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Abstract 

The problems of diagnosis for the multiplicative model are 
shown to be primarily ones of leverage and influence. Partial 
regression leverage plots are suggested as an appropriate diagnostic 
tool, however, the costs of producing these plots is large and existing
data flows do not allow scientists to examine the original data for 
possible problems. Amethod which reduces the cost of partial 
regression leverage plots while providing 1mproved access to the data 
15 proposed. 

IIstlnl 

les pr1nc1paux problimes d1agnost1ques pos's par 1e modele 
multiplicatif en sont de point-levier et d4influence. On estime que des 
courbes de regressions part1elles des points-leviers seraient un outil de 
diagnostic approprie. Cependant leur cout de production est elevl et les 
systimes actuels de traitement des donnies ne permettent pas aux 
sc1entif1ques d'examiner s1 les donnles origtnales peuvent poser des 
problemes. On propose une mlthode qui rldutt le coOt de production de ces 
courbes tout en amfl10rant l'acc's lUX donn.es. 
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Introduction 

Indices of abundance are fundamental elements for the 
scientific management of fisheries. While there are many classes of 
data that can be used to develop abundance indices, commercial 
fisheries are often important sources of information. Catch and effort 
data from commercial fisheries often provide longer time series and 
more extensive coverage than can be obtained by other means. On the 
other hand, data from commercial fisheries are subject to a variety of 
biases and inadequacies over which scientists have little control. 

Commercial catch and effort data are becoming increasingly
important for the activities of the CAFSAC Groundfish Subcommittee. 
Abundance indices from research vessel surveys have exhibited patterns 
of increasing variability with increased stock abundance (unpublished 
data). Research vessel surveys in Atlantic Canada have also suffered 
from the inevitable problems of changes in equipment (Koeller and 
Smith, 1983). Requests for information and analyses relating to the 
activities of the Task Force on Atlantic Fisheries have included such 
items as projections of commercial catch rates. Although clearly a key 
element in attempts to rationalize the industry, such projections
require estimates of catch rates from all major segments of the 
fishery. Thus they are not compatible with the common practice of 
developing abundance indices from data for a restricted set of gears, 
areas, and months. 

The practice of employing restricted data sets can be 
criticized on the grounds that it ignores much of the available data, 
introduces elements of subjectivity, and can be unduly influenced by 
the effects of changes in fishing patterns or technology. The 
multiplicative model (Robson, 1966; Gavar;s, 1980), was developed with 
the goal of allowing information from a variety of categories to be 
incorporated into abundance indices. It also provides estimates of 
relative fishing power that might be usefully employed in economic 
investigations. 

The multiplicative model, while no doubt an over­
simplification of the true relationships between various categories of 
effort, is capable of explaining a substantial fraction of the 
variation in many sets of catch-effort data. Thus, while the 
multiplicative model may someday be replaced by more realistic models 
such as those discussed by Laurec (1977), it can be expected to playa 
substantial role in fisheries management for some time to come. 

The practical use of the multiplicative model presents 
significant problems. Its design is dictated more by the way fisheries 
data is collected and processed than by the dictates of good or at 
least conventional statistical practice. In particular, the 
multiplicative model employs a regression consisting entirely of dummy
variables. This design, while precluding some of the problems that 
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occur in using conventional regression models, creates other problems. 
The multiplicative model can result in many of the parameters being 
determined primarily by a small number of data points. This occurs 
when the total number of categories is large in relation to the number 
of observations. In statistics, this is known as the problem of 
"influential data", a topic that has not yet entered into the 
discussions provided by most introductory textbooks on regression. 

Problems of influential data in regression are easily
diagnosed using graphical techniques when there are only two carriers 
(this paper employs the terminology of Mosteller and Tukey, 1977). For 
regression problems with a large number of carriers the partial
regression leverage plot (Larsen and McLeary, 1972) or component and 
component plus residuals plot (Daniel and Wood, 1980) provides a useful 
diagnostic tool, although the computational effort is high if 
diagnostic plots are created for all the carriers. The development of 
criteria to pinpoint carriers for diagnostic examination is currently 
the subject of active research. 

