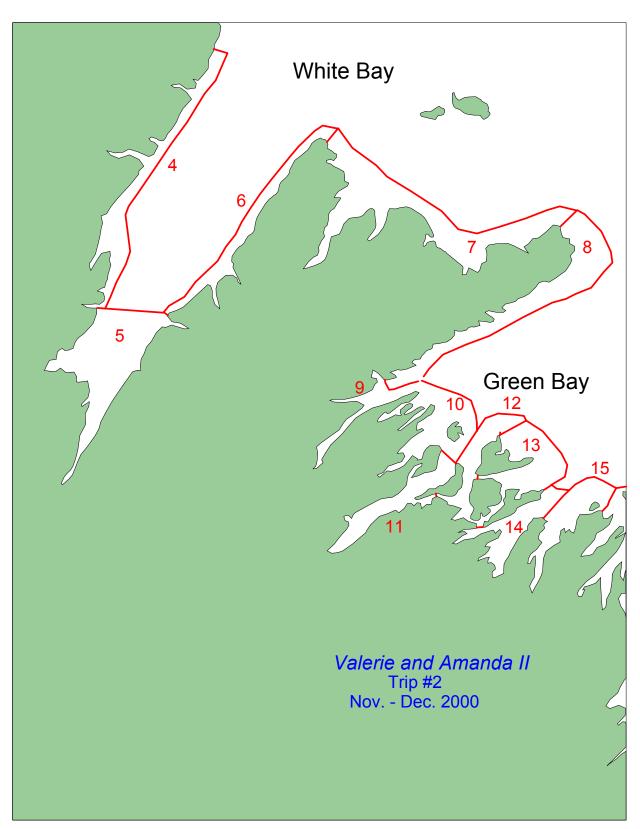


Figure 12 (cont.'). Area map of White Bay and Green Bay indicating survey strata and transects for the 2000 inshore acoustic survey.

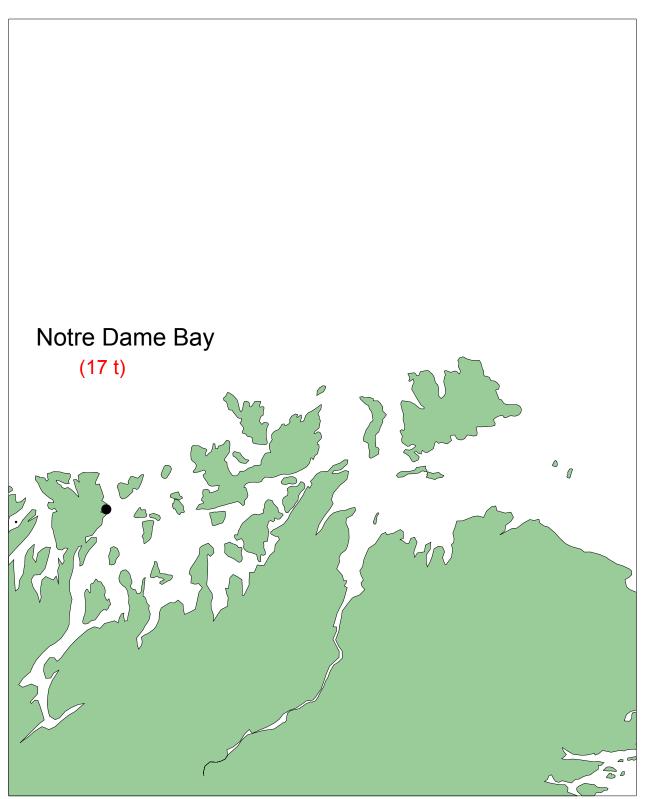


Figure 13. Distribution and density of herring on transects during the 2000 inshore acoustic survey of White Bay - Notre Dame Bay. Relative densities of herring are represented by expanding black symbols.

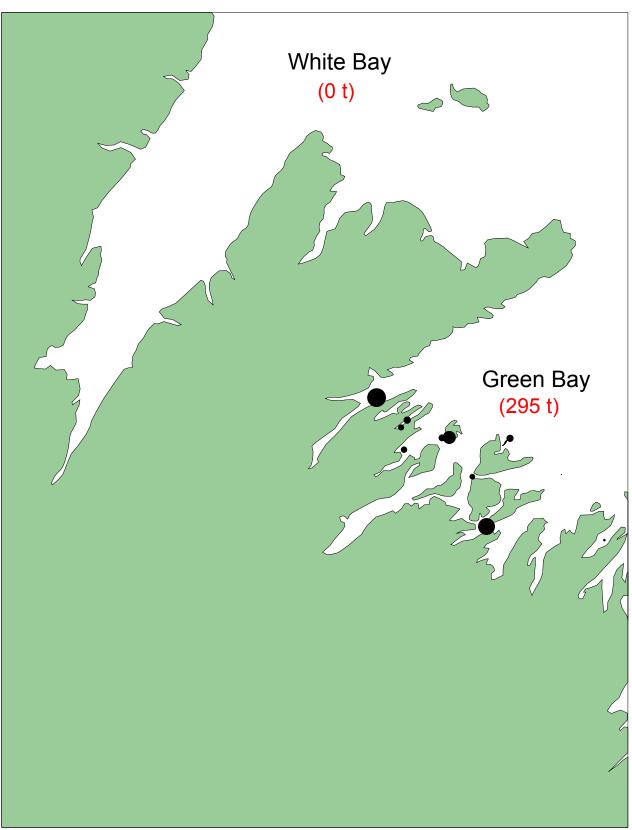


Figure 13 (cont.'). Distribution and density of herring on transects during the 2000 inshore acoustic survey of White Bay - Notre Dame Bay. Relative densities of herring are represented by expanding black symbols.

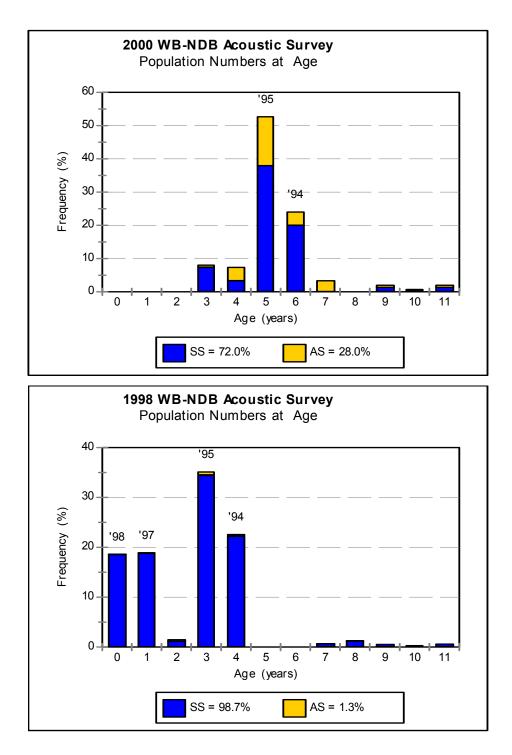


Figure 14. Age distributions from the 1998 and 2000 White Bay – Notre Dame Bay acoustic surveys.

