

SCCS

Secrétariat canadien de consultation scientifique

Document de recherche 2001/081

Science

Ne pas citer sans autorisation des auteurs

CSAS

Canadian Science Advisory Secretariat

Research Document 2001/081

Not to be cited without permission of the authors*

Etat du stock de maquereau bleu Status of the stock of Atlantic (Scomber scombrus L.) des sous- mackerel (Scomber scombrus L.) in régions 3-4 de l'OPANO pour NAFO Subareas 3 and 4 in 2000 2000

Par

Bv

François Grégoire, Guylaine Morrier, Charlyne Lévesque et / and Jocelyne Hudon

Division des poissons et des mammifères marins Ministère des Pêches et des Océans Institut Maurice-Lamontagne, C.P. 1000 850. Route de la Mer Mont-Joli (Québec) G5H 3Z4

La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Ce document est disponible sur l'Internet à:

Department of Fisheries and Oceans Maurice Lamontagne Institute, P.O. Box 1000 850, Route de la Mer Mont Joli, Quebec G5H 3Z4

Fish and Marine Mammals Division

* This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

This document is available on the Internet at: http://www.dfo-mpo.gc.ca/csas/

Résumé

En 2000, les débarquements canadiens de maquereau se sont chiffrés à 8 795 t, ce qui représente une diminution importante de près de 8 000 t par rapport à 1999. Cette diminution s'explique en partie par une réduction de l'effort de pêche causée par la présence d'un très grand nombre de petits maquereaux âgés de 1 an seulement, c'est-à-dire de la classe d'âge de 1999. En fait, 63 % de toutes les captures, en nombre, sont attribuées à cette classe d'âge. En eaux américaines, les débarquements ont atteint 4 748 t pour la pêche commerciale et 1 381 t pour la pêche récréative. Depuis 1992, aucune pêche hauturière par des navires étrangers n'a été pratiquée dans ces eaux. En eaux canadiennes, les plus importants débarquements de maquereau ont été enregistrés à Terre-Neuve et en Nouvelle-Écosse, avec des tonnages respectifs de 3 794 t et 2 710 t. Les deux principaux engins de pêche ont été la seine bourse et la trappe, avec des débarquements correspondants de 3 793 t et 2 454 t. Les variations annuelles dans la condition du maquereau s'avèrent très similaires aux variations de la température de l'eau associée à la CIF (Couche Intermédiaire Froide). Selon la Méthode de la Production Totale d'Oeufs (MPTO), les biomasses reproductrices pour chaque trajet du relevé d'abondance ont été évaluées à 218 217 t et 66 001 t, pour une movenne annuelle de 142 109 t, comparativement à 562 533 t et 169 510 t, et une moyenne de 366 022 t, pour la Méthode de la Réduction Journalière de la Fécondité (MRJF). Selon cette dernière méthode, les biomasses annuelles moyennes calculées pour 1998 et 1996 étaient de 243 980 t et 443 095 t respectivement. Dans le but d'améliorer les statistiques de pêche, un livre de bord obligatoire devrait être distribué à tous les pêcheurs. De plus, son utilisation pourrait permettre l'étude de certaines variables environnementales sur la distribution des captures de maquereau.

Abstract

In 2000, Canadian landings of mackerel totalled 8 795 t, a large decline (nearly 8 000 t) from 1999. Part of the reason was a reduction in fishing effort, caused by the presence of a very large number of small mackerel only 1 year old (from the 1999 year class). In fact, 63% of all individuals caught were attributed to this year class. In US waters, landings totalled 4 748 t in the commercial fishery and 1 381 t in the recreational fishery. Since 1992, no offshore fishing by foreign vessels has been done in these waters. In Canadian waters, the largest landings of mackerel were recorded in Newfoundland (3 794 t) and Nova Scotia (2 710 t). The two main types of fishing gear used were purse seines and traps, with landings totalling 3 793 t and 2 454 t, respectively. The annual variations in the mackerel's condition closely follow the variations in the water temperature of the Cold Intermediate Layer (CIL). The spawning stock biomass values estimated by the Total Egg Production Method (TEPM) for each of the two passes in the annual abundance survey were 218 217 t and 66 001 t, for an average of 142 109 t, compared with 562 533 t and 169 510 t and an average of 366 022 t as estimated by the Daily Fecundity Reduction Method (DFRM). The average annual biomass values calculated for 1998 and 1996 by this latter method were 243 980 t and 443 095 t respectively. To improve the statistics on the mackerel fishery, logbooks should be distributed to all fishermen. The use of such a logbook would also make it possible to study the relationship of certain environmental variables to the distribution of the mackerel catch.

INTRODUCTION

Dans les provinces maritimes et au Québec, un très grand nombre de pêcheurs s'adonnent à la pêche commerciale du maquereau bleu (Scomber scombrus L.). Cette activité se pratique tout près des côtes, et les principaux types d'engin de pêche utilisés sont le filet maillant, la ligne, la seine bourse et la trappe. Leur utilisation respective varie selon la région la saison. Des prises et sont échantillonnées de sorte que les principaux paramètres biologiques font l'objet d'un suivi annuel.

Le maquereau est une espèce hautement migratrice et sa présence en eaux canadiennes s'échelonne sur plusieurs mois. La migration printanière des adultes débute en mars-avril le long des côtes de la Nouvelle-Angleterre et se poursuit au cours des mois de mai et juin dans la région du Banc de Georges et sur le plateau néoécossais. L'arrivée du maguereau dans le Saint-Laurent golfe du s'effectue généralement vers la fin du mois de mai, en juin et au début du mois de juillet. Bien qu'il y ait de la fraie en Nouvelle-Écosse (Bernier et Lévesque 2000), les activités de ponte du maquereau se produisent principalement dans le sud du golfe du Saint-Laurent. Un relevé de recherche basé sur l'échantillonnage des oeufs est réalisé à cet endroit dans le but d'évaluer l'abondance de la population. Suite à la ponte, le maquereau se disperse ailleurs dans l'estuaire et le golfe du Saint-Laurent, et parfois même sur la côte Est de Terre-Neuve. Le maquereau quitte le Golfe au cours des mois de septembre à novembre.

Le présent document a été réalisé dans le This document has been prepared in order but de mettre à jour et de présenter l'information qui est

INTRODUCTION

In the Maritime provinces and Quebec, a very large number of fishermen participate in the commercial fishery for Atlantic mackerel (Scomber scombrus L.). This fishery is practiced close inshore, and the main types of gear used are gillnets, lines, purse seines, and traps, varying with the region and the season. Some catches are sampled so that the main biological parameters can be monitored from year to vear.

The mackerel is a highly migratory species, and is present in Canadian waters for several months of the year. The springtime migration of adults begins in March/April along the New England coast and continues through May and June on the Georges Bank and the Scotian Shelf. The mackerel generally arrive in the Gulf of St Lawrence in late May, June, and early July. Though some spawning takes place in Nova Scotia (Bernier and Lévesque 2000), most of the mackerel's reproductive activity occurs in the southern Gulf of St Lawrence. Α research survey based on egg sampling has been conducted at this location to estimate the abundance of the population. After spawning, the mackerel disperse to other locations in the St Lawrence estuary and the Gulf of St Lawrence, and sometimes even to the east coast of Newfoundland. The mackerel leave the Gulf over the period September to November.

to update and present the information recueillie gathered about the mackerel each year. It

annuellement sur le maquereau. Il fait suite au dernier document de recherche publié sur cette espèce par le Secrétariat canadien de consultation scientifique (Grégoire 2000). L'information présentée concerne les débarquements de même que recueillis échantillons par les des échantillonneurs à quai ou des observateurs en mer. Les données recueillies lors du dernier relevé d'échantillonnage des oeufs de juin 2000 sont analysées et les résultats sont utilisés dans les calculs d'abondance.

MATÉRIEL ET MÉTHODES

<u>PÊCHE</u>

Données de pêche

Les données de débarquements de maquereau ont été extraites des plus récents fichiers ZIFF (Zonal Interchange File Format). Ces derniers sont construits sur une base annuelle à partir des récépissés d'achat et/ou des livres de bord. Le fichier associé à la saison de pêche 1999 est maintenant complet, et pour celui de la saison 2000, certaines données restent toujours à être saisies. Pour les années antérieures à 1995, les données de débarquements ont été mises à jour à partir des fichiers produits par l'OPANO (l'Organisation des Pêches de l'Atlantique du Nord-Ouest) (Grégoire et al. 2000).

Afin de faciliter leur interprétation, les données de débarquements ont été regroupées par pays, sous-région, province, division et zone unitaire de l'OPANO (Figure 1), puis par mois et par engin de pêche. La couverture des prises dirigées ou accessoires de maquereau sur le plateau néo-écossais par des navires canadiens ou étrangers a été réalisée par le Programme des Observateurs de la Nouvelle-Écosse

is a follow-up to the last research document published on this species by the Canadian Science Advisory Secretariat (Grégoire 2000). The information presented here deals with mackerel landings as well as with the samples taken by dockside samplers and on-board observers. This paper also analyses the data gathered in the last egg-sampling survey in June 2000 and uses the results to calculate abundance figures.

MATERIAL AND METHODS

<u>FISHERY</u>

Fishing data

The data on mackerel landings were extracted from the most recent Zonal Interchange File Format (ZIFF) files. These files are prepared annually using information from purchase receipts and/or ships' logs. The file for the 1999 fishing season is now complete, while some data still remain to be entered into the file for the 2000 season. For years prior to 1995, the landing data were updated from files produced by the Northwest Atlantic Fisheries Organization (NAFO) (Grégoire *et al.* 2000).

To facilitate interpretation, the mackerel landing figures have been grouped first by country, NAFO subarea, province, NAFO division, and NAFO unit area (Figure 1), and then by month and type of fishing gear. The coverage of the targeted catch and bycatch of mackerel made on the Scotian Shelf by Canadian and foreign vessels was provided by the Nova Scotia Observers Program (Mike Showell, Bedford Institute (Mike Showell, Institut d'Océanographie de Bedford). Les prises couvertes par ce programme ont été regroupées par pays d'origine et par navire, engin et mois.

Données biologiques

À l'aide des fonctions **APL** de **CATCH** (Anonyme 1986), les résultats de l'analyse des échantillons commerciaux ont été utilisés pour calculer la capture et les poids à l'âge (provisoires) pour la saison 2000. Ces mêmes données ont été utilisées pour décrire la longueur des poissons capturés et pour calculer la condition du maquereau (facteur de condition de Fulton, sans le poids des gonades) à son arrivée au printemps dans le golfe du Saint-Laurent. Les données biologiques ont aussi permis de calculer les valeurs journalières de l'indice gonado-somatique afin de suivre l'évolution de la ponte.

RELEVÉ DES OEUFS

Échantillonnage

Les 65 stations à échantillonner ont été distribuées régulièrement sur l'ensemble de la zone de ponte (Grégoire et Girard 2000). La distance entre la plupart des stations était de 20 milles nautiques. Deux trajets ont été réalisés de sorte que chaque station a été échantillonnée à deux reprises. La collecte des oeufs a été effectuée à l'aide d'un échantillonneur Bongo (Posgay et Marak 1980) dont les ouvertures étaient de 61 cm de diamètre Les filets utilisés avaient des mailles de 333 microns et à leur ouverture, ils étaient munis d'un débitmètre de marque General Oceanic. Ces derniers ont permis de déterminer le volume (m³) d'eau filtré lors des traits. Les traits, d'une durée minimale de 10 minutes, ont été effectués en suivant un profil en dents de scie (Hempel 1973) entre la surface et un

of Oceanography). The catches covered by this program have been grouped by country of origin and by vessel, type of gear, and month.

Biological data

The results of the analysis of the commercial samples have been used together with the CATCH APL functions (Anonymous 1986) to calculate the catch and weights at age (provisional) for the 2000 season. These same data have also been used to describe the length of the fish caught and to calculate the condition of the mackerel (Fulton's condition factor. without the weight of the gonads) when they arrive in the Gulf of St Lawrence in the spring. The biological data have also been used to calculate daily values for the gonado-somatic index to monitor the progress of the spawning season.

EGG SURVEY

Sampling

The 65 sampling stations were evenly throughout distributed the spawning grounds (Grégoire and Girard 2000). The distance between most of the stations was 20 nautical miles. Two passes were made, so that each station was sampled twice. The eggs were collected using a Bongo sampler (Posgay and Marak 1980) comprising two nets, each with a 333micron mesh, an opening 61 cm in diameter, and a General Oceanic flow meter fitted at this opening. These meters were used to determine the volume (m³) of water filtered during the tows. The tows lasted at least 10 minutes and were made following a sawtooth pattern (Hempel 1973) between the surface and a maximum depth of 50 m, or to within 5 m of the bottom at the shallower stations. An STD

maximum de 50 m, ou jusqu'à 5 m du fond pour les stations moins profondes. Une sonde STD (Sea-Bird Electronic Inc.) a été fixée sur le câble d'attache, près de l'ouverture des filets, pour recueillir en temps réel les données de température qui permis de calculer la durée ont d'incubation des œufs. Une fois un trait complété, les filets ont été suspendus et lavés à l'eau salée. Les échantillons de plancton ont été préservés dans une solution diluée (4-5%) de formaldéhyde tamponnée (Hunter 1985).

Le colmatage des filets a été vérifié en temps réel lors des opérations ou par l'examen des relations entre le nombre de révolutions de chaque débitmètre et la durée des traits correspondants. Aucune correction pour le suréchantillonnage des oeufs (D'Amours et Grégoire 1992) n'a été appliquée puisque les filets, à la fin de chaque trait, étaient remontés directement sur le pont.

Nombre d'oeufs par station et densité Number of eggs per station and average moyenne

Les calculs d'abondance sont basés sur le nombre d'œufs pondus initialement à chaque station. Ce nombre décroît au cours de la période d'incubation selon une relation exponentielle (Maguire 1981). Cette relation, pour la durée d'incubation des œufs de stade 1 (Girard 2000), est décrite de la façon suivante:

où:

 $O_{(\theta)}$ = Nombre d'œufs·m⁻² initialement pondus

 $O_{(0)} = O_{(1)} \cdot e^{-(M \cdot T_{(1)})}$

- $O_{(1)}$ = Nombre d'œufs·m⁻² du stade de maturité 1 (ceux du stade 5 sont aussi inclus; voir Girard 2000)
- M = Mortalité naturelle quotidienne

probe from Sea-Bird Electronics Inc. was attached to the tow cable, close to the opening of the nets, to capture the real-time temperature data used to calculate the incubation time of the eggs. Once a tow was completed, the nets were hung up and rinsed with salt water. The plankton samples were preserved in a dilute (4-5%) solution of buffered formaldehyde (Hunter 1985).

Clogging of the sampling nets was checked in real time during the operations or by comparing the number of revolutions recorded for each flow meter with the duration of the corresponding tows. No correction for oversampling of the eggs (D'Amours and Grégoire 1992) was applied because at the end of each tow, the nets were hauled up directly onto the deck.

egg density

The abundance calculations are based on the number of eggs initially laid at each station. This number decreases exponentially over the incubation period (Maguire 1981). The relation for the incubation period of stage 1 eggs (Girard 2000) can be written as follows:

 $O_{(0)} = O_{(1)} \cdot e^{-(M \cdot T_{(1)})}$

where:

 $O_{(0)}$ = number of eggs initially laid·m⁻² $O_{(1)}$ = number of stage 1 eggs·m⁻² (stage 5 eggs are also included; see Girard 2000)

M = daily natural mortality (set at 0.36; see Maguire 1981) (fixée à 0.36; voir Maguire 1981) $T_{(1)}$ = Durée d'incubation des oeufs de stade 1

La durée d'incubation $T_{(1)}$ est reliée à la température de l'eau (T) par la relation suivante:

$$T_{(1)} = (e^{[-1.87 \cdot Ln(T) + 9.67]})$$

La température moyenne de l'eau des dix premiers mètres a été utilisée dans cette relation puisque la grande majorité des œufs se retrouvent généralement près de la surface (Grégoire *et al.* 1995).

La moyenne et la variance des densités d'œufs associées à toute la surface couverte par le relevé ont été calculées à partir des valeurs de $O_{(0)}$ et des équations reliées à un plan d'échantillonnage aléatoire stratifié (Grégoire 1992). La surface d'échantillonnage a été divisée en trois strates contiguës, et la superficie de chacune de ces strates a été utilisée comme facteur de pondération.

Variogramme et krigeage

La moyenne et la variance des densités d'oeufs ont aussi été calculées à l'aide du krigeage. La semivariance $\gamma(h)$ a d'abord été déterminée à partir de l'équation suivante :

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[z(x_i) - z(x_i + h) \right]^2$$

où :

- *h* = un vecteur de distance ayant une valeur et une direction
- N(h) = le nombre de paires de stations ayant servi au calcul de $\gamma(h)$

 $z(x_i)$ et $z(x_i + h)$, les densités d'oeufs

 $T_{(1)}$ = incubation time for stage 1 eggs

The incubation time $T_{(1)}$ is related to the water temperature (T) by the following equation:

$$T_{(1)} = (e^{[-1.87 \cdot Ln(T) + 9.67]})$$

The average temperature of the first 10 metres of water was used in this equation because the great majority of eggs are generally found near the water's surface (Grégoire *et al.* 1995).

The mean and the variance of the egg densities associated with the entire surface area covered by the survey were calculated from the values for $O_{(0)}$ and from equations based on a stratified random sampling plan (Grégoire 1992). The sampling area was divided into three contiguous strata, and the surface area of each of these strata was used as a weighting factor.

Variogram and kriging

The mean and variance of the egg densities were also calculated by means of kriging. First the semivariance $\gamma(h)$ was determined from the following equation:

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[z(x_i) - z(x_i + h) \right]^2$$

where:

h = a distance vector with a value and a direction

N(h) = the number of pairs of stations used to calculate $\gamma(h)$

and:

 $z(x_i)$ and $z(x_i + h)$ are the egg densities

8

mesurées aux stations d'échantillonnage positions avaient comme dont les coordonnées (x_i) et $(x_i + h)$. La semivariance a été calculée pour différentes valeurs de h à l'aide du logiciel de géostatistique GS⁺ (Robertson 1998). Les résultats ont été utilisés pour construire les variogrammes associés à chaque trajet. Le logiciel GS⁺ a aussi permis de vérifier la présence d'anisométrie. Pour ce faire, la semivariance a été calculée pour toutes les paires possibles de stations et pour différentes orientations. Cette approche, est décrite dans Isaaks et Srivastava (1989).

Les paramètres associés à chaque variogramme ont été utilisés pour réaliser le krigeage en utilisant les valeurs suggérées par GS^+ quant au nombre de points à inclure dans le voisinage de recherche (16) et le rayon de ce dernier (aucune restriction).

La moyenne et la variance des densités d'oeufs ont été calculées à l'aide du logiciel EVA II (Petitgas et Lafont 1997) en utilisant les paramètres suivants : (1) la portée, A_{θ} , (2) l'effet de pépite, C_{θ} , et (3) la variable C qui correspond à la valeur du plateau, $C_{\theta}+C$, moins celle de la pépite, C_{θ} . Les paramètres C et C_{θ} ont été corrigés pour les variogrammes construits sans la présence de valeurs extrêmes. Le facteur de correction, q, qui a été appliqué sur ces paramètres, a été défini de la façon suivante :

$$q = \begin{bmatrix} S_b^2 \\ S_a^2 \end{bmatrix}$$

measured at the sampling stations located at co-ordinates (x_i) and $(x_i + h)$. The semivariance was calculated for various values of h using GS^+ geostatistical software (Robertson 1998). The results were used to construct the variograms associated with each pass. The GS^+ software was also used to test for anisometry. this purpose, For the semivariance was calculated for all possible pairs of stations and for various orientations. This approach is described in Isaaks and Srivastava (1989).

The parameters associated with each variogram were used to perform kriging using the default value suggested by GS^+ for the number of points to include in the search neighbourhood (16) and the radius of this neighbourhood (no restriction).

The mean and the variance of the egg densities were calculated using EVA II software (Petitgas and Lafont 1997) and the following parameters: (1) the range, A_{θ} , (2) the nugget effect, C_{θ} , and (3) the variable C which corresponds to the value of the sill, $C_{\theta}+C$, less that of the nugget, C_{θ} . The parameters C and C_{θ} were corrected for the variograms constructed without the presence of extreme values. The correction factor q, which was applied to these parameters, was defined as follows:

$$q = \begin{bmatrix} S_b^2 \\ S_a^2 \end{bmatrix}$$

where:

 S_b^2 and S_a^2 represent respectively the variance associated with all the data for which kriging was performed, and the variance calculated without the extreme

où :

 S_b^2 et S_a^2 représentent respectivement la variance associée à toutes les données, pour lesquelles le krigeage a été réalisé, et celle calculée sans les valeurs extrêmes. Les nouveaux paramètres utilisés dans

and

EVA II ont alors été calculés comme suit :

$$C_0' = q \bullet C_0$$

et

$$C' = q \bullet C$$

d'oeufs

X, et leurs variances, var(X), ont été définies de la facon suivante:

$$X = A \bullet P$$

où :

- A = la surface de la zone d'étude (6.95 x $10^{10} \,\mathrm{m}^2$)
- P = la densité moyenne d'oeufs, pour une approche reliée à un plan d'échantillonnage aléatoire stratifié et par krigeage

et :

$$\operatorname{var}(X) = A^2 \bullet \operatorname{var}(P)$$

où *var(P)* représente la variance stratifiée de même que celle définie par EVA II pour les moyennes krigées. Les intervalles de confiance (I.C.) associés aux estimations de X ont été définis comme suit :

$$I.C. = \pm 1.96 \bullet \sqrt{\operatorname{var}(X)}$$

BIOMASSES REPRODUCTRICES

Deux méthodes sont présentement utilisées pour déterminer l'abondance du maquereau à partir de sa production d'oeufs. La première est employée depuis 1983, et la seconde, depuis 1996. Ces deux méthodes ne mesurent que l'abondance des adultes qui se reproduisent dans le golfe du Saint-Laurent.

values. The new parameters used in EVA II were then calculated as follows:

$$C_0' = q \bullet C_0$$

 $C' = q \bullet C$

Calcul des productions quotidiennes Calculation of daily egg production values

Les productions quotidiennes d'oeufs, ou The daily egg production values X and their variances *var(X)* were defined as follows:

$$X = A \bullet P$$

where:

- A = the area of the zone analysed (6.95 x $10^{10} \,\mathrm{m}^2$)
- P = the average egg density, for an approach associated with a stratified random sampling plan and by kriging

and:

$$\operatorname{var}(X) = A^2 \bullet \operatorname{var}(P)$$

where *var(P)* represents the stratified variance as well as the variance defined by EVA II for the kriged means. The confidence intervals (CI) associated with the estimates of *X* were defined as follows:

$$CI = \pm 1.96 \bullet \sqrt{\operatorname{var}(X)}$$

SPAWNING STOCK BIOMASS

Two methods are currently used to determine the abundance of mackerel from their egg production. The first of these methods has been in use since 1983, and the second since 1996. Both methods measure only the abundance of the adults that spawn in the Gulf of St Lawrence.

Méthode de la Production Totale *Total Egg Production Method (TEPM)* d'Oeufs ou MPTO

La Méthode de la Production Totale d'Oeufs (MPTO) est définie par l'équation suivante:

$$B = \frac{P_0 \cdot A \cdot S \cdot W}{F \cdot R \cdot 10^6}$$

où:

B = Biomasse reproductrice (t)

- P_{θ} = densité moyenne d'oeufs par jour et unité de surface (oeufs·jour⁻¹·m⁻²), calculée selon un plan d'échantillonnage aléatoire stratifié et par krigeage.
- A = Surface échantillonnée (6.95x10¹⁰ m²)
- S = Rapport de surfaces (Maguire 1981)
- W = Poids (g) moyen d'un poisson

F = Fécondité (nombre moyen d'oeufs par

femelle; Pelletier 1986)

- \mathbf{R} = Fraction des femelles (en poids)
- 10^6 = Facteur de conversion de grammes en tonnes

Le produit $(P_{\theta} \cdot A)$ représente le nombre total d'œufs pondus quotidiennement dans l'ensemble de la zone échantillonnée. Les périodes de temps associées à ces productions sont définies comme étant les dates médianes de chaque trajet.

La production totale ou annuelle d'œufs a été calculée par le produit de $(P_0 \cdot A)$ par S. Cette dernière valeur représente le rapport entre 0.9544, la surface sous une courbe normale de alpha +/- 5 %, et la surface déterminée sous cette même courbe par les dates médianes associées à chaque trajet. Ce modèle assume aussi que la durée du cycle de ponte est de 28 jours et que le maximum de ponte se produit à tous les ans le 24 juin (Maguire 1981). D'autres maximums ont aussi été utilisés, The Total Egg Production Method (TEPM) is defined by the following equation:

$$B = \frac{P_0 \cdot A \cdot S \cdot W}{F \cdot R \cdot 10^6}$$

where:

B = spawning stock biomass (t)

- P_{θ} = average density of eggs per day per unit area (eggs·day⁻¹·m⁻²), calculated according to a stratified random sampling plan and by kriging.
- $A = \text{area sampled} (6.95 \text{ x } 10^{10} \text{ m}^2)$
- S = ratio of areas (Maguire 1981)
- W = average weight per mackerel (g)
- *F* = fecundity (average number of eggs per female; Pelletier 1986)
- \mathbf{R} = ratio of females (by weight)
- 10^6 = conversion factor, grams to tonnes

The product $(P_{\theta} \cdot A)$ represents the total number of eggs laid per day in the entire area sampled. The time periods associated with these production values are defined as the median dates of each pass.

Total or annual egg production was calculated by multiplying $(P_{\theta} \cdot A)$ by *S*. This latter value represents the ratio between 0.9544, the area under the normal curve of alpha +/- 5%, and the area defined under this same curve by the median dates of each pass. This model also assumes that the spawning cycle lasts 28 days and that the spawning season peaks on June 24 each year (Maguire 1981). Other peaks were also used, selected on the basis of the dates on which the values of the gonado-somatic

et leur choix a été basé sur les dates pour lesquelles les valeurs de l'indice gonadosomatique atteignent 45 %, 50 % et 55 % de leur valeur initiale.

Le nombre total de poissons ayant participé à la ponte a été calculé par le rapport entre $(P \cdot A \cdot S)$ et $(F \cdot R)$ et les biomasses reproductrices, par le produit de ce nombre par $(W/10^6)$. Les variances et les intervalles de confiance ont été calculés selon l'approche proposée par Grégoire et Bourdages (2000).

Méthode de la Réduction Journalière de la Fécondité ou MRJF

La **MRJF** est utilisée depuis 1996 pour tenter de contourner les problèmes reliés à l'utilisation de la méthode traditionnelle (Grégoire 1997). Le modèle de base de la **MRJF** s'exprime comme suit (Lo *et al.* 1992, 1993):

$$B = \frac{(P_0 \cdot A)}{K}$$

où :

 \boldsymbol{B} = biomasse reproductrice (t)

- P_{θ} = densité moyenne d'oeufs par jour et unité de surface (oeufs·jour⁻¹·m⁻²), calculée selon un plan d'échantillonnage aléatoire stratifié et par krigeage
- A = surface de la zone échantillonnée (6.95 x 10¹⁰ m²)
- K = fécondité journalière du stock de poissons à évaluer (oeufs·t⁻¹·jour⁻¹)

Les deux variables nécessaires au calcul de K, le nombre total d'ovocytes vitellogènes et la fraction des femelles actives, ont été déterminées à partir de l'examen histologique d'un certain nombre d'ovaires. Ces derniers proviennent des échantillons qui ont été recueillis dans les principaux

index reached 45%, 50%, and 55% of their initial value.

The total number of fish that participated in spawning was calculated by the ratio between $(P \cdot A \cdot S)$ and $(F \cdot R)$, and the values for spawning stock biomass were calculated by multiplying this number by $(W/10^{6}).$ The variances and confidence intervals were using calculated the approach proposed by Grégoire and Bourdages (2000).

Daily Fecundity Reduction Method (DFRM)

The **DFRM** has been used since 1996 to try to overcome the problems associated with the traditional method (Grégoire 1997). The basic model for the **DFRM** is expressed by the following equation: (Lo *et al.* 1992, 1993):

$$B = \frac{(P_0 \cdot A)}{K}$$

where:

B = spawning stock biomass (t)

- P_{θ} = average density of eggs per day per unit area (eggs·day⁻¹·m⁻²) calculated according to a stratified random sampling plan and by kriging
- $A = \text{area sampled} (6.95 \times 10^{10} \text{ m}^2)$
- K = daily fecundity of the stock of fish to be estimated (eggs·t⁻¹·day⁻¹)

The two variables needed to calculate K are the total number of vitellogenous oocytes and the proportion of females with active ovaries. These two variables were determined by the analysis of histological tissues from a number of ovaries. These ovaries came from the biological samples ports de débarquements de la baie des Chaleurs et des Îles-de-la-Madeleine. Pour les besoins particuliers de l'étude, 12 ovaires été préservés ont au moment de l'échantillonnage dans une solution de formaldéhyde tamponnée à 4 %. Au laboratoire, la longueur et le poids des femelles correspondantes ont été mesurés. Les otolithes ont aussi été prélevés pour la détermination de l'âge.

Les ovaires ont été pesés au gramme près et leur volume (ml) a été déterminé selon la technique de déplacement présentée dans Scherle (1970). Une tranche d'environ un cm d'épaisseur a été prélevée dans la partie centrale de l'un des deux lobes et placée dans une cassette d'inclusion. Les coupes ont été préparées selon le protocole habituel la compagnie CTRR par Clintrials Bioresearch et analysées à l'aide d'un microscope Leitz Laborlux K couplé à une caméra JVC de modèle TK-12800 et à l'analyseur d'images Q500MC de Leica.