This paper has two goals. The first is to demonstrate that 
colinearity is not a practical concern in the use of the multiplicative 
model. This has important consequences for the choice of numerical 
procedures used to solve the regression problem. The second is to give 
a preliminary report of our findings regarding the problem of leverage. 
Our central conclusions are: 

1. 	 leverage problems can be expected when there are few observations 
in which a particular carrier is involved; 

2. 	 existing software available to assessment biologists (SPSS, SAS, 
BMDP) does not provide the means to obtain diagnostics currently 
considered necessary to deal with leverage problem (some 
diagnostics can be obtained using MINITAB); and 

3. 	 partial regression leverage plots can be a useful diagnostic tool, 
although we are unable to offer definitive criteria for the 
selection of carriers to be examined. 

Colinearity in the Multiplicative Model 

The problem of colinearity does not arise (except as a 
trivial case) until one considers regressions with more than two 
carriers. Consider, for example, the regression model 

(1) 

where the carriers are xl and x2, and € is the associated 
stochastic effect. This model can be visualized in the 3-dimensional 
(x1,x2,y) space as a plane (Figure 1). If the data 
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consist entirely of observations for which xiI and xi2 lie 
close to a line, as do the first ten points in Figure 1, then the plane 
defined by (1) is poorly determined. The consequences of colinearity 
include both a loss of numerical precision in carrying out the 
calculations and also large statistical uncertainties associated with 
the estimates for some of the parameters. 

It is useful at this stage to observe that a single 
umavericku observation such as point number 11 in Figure 1 would 
eliminate the colinearity. Such an observation should, however, be 
subject to careful examination. Maverick observations often arise as a 
consequence of errors in processing data. Furthermore, a small change 
in such an observation will greatly alter the fitted regression surface 
by causing it to shift around the line determined by the remaining 
observations. This effect is known, for obvious reasons, as 
IIleverageU, and cannot be detected from conventional analyses of 
regression residuals because the residual at an influential point will 
be small. The problem of leverage will be discussed further below. 

Returning to the problem of colinearity, it is important to 
note that the design of the multiplicative model requires the carriers 
to be vectors of OIS and lis. Consider, for example, the situation 
illustrated in Table 2, which is patterned after the example in 
Robsonls (1966) original description of the multiplicative model. If 
the first gear category and year are chosen as standards for 
comparison, then PI = 0 and ql = 0, leaving a total of five 
parameters to be determined from the regression model X = Xb, where b 
is defined as ­

and X has five columns and a row for each observation. 

If all of the nine possible observations were available, 
then, taking the cells of Table 2 from left to right in successive 
rows: 

1 0 0 0 0 
1 0 0 1 0 
1 0 0 0 1 
1 1 0 0 0 

X = 1 1 0 1 a (2 ) 
1 1 0 0 1 
1 0 1 a a 
1 0 1 1 0 
1 0 1 0 1 
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The use of the two constraints, PI =qi =0 ensures that 
the columns of X are linearly independent, provided there are 
observations in all cells. Frequently, however, not all cells have 
data. Consider, for example, the case where gear three was observed 
only in year 3, and the other gears were not observed in year 3. Then 

X = 
1 
I 
I 
I 
1 

0 0 0 
0 0 I 
100 
1 0 1 
0 I 0 

0 
0 
0 
0 
1 

(3) 

has two identical columns (3 and 5) corresponding to the parameters 
P3 and q3 associated with gear 3 and year 3. These data cannot 
provide unique estimates for both P3 and q3. Even if one parameter
is omitted so that the regression problem can be solved, it is 
impossible to say how much of the effect of the remaining parameter is 
due to the gear and how much is due to, for instance, a change in 
abundance of the stock being fished. The matrix in (3) demonstrates 
precise colinearity of columns 3 and 5. Although some linear 
regression programs will cheerfully report a solution to such problems 
(generally these programs estimate b = P3 + q3 ~nd r~port the 
values of P3 and q3 such that b = P3 + q3 and P3 + q3
is minimized), most abort after issuing an error message. 

