CSAS

Canadian Stock Assessment Secretariat
Research Document 2000/102

Not to be cited without
permission of the authors ${ }^{1}$

SCÉS

Secrétariat canadien pour l'évaluation des stocks
Document de recherche 2000/102

Ne pas citer sans
autorisation des auteurs ${ }^{1}$

Sentinel surveys 1995-1999: catch per unit effort in NAFO divisions 2J3KL

D. Maddock Parsons, R. Stead, D. Stansbury

Science Branch
DFO Newfoundland Region
P.O. Box 5667

St. John's NF A1C 5X1
${ }^{1}$ This series documents the scientific basis for ${ }^{1}$ La présente série documente les bases the evaluation of fisheries resources in scientifiques des évaluations des ressources Canada. As such, it addresses the issues of halieutiques du Canada. Elle traite des the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

This document is available on the Internet at: Ce document est disponible sur l'Internet à:
http://www.dfo-mpo.gc.ca/csas/

Abstract

Sentinel enterprises collected catch rate and biological information on inshore cod resources in 2J3KL for 1995-1999. Data were presented on weekly catch rates and annual relative length frequencies (number at length divided by amount of gear) by year and gear type, grouped by division and also summarized for each participant. Catches in 2 J have remained very low since 1995 in all gears fished. Gillnet catch rates from Sentinel survey activity in 1999 declined from levels observed in 1998, which were generally the best observed since the inception of the surveys in 1995. Gill net ($51 / 2^{\prime \prime}$) catch rates in 1999 were lower in 3K than in 3L but line trawl catch rates were similar. Line trawl catch rates were similar in 1999 to those in 1998 but lower than the highest catches observed in 1997. Trap catches were down in all areas in 1999, with only one trap site having a noteworthy catch.

Résumé

Des entreprises de pêche sentinelle ont recueilli des données sur les taux de capture et des données biologiques sur les ressources côtières en morue dans 2J3KL pour la période 1995-1999. Les données, portant sur les taux de capture hebdomadaires et les fréquences annuelles des longueurs relatives (le nombre selon la longueur divisé par le nombre d'engins) selon l'année et le type d'engin, ont été groupées selon la division et résumées selon chaque participant. Les prises aux divers engins dans 2 J sont restées très faibles depuis 1995. Les taux de capture aux filets maillants en 1999 ont baissé par rapport aux taux observés en 1998, qui étaient généralement les meilleurs observés depuis le début des relevés, en 1995. Les taux de capture aux filets maillants en $1999(51 / 2 \mathrm{po})$ étaient plus faibles dans 3 K que dans 3 L , tandis que les taux de capture à la palangre dans ces deux divisions étaient semblables. Ces derniers se rapprochaient des taux obtenus en 1998, mais étaient plus faibles qu'en 1997, lorsque les prises observées étaient les plus fortes. Les captures à la trappe dans tous les secteurs ont fléchi en 1999, seul un secteur affichant des prises notables.

Introduction

Sentinel survey projects were formally announced by the Minister of Fisheries and Oceans in October 1994. The surveys in the DFO Newfoundland Region are an extension of the index fishermen's project from the Northern Cod Science Project with modifications to allow for science activities achievable only under a fishing moratorium. Sentinel data collection has continued during the index fishery of 1998 and commercial fishery in 1999.

The sentinel survey has the following objectives:

1. To develop a catch rate series for use in resource assessments.
2. To incorporate the knowledge of inshore fishers in to the resource assessment process.
3. To describe the temporal-spatial distribution of cod in the inshore area over a number of years through, for example, the use of catch rate information, tagging studies, by-catch information and fishers' observations.
4. To gather length frequencies, sex and maturity data and sample ages for use in resource assessment.
5. To establish a long-term physical oceanographic and environmental monitoring program of the inshore areas.
6. To provide a source of biological material for other researchers. For example, tissue for genetic, physiological and toxicological analyses, cod stomachs for food and feeding studies and by-catch information.

Participants

The primary collectors of data in the sentinel survey are inshore fishers. Through consultation with inshore fishers and fisheries organizations, traditional inshore fishing grounds have been identified and mapped, resulting in approximately 66 locations in NAFO Divisions 2J3KL.