L'analyse histologique a consisté à identifier le stade de développement des ovocytes et à les dénombrer. Tous les ovocytes vitellogènes présents sur une coupe ont été comptés, à un grossissement de 40X, après avoir placé sur la coupe une lamelle comportant des traits horizontaux délimitant une série de corridors. Le décompte s'est fait d'un corridor à l'autre selon une approche similaire à celle présentée par Gundersen (1977).

Des diamètres ont été mesurés à un grossissement de 40X pour les ovocytes de stade 2 et à 25X pour ceux des stades 3 à 5 (voir Grégoire 1997 pour la description de chacun des stades). Le nombre maximum d'ovocytes à mesurer par coupe et par stade a été fixé à 50. Pour les stades 2 à 4, seuls les ovocytes ayant un noyau en position centrale ont été retenus et leur diamètre a été

that were collected in the main landing ports of Chaleurs Bay and the Magdalen Islands. For the specific purposes of this study, 12 ovaries were preserved at the time of sampling in a 4% buffered formaldehyde solution. The lengths and weights of the females from which these ovaries were taken were measured in the laboratory. The otoliths were also removed for aging.

The ovaries were weighed to the nearest gram and their volume in millilitres was determined using the displacement method presented in Scherle (1970). A section approximately 1 cm thick was taken from the central portion of one of the two lobes and placed in an embedding cassette. The sections were prepared according to the protocol by CTRR usual Clintrials Bioresearch Inc and analysed using a Leitz Laborlux K microscope with a JVC TK-12800 camera and a Leica Q500MC image analyser.

The histological analysis consisted in identifying the stages of development of the oocytes and then counting them. To count all of the vitellogenous oocytes in a section, we placed on it a slide divided into rows by a series of horizontal lines. Examining the slide at a magnification of 40X, we then counted the vitellogenous oocytes from one row to the next, using an approach similar to that described by Gundersen (1977).

Diameters were measured at a magnification of 40X for the stage 2 oocytes and 25X for stages 3 to 5 (see Grégoire, 1997 for a description of each stage). The maximum number of oocytes to be measured for each section and stage was set at 50. For stages 2 to 4, only those oocytes having a nucleus in central position were retained, and their diameter was measured through the centre mesuré en passant par le centre du noyau. Pour les ovocytes de stade 5, dont le contenu du noyau s'est dispersé dans l'oeuf, c'est le diamètre maximal de l'ovocyte qui a été mesuré. Finalement, le diamètre moyen des ovocytes a été calculé pour chaque stade.

Le nombre total d'ovocytes par ovaire a été calculé selon l'approche utilisée par le Laboratoire d'Aberdeen en Écosse (Priede Cette approche est basée sur le 1994). théorème de DeHoff et Rhines (1961) qui stipule qu'une coupe histologique échantillonne une section de l'ovaire dont le volume est égal au produit du diamètre des ovocytes par la surface de la section de la coupe. L'utilisation de ce théorème assume que : (1) les distributions des diamètres des ovocytes sont unimodales, (2) la forme des ovocytes est sphérique et, (3) leur densité demeure la même dans tout l'ovaire. Pour un stade donné, et selon cette approche, le nombre d'ovocytes par unité de volume, ou N_{ν} , a été calculé de la façon suivante :

$$N_v = \frac{N_a}{(d \bullet s)}$$

où d est le diamètre moyen (mm) des ovocytes du stade en question, s la surface (mm²) de la section de l'ovaire et N_a , le nombre d'ovocytes dans cette section. La surface totale de chaque coupe a été mesurée à l'aide du système d'analyse d'images et d'un microscope M8 Wild Heerbrugg équipé d'un objectif de 0.4X. Par la suite, le nombre total d'ovocytes pour un stade donné et par ovaire a été déterminé par:

$$N = N_v \bullet V$$

où V représente le volume (ml) de l'ovaire. Ces calculs ont été réalisés pour chacun des stades de façon à obtenir le nombre total d'ovocytes vitellogènes par ovaire. Le of the nucleus. For the stage 5 oocytes, in which the contents of the nucleus are dispersed throughout the egg, the maximum diameter of the oocyte was measured. Lastly, the mean diameter of the oocytes was calculated for each stage.

The total number of oocytes per ovary was calculated by the approach used by the Aberdeen Laboratory in Scotland (Priede This approach is based on the 1994). theorem of DeHoff and Rhines (1961), which states that a histological section samples a portion of the ovary whose volume equals the product of the diameter of the oocytes multiplied by the surface area of the section. The use of this theorem assumes that: (1) the distributions of oocyte diameters are unimodal, (2) the shape of the oocytes is spherical, and lastly, (3) their density remains the same throughout the ovary. According to this approach, for each stage, the number of oocytes per unit volume, N_{ν} , is calculated as follows:

$$N_{v} = \frac{N_{a}}{(d \bullet s)}$$

where d is the mean diameter (in millimetres) of the oocytes at the stage in question, s is the surface area (in square millimetres) of the section of the ovary, and N_a is the number of oocytes in this section. The total surface area of each section was measured using the image analysis system and a Wild Heerbrugg M8 microscope equipped with a 0.4X objective. The total number of oocytes of a given stage in the entire ovary was then determined by:

$$N = N_v \bullet V$$

where V represents the volume of the ovary, in millilitres. These calculations were repeated for each of the stages so as to obtain the total number of vitellogenous déclin saisonnier de ces derniers a été mesuré par une relation linéaire comme dans le cas de la proportion de femelles ayant des ovaires actifs (avec ovocytes de stade 5). Ces deux relations sont à la base des calculs d'abondance reliés à la **MRJF**.

Pour chaque ovaire, le nombre total d'ovocytes vitellogènes a été comparé à la gonado-somatique de l'indice valeur correspondant. Une relation linéaire a d'ailleurs été établie entre ces deux variables à partir des données recueillies lors de l'évaluation d'abondance de 1998 (Grégoire 2000). Puisque l'indice gonado-somatique est mesuré à tous les ans, cette relation a été utilisée pour estimer les déclins saisonniers du nombre d'ovocytes vitellogènes pour les années antérieures à 1998. Des essais ont aussi été réalisés à partir des mêmes données pour tenter de relier la proportion des femelles actives à différentes variables biologiques. La reconstruction des déclins saisonniers du nombre d'ovocytes vitellogènes et de la proportion des femelles actives permettrait d'utiliser la MRJF pour les relevés réalisés entre 1983 et 1994.

oocytes in each ovary. The seasonal decline in the number of these oocytes was measured by a linear equation, as was the proportion of females with active ovaries (that is, containing stage 5 oocytes). These two equations are the basis for the abundance calculations made using the **DFRM**.

For each ovary, the total number of vitellogenous oocytes was compared with the value of the corresponding gonadosomatic index. A linear relationship between these variables was also established using the data gathered for the 1998 abundance estimates (Grégoire 2000). Since the gonado-somatic index is measured each year, this relationship was used to estimate the seasonal declines in the number of vitellogenous oocytes for the years prior to 1998. Some tests were also performed on these same data to try to relate the proportion of active females to various biological variables. Reconstructing the seasonal declines in the number of vitellogenous oocvtes and the proportion of active females would make it possible to apply the **DFRM** to the surveys conducted from 1983 to 1994.

RÉSULTATS

Pêche

Les débarquements canadiens déclarés de maquereau réalisés en 2 000 se chiffrent pour l'instant à 8 795 t (Tableau 1). Cette valeur représente une diminution très importante de près de 8 000 t par rapport aux 16 561 t débarquées en 1999 et une baisse d'environ 9 000 t par rapport à la moyenne des 30 dernières années. Les débarquements réalisés en eaux américaines se chiffrent à 4 748 t pour la pêche commerciale et à 1 381 t pour la

Fishery

Canadian mackerel landings reported so far for the year 2000 total 8 795 t (Table 1). This represents a very large decrease (nearly 8 000 t) compared with the 16 561 t landed in 1999, and a drop of about 9 000 t compared with the average for the past 30 years. Mackerel landings in US waters totalled 4 748 t for the commercial fishery and 1 381 t for the recreational fishery. No offshore mackerel fishery has been conducted by foreign vessels in US waters

RESULTS

En 2000, les plus importants débarquements de maquereau ont été enregistrés à Terre-Neuve et en Nouvelle-Écosse avec des tonnages respectifs de 3 794 t et 2 710 t (Tableau 2). Pour la période de 1990 à 1999, les moyennes annuelles les plus élevées ont été enregistrées par la Nouvelle-Écosse, Terre-Neuve et l'Île-du-Prince-Édouard avec des valeurs respectives de 6766 t, 4172 t et 4 154 t. Pour le Québec et le Nouveau-Brunswick, les moyennes annuelles ont été respectivement de 3 784 t et 2 123 t.

Les deux principaux engins de pêche ont été la seine bourse et la trappe, avec des débarquements de 3 793 t et 2 454 t (Tableau 3). Ces deux engins ont été suivis du filet maillant, de la turlutte et de la ligne avec des débarquements respectifs de 1 982 t, 548 t et 17 t (Tableau 3). Entre 1990 et 1999, les plus importants engins de pêche ont été le filet maillant, la turlutte et la seine avec des débarquements annuels moyens de 6 505 t, 4 594 t et 4 174 t.

Un peu plus de 6 000 t de maquereau ont été capturées dans seulement 4 zones unitaires, soit 3Kh, 4Rb, 4Tl et 4Xm avec des valeurs respectives de 1 948 t, 1 106 t, 1 357 t et 1 656 t (Tableau 4). La trappe (FPN) en juin a contribué à la plupart des débarquements division de la 4X. comparativement aux filets maillants (GN) dans 4T (Tableau 5) et la seine bourse (PS) en septembre et en octobre pour les divisions 3K et 4R.

fishery that accounted for the large catches observed in the 1980s (Figure 2).

In 2000, the largest landings of mackerel were recorded in Newfoundland (3 794 t) and Nova Scotia (2710 t) (Table 2). For the period 1990 to 1999, the highest annual averages were recorded by Nova Scotia, Newfoundland, and Prince Edward Island, (6 766 t, 4 172 t, and 4 154 t, respectively). For Quebec and New Brunswick, the annual averages were 3 784 t and 2 123 t, respectively.

The two main types of fishing gear used were purse seines and traps, with landings of 3 793 t and 2 454 t, respectively (Table 3). These two types of gear were followed by gillnets, jiggers, and lines, with respective landings of 1 982 t, 548 t, and 17 t (Table 3). From 1990 to 1999, the most important types of gear were gillnets, jiggers, and seines, with average annual landings of 6 505 t, 4 594 t, and 4 174 t.

Slightly over 6 000 t of mackerel were caught in just four NAFO unit areas-3Kh, 4Rb, 4Tl, and 4Xm-with respective values of 1948 t, 1106 t, 1357 t, and 1 656 t (Table 4). Traps (FPN) in June contributed most of the landings in division 4X, compared with gillnets (GN) in 4T (Table 5) and purse seines (PS) in September and October for divisions 3K and 4R.

En 1999, les engins mobiles n'avaient In 1999, only 1 360 t of mackerel were

capturé que 1 360 t de maquereau comparativement à 15 201 t pour les engins fixes (Tableau 6). En 2000, les débarquements provenant des engins mobiles et fixes ont été respectivement de 3 794 t et 5 001 t. Historiquement, les associés aux engins débarquements mobiles étaient surtout réalisés à Terre-Neuve (T-N) et en Nouvelle-Écosse (N-É) avec des moyennes annuelles de 3 873 t et 685 t.

Les captures de maquereau enregistrées en 2000 sur le plateau néo-écossais par des observateurs n'ont été que de 630 kg (Tableau 7). La plupart ont été réalisées en juin dans la zone unitaire 5Zj par deux navires canadiens utilisant le chalut pélagique, et en juillet à l'aide de la seine bourse près de la pointe Ouest de la Nouvelle-Écosse (Tableau 8; Figure 3). Les prises enregistrées par des observateurs sur deux navires russes n'ont été que de 57 kg. La taille des prises échantillonnées sur l'un de ces navires en janvier variait 36.0 entre 27.5 cm et cm. comparativement à 19.0 cm et 24.0 cm pour un navire canadien dont les prises ont été échantillonnées en juin (Tableau 8).

Données biologiques

En 2000, des mesures de longueur à quai ont été réalisées sur un peu plus de 10 000 maquereaux, et de ce nombre, 1 937 ont été congelés pour les analyses en laboratoire (Tableau 9). La plupart des échantillons ont été récoltés dans la division 4T et sont associés à la pêche printanière aux filets maillants et à la pêche d'automne à la ligne (Tableaux 5 et 9).

La capture à l'âge en 2000 a été caractérisée par la présence d'un très grand nombre de petits poissons âgés de 1 an seulement, c'est-à-dire de la classe d'âge words, from the 1999 year class (Table 10).

taken with mobile gear, while 15 201 t were taken with fixed gear (Table 6). In 2000, landings with mobile gear and fixed gear were 3 794 t and 5 001 t, respectively. Historically, landings with mobile gear have been made chiefly in Newfoundland and Nova Scotia, averaging 3 873 t and 685 t annually.

The 2000 mackerel catch recorded by observers on the Scotian Shelf totalled only 630 kg (Table 7). Most of this catch was made in June in unit area 5Zj by two Canadian vessels using midwater trawls, and in July using purse seines near the western tip of Nova Scotia (Table 8; Figure 3). The catches recorded by observers on two Russian vessels totalled only 57 kg. The size of the mackerel sampled on one of these vessels in January ranged from 27.5 cm to 36.0 cm, compared with 19.0 cm to 24.0 cm for the catch sampled in June on a Canadian vessel (Table 8).

Biological data

In 2000, length measurements were made at dockside on slightly more than 10 000 mackerel, 1 937 of which were frozen for subsequent laboratory analyses (Table 9). Most of these fish were harvested in Division 4T in the spring gillnet fishery and the fall line fishery (Tables 5 and 9).

The catch at age in 2000 was characterized by the presence of a very large number of small fish aged only 1 year-in other de 1999 (Tableau 10). Cette dernière comptait pour 63 % de toutes les captures comparativement à 12 % pour la classe d'âge de 1996 qui est la seconde en importance. À 3 ans, la classe d'âge de 1996 n'a été dépassée, en nombre, que par celles de 1988, 1982, 1974 et 1967 (Tableau 11). En terme de pourcentage, cette classe d'âge a même été légèrement plus importante que la classe dominante de 1988 (Tableau 12). La contribution de la d'âge classe de 1996 en 2000 а considérablement été réduite par la présence en très grand nombre des poissons de la classe de 1999. Le poids moyen de ces poissons était de 0.208 kg, une valeur plus élevée que les poids à un an des quatre dernières classes dominantes (Tableau 13).

classe d'âge Chaque dominante est indiquée par la présence d'un mode principal dans les fréquences de longueur. Au cours des ans chacun de ces modes, en raison de la croissance somatique, se déplace graduellement vers de plus grandes C'est le cas des classes d'âge tailles. dominantes de 1974, 1982 et 1988 pour les fréquences de longueur associées à la pêche aux filets maillants de la division 4T (Figure 4), et des classes d'âge de 1982 et 1988 pour les fréquences provenant de la pêche d'automne à la ligne, dans la division 4T (Figure 5), et à la seine bourse, dans la division 4R (Figure 6). En 2000, le mode associé à la classe d'âge de 1999 était déjà présent dans les fréquences de longueur associées à ces deux activités de pêche (Figures 5 et 6). Sur la côte Est de Terre-Neuve, la plupart des poissons analysés au laboratoire étaient de petite taille et de la classe d'âge de 1999.

Les tailles les plus élevées proviennent généralement de la pêche à la seine bourse (division 4R : pêche d'automne) et de celle aux filets maillants (division 4T : pêche du

This year class accounted for 63 % of all the fish caught, compared with 12 % for the 1996 year class, which was the second most numerous. At 3 years, the 1996 year class was exceeded in number only by the 1988, 1982, 1974 and 1967 year classes (Table 11). In percentage terms, this year class was even slightly larger than the dominant 1988 class (Table 12). The contribution of the 1996 year class in 2000 was considerably reduced by the presence of a very large number of fish from the 1999 class. The average weight of these fish was 0.208 kg, which represents the largest weight at one year old compared to the last four dominant year classes (Table 13).

Each dominant year class is indicated by the presence of a primary mode in the annual length frequency distributions. Over the years, as the fish grow in body size, each of these modes shifts gradually upward to the larger size ranges. This is the case for the dominant year classes of 1974, 1982 and 1988 for the length frequencies associated with the gillnet fishery in Division 4T (Figure 4), and for the 1982 and 1988 year classes for the frequencies associated with the fall line fishery, in Division 4T (Figure 5) and the purse seine fishery, in Division 4R (Figure 6). In 2000, the mode associated with the 1999 year class was already present in the length frequencies for these two fisheries (Figures 5 and 6). On the east coast of Newfoundland, most of the fish analysed in the laboratory were small and came from the 1999 year class.

The largest mackerel generally come from the purse seine fishery (Division 4R, in the fall) and the gillnet fishery (Division 4T, in the spring) (Figure 7). The smallest printemps) (Figure 7). Les plus petites tailles sont la plupart du temps associées à la pêche à la ligne (division 4T : pêche d'automne). Cependant, en 2000, les plus petites tailles ont été observées, et ce pour la première fois, dans les captures des seineurs de la côte Ouest de Terre-Neuve.

L'examen des fréquences de longueur annuelles a aussi permis de constater que la taille des captures provenant des différents types d'engin de pêche variait peu lorsqu'une classe d'âge dominait la pêche. C'est le cas par exemple de la classe d'âge de 1982 en 1987 et 1988 (Figure 8). En fait, tous les engins de pêche ont capturé lors de ces deux années du maquereau de la même taille. Il semble aussi que les lignes permettent d'identifier plus rapidement l'arrivée d'une classe d'âge dominante. C'est le cas en 1990 pour la classe d'âge dominante de 1988 qui n'a été observée dans les fréquences de taille des filets maillants qu'en 1991 et 1992 (Figure 8). En 2000, le mode de la classe d'âge de 1999 pouvait déjà être observé dans les fréquences de taille provenant des lignes et de la seine bourse.

La croissance chez le maquereau s'effectue surtout au cours des premières années de vie (Figure 9), et à partir de quatre ans, elle devient plus rapide chez les femelles que chez les mâles. Le maquereau peut vivre au-delà de 15 ans, mais il atteint rarement une longueur supérieure à 450 mm. Une croissance plus lente a été observée chez les classes d'âge dominantes de 1967, 1974, 1982 et 1988 (Figure 10).

Au cours de sa présence en eaux canadiennes, la condition du maquereau est à son plus bas au printemps, soit juste avant et pendant la ponte. Jusqu'en 1984 inclusivement, la condition annuelle du maquereau était supérieure à la moyenne

mackerel are usually taken with lines (Division 4T, in the fall). However, in 2000, for the first time, the smallest mackerel were observed in the catches made by seiners off the west coast of Newfoundland.

Examination of the annual length frequencies also revealed that when one year class dominated the fishery, the size of the fish caught did not vary much from one type of gear to the next. Such was the case, for example, for the 1982 year class in 1987 and 1988 (Figure 8). In fact, in those two years, all types of fishing gear caught the same size of mackerel. Line fishing appears to be the quickest to reveal the arrival of a dominant year class. For example, the dominant 1988 year class was observed in 1990 in the size distributions for the line fishing catch, but not until 1991 and 1992 in the size distributions for the gillnet catch (Figure 8). In 2000, the mode for the 1999 year class could already be observed in the size frequencies for mackerel taken with lines and purse seines.

Mackerel do most of their growing during the first few years of their lives (Figure 9), and from age 4 on, the females grow faster than the males. Mackerel can live beyond 15 years, but rarely exceed 450 mm in length. Slower growth has been observed in the dominant year classes of 1967, 1974, 1982, and 1988 (Figure 10).

During the time that it spends in Canadian waters, the mackerel's condition is at its lowest in spring, just before and during spawning. Through 1984, the mackerel's annual condition was higher than the average calculated for the period 1973 to

calculée pour la période comprise entre 1973 et 1999 (Figure 11). Elle a cependant été inférieure à cette moyenne entre 1985 et pendant laquelle 1998. période la température de l'eau associée à la CIF Intermédiaire (Couche Froide) s'est refroidie (D. Gilbert, Institut Maurice-Lamontagne, comm. pers.). D'ailleurs, les variations annuelles de la condition sont très similaires à celles des températures moyennes de l'eau de la CIF (Figure 11). En 1999, la condition du maguereau a été supérieure à cette moyenne, mais de nouveau inférieure en 2000.

L'examen des moyennes journalières de l'indice gonado-somatique a démontré que la ponte en 1998 et surtout celle de 1999 se sont déroulées plus tôt que prévu (Figure Entre 1973 et 1997, la valeur 12). maximale de l'indice, qui est d'environ 12 %, était atteinte au premier juin et la fin de la ponte, caractérisée par une valeur d'environ 1 %, avait eu lieu vers la fin de juillet. En 1998, l'indice a atteint son maximum de 12 % dès le 20 mai et au 1^{er} juin 1999, il n'était que de 4 %. De plus, au cours de ces deux années, la ponte s'est terminée dès la fin du mois de juin. L'examen de cartes satellites et des données recueillies par les thermographes d'un pêcheur-repère du Cap-Breton a révélé que les températures de l'eau près de la surface, en mai et juin, ont été plus élevées en 1998 et 1999 que pour les années précédentes (Grégoire et al. 2000). Grâce aux satellites, l'évolution des températures de surface pourra désormais être suivie sur une plus grande échelle spatiale, et non seulement aux endroits où se déroulent les activités des pêcheurs. La Figure 13 présente certaines des positions géographiques où il est maintenant possible d'obtenir des températures quotidiennes de l'eau de surface.

1999 (Figure 11). However, it fell below this average from 1985 to 1998, when the water temperature of the Cold Intermediate Layer (CIL) had cooled (D. Gilbert, Maurice Lamontagne Institute, pers. comm.). In fact, the annual variations in the mackerel's condition follow a very similar pattern to those in the average water temperature of the CIL (Figure 11). The mackerel's condition exceeded this average in 1999, but fell below it again in 2000.

A review of the daily averages for the gonado-somatic index shows that in 1998, and especially in 1999, spawning occurred earlier than expected (Figure 12). From 1973 to 1997, the maximum value of the index, about 12 %, was reached on June 1, and the end of spawning, characterized by an index of about 1 %, occurred around the end of July. In 1998, the index had peaked at 12 % by May 20, and on June 1, 1999, it was only 4 %. Moreover, in both of these years, the spawning season was over by the end of June. Satellite maps and data gathered with thermographs by an index fisherman from Cape Breton Island revealed that May and June water temperatures near the surface were higher in 1998 and 1999 than in preceding years (Grégoire et al. 2000). Thanks to satellites, changes in surface temperatures can now be monitored on a wider geographic scale, and not only at those locations where fishermen operate. Figure 13 shows certain geographic locations where daily surface water temperatures can now be obtained.

En 1999, le déroulement de la ponte a été si hâtif que les activités d'alimentation et de croissance ont probablement débuté plus tôt que prévu. Ceci semble être confirmé par la présence d'une zone de croissance, dès le mois de juin, à la marge des otolithes. Habituellement, la zone de croissance de l'année en cours ne commence à se déposer que vers la fin du mois de juillet. La situation en 2000 est similaire à ce qui a été observé avant 1998, c'est-à-dire un indice dont la valeur maximale est atteinte au début de juin.

Relevé des oeufs

Le relevé a été effectué à bord du briseglace de recherche, le NGGC Martha L. Ce dernier a quitté le port de Black. Matane le 10 juin 2000 pour réaliser le monitorage de certaines stations associées à deux autres projets de recherche. L'échantillonnage des oeufs de maquereau a débuté à la station 1.2 (Figure 14) le 18 juin. Le premier trajet a été complété le 26 juin et le second le 3 juillet. L'itinéraire parcouru lors de ces deux trajets est présenté aux Figures 15A et 16A.

Toutes les stations ont été échantillonnées à deux reprises. Du colmatage des filets a été décelé à plusieurs occasions (symboles ouverts des Figures 15B et 16B), et lorsque l'horaire le permettait, ces stations étaient échantillonnées au moins à une autre reprise en utilisant d'autres filets ou d'autres débitmètres pour s'assurer que le colmatage était réel et non causé par un bris ou un mauvais fonctionnement des équipements. Les échantillons correspondants n'ont pas été rejetés contrairement à celui de la station 3.4 du premier trajet qui a mal été conservé.

Lors du premier trajet, les densités In the first pass, the minimum and minimale et maximale d'œufs ont été de 0 maximum egg densities were 0 and 3 082

In 1999, spawning took place so early that feeding and growth activities probably began earlier than expected. This seems to be confirmed by the presence of a growth zone at the edge of the otoliths starting in early June. Usually, the annual growth zone for the current year does not start to be laid down until about the end of July. The situation in 2000 was similar to that observed before 1998, with the index peaking at the start of June.

Egg survey

The egg survey was conducted on board the research icebreaker CCGV Martha L. Black. This vessel sailed from Matane on June 10, 2000 to monitor certain stations involved in two other research projects. Sampling of mackerel eggs began at station 1.2 (Figure 14) on June 18. The first pass was completed on June 26 and the second on July 3. The course followed in these two passes is shown in Figures 15A and 16A.

All of the stations were sampled twice. Clogging of the nets was detected on several occasions (open symbols in Figures 15B and 16B), and when the schedule permitted, these stations were sampled at least one more time using other nets or other flow meters to ensure that the clogging was real and not caused by an equipment failure or malfunction. The corresponding samples were not rejected, unlike the one from station 3.4 in the first pass, which was not properly preserved.

 α wurked m m^2 14), 3 0 8 2 et (Tableau comparativement à 0 et 303 œufs/m² pour celles du second trajet (Tableau 15). Les densités moyennes respectives ont été de 100.7 et 24.8 α m². Les plus importantes densités ont été mesurées au cours du premier trajet dans la partie centrale de la zone d'échantillonnage (Figure 17A), et un peu plus au nord de cette zone dans le cas du second trajet (Figure 18A). Aucun oeuf ou de très faibles densités ont été observées pour les stations situées tout le long de la périphérie de la zone d'échantillonnage. Tel que l'indique les cartes satellites prises au moment de chaque trajet (Figures 17A et 18A), ou les données provenant des sondes STD (Figures 17B et 18B), les plus basses températures de l'eau en surface ou dans les 10 premiers mètres ont été observées à ces mêmes stations. Dans l'ensemble, les températures movennes des 10 premiers mètres sont passées de 10.95 °C lors du premier trajet à 13.66 °C pour le second (Tableaux 14 et 15). L'examen des cartes satellites révèle aussi que les températures de l'eau en surface se sont réchauffées rapidement lors du relevé.

Pour les strates 1, 2 et 3 (Figure 14), les moyennes d'œufs densités ont été respectivement de 11.63, 60.97 et 315.82 $ceufs/m^2$ pour le premier trajet, et de 7.24, 15.69 et 70.22 α gufs/m² pour le second (Tableau 16). Ces moyennes sont parmi les plus faibles à avoir été mesurées depuis 1983 (Tableau 17). Pour l'ensemble de la zone échantillonnée, les densités moyennes stratifiées, pour le premier et le second trajet ont été respectivement de 105.73 et 26.17 œufs/m^2 , avec des variances de 2 749.63 et 36.27 (Tableau 17). Les valeurs des paramètres W, R et F ont été respectivement de 466.08 g, 0.5185 et 561 074 œufs (Tableau 18).

 $eggs/m^2$ (Table 14), compared with 0 and 303 eggs/m^2 in the second pass (Table 15). The average densities were 100.7 and 24.8 eggs/m², respectively. The highest densities were measured during the first pass in the central part of the sampling zone (Figure 17A), and slightly farther north in this zone during the second pass (Figure 18A). No eggs or very low egg densities were observed for the stations all along the periphery of the sampling zone. As indicated by the satellite maps from the time of each pass (Figures 17A and 18A), or by the data from the STD probes (Figures 17B and 18B), the lowest temperatures at the surface or in the first 10 metres of the water were observed at these same stations. Overall, the average temperature in the first 10 metres rose from 10.95 °C during the first pass to 13.66 °C during the second (Tables 14 and 15). The satellite maps also reveal that the surface water temperatures rose rapidly during the survey.

For strata 1, 2 and 3 (Figure 14), the average egg densities were 11.63, 60.97 and 315.82 eggs/m², respectively, in the first pass, and 7.24, 15.69 and 70.22 eggs/m² in the second (Table 16). These averages are among the lowest measured since 1983 (Table 17). For the entire zone sampled, the stratified average densities, for the first and second pass, were 105.73 and 26.17 eggs/m², respectively, with variances of 2 749.63 and 36.27 (Table 17). The respective values of the parameters *W*, *R*, and *F* were 466.08 g, 0.5185 and 561 074 eggs (Table 18).

Les productions journalières et totales d'œufs associées aux moyennes stratifiées ont été respectivement de $7.34 \cdot 10^{12}$ et $1.28 \cdot 10^{14}$ œufs pour le premier trajet, et de $1.82 \cdot 10^{12}$ et $4.14 \cdot 10^{13}$ œufs pour le second (Tableau 19). Les biomasses reproductrices correspondantes ont été évaluées à 209 576 t et 66 403 t, pour une moyenne de 137 990 t (Tableau 19).