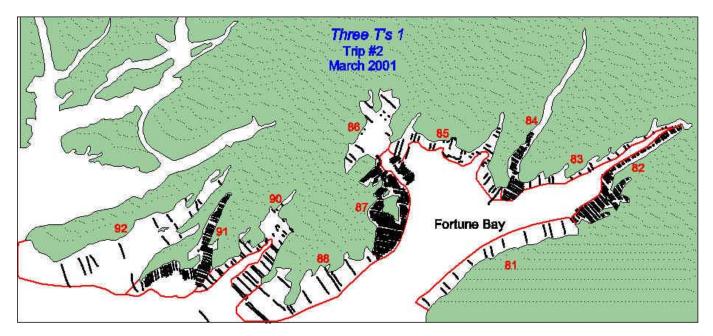


Figure 15. Area map of Fortune Bay indicating survey strata and transects for the 2001 inshore acoustic survey.

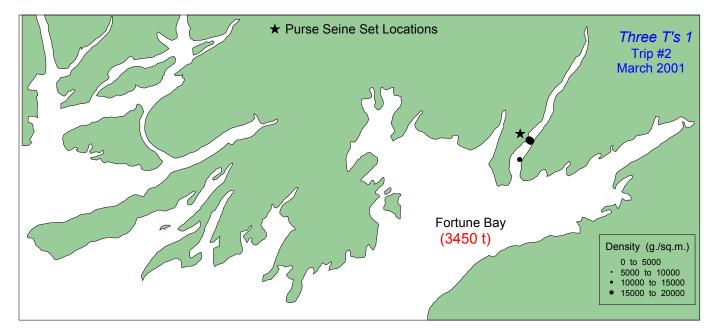


Figure 16. Distribution and density of herring on transects during the 2001 inshore acoustic survey of Fortune Bay. Relative densities of herring are represented by expanding black symbols.

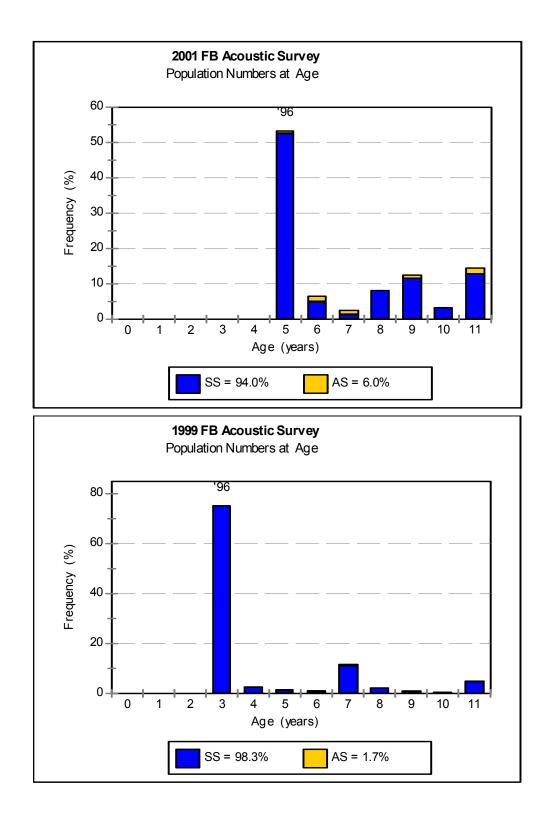


Figure 17. Age distributions of herring from the 1999 and 2001 Fortune Bay acoustic surveys.

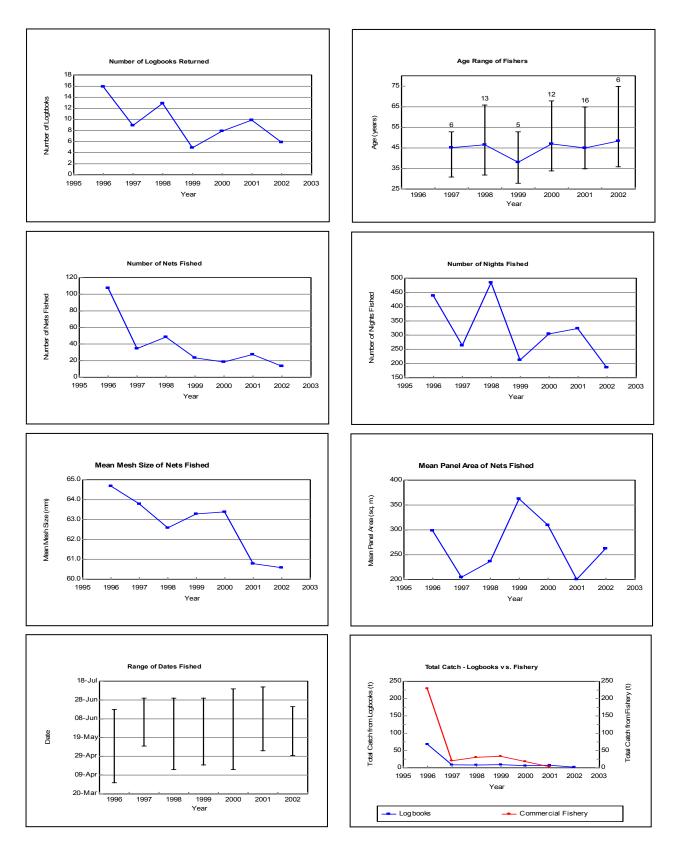


Figure 18. Annual parameters derived from commercial gill net logbooks for White Bay – Notre Dame Bay.

Figure 19. Commercial herring gill net locations, by year, for White Bay – Notre Dame Bay, from commercial gill net logbooks.

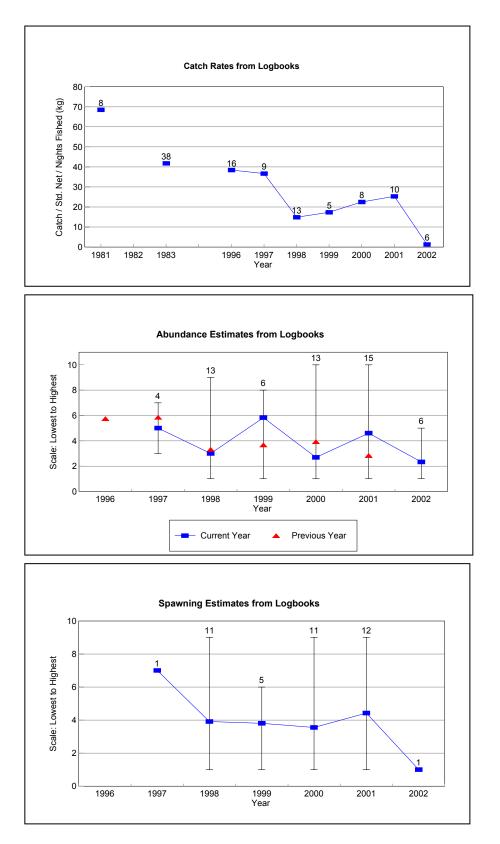


Figure 20. Annual abundance indices derived from commercial gill net logbooks for White Bay – Notre Dame Bay.