Fishers from communities within the boundaries of the identified coastal areas and who met eligibility criteria were invited to apply to participate in the survey. Where more than one application was received from an area, the project partner conducted a draw or lottery to select the participant. While there was considerable interest in the project in most areas, there were many sites from which only one application was received and others where additional canvassing was required to enlist participants. Selected participants were required to complete a six-week course designed by the Marine Institute of Memorial University in consultation with DFO. Topics covered included scientific sampling methods and equipment, computer use, resource assessment basics and presentation skills.

In order to minimize inter-annual enterprise effects on data collection, participants are expected to remain with the survey over a number of years. It is also expected that most of the sampling activities will continue once commercial fishing operations resume and the sentinel participants will form a core of index fishers.

Sites

Sampling was conducted at 66 sites in NAFO Divisions 2J3KL. The specific location of each site was chosen after consultation between DFO scientists, fishermen, the Fishermen, Food and Allied Workers Union (FFAW) and the Fogo Island and Petty Harbour Cooperatives (for Fogo Island and Petty Harbour). Site selection was based on the need to survey throughout inshore areas and targeted historical fishing areas and historical gear use patterns.

Sampling Strategy

In 1999, sampling ran for a minimum of eight weeks. Many sites were allocated extra time as resources permitted. In 1996, 1997 and 1998 the survey covered a twelve-week period. In 1995, sampling was conducted over fifteen weeks. The timing of sampling was determined after discussions with fishers but was targeted for seasonally appropriate times based on historical fishing patterns. There was minimal disruption of these time frames in 1999 due to the opening of the index fishery.

The number of trap sites in 2J3KL was reduced from 35 in 1998 to 12 in 1999. Trap sites fished cod traps for a period up to four weeks. Participants used either baited trawl lines or gill nets for the remaining weeks of the survey. Non-trap sites fished either baited trawls or gill nets for the full survey. While traps are in the water continuously, they were hauled three days per week. Two sites at Petty Harbour fished baited handlines exclusively. Hook and line, handline and gill net crews fished up to three days per week. Fishing days in the week were selected at the discretion of the crew and depend primarily on weather conditions.

When a cod trap is hauled, the crew estimated how much fish by weight had been caught, removed a random sample for biological sampling and released the remaining catch. Meshed and/or dead, floating fish were retained and brought ashore. Fishers were instructed to release as much live fish as possible.

Hook and line crews fished two tubs of baited line trawl. Each tub consisted of approximately 500 hooks for a total of 1000 hooks per fishing day. Gill net crews fished a maximum of six fifty fathom 5 $1 / 2$ inch monofilament gill nets. Nets were rigged $2-3$ to a fleet and up to three fleets were fished per fishing day. In addition, selected sites fished one $3-1 / 4$ inch monofilament gill net one day per week. All fish caught in gill nets and on hooks were landed and measured. If catches exceeded 500 kg per week, the numbers of nets in a fleet were cut back. However, some consideration was given to bottom topography and net performance when reducing the number of nets in a fleet. Similarly, the number of hooks per tub was reduced if landings exceeded 500 kg per week. Other measures were considered if fish are particularly abundant in an area and catches appear to be excessive even with the minimal amounts of gear possible.

Prior to the start of sampling in 1995, a fixed (control) location on the fishing grounds was established for each site and will remain fixed for the duration of the project. Each fishing day, up to half of the gear was set at the control site. The remainder of the gear (experimental) was set at one or two other locations on the fishing grounds at the discretion of the crew. The location of each fishing set was plotted on a nautical chart. The time of the set and the soak time for the gear were recorded. Other environmental observations were recorded, including wind direction and speed, percent cloud cover, tide conditions, presence of invertebrates (bait) and other fish species in the area, marine mammals, sea birds and any other variables which might have influenced fishing behavior. Selected sites were equipped with a CTD (measuring temperature and salinity at depth). At these locations, casts were conducted in the vicinity of fishing sets each fishing day. CTD locations were fished for subsequent years if possible.

When the gear was retrieved, catches from the control and experimental gear were kept separate and sampled on shore. All fish from gill net, handline and line trawl, and a sample of the catch from traps, were measured for length and sex. Otoliths were sampled on a length-stratified basis and stored in manila envelopes with relevant information recorded on the outside. Every other week, selected sites collected a sample of up to 100 frozen fish. These were transported to St. John's for detailed biological sampling. All information was recorded on forms similar to those used by the Port Sampling Section and on DFO Research Vessels

Other biological samples were collected as needed.