Krigeage

Lors du relevé, un grand nombre de stations ont été caractérisées par l'absence d'oeufs ou la présence de très faibles densités (Tableaux 14 et 15). Les paramètres dissymétrie, de **S**. et d'aplatissement, K indiquent aussi que les distributions des valeurs des densités d'oeufs ne sont pas normales (Tableau 20). Aucune transformation n'a été appliquée pour tenter une normalisation de sorte que le krigeage n'a été appliqué que sur les données brutes.

Le variogramme associé aux données du premier trajet a été ajusté à l'aide du modèle sphérique (Tableau 21). Aucune anisométrie n'a été observée (Figure 19A), et le nombre de paires de valeurs par classe de distance a généralement été élevé, sauf dans le cas de la plus faible distance (Figure 19B). Ce variogramme, dont le coefficient de détermination est de 0.916, a été construit en excluant les trois densités les plus élevées. La carte de krigeage correspondante (Figure 20) a permis de bien représenter les zones caractérisées par de fortes ou de faibles concentrations d'oeufs. La moyenne et la variance de krigeage ont été respectivement de 110.09 $oeufs/m^2$ et de 488.05 (Tableau 22)

aussi été ajusté à l'aide du modèle sphérique (Tableau 23).

The daily and total egg production values associated with the stratified averages were $7.34 \cdot 10^{12}$ and $1.28 \cdot 10^{14}$ eggs respectively for the first pass and $1.82 \cdot 10^{12}$ and $4.14 \cdot 10^{13}$ eggs for the second pass (Table 19). The corresponding spawning stock biomass values were estimated at 209 576 t and 66 403 t. for an average of 137 990 t (Table 19).

Kriging

In this survey, there were a great many stations where either no eggs were found at all or the egg densities were very low (Tables 14 and 15). The parameters for skewness (S) and kurtosis (K) also indicate that the distributions of the egg-density values are not normal (Table 20). No transformations were attempted to normalise these distributions, so the kriging was applied to the raw data only.

The variogram for the data from the first pass was adjusted using the spherical model (Table 21). No anisometry was observed (Figure 19A), and the number of pairs of values in each distance class was generally high, except for the shortest distance (Figure 19B). This variogram, whose coefficient of determination is 0.916, was constructed excluding the three highest densities. The corresponding kriging map (Figure 20) clearly depicts the areas characterized by high or low concentrations of eggs. The kriging mean and variance were 110.09 eggs/m^2 and 488.05, respectively (Table 22).

Le variogramme associé au second trajet a The variogram for the second pass also was adjusted using the spherical model (Table Aucune 23). No anisometry was observed (Figure

anisométrie n'a été observée (Figure 21A), et le nombre de paires de valeurs par classe de distance a aussi été élevé sauf dans le cas de la première (Figure 21B). Ce variogramme, dont le coefficient de détermination est de 0.981, a été construit en excluant la densité la plus élevée. Par rapport au premier trajet, la carte de krigeage du second trajet (Figure 22) indique que la zone de fortes densités d'oeufs s'est déplacée légèrement vers le La moyenne et la variance de sud-est. krigeage pour le second trajet ont été respectivement de 26.02 oeufs/m² et de 7.73 (Tableau 24).

Les productions journalières et totales d'œufs associées aux moyennes krigées ont été respectivement de $7.65 \cdot 10^{12}$ et $1.33 \cdot 10^{14}$ œufs pour le premier trajet, et de $1.81 \cdot 10^{12}$ et $4.12 \cdot 10^{13}$ œufs pour le second (Tableau 25). Les biomasses reproductrices correspondantes ont été évaluées à 218 217 t et 66 001 t, pour une moyenne de 142 109 t.

À l'exception du second trajet du relevé de 1989, les deux approches statistiques utilisées pour déterminer les densités moyennes d'oeufs associées à toute la surface échantillonnée ont produit des biomasses reproductrices très similaires (Tableau 26 et Figure 23). Pour le premier trajet, la différence moyenne, en valeur absolue, entre les deux approches a été de 16 300 t par rapport à 35 955 t pour le second trajet.

Date médiane de ponte

Les moyennes journalières de l'indice gonado-somatique ont été ajustées à l'aide de modèles polynomiaux (Figure 24). Les dates annuelles calculées à partir de ces modèles et pour lesquelles l'indice atteint 45 %, 50 % ou la médiane, et 55 % de sa

21A), and the number of pairs of values in each distance class was again high, except for the first one (Figure 21B). This variogram, whose coefficient of determination is 0.981, was constructed excluding the highest density. Compared with the first pass, the kriging map for the second pass (Figure 22) shows that the area of high egg densities has shifted slightly to the southeast. The kriging mean and variance for the second pass were 26.02 $eggs/m^2$ and 7.73, respectively (Table 24).

The daily and total egg production values associated with the kriged means were $7.65 \cdot 10^{12}$ eggs and $1.33 \cdot 10^{14}$ eggs, respectively, for the first pass, and $1.81 \cdot 10^{12}$ eggs and $4.12 \cdot 10^{13}$ eggs for the second (Table 25). The corresponding spawning stock biomass values were estimated at 218 217 t and 66 001 t, for an average of 142 109 t.

Except for the second pass in the 1989 survey, the two statistical approaches used to determine the average egg densities for the entire area sampled yielded very similar values for spawning stock biomass (Table 26 and Figure 23). The absolute value of the mean difference between the two approaches was 16 300 t for the first pass, compared with 35 955 t for the second pass.

Median date of spawning

The daily averages for the gonado-somatic index have been adjusted using polynomial models (Figure 24). The dates each year, calculated with these models, on which the index reached 45%, 50% (the median), and 55% of its initial value increased

valeur initiale, ont graduellement augmenté entre 1983 et le début des années 1990, pour diminuer par la suite (Figure 25A). Dans le cas des dates médianes. ces variations annuelles ont aussi été l'aide d'un modélisées à modèle polynomial (Figure 25B). La période de temps pendant laquelle ces dates ont été plus tardives démontre un retard graduel dans la ponte. Ce retard coïncide aussi avec une arrivée plus tardive du maquereau qui a été observée dans les débarquements d'un pêcheur repère situé juste à l'entrée du golfe du Saint-Laurent (Figure 26).

L'utilisation de certaines de ces dates a produit des écarts très importants dans les estimations de biomasse reproductrice. Ces écarts sont observés entre 1983 et 1986 lorsque les dates utilisées sont celles pour lesquelles l'indice gonado-somatique atteint 50 % et 55 % de sa valeur initiale et les dates provenant du modèle polynomial (Figure 27). Des écarts importants ont aussi été observés entre 1988 et 1994 pour les dates où l'indice gonado-somatique est à 45 % de sa valeur initiale.

Méthode de la Réduction Journalière de la Fécondité (MRJF)

total de 192 ovaires Un ont été échantillonnés dans la baie des Chaleurs (Figure 28) entre le 13 juin et le 3 août 2000 (Tableau 27). Au cours de cette période, les débarquements correspondants se sont chiffrés à 4 303 kg et le poids des échantillons recueillis à quai a été de 1 091 kg. Un total de 2 425 poissons ont été mesurés, et de ce nombre, 387 ont été congelés pour les analyses en laboratoire. Aux Îles-de-la-Madeleine (Figure 28), 98 ovaires ont été échantillonnés entre le 2 juin et le 31 juillet. Les caractéristiques des débarquements échantillonnés n'ont cependant pas été enregistrées. Les

gradually from 1983 to the start of the 1990s, then decreased gradually (Figure 25A). Year-to-year variations in the median dates were also modelled with a polynomial model (Figure 25B). The time period during which these dates came later demonstrates a gradual delay in the spawning season. This delay also coincides with a later arrival of the mackerel observed in the landings of an index fisherman operating just at the mouth of the Gulf of St Lawrence (Figure 26).

The use of certain of these dates produces very large differences in the estimates of spawning stock biomass. These differences are observed from 1983 to 1986 when the dates used are those on which the gonado-somatic index reaches 50 % and 55 % of its initial value and the dates taken from the polynomial model (Figure 27). Sizeable differences were also observed from 1988 to 1994 for the dates on which the gonado-somatic index reached 45 % of its initial value.

Daily Fecundity Reduction Method (DFRM)

A total of 192 ovaries were sampled in Chaleurs Bay (Figure 28) between June 13 and August 3, 2000 (Table 27). During this period, the corresponding landings totalled 4 303 kg, and the weight of the dockside totalled samples taken at 1 091 kg. A total of 2 425 fish were measured, and 387 of them were frozen for laboratory analysis. In the Magdalen Islands (Figure 28), 98 ovaries were sampled from June 2 to July 31. The characteristics of the sampled landings were not recorded, however. The main biological parameters associated with all these samples are presented in Appendices

principaux paramètres biologiques associés 2 and 3. à tous ces échantillons sont présentés aux Annexes 2 et 3.

Dans la baie des Chaleurs, la longueur et le poids moyens des femelles échantillonnées diminué, graduellement ont passant respectivement de 364 mm et 574 g le 13 juin à 324 mm et 395 g le 3 août (Tableau 28). Contrairement au facteur de condition qui est demeuré plutôt stable (Figure 29A), le poids des ovaires, leur volume, de même que l'indice gonadosomatique (Figure 29B) ont diminué au cours de cette même période, passant respectivement de 72.25 g à 3.66 g, de 65.17 ml à 3.55 ml, et de 12.61 % à 0.92 % (Tableau 28). Une relation exponentielle relie le poids des ovaires à l'indice gonadosomatique (Figure 29C) comparativement à une relation linéaire entre le poids et le volume des ovaires (Figure 29D). La relation entre le poids et la longueur des femelles est influencée grandement par la taille des ovaires (Figure 29E). Finalement, au cours de la même période, l'âge a aussi diminué, passant de 4.7 ans au début de juin à 2.9 ans vers la fin de juillet (Tableau 28). Les âges ont varié entre 1 et 12 ans, et trois femelles seulement étaient âgées de 10 ans et plus (Figure 29F).

Un certain nombre de coupes histologiques ont été rejetées en raison d'une mauvaise conservation des ovaires ou d'un problème de coloration des lames (Tableau 29). Au total, 80 092 ovocytes ont été comptés. Ceux des stades 2, 3 et 4 étaient présents dans plus de 60 % des ovaires analysés, comparativement à 46 % pour les ovocytes du stade 5 (Tableau 29). En moyenne, 274 638 ovocytes vitellogènes ont été calculés par femelle, le minimum étant de 3 493 ovocytes et le maximum de 646 677 ovocytes (Tableau 30).

In Chaleurs Bay, the average length and weight of the females sampled decreased gradually, from 364 mm and 574 g on June 13 to 324 mm and 395 g on August 3 (Table 28). Unlike the condition factor, which remained relatively stable, (Figure 29A), ovary weight and volume and the gonado-somatic index (Figure 29B) decreased over this same period, from 72.25 g to 3.66 g, from 65.17 ml to 3.55 and from 12.61% to 0.92%, ml. respectively (Table 28). An exponential relationship was found between ovary weight and the gonado-somatic index (Figure 29C), as opposed to the linear relationship found between ovary weight and ovary volume (Figure 29D). The weight-length relationship for the females is greatly influenced by the size of the ovaries (Figure 29E). Lastly, over this same period, the average age also decreased, from 4.7 years at the start of June to 2.9 years toward the end of July (Table 28). The ages ranged from 1 to 12 years, and there were only three females age 10 or older (Figure 29F).

A number of tissue sections were rejected either because the ovaries had not been properly preserved or because of a problem with staining the slides (Table 29). In total, 80 092 oocytes were counted. Stage 2, 3 and 4 oocytes were present in over 60 % of the ovaries analysed, while stage 5 oocytes were present in only 46 % (Table 29). The average number of vitellogenous oocytes per female was 274 638; the smallest number found was 3 493, and the largest was 646 677 (Table 30).

Lors de la période d'échantillonnage aux Îles-de-la-Madeleine, la longueur et le poids moyens des femelles ont aussi diminué, passant de 373 mm et 594 g le 2 juin, à 356 mm et 593 g le 31 juillet (Tableau 31). Au cours de cette période, le facteur de condition augmenté а (Figure 30A), et le poids des ovaires, leur volume, et l'indice gonado-somatique diminué, (Figure 30B) ont passant respectivement de 69.55 g à 4.96 g, de 63 ml à 4.67 ml, et de 11.83 % à 0.44 % (Tableau 31). Le poids des ovaires est aussi relié de façon exponentielle à l'indice gonado-somatique (Figure 30C), et leur volume et leur poids sont reliés par une relation linéaire (Figure 30D). Deux équations exponentielles ont permis de modéliser la relation entre le poids total et le poids somatique des femelles et leur longueur (Figure 30E). L'âge des femelles est passé de 5.3 ans au début de juin à 4.1 ans vers la fin de juillet (Tableau 31). Les âges ont varié entre 2 et 10 ans (Figure 30F).

Six coupes histologiques ont été rejetées sur les 98 du départ en raison d'un problème de coloration ou tout simplement parce que les ovaires correspondants étaient brisés (Tableau 32). Au total, 57 139 ovocytes ont été comptés. Ceux des stades 2, 3 et 4 étaient présents dans plus de 87 % des ovaires comparativement à 40 % pour les ovocytes du stade 5. En moyenne, 296 798 ovocytes vitellogènes étaient présents par femelle, le minimum étant de 1 039 ovocytes et le maximum, de 658 902 ovocytes (Tableau 33).

Au total, 7 320 ovocytes de stade 2 ont été mesurés comparativement à 6 703, 6 399 et 2 133 pour les stades 3 à 5. Les diamètres moyens des ovocytes des stades 2 à 5 ont été respectivement de 0.285 mm, 0.452 mm, 0.576 mm et 0.762 mm. Les

In the Magdalen Islands, the average length and weight of the females also diminished over the sampling period, falling from 373 mm and 594 g on June 2 to 356 mm and 593 g on July 31 (Table 31). Over this same period, the condition factor increased (Figure 30A) while ovary weight and volume and the gonado-somatic index (Figure 30B) decreased, from 69.55 g to 4.96 g, from 63 ml to 4.67 ml, and from 11.83 % to 0.44 %, respectively (Table 31). Here ovary weight again, was exponentially related to the gonadosomatic index (Figure 30C) and linearly related to ovary volume (Figure 30D). Two exponential equations provided a model for the relationship between the females' total weight and somatic tissue weight and their length (Figure 30E). The average age of the females fell from 5.3 years at the start of June to 4.1 years at the end of July (Table 31). The ages ranged from 2 to 10 years (Figure 30F).

Of the 98 tissue sections initially taken, six were rejected because of a problem with staining or simply because the ovaries that they came from were broken (Table 32). A total of 57 139 oocytes were counted. Stage 2, 3 and 4 oocytes were present in over 87 % of the ovaries, while stage 5 oocytes were present in only 40 %. The average number of vitellogenous oocytes per female was 296 798; the smallest number found was 1 039, and the largest was 658 902 (Table 33).

In total, 7 320 stage 2 oocytes were counted, compared with 6 703, 6 399 and 2 133 for stages 3, 4, and 5. The average diameters of the stage 2, 3, 4, and 5 oocytes were 0.285 mm, 0.452 mm, 0.576 mm, and 0.762 mm, respectively. The diameter

distributions des diamètres des stades 2 à 4 sont normales et il n'y a pas de recouvrement important entre elles (Figure 31). Par contre, la distribution des diamètres des ovocytes du stade 5 est asymétrique. Cette asymétrie s'observe aussi par la courbe des fréquences cumulées dont le maximum est atteint moins rapidement (Figure 31).

Les diamètres des ovocytes des stades 2 à 4 ont graduellement diminué au cours de la période d'échantillonnage (Figure 32). Pour chacun des stades, des relations linéaires significatives (P< 0.0001) ont été mesurées entre le diamètre et le jour de Cependant, les coefficients de l'année. détermination sont faibles et inférieurs à 0.43. Une relation linéaire significative (F=241.56; P<0.0001) a aussi été calculée entre les valeurs de l'indice gonadosomatique et le nombre total d'ovocytes vitellogènes (Figure 33). Cette relation est similaire à celle calculée en 1998, mais les pentes sont significativement différentes (F=10.28; P<0.005).

La quantité d'ovocytes vitellogènes de même que la proportion des femelles ayant des ovaires actifs ont graduellement diminué au cours de la saison (Figures 34 et 35). Ces diminutions ont été exprimées par des relations linéaires significatives (P < 0.0001).

Pour chaque trajet, les biomasses reproductrices évaluées par la **MRJF** ont été de 562 533 t et 169 510 t (Tableau 34; Figure 36), pour une moyenne de 366 022 t comparativement à 443 095 t et 243 980 t calculées en 1996 et 1998 ou à 178 116 t et 270 704 t pour les mêmes années par la **MPTO** (Tableau 25). Les intervalles de confiance selon la **MRJF** ont été estimés à 143 632 t et 981 433 t pour le premier trajet, et à 56 415 t et 282 606 t pour le

distributions for stages 2 to 4 are normal, and there is no major overlap between them (Figure 31). The diameter distribution for the stage 5 oocytes, on the other hand, is asymmetrical. This asymmetry can also be seen in the cumulative frequency curve, which peaks less rapidly (Figure 31).

The diameters of the stage 2, 3, and 4 oocytes diminished gradually over the sampling period (Figure 32). For each of the stages, significant (P < 0.0001) linear relationships were found between diameter and day of the year. However, the coefficients of determination were low (less than 0.43). A significant linear relationship (F=241.56; P<0.0001) was also calculated between the values of the gonado-somatic index and the total number of vitellogenous oocytes (Figure 33). This relationship is similar to that calculated in 1998, but the slopes are significantly different (F=10.28; P<0.005).

Both the number of vitellogenous oocytes and the proportion of females with active ovaries decreased gradually over the season (Figures 34 and 35). These decreases were expressed by significant linear relationships (P < 0.0001).

The spawning stock biomass values estimated for the two passes by the **DFRM** were 562 533 t and 169 510 t (Table 34; Figure 36), for an average of 366 022 t, compared with annual averages of 443 095 t and 243 980 t calculated for 1996 and 1998 by the **DFRM** and with annual averages of 178 116 t and 270 704 t calculated for the same years by the **TEPM** (Table 25). The confidence intervals for the **DFRM** were estimated at 143 632 t and

second.

relations linéaires significatives Des (P<0.0001) ont été obtenues pour décrire le déclin saisonnier du nombre d'ovocytes vitellogènes pour les années antérieures à 1998 (Figure 37). Par contre, le nombre d'ovocytes vitellogènes total varie grandement pour une même proportion de femelles ayant des ovaires actifs (Figure 38A). Différentes proportions peuvent être attribuées à des femelles dont le nombre d'ovocytes vitellogènes est inférieur à 700 000 ou pour des femelles dont l'indice gonado-somatique est inférieur à 15 % (Figure 38B). Ces deux variables ne peuvent pas réellement être utilisées pour prédire la proportion des femelles actives.

981 433 t for the first pass, and at 56 415 t and 282 606 t for the second.

Significant linear relationships (P< 0.0001) were obtained to describe the seasonal decline in the number of vitellogenous oocytes for the years prior to 1998 (Figure 37). However, the total number of vitellogenous oocytes varies greatly for a given proportion of females with active ovaries (Figure 38A). Various proportions may be attributed to females whose number of vitellogenous oocytes is less than 700 000 or whose gonado-somatic index is less than 15 % (Figure 38B). These two variables cannot really be used to predict the proportion of active females.

CONCLUSIONS

Pêche et état de la ressource

L'une des plus importantes caractéristiques de la saison de pêche 2000 est sans contredit la présence d'un très grand nombre de petits maquereaux dans les captures et les échantillons provenant des Maritimes et du Québec. L'absence de marchés pour ces poissons a été la cause dans certaines régions d'une réduction considérable de l'effort de pêche. Cette réduction a engendré un arrêt prématuré de la pêche.

Ces petits poissons pourraient bien représenter une classe d'âge dominante. La force de cette dernière sera confirmée lorsque les individus qui la composent seront pleinement recrutés à la pêche. Pour l'instant, l'arrivée d'une classe d'âge dominante ne peut pas être prédite mais des travaux très intéressants sont en cours pour tenter d'apporter des explications

CONCLUSIONS

Fishery and Resource Status

One of the most salient characteristics of the 2000 fishing season is unquestionably the presence of a very high number of small mackerel in the catches and samples from the Maritimes and Quebec. In some areas, the lack of markets for these fish caused a considerable reduction in fishing effort, which in turn caused the fishery to end prematurely.

These small fish might well represent a dominant year class, the strength of which will be confirmed when the individuals composing it are fully recruited into the fishery. For the moment, the arrival of a dominant year class cannot be predicted, but some very interesting research is under way to try to provide some explanations (Ringuette *et al.*, submitted; Runge *et al.*)

(Ringuette et al. soumis; Runge et al. 1999). De plus, dans le cas présent, il existe certains indices comme une température de l'eau plus élevée qui a été observée en mai-juin 1999 à l'entrée du Golfe, une arrivée et une ponte plus hâtive du maquereau, et finalement une saison de croissance plus longue pour cette même année.

L'abondance de la classe d'âge de 1999 n'a pas été mesurée par le relevé des oeufs puisqu'elle était composée en 2000 de poissons immatures. La dominance d'une telle classe d'âge doit être considérée lorsque des variables biologiques sont calculées et comparées d'une année à l'autre. Par exemple, il a été démontré que le pourcentage en gras était plus élevé en début de saison chez les poissons immatures que chez ceux ayant participé à la ponte (Grégoire et al. 1994). La capture à l'âge doit aussi être comparée avec prudence car le nombre réel de poissons associé à chaque âge peut être masqué par la dominance d'un seul groupe d'âge. Un changement dans le patron de la pêche peut aussi apporter une sous-estimation du nombre de poissons plus âgés. Par exemple, l'arrivée récente de la pêche automnale à la ligne, un engin moins sélectif que le filet maillant, a permis d'obtenir une image plus réelle de la composition à l'âge du stock. Cependant, cette dernière pourrait difficilement être comparée à celle obtenue lorsque les captures étaient associées à des engins de pêche plus sélectifs.

Perspectives

résultats Les des derniers relevés d'échantillonnage aux oeufs suggèrent fortement que l'abondance du maguereau fréquentant les eaux canadiennes est maintenant à un niveau aussi bas que celui measured in the early 1980s. Even if a

1999). Also, in the present case, there are some indications, such as the higher water temperatures observed in May/June 1999 at the mouth of the Gulf, the earlier arrival and spawning of the mackerel, and lastly, a longer growth season for this same year.

The abundance of the 1999 year class was not measured in the egg survey, because in 2000 this class consisted of immature fish. The dominance of such a year class must be considered when biological variables are calculated and compared from one year to the next. For example, it has been shown that the percentage of fat was higher at the start of the season in immature fish than in those that had participated in spawning (Grégoire et al. 1994). Caution must also be exercised in comparing the catch at age, because the actual number of fish of each age may be masked by the dominance of a single age group. А change in the fishing pattern can also cause the number of older fish to be underestimated. For example, the recent advent of a fall fishery using lines-a less selective type of gear than gillnets-has provide a more accurate picture of the stock's actual composition at age. It might, however, be difficult to compare this composition with that obtained when the catches were made with more selective gear.

Outlook

The results of the most recent eggsampling surveys strongly suggest that the abundance of the mackerel that frequent Canadian waters is now just as low as that mesuré au début des années 1980. Même si un plus grand effort de pêche pourrait être exercé sur ce stock, le maintien d'un Total Admissible des Captures (TAC) canadien de 100 000 t pourrait ne plus s'avérer un choix très prudent. En fait, la situation actuelle est bien différente de celle des années 1970 où de très fortes classes d'âge avaient permis de maintenir pendant quelques années des captures de plusieurs centaines de milliers de tonnes de maquereau. La série des biomasses reproductrices calculées selon la MRJF n'est pas assez longue pour être utilisée Analyse Séquentielle dans une des Populations (ASP). En absence d'ASP, un TAC plus réaliste pourrait être déterminé à partir d'un certain taux d'exploitation associé à la dernière estimation de biomasse par la MRJF.

Jusqu'à présent, l'application de l'ASP chez le maquereau a été difficile à réaliser. Les principaux obstacles sont : a) l'indice des oeufs qui n'est pas désagrégé à l'âge comme la plupart des indices traditionnels utilisés dans l'ASP; b) des erreurs d'estimations de la biomasse reproductrice manque qui sont reliées au de synchronisme entre la ponte et le relevé (manque de synchronisme qui est corrigé par l'utilisation de la MRJF); c) la capture à l'âge qui sous-estime entre autres les débarquements réels; d) une mortalité naturelle qui est fixée pour tous les âges et toutes les années, et qui ne tient pas compte changements environnementaux des observés au cours des années 1990; et finalement, e) l'absence de données biologiques à certains moments de l'année.

Sources d'incertitude

Les captures de maquereau utilisées en The mackerel bait fishery does not appear guise d'appât n'apparaissent pas dans les statistiques officielles du Ministère, ces

greater fishing effort could be directed at this stock, it might no longer be very wise to keep the Canadian Total Allowable Catch (TAC) at 100 000 t. In fact, the current situation is quite different from in the 1970s, when very large year classes made it possible to maintain catches of several hundred thousand tonnes of mackerel for some years. The series of spawning stock biomass values calculated by the **DFRM** is not long enough to be used in a Sequential Population Analysis (SPA). In the absence of a SPA, a more realistic TAC could be determined from a certain exploitation rate associated with the most recent biomass estimate obtained by the **DFRM**

Until now, it has been difficult to apply SPA to mackerel. The main obstacles are: a) the egg index, which, unlike most indexes traditionally used in SPA, is not broken down by age; b) some errors in the estimates of spawning stock biomass, which are related to the lack of synchronicity between the spawning season and the survey (this lack of synchronicity is compensated for when the **DFRM** is used); c) the catch at age, which underestimates actual landings, among other values; d) a natural mortality that is fixed for all ages and years and does not reflect the environmental changes observed over the 1990s; and lastly, e) the lack of biological data for certain times of year.

Sources of uncertainty

in the Department's official statistics, instead determined which are from

dernières étant établies à partir des purchase receipts for sales to processing récépissés d'achat provenant des ventes aux usines. La pêche récréative, très populaire durant les mois d'été, n'est pas davantage comptabilisée. Comme ces activités sont pratiquées dans plusieurs régions des Maritimes et du Québec, les réelles maguereau prises de sont grandement sous-estimées.

Au cours des ans, tous les secteurs de la pêche au maquereau n'ont pas été couverts de façon systématique par le programme d'échantillonnage commercial. Ainsi, les données biologiques recueillies qui sont à la base de l'évaluation d'abondance et du suivi de la population, pourraient ne pas refléter la situation réelle du stock.

Considérations de gestion

Dans le but d'améliorer les statistiques de pêche, un livre de bord obligatoire devrait être distribué à tous les pêcheurs en incluant ceux qui utilisent le maquereau comme appât personnel. L'utilisation d'un livre de bord permettrait aussi de connaître les positions de pêche, ce qui faciliterait grandement l'étude des relations entre la distribution du maguereau et certaines variables environnementales

Les captures récréatives de maquereau sont importantes si l'on considère que cette pêche est pratiquée par un très grand nombre de pêcheurs (touristes) le long de la côte atlantique. En vue d'une éventuelle gestion de cette activité et dans le but d'améliorer une fois de plus les statistiques de pêche, une réflexion sur les facons d'estimer ces captures devrait être entreprise rapidement.

Finalement, la taille minimale de capture qui est présentement fixée à 250 mm, devrait être plus réaliste et plus proche de

plants. The records for the recreational mackerel fishery, which is very popular in the summer, are no better. Since bait and recreational mackerel fishing are practiced in many regions of the Maritimes and Quebec, the actual catches of mackerel are greatly underestimated.

Over the years, not all sectors of the mackerel fishery have been covered systematically by the commercial sampling program. Hence the biological data that have been gathered and used to estimate the abundance and to monitor the population of mackerel might not reflect the actual status of the stock.

Management considerations

To improve the statistics on the fishery, all fishermen, including those who catch mackerel for use as personal bait, should be given a ship's log and required to Mandatory completion of complete it. ship's logs would also provide information fishing on locations, thus greatly facilitating analysis of the relations between the mackerel's distribution and certain environmental variables

The recreational catch of mackerel is important, given that so many tourists fish for mackerel along the Atlantic coast. With a view toward the potential management of this activity, and again to improve the fishery statistics, work should be undertaken immediately on ways of estimating this catch.

Lastly, the minimum legal size, which is currently set at 250 mm, should be more realistic and more consistent with the

la biologie du maquereau. Cette valeur est bien inférieure aux L_{50} de 299 mm et 270 mm qui ont été calculées à partir des courbes de maturité sexuelle des femelles et des mâles (Grégoire *et al.* 1999).

Bien entendu, une augmentation de la taille minimale aurait peu d'effet sur les activités de pêche associées à un engin sélectif comme le filet maillant. Cependant, l'impact pourrait être très important pour des régions ou des secteurs de la pêche caractérisés par la présence de petits maquereaux ou par l'utilisation d'engins de pêche moins sélectifs. Dans de tels cas, une approche alternative pourrait être envisagée. La capture d'un certain nombre de petits poissons pourrait être permise à condition de connaître l'impact de cette pêche sur le potentiel reproducteur. De plus, le poids de ces prises pourrait être ajusté pour tenir compte de la croissance ultérieure de ces poissons et déduit des débarquements.

Projets de recherche

Les travaux entourant la **MRJF** doivent être poursuivis de même que ceux reliés à l'**ASP**. Lorsque la technologie le permettra, une étude de marquage devrait être entreprise à l'aide de marqueurs électroniques similaires à ceux qui sont utilisés pour les grands pélagiques. Pour l'instant, ces derniers ne conviennent pas, en raison de leur dimension, à un poisson de la taille du maquereau.

