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Abstract

The problems of diagnosis for the multiplicative model are
shown to be primarily ones of leverage and influence. Partial
regression leverage plots are suggested as an appropriate dfagnostic
tool, however, the costs of producing these plots is large and existing
data flows do not allow scientists to examine the original data for
possible problems. A method which reduces the cost of partial

regression leverage plots while providing improved access to the data
is proposed.

Résumé

Les principaux problédmes diagnostiques posés par le modéle
multiplicatif en sont de point-levier et d'influence. On estime que des
courbes de régressions partielles des points-leviers seraient un outil de
diagnostic appropri&, Cependant leur colit de production est &levé et les
systémes actuels de traitement des donnSes ne permettent pas aux
scientifiques d'examiner si les données originales peuvent poser des
problémes. On propose une méthode qui réduit le coit de production de ces
courbes tout en am&l{iorant 1'accds aux données.



Introduction

Indices of abundance are fundamental elements for the
scientific management of fisheries. While there are many classes of
data that can be used to develop abundance indices, commercial
fisheries are often important sources of information. Catch and effort
data from commercial fisheries often provide longer time series and
more extensive coverage than can be obtained by other means. On the
other hand, data from commercial fisheries are subject to a variety of
biases and inadequacies over which scientists have little control.

Commercial catch and effort data are becoming increasingly
important for the activities of the CAFSAC Groundfish Subcommittee.
Abundance indices from research vessel surveys have exhibited patterns
of increasing variability with increased stock abundance (unpublished
data). Research vessel surveys in Atlantic Canada have also suffered
from the inevitable problems of changes in equipment (Koeller and
Smith, 1983). Requests for information and analyses relating to the
activities of the Task Force on Atlantic Fisheries have included such
items as projections of commercial catch rates. Although clearly a key
element in attempts to rationalize the industry, such projections
require estimates of catch rates from all major segments of the
fishery. Thus they are not compatible with the common practice of
developing abundance indices from data for a restricted set of gears,
areas, and months.

The practice of employing restricted data sets can be
criticized on the grounds that it ignores much of the available data,
introduces elements of subjectivity, and can be unduly influenced by
the effects of changes in fishing patterns or technology. The
multiplicative model (Robson, 1966; Gavaris, 1980), was developed with
the goal of allowing information from a variety of categories to be
incorporated into abundance indices. It also provides estimates of
relative fishing power that might be usefully employed in economic
investigations.

The multiplicative model, while no doubt an over=-
simplification of the true relationships between various categories of
effort, is capable of explaining a substantial fraction of the
variation in many sets of catch-effort data. Thus, while the
multiplicative model may someday be replaced by more realistic models
such as those discussed by Laurec (1977), it can be expected to play a
substantial role in fisheries management for some time to come.

The practical use of the muitiplicative model presents
significant problems. Its design is dictated more by the way fisheries
data is collected and processed than by the dictates of good or at
least conventional statistical practice. In particular, the
multiplicative model employs a regression consisting entirely of dummy
variables. This design, while precluding some of the problems that



occur in using conventional regression models, creates other problems.
The multiplicative model can result in many of the parameters being
determined primarily by a small number of data points. This occurs
when the total number of categories is large in relation to the number
of observations. In statistics, this is known as the problem of
"influential data", a topic that has not yet entered into the
discussions provided by most introductory textbooks on regression.

Problems of influential data in regression are easily
diagnosed using graphical techniques when there are only two carriers
(this paper employs the terminology of Mosteller and Tukey, 1977). For
regression problems with a Targe number of carriers the partial
regression leverage plot (Larsen and McLeary, 1972) or component and
component plus residuals plot (Daniel and Wood, 1980) provides a useful
diagnostic tool, although the computational effort is high if
diagnostic plots are created for all the carriers. The development of
criteria to pinpoint carriers for diagnostic examination is currently
the subject of active research.

This paper has two goals. The first is to demonstrate that
colinearity is not a practical concern in the use of the multiplicative
model. This has important consequences for the choice of numerical
procedures used to solve the regression problem. The second is to give
a preliminary report of our findings regarding the problem of leverage.
Qur central conclusions are:

1. leverage problems can be expected when there are few observations
in which a particular carrier is involved;

2. existing software available to assessment biologists (SPSS, SAS,
BMDP) does not provide the means to obtain diagnostics currently
considered necessary to deal with leverage problem (some
diagnostics can be obtained using MINITAB); and

3. partial regression leverage plots can be a useful diagnostic tool,
although we are unable to offer definitive criteria for the
selection of carriers to be examined.

