Not to be cited without permission of author(s) Canadian Atlantic Fisheries Scientific Advisory Committee CAFSAC Research Document 81/47 ## Assessment of Cod Stock in 3Pn4RS by Stratis Gavaris and Claude Bishop Department of Fisheries and Oceans Research and Resource Services P.O. Box 5667 St. John,s, Newfoundland AlC 5X1 #### ABSTRACT The recent increase in catch rates for cod in Area 3Pn4RS coincides with observations of exceptional recruitment of age four fish during 1978-80. Research surveys did not confirm this trend. By comparing catch rates and exploitable biomass from cohort analysis, the fishing mortality in 1980 was estimated at 0.30 for fully recruited ages. The projected catch for 1982 at $F_{0.1}$ was 105,000 metric tons (t). ### RESUME L'augmentation récente des taux de capture de morue dans les divisions 3Pn4RS coincide avec le recrutement exceptionnel de poissons de 4 ans observé en 1978-80. Cette tendance n'est cependant pas confirmée par les relevés des navires de recherche. En comparant les taux de capture et la biomasse exploitable déduite de l'analyse des cohortes, on a estimé à 0.30 la mortalité par pêche des âges pleinement recrutés en 1980. Des prises de 105000 t à $F_{0.1}$ sont prédites pour 1982. ### SOURCE OF ASSESSMENT DATA Commercial catch and effort data were derived from the ICNAF Statistical Bulletin for 1959-78, from the preliminary STATLANT report and the Foreign Observer Program for 1979, and from the Economics Branch, Dept. of Fisheries and the Foreign Observer Program for 1980. Some preliminary data for 1981 were also available. Sampling for lengths and ages in 1980 was obtained from the Commercial Sampling section for Canadian landings and from the Foreign Observer Program for catches by France. The extent of coverage is evident from Table 1. Catch at age and weight at age for previous years were taken from Bishop (1980). The results from four years, (1978-81), of research surveys were examined. The cruises in all years were conducted over approximately a three week period during January and February. ### DATA ANALYSIS AND RESULTS The catch and effort data were standardized by use of a multiplicative model (Gavaris, 1980) using a weighting factor of (catch x effort)^{0.25}. There were differences in relative density between divisions with 4R showing the highest catch rates and 4S the lowest. There was also a substantial seasonal trend, January and February being the best months. Different country-gear classes were similarly variable (Table 2). The multiplicative model accounted for approximately 82% of the variation in the data. Figure 1 shows that there has not been any persistent trends in the catch rate and that it has generally been about 1.5 t/hr. The categories used for standards were CanN OT-5 during January-February in Division 4R. The corresponding effort is presented in Table 3. The catch at age was computed separately for each division (Table 4) and then added. The weight at age was obtained by applying a weight-length relationship (Wells, 1978) and the length frequencies to the age length keys. No measures were taken to account for the 7% discrepancy between the reported and calculated total catch weights. The research surveys were analyzed using the standard arithmetic mean method. Strata which were not surveyed in all years were deleted and a few strata which appeared homogeneous were combined in order to increase the within strata sample size. Mortality rates computed from the abundance at age (Table 5) were relatively large for 1978-79 and 1980-81. The total abundance (Table 6) shows wide fluctuations which do not agree with trends in the commercial catch rate. Partial selection at age was computed by comparing the commercial catch at age to the research catch at age (Table 7). Since the age structure and fishing fleet have not altered substantially in the last three years, the smoothed median was computed for use in cohort analysis. For the smoothing, the medians were weighted by the range divided by the median. The catch at age and weight at age matrices in Table 8 were used as input for cohort analysis. The weight at age for 1973-77 was obtained by smoothing the mean for 1978-80 weighted by it's standard error. Several preliminary attempts indicated that the partial