L'obstacle majeur à la mise en place de projets de recherche sur le maquereau, en particulier sur l'évaluation d'abondance et l'étude des relations entre la présence du maquereau et certaines variables environnementales, est <u>l'absence</u> depuis quelques années de ressources financières adéquates. L'industrie peut

biology of the mackerel. This value is well below the L_{50} values of 299 mm and 270 mm that have been calculated from the sexual maturity curves for females and males (Grégoire *et al.* 1999).

Of course, increasing the minimum legal size would have little effect on fishing with selective gear such as gillnets. However, the impact could be very substantial in regions or sectors where the fishery is characterized by the presence of small mackerel or the use of less selective gear. In such cases, an alternative approach might be considered. The harvesting of a certain number of small fish might be allowed, provided that the impact of this the stock's reproductive fishery on potential were known. Also, the weight of this catch could be adjusted to account for the subsequent growth of these fish and subtracted from the landings.

Research projects

Work on the **DFRM** as well as on **SPA** should be continued. Once the necessary technology becomes available, a marking study should be undertaken using electronic tags similar to those currently used for large pelagic species (the tags used for these species are too large for mackerel).

The major obstacle to carrying out research projects on mackerel, in particular to estimate abundance and to study the relationships between the presence of mackerel and certain environmental variables, has been the <u>absence</u> of adequate financial resources for the past several years. The industry can certainly certainement supporter certains projets, support certain projects, but not necessarily mais pas nécessairement avec la même on so broad a scale as certain other, more ampleur que certaines autres pêches plus profitable fisheries. lucratives. l'industrie dans l'évaluation de la ressource also to be desired. est aussi souhaitée

REMERCIEMENTS

De très sincères remerciements vont à The authors wish to express their sincerest l'égard du Capitaine Denis Coulombe et de tous les membres d'équipage du Martha L. Black pour toute l'aide apportée lors du Black for all the help that they gave us in relevé d'évaluation. Des remerciements vont aussi au Dr. Martin Castonguay et M. Sylvain Hurtubise pour la révision du Sylvain Hurtubise for revising this paper. document

Increased industry Une présence accrue de participation in stock assessment efforts is

ACKNOWLEDGEMENTS

thanks to Captain Denis Coulombe and all the members of the crew of the Martha L. conducting the abundance survey. Thanks also go to Dr. Martin Castonguay and M.

RÉFÉRENCES / REFERENCES

Anonyme / Anonymous. 1986. CAFSAC Assessment software catalog. CAFSAC Res. Doc. 86/96.

- Bernier, D., et / and C. Lévesque. 2000. Résultats préliminaires du relevé des oeufs de maquereau (Scomber scombrus L.) effectué en 1999 dans la baie Ste-Margarets en Nouvelle-Écosse / Preliminary results of the mackerel (Scomber scombrus L.) egg survey conducted in 1999 in St. Margarets Bay, Nova Scotia. In: F. Grégoire (Éditeur / Editor), Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de l'OPANO / The Atlantic mackerel (Scomber scombrus L.) of NAFO subareas 2 to 6. Chapitre 9 / Chapter 9. Secrétariat canadien pour l'évaluation des stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document 2000/021.
- D'Amours, D., et / and F. Grégoire. 1992. Analytical correction for oversampled mackerel (Scomber scombrus L.) eggs collected with oblique plankton tows. Fishery Bulletin 90: 190-196.
- DeHoff, R.T., et / and F.N. Rhines. 1961. Determination of the number of particles per unit volume from measurements made in random plane sections. Trans. Am. Inst. Mineral Met. Eng. 221: 975-981.
- Girard, L. 2000. Identification des oeufs de maquereau (Scomber scombrus L.) échantillonnés lors des relevés d'abondance effectués dans le sud du golfe du Saint-Laurent / Identification of mackerel (Scomber scombrus L.) eggs sampled during abundance surveys in the southern Gulf of St. Lawrence. In: F. Grégoire (Éditeur / Editor), Le maquereau bleu (Scomber

scombrus L.) des sous-régions 2 à 6 de l'OPANO / *The Atlantic mackerel* (<u>Scomber scombrus</u> L.) of NAFO subareas 2 to 6. Chapitre 4 / Chapter 4. Secrétariat canadien pour l'évaluation des stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document 2000/021.

- Grégoire, F. 1992. Revue de la stratégie d'échantillonnage utilisée lors des croisières d'évaluation de la biomasse reproductrice du maquereau bleu (*Scomber scombrus* L.) du golfe du Saint-Laurent. CSCPCA Document de recherche 92/52. 16 p.
- Grégoire, F. 1997. Évaluation de la Méthode de la Réduction Journalière de la Fécondité pour estimer la biomasse du maquereau bleu (*Scomber scombrus* L.) / *An evaluation of the Daily Fecundity Reduction Method for estimating the biomass of Atlantic mackerel (<u>Scomber scombrus</u> L.). MPO Secrétariat canadien pour l'évaluation des stocks / <i>Canadian Stock Assessment Secretariat*. Document de Recherche / *Research Document*. 97/84. 43 p.
- Grégoire, F. 2000. Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de l'OPANO / The Atlantic mackerel (Scomber scombrus L.) of NAFO subareas 2 to 6. Secrétariat canadien pour l'évaluation des stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document. 11 Chapitres / Chapters. 2000/021. 452 p.
- Grégoire, F., H. Dionne et / and C. Lévesque. 1994. Contenu en gras chez le maquereau bleu (Scomber scombrus L.) en 1991 et 1992. Rapp. can. ind. sci. halieut. 220. ix + 70 p.
- Grégoire, F., D. D'Amours, C. Lévesque et / and D. Thibeault. 1995. Estimation de la biomasse reproductrice du stock de maquereau (Scomber scombrus L.) du golfe du Saint-Laurent pour 1994 / Estimation of the Gulf of St. Lawrence spawning stock biomass of mackerel (Scomber scombrus L.) for 1994. MPO Pêches de l'Atlantique. Document de Recherche / DFO Atlantic Fisheries Research Document. 95/118. 81 p.
- Grégoire, F., R. H. Crawford, G. Moreault, G. Myra et / and R. Conrad. 1999. Maturity at length and age in Atlantic mackerel (*Scomber scombrus* L.) sampled in St. Margarets Bay, Nova Scotia, in 1996. Can. Tech. Rep. Fish. Aquat. Sci. 2278: viii + 45 p.
- Grégoire, F., et / and L. Girard. 2000. Évaluation de l'abondance du maquereau bleu (Scomber scombrus L.) en 1998 par la Méthode de la Production Totale d'Oeufs / Assessment of the abundance of Atlantic mackerel (Scomber scombrus L.) in 1998 by the Total Egg Production Method. In: F. Grégoire (Éditeur / Editor), Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de l'OPANO / The Atlantic mackerel (Scomber scombrus L.) of NAFO subareas 2 to 6. Chapitre 5 / Chapter 5. Secrétariat canadien pour l'évaluation des stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document 2000/021.
- Grégoire, F., et / and H. Bourdages. 2000. Estimation de la variance et des intervalles de confiance pour la biomasse du maquereau bleu (Scomber scombrus L.) calculée par la Méthode de la Production Totale d'Oeufs / Estimation of variance and confidence intervals for Atlantic mackerel (Scomber scombrus L.) biomass calculated by the Total Egg Production Method. In: F. Grégoire (Éditeur / Editor), Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de l'OPANO / The Atlantic mackerel (Scomber scombrus L.) of NAFO subareas 2 to 6. Chapitre 6 / Chapter 6. Secrétariat canadien pour l'évaluation des

stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document 2000/021.

- Grégoire, F., C. Lévesque et / and J. Hudon. 2000. La pêche du maquereau bleu (Scomber scombrus L.) en 1999 dans les sous-régions 3 et 4 de l'OPANO / The 1999 Atlantic mackerel (Scomber scombrus L.) fishery in NAFO subareas 3 and 4. In : F. Grégoire (Éditeur / Editor), Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de l'OPANO / The Atlantic mackerel (Scomber scombrus L.) of NAFO subareas 2 to 6. Chapitre 11 / Chapter 11. Secrétariat canadien pour l'évaluation des stocks / Canadian Stock Assessment Secretariat. Document de recherche / Research Document 2000/021.
- Gundersen, H. J. G. 1977. Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J. Microsc. 111: 219-223.
- Hempel, G. 1973. Fish egg and larval surveys. FAO Fisheries Technical Paper No. 122. 82 p.
- Hunter, J. R. 1985. Preservation of Northern anchovy in formaldehyde solution. *In* : R. Lasker, An egg production method for estimating spawning biomass of pelagic fish: Application to the Northern anchovy, *Eugraulis mordax*. NOAA Technical Report NMFS 36. 99 p.
- Isaaks, E.H., et / and R. M. Srivastava. 1989. An introduction to applied geostatistics. Oxford University Press, N.Y. 561 p.
- Lo, N. C.-H., J.R. Hunter, H.G. Moser., et / and P.E. Smith. 1992. A daily fecundity reduction method: A new procedure for estimating adult biomass. ICES J. Mar. Sci. 49: 209-215.
- Lo, N. C.-H., J.R. Hunter, H.G. Moser., et / and P.E. Smith. 1993. A daily fecundity reduction method of biomass estimation with application to Dover sole, *Microstomus pacificus*. Bulletin of Marine Science 53(2): 842-863.
- Maguire, J.-J. 1981. Maturité, fécondité, ponte et évaluation de la taille du stock reproducteur du maquereau atlantique (*Scomber scombrus*) dans le golfe du Saint-Laurent. Thèse de Maîtrise, Université Laval. Québec. 137 p.
- Pelletier, L. 1986. Fécondité du maquereau bleu, *Scomber scombrus* L., du golfe du Saint-Laurent. Can. Tech. Rep. Fish. Aquat. Sci. 1467: v + 37 p.
- Petitgas, P., et / and T. Lafont. 1997. EVA II: Estimation VAriance. Version 2. A geostatistical software on Windows 95 for the precision of fish stock assessment surveys. ICES CM 1997/Y 22.
- Posgay, J. A. et / and R. R. Marak. 1980. The MARMAP Bongo zooplankton samplers. J. Northwest Atl. Fish. Sci. 1: 91-99.
- Priede, I.G. 1994. Spawning biology, distribution and abundance of Mackerel, Scomber scombrus and Horse mackerel, Trachurus trachurus in the North East Atlantic. A final report to the Directorate-General for Fisheries (DG XIV) of the Commission of the European Communities. Project number: MA 2 436. University of Aberdeen. Department of Zoology. Aberdeen. Scotland. U.K. 188 p.
- Ringuette, M., M. Castonguay, J.A. Runge et / and F. Grégoire. Atlantic mackerel (*Scomber scombrus*) recruitment fluctuations : Role of copepod production in the southern Gulf of St. Lawrence. Soumis au Can. J. Fish. Aquat. Sci. le 17 mai 2001.
- Robertson, G.P. 1998. GS⁺: Geostatistics for the Environmental Sciences. Gamma Design Software, Plainwell, Michigan USA. 152 p.
- Runge, J.A., M. Castonguay, Y. de Lafontaine, M. Ringuette et / and J.-L. Beaulieu. 1999. Covariation in climate, zooplankton biomass and mackerel recruitment in the southern Gulf of St. Lawrence. Fish. Oceanogr. 8 : 139-149.
- Scherle, W. 1970. A simple method for volumetry of organs in quantitative stereology. Mikroscopie, 26: 57-60.

Tableau 1.Débarquements (t) annuels de maquereau réalisés entre 1960 et 2000 dans les sous-
régions 2 à 6 de l'OPANO*.

Table	1.	Annual landings (t) of mackerel realized between 1960 and 2000 in NAFC
		Subareas 2 to 6*.

ANNÉE /	CAN	ADA	ÉTA	***	TOTAL	
YEAR	Navires canadiens /	Navires étrangers /	Commercial /	Récréatif /	Autres Pays /	
	Canadian Vessels **	Foreign Vessels***	Commercial /	Recreational	Other Countries	
1960	5 888	0	1 396	2 478	0	9.762
1961	5 458	11	1 361	-	11	6.841
1962	6 901	64	938	_	175	8,078
1963	6 363	99	1 320	_	1 299	9.081
1964	10 786	174	1,520	_	801	13,405
1965	11 185	405	1 998	4 292	2 945	20.825
1966	11,103	1 244	2 724	-	7 951	23,496
1967	11,377	62	3 891	_	19 047	34,181
1968	11,101	9 720	3 929	_	65 747	90.530
1969	13 257	5 379	4 364	_	114 189	137.189
1970	15,237	5 296	4 049	16.039	210 864	251,958
1971	14 942	9 554	2 406	-	355 892	382.794
1972	16 254	6 107	2,400	_	391 464	415 831
1972	21 619	16 984	1 336	_	396 759	436 698
1974	16 701	27 954	1,042	_	321 837	367 534
1975	13 544	27,934	1,042	5 190	271 719	315 145
1976	15,544	17 319	2 712	5,170	273,715	259.052
1977	20 362	2 913	1 377	_	56.067	80 719
1978	25,302	470	1,605	_	841	28 345
1979	30.244	368	1,005	3 588	440	26,545
1980	22 136	161	2 683	2 364	566	27 910
1981	19 294	61	2,005	3 233	5 361	30.890
1981	16,294	3	2,941	5,255	5,501	27.026
1982	10,580	9	3,805	3 022	5,055	32 588
1985	17,797	013	5,805	2,457	15 045	<i>J2,388</i> <i>A</i> 1 680
1984	20.855	1.051	5,954	2,437	32 400	72 033
1986	29,855	772	0,637	3,856	26 507	72,955
1980	27 488	71	12 310	3,850	20,507	80.458
1988	27,488	956	12,510	3 251	12 858	83 434
1989	24,000	347	14,556	1.862	36 823	74 383
1990	19 190	3 854	31 261	1,002	30,678	86 891
1991	24 914	1 281	26 961	2 439	15 714	71 309
1997	24,307	2 417	11 775	344	0	38 843
1992	24,507	2,417	11,775	540	0	31 955
1993	20,158	10	4,000	1 705	0	31,955
1995	17 650	-	8 479	1,705	0	27 378
1995	20.364		16 137	1,249	0	27,578
1990	20,304	-	15,157	1 735	0	38 444
1008	19 33/	-	14 /15	670	0	34 410
1999	16 561	-	12 040	3 236	0	31 837
2000*****	8.795	-	4.748	1.381	0	14,924
	-,		,	,		,
Moyenne /	18,052	3,982	6,706	2,982	67,411	97,517
Average						

* Données provenant de l'OPANO pour 1960-1994, et ZIFF 1995-2000 / Data from NAFO for 1960-1994, and ZIFF for 1995-2000

** Inclut les ventes en mer / Including over-the-side-sales

*** Inclut les prises avec allocations canadiennes / Including catches with Canadian allocations

**** De Overholtz (comm. pers.) / From Overholtz NFSC, Woods Hole (pers. comm.)

***** Préliminaire / Preliminary

Tableau	2.	Débarquements (t) annuels de maquereau par province canadienne depuis 1995.
Table	2.	Annual landings (t) of mackerel by Canadian province since 1995.

PROVINCE			ANNÉE	/ YEAR			MOYENNE / AVERAGE			
	1995	1996	1997	1998	1999	2000*	(1995-1999)	(1990-1999)		
Nouvelle-Écosse / Nova Scotia	6,681	5,517	5,669	4,562	4,797	2,710	5,445	6,766		
Nouveau-Brunswick / New Brunswick	2,206	2,683	1,990	1,682	1,373	223	1,987	2,123		
Île-du-Prince-Édouard / Prince Edward Island	2,518	4,017	6,693	6,784	3,842	1,459	4,771	4,154		
Québec	3,382	4,317	5,769	4,066	5,104	609	4,528	3,784		
Terre-Neuve / Newfoundland	2,862	3,830	1,188	2,149	1,445	3,794	2,295	4,172		
Non déterminé / Not determined	0	0	0	91	0	0	18	9		
TOTAL	17,650	20,364	21,309	19,334	16,561	8,795				

* Préliminaire / Preliminary

Tableau 3. Débarquements (t) annuels de maquereau par engin de pêche depuis 1995.Table3. Annual landings (t) of mackerel by fishing gear since 1995.

ENGIN / GEAR			ANNÉE	/ YEAR			MOYENNE / AVERAGE			
	1995	1996	1997	1998	1999	2000*	(1995-1999)	(1990-1999)		
Chalut / Trawl	59	68	92	9	12	0	48	589		
Seine Bourse / Purse Seine	2,720	3,607	1,116	1,572	1,348	3,793	2,073	4,174		
Autres Seines / Other Seines	0	0	9	0	0	0	2	22		
Filet maillant / Gillnet	4,442	6,419	6,657	7,638	5,128	1,982	6,057	6,505		
Trappe / Trap	4,719	3,821	3,889	3,999	4,057	2,454	4,097	3,788		
Palangre / Longline	0	0	0	7	3	0	2	8		
Ligne à main / Handline	899	1,231	3,029	1,998	569	17	1,545	992		
Turlutte / Jigger	3,821	4,705	6,204	3,651	5,435	548	4,763	4,594		
Fascine / Weir	177	0	1	141	8	0	65	66		
Autres / Others	812	510	313	320	0	0	391	270		

* Préliminaire / Preliminary

				39		
Tableau 4.	Débarquements	(t) de maquereau	par zone unitair	e ou sous-div	visior	n de l'OPANO depuis 1995*.
TT 1 1 1	T 1. (.) C	1 11 11/17		a 1 1		1005*

Table	4.	Landings	(t) oj	^c mackerel by 1	VAFO	Unit Area or	Subdivision	since 1995*.
-------	----	----------	--------	----------------------------	------	--------------	-------------	--------------

DIVISION	Zone Unitaire ou Sous-Division /			ANNÉE		MOYENNE / AVERAGE			
	Unit Area or Subdivision	1995	1996	1997	1998	1999	2000***	(1995-1999)	(1990-1999)
3К	3Ka	0.1	0.0	0.0	0.0	0.0	0.0	0.0	12.0
	3Kb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3Kd	3.0	3.0	0.0	0.0	0.0	0.0	1.2	253.1
	3Kh	5.5	0.2	0.0	0.0	0.0	1948.2	1.1	246.2
	3Ki	2.0	0.0	0.0	0.0	0.0	0.0	0.4	133.0
	3Ku**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6
3L	3La	2.0	0.0	0.0	0.0	0.0	0.0	0.4	17.5
	3Lb	0.2	0.1	0.0	0.0	0.0	0.0	0.0	51.2
	3Lf	2.2	0.1	0.0	0.0	0.0	22.4	0.5	4.7
	3Lg	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	3Lj	1.6	0.0	0.0	0.0	0.0	0.0	0.3	0.3
	3Lq	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
3P	3PSa	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6
	3PSb	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.8
	3PSc	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7
	3Pn	0.0	0.0	0.0	65.3	7.0	0.0	14.5	10.0
	3Pu**	86.0	59.7	7.7	0.0	0.0	0.0	30.7	17.3
(5		26.1	176.0		120.1		1.5.5	00.5	160.6
4R	4Ra	26.1	176.2	112.4	130.1	7.5	15.5	90.5	160.6
	4Rb	662.7	867.9	216.6	649.8	750.7	1105.6	629.5	1,177.9
	4Rc	1,326.0	2,100.2	617.3	1,387.7	679.3	652.8	1,222.1	1,585.1
	4Rd	745.0	622.3	234.3	7.1	0.1	49.3	321.8	291.3
	4Ru**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	193.5
48	4Sv	0.0	0.3	0.2	0.0	0.0	0.0	0.1	7.1
	4Sw	0.0	0.5	0.3	0.7	0.0	0.0	0.3	4.3
	4Sy	0.0	4.1	0.4	0.0	0.0	0.0	0.9	4.0
	4Sz	29.6	4.4	0.2	0.0	2.1	0.0	7.3	10.5
4T	4Tf	2,925.2	3,805.1	5,257.2	3,267.9	4662.2	270.0	3,983.5	3,414.0
	4Tg	599.7	843.8	2,861.2	2,510.1	826.3	165.1	1,528.2	1,052.1
	4Th	243.4	247.4	360.6	317.6	25.5	0.0	238.9	292.5
	4Tj	84.7	154.9	436.7	459.3	205.9	73.5	268.3	200.9
	4TI	2,977.2	4,650.5	5,332.4	4,768.9	3511.0	1356.6	4,248.0	3,999.2
	4Tm	597.5	931.4	383.3	348.7	362.0	255.1	524.6	580.4
	4Tn	728.3	687.6	697.9	1,035.0	952.2	235.3	820.2	823.6
	4To	28.1	34.0	22.6	30.9	17.2	22.6	26.6	19.3
	4Tp	0.0	0.3	0.7	0.2	0.0	0.0	0.3	0.3
	4Tq	0.0	0.0	0.1	0.2	0.0	0.0	0.1	1.7
	4Tu**	0.0	0.0	5.4	0.0	0.0	0.0	1.1	100.7
4V	4Vn	1 474 8	1 590 6	835.5	553.6	757 3	33.4	1.042.4	1.452.0
	4Vu**	0.0	0.0	2.1	0.6	4.6	0.0	1.4	8.3
4W	4Wd	395.8	975.7	394.7	50.5	84.9	17.1	380.3	382.3
	4Wh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	191.6
	4Wk	169.9	138.8	174.4	7.2	26.7	3.8	103.4	168.5
	4Wu**	55.5	66.0	147.3	80.6	14.8	0.5	72.8	378.8
4X	4Xm	4,141.2	2,342.2	3,123.3	1,885.8	3044.5	1656.2	2,907.4	3,119.2
	4Xo	3.0	0.1	11.1	414.5	104.5	3.5	106.6	140.8
	4Xq	40.0	43.3	4.0	7.1	11.3	861.5	21.1	76.1
	4Xr	6.6	0.0	1.8	2.0	0.2	0.0	2.1	8.5
	4Xs	258.1	9.3	0.0	141.0	15.7	0.0	84.8	86.4
	4Xu**	28.7	3.8	67.7	1,211.9	487.0	46.8	359.8	307.6
TOTAL		17,650	20,364	21,309	19,334	16,560	8,795	19,043	

* Source: Fichier ZIFF / ZIFF File; ** u pour zone unitaire ou sous-division inconnue / u for unknown Unit Area or Subdivision

*** Préliminaire / Preliminary

Tableau5. Débarquements mensuels (t) de maquereau en 2000* par division et engin de pêche (les rectangles
indiquent que des fréquences de longueur sont associées aux débarquements correspondants).

.

Table5. Monthly landings (t) of mackerel in 2000* by division and fishing gear (rectangles indicate
that length frequencies are associated to the corresponding landings).

ENGIN / GEAR**						MOIS / M	ONTH					TOTAL
	Jan.	Fév. /	Mars /	Avril /	Mai /	Juin /	Juillet /	Août /	Sept.	Oct.	Nov.]
		Feb.	March	April	May	June	July	August				
DIVISION 3K												
PS									767 63	1180 56		1948 19
15									101.05	1100.00		1740.17
DIVISION 31												
DIVISION SL									77 28			22.20
15									22.38			22.38
DIVISION 4R												
GNS								0.14				0.14
LX								0.25				0.25
PS							14.71	10.89	527.39	1269.80		1822.78
DIVISION 4S												
GNS								0.002				0.002
DIVISION 4T												
GN					2.97	1048.78	47.19	81.99	131.49			1312.42
GND					0.11	177.44						177.55
GNS					1.70	95.57	99.87	107.56	58.04			362.74
LHP							3.08	14.01		_		17.08
LX							4.87	292.50	211.09			508.46
DIVISION 4V												
FPN					6.39							6.39
GNS					2.51	2.23	3.71	2.02	16.57			27.03
BS			0.001									0.001
DIVISION 4W												
FPN						2.15	0.18	3.33				5.66
GNS					14.38	0.82		0.47				15.66
BS			0.003		0.08							0.08
DIVISION 4X												
FPN					225 71	2057 46	14 60	76 51	38.03	70.40		2441 79
GNS					31.61	46 49	3 72	4 16	20.05			85 97
LLS					51.01	10.19	5.72		0.45			0.45
LX					0.04	0.16	0.88	15.04	18 41	5.07		39.61
BS	0.21				0.001		0.00			2.07		0.21
TOTAL												
BS	0.21		0.003		0.08							0.29
FPN					232.10	2059.61	14.78	79.84	38.03	29,49		2453.84
GN					2.97	1048.78	47.19	81.99	131.49			1312.42
GND					0.11	177.44						177.55
GNS					50.19	145.10	107.30	114.35	74.60			491.54
LHP							3.08	14.01				17.08
LLS									0.45			0.45
LX					0.04	0.16	5.75	307.80	229.50	5.07		548.32
PS							14.71	10.89	1317.40	2450.36		3793.36

* Préliminaire / Preliminary

1

** Voir Annexe 1 / See Appendix 1

ANNÉE /	PROVINCE		····						ENGIN /	GEAR **	*						TOTAL
YEAR	****	12	15	21-22	24	31	41	51	53	59	61	62	63	90-99	Mobile***	Fixe /	
																Fixed ***	
1995	N-Е / <i>NS</i>	59.3				35.7	682.4	0.4	129.1	1060.5	4706.7	0.4	4.0	2.7	95.0	6583.4	6681.1
	N-B / <i>NB</i>						1273.2		677.6	82.1			172.8		0.0	2205.7	2205.7
	I-P-E / <i>PEI</i>					30.9	1901.9		89.9	495.5					30.9	2487.3	2518.2
	QUÉBEC						414.9			2158.6				808.9	0.0	2573.4	3382.3
	T-N / <i>NFLD</i>					2653.7	169.9	0.0	2.8	24.1	12.0				2653.7	208.8	2862.4
	TOTAL	59.3	0.0	0.0	0.0	2720.2	4442.2	0.4	899.3	3820.7	4718.7	0.4	176.8	811.6	2779.6	14058.5	17649.7
1996	N-É / <i>NS</i>	68.4				48.0	797.9	0.0	131.8	683.0	3787.7			0.0	116.4	5400.4	5516.9
	N-В / <i>NB</i>						1929.2	0.0	676.3	73.8	3.2				0.0	2682.5	2682.5
	Î-P-É / <i>PEI</i>					30.8	2983.8		417.6	585.1					30.8	3986.5	4017.3
	QUÉBEC						518.4			3288.7				510.3	0.0	3807.1	4317.4
	T-N / NFLD					3528.5	190.2		5.8	74.7	30.4			0.000	3528 5	301.1	3829.6
	TOTAL	68.4	0.0	0.0	0.0	3607.4	6419.4	0.1	1231.5	4705.3	3821.4	0.0	0.0	510.3	3675.8	16177.6	20363.7
400 -	N. 6 / MG																
1997	N-E / <i>NS</i>	78.1				32.7	781.5		572.2	400.8	3804.0				110.7	5558.4	5669.2
	N-В / <i>NВ</i>	13.9					1232.0		608.0	99.6	33.4	3.0			13.9	1976.0	1989.9
	I-P-E / <i>PEI</i>					6.8	4071.6		1848.4	764.7	0.1	0.0	1.2		6.8	6686.0	6692.8
	QUEBEC					1.5	535.5			4921.9				310.3	1.5	5457.4	5769.2
	T-N / NFLD				8.7	1075.0	36.7			16.9	51.1				1083.7	104.6	1188.3
	TOTAL	92.0	0.0	0.0	8.7	1116.1	6657.2	0.0	3028.6	6203.8	3888.6	3.0	1.2	310.3	1216.7	19782.4	21309.5
1998	N-É / <i>NS</i>	8.7					312.1		178.6	234.3	3827.7			90.9	8.7	4552.7	4652.2
	N-B / <i>NB</i>						994.6		446.1	92.1	8.7		141.0		0.0	1682.5	1682.5
	Î-P-É / <i>PEI</i>					8.0	3994.2	1.7	1373.2	1406.9					8.0	6775.8	6783.9
	QUÉBEC						1993.9	0.3		1746.2	5.2			320.0	0.0	3745.6	4065.6
	T-N / NFLD				0.0	1564.2	251.1	4.9		171.6	157.2				1564.3	584.9	2149.1
	TOTAL	8.7	0.0	0.0	0.0	1572.3	7545.8	6.9	1997.9	3651.1	3998.7	0.0	141.0	410.9	1581.0	17341.4	19333.3
1999	N-É / <i>NS</i>	11.9					490.5		85.4	168.4	4040.6		03		11.9	4785 7	4707 1
	N-B / <i>NB</i>					8.0	933.6		259.0	164.6	03		73		80	1364.0	1372 0
	Î-P-É / <i>PEI</i>					0.0	2894.0		223.8	724.4	0.2		1.5		0.0 0.0	3817 1	3817 1
	OUÉBEC						730 8		229.0	4363.8	0.2				0.0	5102.4	5102 4
	T-N / NFLD					1339 5	70.5	31	14	14.2	15 0				1320 5	105.0	3103.0 1444 4
	TOTAL	11.9	0.0	0.0	0.0	1347.5	5128.5	3.1	569.5	5435.4	4057.0	0.0	77	0.0	1359.5	15201 1	16560 5

Tableau 6. Débarquements (t) de maquereau par province et engin de pêche pour la période comprise entre 1995 et 2000. *Table 6. Landings (t) of mackerel by province and gear for the 1995-2000 period.*

Tableau 6. (Suite)

Table 6. (Continued)

ANNÉE /	PROVINCE						ENG	IN / C	GEAR **								TOTAL
YEAR	****	12	15	21-22	24	31	41	51	53	59	61	62	63	90-99	Mobile***	Fixe / Fixed ***	
2000*	N-É / NS	0.29					191.56	0.45	17.08	46.94	2453.84				0.29	2709 88	2710 16
	N-B/NB						222.69								0.00	222.69	222.69
	Î-P-É / PEI						1207.57			251.30					0.00	1458.87	1458.87
	QUÉBEC						359.55			249.83					0.00	609.38	609.38
	T-N / NFLD					3793.36	0.14			0.25					3793.36	0.39	3793.74
	TOTAL	0.29	0.00	0.00	0.00	3793.36	1981.51	0.45	17.08	548.32	2453.84	0.00	0.00	0.00	3793.64	5001.21	8794.85
MOYENNE /	N-É / <i>NS</i>	45.28				23.28	612.86	0.08	219.40	509.40	4033.34	0.08	0.86	18.72	68.56	5376.02	5463.30
AVERAGE	N-B / <i>NB</i>	2.79				1.60	1272.52	0.01	533.39	102.44	9.12	0.60	64.22		4.39	1982.30	1986.69
(1995-1999)	Î-P-É / <i>PEI</i>					15.31	3169.10	0.34	790.57	795.30	0.06		0.24		15.31	4755.60	4770.91
	QUÉBEC					0.31	840.49	0.06		3295.82	1.03			389.89	0.31	4137.41	4527.61
	T-N / <i>NFLD</i>				1.74	2032.20	143.66	1.62	1.99	60.29	53.31				2033.93	260.87	2294.81
		157.24	100 27	0.07													
MUYENNE/	N-E/NS	157.34	429.77	0.07	0.70	97.56	1084.05	2.49	220.87	1063.51	3704.80	0.04	1.81	11.83	685.44	6077.57	6774.84
AVERAGE	N-B/NB ÎDÉ/DEI	1.39				3.14	1660.74	1.23	280.91	105.47	5.31	0.30	64.23	0.09	4.53	2118.19	2122.82
(1990-1999)	I-P-E/PEI					209.34	2799.87	0.91	462.35	680.93	0.20		0.12		209.34	3944.38	4153.72
	TNINELD				20.07	20.14	806.91	0.03	0.10	2697.23	0.52			259.56	20.14	3504.79	3784.49
	1 - iN / NF LD				28.87	3844.09	144.05	3.63	28.00	46.46	77.23				3872.97	299.37	4172.34

* Préliminaire / Preliminary

12=Chalut de fond à panneaux (arrière) / Bottom otter trawl (Stern); 15 Chalut pélagique / Midwater trawl; 21=Seine danoise / Danish Seine;
 22= Seine écossaise / Scottish seine; 24=Seine de rivage / Beach seine; 31= Seine bourse / Purse seine; 41= Filet maillant / Gillnet; 51= Palangre / Longline;
 53= Turlutte / Jigger; 59= Ligne à la main / Handline; 61= Trappe / Trap; 62= Casier / Pot; 63= Fascine / Weir; 90-99= Divers, VDM, Inc. / Mis., OSS and Unknown

*** Mobile = 12, 15, 21, 22, 24, et / and 31; Fixe = 41, 51, 53, 59, 61, 62, et / and 63

**** N-É / NS = Nouvelle-Écosse / Nova Scotia; N-B / NB = Nouveau-Brunswick / New Brunswick; Î-P-É / PEI = Île-du-Prince-Édouard / Prince Edward Island; T-N / NFLD = Terre-Neuve / Newfoundland Table 7. Catches (kg) of mackerel recorded by the Nova Scotia Observer Program since 1977*.