Data Presentation

The data were summarized for each NAFO division and presented by gear type. Summaries for each enterprise follow, in general, organized from north to south. This paper presents data for gill net ($51 / 2^{\prime \prime}$ and $31 / 4$), line trawl and trap. The relative length frequency plot depicts the number of fish at length scaled by total amount of gear fished so that changes in length frequency distribution may be compared across years. Lengths, in 1 cm intervals, are from both control and experimental gear, and for gill net and line trawl represent every fish measured, as the total catch is measured. For trap catches, where only samples of fish were measured, the weekly length frequency was bumped up using the weekly estimated catch before being scaled by effort. Where estimated catches occurred in weeks with no frequencies taken, the catch was applied to the previous or subsequent week's frequency. Length frequency summaries for NAFO division are shown as an average of the relative length frequencies for each fisher in the division. The CPUE figures show control and experimental catches separately, in number of fish per net or 1000 hooks by week and are constructed by calculating a daily catch rate for each set and averaging all the CPUEs for all sets in a given week. The tables give catch details broken down by year, including number of fish measured (Nmeas), amount of gear fished (Ngear), total number of sets (Nhauls) and number of sets in which no fish were caught (Nzero). The first table contains data for control sets only and the second table on each sheet combines the data for all experimental sets.

Results

Data summarizing Sentinel Survey activity in 2J3KL for 1995 through 1999 are presented in figures 1-405 and tables 1-268. Sixty-six inshore fishing enterprises representing communities from Black Tickle to St. Mary's Bay participated in the 2J3KL Sentinel Survey for 1999. Survey activity covered mostly summer and fall periods in all years, traditional fishing times for the areas involved. A total of 2453 sets of $51 / 2^{\prime \prime}$ gill net and 295 sets of $31 / 4^{\prime \prime}$ gill net resulted in total measurements of just over 90 000 fish. One hundred sixty-six sets of line trawl resulted in 5166 measurements. Otoliths from 3 235 fish were collected for aging purposes in 1999. Twelve cod traps were fished for a maximum period of 4 weeks at each site and a total of 6270 fish were sampled from 107 trap hauls. Sentinel Survey participants were again involved with inshore tagging experiments in 3K and 3L for 1999 in which 8825 fish were tagged in order to track migrations and provide data on cod abundance in inshore areas.

Figure 1 shows the control sites and trap berths that were surveyed in 1999 plotted by gear type. Control sites were generally consistent from year to year but shifts in location may have resulted due to weather or tide conditions or competition for sites by commercial activity.

Most line trawl sets in 2J3KL were fished for 6 hours or less (Fig. 2), with the second most frequent interval fished at 12-24 hours. Gear left longer than 24 hours was most likely not recovered earlier due to weather constraints. Gill nets were generally left overnight, fishing between 12 and 24 hours (Fig. 3).

$51 / 2$ " Gill net

The summary data for 2J3KL in Figures 4-12 and tables 1-6 give an indication of catch rate change since inception of the Sentinel Survey in 1995. Gill nets show the narrowest range of selectivity of Sentinel Survey gears, targeting fish in the 50 cm to 80 cm range with full recruitment to the gear around 59 cm to 66 cm . According to age-length analysis (Stansbury et al.), these lengths mainly represent age 6 fish. In general, catch rates from $51 / 2 "$ gill nets were lowest in 1995, increased in 1996 and 1998 and decreased to a level comparable with 1997 in 1999. The relative length frequency plot (Fig. 4) shows the widest and strongest distribution in 1998 and probably reflects the relatively strong year-class of 1992. The second strongest signal overall is from the 1996 Sentinel Survey and may reflect the relative strength of the 1990 year-class. Weekly catch rate series (Figs 5 and 6) indicate a bimodal distribution in catch rates, with best catch rates in weeks 25-30 (June 13July 24 in 1999) and a second, mode in late fall. The enterprises which survey in the fall (primarily Summerford, Miles Cove, Ming's Bight, \& Petley) may be fishing on aggregations preparing to overwinter in inshore areas, which may partially explain the higher catch rates during this time frame.

Figures 7-15 and tables 5-10 give summary results broken down by NAFO division. In general, catch rates improve from north to south.

Catches in $2 \mathrm{~J} 51 / 2$ " gill nets were poor in all years. Of 456 sets in $1999,41 \%$ contained no fish (tables 5 and 6). Similar percentages of water hauls were reported in previous years. The relative length frequency plot reflects the scarcity of data in its jagged appearance. The period of time covered by the gill net survey in 2 J is the most condensed of all division, likely because all fishers have their gear in the water in the same weeks because of the shorter season in 2 J .