Colinearity in the Multiplicative Model
The problem of colinearity does not arise (except as a
trivial case) until one considers regressions with more than two
carriers. Consider, for example, the regression model
y = byxy + baoxp + ¢ (1)
where the carriers are x; and x2, and € is the associated

stochastic effect. This model can be visualized in the 3-dimensional
(x1sXx2,y) space as a plane (Figure 1). If the data
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consist entirely of observations for which xj1 and xj2 lie

close to a line, as do the first ten points in Figure 1, then the plane
defined by (1) is poorly determined., The consequences of colinearity
include both a loss of numerical precision in carrying out the
calculations and also large statistical uncertainties associated with
the estimates for some of the parameters.

It is useful at this stage to observe that a single
“maverick" observation such as point number 11 in Figure 1 would
eliminate the colinearity. Such an observation should, however, be
subject to careful examination. Maverick observations often arise as a
consequence of errors in processing data. Furthermore, a small change
in such an observation will greatly alter the fitted regression surface
by causing it to shift around the line determined by the remaining
observations. This effect is known, for obvious reasons, as
"leverage", and cannot be detected from conventional analyses of
regression residuals because the residual at an influential point will
be small. The problem of leverage will be discussed further below.

Returning to the problem of colinearity, it is important to
note that the design of the multiplicative model requires the carriers
to be vectors of 0's and 1's. Consider, for example, the situation
illustrated in Table 2, which is patterned after the example in
Robson's (1966) original description of the multiplicative model. If
the first gear category and year are chosen as standards for
comparison, then p; = 0 and q; = 0, Teaving a total of five
parameters to be determined from the regression model y = Xb, where b
is defined as

b = (C, p2, P2, 92,93)
and X has five columns and a row for each observation.
If all of the nine possible observations were available,

then, taking the cells of Table 2 from left to right in successive
rows :
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The use of the two constraints, p; = q1 = 0 ensures that
the columns of X are linearly independent, provided there are
observations in all cells. Frequently, however, not all cells have
data. Consider, for example, the case where gear three was observed
only in year 3, and the other gears were not observed in year 3. Then

(3)

>

1]
el et el o
O = OO0
OO0 Oo
O~ O—~O
oo

has two identical columns (3 and 5) corresponding to the parameters

p3 and q3 associated with gear 3 and year 3. These data cannot
provide unique estimates for both p3 and q3. Even if one parameter

is omitted so that the regression problem can be solved, it is
impossible to say how much of the effect of the remaining parameter is
due to the gear and how much is due to, for instance, a change in
abundance of the stock being fished. The matrix in (3) demonstrates
precise colinearity of columns 3 and 5. Although some linear
regression programs will cheerfully report a solution to such problems
(generally these programs estimate b = p3 + q3 gnd rgport the

values of p3 and g3 such that b = p3 + q3 and pg + q§

is minimized), most abort after issuing an error message.

The colinearity problem which results when some observations
do not overlap with others is of concern primarily for the problems of
interpretation that arise when a single parameter combines several
different effects. Because of the special nature of the design matrix,
X, in the multiplicative model, the problem of near colinearity that
can occur with more general models does not arise., Thus it is not
necessary to use regression software designed to handle problems with
near collinearity. The only caveat to this statement is that rounding
errors could conceivably make an exactly colinear matrix appear
acceptable to some regression programs. Thus it is desirable to detect
cases of exact colinearity before attempting to carry out a regression.
Since this occurs when there is no overlap between gear categories in
area or time, it is generally easy to detect given a knowledge of the
fishery.

Leverage and Influence

Leverage, as discussed in the previous section, refers to the
potential effect on regression estimates of maverick observations. In
this section we will concentrate on a graphical method for
investigating the effect of such observations on estimates for
regression parameters. The principle tool for such investigations is
the partial regression leverage plot., Because each partial regression
leverage plot requires an additional regression calculation, it is



certainly desirable to develop criteria that can be used to pinpoint
observations whose leverage is dangerously high. Recent literature on
the problem of leverage diagnostics has been largely concerned with the
search for such criteria, but no entirely satisfactory results are
currently available.