selection used in 1980 was different from that being computed for previous years. As there has been no substantial change in the fleet, the partial selection was modified to reflect past exploitation patterns in the following manner: the average partial selection, relative to the total fishing mortality for ages 7-12 from a cohort analysis for the period 1974-79 ($F_{\rm t}=0.2$) was computed for ages 4, 5 and 6 (Table 9). All ages over six were assumed to be fully recruited. Cohort analysis was performed for terminal fishing mortalities of 0.15, 0.25 and 0.35. The exploited biomass was computed by multiplying the biomass by a partial selection matrix. The partial selection matrix was constructed by assuming a value of 1.0 for ages 7-12 and computing the the ratio of fishing mortality to total fishing mortality of ages 7-12 for all the other ages. The corrected multiple correlation coefficient and the relative deviation of predicted and observed 1980 biomass are presented in Table 10 for regressions of exploited biomass versus catch rate and biomass versus catch rate using 1974-80 data points. Figure 2 shows the graph of the regression for F = 0.25. It was not possible to discriminate between the three fishing mortalities from the regressions, therefore normalized catch rate and exploited biomass were compared. Table 11 summaries the results for terminal fishing mortalites of 0.25, 0.30 and 0.35. The results from cohort analysis with a terminal fishing mortality of 0.30 are presented in Table 12. A fishing mortality of 0.30 was selected because the pattern of exploited biomass more closely resembled the normalized catch rate series. Although 0.35 gives closer agreement for 1980, the preliminary nature of the data precluded placing more emphasis on this year. Production analysis (Rivard 1980) indicates that recruitment of 4 year olds in 1980 is slightly down but growth of previous good year-classes is maintaining total production at a high level (Fig. 3). The partial selection used in the cohort analysis and the smoothed average weights at age were used in a yield per recruit analysis using ages 4-19. A $F_{0.1}$ value of 0.20 was obtained (Table 13). Projections were computed using the population size for 1980 (Table 12), the current commercial average weights (Table 8) and the same partial recruitment as the cohort analysis. The TAC (75,000 t) was used for 1981. The catch at $F_{0.1}$ for 1982 was 105,000 t (Table 14). #### REFERENCES - Bishop, C. A. 1980. Status of the cod stock in Divisions 3Pn4RS. CAFSAC Res. Doc. 80/27. - Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275. - Rivard, D. 1980. Back-calculating production from cohort analysis, with discussion on surplus production for two redfish stocks. CAFSAC Res. Doc. 80/23. - Wells, R. 1978. Length weight relationships of cod in Subdivision 3Ps and area 3Pn4RS in winter, 1978. CAFSAC Res. Doc. 78/9. Table 1. Sample sizes and extent of coverage of commercial sampling for 3Pn4RS cod in 1980. | Gear | Quarter | Country | Otoliths | Month | Div. | Length Measurement | |------|---------|---------|----------|-------|------|--------------------| | OT | 1 | Can(N) | 695 | Feb. | 4R | 6,522 | | | | | | | 45 | 3,434 | | | | | | Mar. | 4R | 593 | | | | | | | 4\$ | 1,054 | | | | France | 414 | Jan. | 4R | 20,255 | | | | | | Feb. | 3Pn | 1,963 | | | | | | | 4R | 5,128 | | | | | | Mar. | 4R | 4,300 | | | 2 | Can(N) | 421 | Apr. | 4R | 784 | | | | | | May | 4R | 2,417 | | | | France | 506 | Apr. | 4R | 12,059 | | | | | | May | 4R | 1,043 | | LT | 1 | Can(N) | 269 | Feb. | 3Pn | 269 | | | 2 | Can(N) | 521 | Mar. | 3Pn | 2,719 | | | | | | May | 3Pn | 2,265 | | | 4 | Can(N) | 467 | Nov. | 3Pn | 2,711 | | GN | 2 | Can(N) | 396 | May | 4R | 3,007 | | | 3 | Can(N) | 463 | July | 4R | 2,808 | | Trap | 3 | Can(N) | - | July | 4R | 884 | Table 2. Regression coefficients for grouped categories and the analysis of variance from the regression of \ln catch rate for 3Pn4RS cod. | Country | - gear | ln power | Month | ln power | |------------------------|----------------------|----------|---------------------|---------------| | CanM | 0T-2 | -1.251 | Oct. | -0.919 | | CanM | 0T-3 | -0.969 | Nov. | -0.836 | | CanN | 0T-2 | -0.711 | Sept.
Dec. | -0.757 | | CanN
CanN
France | 0T-3
0T-4