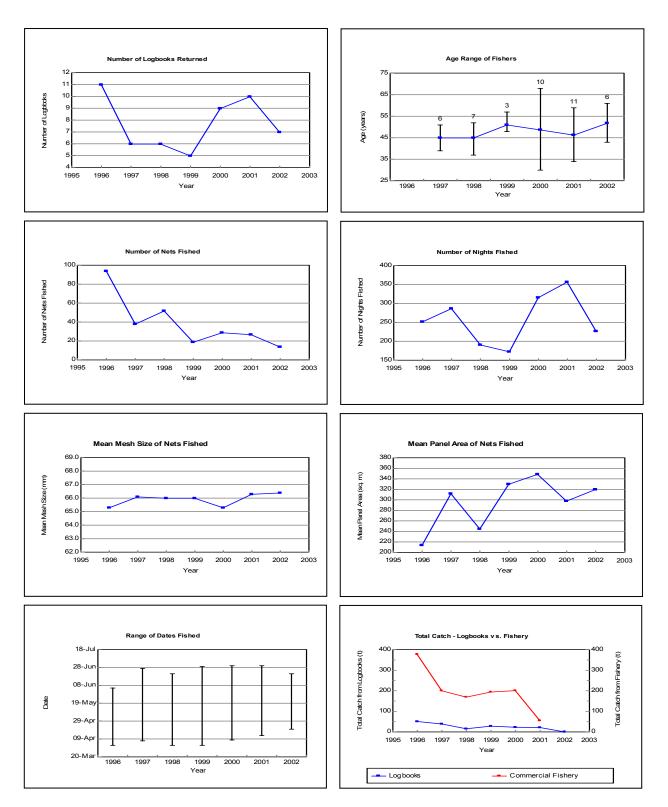


Figure 21. Annual parameters derived from commercial gill net logbooks for Bonavista Bay – Trinity Bay.

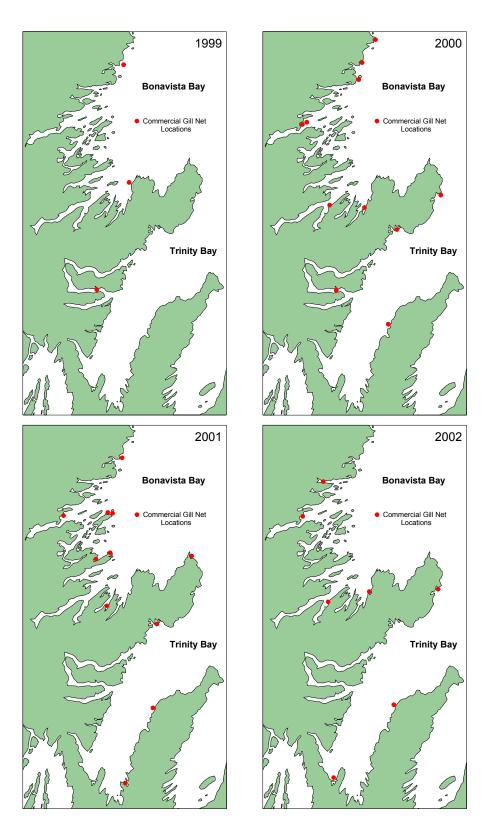
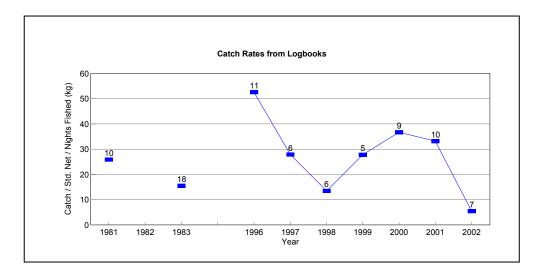
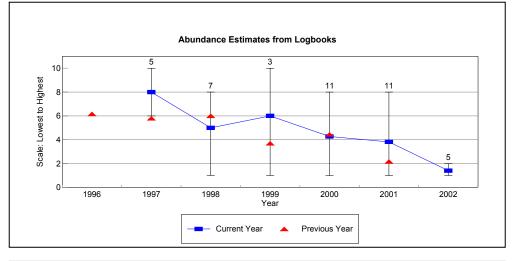




Figure 22. Commercial herring gill net set locations, by year, for Bonavista Bay – Trinity Bay, from commercial gill net logbooks.

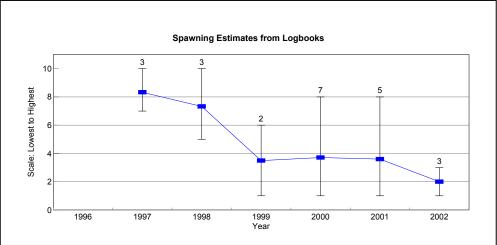


Figure 23. Annual abundance indices derived from commercial gill net logbooks for Bonavista Bay – Trinity Bay.

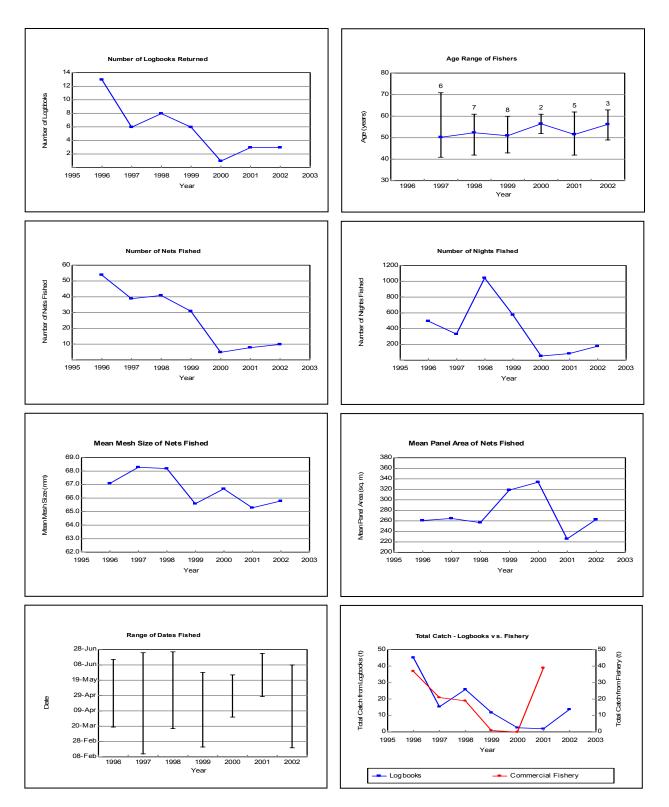


Figure 24. Annual parameters derived from commercial gill net logbooks for St. Mary's Bay – Placentia Bay.

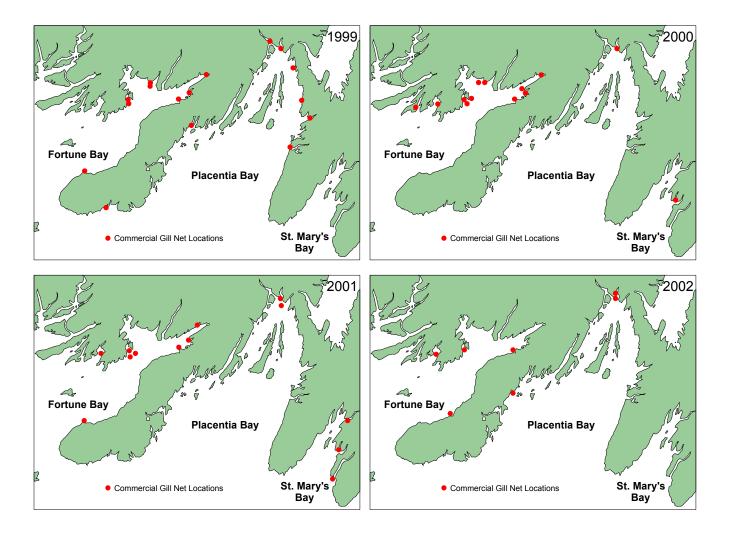
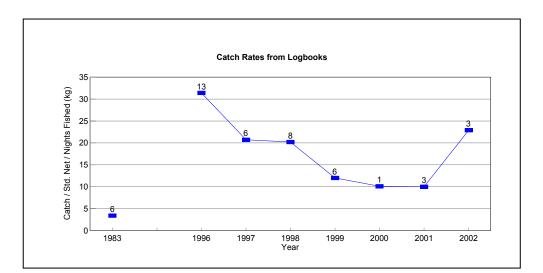
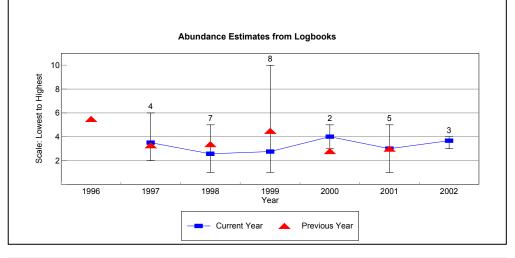




Figure 25. Commercial herring gill net set locations, by year, for St. Mary's Bay – Placentia Bay and Fortune Bay, from commercial gill net logbooks.