The idea of using partial regression leverage plots is
relatively new. The earliest published description of these plots is
that of Larsen and McCleary (1972). Daniel and Wood (1980) introduced
a variant which includes the predicted line, calling them "component
and component plus residual plots". A partial regression leverage plot
is based on the comparison of two sets of residuals R; and
R(j), where Ri is the vector of partial X residuals obtained by
regressing the j-th column of X on the remaining columns. The partial
y residuals, R i) is the vector of residuals obtained by
omitting column j from the original regression for y. The latter
vector can be calculated from the full regression as

R3) = R + bjXy

where R is the vector of residuals from the full regression and Xi is
the j=th column of X. It can be shown that the slope of a least-
squares regression line through the origin on the plot of R(;

against Rj will be bj (Mosteller and Tukey, 1977). Thus one”can

easily visualize the effect of any single observation on the estimate
for b; as is done for single variable regressions. In this regard it
is very helpful to follow Daniel and Wood's {1980) strategy and include
the regression line in the plot.

Partial regression leverage plots for the data in Table 1 are
shown in Figures 2-4. In each case, the maverick observation clearly
plays the determining role in the estimates for the parameters. It
should be noted that, because the regression line passes close to the
maverick point, this determining role cannot be detected using
conventional residual plots.

The application of partial regression leverage plots to
problems with many parameters would be greatly simplified if some
criteria were available to select the observations with the greatest
leverage for examination. A number of criteria have been proposed in
the literature. These invariably involve the diagonal elements of the
"hat" matrix, H, which is defined formally as the n x n matrix:

Ho=x(xTx)~1 xT

This matrix is too large to be computed in its entirety for problems
involving more than a couple hundred observations. While it is
possible to calculate the individual diagonal elements of H, few
statistical packages are designed to provide this information (Hoaglin
and Welsch, 1978).



In order to get some feeling for the behaviour of the hat
matrix diagonal elements, simulated catch-standardization data were
generated for n = 200, p = 30. Leverage is associated with large
values in the diagonal of H, but there is currently no accepted
criterion for levels that would be too high. The average value of the
diagonal elements is p/n, but the level 2p/n suggested by Belsley et
al. (1980) is considered by others to be too high (Huber, 1983;
Krasker and Welsch, 1982). In the simulations it was found that the
largest values of hjj were generally, but not always, associated
with the columns of X that had the fewest 1's. This is intuitively
quite reasonable since, if few observations affect a given parameter,
each will play an important role. It should, however, be noted that
the number of observations does not entirely explain the leverage
values, so that it is highly desirable to calculate the diagonal
elements of H.

In the absence of quantitative criteria to serve as a quide
in detecting influential observations, we have relied heavily on
partial regression leverage plots. In particular we have examined an
actual data set consisting of 305 observations in which one observation
(no. 287) was found to have been coded as 58 (where " " indicates a
blank) in the effort field. This coding may be read variously as 58 or
580 depending on the language, compiler, and operating system being
used. Table 3 presents the parameter estimates obtained for the two
possible values of effort in record no. 287. It can be seen that two
parameter estimates (variables 10 and 38, corresponding to B[11] and
B[39]) change by almost one standard error. It is clearly important to
have diagnostic procedures which can draw our attention to any
observation that can have such a major effect on the results. Because
observation no. 287 has high leverage, it does not stand out (indeed,
it is lost in the crowd) in conventional residual plots (Figures 5, 6).
It does, however, stand out in certain of the partial regression
leverage plots (Figures 7, 8). Note, however, that other observations
also appear to exert considerable influence. Of particular concern is
the partial regression leverage plot for variable 38 (B[39])
representing the final year. This parameter is directly related to the
abundance estimate that is most critical to tuning a sequential
population analysis.

Here we face a dilemma, Having identified several
observations which appear to depart from the trend in the rest of the
data, we would like to examine them in more detail. In most cases, we
will not find so obvious an ambiguity as was the case for observation
number 287 in our example.

In summary, then, parameter estimates obtained using the
multiplicative model, as with other forms of regression analysis are
sensitive to maverick observations. While partial regression leverage
plots appear to be useful in identifying these observations, they do
not tell us what to do about these observations. Such decisions should



be based on an investigation of the underlying data which contribute to
a particular aggregated regression datum. This has led us to propose a
novel approach to regression diagnosis in the following section.

It is important to note that partial regression leverage
plots do not show the weight placed on a particular observation.
Changes in the weights used for a regression can dramatically affect
the influence of an observation with high leverage. This effect can be
judged by comparing partial regression leverage plots {with regression
Vine included) for both weighted and unweighted regressions.