In 3 K catches from $51 / 2 "$ gill net were best in 1996 and 1998. Catch rates in 1999 were comparable to 1997 and the 1995 survey showed the lowest catch rate in the series. Fall catch rates were stronger than the summer peak and a drop in catches in weeks $39-42$ was observed in all years.

The best catch rates in $51 / 2$ " gill net were seen in 3L for all years, 1995 to 1999. The relative length frequency plot (Fig. 13) shows 1998 as the strongest peak, again probably reflecting the relative strength of the 1992 year-class. Peaks for 1996, 1997 and 1999 are comparable and 1995 again shows the lowest in the series.

Small mesh gill nets ($31 / 4$ ") were used in 2 J3KL since 1996 in order to get information on smaller size ranges of fish. Figures $16-27$ and tables $11-18$ summarize the results. One $31 / 4$ " gill net (35 fathoms) was fished in combination with one $51 / 2^{\prime \prime}$ Gill net (50 fathoms) primarily on experimental
sites. A strong bimodal peak in length frequency distribution results from this mesh size as the gear selects two size ranges of fish. The first and strongest peak, in most cases, is between 35 cm and 47 cm . Fish in this size range are meshed while the larger fish (52 cm to 65 cm) are caught by the lips and generally entangle as they twist around. Fish in the range of the first mode of selectivity for this gear (41 cm to 43 cm), according to age at length tables in Stansbury et al. (2000), are 3 and 4 years.

Good catch rates from small mesh gill nets were observed in 2J, particularly in 1997 and 1998, but only in the range of the first peak of selectivity. No indications of the larger sizes or "lipped" fish were observed. The relatively strong peaks in 1997 and weaker signal in 1998 may both represent the 1993 year-class. The shift in frequency distribution in 1998 may reflect growth of this year-class and part of the year-class has moved out of range of gear selectivity.

The small mesh gear survey in 3 K shows the strongest peak of relative length frequency observed. The meshed peak in 1996 dominates and again, may reflect the relative strength of the 92 yearclass. The meshed peaks for other years are similar but the "lipped" mode shows continual decline from 1996 through 1999. The fact that lipped fish are probably not fully recruited to the gear at any particular length group makes it difficult to infer what this decline represents. Catch rates are generally good in small mesh gill nets and are best in the fall of the year in 3 K .

The two size ranges of fish in the relative length frequency for 3L small mesh gear are more equally represented than in other divisions. The gear catches more of the larger fish than other areas. The 1997 meshed mode is most dominant over other years and the "lipped" mode shows 1999 at the lowest in the series with other years comparable.

Line trawl

Figures 28-39 and tables19-25 summarize the data from the line trawl portion of the 2J3KL Sentinel Survey. The line trawl survey generally takes place from weeks 34 to 48 . Line trawl shows a much wider selectivity curve than gill net and catches mainly fish between 29 cm and 83 cm . The majority of fish are selected between 41 cm and 65 cm and full recruitment is probably within that range. Overall, 1997 shows the broadest range of fish sizes caught and the highest weekly catch rates in the series.

Very few line trawl sets were conducted in 2 J . Only 52 sets were conducted over the course of the Sentinel Survey (1995-1999) and in 1999 of 3 sets fished, none caught fish (tables 21 and 22).

In 3 K , the line trawl survey had the best catch rates in all weeks fished in 1997. The relative length frequency plot for 1997 shows the widest size ranges of fish caught as well. The peak in size frequency occurs from about 52 cm to 59 cm , probably age 5 fish from the 1992 year-class. In 1999 there is a noticeable absence of smaller fish in the relative frequency plot and may be indicating the relatively poor recruitment of the 1995 year-class.

Similar to that seen in the gill net survey, line trawl in 3L appears to have more large fish available to the gear over the course of the survey as the relative length frequency plot shows a broader size range of fish caught (Figure 37). 1996 and 1997 frequency plots are dominant with modes representing the 1992 year-class shifting and moving out of range of gear selectivity in 1998. 1999
shows catch rates similar to other years, in contrast with 3K data, and although the absence of small fish isn't as pronounced as in 3 K , there is no indication of smaller fish becoming available to the gear.