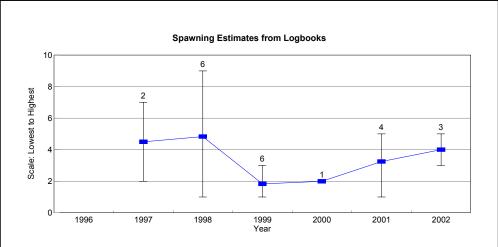


Figure 26. Annual abundance indices derived from commercial gill net logbooks for St. Mary's Bay – Placentia Bay.

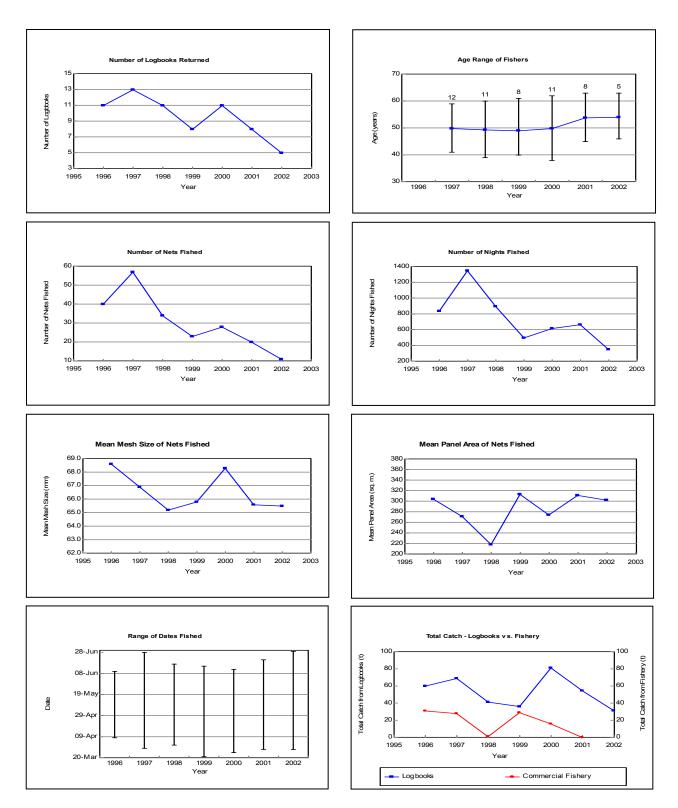


Figure 27. Annual parameters derived from commercial gill net logbooks for Fortune Bay.

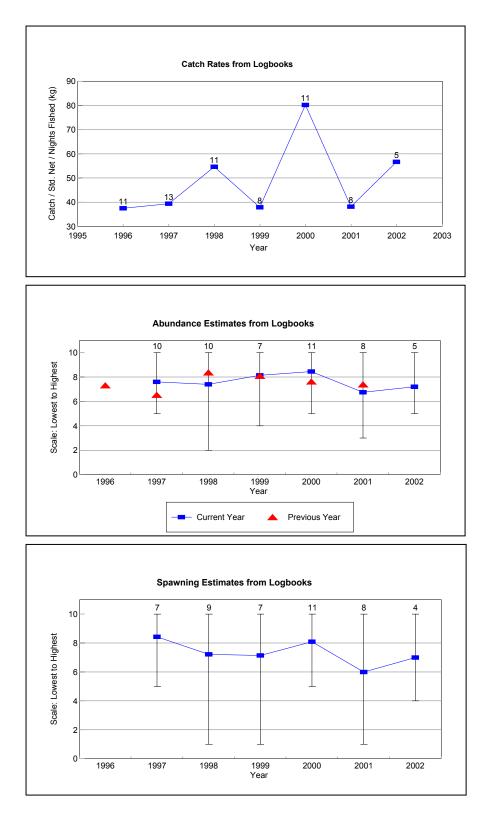


Figure 28. Annual abundance indices derived from commercial gill net logbooks for Fortune Bay.

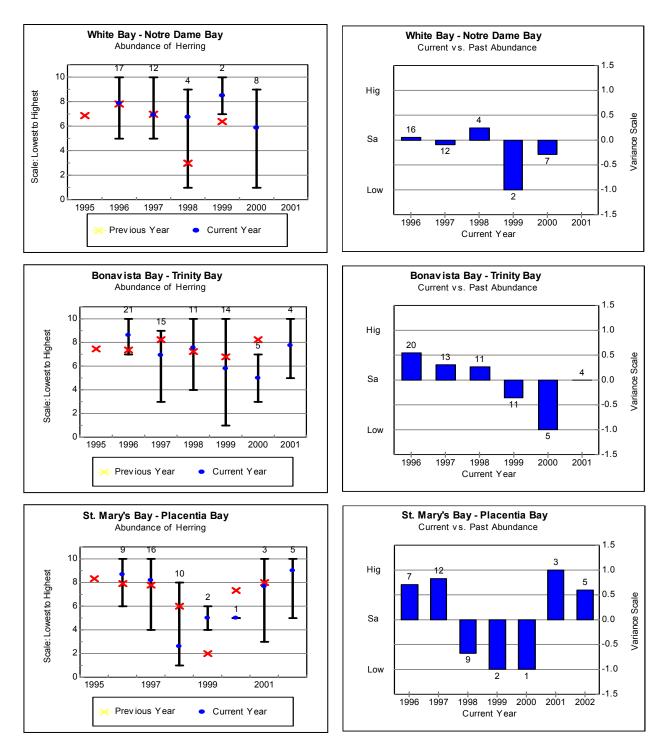


Figure 29. Responses to questions regarding abundance (numbers) of herring in home bay in current year and previous year (left panels) compared to when you first started fishing herring (right panels). Solid circles represent means for the current year; x's represent means for the previous year as estimated during the current year. Vertical lines represent range of responses; sample sizes are listed above each vertical line and bar.