A New Approach to Diagnostics for the Multiplicative Model

The multiplicative model presents a rather special type of
regression problem. The principle problems that must be guarded
against when using this model are related to leverage and influence.
In the previous section it was noted that the current inability to
examine the components of the individual regression datum makes it
difficult to deal with the problem of leverage.

Leverage and influence fall outside the domain of existing
statistical packages. The software that has been developed for
investigating such problems is of recent design and thus assumes that
the user has access to large central memory or virtual memory adequate
to hold data and working arrays. The most straight forward approach to
developing practical solution methods for the multiplicative model
would be to use the raw (disaggregated) data. This, however, requires
virtual memory and, in any case, represents a wasteful expenditure of
computing resources. For the multiplicative model, the estimates of
the regression parameters will not be altered if suitable estimates of
location for the individual observations in each category are used in a
much smaller (properly weighted) regression. The real value of
including all the data is for diagnostic analyses. This purpose can be
met using the regression coefficients obtained from the aggregated data
to calculate residuals for the disaggregated data.

The procedure described in the preceeding paragraph
considerably reduces the computational effort required to obtain
residuals or partial residuals. Thus it becomes computationally
feasible to examine a large number of partial regression leverage
plots. This fact reduces the need for accurate selection criteria,
thus reducing one of the key difficulties in the analysis of leverage
problems. Indeed, from our experience the perspective gained from
examining a large number of partial regressions can be quite helpful.
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This approach raises a number of issues that require further
study:

1. 1Is the current method of aggregation (i.e. simply summing values
of catch and effort) appropriate when the data are to be used with
the multiplicative model?

2. Would it be useful to weight the regression by the number of
observations contributing to each regression datum?

3. Are existing graphical displays adequate? In particular, how can
a single observation be identified from a plot?
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Artifical data set for Figures 1-4.

Table 1.
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Table 2. Multiplicative model for the catch rates of three gears in
three years. Based on the example of Robson (1966). Entries
in table are the model terms for the natural log of catch
rate.

Year
Gear 1 2 3
1 c+pp taten c+pytqzter c+prtaqster

2 ¢c+px +q; t+exn C +p2+tqz + €2 C+p2 t gyt ey

3 cC+py +qg; + ez C+ps+tqxtes C+ps +qg; *+ e,

Pi = effect of gear

9; = effect of year

e.. = stochastic error
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Table 3a. Regression coefficients, and analysis of variance for

multiplicative model. a. EFFORT [287]1=58.

REGRE3SICH OF MULTIPLICATIVE MODEL

WULTIFLE i!):tw’!'OO!QtGOéEO
NULTIPLE R SQUARED,,,,, 0,427

AMBLTSIS OF YRRIAMCE

SQURCE CF ILME OF REAH
VARIATION oF SGUARESR FQUARES FWVALUE
INTERCERT 11,3048 1,504€1
© SEGRESIION 33 5,388 1,77359 5,109
TTPE T 3,868 3475280 11,399
TYPE 3 11 147981 1,343€9 3,963
TreE 1 34,3018 S.424871 1,459
A 10 1,038t 1,00320 2,957
RESIDUALS %6 9.022E 3.392E78
ToTAL 305 1.711E2

REGRESSION QOEFFIQIEKRTS

VARIABLE COEFFICIENT

5TD, ERROR MO, 0BS,
INTERCERY 3,201 9,231 305
1 9.080 9160 19
2 "0.145 3,138 oy
3 "0.02 9,148 19
4 2.367 2,119 3
3 ~4.583 0,177 i
8 T0,77% 2,290 3
7 0,480 hils 7
8 0,534 5,272 ]
9 2.937 0,188 17
i 7,118 4,230 13
i “0:16Q 0,227 24
2 "0.192 0,233 19
13 "0,019 0,220 2%
14 0,252 0,227 2
13 0,146 04213 49
15 5231 3,217 37
17 7,123 4,218 34
i “0.G60 3,245 3%
1 "9 182 3,32 i
2 34042 0,242 14
21 T2.128 3,182 17
22 3073 3,176 19
2 T30 377 %172 2
24 “hagz 0.187 2
2 "4 9,204 12
25 73,399 0,275 -
a7 T8,3817 2,234 7
23 0,231 94253 7
29 ~0.53%6 0.213 1
30 “0.418 0,225 10
3 “0.441 2,198 i8
32 0414 §.187 13
33 “3.170 9,229 {1
4 T3.783 9,24 2
33 "0 864 4,242 3
36 “0.28168 3,172 22
37 T3, 374 J.158 3
8 T3.120 0,17 24



Table 3b.