0T-7 | -0.154 | Aug. | -0.624 | | CanM
CanM
France | LL-2
0T-4
0T-6 | 0.000 | May
June
July | -0.537 | | CanN | 0T-5 | 0.156 | Apr. | -0.340 | | CanM | 0T-5 | 0.402 | Mar. | -0.119 | | Port
Span
Span | 0T-6
0T-6
PT-4 | 0.705 | Jan.
Feb. | 0.000 | | Port | OT-7 | 1.019 | Div.
4S | <u>-0.054</u> | | | | | 3Pn | 0.000 | | | | | 4R | 0.210 | | | | | | | ### REGRESSION OF MULTIPLICATIVE MODEL # ANALYSIS OF VARIANCE | SOURCE OF | | SUMS OF | MEAN | | |------------|------|-------------------------------|------------|------------------------------------| | VARIATION | DF | SQUARES | SQUARES | F-VALUE | | | **** | **** **** **** **** **** **** | | 2000 Date 2000 0000 and plant 4020 | | TYPE 1 | 8 | 3.12800E2 | 3.91001E1 | 162.695 | | TYPE 2 | 7 | 8.18631E1 | 1.16947E1 | 48.662 | | TYPE 3 | 2 | 1.43461E1 | 7.17306E0 | 29.847 | | TYPE 4 | 22 | 7.04975E1 | 3.20443E0 | 13.334 | | REGRESSION | 39 | 1.77565E3 | 4.55294=1 | 189.447 | | RESIDUALS | 1600 | 3+84525E2 | 2.40328ET1 | | | TOTAL | 1639 | 2.16017E3 | | | Table 3. Historical catch and standardized effort and catch rate for 3Pn4RS cod. The proportion of the catch used in estimating the catch rate is indicated. | Year | Catch (t) | Prop. | Catch
Mean (t/hr) | rate
Std. err. | Effort(hr) | |------|-----------|-------|----------------------|-------------------|------------| | 1959 | 58,060 | 0.04 | 1.294 | 0.197 | 44,869 | | 1960 | 94,350 | 0.25 | 1.334 | 0.147 | 70,727 | | 1961 | 100,010 | 0.43 | 1.794 | 0.152 | 55,747 | | 1962 | 91,682 | 0.32 | 1.673 | 0.173 | 54,801 | | 1963 | 76,151 | 0.28 | 1.981 | 0.217 | 38,441 | | 1964 | 84,234 | 0.28 | 2.006 | 0.218 | 41,991 | | 1965 | 68,929 | 0.27 | 1.823 | 0.181 | 37,811 | | 1966 | 65,085 | 0.32 | 1.644 | 0.152 | 39,589 | | 1967 | 79,312 | 0.26 | 1.429 | 0.118 | 55,502 | | 1968 | 89,671 | 0.25 | 1.647 | 0.133 | 54,445 | | 1969 | 71,140 | 0.25 | 1.598 | 0.131 | 44,518 | | 1970 | 106,736 | 0.42 | 1.475 | 0.112 | 72,363 | | 1971 | 84,310 | 0.40 | 1.124 | 0.088 | 75,009 | | 1972 | 57,062 | 0.37 | 1.193 | 0.097 | 47,831 | | 1973 | 66,489 | 0.31 | 0.984 | 0.082 | 67,570 | | 1974 | 66,428 | 0.36 | 1.124 | 0.084 | 59,100 | | 1975 | 60,215 | 0.31 | 0.949 | 0.076 | 63,451 | | 1976 | 76,981 | 0.20 | 1.015 | 0.075 | 75,843 | | 1977 | 73,566 | 0.36 | 1.105 | 0.078 | 66,576 | | 1978 | 78,506 | 0.34 | 1.139 | 0.081 | 68,925 | | 1979 | 82,677 | 0.36 | 1.459 | 0.104 | 56,667 | | 1980 | 90,000 | 0.36 | 1.853 | 0.137 | 48,570 | | 1981 | 75,000 | 0.03 | 1.836 | 0.355 | 40,850 | Table 4. Catch at age in each division during 1980 (thousands of fish). | | 3Pi | | | 4R | | 45 | |-----|----------------|-------------|----------------|----------|-------------|----------| | Age | CanN (inshore) | France (OT) | CanN (inshore) | Can (OT) | France (OT) | Can (OT) | | 4 | 95 | 1 | 1716 | 98 | 219 | 10 | | 5 | 703 | 27 | 6846 | 3685 | 1454 | 225 | | 6 | 1680 | 79 | 6357 | 5358 | 2432 | 458 | | 7 | 746 | 50 | 2738 | 3552 | 1134 | 389 | | 8 | 321 | 21 | 1393 | 2299 | 455 | 340 | | 9 | 88 | 4 | 365 | 443 | 66 | 45 | | 10 | 27 | 1 | 86 | 159 | 20 | 28 | | .11 | 12 | | 53 | 80 | 8 | 23 | | 12 | 7 | | 44 | 130 | 7 | 29 | | .13 | 4 | | 11 | 34 | 2 | 5 | | 14 | 4 | | 7 | 50 | 3 | 5 | | 15 | 3 | | 5 | 8 | 2 | 1 | Table 5. Cod abundance at age and total mortality rates calculated from the research surveys in 3Pn4RS. | Age | 1978 | 1979 | 1980 | 1981 | |---|--|---|--|---| | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 0
906
4,804
23,459
34,046
43,516
12,799
4,407
1,705
2,592
889
1,066
391
294
12
0
0 | 49 2,609 3,309 10,710 16,964 12,483 9,825 4,462 938 529 1,062 392 290 190 110 68 15 | 2,263 19,165 25,795 46,110 35,454 16,951 9,112 3,661 615 522 438 390 300 87 53 7 24 13 | 30
1,028
4,133
15,752
11,946
25,048
17,930
9,212
2,882
631
0
246
147
311
108
25
0 | | | 3-4
4-5
5-6
6-7
7-8
8-9
9-10 | -0.802
0.324
1.003
1.488
1.054
1.547
1.170 | -2.054 0.19 -1.460 0.7 -0.737 0.6 -0.306 0.66 0.075 0.6 0.198 1.19 0.422 1.79 | 70
10
82
10