ANNÉE /						PAYS	/ COUNT	RY						TOTAL
YEAR**	Bulgarie	Canada	Cuba	France	Rép. Dém. Allemande	Italie	Japon	Lithuanie	Norvège	Pologne	Portugal	Russie	URSS	1
	Bulgaria	Canada	Cuba	France	German Dem. Rep.	Italy	Japan	Lithuania	Norway	Poland	Portugal	Russia	USSR	
1977			41 984				1 653						10 059	53 696
1978	14 331	4 541	11 089		40		4 454				370		114 621	149 446
1979	5 252	52	59 303				73						95 662	160 342
1980	12	1 795	17 802				32				1		72 750	92 392
1981		802	2 564			97					960		13 334	17 757
1982		940	1 252										3 834	6 026
1983		4 257	105				5						1 874	6 241
1984		643	17 989	5****							1 576		297 447	317 660
1985		1 212	31 818	2***							4 501		389 623	427 156
1986		475	18 585										265 412	284 472
1987		44	21 358										26 257	47 659
1988		7 729	123 448							191 260			584 412	906 849
1989		6 380	107 471							54 539			311 362	479 752
1990	1 259 071	1 183	327 246	5****			918		10	7 177			2 040 357	3 635 967
1991		3 259	54 428				801			1 001 518				1 060 006
1992		42 463	293 711				7 128	705 348				1 235 492		2 284 142
1993		1 073	613 827									36 267		651 167
1994		2 014	41 684											43 698
1995		1 043	58 259											59 302
1996		1 783	76 727									4 784		83 294
1997		284	109 030											109 314
1998		201	6 695									210		7 106
1999		20	13 367									7		13 394
2000		564										66		630
L					· · · · · · · · · · · · · · · · · · ·									

* Couverture à 100 % sur les navires étrangers depuis 1987; tous les types de traits sont présentés / A 100 % coverage on the foreign vessels since 1987; all types of hauls are presented

** Données non présentes dans les fichiers ZIFF, du moins à partir de 1990 / Data not included in the ZIFF files, at least since 1990

*** Continent / Mainland

**** Saint-Pierre et/and Miquelon

Tableau8. Description des prises (kg) de maquereau enregistrées en 2000 par le Programme des Observateurs de la Nouvelle-Écosse.Table8. Description of the mackerel catches (kg) recorded in 2000 by the Nova Scotia Observer Program.

* Numéros arbitraires pour les navires canadiens; seulement les traits normaux sont présentés / Arbitrary numbers for the Canadian vessels; only normal hauls are presented

** Navires russes / Russian vessels

*** 12 = Chalut de fond à panneaux (arrière) / Bottom otter trawl (stern); 15 = Chalut pélagique / Pelagic trawl; 31 = Seine bourse / Purse seine

44

Tableau 9. Résultats de l'échantillonnage commercial de 2000 (L= Fréquences de longueur; S= Nombre de poissons échantillonnés pour le laboratoire)*.

Table9. Results of the 2000 commercial sampling program (L= Length frequencies; S= Number
of fish sampled for the laboratory)*.

DIVISION							MOIS	I MONTH						
ENGIN / GEAR	MAI	MAY	JUIN /	JUNE	JUILLE	Г <i>I JULY</i>	AOÛT / /	AUGUST	SE	PT.	00	CT.	тот	TAL
	L	S	L	S	L	S	L	S	L	S	L	S	L	S
3K														
Trappe / Trap											513	46	513	46
Seine											534	44	534	44
3L														
3P														
4 S														
4 W														
4 R														
Seine											274	33	274	33
Trappe / Trap									253	28			253	28
4 T														
Ligne / Line **						43	2155	404	1056	181			3211	628
Filet / Gillnet ***	156	17	4304	630	805	140							5265	787
4Vn														
Ligne / Line														
Trappe / Trap		39		154		36				73		69		371
4X														
TOTAL														
Ligne / Line						43	2155	404	1056	181			3211	628
Filet / Gillnet	156	17	4304	630	805	140							5265	787
Trappe / Trap		39		154		36			253	101	513	115	766	445
Seine											808	77	808	77
											TO	ГAL	10050	1937

* Préliminaire / Preliminary

** Inclut toutes les sortes de lignes / Including all types of lines

*** Fixes et dérivants / Fixed and drifted

- Tableau 10.Captures et poids à l'âge commerciaux du maquereau des sous-régions 3 et 4
de l'OPANO en 2000.
- Table10.Commercial catch and weight at age for mackerel in NAFO subareas 3-4
in 2000.

ÂGE /	MOYEN	NE / AVERAGE	CAPTURE /	CATCH ('000)	
AGE	POIDS / WEIGHT	LONGUEUR / LENGTH	MOYENNE / AVERAGE	ERRSTD /	C.V.
	(Kg)	(cm)		STD. ERR.	
1	0.208	26.918	17410	187.79	0.01
2	0.328	30.767	1645	163.17	0.10
3	0.409	33.039	1101	84.31	0.08
4	0.488	35.289	3343	134.67	0.04
5	0.564	37.015	1755	141.34	0.08
6	0.610	37.976	1799	132.80	0.07
7	0.658	38.872	280	58.40	0.21
8	0.674	39.335	40	22.41	0.56
9	0.697	39.501	119	36.86	0.31
10	0.673	39.102	173	48.18	0.28
11	0.655	39.000	15	14.76	0.98
12	0.863	42.149	39	5.91	0.15

Débarquements totaux / Total landings = 8 795 t

- Tableau 11. Captures commerciales à l'âge* ('000) pour le maquereau des sous-régions 3 et 4 de l'OPANO pour la période
comprise entre 1968 et 2000.
- Table11. Commercial catch at age* ('000) for mackerel of NAFO subareas 3 and 4 during the 1968-2000 period.

ÂGE /								ANN	ÉE / YI	EAR							
AGE	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	22991	4049	15165	4365	0	5139	3223	5306	803	647	2	204	6	6145	2145	244	60
2	3821	18751	2733	4507	99	11550	9103	9302	10082	6243	182	480	1455	2836	5899	1622	19774
3	5522	12845	25117	1038	3199	5404	9987	4874	12910	19742	3831	1189	2156	5143	1609	2459	14060
4	3947	1442	6018	21917	4028	5227	5461	4346	5230	9902	14733	6615	1463	1183	5004	915	1413
5	1505	661	1867	4648	18046	7825	4710	2634	3686	3222	11575	17202	5087	1656	715	4012	781
6	720	608	337	1069	3616	12485	4644	2811	1842	2248	6358	12321	9833	4669	1609	478	1551
7	385	782	318	1344	3815	4658	5751	2038	2344	708	3157	5590	6148	7743	2623	946	339
8	885	313	1180	931	56	1552	1516	1463	1894	1262	1649	2282	2692	3309	4828	3119	479
9	5566	329	1230	1146	397	469	641	308	1487	785	1402	1702	1604	1595	1549	7770	2022
10+	52	6869	3242	3365	4967	898	654	217	555	1506	2497	2457	1998	1892	2504	3601	5640
ÂGE /								ANN	ÉE / YI	EAR							
AGE	1985	1986	1987	1988	1989	1990	1991	1002									
								1994	1993	1994	1995	1996	1997	1998	1999	2000	2001
1								1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
-	652	174	6823	612	1193	390	646	628	1993 117	1994 672	1995 10603	1996 2505	1997 5083	1998 1927	1999 1348	2000 17410	2001
2	652 853	174 1967	6823 2730	612 694	1193 6238	390 6222	646 6106	628 2627	1993 117 4900	672 231	1995 10603 14206	2505 8050	1997 5083 11823	1998 1927 18525	1999 1348 4463	2000 17410 1645	2001
2 3	652 853 36495	174 1967 3051	6823 2730 2036	612 694 1054	1193 6238 1286	390 6222 9737	646 6106 17808	628 2627 3014	1993 117 4900 8493	672 231 3896	1995 10603 14206 698	2505 8050 7052	5083 11823 10923	1998 1927 18525 9977	1999 1348 4463 14625	2000 17410 1645 1101	2001
2 3 4	652 853 36495 13705	174 1967 3051 31643	6823 2730 2036 2083	612 694 1054 2077	1193 6238 1286 1031	390 6222 9737 1457	646 6106 17808 9560	628 2627 3014 14148	1993 117 4900 8493 4497	672 231 3896 5905	1995 10603 14206 698 4674	2505 8050 7052 1013	5083 11823 10923 4604	1998 1927 18525 9977 9560	1999 1348 4463 14625 7509	2000 17410 1645 1101 3343	2001
2 3 4 5	652 853 36495 13705 1052	174 1967 3051 31643 8228	6823 2730 2036 2083 23915	612 694 1054 2077 2301	1193 6238 1286 1031 1272	390 6222 9737 1457 888	646 6106 17808 9560 1212	628 2627 3014 14148 8630	1993 117 4900 8493 4497 13011	672 231 3896 5905 2856	1995 10603 14206 698 4674 4093	2505 8050 7052 1013 5380	5083 11823 10923 4604 638	1998 1927 18525 9977 9560 4291	1999 1348 4463 14625 7509 4698	2000 17410 1645 1101 3343 1755	2001
2 3 4 5 6	652 853 36495 13705 1052 501	174 1967 3051 31643 8228 529	6823 2730 2036 2083 23915 5398	612 694 1054 2077 2301 25394	1193 6238 1286 1031 1272 528	390 6222 9737 1457 888 966	646 6106 17808 9560 1212 762	628 2627 3014 14148 8630 1411	1993 117 4900 8493 4497 13011 7686	672 231 3896 5905 2856 13672	1995 10603 14206 698 4674 4093 1768	2505 8050 7052 1013 5380 6519	5083 11823 10923 4604 638 3709	1998 1927 18525 9977 9560 4291 505	1999 1348 4463 14625 7509 4698 2049	2000 17410 1645 1101 3343 1755 1799	2001
2 3 4 5 6 7	652 853 36495 13705 1052 501 1445	174 1967 3051 31643 8228 529 289	6823 2730 2036 2083 23915 5398 321	612 694 1054 2077 2301 25394 3954	1193 6238 1286 1031 1272 528 18071	390 6222 9737 1457 888 966 639	646 6106 17808 9560 1212 762 1052	628 2627 3014 14148 8630 1411 733	1993 117 4900 8493 4497 13011 7686 1660	672 231 3896 5905 2856 13672 5977	10603 14206 698 4674 4093 1768 5757	2505 8050 7052 1013 5380 6519 1622	5083 11823 10923 4604 638 3709 3081	1998 1927 18525 9977 9560 4291 505 2432	1999 1348 4463 14625 7509 4698 2049 478	2000 17410 1645 1101 3343 1755 1799 280	2001
2 3 4 5 6 7 8	652 853 36495 13705 1052 501 1445 169	174 1967 3051 31643 8228 529 289 551	6823 2730 2036 2083 23915 5398 321 220	612 694 1054 2077 2301 25394 3954 199	 1193 6238 1286 1031 1272 528 18071 2023 	390 6222 9737 1457 888 966 639 16765	646 6106 17808 9560 1212 762 1052 849	628 2627 3014 14148 8630 1411 733 1048	1993 117 4900 8493 4497 13011 7686 1660 651	672 231 3896 5905 2856 13672 5977 929	1995 10603 14206 698 4674 4093 1768 5757 2281	2505 8050 7052 1013 5380 6519 1622 7094	5083 11823 10923 4604 638 3709 3081 545	1998 1927 18525 9977 9560 4291 505 2432 2024	1999 1348 4463 14625 7509 4698 2049 478 681	2000 17410 1645 1101 3343 1755 1799 280 40	2001
2 3 4 5 6 7 8 9	652 853 36495 13705 1052 501 1445 169 314	174 1967 3051 31643 8228 529 289 551 102	6823 2730 2036 2083 23915 5398 321 220 76	612 694 1054 2077 2301 25394 3954 199 142	1193 6238 1286 1031 1272 528 18071 2023 244	390 6222 9737 1457 888 966 639 16765 923	646 6106 17808 9560 1212 762 1052 849 10964	628 2627 3014 14148 8630 1411 733 1048 884	1993 117 4900 8493 4497 13011 7686 1660 651 699	672 231 3896 5905 2856 13672 5977 929 244	10603 14206 698 4674 4093 1768 5757 2281 203	1996 2505 8050 7052 1013 5380 6519 1622 7094 1806	5083 11823 10923 4604 638 3709 3081 545 4212	1998 1927 18525 9977 9560 4291 505 2432 2024 412	1999 1348 4463 14625 7509 4698 2049 478 681 663	2000 17410 1645 1101 3343 1755 1799 280 40 119	2001

* Les nombres en caractères gras représentent des classes d'âge dominantes / Bold figures represent strong year-class

47

- Tableau 12. Captures commerciales à l'âge* ('%) pour le maquereau des sous-régions 3 et 4 de l'OPANO pour la période
comprise entre 1968 et 2000.
- Table 12. Commercial catch at age* ('%) for mackerel of NAFO subareas 3 and 4 during the 1968-2000 period.

ÂGE /								ANN	NÉE / YI	EAR							
AGE	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	50.648	8.680	26.509	9.847	0.000	9.309	7.054	15.934	1.967	1.398	0.004	0.408	0.018	16.989	7.530	0.970	0.130
2	8.417	40.196	4.777	10.167	0.259	20.921	19.923	27.935	24.691	13.494	0.401	0.959	4.485	7.841	20.709	6.445	42.876
3	12.165	27.535	43.905	2.342	8.369	9.789	21.858	14.637	31.617	42.672	8.441	2.376	6.646	14.219	5.649	9.771	30.486
4	8.695	3.091	10.520	49.441	10.538	9.468	11.952	13.051	12.808	21.403	32.462	13.219	4.510	3.271	17.567	3.636	3.064
5	3.315	1.417	3.264	10.485	47.212	14.174	10.309	7.910	9.027	6.964	25.503	34.375	15.680	4.578	2.510	15.942	1.693
6	1.586	1.303	0.589	2.411	9.460	22.615	10.164	8.442	4.511	4.859	14.009	24.621	30.309	12.908	5.649	1.899	3.363
7	0.848	1.676	0.556	3.032	9.981	8.437	12.587	6.120	5.740	1.530	6.956	11.171	18.951	21.407	9.208	3.759	0.735
8	1.950	0.671	2.063	2.100	0.147	2.811	3.318	4.394	4.638	2.728	3.633	4.560	8.298	9.148	16.949	12.394	1.039
9	12.262	0.705	2.150	2.585	1.039	0.850	1.403	0.925	3.642	1.697	3.089	3.401	4.944	4.410	5.438	30.875	4.384
10+	0.115	14.725	5.667	7.591	12.995	1.627	1.431	0.652	1.359	3.255	5.502	4.910	6.159	5.231	8.791	14.309	12.229

ÂGE /								ANN	NÉE / YI	EAR							
AGE	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	1.099	0.363	15.303	1.648	3.715	1.019	1.305	1.419	0.241	1.801	23.629	5.974	11.195	3.769	3.656	62.809	
2	1.438	4.101	6.123	1.868	19.424	16.261	12.331	5.935	10.083	0.619	31.658	19.197	26.040	36.235	12.105	5.935	
3	61.522	6.361	4.566	2.837	4.004	25.447	35.964	6.809	17.477	10.443	1.556	16.817	24.058	19.515	39.669	3.972	
4	23.104	65.977	4.672	5.591	3.210	3.808	19.307	31.962	9.254	15.828	10.416	2.416	10.140	18.699	20.367	12.060	
5	1.773	17.156	53.637	6.194	3.961	2.321	2.448	19.496	26.774	7.655	9.121	12.830	1.405	8.393	12.743	6.331	
6	0.845	1.103	12.107	68.361	1.644	2.525	1.539	3.188	15.816	36.647	3.940	15.546	8.169	0.988	5.558	6.490	
7	2.436	0.603	0.720	10.644	56.270	1.670	2.125	1.656	3.416	16.021	12.830	3.868	6.786	4.757	1.297	1.010	
8	0.285	1.149	0.493	0.536	6.299	43.814	1.715	2.368	1.340	2.490	5.083	16.917	1.200	3.959	1.847	0.144	
9	0.529	0.213	0.170	0.382	0.760	2.412	22.142	1.997	1.438	0.654	0.452	4.307	9.277	0.806	1.798	0.429	
10+	6.969	2.975	2.209	1.938	0.713	0.724	1.125	25.171	14.162	7.840	1.315	2.130	1.729	2.879	0.960	0.819	

* Les nombres en caractères gras représentent des classes d'âge dominantes / Bold figures represent strong year-class

Tableau 13. Poids (kg) commerciaux à l'âge* pour le maquereau des sous-régions 3 et 4 de l'OPANO pour la périodecomprise entre 1968 et 2000.

 Table
 13. Commercial weight (kg) at age* for mackerel of NAFO subareas 3 and 4 during the 1968-2000 period.

ÂGE /								ANN	NÉE / YI	EAR							
AGE	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1	0.148	0.131	0.107	0.110	0.123	0.113	0.111	0.104	0.097	0.114	0.192	0.19	0.146	0.114	0.152	0.098	0.098
2	0.241	0.214	0.179	0.181	0.210	0.189	0.19	0.176	0.168	0.198	0.285	0.272	0.376	0.315	0.34	0.257	0.162
3	0.335	0.300	0.253	0.256	0.300	0.269	0.273	0.252	0.244	0.288	0.425	0.531	0.548	0.523	0.541	0.479	0.338
4	0.425	0.382	0.324	0.327	0.386	0.345	0.352	0.326	0.316	0.375	0.463	0.567	0.609	0.577	0.606	0.593	0.525
5	0.506	0.456	0.389	0.391	0.464	0.414	0.425	0.393	0.382	0.454	0.509	0.579	0.617	0.643	0.666	0.628	0.625
6	0.576	0.520	0.444	0.446	0.533	0.473	0.487	0.451	0.44	0.524	0.582	0.603	0.635	0.66	0.743	0.659	0.657
7	0.634	0.574	0.491	0.494	0.590	0.524	0.541	0.5	0.489	0.582	0.625	0.652	0.672	0.674	0.737	0.712	0.696
8	0.683	0.618	0.530	0.532	0.638	0.565	0.585	0.54	0.53	0.631	0.659	0.714	0.705	0.707	0.722	0.709	0.715
9	0.722	0.654	0.562	0.564	0.677	0.6	0.621	0.573	0.563	0.671	0.673	0.752	0.781	0.723	0.719	0.705	0.705
10	0.753	0.683	0.587	0.589	733.000	0.628	0.649	0.6	0.59	0.703	0.697	0.769	0.743	0.756	0.74	0.727	0.709

ÂGE /								ANN	NÉE / YI	EAR							
AGE	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	0.111	0.079	0.107	0.1	0.1	0.280	0.251	0.184	0.180	0.232	0.197	0.224	0.240	0.157	0.186	0.208	
2	0.26	0.234	0.21	0.222	0.231	0.331	0.336	0.297	0.280	0.371	0.300	0.333	0.375	0.273	0.298	0.328	
3	0.277	0.349	0.316	0.343	0.375	0.416	0.435	0.408	0.361	0.384	0.435	0.433	0.448	0.412	0.439	0.409	
4	0.416	0.366	0.404	0.408	0.414	0.534	0.478	0.449	0.446	0.461	0.488	0.535	0.524	0.517	0.509	0.488	
5	0.558	0.452	0.411	0.453	0.474	0.620	0.564	0.508	0.489	0.554	0.532	0.543	0.594	0.577	0.569	0.564	
6	0.644	0.581	0.505	0.484	0.509	0.628	0.627	0.552	0.547	0.549	0.607	0.595	0.601	0.603	0.649	0.61	
7	0.677	0.64	0.502	0.584	0.529	0.676	0.644	0.616	0.607	0.594	0.616	0.647	0.635	0.665	0.703	0.658	
8	0.665	0.729	0.706	0.694	0.631	0.678	0.724	0.672	0.664	0.643	0.661	0.684	0.757	0.666	0.719	0.674	
9	0.737	0.777	0.747	0.755	0.753	0.724	0.712	0.678	0.699	0.714	0.738	0.729	0.700	0.721	0.73	0.697	
10	0.717	0.75	0.68	0.815	0.803	0.725	0.762	0.692	0.708	0.689	0.849	0.718	0.723	0.710	0.755	0.673	

* Les nombres en caractères gras représentent des classes d'âge dominantes / Bold figures represent strong year-class

Tableau 14. Caractéristiques des stations qui ont été échantillonnées lors du premier trajet du relevé d'évaluation de l'abondance du maquereau de 2000.

Table14.Characteristics of the stations sampled during the first pass of the 2000 mackerel abundance
assessment survey.

STATION*	STRATE /	LONGITUDE	LATITUDE	TEMPERATURE	OEUFS-EGGS / m ²	PROFONDEUR /	VOLUME FILTRÉ /
	STRATUM**	(Degre-d	ecimal)	(°C)	(O ₍₀₎) ***	DEPTH (m)****	FILTRATED VOLUME (m^3)
					· · · · · · · · · · · · · · · · · · ·	•	
11	1	60.92	46 83	10.89	4 12	76 27	115 77
1.2	1	60.75	47.17	7.72	8.25	101.47	288.15
13	1	60.75	47.50	7.27	0.00	46.70	65.67
1.4	1	60.75	47.83	7.39	0.00	83.85	215.85
1.5	1	60.75	48.17	7.61	0.00	99.88	526.36
2.1	1	61.25	46.50	11.58	8.14	51.52	94.38
2.2	1	61.25	46.83	10.06	7.68	50.48	88.41
2.3	1	61.25	47.17	8.87	0.00	41.62	45.11
2.4	1	61.25	47.50	7.95	0.00	24.24	331.45
2.5	1	61.25	47.83	7.89	0.00	11.26	249.49
2.6	1	61.25	48.17	7.87	0.00	101.60	267.21
3.1	1	61.77	45.83	12.82	56.84	20.65	319.46
3.2	1	61.75	46.17	12.27	11.65	46.39	284.74
3.3	1	61.75	46.50	11.12	57.23	36.35	261.77
3.4	1	61.75	46.83	9.77		61.58	145.17
3.5	1	61.75	47.17	10.14	2.13	23.80	260.67
3.8	1	61.75	48.17	7.80	0.00	100.40	321.12
3.9	1	61.75	48.33	8.61	0.00	101.20	243.24
4.1	1	62.25	45.83	13.92	4.96	21.64	352.96
4.2	1	62.25	46.17	12.80	13.17	20.52	355.96
4.9	1	62.25	48.33	7.99	0.00	100.40	374.38
5.7	1	62.75	48.33	9.29	0.00	82.02	492.44
7.7	1	63.75	48.83	10.92	0.00	97.15	430.19
8.1	1	64.37	46.83	13.21	0.89	17.39	428.01
8.7	1	64.08	48.75	10.69	0.00	61.33	268.35
9.1	1	64.67	46.83	13.82	110.14	21.90	103.85
9.2	1	64.75	47.17	12.94	17.17	19.37	511.96
3.6	2	61.83	47.58	10.54	0.54	24.21	290.04
3.7	2	61.75	47.83	10.12	0.00	41.34	350.69
4.3	2	62.25	46.57	12.45	57.71	31.79	327.85
4.4	2	62.25	46.83	10.97	0.00	51.54	99.21
4.5	2	62.25	47.17	10.94	3.78	22.69	187.05
4.6	2	62.25	47.50	11.29	0.33	44.51	204.10
4.8	2	62.25	48.17	8.68	0.00	66.22	424.31
5.1	2	62.75	46.50	13.05	32.43	31.66	279.53
5.2	2	62.75	46.83	11.28	43.93	51.30	202.49
5.6	2	62.75	48.17	9.98	0.00	71.32	600.55
6.1	2	63.25	46.50	13.53	33.07	25.90	278.67
6.2	2	63.25	46.83	12.46	106.04	41.67	111.34
6.3	2	63.25	47.17	12.22	54.44	51.71	174.44

Tableau14. (Suite)Table14. (Continued)

STATION*	STRATE /	LONGITUDE	LATITUDE	TEMPERATURE	OEUFS-EGGS / m ²	PROFONDEUR /	VOLUME FILTRÉ /
	STRATUM**	(Degre-d	ecimal)	(°C)	(O ₍₀₎) ***	DEPTH (m)****	FILTRATED VOLUME (m^3)
<u> </u>						· · · · · · · · · · · · · · · · · · ·	
6.7	2	63.25	48.50	10.08	1.02	85.99	282.27
7.1	2	63.75	46.83	11.69	564.26	29.88	242.76
7.2	2	63.75	47.17	11.94	116.41	51.44	224.19
7.5	2	63.75	48.17	11.47	35.67	66.95	409.62
7.6	2	63.75	48.50	10.20	0.00	100.50	356.75
8.2	2	64.25	47.17	12.69	63.43	33.54	307.95
8.6	2	64.08	48.50	10.94	1.23	96.08	244.09
9.3	2	64.67	47.50	13.47	207.03	20.20	391.24
9.4	2	64.75	47.93	13.10	28.90	11.83	341.78
10.1	2	65.25	47.93	10.00	52.09	66.10	291.84
4.7	3	62.25	47.83	9.93	0.00	51.39	356.94
5.3	3	62.75	47.17	12.64	469.80	51.37	78.55
5.4	3	62.75	47.50	11.35	0.00	51.04	390.29
5.5	3	62.75	47.83	11.13	0.00	51.20	382.05
6.4	3	63.25	47.50	11.11	72.84	76.07	379.40
6.5	3	63.25	47.83	11.04	311.53	71.23	522.29
6.6	3	63.25	48.17	10.48	0.00	51.02	401.10
7.3	3	63.75	47.50	11.38	207.66	61.71	301.60
7.4	3	63.75	47.83	11.78	3081.51	61.57	229.78
8.3	3	64.25	47.50	11.84	59.00	51.89	381.77
8.4	3	64.25	47.83	13.66	106.26	31.63	319.23
8.5	3	64.25	48.17	12.62	210.91	36.42	277.54
9.5	3	64.75	48.17	12.61	71.49	61.59	440.80
11.1	3	65.75	48.00	12.21	144.12	26.78	283.70
12.1	3	66.13	48.05	11.55	2.10	26.87	382.33
Mi	nimum			7.27	0.00	11.26	45.11
Ma	ximum			13.92	3081.51	101.60	600.55
Moyenn	ne / Average			10.95	100.65	52.33	295.26

* Par ordre de strate et de station / By order of stratum and station

** Voir Figure 14 / See Figure 14

*** Rétrocalculé au temps de la ponte / Backcalculated at the time of spawning

**** Profondeur du trait donnée par la sonde STD / Depth of the tow given by the STD probe

Table15. Characteristics of the stations sampled during the second pass of the 2000 mackerel abundance
assessment survey.