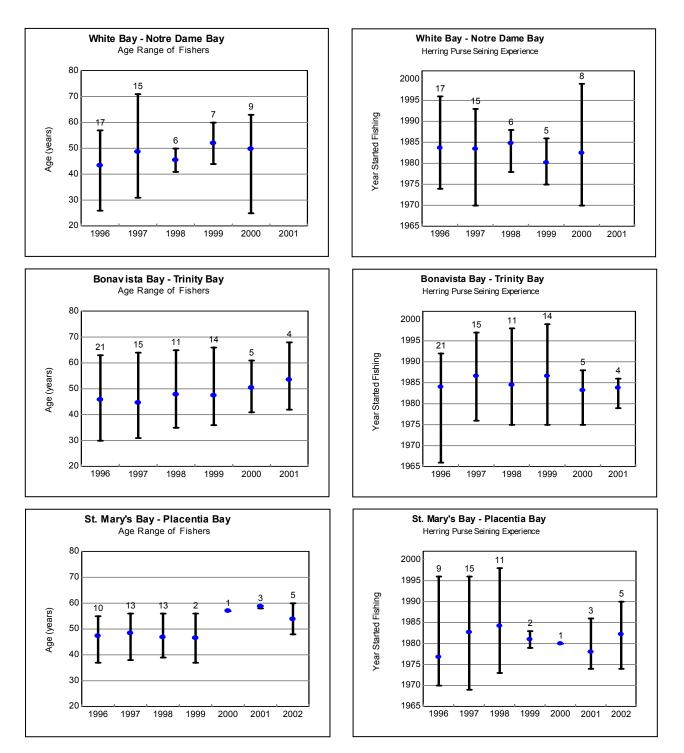


Figure 30. Age range and experience of purse seine fishers. Solid circles represent means for the current year, vertical lines represent the range of responses, and sample sizes are listed above each line.

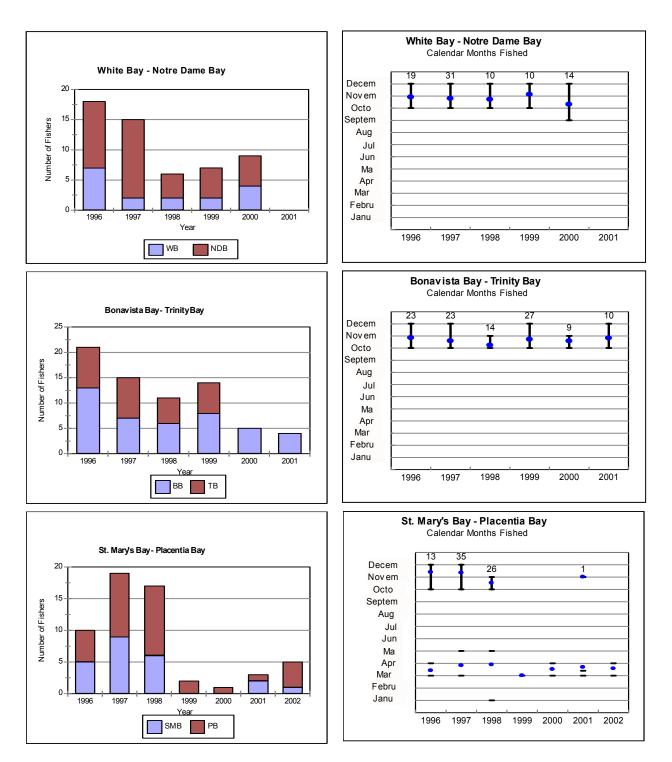


Figure 31. Responses to questions regarding bays fished (left panels) and months fished (right panels). Solid circles (right panels) represent means, horizontal bars represent the range of responses, and sample sizes are listed at the top.

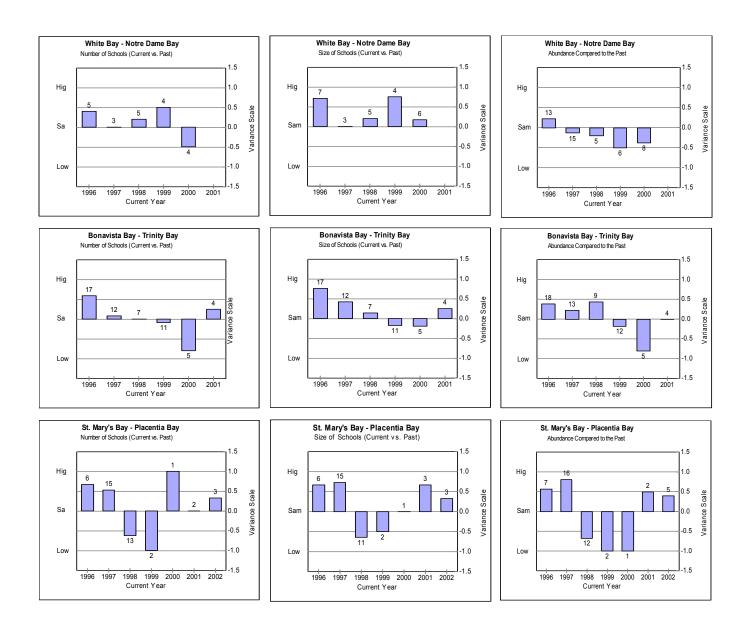


Figure 32. Responses to questions regarding the number (left panels) and size (middle panels) of herring schools detected (per day) during the fishery in the current year compared to the previous year, and abundance during the current year fishery compared to when you first started fishing herring (right panels). Sample sizes are listed above each bar.

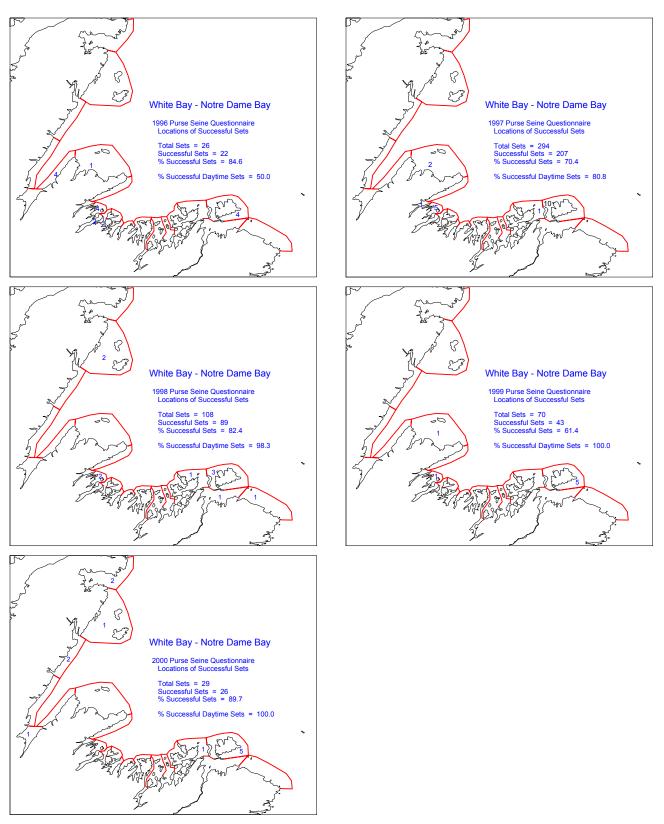


Figure 33. Responses to a question regarding locations of successful sets (sets in which herring were caught) in White Bay – Notre Dame Bay.