51 | Table 6. Total cod abundance for each division separately and combined. | Year | 3Pn | 4R | 4\$ | 3Pn4R | 3Pn4RS | |------|-------|---------|--------|---------|---------| | 1978 | 5,410 | 115,609 | 9,736 | 121,019 | 130,877 | | 1979 | 687 | 48,940 | 14,185 | 49,627 | 64,027 | | 1980 | 2,420 | 145,952 | 12,562 | 148,372 | 160,966 | | 1981 | 5,368 | 73,747 | 10,459 | 79,115 | 89,565 | Table 7. Partial selection computed by comparing commercial and research numbers caught at age for 3Pn4RS cod. The last column is the smoothed median of the three years. | | 1 | 1978 | 1979 | 1980 | | |----|---|--------|-------|-------|-------| | 4 | i | 0.165 | 0.254 | 0.154 | 0.182 | | 5 | I | Ø. 405 | 0.633 | 0.524 | 0.535 | | 6 | 1 | 0.500 | 0.730 | 0.873 | 0.828 | | 7 | 1 | 1.000 | 0.869 | 0.965 | 1.000 | | 8 | 1 | 0.683 | 0.693 | 1.000 | 0.848 | | 9 | 1 | 0.845 | 1.000 | 0.521 | 0.838 | | 10 | 1 | 0.567 | 0.805 | 0.978 | 0.818 | | 11 | i | Q. 640 | 0.295 | 0.628 | 0.667 | | 12 | 1 | Ø. 443 | 0.426 | 0.925 | 0.515 | | 13 | 1 | Ø.614 | 0.256 | 0.264 | 0.434 | | 14 | 1 | 0.497 | 0.289 | 0.443 | 0.434 | | 15 | 1 | Ø.000 | 0.169 | 0.417 | 0.384 | Table 8. Catch at age (numbers \times 10⁻³) and weight at age (Kg) in cohort analysis for 3Pn4RS cod. | | | | | | Numbe | ers | | | | |----------------------------------|---|--|--|--|--|---|---|--|--| | - | 1 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | | 45
67
89
10
11
12 | | 8824
20463
10055
5515
3196
2137
709
306
56 | 1471
5121
11537
7353
10987
3902
2722
704
273 | 2724
4380
6446
9048
3392
5808
1647
815
870 | 1984
14724
7570
3775
5867
2016
2584
1717
600 | 3141
10292
15321
7653
2882
3041
949
612
292 | 3134
11159
17601
10346
2432
1164
1188
460
382 | 4110
16209
13751
12890
4669
1416
643
473
252 | 2620
15975
20475
10821
6029
1262
398
217
268 | | 13
14
15 | | 19
31
5 | 147
48
40 | 64
52
150 | 196
90
27 | 171
49
11 | 194
106
17 | 112
83
28 | 68
88
24 | # Average Weight | | | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | |-------------------|--------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | 4 5 6 | 1 | 0.574
0.859
1.300 | 0.574
0.859
1.300 | 0.574
0.859
1.300 | 0.574
0.859
1.300 | 0.574
0.859
1.300 | 0.679
0.865
1.299 | 0.550
0.870
1.320 | 0.516
0.818
1.288 | | 7
8
9
10 | 1 | 1.790
2.430
3.060
3.600 | 1.790
2.430
3.060
3.600 | 1.790
2.430
3.060 | 1.790
2.430
3.060 | 1.790
2.430
3.060
3.600 | 1.840
2.559
3.008
2.880 | 1.780
2.410
3.150
3.570 | 1.761
2.365
3.423
4.166 | | 11
12
13 | !
! | 4.060
4.480
4.890 | 4.060
4.480
4.890 | 3.600
4.060
4.480
4.890 | 3.600
4.060
4.480
4.890 | 4.040
4.480
4.890 | 3.229
3.961
4.121 | 3.790
4.510
5.230 | 4.428
3.775
4.979 | | 14
15 | 1 | 5.300
5.710 | 5.300
5.710 | 5.300
5.710 | 5.300
5.710 | 5.300
5.710 | 5.838
9.334 | 4.740 | 3.931
6.997 | Table 9. Historical partial selection pattern for 3Pn4RS cod (ages 4-6). | | | | 3 | Selectivity | <u>/</u> | | | |-----|-------|-------|--------|-------------|----------|-------|------| | Age | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | Avg. | | 4 | 0.062 | 0.080 | 0.033 | 0.050 | 0.037 | 0.079 | 0.05 | | 5 | 0.340 | 0.299 | 0.539* | 0.203 | 0.260 | 0.354 | 0.29 | | 6 | 0.547 | 0.816 | 0.753 | 0.840 | 0.558 | 0.649 | 0.60 | ^{*}Omitted Table 10. Results of the regression analysis of exploited biomass versus catch rate and biomass versus catch rate for 3Pn4RS cod. | | 0.15 | Fishing mortality | 0.35 | |---|-----------|-------------------|-----------| | Exploited biomass Corrected R ² 1980 % deviation | 0.95
4 | 0.92 | 0.78 | | Biomass
Corrected R ²
1980 % deviation | 0.87
6 | 0.86
5 | 0.84
5 | Table 11. The normalized catch rate and exploitable biomass obtained by dividing the value for each year by the average for 1974-77 for 3Pn4RS cod. | Year | Catch rate | F = 0.25 | Exploitable biomass
F = 0.30 | F = 0.35 | |------|------------|----------|---------------------------------|----------| | 1974 | 1.07 | 1.15 | 1.17 | 1.19 | | 1975 | 0.91 | 1.02 | 1.03 | 1.04 | | 1976 | 0.97 | 0.94 | 0.93 | 0.93 | | 1977 | 1.05 | 0.88 | 0.86 | 0.85 | | 1978 | 1.09 | 1.03 | 0.98 | 0.94 | | 1979 | 1.39 | 1.50 | 1.35 | 1.24 | | 1980 | 1.77 | 2.34 | 1.99 | 1.74 | Table 12. Cohort analysis using a fishing mortality of 0.30 for fully recruited fish in 1980 for 3Pn4RS cod. | | | | | | | 500 | | | |---|---|--|---|---|--|--|---|---| | | | | POP | ULATION | NUMBERS | $(X 10^{-3})$ |) | | | | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | | 4 | 51566 | 51263 | 95216 | 127897 | 124724 | 230887 | 266877 | 198049 | | 5 | 82308 | 34235 | 40640 | 101 100 111111 | 102918 | 99274 | 186199 | 214781 | | 6 | 36499 | 48873 | 2 3 3 9 5 | 29310 | 48336 | 74950 | 71181 | 137780 | | 7 | 40281 | 20785 | 29574 | 13322 | 17147 | 25711 | 45438 | 45836 | | 8 | 16990 | 27989 | 10364 | 16027 | 7491 | 7114 | 11689 | 25538 | | 9 | 9654 | 11018 | 12974 | 5416 | 7813 | 3526 | 3624 | 5346 | | 10 | 3811 | 5971 | 5491 | 5367 | 2610 | 3645 | 1833 | 1686 | | 11 | 1055 | 2479 | 2425 | 3005 | 2056 | 1278 | 1909 | 919 | | 12 | 476 | 587 | 1393 | 1248 | 907 | 1129 | 630 | 1135 | | 13 | 724 | 339 | 234 | 353 | 479 | 478 | 579 | 288 | | 14 | 164 | 576 | 145 | 133 | 112 | 238 | 216 | 373 | | 15 | 30 | 106 | 428 | 71 | 28 | 47 | 99 | 102 | | 4+ | 243560 | 204220 | 222278 | 277460 | 314621 | 448277 | 590274 | 631832 | | 5+ | 191993 | 152957 | 127062 | 149562 | 189897 | 217390 | 323397 | 433783 | | 6+ | 109685 | 118722 | 86422 | 74252 | 86979 | 118116 | 137198 | 219002 | | 7+ | 73186 | 69849 | 63027 | 44942 | 38642 | 43166 | 66017 | 81222 | | | | | EAN POPU | T AMTON | D T 0 11 1 0 0 | (+) | x | | | | | M | BAN FOF | LATION I | BIUMASS | (6) | | | | | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | | | 1973 | | | | | | 1979 | 1980 | | 4
5 | | 1974 | 1975 | 1976 | 1977 | 1978 | | | | | 24286 | 1974 | 1975 | 1976 | 1977 | 1978 | 131938 | 91967 | | 5 | 24286
55100 | 1974
26258
24457 | 1975
48718
29779 | 1976
65985
52253 | 1977
64010
75760 | 1978
141057
73049 | 131938
143091 | 91967
152837 | | 5
6
7
8 | 24286
55100
36281 | 1974
26258
24457
49945 | 1975
48718
29779
23255 | 1976
65985
52253
29494 | 1977
64010
75760
46594 | 1978
141057
73049
76599 | 131938
143091
76008 | 91967
152837
147741 | | 5
6
7 | 24286
55100
36281
60435 | 1974
26258
24457
49945
26805 | 1975
48718
29779
23255
39583 | 1976
65985
52253
29494
18130 | 1977
64010
75760
46594
20414
12786 | 1978
141057
73049
76599
32731 | 131938
143091
76008
61477 | 91967
152837
147741
63519 | | 5
7
8
9 | 24286
55100
36281
60435
33508
23457
11151 | 1974
26258
24457
49945
26805
47455 | 1975
48718
29779
23255
39583
18527 | 1976
65985
52253
29494
18130
27780 | 1977
64010
75760
46594
20414
12786 | 1978
141057
73049
76599
32731
13241 | 131938
143091
76008
61477
19540 | 91967
152837
147741
63519
47529 | | 5
6
7
8
9
10 | 24286
55100
36281
60435
33508
23457 | 1974
26258
24457
49945
26805
47455
24285 | 1975
48718
29779
23255
39583
18527
26371 | 1976
65985
52253
29494
18130
27780
11762 | 1977
64010
75760
46594
20414
12786
16728 | 1978
141057
73049
76599
32731
13241
7784 | 131938
143091
76008
61477
19540
7977 | 91967
152837
147741
63519
47529
14399 | | 5
6
7
8
9
10
11 | 24286
55100
36281
60435
33508
23457
11151 | 1974
26258
24457
49945
26805
47455
24285
14168 | 1975
48718
29779
23255
39583
18527
26371
14845 | 1976
65985
52253
29494
18130
27780
11762
12422 | 1977
64010
75760
46594
20414
12786
16728
6716 | 1978
141057
73049
76599
32731
13241
7784
7731 | 131938
143091
76008
61477
19540
7977
4727 | 91967
152837
147741
63519
47529
14399
5527 | | 5
6
7
8
9
10
11
12 | 24286
55100
36281
60435
33508
23457
11151
3241 | 1974
26258
24457
49945
26805
47455
24285
14168
7648 | 1975
48718
29779
23255
39583
18527
26371
14845
7195 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 | 1977
64010
75760
46594
20414
12786
16728
6716
6280 | 1978
141057
73049
76599
32731
13241
7784
7731
2959 | 131938
143091
76008
61477
19540
7977
4727
5643 | 91967
152837
147741
63519
47529
14399
5527
3203 | | 5
6
7
8
9
10
11
12
13 | 24286
55100
36281
60435
33508
23457
11151
3241
1809 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718 | 1975
48718
29779
23255
39583
18527
26371
14845
7195
3393 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 | 1977 64010 75760 46594 20414 12786 16728 6716 6280 3000 | 1978
141057
73049
76599
32731
13241
7784
7731
2959
3263 | 131938
143091
76008
61477
19540
7977
4727
5643
1971 | 91967
152837
147741
63519
47529
14399
5527
3203
3372 | | 5
6
7
8
9
10
11
12 | 24286
55100
36281
60435
33508
23457
11151
3241
1809
3164 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718 | 1975
48718
29779
23255
39583
18527
26371
14845
7195
3393
874 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 1025 | 1977 64010 75760 46594 20414 1278 6716 6280 3000 1684 | 1978
141057
73049
76599
32731
13241
7784
7731
2959
3263
1359 | 131938
143091
76008
61477
19540
7977
4727
5643
1971
2450 | 91967
152837
147741
63519
47529
14399
5527
3203
3372
1129 | | 5
6
7
8
9
10
11
12
13
14
15 | 24286
55100
36281
60435