Regression coefficients and
analysis of variance for mult-
plicative model.

b. EFFORT [287]1=580.

REGRESSIOH OF MULTIFLICATIVE MOLEL

“UL'IPLE RIDD!O‘O..O..!00638
MULTIFLE R SRUARED,,,,,0,404

ANALTSIS OF VARIANCE

SOUKRCE OF
VARIATION

IHTERCEFY

FEGRESS10H
TVFE
TIFE 7
TYFE 3
TVFE 4

RESTDUALS

T0TAL

SUM5 OF HE Bit
oF SAUAKES SQUARES F-VALUE
1 1.4608€1 1.608E]
18 6.,442F) 1.695E0 4,794
9 3226E% 3. 585E0 10,138
11 1.52i€] 1,38380 3.910
B 4.861£0 3,826E71 1,448
10 101481 1,01450 2,887
286 9.40681 3.534871

305 1,74582

REGRESSION COEFFICIENTS

VARTABLE

INTERCEFY

T~ O L e Ld B e

COEFFICIENT

“0,140
~0.088
“0.154
70,012
0.358
70,4608
70,603
0,633
0,513
0,923
70,303
“0.168
04198
0,025
0,241
0.135
0,219
0' 107
70,075
“0.183
G.051
0,137
0,084
"0,400
“0.294
70,420
“0.418
“0.541
205
“0.601
"0,404
“0.144
70,439
0N
“0,780
0,679
70,223
"0.293
"0,237

3Th, ERKOK

0.236
0,143
0.140
0.471
0,122
0,181
0.294
0.118
8,277
0.192
0,255
0,211
8,238
0,224

232
6.219
0,222
0,222
0.220
0.244
0247
0.184
0,179
0,175
0.1
0,208
0.282
6,25
0,240
0,217
0,230
0,202
8,191
0,234
.14
6.247
6.178
0.170
0,183

nO, 0BS,

27
20

- SI -



Figure 1. Three dimensional graph of the regression model (1).
Observation no. 1l is a 'maverick' point with a large
leverage value. Data are given in Table 1.

o - cbservation in the (xl,xz) plane

T - location in the plane determined by the .
regression model y=b1x1+b2x2
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Fiqure 2. Partial regression leverage plots for data of Table 1

with Y([{11]=0.

s apmwa - - - -
FSRTIAL REGAS33ION LIVERAGE FLIT AOR ar <1
Aore s b i
ERER 0 3
¥
{
4
3
4 Aanl
PROSYES
i
i 3
i
~ J
. 3. 006y
N i 3
End ]
k4 H
- +
. wpm i 3
4 3,502+
3
-

-+
i

Lt ST S TRTVIT 901 ]
L)
-
<
<> 3
o~
 aam Y SE NS
(1]

3
0,144
T 3
f
“5,0184 ?
L.

i 3 ' 2 3
! parrraL 2 TESTDUAL”Y

*ARTIAL REGREFSION LEVERAGE PLOT FCR 3{ 27
1,4+
K
nel 55
1.3 38
57
E Q’0¢
el
: J
1 -5 =i
I 0,5
L 4
Y !
N 1.0t
3
é Tielr
3
_Er ? ’
i
i
i
"5
— 3
&»%?, . .
i =7 - =3 =7 ;
3 4 ? paRTIAL' T RESITUAL® ) ‘



- 18 -

Figure 3. Partial regression leverage plots for data of Table L
with Y{1l]=1.
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Figure 4. Partial regression leverage plots for data of Table 1
with Y{11l}=2.
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EFFORT [287]

Expected normal value plots for regressions of Table 3b.
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Figure 7a.

a.

Partial regression leverage plots for variable 10 (B[11}) in regressions of ‘fable 3a.
EFFORT [287]=58.
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Figure 8a. Partial regression leverage plots for variable 38 (B[39]) in regressions of Table 3a.
a EFFPORT [287]=5R.
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Figure 8b.

Partial regression leverage plots for variable 38 (B{39]) in regressions of Table 3p,

b. EFFORT [287]=580.
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