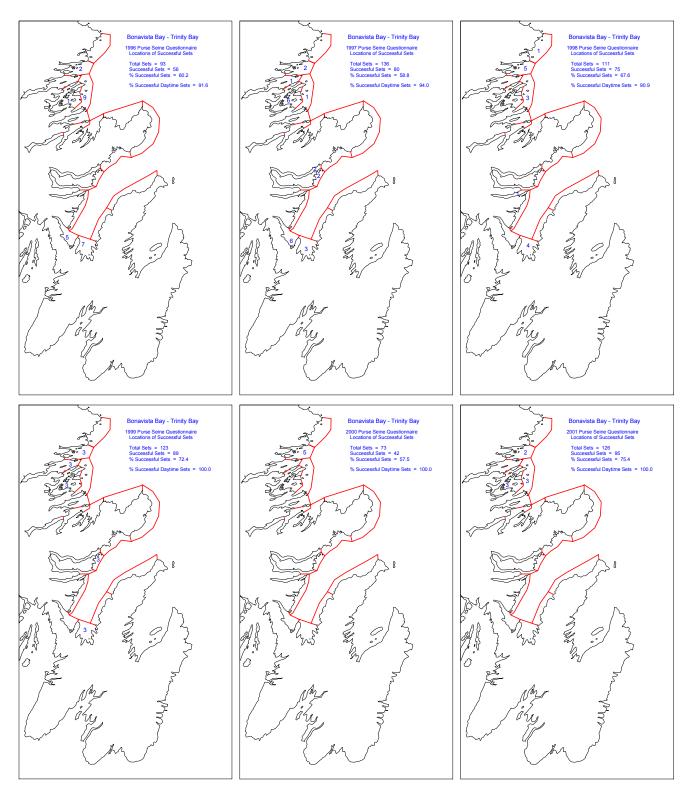


Figure 33 (cont.'). Responses to a question regarding locations of successful sets (sets in which herring were caught) in Bonavista – Trinity Bay.

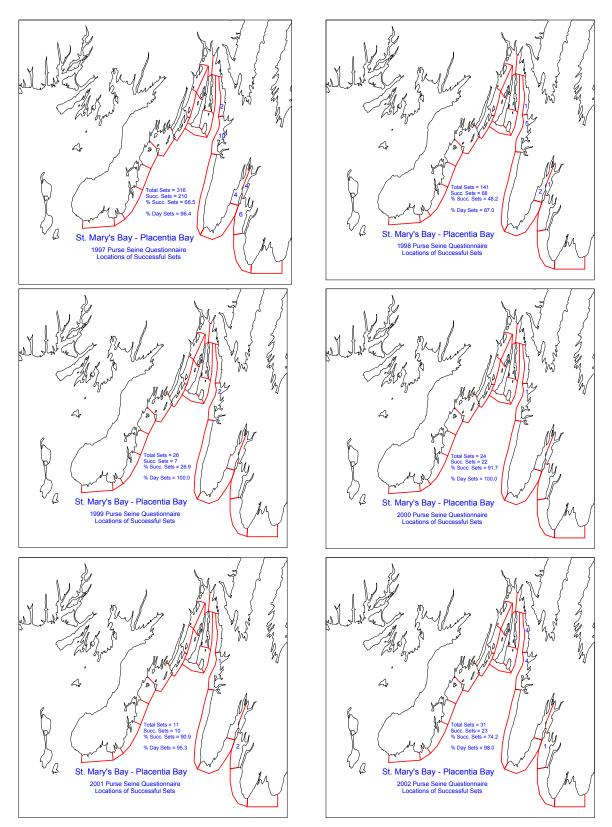


Figure 33 (cont.'). Responses to a question regarding locations of successful sets (sets in which herring were caught) in St. Mary's Bay – Placentia Bay.

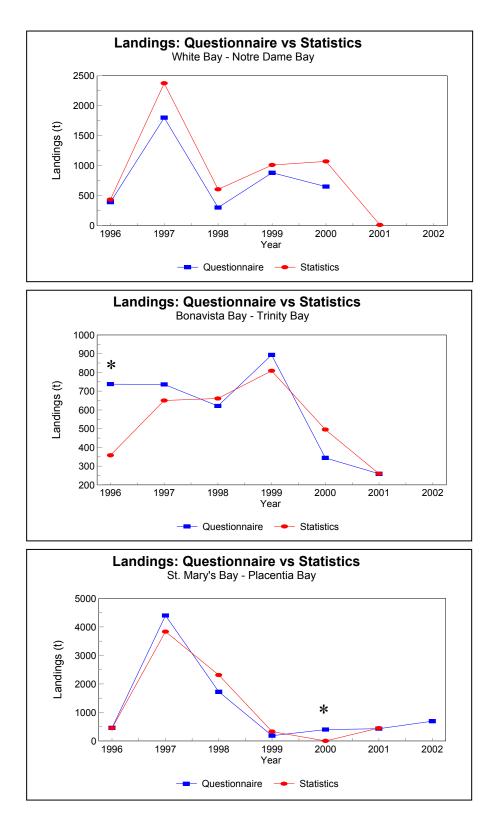


Figure 34. Comparison of landings from purse seine questionnaires and from commercial statistics, 1996 – 2001.

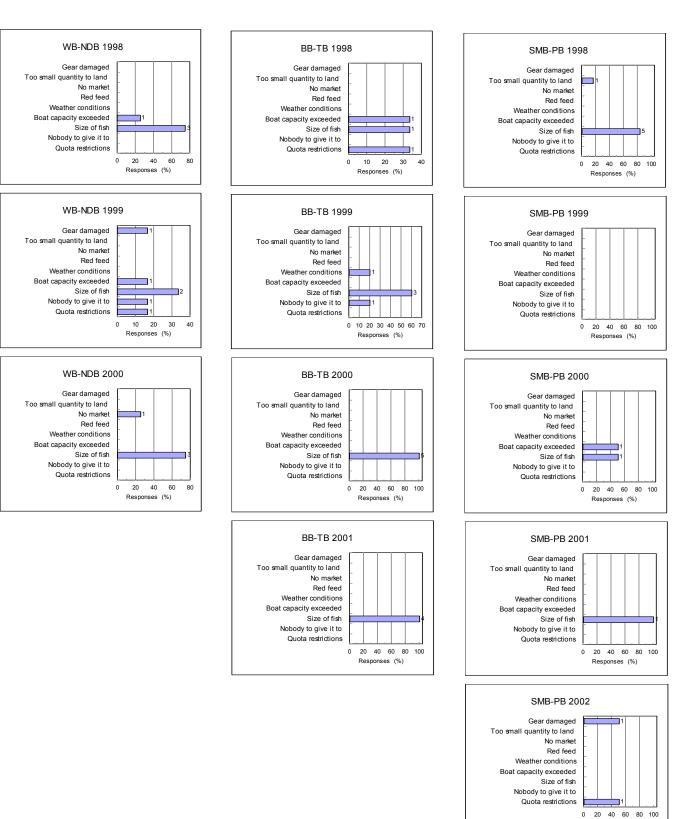


Figure 35. Responses to a question regarding why herring were discarded during the fishery.

Responses (%)

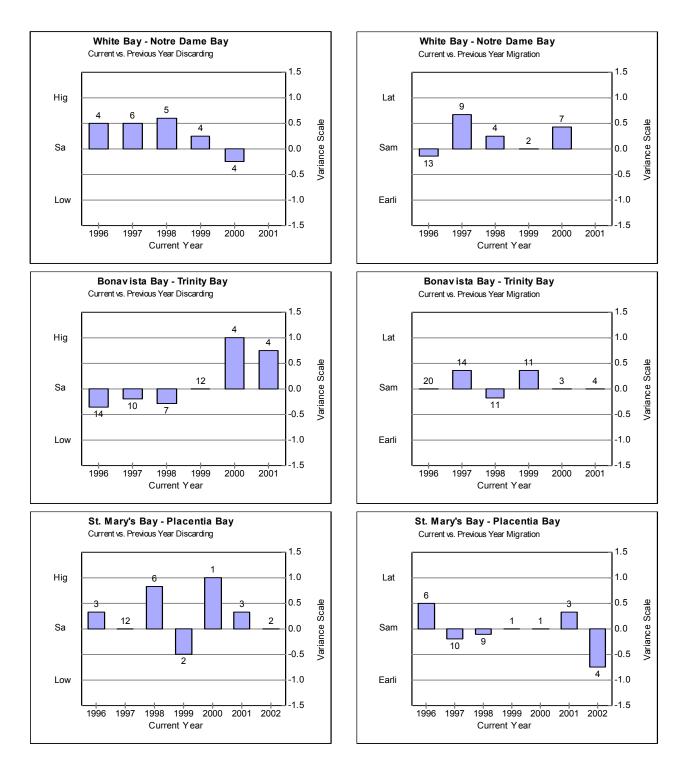


Figure 36. Responses to questions regarding the amount of herring discarded during the fishery in the current year compared to the previous year (left panels), and responses regarding the seasonal timing of herring migration in the current year compared to the previous year (right panels). Sample sizes are listed above each bar.