The colinearity problem which results when some observations 
do not overlap with others is of concern primarily for the problems of 
interpretation that arise when a single parameter combines several 
different effects. Because of the special nature of the design matrix, 
X, in the multiplicative model, the problem of near colinearity that 
can occur with more general models does not arise. Thus it is not 
necessary to use regression software designed to handle problems with 
near col linearity. The only caveat to this statement is that rounding 
errors could conceivably make an exactly colinear matrix appear 
acceptable to some regression programs. Thus it is desirable to detect 
cases of exact colinearity before attempting to carry out a regression. 
Since this occurs when there is no overlap between gear categories in 
area or time, it is generally easy to detect given a knowledge of the 
fi shery. 

Leverage and Infl uence 

Leverage, as discussed in the previous section, refers to the 
potential effect on regression estimates of maverick observations. In 
this section we will concentrate on a graphical method for 
investigating the effect of such observations on estimates for 
regression parameters. The principle tool for such investigations is 
the partial regression leverage plot. Because each partial regression
leverage plot requires an additional regression calculation, it is 
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certainly desirable to develop criteria that can be used to pinpoint
observations whose leverage is dangerously high. Recent literature on 
the problem of leverage diagnostics has been largely concerned with the 
se~rch for such criteria, but no entirely satisfactory results are 
currently available. 

The idea of using partial regression leverage plots is 
relatively new. The earliest published description of these plots is 
that of Larsen and McCleary (1972). Daniel and Wood (1980) introduced 
a variant which includes the predicted line, calling them "component 
and component pl us res; dual pl ots". A parti al regressi on 1 everage plot 
is based on the comparison of two sets of residuals R' and 
R(j), where Rj is the vector of partial X residuals 05tained by
regressing the j-th column of X on the remaining columns. The partial 
y residuals, R(j}, is the vector of residuals obtained by 
omitting column J from the original regression for~. The latter 
vector can be calculated from the full regression as 

R(') = R + b'X' - J - J~ 

where R is the vector of residuals from the full regression and ~ is 
the j-th column of X. It can be shown that the slope of a least­
squares regression line through the origin on the plot of ~(j) 
against ~ will be bj (Mosteller and Tukey, 1977). Thus one can 
easily vlsualize the effect of any single observation on the estimate 
for bj as is done for single variable regressions. In this regard it 
is very helpful to follow Daniel and Wood's (1980) strategy and include 
the regression line in the plot. 

Partial regression leverage plots for the data in Table 1 are 
shown in Figures 2-4. In each case, the maverick observation clearly 
plays the determining role in the estimates for the parameters. It 
should be noted that, because the regression line passes close to the 
maverick point, this determining role cannot be detected using 
conventional residual plots. 

The application of partial regression leverage plots to 
problems with many parameters would be greatly simplified if some 
criteria were available to select the observations with the greatest 
leverage for examination. A number of criteria have been proposed in 
the literature. These invariably involve the diagonal elements of the 
"hat" matrix, H, which is defined formally as the n x n matrix: 

H = X(XTX)-l XT 

This matrix is too large to be computed in its entirety for problems
involving more than a couple hundred observations. While it is 
possible to calculate the individual diagonal elements of H, few 
statistical packages are designed to provide this information (Hoaglin 
and Welsch, 1978). 
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In order to get some feeling for the behaviour of the hat 
matrix diagonal elements, simulated catch-standardization data were 
generated for n = 200, p = 30. Leverage is associated with large 
values in the diagonal of H, but there is currently no accepted 
criterion for levels that would be too high. The average value of the 
diagonal elements is pIn, but the level 2p/n suggested by Belsley et 
al. (1980) is considered by others to be too high (Huber, 1983; 
Krasker and Welsch, 1982). In the simulations it was found that the 
largest values of hii were generally, but not always, associated 
with the columns of X that had the fewest lIs. This is intuitively
quite reasonable since, if few observations affect a given parameter, 
each will play an important role. It should, however, be noted that 
the number of observations does not entirely explain the leverage 
values, so that it is highly desirable to calculate the diagonal 
elements of H. 