Trap

Trap has the broadest range of selectivity of all gears used in the Sentinel Survey. Fish from 34 to 86 cm were well represented in the frequency distributions and it is probably the most useful gear to track year-class strengths over the course of time. Trap data is presented in figures 40-48 and tables 27-30. The relative length frequency for all traps fished in 2J3KL (fig. 40) track the movement of a size range of fish from 1996 through 1998, which seem to correspond to the 1992 year-class. In 1999 the absence of larger fish available to the trap is noticeable. The pattern in size progression is driven mainly by the 3L trap data. 2 J had very little catch in 1995-1998 and no data for 1999. Catch rates in 3 K were less than half those for 3L in most years. Interestingly, there is a peak of relatively small fish indicated in the 1999 relative frequency plot for 3 K while 3 L shows very poor trap catches compared to previous years.

The relative length frequencies for trap are broken out in figure 48 to make it easier to track progression of length groups over the years.

Data for Individual Enterprises

A summary sheet for each trip (Sentinel participant) is included following the summary sheets by NAFO division. Figures and tables for gill net and line trawl data are presented in general order of north to south distribution.

References

Brattey, J. 2000. Stock structure and seasonal movement patterns of Atlantic cod (Gadus morhua) in NAFO Divs 3KL inferred from recent tagging experiments. DFO Can. Stock Assess. Sec. Res. Doc. 2000/084.
Stansbury, D., Shelton, P., and Maddock Parsons, D. 2000. An age disaggregate index from the Sentinel program for cod in NAFO divisions 2J3KL. DFO Can. Stock Assess. Sec. Res. Doc. 2000/090.

Figure 1. 1999 Sentinel Survey control sites for 5 1/2" gill net, line trawl and trap.

Figure 2. Frequency of hours fished for Linetrawl 2J3KL 1999 Sentinel Survey.

Figure 3. Frequency of hours fished for 5 1/2" Gillnet 2J3KL 1999 Sentinel Survey.

Table 3. Summary data for All sites (All) Control Sets Gillnet $51 / 2 \mathrm{In}$.

Div	(All)
Trip	(All)
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1998	1996	1997	1998	1999
Nmeas	12913	36675	36208	50816	30938
Ngear	2618	1998	2023	2043	1961
Nhauls	889	848	865	892	880
Nzero	192	152	110	111	116
Table 4.	Summary data for All sites (All) Exp sets				
	Gillnet $51 / 2$ in.				

Div	(All)
Trip	(All)
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	15873	61163	50734	73531	52666
Ngear	2652	3066	2923	2940	3031
Nhauls	892	1402	1427	1514	1573
Nzero	191	240	233	240	259

Figure 4. Relative length frequency (number at length / amount of gear) for control and experimental gears, (All) Gillnet $5 \mathbf{1 / 2}$ in.

Figure 5 . Average Catch per Unit Effort for Control Sites, (All) Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 6 . Average Catch per Unit Effort for Experimental Sites, (All) Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 5. Summary data for All sites 2J Control Sets Gillinet $51 / 2 \mathrm{in}$.

Div	2 J
Trip	(All)
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1986	1997	1998	1999
Nmeas	75	21	320	237	135
Ngear	323	250	249	204	237
Nhauls	110	115	117	96	114
Nzero	77	99	72	59	72
Table 6.	Summary data for All sites 2J Exp sets				
	Gillnet 5 $1 / 2$ in.				

Div	2 J
Trip	(All)
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1896	1997	1998	1999
Nmeas	47	84	284	227	321
Ngear	323	484	380	323	359
Nhauls	110	228	213	198	227
Nzero	87	191	167	146	165

Figure 7. Relative length frequency (number at length / amount of gear) for control and experimental gears, 2J Gillnet $5 \mathbf{1 / 2}$ in.

Figure 8 . Average Catch per Unit Effort for Control Sites, 2J Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 9 . Average Catch per Unit Effort for Experimental Sites, 2 J Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 7. Summary data for All sites 3 K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	$3 K$
Trip	(All)
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	3724	11684	9245	13644	7811
Ngear	984	704	633	696	773
Nhauls	332	317	298	327	367
Nzero	91	38	36	27	28
Table 8.	Summary data for All sites 3K Exp sets				
	Gillnet 5 $1 / 2$ in.				

Div	3 K
Trip	(All)
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	5436	23145	14680	23347	17611
Ngear	1005	1185	1145	1242	1418
Nhauls	331	586	573	667	746
Nzero	76	33	50	69	72

Figure 10 . Relative length frequency (number at length / amount of gear) for control and experimental gears, 3 K Gillnet $51 / 2 \mathrm{in}$.