33508
23457
11151
3241
1809
3164
703
143 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718
1116
2640
429 | 1975
48718
29779
23255
39583
18527
26371
14845
7195
3393
874
550
1770 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 1025 356 289 | 1977 64010 75769 46594 20414 12786 16728 6716 6280 3000 1684 396 110 | 1978 141057 73049 76599 32731 13241 7784 7731 2959 3263 1359 923 315 | 131938
143091
76008
61477
19540
7977
4727
5643
1971
2450
719
408 | 91967
152837
147741
63519
47529
14399
5527
3203
3372
1129
1153
560 | | 5
6
7
8
9
10
11
12
13 | 24286
55100
36281
60435
33508
23457
11151
3241
1809
3164
703
143 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718
1116
2640
429 | 1975 48718 29779 23255 39583 18527 26371 14845 7195 3393 874 550 1770 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 1025 356 289 | 1977
64010
75769
46594
20414
12786
16728
6716
6280
3000
1684
396
110 | 1978 141057 73049 76599 32731 13241 7784 7731 2959 3263 1359 923 315 | 131938
143091
76008
61477
19540
7977
4727
5643
1971
2450
719
408 | 91967
152837
147741
63519
47529
14399
5527
3203
3372
1129
1153
560 | | 5
6
7
8
9
10
11
12
13
14
15
4+ | 24286
55100
36281
60435
33508
23457
11151
3241
1809
3164
703
143 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718
1116
2640
429
226924
200666 | 1975 48718 29779 23255 39583 18527 26371 14845 7195 3393 874 550 1770 214859 166141 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 1025 356 289 | 1977
64010
75760
46594
20414
12786
16728
6716
6280
3000
1684
396
110 | 1978 141057 73049 76599 32731 13241 7784 7731 2959 3263 1359 923 315 | 131938
143091
76008
61477
19540
7977
4727
5643
1971
2450
719
408 | 91967
152837
147741
63519
47529
14399
5527
3203
3372
1129
1153
560 | | 5
6
7
8
9
10
11
12
13
14
15 | 24286
55100
36281
60435
33508
23457
11151
3241
1809
3164
703
143
253279
228993
173892 | 1974
26258
24457
49945
26805
47455
24285
14168
7648
1718
1116
2640
429 | 1975 48718 29779 23255 39583 18527 26371 14845 7195 3393 874 550 1770 | 1976 65985 52253 29494 18130 27780 11762 12422 7110 3599 1025 356 289 | 1977
64010
75769
46594
20414
12786
16728
6716
6280
3000
1684
396
110 | 1978 141057 73049 76599 32731 13241 7784 7731 2959 3263 1359 923 315 | 131938
143091
76008
61477
19540
7977
4727
5643
1971
2450
719
408 | 91967
152837
147741
63519
47529
14399
5527
3203
3372
1129
1153
560 | ## FISHING MORTALITY | 1 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | |---|----------------------------------|----------------------------------|---|--|--|--|--|--| | 4 5 6 7 8 9 10 11 12 13 14 15 | 0.321
0.363
0.164
0.233 | 0.377
0.722
0.652
0.097 | 0.035
0.127
0.363
0.413
0.449
0.683
0.403
0.464
1.173
0.361
0.506 | 0.243
0.336
0.376
0.518
0.530
0.760
0.998
0.758
0.951
1.371 | 0.117
0.431
0.680
0.554
0.562
0.514
0.399
0.440
0.502
0.664 | 0.133
0.300
0.588
0.475
0.454
0.447
0.507
0.468
0.595
0.679 | 0.017
0.101
0.240
0.376
0.582
0.565
0.490
0.320
0.583
0.240
0.553
0.373 | 0.085
0.178
0.300
0.300
0.300
0.300
0.300
0.300
0.300
0.300 | | 7+1 | 0.201 | 0.538 | 0.493 | | | | 0.426 | | Table 13. Thompson-Bell yield per recruit analysis using ages 4-19 for 3Pn4RS cod. ## YIELD PER RECRUIT ANALYSIS | i | FISHING | CATCH
(NUMBER) | YIELD
(KG) | AVG, WEIGHT (KG) | YIELD PER
UNIT EFFORT | |------|---------|--|--|---|--| | F0.1 | 0.3000 | 0.223
0.341
0.344
0.413
0.462
0.475
0.499
0.527
0.550
0.569 | 0.589
0.780
0.783
0.840
0.856
0.856
0.854
0.846
0.835
0.824 | 2.643
2.287
2.277
2.034
1.850
1.804
1.712
1.605
1.519 | 1.000
0.661
0.654
0.475
0.363
0.338
0.290
0.239
0.202
0.175 | | | 1.0000 | 0.585
0.598 | 0.813 | 1.391
1.342 | 0.153
0.136 | Table 14. Projections for the cod stock in Area 3Pn4Rs using 75,000 t as the catch in 1981 and $F_{0.1}$ = 0.20 in 1982-83. | | POPUL | ATION NUMBER | $RS(X 10^{-3})$ | | | С | ATCH NU | MBERS (| $(X 10^{-3})$ | |---|---|--|---|---|--|--|--|---|---| |] | 1980 | 1981 198 | 32 1983 | | | J 1980 | 1981 | 1982 | 1983 | | 4 | 198049 2 | 50000 850 | 00 85000 | | 4 | 2620 | 2058 | 751 | 751 | | 5 | 214781 1 | 59782 20282 | 84 68913 | | 5 | 15975 | 7492 | 10195 | 3464 | | 6 | 137780 1 | 61438 1240 | 7 156857 | | 6 | 20475 | 15374 | 12640 | 15982 | | 7 | | 94364 1183 | | | 7 | 10821 | 14577 | 19502 | 14864 | | 8 | | 27801 6413 | | | 8