In the absence of quantitative criteria to serve as a guide 
in detecting influential observations, we have relied heavily on 
partial regression leverage plots. In particular we have examined an 
actual data set consisting of 305 observations in which one observation 
(no. 287) was found to have been coded as 58 (where»» indicates a 
blank) in the effort field. This coding may be read variously as 58 or 
580 depending on the language, compiler, and operating system being 
used. Table 3 presents the parameter estimates obtained for the two 
possible values of effort in record no. 287. It can be seen that two 
parameter estimates (variables 10 and 38, corresponding to B[IIJ and 
B[39J) change by almost one standard error. It;s clearly important to 
have diagnostic procedures which can draw our attention to any 
observation that can have such a major effect on the results. Because 
observation no. 287 has high leverage, it does not stand out (indeed,
it is lost in the crowd) in conventional residual plots (Figures 5, 6). 
It does, however, stand out in certain of the partial regression
leverage plots (Figures 7, 8). Note, however, that other observations 
also appear to exert considerable influence. Of particular concern is 
the partial regression leverage plot for variable 38 (B[39J)
representing the final year. This parameter is directly related to the 
abundance estimate that is most critical to tuning a sequential 
population analysis. 

Here we face a dilemma. Having identified several 
observations which appear to depart from the trend in the rest of the 
data. we would like to examine them in more detail. In most cases, we 
will not find so obvious an ambiguity as was the case for observation 
number 287 in our example. 

In summary. then, parameter estimates obtained using the 
multiplicative model, as with other forms of regression analysis are 
sensitive to maverick observations. While partial regression leverage 
plots appear to be useful in identifying these observations, they do 
not tell us what to do about these observations. Such decisions should 



- 9 ­

be based on an investigation of the underlying data which contribute to 
a particular aggregated regression datum. This has led us to propose a 
novel approach to regression diagnosis in the following section. 

It is important to note that partial regression leverage 
plots do not show the weight placed on a particular observation. 
Changes in the weights used for a regression can dramatically affect 
the influence of an observation with high leverage. This effect can be 
judged by comparing partial regression leverage plots (with regression 
line included) for both weighted and unweighted regressions. 

A New Approach to Diagnostics for the Multiplicative Model 

The multiplicative model presents a rather special type of 
regression problem. The principle problems that must be guarded
against when using this model are related to leverage and influence. 
In the previous section it was noted that the current inability to 
examine the components of the individual regression datum makes it 
difficult to deal with the problem of leverage. 

Leverage and influence fall outside the domain of existing 
statistical packages. The software that has been developed for 
investigating such problems is of recent design and thus assumes that 
the user has access to large central memory or virtual memory adequate 
to hold data and working arrays. The most straight forward approach to 
developing practical solution methods for the multiplicative model 
would be to use the raw (disaggregated) data. This, however, requires
virtual memory and, in any case, represents a wasteful expenditure of 
computing resources. For the multiplicative model, the estimates of 
the regression parameters will not be altered if suitable estimates of 
location for the individual observations in each category are used in a 
much smaller (properly weighted) regression. The real value of 
including all the data is for diagnostic analyses. This purpose can be 
met using the regression coefficients obtained from the aggregated data 
to calculate residuals for the disaggregated data. 

The procedure described in the preceeding paragraph 
considerably reduces the computational effort required to obtain 
residuals or partial residuals. Thus it becomes computationally
feasible to examine a large number of partial regression leverage 
plots. This fact reduces the need for accurate selection criteria, 
thus reducing one of the key difficulties in the analysis of leverage 
problems. Indeed, from our experience the perspective gained from 
examining a large number of partial regressions can be quite helpful. 
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This approach raises a number of issues that require further 
study: 

1. 	 Is the current method of aggregation (i .e. simply summing values 
of catch and effort) appropriate when the data are to be used with 
the multiplicative model? 

2. 	 Would it be useful to weight the regression by the number of 
observations contributing to each regression datum? 

3. 	 Are existing graphical displays adequate? In particular, how can 
a single observation be identified from a plot? 
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Table 1. Artifica1 data set for Figures 1-4. 