Figure 11 . Average Catch per Unit Effort for Control Sites, $3 K$ Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 12 . Average Catch per Unit Effort for Experimental Sites, 3K Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Tabie 9. Summary data for All sites 3L. Control Sets Gillnet $51 / 2 \mathrm{ln}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	9114	24970	26643	36935	22992
Ngear	1311	1044	1141	1143	951
Nhauls	447	416	450	469	399
Nzero	24	15	2	25	16

Table 10.

Div	3 L
Trip	(All)
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	10390	37934	35770	49957	34734
Ngear	1324	1397	1398	1375	1254
Nhauls	451	588	641	649	600
Nzero	28	16	16	25	22

Figure 13. Relative length frequency (number at length / amount of gear) for control and experimental gears, 3L Gillnet $51 / 2 \mathrm{in}$.

Figure 14 . Average Catch per Unit Effort for Control Sites, 3L Gilinet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Figure 15 . Average Catch per Unit Effort for Experimental Sites, 3L Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 11. Summary data for All sites (All) Control Sets Gillnet 3 1/4 in.

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas		11	212	178		
Ngear		1	3	7		
Nhauls		1	3	7		
Nzero		0	0	3		
Table 12.	Summary data for All sites (All) Exp sets					
	Githet 3 $1 / 4$ in.					

Div	(All)
Trip	(All)
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1985	1996	1997	1998	1999
Nmeas		2417	10968	11819	6409
Ngear		31	225	316	297
Nhauls		31	224	316	295
Nzero		0	18	21	50

Figure 16. Relative length frequency (number at length / amount of gear) for control and experimental gears, (All) Gillnet $31 / 4$ in.

Figure 17 . Average Catch per Unit Effort for Control Sites, (All) Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 13. Summary data for All altes 2 J Control Sets Gillinet $31 / 4$ in

Div	2 J
Trip	(All)
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1895	1996	1997	1998	1999
Nmeas		11	203		
Ngear		1	2		
Nhauls		1	2		
Nzero		0	0		
Table 14.	Summary data for All sites 2J Exp sets				
	Gillnet 3 1/4 in.				

Div	2 J
Trip	(All)
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		96	2773	2265	854
Ngear		7	67	89	109
Nhauls		7	66	89	109
Nzero		0	9	12	34

Figure 19. Relative length frequency (number at length / amount of gear) for control and experimental gears, 2 J Gillnet $31 / 4 \mathrm{in}$.

Figure 20 . Average Catch per Unit Effort for Control Sites, 2 J Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 21 Average Catch per Unit Effort for Experimental Sites, 2J Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 15. Summary data for All sites 3 K Control Sets Gillnet $31 / 4 \mathrm{in}$.

Div	$3 K$
Trip	(All)
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			9	87	
Ngear			1	2	
Nhauls			1	2	
Nzero			0	0	
Table 16.					
	Summary data for All sites 3K Exp sets				
	Gillnet 3 1/4 in.				

Div	3K
Trip	(All)
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		1822	2526	3830	2762
Ngear		15	52	107	93
Nhauls		15	52	107	92
Nzero		0	2	7	7

Figure 22. Relative length frequency (number at length / amount of gear) for control and experimental gears, 3 K Gillnet $31 / 4 \mathrm{in}$.

Figure 23 . Average Catch per Unit Effort for Control Sites, 3 K Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 24 . Average Catch per Unit Effort for Experimental Sites, 3K Gillnet $31 / 4$ in. (Number of Fish per Net)

Table 17. Summary data for All sites 3L Control Sets Gillnat $31 / 4 \mathrm{in}$.

Div	3 L
Trip	(All)
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				91	
Ngear			5		
Nhauls				5	
Nzero			3		
Table 18.					
	Summary data for All sites 3L Exp sets				
	Gillnet 3 1/4 in.				

Div	3L
Trip	(All)
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		499	5669	5724	2793
Ngear		9	106	120	95
Nhauls		9	106	120	94
Nzero		0	7	2	9

Figure 25. Relative length frequency (number at length / amount of gear) for control and experimental gears, 3L Gillnet $31 / 4 \mathrm{in}$.