STATION*	STRATE /	LONGITUDE	LATITUDE	TEMPERATURE	OEUFS-EGGS / m ²	PROFONDEUR /	VOLUME FILTRÉ /
	STRATUM**	(Degre-d	ecimal)	(°C)	(O ₍₀₎) ***	DEPTH (m)****	FILTRATED VOLUME (m^3)
1.1	1	60.92	46.83	13.86	25.68	61.29	82.53
1.2	1	60.75	47.17	11.83	14.15	61.53	223.34
1.3	1	60.75	47.50	10.53	23.34	46.41	35.25
1.4	1	60.75	47.83	10.33	0.00	62.03	212.91
1.5	1	60.75	48.17	9.90	0.00	61.31	446.67
2.1	1	61.25	46.50	14.48	2.52	51.09	395.32
2.2	1	61.25	46.83	13.67	0.49	51.18	282.46
2.3	1	61.25	47.17	11.87	20.26	46.33	46.87
2.4	1	61.25	47.50	12.76	4.04	21.88	294.50
2.5	1	61.25	47.83	11.04	0.26	19.59	237.65
2.6	1	61.25	48.17	10.03	0.00	61.79	390.86
3.1	1	61.77	45.83	16.20	49.60	26.24	335.15
3.2	1	61.75	46.17	14.79	1.22	41.68	263.13
3.3	1	61.75	46.50	14.97	3.95	36.03	315.63
3.4	1	61.75	46.83	13.28	11.69	47.44	127.07
3.5	1	61.75	47.17	11.91	4.72	23.46	210.55
3.8	1	61.75	48.17	10.29	0.00	61.55	407.07
3.9	1	61.75	48.33	9.50	0.00	61.41	446.29
4.1	1	62.25	45.83	15.49	5.13	30.18	370.68
4.2	1	62.25	46.17	15.44	3.68	22.02	301.98
4.9	1	62.25	48.33	9.88	0.00	61.65	509.34
5.7	1	62.75	48.33	10.26	0.00	61.46	306.63
7.7	1	63.75	48.83	12.86	0.32	61.17	270.05
8.1	1	64.37	46.83	15.68	0.21	20.72	253.37
8.7	1	64.08	48.75	11.86	0.00	41.83	275.17
9.1	1	64.67	46.83	16.82	14.39	18.04	336.38
9.2	1	64.75	47.17	16.39	9.71	19.90	272.61
3.6	2	61.83	47.58	13.45	1.93	27.26	248.83
3.7	2	61.75	47.83	13.04	0.00	45.79	340.64
4.3	2	62.25	46.57	15.76	6.90	37.59	115.89
4.4	2	62.25	46.83	14.42	7.84	56.73	122.61
4.5	2	62.25	47.17	12.01	58.65	33.11	46.72
4.6	2	62.25	47.50	13.75	14.42	41.43	53.73
4.8	2	62.25	48.17	9.91	0.00	60.80	526.08
5.1	2	62.75	46.50	17.07	1.98	20.08	282.84
5.2	2	62.75	46.83	16.18	13.37	46.28	180.03
5.6	2	62.75	48.17	11.29	0.00	61.18	442.41
6.1	2	63.25	46.50	16.28	6.90	22.56	310.80
6.2	2	63.25	46.83	15.65	8.65	41.52	60.27
6.3	2	63.25	47.17	14.73	2.76	52.31	366.42
	_						

Tableau15. (Suite)Table15. (Continued)

STATION*	STRATE /	LONGITUDE	LATITUDE	TEMPERATURE	OEUFS-EGGS / m ²	PROFONDEUR /	VOLUME FILTRÉ /
	STRATUM**	(Degre-d	ecimal)	(°C)	(O ₍₀₎) ***	DEPTH (m)****	FILTRATED VOLUME (m^3)
67	2	62.25	19 50	10.00	0.32	61.03	202.13
0.7	2	63.25	46.30	16.59	1.82	30.70	309 37
7.1	2	63.75	40.85	15.43	0.88	49.90	216.89
7.5	2	63.75	47.17	13.45	101 50	49.90 60.34	208.29
7.5	2	63.75	48.17	10.92	0.00	61 65	287.49
0.0	2	64.25	48.50	15.86	5.54	41 77	277 99
0.2 9.6	2	64.23	47.17	13.30	60.38	61.15	298 57
0.0	2	64.67	48.50	15.25	31.13	19.02	214 71
9.5	2	64.75	47.50	14.55	8 44	18.86	388 78
7.4 10.1	2	65.25	47.93	14.55	18 32	61.89	289.29
10.1	2	62.25	47.93	13.52	1 93	50.53	354.00
53	3	62.25	47.05	15.32	65.61	51.37	125.17
5.5	3	62.75	47.50	15.15	193 30	51.54	160.23
5.5	3	62.75	47.50	13.04	0.00	60.29	301.41
6.4	3	63.25	47.50	15.01	18 54	61.84	264 46
65	3	63.25	47.83	14.02	135.24	62.32	192.54
6.5	3	63.25	48.17	12.21	131 33	50.89	172.45
73	3	63.75	47 50	14 50	44.61	60.89	298.10
74	3	63 75	47.83	13.80	303 41	60.08	310.51
83	3	64 25	47 50	15.60	20.48	51.50	380.63
84	3	64.25	47.83	15.58	33.65	36.32	279.62
85	3	64.25	48.17	13 43	20.49	39.02	296.39
95	3	64.75	48.17	12.65	44.82	61.38	315.06
111	3	65 75	48.00	16.58	35.50	31.68	258.30
12.1	3	66.13	48.05	15.89	4.38	26.53	301.98
	2		.5.05				
Mi	nimum			9.50	0.00	18.04	35.25
Ma	ximum			17.07	303.41	62.32	526.08
Moyen	ne / Average			13.66	24.76	45.36	271.17
-	-						

* Par ordre de strate et de station / By order of stratum and station

** Voir Figure 14 / See Figure 14

*** Rétrocalculé au temps de la ponte / Backcalculated at the time of spawning

**** Profondeur du trait donnée par la sonde STD / Depth of the tow given by the STD probe

- Tableau 16. Nombre moyen d'oeufs par m² et variance par strate pour le relevé d'évaluation de l'abondance du maquereau en 2000.
- Table16. Mean number of eggs per m2 and variance by stratum for the 2000
mackerel abundance assessment survey.

TRAJET / PASS	STRATE / STRATUM	STATIONS	MOYENNE / MEAN (n/m ²)	VARIANCE
1	1	27	11.63	638.58
	2	23	60.97	14535.47
	3	15	315.82	603638.43
2	1	27	7.24	130.86
	2	23	15.69	631.25
	3	15	70.22	7350.09

.

- Tableau 17. Paramètres utilisés pour le calcul du nombre moyen d'oeufs (**P**) par m² pour toute la zone échantillonnée et sa variance (*var(P)*) pour les relevés d'évaluation de l'abondance du maquereau réalisés entre 1983 et 2000.
- Table17. Parameters used for the calculation of the mean number of eggs (P) per m^2 for all the area sampled and its variance (var(P))for the mackerel abundance surveys realized between 1983 and 2000.

ANNÉE /	MISSION /	TRAJET /	NOMBRI	E DE STATIONS / N	UMBERS		MOYENNE / MEAN	1		VARIANCE	
YEAR	SURVEY	PASS	Strate / Stratum*1	Strate / Stratum 2	Strate / Stratum 3	Strate / Stratum 1	Strate / Stratum 2	Strate / Stratum 3	Strate / Stratum 1	Strate / Stratum 2	Strate / Stratum 3
			N ₁	N ₂	N3	M ₁	M ₂	M ₃	V ₁	V ₂	V ₃
1983	P-292	1	27	23	15	35.64	80.26	208.25	1262.14	16615.04	77992.00
1984	N-030	1	27	23	15	43.81	209.62	501.20	2155.64	42224.75	120143.70
		2	27	23	15	28.03	54.66	190.08	3485.64	3824.33	40381.66
1985	P-324	1	27	23	15	63.79	316.05	653.07	5647.31	47111.38	109157.05
		2	27	23	15	62.48	197.70	420.86	4916.00	51578.87	126493.05
1986	P-337	1	27	23	15	104.30	663.60	965.49	23828.41	217072.52	302341.05
		2	27	23	15	114.32	121.14	352.95	25543.15	13264.32	53575.61
1987	P-353	1	27	23	15	116.42	237.60	1160.06	11624.34	67905.04	1140339.15
		2	0	22	15		93.34	185.52		7979.45	16739.42
1988	P-369	1	27	23	15	148.33	673.00	1146.01	45450.16	379014.01	1011051.58
		2	27	23	15	52.32	241.47	299.86	11611.51	81805.03	79739.01
1989	P-386	1	27	23	15	35.38	224.76	513.92	3565.59	124610.22	248940.18
		2	27	23	15	35.37	57.39	157.26	3551.14	2204.13	27434.34
1990	P-400	1	27	23	15	52.18	238.52	1089.06	9006.21	101123.12	1210501.09
		2	27	23	14	59.71	264.37	965.89	7557.45	94668.77	542817.11
1991	P-415	1	27	23	15	112.00	342.44	1177.90	39477.11	128483.31	884992.14
1992	P-430	1	27	23	15	33.85	342.79	995.48	2386.41	218995.12	773816.65
		2	25	23	15	83.62	113.97	293.65	19270.27	16001.37	42266.17
1993	P-445	1	27	23	15	97.50	469.39	700.32	58757.27	674336.74	544484.35
		2	4	11	14	103.76	134.08	272.97	8309.80	22349.25	47934.96
1994	N-209	1	27	23	15	37.41	269.10	649.77	7818.70	164295.45	787375.80
		2	24	21	15	93.15	275.70	531.72	50149.77	187442.63	163224.28
1996	GE-001	1	27	23	14	24.80	79.90	151.38	1306.08	12989.56	24697.51
		2	25	22	15	18.86	73.66	178.22	851.30	10137.62	29695.52
1998	N-223	1	27	22	15	29.92	75.82	127.50	3287.28	13344.11	10669.60
		2	26	23	15	15.19	147.74	150.64	710.45	103819.29	13767.69
2000	MB-	1	27	23	15	11.63	60.97	315.82	638.58	14535.47	603638.43
		2	27	23	15	7.24	15.69	70.22	130.86	631.25	7350.09

* Voir Figure 14 pour la position des strates / See Figure 14 for the strata position

Tableau 17. (Suite)

Table 17. (Continued)

ANNÉE /	MISSION /	TRAJET /	MOYENNE PON	JDÉRÉE / WEIGHTI	ED AVERAGE **	VARIANCE PON	DÉRÉE / WEIGHTED	VARIANCE***	SURFACE TOTALE /		
YEAR	SURVEY	PASS	Strate / Stratum 1	Strate / Stratum 2	Strate / Stratum 3	Strate / Stratum 1	Strate / Stratum 2	Strate / Stratum 3	TOTAL AREA****		
			YST ₁	YST ₂	YST ₃	VAR ₁	VAR ₂	VAR ₃	P	var (P)	
							·····	·	····		
1983	P-292	1	15.19	25.32	53.76	8.50	71.90	346.55	94.28	426.95	
1984	N-030	1	18.68	66.13	129.39	14.51	182.72	533.85	214.20	731.08	
		2	11.95	17.24	49.07	23.47	16.55	179.43	78.27	219.45	
1985	P-324	1	27.20	99.71	168.60	38.02	203.86	485.03	295.50	726.92	
		2	26.64	62.37	108.65	33.10	223.20	562.07	197.66	818.36	
1986	P-337	1	44.47	209.35	249.26	160.42	939.34	1343.44	503.08	2443.19	
		2	48.74	38.22	91.12	171.97	57.40	238.06	178.08	467.43	
1987	P-353	1	49.63	74.96	299.49	78.26	293.84	5067.04	424.08	5439.14	
		2		29.45	47.89		36.10	74.38	77.34	110.48	
1988	P-369	1	63.24	212.32	295.87	305.99	1640.10	4492.56	571.43	6438.65	
		2	22.31	76.18	77.41	78.17	353.99	354.32	175.90	786.48	
1989	P-386	1	15.08	70.91	132.68	24.00	539.22	1106.15	218.67	1669.38	
		2	15.08	18.10	40.60	23.91	9.54	121.90	73.78	155.35	
1990	P-400	1	22.25	75.25	281.16	60.63	437.59	5378.80	378.66	5877.02	
		2	25.46	83.40	249.36	50.88	409.66	2584.26	358.22	3044.80	
1991	P-415	1	47.75	108.03	304.10	265.77	555.98	3932.42	459.88	4754.18	
1992	P-430	1	14.43	108.14	257.00	16.07	947.66	3438.42	379.58	4402.14	
		2	35.65	35.96	75.81	140.11	69.24	187.81	147.42	397.16	
1993	P-445	1	41.57	148.08	180.80	395.58	2918.05	2419.39	370.46	5733.01	
	·	2	44.24	42.30	70.47	377.63	202.22	228.21	157.01	808.05	
1994	N-209	1	15.95	84.90	167.75	52.64	710.95	3498.66	268.59	4262.26	
		2	39.71	86.98	137.27	379.83	888.37	725.28	263.97	1993.48	
1996	GE-001	1	10.57	25.21	39.08	8.79	56.21	117.58	74.86	182.58	
		2	8.04	23.24	46.01	6.19	45.86	131.95	77.29	184.00	
1998	N-223	1	12.76	23.92	32.92	22.13	60.37	47.41	69.59	129.91	
		2	6.48	46.61	38.89	4.97	449.26	61.18	91.97	· 515.40	
2000	MB-	1	4.96	19.23	81.54	4.46	62.90	2682.27	105.73	2749.63	
		2	3.10	4.95	18.13	0.88	2.73	32.66	26.17	36.27	

** $YST_h = M_h x WH_h$ où h est la strate correspondante (1 à 3) et WH un facteur de pondération égal au rapport de la surface de la strate h par la surface totale (WH₁ = 0.42635, WH₂ = 0.31548 et WH₃ = 0.25817) / YST_h = M_h x WH_h where h is the corresponding stratum (1 to 3) and WH a weighting factor equal to the surface of stratum h divided by the total surface (WH₁ = 0.42635, WH₂ = 0.31548 and WH₃ = 0.25817)

*** où / where $VAR_h = (WH_h^2) \times (V_h \div N_h)$; **** Moyenne / Average = (YST1+YST2+YST3) et / and Variance = (VAR1+VAR2+VAR3)

- Tableau 18. Variances des paramètres biologiques utilisées pour calculer les intervalles de confiance associés aux estimations d'abondance du maquereau se reproduisant dans le golfe du Saint-Laurent.
- Table18. Variances of the biological parameters used for the calculation of the
confidence intervals associated with the abundance estimation of mackerel
that spawn within the Gulf of St. Lawrence.

ANNÉE /	MISSION /	Р	PARAMÈTRES BIOLOGIQUES / BIOLOGICAL PARAMETERS*								
YEAR	SURVEY	W	var (W)	F	var (F)	R	var (R)				
		(g)		(Nombre d'œufs par							
				femelle / number							
				of eggs per female)							
1983	P-292	473.64	22 419	462 421	1.19E+10	0.5183	0.0005				
1984	N-030	523.74	28 454	501 014	4.76E+10	0.5124	0.0011				
1985	P-324	526.16	47 179	544 311	4.90E+10	0.5115	0.0009				
1986	P-337	433.20	13 851	593 853	6.14E+10	0.5120	0.0006				
1987	P-353	458.06	9 992	499 572	3.17E+10	0.5150	0.0007				
1988	P-369	561.04	10 753	598 637	2.29E+10	0.5193	0.0005				
1989	P-386	560.42	13 097	703 542	2.81E+10	0.5155	0.0010				
1990	P-400	487.73	26 437	553 083	3.34E+10	0.5108	0.0007				
1991	P-415	456.79	17 467	462 272	2.53E+10	0.5207	0.0008				
1992	P-430	404.00	21 204	499 101	2.39E+10	0.5072	0.0004				
1993	P-445	480.68	13 495	580 252	3.09E+10	0.5096	0.0005				
1994	N-209	514.06	11 014	469 731	2.83E+10	0.5013	0.0008				
1996	GE-001	527.98	24 221	582 107	2.51E+10	0.5203	0.0005				
1998	N-223	471.30	21 565	489 902	1.08E+10	0.5077	0.0008				
2000	MB-	466.08	20 388	561 074	2.18E+10	0.5185	0.0012				

* Voir le texte pour la définition des paramètres / See the text for the definition of the parameters

Tableau 19. Intervalles de confiance et estimations annuelles des biomasses reproductrices du maquereau se reproduisant dans le golfe du Saint-Laurent (P est une moyenne stratifiée et B est calculée selon la MPTO*).

Table	19. Confidence intervals and annua	l spawning biomass estimatior	s for the Gulf of St. Lawrence mackerel
	(P is a <u>stratified mean</u> and B	is calculated according to the	TEPM*).

ANNÉE /	MISSION /	TRAJET /	P.Q.O. / D.E.P.	PRODUCTION	BIOMASSE /	MOY. ANNUELLE	VARIANCE	INTERVALLES CONFIANCE /		
YEAR	SURVEY	PASS	(P□A) **	TOTALE D'OEUFS / TOTAL	BIOMASS (t)	ANNUAL MEAN (t)	var(B)	CONFIDENCE	INTERVALS 95%	C.V.
				EGG PRODUCTION (P A S)***	B***			L. Inf. / Lower L.	L. Sup. / Up. L.	_
1983	P-292	1	6.548E+12	1.169E+14	230 969	230 969	7.91E+08	175 840	286 099	0.12
1984	N-030	1	1.488E+13	2.491E+14	508 275	418 996	5.58E+09	361 814	654 737	0.15
		2	5.436E+12	1.616E+14	329 716		2.50E+09	231 741	427 692	0.15
1985	P-324	1	2.052E+13	3.517E+14	664 650	1 001 496	1.05E+10	463 837	865 463	0.15
		2	1.373E+13	7.081E+14	1 338 341		4.41E+10	926 702	1 749 981	0.16
1986	P-337	1	3.494E+13	6.236E+14	888 543	853 612	1.41E+10	655 961	1 121 125	0.13
		2	1.237E+13	5.746E+14	818 681		1.22E+10	602 297	1 035 066	0.13
1987	P-353	1	2.945E+13	5.407E+14	962 526	596 874	1.35E+10	734 493	1 190 560	0.12
		2	5.371E+12	1.299E+14	231 221		7.37E+08	178 018	284 424	0.12
1988	P-369	1	3.969E+13	7.531E+14	1 359 023	963 596	1.61E+10	1 110 692	1 607 355	0.09
		2	1.222E+13	3.148E+14	568 168		2.94E+09	461 900	674 436	0.10
1989	P-386	1	1.519E+13	2.569E+14	394 090	292 777	1.53E+09	317 528	470 652	0.10
		2	5.124E+12	1.239E+14	191 463		3.38E+08	155 415	227 511	0.10
1990	P-400	1	2.630E+13	5.684E+14	972 281	849 484	1.77E+10	711 594	1 232 968	0.14
		2	2.488E+13	4.209E+14	726 686		8.87E+09	542 122	911 251	0.13
1991	P-415	1	3.194E+13	5.863E+14	1 134 270	1 134 270	1.99E+10	857 872	1 410 668	0.12
1992	P-430	1	2.636E+13	5.198E+14	808 058	565 100	1.24E+10	589 470	1 026 645	0.14
		2	1.024E+13	2.019E+14	322 143		1.69E+09	241 670	402 615	0.13
1993	P-445	1	2.573E+13	5.561E+14	908 166	616 783	1.06E+10	706 832	1 109 499	0.11
		2	1.090E+13	2.002E+14	325 400		1.32E+09	254 174	396 625	0.11
1994	N-209	1	1.865E+13	4.808E+14	1 032 431	852 202	1.66E+10	779 737	1 285 124	0.12
		2	1.833E+13	3.078E+14	671 973		5.75E+09	523 339	820 607	0.11
1996	GE-001	1	5.199E+12	9.866E+13	178 524	175 151	3.95E+08	139 553	217 495	0.11
		2	5.368E+12	9.853E+13	171 778		4.19E+08	131 679	211 877	0.12
1998	N-223	1	4.833E+12	1.555E+14	287 553	254 872	1.03E+09	224 523	350 583	0.11
		2	6.388E+12	1.173E+14	222 192		6.76E+08	171 234	273 149	0.12
2000	MB-	1	7.343E+12	1.281E+14	209 576	137 990	1.20E+09	141 583	277 569	0.17
		2	1.818E+12	4.145E+13	66 403		7.03E+07	49 965	82 840	0.13

* Méthode de la Production Totale d'Oeufs / Total E gg Production Method; ** La valeur de A est / the value of A is: $6.95 \times 10^{10} m^2$

*** Ajustées après la correction des dates médianes de certains trajets / Adjusted after the correction of the median dates of some passes

Tableau 20. Statistiques descriptives concernant les densités d'oeufs (nb/m²) mesurées lors des relevés d'abondance réalisés entre 1983 et 2000.

Table 20. Descriptive statistics concerning the egg densities (n/m^2) measured during the abundance surveys conducted from 1983 to 2000.

ANNÉE /	TRAJET /	N	MINIMUM	MOYENNE /	MAXIMUM	É.T /	VARIANCE	S*	K**
YEAR	PASS			MEAN		<i>S.D.</i>			
1983	1	65	0	91.26	1086.21	166.86	27841.44	3.97	18.56
	2	_						_	
1984	1	65	0	208.03	1335.56	270.54	73194.15	1.89	3.73
	2	65	0	74.85	659.48	125.49	15747.31	2.92	9.91
1985	1	65	0	289.04	1130.44	308.37	95093.23	1.21	0.60
	2	65	0	193.03	1166.98	258.38	66761.40	1.94	3.37
1986	1	65	0	500.94	2015.08	526.21	276897.21	1.23	0.84
	2	65	0	171.80	879.99	191.48	36663.57	1.71	2.91
1987	1	65	1.15	400.14	4646.23	675.51	456314.73	4.26	22.61
	2	37	5.66	130.71	447.48	115.19	13269.47	1.13	0.53
1988	1	65	0	564.22	3566.83	725.58	526470.47	1.86	3.92
	2	65	0	176.37	1090.83	248.74	61869.85	2.21	4.80
1989	1	65	0	212.82	1823.34	365.13	133321.94	2.48	6.22
	2	65	0	71.29	691.29	102.70	10547.82	3.69	18.64
1990	1	65	0	357.40	4209.35	687.80	473064.32	3.71	16.08
	2	64	0	331.49	2211.40	520.51	270925.93	2.13	3.85
1991	1	65	0	439.52	3094.03	655.91	430218.33	2.15	4.51
	2								
1992	1	65	0	365.08	2560.99	620.59	385127.47	2.09	3.44
	2	63	0	144.71	690.19	172.93	29903.76	1.40	0.95
1993	1	65	0	368.21	3498.36	659.72	435225.18	2.82	8.77
	2	29	0	196.95	784.92	191.86	36811.06	1.19	1.17
1994***	1	65	0	260.71	3260.68	537.06	288429.25	3.58	14.97
	2	60	0	266.68	1773.14	389.82	151959.33	2.27	5.22
1996	1	64	0	72.29	474.74	112.02	12549.21	2.33	5.26
	2	62	0	76.86	550.39	120.62	14548.97	2.35	5.60
1998	1	64	0	68.57	446.79	98.29	9661.03	1.94	3.40
	2	64	0	94.57	1143.38	209.71	43976.46	4.02	17.06
2000	1	64	0	100.65	3081.51	392.86	154338.98	7.02	50.49
	2	65	0	24.76	303.41	50.21	2521.04	3.63	14.88

* Dissymétrie / Skewness

** Aplatissement / Kurtosis

*** À partir de 1994, les relevés ont été effectués à tous les deux ans / From 1994, the surveys have been conducted every second year

Tableau 21.Modèles et paramètres des variogrammes pour le premier trajet des relevés
d'abondance du maquereau réalisés entre 1983 et 2000.

Table21. Models and variograms parameters for the first pass of the mackerel abundance
surveys conducted from 1983 to 2000.

ANNÉE /	MODÈLE /	PARAMÈ	TRES / PARAMET	VARIANCE	R ²	SCR /	
YEAR	MODEL	Pépite /	Plateau /	Portée /	*		RSS**
		Nugget (C ₀)	Sill $(C_0 + C)$	Range (A ₀)			
1983	Sphérique / Spherical	100	41 220	105.1	27 841	0.947	4.246E+07
1984	Sphérique / Spherical	3 200	46 420	161.1	41 357	0.951	9.179E+07
1985	Sphérique / Spherical	16 600	91 860	164.3	85 190	0.984	4.535E+07
1986	Exponentiel / tial	100	128 000	56.9	115 697	0.933	5.580E+08
1987	Sphérique / Spherical	100	128 400	119.3	128 006	0.929	1.048E+09
1988	Sphérique / Spherical	199 000	558 300	131.4	526 470	0.945	5.31E+09
1989	Sphérique / Spherical	5 800	161 000	86.9	133 322	0.997	2.22E+07
1990	Sphérique / Spherical	100	95 800	168.2	82 889	0.971	3.44E+08
1991	Sphérique / Spherical	44 000	512 100	93.7	430 218	0.988	9.87E+08
1992	Sphérique / Spherical	62 400	318 900	105.3	313 505	0.972	1.04E+09
1993	Sphérique / Spherical	33 400	152 400	143.8	143 030	0.978	2.20E+08
1994	Sphérique / Spherical	9 300	97 700	266.5	72 536	0.948	4.77E+08
1996	Sphérique / Spherical	10	7 152	131.1	4 954	0.960	2.23E+06
1998	Sphérique / Spherical	10	4 374	114.2	3 421	0.931	1.59E+06
2000	Sphérique / Spherical	10	4 395	78.9	4 138	0.916	7.51E+05

* Calculée sans des valeurs extrêmes / Calculated without extreme values

** Somme des carrés réduits / Reduced sum of squares

Tableau 22. Moyenne de krigeage (P), variance (var(P)) et production quotidienne d'œufs pour le premier trajet* des relevés d'abondance du maquereau.

Table22. Mean kriging (P) value, variance (var(P)) and daily egg production
for the first pass* of the mackerel abundance surveys.

ANNÉE /	OEUFS-E	GGS / m^2	P.Q.O / D.E.P.**				
YEAR	Moyenne /	Variance	Totale	Variance			
	Average P	var(P)	X = A x P				
1983	93.76	93.38	6.51E+12	4.50E+23			
1984	213.50	184.18	1.48E+13	8.88E+23			
1985	286.51	386.69	1.99E+13	1.87E+24			
1986	515.61	2035.18	3.58E+13	9.82E+24			
1987	408.43	779.84	2.84E+13	3.76E+24			
1988	572.16	3636.21	3.97E+13	1.75E+25			
1989	219.57	430.67	1.52E+13	2.08E+24			
1990	351.70	651.74	2.44E+13	3.14E+24			
1991	453.46	1698.39	3.15E+13	8.19E+24			
1992	363.50	1881.50	2.52E+13	9.08E+24			
1993	378.41	2118.48	2.63E+13	1.02E+25			
1994	269.52	808.10	1.87E+13	3.90E+24			
1996	75.21	30.67	5.22E+12	1.48E+23			
199 8	71.64	24.82	4.98E+12	1.20E+23			
2000	110.09	488.05	7.65E+12	2.35E+24			

* Surface d'étude de / Studied area of: 6.95 x 10¹⁰ m²

** Production quotidienne d'oeufs / Daily Egg Production

Table23. Models and variograms parameters for the second pass of the mackerel abundance
surveys conducted from 1983 to 2000.

.

ANNÉE / MODÈLE /		PARAMÈ	TRES / PARAMET	TERS	VARIANCE	R ²	SCR /
YEAR	MODEL	Pépite /	Plateau /	Portée /	*		RSS**
		Nugget (C ₀)	Sill $(C_0 + C)$	Range (A_0)			
1984	Sphérique / Spherical	10	24570	126.2	15747.31	0.973	1.70E+07
1985	** **	100	33700	109.4	29493.42	0.938	5.22E+07
1986	****	7800	21990	113.7	18962.64	0.983	1.44E+06
1988	H H,	1660	21950	79.9	21041.03	0.934	1.01E+07
1989	11 11	10	4574	70.7	4518.27	0.943	419714
1990		30800	267100	109.2	270925.93	0.952	1.43E+09
1992	11 11	11250	29850	168.3	25437.43	0.974	5.38E+06
1994	11 11	11600	137800	122.0	114788.36	0.932	6.99E+08
1996	H II	10	3966	103.5	3358.59	0.918	756058
1998	н н	20700	61870	110.3	43976.46	0.952	3.30E+07
2000	H H	1	1838	92.0	1309.75	0.981	4.47E+04

* Calculée sans les valeurs extrêmes / Calculated without extreme values

** Somme des carrés réduits / Reduced sum of squares

Tableau 24. Moyenne de krigeage (P), variance (var(P)) et production quotidienne d'œufs pour le second trajet* des relevés d'abondance du maquereau.

Table24. Mean kriging (P) value, variance (var(P)) and daily egg production
for the second pass* of the mackerel abundance surveys.