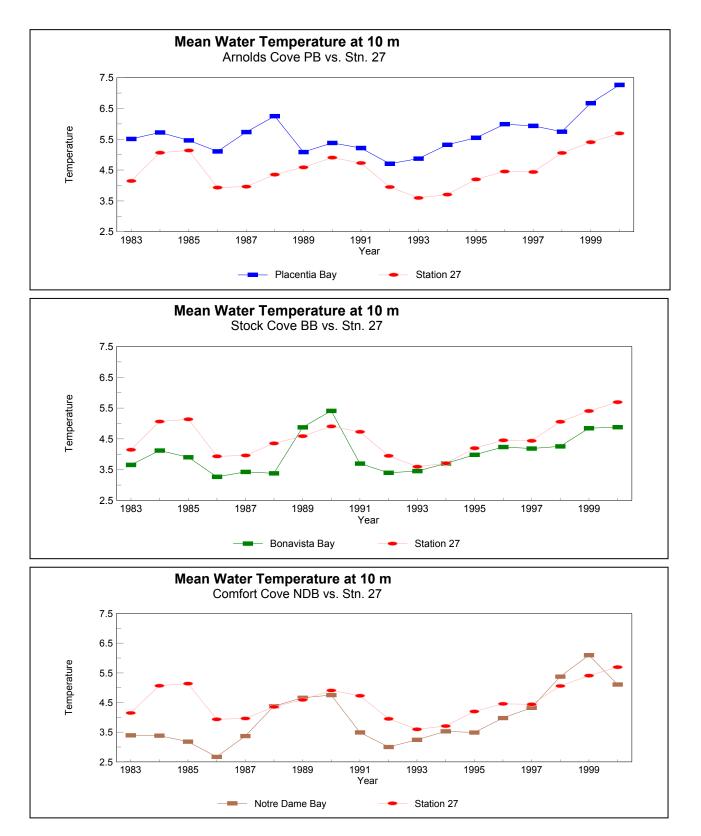


Figure 37. Comparison of water temperatures (two year running mean), 1983 – 2000, from Placentia Bay, Bonavista Bay, and Notre Dame Bay, with Station 27 (off St. John's).

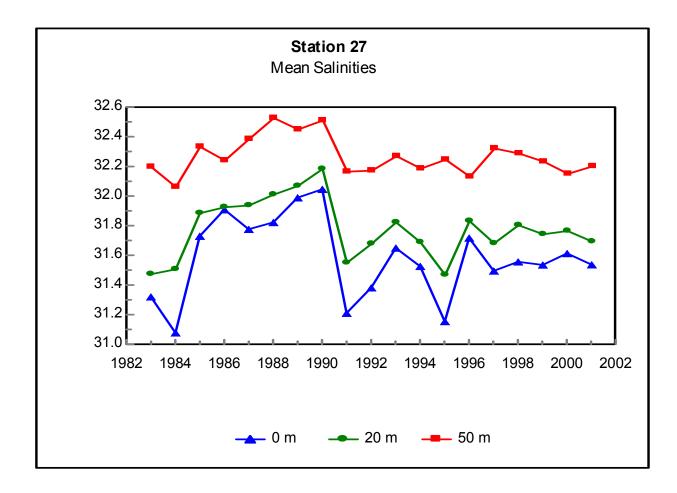


Figure 38. Mean salinities at 0, 20, and 50 m, from Station 27 (off St. John's), 1983 – 2001.

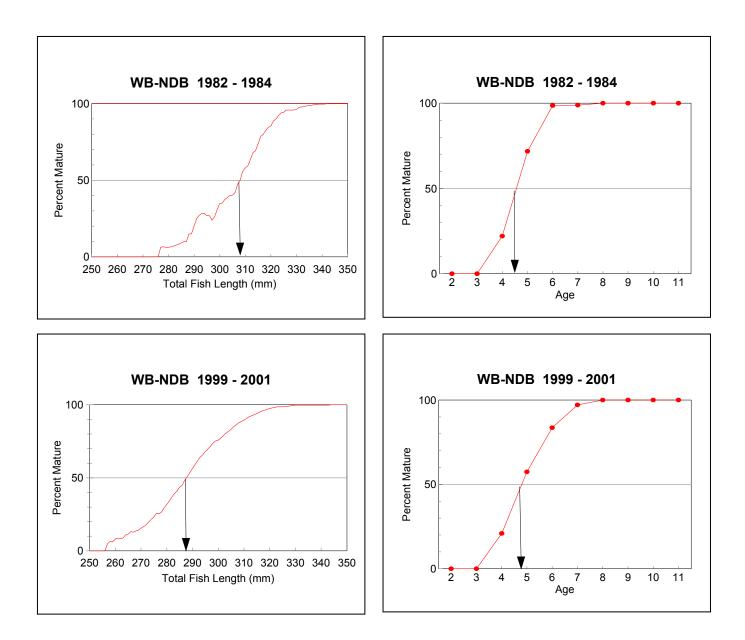


Figure 39. Comparison of length and age at maturity ogives for White Bay – Notre Dame Bay spring spawning herring for the periods 1982 – 1984 and 1999 – 2001.

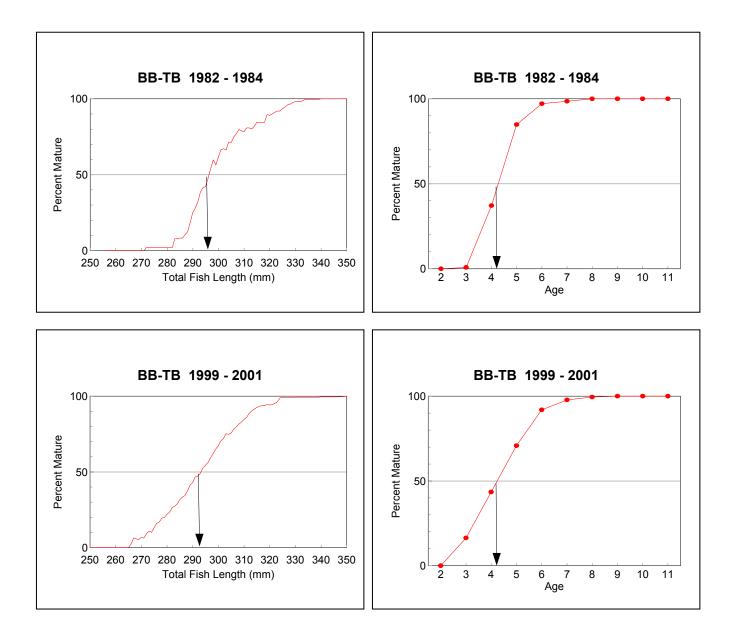


Figure 40. Comparison of length and age at maturity ogives for Bonavista Bay – Trinity Bay spring spawning herring for the periods 1982 – 1984 and 1999 – 2001.