~Observation 
No. ­
XI­
)(2,­

y­

, .. C ,)1), O',:J 2 00 '3 tOO 4 .00 5 00 ~, ~ • .} lJ 7 .. 1)0 00 , 
1 · • 

; .•00 1 •90 2'1'00 2 .9Q ;:: •00 •90 4 •·')0 ..\ •90" "J ~' 


~ 


1..._' t.J 1 fJi.J .IJ\} 2 tOO 3 t IJI.} 3 .00 4 00 4 .00 ~ • 1~!O '", .',...I",! ,) , (",).· • 
r ~, ".~..,0 ,., v,..·· ­o.':H~ ;) ; ;' '.j 1 , .;'1 C: 1 •40 .::. .08 :' , 10 ? I- + 8;) .~, , 48 -' , -;. \/ j L; i....;;· 

PARAMETER ESTIMATES: 

Yll 

o 

1 

2 

[B 1] [B 2] 

0.00024 0.70 

0.20 0.50 

0.40 0.30 
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Table 2. 	 Multiplicative model for the catch rates of three gears in 
three years. Based on the example of Robson (1966). Entries 
in table are the model terms for the natural log of catch 
rate. 

Year 
Gear 2 3 

c + Pl + ql + ell c + Pl + q2 + el2 c + Pl + q3 + el3 

2 c + P2 + ql + e2l c + P2 + q2 +e22 c + P2 + q3 + e23 

3 c + Ps + ql + e22 c + Ps + q2 + e32 c + P3 + q3 + e33 

Pi = effect of gear 

q. = effect of year 
1 

e· . = stochastic error
lJ 
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Table 3a. Regression coefficients, and analysis of variance for 
multiplicative model. a. EFFORT [287]=58. 

t;:EGRESSICN OF MUL.rI?l..:CATIVE MODEL. 

~u~rtFL£ ~~t, •• t+ ••••• tO.650 
~ULr!PLZ ~ saUARE~ ••••• O.422 

SOURCE OF SUMS OF :.l£i:tH 
vARt.::lnON DF ~GU~RES SGUilRES 

!HTERCEr-T 1 1.504£1 

;;:EG~ESSIOH 

T'l'PE 1 
...,.ltE ::: 

38 
~ 

11 

~,5Bb:::l 
3.386E1 
1. 479E1 

.11)9 
.090 
.963 

""'''E 
il'?E 

3 
4 

B 
10 

4. 5·)1 EO 
1.003£1 

.659 

.957 

RESltlUALS "I' , 
..00 9.022£1 

TOTAL 305 1.711E2 

:::EGRESSION COEFI"'IC!ENTS 

'JQR!A3LE COEF'FICIENT STD. ERROR NO. OBS, ..- ... _-------- --------- ---­
INTERCEPT .,j .201 0.231 305 

1 ·0.080 0.160 19 
.,~2 ·0.145 0.138 ... 1 

3 ·0.020 0.168 19 
4 'J.367 0.119 59 
5 ·0.583 0.177 18 
6 ·0.771 ').290 S., 
I 0.680 0.116 57 
B 0.534 0.272 6 
9 0.937 0.18a 17 

10 ·0.118 0.250 13 
11 ·0.160 0.227 24 
12 ·0.192 0.233 19 
13 ·0.019 0.220 29 
14 0.252 0.227 26 
15 0.146 0.215 40 
16 0.231 0.217 37 
17 0.123 0.218 34 
18 ·0.060 0.215 39 
19 ·0.162 .J .239 13 

1 ' 20 ,).062 0.242 .0 
21 -0.123 0.182 17 
22 '4.07'3 'JI176 19

-"" -~ ....23 .J .,Ji l 0.172 20 
24 -'1.292 0.167 23 
2S ·'J.426 0.204 12

6 ~26 ·0.399 0.276
"..:oj ·0.517 0.254 7 
26 0.231 0.255 7 

l'29 ·0.596 0.213 ~! 

30 -0.418 0.226 10 
31 ·0.141 0.198 1S 
32 -0.434 0.197 18 
33 -0.170 0.229 11 
34 -0.765 'J.211 12 
3S ·').664 0.242 3 
36 ·0.216 0.172 ZS 
::;/ -Ot2i4 O.He 27 
38 -0.129 0.179 20 



Table 3b. Regression coefficients and 
REGRESS 101t COEFF lC IEIITS 

analysis of variance for mult­
plicative model. 