ANNÉE /	OEUFS-E	GGS / m ²	P.Q.O /	D.E.P .*
YEAR	Moyenne /	Variance	Totale	Variance
	Average P	var(P)	X=A x P	
1984	78.39	39.51	5.44E+12	1.91E+23
1985	203.35	162.91	1.41E+13	7.86E+23
1986	172.83	285.14	1.20E+13	1.38E+24
1988	180.43	236.34	1.25E+13	1.14E+24
1989	174.21	37.36	1.21E+13	1.80E+23
1990	351.87	992.84	2.44E+13	4.79E+24
1992	144.13	240.13	1.00E+13	1.16E+24
1994	260.69	597.99	1.81E+13	2.88E+24
1996	79.58	47.13	5.53E+12	2.27E+23
1998	101.57	414.39	7.05E+12	2.00E+24
2000	26.02	7.73	1.81E+12	3.73E+22

* Surface d'étude de / Studied area of: $6.95 \times 10^{10} \text{ m}^2$

** Production quotidienne d'oeufs / Daily Egg Production

ANNÉE /	MISSION /	TRAJET /	SURFACE TOT.	SURFACE TOTALE / P		P.T.O /	BIOMASSE /	MOYENNE	VARIANCE	INTERVALLES	CONFIANCE /		
YEAR	SURVEY	PASS	TOTAL ARE	4	(P□A) ***	T.E.P	BIOMASS (t)	ANNUELLE /	var (B)	CONFIDENCE I	NTERVALS 95%	C.V.	
			KRIGEAGE / KR	GING		****	В	ANNUAL		L. Inf. / Lower L.	L. Sup. / Up. L.	-	
			Moyenne / Average	Variance				MEAN			· · · · · · · · · · · · · · · · · · ·	_	
		_	Р	var (P)		<i>P</i> □ <i>A</i> □ <i>S</i>						-	
1983	P-292	1	93.76	93.38	6.51E+12	1.16E+14	229 700	229 700	6.40E+08	180 114	279 287	0.11	
1984	N-030	1	213.50	184.18	1.48E+13	2.48E+14	506 597	418 418	5.34E+09	363 414	649 779	0.14	
		2	78.39	39.51	5.44E+12	1.62E+14	330 240		2.29E+09	236 533	423 947	0.14	
1985	P-324	1	286.51	386.69	1.99E+13	3.41E+14	644 412	1 010 628	9.76E+09	450 729	838 095	0.15	
		2	203.35	162.91	1.41E+13	7.28E+14	1 376 843		4.45E+10	963 488	1 790 198	0.15	
1986	P-337	1	515.61	2035.18	3.58E+13	6.39E+14	910 665	852 607	1.47E+10	673 212	1 148 118	0.13	
		2	172.83	285.14	1.20E+13	5.58E+14	794 549		1.13E+10	586 614	1 002 484	0.13	
1987	P-353	1	408.43	779.84	2.84E+13	5.21E+14	926 995	926 995	1.10E+10	721 344	1 132 645	0.11	
		2*											
1988	P-369	1	572.16	3636.21	3.97E+13	7.54E+14	1 360 781	971 800	1.49E+10	1 121 255	1 600 306	0.09	64
		2	180.43	236.34	1.25E+13	3.23E+14	582 819		2.64E+09	482 027	683 612	0.09	
1989	P-386	1	219.57	430.67	1.52E+13	2.58E+14	395 707	423 886	1.24E+09	326 618	464 795	0.09	
		2	174.21	37.36	1.21E+13	2.93E+14	452 066		1.49E+09	376 365	527 767	0.09	
1990	P-400	1	351.70	651.74	2.44E+13	5.28E+14	903 065	808 431	1.32E+10	677 846	1 128 285	0.13	
		2	351.87	992.84	2.44E+13	4.13E+14	713 798		8 01E+09	538 373	889 223	0.13	
1991	P-415	1	453.46	1698.39	3.15E+13	5.78E+14	1 118 438	1 118 438	1.81E+10	854 567	1 382 308	0.12	
1992	P-430	1	363.50	1881.50	2.52E+13	4.98E+14	773 828	544 392	1.07E+10	571 194	976 461	0.12	
		2	144.13	240.13	1.00E+13	1.97E+14	314 956	0.1.072	1.57E+09	237 363	302 550	0.13	
1993	P-445	1	378.41	2118.48	2.63E+13	5.68E+14	927 671	927 671	9.47F+09	736 905	1 118 436	0.10	
		2*					21 0/1	,21 0/1	J.472.0J	750 905	1 110 450	0.10	
1994	N-209	1	269.52	808.10	1.87E+13	4.82E+14	1 035 974	849 801	1.33E+10	810 233	1 261 715	0.11	
		2	260.69	597.99	1.81E+13	3.04E+14	663 628		5.06E+09	524 234	803 023	0.11	
1996	GE-001	1	75.21	30.67	5.22E+12	9.91E+13	179 366	178 116	3.44E+08	143 018	215 714	0.10	
		2	79.58	47.13	5.53E+12	1.01E+14	176 867		3.90E+08	138 151	215 583	0.11	
1998	N-223	1	71.64	24.82	4.98E+12	1.60E+14	296 031	270 704	9.55E+08	235 467	356 595	0.10	
		2	101.57	414.39	7.05E+12	1.29E+14	245 377		7.41E+08	192 012	298 742	0.11	
2000	MB	1	110.09	488.05	7.65E+12	1.33E+14	218 217	142 109	6.54E+08	168 096	268 337	0.12	
		2	26.02	7.73	1.81E+12	4.12E+13	66 001		5.64E+07	51 280	80 721	0.11	

Tableau 25. Intervalles de confiance et estimations annuelles des biomasses reproductrices du maquereau se reproduisant dans le golfe du
Saint-Laurent (P est calculée par krigeage et B selon la MPTO).

Table25. Confidence intervals and annual spawning biomass estimations for the Gulf of St. Lawrence mackerel
(P is calculated by kriging, and B according to the TEPM).

* Nombre de stations insuffisants pour la construction du variogramme / Insufficient number of stations for the calculation of the variogram

** Production Quotidienne d'Oeufs / Daily E gg Production; *** La valeur de A est / the value of A is: $6.95 \times 10^{10} m^2$

**** Production Totale d'Oeufs; ajustée après la correction des dates médianes de certains trajets / Total Egg Production; adjusted after the correction of the median dates of some passes

- Tableau 26. Biomasses reproductrices (t) du maquereau du golfe du Saint-Laurent calculées selondes approches statistiques différentes.
- Table26. Spawning biomass (t) for the Gulf of St. Lawrence mackerel calculated according
to different statistical approaches.

ANNÉE /	MISSION /	TRAJET /	APPROCHE STATISTIQUE	/ STATISTICAL APPROACH	DIFFÉRENCE ABSOLUE /
YEAR	SURVEY	PASS	Aléatoire Stratifié /	Krigeage /	ABSOLUTE DIFFERENCE
			Stratified Random	Kriging	
1983	P-292	1	230 969	229 700	1 269
1984	N-030	1	508 275	506 597	1 679
		2	329 716	330 240	523
1985	P-324	1	664 650	644 412	20 238
		2	1 338 341	1 376 843	38 502
1986	P-337	1	888 543	910 665	22 122
		2	818 681	794 549	24 132
1987	P-353	1	962 526	926 995	35 532
		2	231 221	*	
1988	P-369	1	1 359 023	1 360 781	1 757
		2	568 168	582 819	14 651
1989	P-386	1	394 090	395 707	1 617
		2	191 463	452 066	260 603
1990	P-400	1	972 281	903 065	69 216
		2	726 686	713 798	12 889
1991	P-415	1	1 134 270	1 118 438	15 832
1992	P-430	1	808 058	773 828	34 230
		2	322 143	314 956	7 186
1993	P-445	1	908 166	927 671	19 505
		2	325 400	*	
1994	N-209	1	1 032 431	1 035 974	3 543
		2	671 973	663 628	8 345
1996	GE-001	1	178 524	179 366	842
		2	171 778	176 867	5 089
1998	N-223	1	287 553	296 031	8 477
		2	222 192	245 377	23 185
2000	MB-	1	209 576	218 217	8 641
		2	66 403	66 001	402
Ν	Ioyenne / Averag	ie .			
	Trajet / Pass 1				16 300
	Trajet / Pass 2				35 955

* Aucun variogramme n'a pu être calculé / No variogram could be calculated

 Tableau 27. Description de l'échantillonnage effectué dans la baie des Chaleurs en 2000 dans le cadre de l'étude sur la fécondité du maquereau.

 Table
 27. Description of the sampling realized in the Chaleurs Bay in 2000 for the mackerel fecundity study.

DATE	POIDS / WE	IGHT (kg)	NOMBRE DE POISSON	IS / NUMBER OF FISH	NOMBRE
(jj-mm) /	DÉBARQUEMENTS /	ÉCHANTILLONS /	MESURÉS / MEASURED	CONGELÉS / FROZEN	D'OVAIRES / NUMBER
(dd-mm)	LANDINGS	SAMPLES			OF OVARIES
13-06	56	56	102	12	12
15-06	47	47	95	12	12
19-06	56	56	117	12	12
22-06	839	130	250	38	12
27-06	275	139	253	38	12
29-06	90	43	83	12	12
04-07	454	137	278	43	12
07-07	28	28	46	12	12
12-07	215	101	257	41	12
14-07	72	46	102	12	12
17-07	90	12	40	12	12
21-07	75	5	12	12	12
24-07	311	102	270	56	12
28-07	36	36	99	12	12
31-07	1 404	35	91	12	12
03-08	255	118	330	51	12
TOTAL	4 303	1 091	2 425	387	192

- Tableau
 28. Description des variables biologiques pour les femelles échantillonnées dans la baie des Chaleurs en 2000 dans le cadre de l'étude sur la fécondité du maquereau.
- Table28. Description of the biological variables for the females sampled in the Chaleurs Bay in 2000 for the mackerel
fecundity study.

DATE	n*	LON	GUEUR /	POIDS /			OVAIRES	OVARIES	5	I	GS /		K***	AGE	
(jj-mm) /	_	LENG	TH (mm)	WEI	GHT (g)	POIDS	/ WEIGHT	VOL	JME (ml)	G	SI**				
(dd-mm)		X****	É. - T. / SD	X****	É. - T. / <i>SD</i>	X****	É. - T. / SD	X****	É. - T. / <i>SD</i>	X****	É. - T. / SD	X****	ÉT. / SD	X****	ÉT. / SD
											· · · · · · · · · · · · · · · · · · ·				
13-06	12	364.08	21.26	574.16	114.97	72.25	24.53	65.17	24.78	12.61	3.27	1.03	0.05	4.73	1.19
15-06	12	365.00	22.77	576.84	124.89	72.59	31.80	68.58	30.15	12.13	3.18	1.03	0.05	4.67	0.89
19-06	12	365.33	22.01	525.79	97.75	44.08	9.69	42.00	8.41	8.46	1.66	0.98	0.05	4.36	1.12
22-06	12	365.17	18.97	546.05	82.16	44.15	14.36	42.17	14.35	8.04	2.18	1.03	0.06	4.58	1.08
27-06	12	372.58	26.15	578.35	139.90	40.99	20.89	37.64	20.21	6.82	2.43	1.02	0.05	5.73	1.90
29-06	12	363.75	20.45	529.40	75.48	27.21	16.78	28.67	15.37	5.11	3.13	1.04	0.05	5.00	1.04
04-07	12	352.25	23.82	485.76	104.61	21.37	12.74	20.58	12.41	4.31	2.12	1.05	0.06	5.00	2.37
07-07	12	353.25	19.16	482.05	95.01	12.09	6.02	11.67	5.66	2.47	0.84	1.05	0.06	4.20	0.63
12-07	12	325.75	22.74	402.99	82.70	7.21	8.03	6.67	7.45	1.65	1.46	1.13	0.06	3.17	0.83
14-07	12	347.42	19.97	452.84	73.04	10.76	10.51	10.46	10.33	2.20	1.88	1.05	0.08	3.73	0.79
17-07	12	317.58	35.10	353.50	109.00	7.09	9.03	7.50	9.12	1.56	1.72	1.04	0.06	3.00	1.18
21-07	12	344.25	19.65	475.85	90.26	5.05	1.87	4.83	1.85	1.03	0.23	1.14	0.06	3.91	0.94
24-07	12	327.00	35.25	367.67	121.91	4.69	3.62	4.89	3.69	0.90	0.71	1.08	0.09	3.67	2.87
28-07	12	332.25	34.23	376.67	148.59	3.27	1.70	3.45	1.92	0.84	0.26	1.05	0.06	3.33	2.00
31-07	12	328.08	37.78	440.18	188.67	3.73	1.99	3.95	1.77	0.82	0.18	1.17	0.11	3.45	2.02
03-08	12	323.58	35.35	395.01	172.96	3.66	2.18	3.55	2.07	0.92	0.46	1.09	0.10	2.91	1.58

* n = Nombre d'ovaires / Number of ovaries

** Indice gonado-somatique / Gonadosomatic index

*** Facteur de condition de Fulton, poids des ovaires exclu / Fulton condition factor, ovaries weight not included

**** Moyenne / Average

Tableau29. Nombre d'ovocytes calculés, diamètres par stade de maturité, et surface de chaque
coupe histologique pour les échantillons provenant de la baie des Chaleurs.

Table29. Number of calculated oocytes, mean diameters by stage of maturity, and area of each
histological slide for the samples from the Chaleurs Bay.

•

MOIS /	JOUR /	NUMÉRO /	OVOCYTES / OOCYTES				MC	YENNE / 2	SURFACE /	CODE**		
MONTH	DAY	NUMBER*		STADE	/ STAGE			STADE	/ STAGE		AREA	
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
											· · · · ·	
6	13	84871	533	281	141	255	0.291	0.444	0.613	0.934	461.81	0
		84878	419	292	207	258	0.338	0.497	0.621	1.067	664.79	0
		84880	832	433	223	0	0.306	0.485	0.634		431.09	
		84881	491	346	114	123	0.260	0.423	0.548	0.922	315.75	0
		84882	628	480	99	0	0.276	0.489	0.608		337.32	
		84886	1 002	517	204	193	0.274	0.435	0.563	0.760	682.46	1
		84887	500	322	144	182	0.323	0.475	0.601	0.888	390.23	0
		84888	338	206	142	193	0.307	0.454	0.595	0.978	254.55	0
		84889	691	326	161	233	0.313	0.487	0.584	0.841	456.65	0
		84890	656	354	200	231	0.320	0.477	0.604	0.760	655.86	1
		84891	561	475	140	222	0.293	0.469	0.566	0.758	401.9	0
		84892	723	361	184	236	0.324	0.483	0.623	1.060	716.28	0
6	15	84801	633	363	338	0	0.315	0.466	0.636		400.72	
		84802	527	343	158	195	0.282	0.460	0.603	1.088	559.44	0
		84803	465	322	95	156	0.330	0.486	0.571	0.705	425.24	0
		84804	688	332	198	196	0.302	0.463	0.597	1.000	577.45	0
		84805	470	280	207	297	0.361	0.504	0.674	0.760	765.12	1
		84806	623	403	111	239	0.271	0.433	0.557	0.696	478.4	0
		84807	459	399	90	123	0.282	0.454	0.568	0.904	322.09	0
		84894	446	244	51	113	0.267	0.448	0.528	0.656	303.7	0
		84895			Prot	lèmes de co	oloration /	Staining pr	oblems			
		84896	479	317	109	116	0.300	0.465	0.602	0.760	410.28	1
		84897	503	329	174	162	0.324	0.461	0.631	1.093	556.46	0
		84900	399	330	271	192	0.315	0.502	0.606	0.760	697.64	1
6	19	84808	500	217	75	67	0.280	0.431	0.556	0.915	245.63	0
		84809	584	395	89	0	0.277	0.457	0.580		382.67	
		84810	421	366	89	139	0.277	0.454	0.546	0.784	290.61	0
		84811	590	433	126	132	0.291	0.464	0.590	0.985	421.33	0
		84812	493	375	157	0	0.293	0.448	0.577		384.4	
		84813	264	269	163	130	0.293	0.445	0.581	0.932	372.76	0
		84814	358	188	62	82	0.304	0.458	0.558	0.732	222.55	0
		84815	444	361	88	128	0.303	0.444	0.572	0.702	316.28	0
		84816	485	276	133	162	0.309	0.470	0.557	0.732	385.77	0
		84817	365	353	79	165	0.297	0.439	0.567	0.876	306.6	0
		84818	313	397	101	157	0.313	0.457	0.531	0.704	381.88	0
		84819	267	255	66	104	0.308	0.451	0.565	0.902	241.27	0
6	22	84820	74	104	42	137	0.284	0.448	0.540	0.893	219.05	0
		84821	220	255	57	131	0.290	0.431	0.533	0.698	230.44	0
		84822	70	123	58	79	0.312	0.443	0.581	0.947	249.23	0
		84823			Prob	lèmes de co	loration / S	Staining pro	oblems			-
		84824	177	210	78	85	0.283	0.437	0.548	0.925	229.39	0
		84825	82	170	73	121	0.278	0.391	0.515	0.624	180.28	Õ
		84826	618	348	179	143	0.278	0.460	0.567	0.760	449.43	1
		84827	473	383	57	135	0.262	0.416	0.518	0.653	284.34	0
		84828	404	302	178	49	0.324	0.482	0.616	1.009	397.64	Õ
		84829			Prob	lèmes de co	loration / S	Staining nr	oblems			v
		84830	288	378	101	129	0.308	0.443	0.538	0.683	320.62	0

Tableau29. (Suite)Table29. (Continued)

MONTH D.	22 27	NUMBER* TAG 84831 84832 84833 84834 84837 84838 84839 84840 84841 84842 84843	2 596 628 552 458 546 591 639 397 624 76	STADE / 3 250 265 257 195 435 344 429 265 176	94 148 135 125 134 120 131	5 93 104 95 129 238 172	0.277 0.277 0.264 0.261 0.266	STADE 3 0.449 0.438 0.418 0.438	0.601 0.565 0.562 0.580	5 0.760 0.935 0.760	AREA (mm ²) 370.53 350.68 448.54	1 0 1
6 2	22 27	TAG 84831 84832 84833 84834 84837 84838 84839 84840 84841 84842 84843	2 596 628 552 458 546 591 639 397 624 76	3 250 265 257 195 435 344 429 265 176	4 94 148 135 125 134 120 131	5 93 104 95 129 238 172	2 0.277 0.277 0.264 0.261 0.266	3 0.449 0.438 0.418 0.438	4 0.601 0.565 0.562 0.580	5 0.760 0.935 0.760	(mm ²) 370.53 350.68 448.54	1 0 1
6 2	22 27	84831 84832 84833 84834 84837 84838 84839 84840 84841 84842 84843	596 628 552 458 546 591 639 397 624 76	250 265 257 195 435 344 429 265 176	94 148 135 125 134 120 131	93 104 95 129 238 172	0.277 0.277 0.264 0.261 0.266	0.449 0.438 0.418 0.438	0.601 0.565 0.562 0.580	0.760 0.935 0.760	370.53 350.68 448.54	1 0 1
6	27	84831 84832 84833 84834 84837 84838 84839 84840 84841 84842 84843	628 552 458 546 591 639 397 624 76	230 265 257 195 435 344 429 265 176	148 135 125 134 120 131	104 95 129 238 172	0.277 0.264 0.261 0.266	0.449 0.438 0.418 0.438	0.565 0.562 0.580	0.935	350.68 448.54	0 1
	21	84832 84833 84834 84837 84838 84839 84840 84841 84842 84843	552 458 546 591 639 397 624 76	203 257 195 435 344 429 265 176	148 135 125 134 120 131	95 129 238 172	0.277 0.264 0.261 0.266	0.438 0.418 0.438	0.562	0.760	448.54	1
		84833 84834 84837 84838 84839 84840 84841 84842 84843	532 458 546 591 639 397 624 76	195 435 344 429 265 176	133 125 134 120 131	93 129 238 172	0.261	0.418	0.302	0.700	440.34	1
		84834 84837 84838 84839 84840 84841 84842 84843	438 546 591 639 397 624 76	435 344 429 265 176	125 134 120 131	238 172	0.261	0.438	0.780		202 55	0
		84837 84838 84839 84840 84841 84842 84843	546 591 639 397 624 76	435 344 429 265 176	134 120 131	238 172	0.200	0.442	0.500	0.940	505.55	1
		84838 84839 84840 84841 84842 84843	591 639 397 624 76	344 429 265 176	131	172	0.200	0.442	0.575	0.700	373.27	1
		84839 84840 84841 84842 84843	639 397 624 76	429 265 176	151	140	0.222	0.400	0.520	0.014	279.15	0
		84840 84841 84842 84843	397 624 76	205 176		148	0.310	0.450	0.005	1.050	393.33	0
		84841 84842 84843	624 76	1/6	94	89 19	0.275	0.412	0.552	0.030	239.20	1
		84842 84843	/0	167	133	18	0.293	0.472	0.572	0.760	300.19	1
		84843	714	157	6/	108	0.322	0.400	0.582	0.700	276.20	1
		04044	/14	211	44	105	0.292	0.445	0.515	0.019	208.30	0
		84844	1/6	101	23	4/	0.269	0.379	0.535	0.652	99.31	0
	•••	84845	154	202	56	68	0.290	0.434	0.513	0.653	159.95	0
6 2	29	84901	229	319	150	141	0.307	0.421	0.544	0.775	259.79	0
		84902	377	77	94	0	0.274	0.416	0.588		120.92	
		84903	266	334	210	0	0.313	0.436	0.572		419.25	_
		84904	872	492	138	173	0.261	0.412	0.535	0.760	446.42	1
		84905	194	327	102	134	0.282	0.419	0.525	0.658	235.14	0
		84906	***		20	0			0.571		114.70	
		84907	229	435	74	179	0.298	0.447	0.563	0.670	299.71	0
		84908	919	422	133	0	0.282	0.430	0.541		265.42	
		84909	264	187	40	158	0.266	0.425	0.566	0.781	185.84	0
		84910	225	350	243	0	0.248	0.389	0.574		237.56	
		84911	454	188	20	96	0.271	0.414	0.518	0.646	149.91	0
		84912a	0	0	0	0						
7	4	84912b	63	172	119	0	0.282	0.439	0.556		147.38	
		84913	627	350	80	187	0.264	0.421	0.516	0.672	289.74	0
		84914	216	227	79	0	0.297	0.424	0.540		212.22	
		84915	83	259	60	163	0.272	0.432	0.515	0.616	209.63	0
		84916	68	175	87	0	0.266	0.442	0.549		125.41	
		84917			6	33						
		84919		0	15	58						
		84920		0								
		84921	197	383	138	125	0.287	0.434	0.558	0.760	382.76	1
		84922	229	279	50	89	0.275	0.422	0.528	0.798	215.41	0
		84923	76	297	160	0		Ovaire	brisé / Dan	aged ovar	y	
		84925	180	140	20	30	0.266	0.421	0.488	0.589	134.09	0
7	7	84926		14	8	19	0.500	0.526	0.855	0.760	93.27	1
		84927	63	174	63	0	0.274	0.432	0.550		116.70	
		84928										
		84929	137	89	41	0	0.244	0.392	0.530		84.21	0
		84930					- · ·					
		84931	355	161	29	92	0.280	0.394	0.549	0.874	220.87	0
		84932			67	0						-
		84933	276	127	31	ő	0.262	0.371	0.521		98 59	
		84034	210	* 4 /	22		0.202	0.071	0.021		20.02	
		84035				18						
		84936			37	0						
		84038			20	0						

Tableau29. (Suite)Table29. (Continued)

MOIS / JOUR / MONTH DAY		NUMÉRO /	OVOCYTES / OOCYTES				MO	YENNE / A	mm)	SURFACE /	CODE**	
		NUMBER*		STADE /	STAGE			STADE		AREA		
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
7	12	8/030	0	0	0	0						
,	12	84940	0		30	11						
		84941	0	0	10	0			0 582		43 28	
		84942	Õ	Ô	0	Õ			0.502		45.20	
		84943	157	288	84	126	0.258	0 457	0 534	0.872	215.60	0
		84944	0	200	0	0	0.250	0.497	0.004	0.072	215.00	Ū
		84945	õ	õ	Ő	Õ						
		84946			6	20						
		84947	0	0	Õ	0						
		84948	11	Õ	20	Õ	0.194		0.484		34.17	
		84949	0	Õ	54	Õ	0.17		0.530		84.36	
		94950	Õ	Õ	0	Õ			0.000			
7	14	84776		Õ	8	Ő						
,	••	84777		Ő		Õ						
		84778	64	41	8	5	0.243	0.402	0.530	0.760	46.16	1
		84779	114	112	24	11	0.274	0.463	0.559	0.760	114.99	1
		84780	17	0	0	0	0.188				45.99	
		84781	7	0	4	0	0.197		0.562		48,84	
		84782	149	74	20	38	0.246	0.443	0.523	0.648	109.03	0
		84783	0	0	0	0						
		84784				Ő						
		84785			61	0						
		84786	427	209	80	0 0	0.263	0.439	0.571		184.61	
		84787	426	360	63	66	0.203	0.447	0.563	0.941	291.79	0
7	17	84789		200	Prol	hlèmes de d	coloration /	Staining pr	oblems			
	.,	84790	42		26	0	coloration	5.a	00101115			
		84791				0 0						
		84792										
		84793				0						
		84794	82	0	0	õ	0.254				31.68	
		84795	140	7	12	171	0.232	0.500	0.515	0.838	205.44	0
		84796	0	0	0	0	0.202	0.000				
		84797	178	0	0	0	0.263				32.42	
		84798				0						
		84799	0	0	0	0						
		84800	0	0	0	0						
7	21	84851			9	0						
		84852	0	0	0	0						
		84853										
		84854		0		0						
		84855	47	0	0	0	0.200				51.55	
		84856	0	0	0	0						
		84857	0	0	0	0						
		84858										
		84859	0	0	0	0						
		84860	0	0	0	0						
		84861	Õ	Õ	0	Ō						
		84862	144	86	15	Õ	0.250	0.422	0.520		121.25	
7	24	84863										

Tableau29. (Suite)Table29. (Continued)

MOIS /	JOUR /	NUMÉRO /	0	VOCYTES	DCYTES / OOCYTES MOYENNE / AVERAGE (mm)					mm)	SURFACE /	CODE**
MONTH	DAY	NUMBER*		STADE / STAGE				STADE	/ STAGE		AREA	
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
7	24	84864	0	0	0	0						
		84866	184	112	25	44	0.276	0.422	0.526	0.810	118.22	0
		84867	0	0	0	0						
		84868	0	0	0	0						
		84869	0	0	0	0						
		84870	0	0	0	0						
		84872a	0	0	0	0						
		84872b	0	0	0	0						
		84873	0	0	0	0						
		84874	0	0	0	0						
		84965										
7	31	84463	0	0	0	0						
		84464	0	0	0	0						
		84465	0	0	0	0						
		84466		0		0						
		84467	0	0	0	0						
		84468	0	0	0	0						
		84469	0	0	0	0						
		84470										
		84471	0	0	0	0						
		84472	0	0	0	0						
		84473	0	0	0	0						
		84474	0	0	0	0						
8	3	84449	0	0	0	0						
		84450	0	0	0	0						
		84451	0	0	0	0						
		84452	0	0	0	0						
		84454	0	0	0	0						
		84456										
		84457										
		84458	0	0	0	0						
		84459			,	0						
		84460	0	0	0	0						
		84461	0	0	0	0						
		84462	0	0	0	0						
OCCURR OCCURR	ENCE / ENCE (%))	66.67	60.4	68.59	46.95						
TO	ΓAL		35 495	24 767	10 039	9 791						

* Chaque numéro représente une femelle / Each number represents one female

** Pour les stades 5, 0=diamètre mesuré; 1=brisé, moyenne calculée à partir de tous les ovocytes de stade 5 / For stage 5, 0=measured diameter; 1= broken, average calculated from all the oocytes of stage 5

*** Atrétique / Atretic
Tableau30. Nombre total d'ovocytes vitellogènes calculés pour chaque femelle échantillonnée
en 2000 dans la baie des Chaleurs.

Table30. Total number of vitellogenic oocytes calculated for each female sampled in
the Chaleurs Bay in 2000.