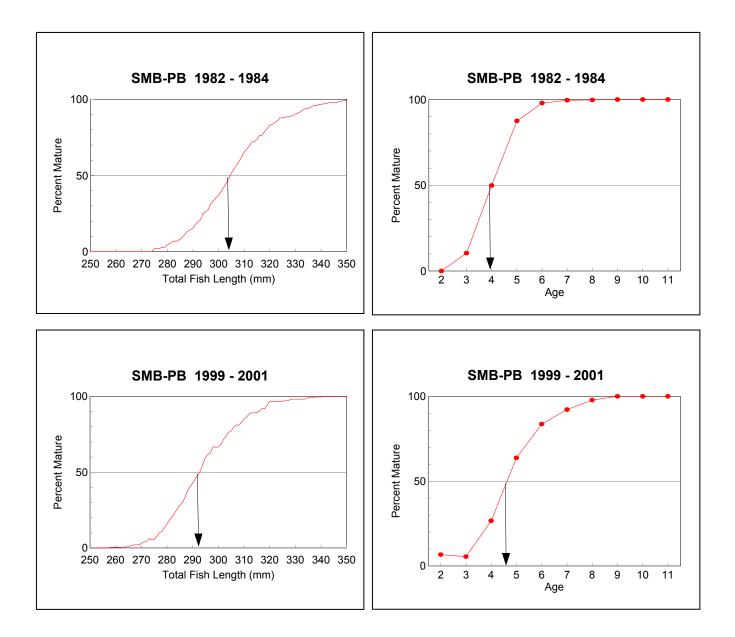


Figure 41. Comparison of length and age at maturity ogives for St. Mary's Bay – Placentia Bay spring spawning herring for the periods 1982 – 1984 and 1999 – 2001.

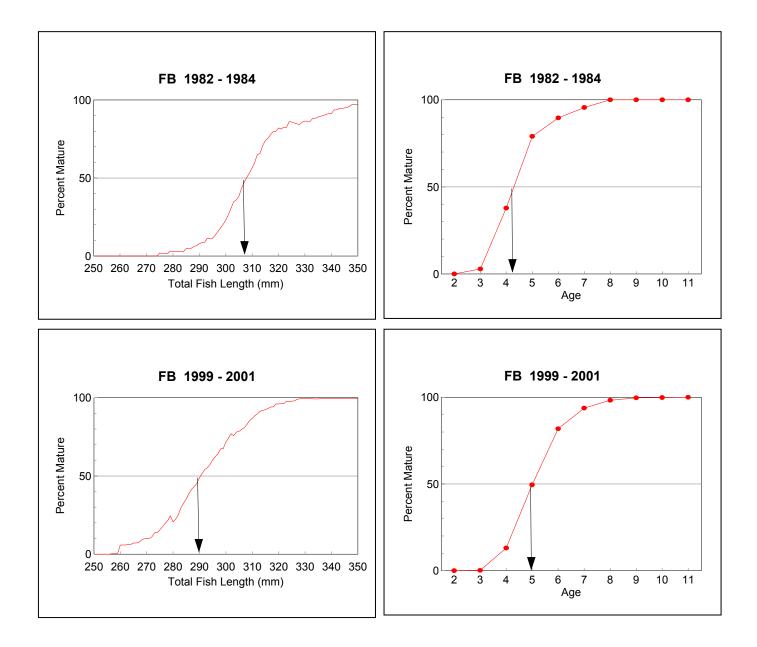


Figure 42. Comparison of length and age at maturity ogives for Fortune Bay spring spawning herring for the periods 1982 – 1984 and 1999 – 2001.

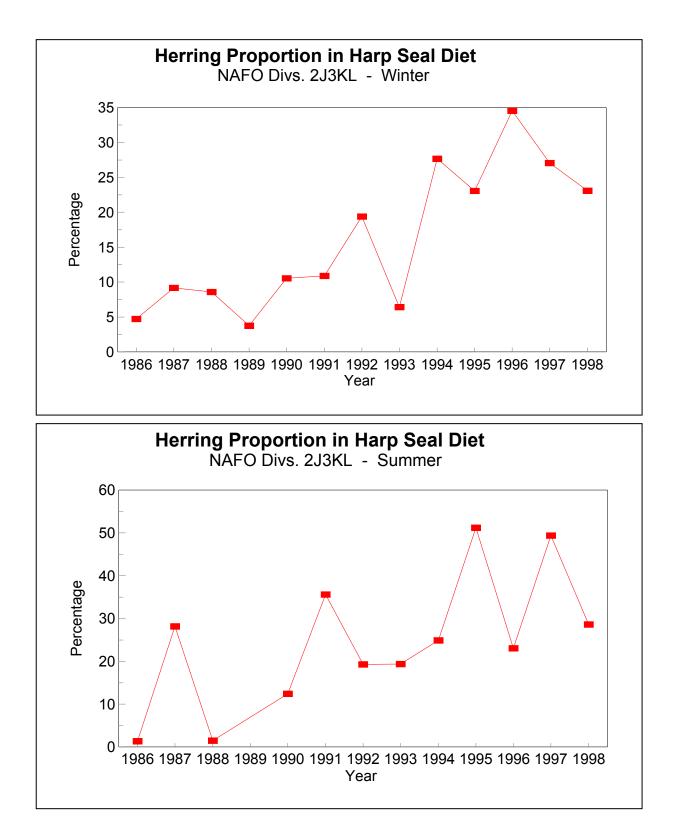


Figure 43. Proportion of herring in harp seal diet, winter and summer, in inshore areas of NAFO Div. 2J3KL, 1986 – 1998.

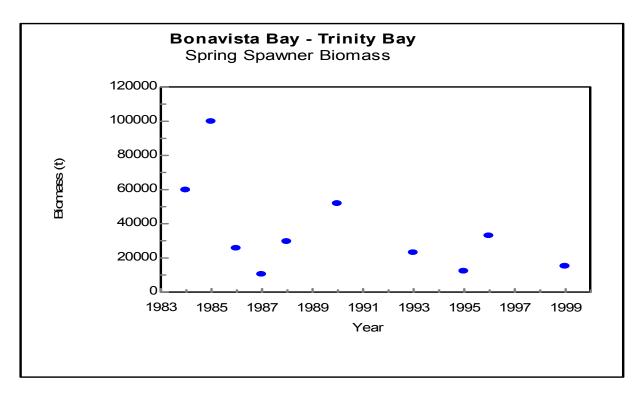


Figure 44. Comparison of acoustic biomass estimates for Bonavista Bay – Trinity Bay, 1984 – 1999.

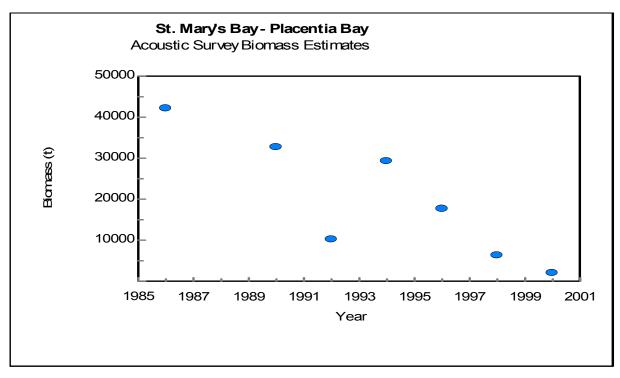


Figure 45. Comparison of acoustic biomass estimates for St. Mary's Bay – Placentia Bay, 1986 – 2000.