9 | 6029 | 4294 | 10571 | 13073 | | 9 | 5346 | 15489 1889 | 42989 | | 10 | 1262 | 2393 | 3115 | 7086 | | 10 | 1686 | 3242 1052 | 27 12665 | | 11 | 398 | 501 | 1735 | 2088 | | 11 | 919 | 1023 220 | 7056 | | 12 | 217 | 158 | 363 | 1163 | | 12 | 1135 | 558 69 | | | 13 | 268 | 86 | 115 | 243 | | 13 | 288 | 689 -31 | | | 14 | 68 | 106 | 62 | 77 | | 14 | 373 | 175 46 | | | 15 | 88 | 27 | 77 | 42 | | 15 | 102 | 226 13 | 19 314 | | | 24 | 35 | 20 | 52 | | 4+1 | 631832 7 | 14786 62760 | 9 545472 | | 4+ | | 47102 | 59147 | 58885 | | 5+ | | 64786 54260 | COURSE NO CONTRACTOR OF TOURSES | | 5+ | 55625 | 45043 | 58395 | 58134 | | 6+ | | 05004 33978 | | | 6+ | | 37551 | 48200 | 54670 | | 7+1 | | 43566 21572 | | | 7.+ | | 22177 | 35561 | 38688 | | 1 . 1 | 01222 1 | 40000 21072 | .0 254701 | | | * | | | 2. | | | | | | / \ | | | _ | - | | | | POPUL | ATION BIOMAS | SS (AVERAGE) | (t) | | CA | TCH BIO | <i>MASS</i> (t | :) | | | POPUL. | ATION BIOMAS
1981 | SS (AVERAGE)
1982 | (t)
1983 | 4 | | 1981 | MASS (†
1982 | 1983 | | | 1980 | 1981 | 1982 | 1983 | 4
4 | v. | 1981 | 1982 | 1983 | | +
4 | 1980 | 1981 | 1982
39564.65 | 1983 | | 1980
1352 | 1981 | 1982
388 | 1983 | | 5 | 1980
91967.35
152836.84 | 1981
116404.55
115474.57 | 1982
39564.65
146305.05 | 1983
39564.65
49710.14 | 4 | 1980
1352 | 1981 | 1982
388
8339 | 1983
388
2833 | | 5
6 | 1980
91967.35
152836.84
147741.18 | 1981
116404.55
115474.57
178722.16 | 1982
39564.65
146305.05
136806.46 | 1983
 | 4
5 | 1980
1352
13068 | 1981
1062
6128 | 1982
388 | 1983
388
2833
20584 | | 5
6
7 | 91967.35
152836.84
147741.18
63519.28 | 1981
116404.55
115474.57
178722.16
137846.34 | 1982
39564.65
146305.05
136806.46
171719.11 | 1983
39564.65
49710.14
172977.81
130879.85 | 4
5
6 | 1980
1352
13068
26372 | 1981
1062
6128
19802 | 1982
388
8339
16280
34344 | 1983
388
2833
20584
26176 | | 5
6
7
8 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88 | 4
5
6
7 | 1980
1352
13068
26372
19056 | 1981
1062
6128
19802
25669 | 1982
388
8339
16280
34344
25002 | 1983
388
2833
20584
26176
30917 | | 5
6
7
8
9 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62
14399.42 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.77 | 1982
39564.65
146305.05
13666.46
171719.11
125007.94
53304.68 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78 | 4
5
6
7
8 | 1980
1352
13068
26372
19056
14259 | 1981
1062
6128
19802
25669
10156 | 1982
388
8339
16280
34344
25002
10661 | 1983
388
2833
20584
26176
30917
24256 | | 5
6
7
8
9
10 | 91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.77
11204.67 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05 | 4
5
6
7
8
9 | 1980
1352
13068
26372
19056
14259
4320 | 1981
1062
6128
19802
25669
10156
8190 | 1982
388
8339
16280
34344
25002 | 1983
388
2833
20584
26176
30917
24256
8697 | | 5
6
7
8
9
10
11 | 91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.77
11204.67
3755.88 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61
8041.89 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05
25752.90 | 4
5
6
7
8
9 | 1980
1352
13068
26372
19056
14259
4320
1658 | 1981
1062
6128
19802
25669
10156
8190
2087 | 1982
388
8339
16280
34344
25002
10661
7229
1608 | 1983
388
2833
20584
26176
30917
24256
8697
5151 | | 5 6 7 8 9 10 11 12 | 91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.47
11204.67
3755.88
1745.81 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05
25752.90
4595.68 | 4
5
7
8
9
10
11
12
13 | 1980
1352
13068
26372
19056
14259
4320
1658
961 | 1981
1062
6128
19802
25669
10156
8190
2087
699 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432 | 1983
388
2833
20584
26176
30917
24256
8697
5151
919 | | 5 6 7 8 9 10 11 12 13 | 91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.79
11204.67
3755.88
1745.81
2843.79 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05
25752.90
4595.68
1911.61 | 4
5
7
8
9
10
11
12
13 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325 | 1982
388
8339
16280
34344
25002
10661
7229
1608 | 1983
388
2833
20584
26176
30917
24256
8697
5151 | | 5 6 7 8 9 10 11 12 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57
1153.09 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.77
11204.67
3755.88
1745.81
2843.79
569.68 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87
1516.10 | 1983 39564.65 49710.14 172977.81 130879.85 154586.88 121281.78 43487.05 25752.90 4595.68 1911.61 822.88 | 4 5 6 7 8 9 10 11 12 13 14 15 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012