MOIS /	JOUR /	JOUR DE L'ANNÉE /	NUMÉRO /	NOMBRE I	OVOCYTES.	NUMBER O	F OOCYTES	TOTAL
MONTH	DAY	DAY OF THE YEAR	NUMBER*		STADE /	STAGE		
			TAG	2	3	4	5	
6	13	165	84871	15 865	5 482	1 992	2 365	25 704
			84880	277 515	91 124	35 900	0	404 539
			84881	263 159	113 984	28 989	18 590	424 722
			84882	310 289	133 859	22 205	0	466 353
			84887	222 144	97 281	34 384	29 412	383 222
			84888	294 113	121 212	63 754	52 717	531 797
			84889	280 400	85 022	35 015	35 189	435 627
			84891	304 900	161 281	39 389	46 639	552 208
			84892	398 768	133 563	52 778	39 786	624 896
6	15	167	84801	260 769	101 084	68 964	0	430 817
			84802	210 450	83 970	29 507	20 183	344 110
			84803	198 818	93 484	23 475	31 221	346 998
			84804	418 189	131 628	60 881	35 979	646 677
			84805	221 210	94 393	52 182	66 398	434 184
			84806	307 544	124 510	26 660	45 939	504 653
			84807	202 137	109 144	19 678	16 897	347 856
			84894	176 007	57 387	10 178	18 150	261 722
			84896	252 957	108 004	28 686	24 181	413 828
			84897	200 873	92 341	35 679	19 178	348 071
			84900	187 011	97 055	66 024	37 299	387 389
6	19	171	84808	254 448	71 741	19 221	10 434	355 844
			84809	203 850	83 572	14 837	0	302 258
			84810	219 655	116 510	23 558	25 623	385 347
			84811	245 418	112 958	25 850	16 221	400 448
			84812	210 105	104 523	33 977	0	348 605
			84813	130 527	87 570	40 642	20 207	278 946
			84814	190 495	66 400	17 973	18 121	292 990
			84815	171 423	95 116	17 998	21 331	305 868
			84816	211 572	79 156	32 186	29 832	352 746
			84817	136 283	89 170	15 451	20 888	261 791
			84818	128 313	111 466	24 406	28 615	292 800
			84819	104 197	67 961	14 041	13 859	200 057
6	22	174	84821	115 222	89 861	16 243	28 505	249 831
			84824	87 249	67 037	19 856	12 819	186 961
			84825	32 723	48 234	15 725	21 512	118 194
			84826	306 671	104 364	43 551	25 957	480 544
			84827	279 367	142 469	17 028	31 992	470 855
			84828	119 160	59 876	27 614	4 641	211 291
			84830	134 156	122 421	26 934	27 098	310 609
			84831	383 254	99 178	27 860	21 797	532 088
6	27	179	84832	329 715	87 990	38 095	16 176	471 977
			84834	219 606	55 716	26 971	17 029	319 323
			84837	214 834	103 005	24 391	32 776	375 006
			84838	267 046	86 268	23 149	28 100	404 563
			84839	277 835	128 497	29 282	19 367	454 981
			84840	168 945	75 273	20 678	16 024	280 919

£

•

Tableau30. (Suite)Table30. (Continued)

1410107	JOUR /	JOUR DE L'ANNÉE /	NUMÉRO /	NOMBRE D	OVOCYTES	/ NUMBER OF	FOOCYTES	TOTAL
MONTH	DAY	DAY OF THE YEAR	NUMBER*	<u>.</u>	STADE /	STAGE	•	
			TAG	2	3	4	5	
6	22	170	84841	108 646	34 780	21 688	2 200	257 323
0	22	179	84847	198 040	34 780	12 021	2 209	237 323
			04042 94943	20 491	56 552	12 921	20/221	278 612
			04043	291 038	30 332	10 190	20 231	378 012
			04044	03 882 50 760	20 834	4 329	1 2 3 9	104 304
6	20	101	84043	102 266	52 576 105 000	12 203	25 211	130 142
U	29	101	84901	103 300	22.061	10 821	25 211	2/1/0/
			84902	01 217	22 901	19 631	0	213 472
			84903	91 217	02 224	39 400	24.250	212 047
			84903	01 919	92 952	23 133	24 250	222 230
			84907	242 799	129 079	25 025	33,030	472 252
			84908	178 177	56 823	0 1 27	26.126	220 248
			84909	128 172	121 108	57 026	20120	300 434
			84910	222 504	60 584	5 151	10.826	300 454
7	4	186	84014	47 078	35 318	9 651	19820	02 047
1	4	100	84914	4/ 9/8	71 400	13 804	31 557	153 347
			84915	24 461	27 885	15 163	21221	77 500
			84910	24 401	110 669	31.014	20 626	7/ 303
			84022	100 510	70 700	11 420	13 462	248 388
			84922	65 605	22 240	2 072	1 0 2 9	106 756
7	7	180	84027	10 702	34 514	0.815	4 938	64.032
,	,	169	84927	53 241	21 560	7 340	0	82 250
			84021	160 728	51 903	6 606	12 344	22259
			84931	100 728	38 194	6 6 3 9	13 344	162 367
7	12	104	84043	70.030	81 844	20 429	18 766	200.068
'	12	194	84945	19050	01 044	20 429	18700	200 000
			84040	4 9 7 8	0	5 028 8 454	0	8 454
7	14	106	04949	21 291	12 152	0 434	794	8 434 16 116
1	14	190	04770 84770	JI J01	12 132	1 799	/ 64	74 653
			84780	5 800	25 244	4 480	1 510	5 800
			84781	2 010	0	583	0	3 403
			84787	55 553	15 321	3 507	5 370	70 750
			84786	184 687	54 156	15 937	0	254 780
7	17	100	84705	06 032	2 240	3 7/3	37 778	135 702
'	17	199	84797	41 752	2 249	0	0	11 752
7	21	203	84855	18 235	0	0	0	18 235
/	21	205	84855	38 004	13 446	1 903	0	53 353
		MINIMUM		0	0	0	0	3 493
		MOYENNE / AVERAGE		162 291	73 416	22 298	16 634	274 638
		MAXIMUM		418 189	161 281	68 964	66 398	646 677

* Chaque numéro représente une femelle / Each number represents one female

- Tableau 31. Description des variables biologiques pour les femelles échantillonnées aux Îles-de-la-Madeleine en 2000 dans le cadre de l'étude sur la fécondité du maquereau.
- Table31. Description of the biological variables for the females sampled in Magdalen Islands in 2000 for the mackerel
fecundity study.

DATE	n*	LONG	GUEUR /	PC	DIDS /		OVAIRES	S / OVARIES	S	1	IGS /		K***	AGE	
(jj-mm) /		LENG	TH (mm)	WEI	GHT (g)	POIDS	/ WEIGHT	VOL	UME (ml)	G	SI**			L	
(dd-mm)		X****	ÉT. / SD	X****	ÉT. / SD	X****	ÉT. / SD	X****	ÉT. / SD	X****	ÉT. / SD	X****	ÉT. / SD	X****	ÉT. / SD
02-06	12	372.58	21.07	593.77	104.42	69.55	20.86	63.00	20.64	11.83	3.13	1.00	0.06	5.25	1.22
06-06	12	363.50	18.88	527.83	93.16	55.83	17.69	51.58	17.05	10.53	2.77	0.97	0.03	5.08	1.83
12-06	12	362.75	19.74	519.98	94.84	43.38	20.51	42.17	19.99	8.13	3.17	0.99	0.04	4.83	1.59
15-06	12	348.83	18.20	450.18	68.09	40.03	17.35	39.00	16.20	8.75	2.94	0.96	0.05	4.08	0.51
19-06	12	368.75	15.97	529.32	67.73	37.79	20.36	36.00	19.38	7.02	3.03	0.98	0.03	5.67	1.97
27-06	12	355.08	19.72	498.29	81.73	24.62	15.65	23.17	14.78	4.93	3.07	1.05	0.05	4.73	1.68
30-06	12	365.92	47.18	556.86	198.77	39.75	35.58	38.25	34.61	6.49	4.75	1.02	0.05	6.09	3.14
14-07	12	353.92	16.04	566.45	94.41	6.22	2.41	6.25	2.56	1.07	0.24	1.26	0.09	4.50	1.73
31-07	12	355.50	14.69	592.85	65.22	4.96	0.81	4.67	0.82	0.44	0.47	1.31	0.08	4.09	0.70

* n = Nombre d'ovaires / Number of ovaries

** Indice gonado-somatique / Gonado somatic index

*** Facteur de condition de Fulton, poids des ovaires exclu / Fulton condition factor, ovaries weight not included

**** Moyenne / Average

Tableau32. Nombre d'ovocytes calculés, diamètres par stade de maturité, et surface de chaque
coupe histologique pour les échantillons provenant des Îles-de-la-Madeleine.

Table32. Number of calculated oocytes, mean diameters by stage of maturity, and area of each
histological slide for the samples from Magdalen Islands.

•

MOIS /	JOUR /	NUMÉRO /		OVOCYTES	I OOCYT	ES	MO	YENNE / A	AVERAGE	(mm)	SURFACE /	CODE**
MONTH	DAY	NUMBER*		STADE	STAGE			STADE	/ STAGE		AREA	
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
6	2	81455	375	451	148	0	0.281	0.494	0.621		340.36	
		81457	577	1026	148	0	0.300	0.544	0.674		626.70	
		81459	861	764	133	0	0.277	0.487	0.633		474.70	
		81460	510	597	196	140	0.281	0.520	0.656	0.77	641.50	1
		81461										-
		81462	497	387	264	117	0.289	0.486	0.622	0.836	511.09	0
		81463	600	654	247	0	0.263	0.496	0.567		480.82	•
		81464	488	425	265	0	0.280	0.509	0.596		363.04	
		81465	451	841	350	0	0.274	0.496	0.616		605.73	
		81466	429	457	244	0	0.264	0.463	0.594		327.69	
		81467	293	588	171	0	0.258	0.490	0.597		349.19	
		81468	416	552	259	2	0.286	0.477	0.635	0.830	401.62	0
6	6	80501	224	534	386	0	0.280	0.482	0.602		442.40	
		80502	426	664	134	0	0.286	0.472	0.568		298.22	
		80503	66	456	87	0	0.318	0.506	0.607		226.95	
		80504	480	590	174	53	0.290	0.467	0.556	0.701	393.23	0
		80505	389	697	121	0	0.249	0.495	0.625		425.62	
		81469	259	486	153	0	0.260	0.476	0.583		307.89	
		81470	359	808	229	0	0.281	0.459	0.623		485.11	
		81471	242	701	156	0	0.273	0.463	0.589		333.34	
		81472	383	603	215	0	0.289	0.477	0.602		385.84	
		81473	350	655	247	0	0.277	0.459	0.578		385.72	
		81474	146	721	213	0	0.304	0.485	0.591		398.84	
		81475	436	511	178	0	0.305	0.450	0.598		336.93	
6	12	80506	300	428	70	0	0.283	0.473	0.565		209.75	
		80507				Problème	s de colora	tion / <i>Staini</i>	ng problen	ns		
		80508	504	412	88	0	0.296	0.489	0.598		294.31	
		80509	457	512	242	0	0.296	0.472	0.601		371.23	
		80510	633	430	305	0	0.287	0.465	0.620		437.84	
		80511	443	517	269	53	0.276	0.477	0.609	0.991	490.14	0
		80512	533	1041	97	0	0.302	0.492	0.616		509.17	
		80513	348	494	157	0	0.279	0.471	0.563		297.13	
		80514	458	313	88	0	0.288	0.455	0.551		213.36	
		80515			30							
		80516				Problème	s de colorat	ion / Staini	ng problen	15		
	•	80517	313	501	216	0	0.302	0.437	0.547		277.24	
6	15	80518	412	478	158	180	0.284	0.465	0.604	0.898	532.01	0
		80519	305	184	97	130	0.286	0.434	0.546	0.952	266.50	0
		80520	259	150	64	96	0.296	0.406	0.535	0.690	181.26	0
		80521	333	0	50	209	0.279		0.564	0.667	242.35	0
		80522	472	543	168	0		Ovaire t	orisé / Dam	aged ovary		
		80523	490	225	113	95	0.281	0.433	0.560	0.822	268.37	0
		80524	188	93	51	120	0.285	0.471	0.562	0.850	198.57	0
		80525	338	324	149	0	0.298	0.446	0.578		471.12	
		80526	423	146	0	46		Ovaire b	orisé / Dam	aged ovarv		
		80527	208	333	0	156	0.279	0.480		0.549	203.09	0
		80528	513	259	77	129	0.302	0.457	0.552	0.840	277.27	0

_

Tableau32. (Suite)Table32. (Continued)

MOIS /	JOUR /	NUMÉRO /	OVOCYTES / OOCYTES		MOYENNE / AVERAGE (mm)				SURFACE /	CODE**		
MONTH	DAY	NUMBER*		STADE /	STAGE			STADE	/ STAGE		AREA	
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
		6										
6	15	80529				Problème	es de colorat	tion / Stain	ing problem	s		
6	19	80530				79				0.668	177.48	0
		80531				Problème	es de colora	tion / Stain	ing problem	5		
		80532	502		208	57	0.293		0.560	0.919	261.22	0
		80533	338	197	77	128	0.314	0.457	0.578	0.921	299.62	0
		80534	237	307	89	0	0.285	0.490	0.543		212.48	
		80535	111	160	130	0	0.272	0.423	0.538		143.05	
		80536	74	103	47	208	0.312	0.477	0.566	0.861	233.53	0
		80537										
		80538			238	0			0.586		349.98	
		80539										
		80540	629	718	224	140	0.280	0.462	0.625	1.063	644.65	0
		80541	238	136	80	141	0.305	0.432	0.557	0.978	272.60	0
6	27	80542	348	197	84	32	0.286	0.451	0.518	0.633	192.49	0
		80543	727	254	153	0	0.269	0.431	0.593		324.98	
		80544										
		80545										
		80546	72	149	53	174	0.306	0.500	0.607	0.770	379.67	1
		80547										
		80548										
		80549			46				0.580		364.67	
		80550										
		80601			82	112			0.568	0.764	328.08	0
		80602										
		80603	257	216	119		0.281	0.428	0.607		363.39	
6	30	80604	595	233	173	214	0.296	0.444	0.593	0.913	549.67	0
		80605										
		80606	99	140	85	100	0.307	0.439	0.583	0.934	252.44	0
		80607	691	300	221	265	0.281	0.459	0.599	1.027	596.61	0
		80608	267	208	121	0	0.310	0.432	0.572		162.28	
		80609	32	78	14	56	0.290	0.382	0.475	0.623	79.78	0
		80610	305	289	166	0	0.297	0.429	0.606		269.69	
		80613	370	133	47	0	0.256	0.386	0.535		93.42	
		80614	406	537	318	0	0.297	0.439	0.623		675.91	
		80615	88	112	21	31	0.241	0.400	0.516	0.711	77.21	0
		80616	150	201	94	178	0.279	0.432	0.544	0.881	358.08	0
		80617	251	213	52	66	0.294	0.400	0.542	0.776	202.21	0
7	14	80051										
		80052										
		80053										
		80054										
		80618		0	40	0			0.573		165.61	
		80619			7	0			0.475		85.14	
		80620		0	4	0			0.505		69.29	
		80621										
		80622										
		80623		0	12	0			0.504		112.93	
		80624		0	7	6			43.700	0.556	114.85	0
		80625										

.

.

Tableau32. (Suite)Table32. (Continued)

MOIS /	JOUR /	NUMÉRO /	0	VOCYTES	I OOCYTE	S	МО	YENNE / A	VERAGE (mm)	SURFACE /	CODE**
MONTH	DAY	NUMBER*		STADE /	STAGE			STADE	/ STAGE		AREA	
		TAG	2	3	4	5	2	3	4	5	(mm ²)	
7	31	80055	0	0	0	0						
		80056	0	0	0	0						
		80057			••							
		80063	0	0	0	0						
		80064	0	0	0	0						
OCCURRI OCCURRI	ENCE / ENCE (%)	94.2	87.5	92.31	40.79						
тот	AL		23 974	23 524	7 556	2 085						

* Chaque numéro représente une femelle / Each number represents one female

 ** Pour les stades 5, 0=diamètre mesuré; 1=brisé, moyenne calculée à partir de tous les ovocytes de stade 5 / For stage 5, 0=measured diameter; 1= broken, average calculated from all the oocytes of stage 5

Tableau33. Nombre total d'ovocytes vitellogènes calculés pour chaque femelle échantillonnée
en 2000 aux Îles-de-la-Madeleine.

Table33. Total number of vitellogenic oocytes calculated for each female sampled in
Magdalen Islands in 2000.

MOIS /	JOUR /	JOUR DE L'ANNÉE /	NUMÉRO /	NOMBRE E	OVOCYTES	NUMBER OF	OOCYTES	TOTAL
MONTH	DAY	DAY OF THE YEAR	NUMBER*		STADE /	STAGE		
			TAG	2	3	4	5	
6	2	154	81455	250 938	171 669	44 814	0	467 420
6	2	154	81457	306 899	300 946	35 038	0	642 883
6	2	154	81459	419 068	211 507	28 328	0	658 902
6	2	154	81460	282 922	178 968	46 575	28 343	536 808
6	2	154	81462	134 593	62 321	33 218	10 953	241 085
6	2	154	81463	360 601	208 414	68 857	0	637 871
6	2	154	81464	268 841	128 797	68 586	0	466 223
6	2	154	81465	190 215	195 945	65 661	0	451 820
6	2	154	81466	238 030	144 582	60 170	0	442 782
6	2	154	81467	156 109	164 953	39 373	0	360 435
6	2	154	81468	181 085	144 071	50 779	300	376 234
6	6	158	80501	108 499	150 255	86 961	0	345 716
6	6	158	80502	169 819	160 387	26 897	0	357 102
6	6	158	80504	273 596	208 834	51 730	12 498	546 658
6	6	158	80505	256 937	231 581	31 841	0	520 359
6	6	158	81469	122 946	126 014	32 390	0	281 350
6	6	158	81470	200 153	275 786	57 587	0	533 525
6	6	158	81471	93 075	158 971	27 809	0	279 855
6	6	158	81472	137 390	131 054	37 025	0	305 469
6	6	158	81473	212 926	240 475	72 013	0	525 414
6	6	158	81474	77 066	238 547	57 833	0	373 446
6	6	158	81475	203 652	161 774	42 405	0	407 832
6	12	164	80506	151 619	129 420	17 720	0	298 760
6	12	164	80508	214 060	105 922	18 500	0	338 482
6	12	164	80509	191 311	134 413	49 895	0	375 619
6	12	164	80510	292 169	122 498	65 166	0	479 833
6	12	164	80511	229 231	154 793	63 083	7 638	454 744
6	12	164	80513	142 727	120 016	31 910	0	294 653
6	12	164	80514	163 977	70 932	16 468	0	251 377
6	12	164	80517	142 058	157 139	54 125	0	353 321
6	15	167	80518	212 693	150 713	38 353	29 388	431 147
6	15	167	80519	180 073	71 589	29 998	23 058	304 718
6	15	167	80520	125 510	52 995	17 159	19 957	215 622
6	15	167	80521	142 822	0	10 608	37 495	190 925
6	15	167	80523	220 920	65 832	25 564	14 642	326 958
6	15	167	80524	99 660	29 831	13 710	21 329	164 530
6	15	167	80525	139 636	89 435	31 736	0	260 807
6	15	167	80527	113 797	105 895	0	43 374	263 066
6	15	167	80528	269 563	89 936	22 136	24 370	406 005
6	19	171	80532	209 884	0	45 501	7 598	262 983
6	19	171	80533	165 262	66 182	20 453	21 337	273 234
6	19	171	80534	101 756	76 665	20 056	0	198 477
6	19	171	80535	54 203	50 240	32 094	0	136 536
6	19	171	80536	32 500	29 589	11 379	33 103	106 570
6	19	171	80538	0	0	58 024	0	58 024
6	19	171	80541	91 601	36 956	16 860	16 924	162 341
6	27	179	80542	126 426	45 385	16 849	5 253	193 912
6	27	179	80543	249 486	54 403	23 818	0	327 707

.

Tableau33. (Suite)Table33. (Continued)

TOTAL	OOCYTES	NUMBER OF	OVOCYTES	NOMBRE D	NUMÉRO /	JOUR DE L'ANNÉE /	JOUR /	MOIS /
		STAGE	STADE /		NUMBER*	DAY OF THE YEAR	DAY	MONTH
	5	4	3	2	TAG			
104 800	27 974	10 809	36 890	29 127	80546	179	27	6
8 699	0	8 699	0	0	80549	179	27	6
33 701	16 980	16 721	0	0	80601	179	27	6
177 805	0	21 580	55 552	100 673	80603	179	27	6
99 188	11 876	16 172	35 372	35 768	80606	182	30	6
143 669	0	19 553	44 505	79 612	80608	182	30	6
48 948	10 140	3 325	23 035	12 448	80609	182	30	6
219 644	0	30 471	74 937	114 235	80610	182	30	6
200 998	0	9 404	36 883	154 711	80613	182	30	6
85 028	5 082	4 744	32 638	42 563	80615	182	30	6
157 752	23 134	19 785	53 274	61 559	80616	182	30	6
224 765	12 198	13 759	76 369	122 440	80617	182	30	6
5 901	0	5 901	0	0	80618	196	14	7
1 039	0	1 039	0	0	80619	196	14	7
1 039	0	0	0	0		MINIMUM		
296 798	7 499	32 242	104 453	152 604		MOYENNE / AVERAGE		
658 902	43 374	86 961	300 946	419 068		MAXIMUM		

* Chaque numéro représente une femelle / Each number represents one female

Tableau 34. Estimation des paramètres utilisés pour le calcul de la biomasse reproductrice du
maquereau par la Méthode de la Réduction Journalière de la Fécondité (MRJF).

Table34. Estimation of the parameters used for the calculation of the mackerel spawning
biomass by the Daily Fecundity Reduction Method (DFRM).

PARAMÈTRE /		RVEY 1996			
PARAMETER*	PREMIER TRAJET	FIRST PASS	DEUXIÈME TRAJET /	SECOND PASS	
	Médiane / Media	n = 172.5	Médiane / Media	an = 179	
	Estimation	E.S. / <i>SE</i>	Estimation	E.S. / <i>SE</i>	
G _{MED}	0.794	0.054	0.677	0.049	
dG/dt	-0.018	0.003	-0.018	0.003	
E _{MED}	337 390	12 073	275 935	11 725	
dE/dt	-9 454.611	890.161	-9 454.611	890.161	
cov(Et ,Gt)	903.609		691.825		
D	13 549	1 987 793	11 346	1 412 364	
R	0.520	0.001	0.520	0.001	
W	527.984	24 221.410	527.984	24 221.410	
К	1.335E+07	1.776E+13	1.118E+07	1.247E+13	
Po	75.215	30.669	79.580	47.130	
Α	6.95E+10		6.95E+10		
В	391 524	1.610E+10	494 666	2.623E+10	
CV(B)	0.324		0.327		
SD(B)	126 892		161 963		
Lim. Sup. / <i>Upper Limit</i>	640 232		812 113		
Lim. Inf. / <i>Lower Limit</i>	142 815		177 219		
			Moyenne /	443 095	
			Average		

* Voir le texte pour la définition des paramètres / See the text for the parameters meaning

Tableau34. (Suite)Table34. (Continued)

PARAMÈTRE /	RELEVÉ / SURVEY 1998									
PARAMÉTER*	PREMIER TRAJET	/ FIRST PASS	DEUXIÈME TRAJET /	SECOND PASS						
	Médiane / Media	<i>an</i> = 167	Médiane / Media	an = 172						
	Estimation	E.S. / <i>SE</i>	Estimation	E.S. / <i>SE</i>						
G _{MED}	0.888	0.046	0.753	0.400						
dG/dt	-0.027	0.003	-0.027	0.003						
E _{MED}	443 338	13 331	366 950	12 007						
dE/dt	-15 277.610	933.350	-15 277.610	933.350						
cov(Et ,Gt)	2 188.650		1 675.685							
D	25 467	3 364 153	21 364	39 351 881						
R	0.508	0.001	0.508	0.001						
W	471.301	21565.320	471.301	21565.320						
K	2.745E+07	7.946E+13	2.303E+07	9.888E+13						
Po	71.640	24.820	101.570	414.390						
Α	6.95E+10		6.95E+10							
В	181 390	3.629E+09	306 570	2.130E+10						
CV(B)	0.332		0.476							
SD(B)	60 242		145 956							
Lim. Sup. / <i>Upper Limit</i>	299 464		592 644							
Lim. Inf. / <i>Lower Limit</i>	63 316		20 497							
			Moyenne /	243 980						
			Average							

* Voir le texte pour la définition des paramètres / See the text for the parameters meaning

•

Tableau34. (Suite)Table34. (Continued)

PARAMÈTRE /	· · · · · · · · · · · · · · · · · · ·	RELEVÉ / SURVEY 2000									
PARAMETER*	PREMIER TRAJET	FIRST PASS	DEUXIÈME TRAJET /	SECOND PASS							
	Médiane / Medi	an = 174	Médiane / Media	n = 181.5							
	Estimation	E.S. / <i>SE</i>	Estimation	E.S. / <i>SE</i>							
G _{MED}	0.749	0.038	0.615	0.037							
dG/dt	-0.018	0.002	-0.018	0.002							
E _{MED}	271 927	7 820	198 334	8 978							
dE/dt	-9812.418	614.228	-9812.418	614.228							
cov(Et ,Gt)	937.915		718.091								
D	12 225	827 102	9 587	543 672							
R	0.519	0.001	0.519	0.001							
W	466.055	20429.511	466.055	20429.511							
K	1.360E+07	1.925E+13	1.067E+07	1.188E+13							
Po	110.088	488.050	26.016	7.725							
Α	6.95E+10		6.95E+10								
В	562 533	4.568E+10	169 510	3.329E+09							
CV(B)	0.380		0.340								
SD(B)	213 725		57 702								
Lim. Sup. / <i>Upper Limit</i>	981 433		282 606								
Lim. Inf. / Lower Limit	143 632		56 415								
			Moyenne /	366 022							
			Average								

* Voir le texte pour la définition des paramètres / See the text for the parameters meaning

.

Figure 1. Carte des divisions, sous-divisions et zones unitaires de l'OPANO où des prises de maquereau ont été réalisées en 2000 / Map of the NAFO divisions, subdivisions and unit areas where mackerel catches were realized in 2000.

Figure 2. Débarquements (t) de maquereau enregistrés par pays depuis l'arrivée au cours de l'année 1977 de la zone économique des 200 milles marins /
 Landings (t) of mackerel recorded by country since the establishment in 1977 of the 200 nautical miles economical zone.

Figure 3. Distributions des prises de maquereau enregistrées par des observateurs en 2000 (préliminaire; seulement les traits normaux sont présentés) / Distributions of the mackerel catches recorded by observers in 2000 (preliminary; only normal hauls are presented).

Figure 4. Débarquements (t) et caractéristiques biologiques de la pêche au maquereau au filet maillant fixe dans la division 4T (*Pour les mois de mai à août;** Pour toute l'année) / Landings (t) and biological characteristics of the mackerel fixed gillnet fishery in Division 4T (* For the months of May to August; ** For all the year).

Figure 5. Débarquements (t) et caractéristiques biologiques de la pêche au maquereau à la ligne dans la division 4T (* Pour les mois d'août à octobre; ** Pour toute l'année) / Landings (t) and biological characteristics of the mackerel line fishery in Division 4T (* For the months of August to October; ** For all the year).

Figure 6. Débarquements (t) et caractéristiques biologiques de la pêche au maquereau à la seine bourse dans la division 4R (* Pour les mois d'août à octobre; ** Pour toute l'année) / Landings (t) and biological characteristics of the purse seine mackerel fishery in Division 4R (* For the months of August to October; ** For all the year).

Figure 7. Relations entre les longueurs (mm) moyennes annuelles du maquereau capturé au filet maillant, à la ligne et à la seine bourse dans les divisions 4R et 4T / Relationships between the annual mean length (mm) of mackerel caught by gillnet, line and purse seine fisheries in Divisions 4R and 4T.

Figure 8. Fréquences de longueur (%) pondérées pour 3 engins de pêche dans les divisions 4R et 4T entre 1987 et 2000 / Weighted length frequencies (%) for three fishing gears in Divisions 4R and 4T between 1987 and 2000.

Figure 8. (Suite / Continued)

Figure 9. Longueur (mm) et poids (g) à l'âge pour le maquereau échantillonné au cours des années 1990s et en 2000 le long des côtes canadiennes / Length (mm) and weight (g) at age for the mackerel sampled along the Canadian coasts during the 1990s and in 2000.

Figure 10. Longueurs moyennes (mm) à l'âge pour les classes d'âge observées chez le maquereau depuis la fin des années 1960 (les flèches indiquent les 4 plus importantes classes d'âge) / Mackerel mean length (mm) at age for the year-classes observed since the end of the 1960s (arrows show the 4 most strong year-classes).

Figure 11. Facteur de condition (Fulton) moyen calculé en juin pour la période comprise entre 1973 et 2000 et température moyenne de l'eau de la CIF / *Mean condition factor (Fulton) calculated in June for the 1973-*2000 period and mean water temperature of the CIL.

Figure 12. Moyennes journalières de l'indice gonado-somatique (IGS) calculées pour la période comprise entre 1973 et 2000 (des courbes polynomiales sont ajustées aux données) / Daily average gonadosomatic index (GSI) calculated for the 1973-2000 period (polynomial curves are used to fit the data).

Figure 13. Grille des positions pour lesquelles des températures de l'eau en surface sont prises par des satellites (chacune de ces positions a une résolution de 18 km par 18 km) / Grid of positions for which surface water temperatures are taken by satellites (each position has a resolution of 18 km by 18 km).

LÉGENDE / LEGEND:

•	Strate / Stratum 1	(2.961E+10 m2)
	Strate / Stratum 2	(2.191E+10 m2)
	Strate / Stratum 3	(1.793E+10 m2)

Figure 14. Carte des stations et des strates associées à la mission d'évaluation du maquereau (la surface de chaque strate est aussi indiquée; le premier chiffre d'une station représente le transect /
Map of the stations and strata associated with the mackerel assessment survey (the surface of each stratum is also indicated; the first figure of the station number

represents the transect).

Figure 15. Itinéraire parcouru lors du premier trajet du relevé d'évaluation d'abondance du maquereau (stations monitorage et sébastes incluses) (A) et relations entre le nombre de révolutions des débitmètres et la durée des traits (B) / First pass itinerary for the mackerel biomass assessment survey (monitoring and redfish stations included) (A) and relationships between flowmeters revolutions and the duration of the tows (B).

Figure 16. Itinéraire parcouru lors du second trajet du relevé d'évaluation d'abondance du maquereau (A) et relations entre le nombre de révolutions des débitmètres et la durée des traits (B) / *Second pass itinerary for the mackerel biomass assessment survey (A) and relationships between flowmeters revolutions and the duration of the tows (B).*