VAIUAflLE COEFFlC1UIT STI). Eli:li.Oli: 110, DiS,
b. EFFORT (287)=500. 	 -------- -------- ..... -.- --- .... ~.-~..-~,-

------~-

IUTERCEf'T -0.160 0.236 305 
1 -0.086 0.163 19 
2 -0.154 0.140 27 
3 -0.012 0.171 18 

REGRESSlON OF MULTIPLICATIVE ~OlIEl 	 4 0.358 0.122 59 
:I -0.608 0.181 18 
6 -0,S03 0.296 ::; 

MULTIPLE R ••••••••••••• 0.638 	 7 0.633 0.118 57 
MULTIPLE R SGUARED ••••• 0.406 8 0.513 0.277 6 

9 0.'123 0.192 17 
10 -0.303 0.255 13 

AIIAL l'SIS OF VARIA/ICE 11 -0.166 0.231 24 
12 -0.196 0.238 19 


SOURCE OF SUMS OF MEAN 13 -0.025 0.224 29 

VARIATIOII DF SQUARES SQUARES F-VALUE 14 0.241 0.232 26 

-_.... _-----	 15 0.135 0.219 40 

~ 

16 0.219 0.222 37 U"l 

I1HERCEf'T 	 l.oOSE! 1.60BEt 17 0.107 0.222 3~ 


18 -0.075 0.220 39 

~;EGRESSIOfi 38 6.442El 1. 695EO 4.794 19 -0.185 0.244 18 


riFE 9 3.226E! 3.585EO 10.138 20 0.051 0.247 16 

riPE 2 H 1.521£1 1.383EO 3.910 21 -0.137 0.186 17 

TYf'E 3 8 4.661"0 5.826E-l 1.648 22 0.064 0.179 19 

HfE 10 1.014El 1.014EO 2.867 23 -0.400 0.175 20
" 24 -0.294 0.171 23 


RESWUALS 3.536£-1 -0.420
266 9.406E1 25 0.208 12 
26 -0.416 0.282 6 

TOTAL 305 1.745£2 27 -0.541 0.259 7 
28 0.205 0.260 7 
29 -0.601 0.217 11 
30 -0.404 0.230 10 
31 -0.144 0.202 18 
32 -0.439 0.191 18 
33 -0.171 0.234 11 
34 -0.7BO 0.216 12 
35 -0.679 0.247 B 
36 -0.223 0.176 25 
37 -0.293 0.170 27 
38 -0.237 o' tS3 20 
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Figure 1. Trzee dimensional graph of the regression model (1). 
Observation no. 11 is a 'maverick' point with a large 
leverage value. Data are given in Table 1. 
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10 

observation in the (x ,x ) plane
l 2

- location in the plane determined by the . 
regression model y=b x +b x

1 1 2 2 

i 
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Figure 2. 	 Par~ial regression leverage plots for data of Table 1 
with Y(ll]=O. 
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Figure 3. Partial regression leverage plots for data of Table L 
with ,{[llJ=l. 
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Figure 4. Partial regression leverage plots for data of Table 1 
with Y[llJ=2. 
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Figure 5 a. Expected normal value plots for regressions of Table 3a. 
a. 	 EFFORT [287]=58. 
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Figure 5 b. Expected normal value plots for regressions of Table 3b. 
b. EFFORT [287J=580 
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Figure 7a. Pal:tia 1 regres~ion levetage plots for var iable 10 (B [11) in regrestiionti of li'ab le 3a. 
a. ~FFORT (287)=58. 
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Figure 7b. Partial regression leverage plots for variaLle 10 (B (11) in regressions of 'raLIe 3b. 

h. F.PI"OR'l' f2871=580. 
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Figure Ba. Partial regression leverage plots for variable 38 (B{39)) in regressions of 'l'abll;;l Ja. 
a F.FFOR~ [2R7J;~A. 
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Figure Bb. Partial regression leverage plots for variable 3B (B{39}) in regres::;ions of 'ruu]e 3b. 
b. EFFORT [2B7}=5BO. 
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