339
346
168 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325
530 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432
311 | 1983
 | | 5 6 7 8 9 10 11 12 13 14 | 91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.79
11204.67
3755.88
1745.81
2843.79 | 1982
39564.65
146305.05
136806.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05
25752.90
4595.68
1911.61 | 4
5
6
7
8
9
10
11
12
13
14
15 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012
339
346
168 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325
530
106
244 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432
311
303
137 | 1983
388
2833
20584
26176
30917
24256
8697
5151
919
382
165
362 | | 5 6 7 8 9 10 11 12 13 14 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57
1153.09
559.76 | 1981
116404.55
115474.57
178722.1
137846.34
54540.49
43981.77
11204.67
3755.88
1745.81
2843.79
569.68
1312.25 | 1982
39564.65
146305.05
13686.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87
1516.10
684.72 | 1983 39564.65 49710.14 172977.81 130879.85 154586.88 121281.78 43487.05 25752.90 4595.68 1911.61 822.88 | 4
5
6
7
8
9
10
11
12
13
14
15 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012
339
346
168 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325
530
106
244 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432
311
303
137 | 1983
2833
20584
26176
30917
24256
8697
5151
919
382
165
362 | | 5 6 7 8 9 10 11 12 13 14 15 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57
1153.09
559.76 | 1981
116404.55
115474.57
178722.1
137846.34
54540.49
43981.77
11204.67
3755.88
1745.81
2843.79
569.68
1312.25 | 1982
39564.65
146305.05
13686.46
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87
1516.10
684.72 | 1983
39564.65
49710.14
172977.81
130879.85
154586.88
121281.78
43487.05
25752.90
4595.68
1911.61
822.88
1808.92 | 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012
339
346
168
82909
81557 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325
530
106
244
75000
73938 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432
311
303
137 | 1983
2833
20584
26176
30917
24256
8697
5151
919
382
165
362 | | 5 6 7 8 9 10 11 12 13 14 15 15 14 15 15 | 1980
91967.35
152836.84
147741.18
63519.28
47528.62
14399.42
5526.89
3202.92
3372.33
1128.57
1153.09
559.76
532936.26
440968.91 | 1981
116404.55
115474.57
178722.16
137846.34
54540.49
43981.77
11204.67
3755.88
1745.81
2843.79
569.68
1312.25 | 1982
39564.65
146305.05
13666
171719.11
125007.94
53304.68
36145.61
8041.89
2162.18
1554.87
1516.10
684.72 | 1983 39564.65 49710.14 172781 130879.85 154586.88 121281.78 43487.05 25752.90 4595.68 1911.61 822.88 1808.92 747380.14 | 4
5
6
7
8
9
10
11
12
13
14
15 | 1980
1352
13068
26372
19056
14259
4320
1658
961
1012
339
346
168 | 1981
1062
6128
19802
25669
10156
8190
2087
699
325
530
106
244 | 1982
388
8339
16280
34344
25002
10661
7229
1608
432
311
303
137 | 1983
2833
20584
26176
30917
24256
8697
5151
919
382
165
362 | Fig. 1. Historical catch rates and approximate 90% confidence intervals - 3Pn4RS cod. ### TERMINAL F \$.25 Fig. 2. The plot of points used in the regression of exploited biomass on catch rate 3Pn4RS cod. The relationship is determined primarily by the 1980 point i.e. the input terminal F. ## PRODUCTION VERSUS TIME ### SURPLUS PRODUCTION AND YIELD VERSUS TIME Fig. 3. Production, surplus production and yield vs. time analyses for 3Pn4RS cod. Canadian Atlantic Fisheries Scientific Advisory Committee Assessment of Cod Stock in 3Pn4RS by Stratis Gavaris Department of Fisheries and Oceans Research and Resource Services Newfoundland Region P. O. Box 5667 St. John's, Newfoundland A1C 5X1 An error was detected in the computation of partial selection for age 6 (Table 9). The correct average partial selection was 0.69 not 0.60 as indicated. To determine the consequences of such a change cohort analysis and a projection were performed with this correction. The changes with respect to management options were minor. In particular the catch projection for 1982 at $F_{0.1}=0.2$ decreased from 105,000 t to 103,000 t, when the TAC of 75,000 t was used for 1981. Using $F_{0.1}=0.2$ for both 1981 and 1982 the projected catch for each year was 79,000 t and 102,000 t respectively.