Figure 26 . Average Catch per Unit Effort for Control Sites, 3L Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 27 . Average Catch per Unit Effort for Experimental Sites, 3L Gillnet $3 \mathbf{1 / 4} \mathbf{i n}$. (Number of Fish per Net)

Table 19. Summary data for All sites (All) Control Sets LInetrawl

	Year				
Data	1995	1896	1897	1998	1899
Nmeas	16325	9358	14848	5101	2386
Ngear	144250	81922	70400	45952	21950
Nhauls	406	239	211	142	74
Nzero	50	19	10	12	5
Table 20.	Summary data for All sites (All) Exp sets				
	Linetrawi				

Div	(AII)
Trip	(All)
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1985	1996	1997	1988	1999
Nmeas	20018	13797	18662	7249	2780
Ngear	144475	88200	79200	56114	26375
Nhauls	424	290	245	179	92
Nzero	32	23	11	11	4

Figure 28. Relative length frequency (number at length / amount of gear) for control and experimental gears, (All) Linetrawl

Figure 29 . Average Catch per Unit Effort for Control Sites, (All) Linetrawl (Number of Fish per 1000 hooks)

Figure 30 . Average Catch per Unit Effort for Experimental Sites, (All) Linetrawl (Number of Fish per 1000 hooks)

Table 21. Summary data for All sites 2J Control Sets Linetrawl

Div	2 J
Trip	(All)
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		38	16	15	
Ngear		3000	4200	1000	
Nhauls		9	12	4	
Nzero		2	6	0	
Table 22.	Summary data for All sites 2 J Exp sets				
	Linetrawl				

Div	2 J
Trip	(All)
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		37	5	11	0
Ngear		4000	4950	1000	750
Nhauls		11	12	4	3
Nzero		3	9	1	3

Figure 31. Relative length frequency (number at length / amount of gear) for control and experimental gears, 2 J Linetrawl

Figure 32 . Average Catch per Unit Effort for Control Sites, 2J Linetrawl (Number of Fish per 1000 hooks)

Figure 33 . Average Catch per Unit Effort for Experimental Sites, 2J Linetrawl (Number of Fish per 1000 hooks)

Table 23. Summary data for All sites 3K Control Sets Linetrawi

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	10204	5894	9502	2994	1509
Ngear	66150	38300	36000	25470	15150
Nhauls	222	129	123	83	54
Nzero	22	6	4	6	3

Table 24.

Div	3K
Trip	(All)
Type	(All $)$
Gear	7
Mesh Size	0

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	12477	7686	12899	4023	1585
Ngear	72475	46190	40500	30440	16825
Nhauls	243	173	145	101	62
Nzero	12	9	2	3	0

Figure 34 . Relative length frequency (number at length / amount of gear) for control and experimental gears, 3K Linetrawl

Figure 35 . Average Catch per Unit Effort for Control Sites, 3K Linetrawl (Number of Fish per 1000 hooks)

Figure 36 . Average Catch per Unit Effort for Experimental Sites, 3K Linetrawl (Number of Fish per 1000 hooks)

Table 25. Summary data for All sltes 3L Control Sets Linetrawl

Div	3L
Trip	(All)
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	6121	3426	5330	2092	877
Ngear	78100	40622	30200	19482	6800
Nhauls	184	101	76	55	20
Nzero	28	11	0	6	2
Summary data for All sites 3L Exp sets					
	Linetrawl				

Div	3 L
Trip	(All)
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	7541	6074	5758	3215	1195
Ngear	72000	38010	33750	24674	8800
Nhauls	181	106	88	74	27
Nzero	20	11	0	7	1

Figure 37. Relative length frequency (number at length / amount of gear) for control and experimental gears, 3L Linetrawl

Figure 38 . Average Ciatch per Unit Effort for Control Sites, 3L Linetrawl (Number of Fish per 1000 hooks)

Figure 39 . Average Catch per Unit Effort for Experimental Sites, 3L Linetrawl (Number of Fish per 1000 hooks)

Table 27. Summary data for (Ali) 1 rap

	Year						
Cata	1985	1996	1997	1988	1999		
N/meas	21310	32511	34217	33183	6270		
Ngear	667	691	672	681	107		
Nhauls	667	691	672	681	107		
Nzero	166	132	156	138	44		

Figure $\quad 40$. Relative length frequency (number at length / amount of gear) for control and experimental gears, (All) Trap

Figure 45 . Average Catch per Unit Effort for Control Sites. 3K Trap (Estimated Weight per Haul)

2 J3KL

Figure 48. Relative Length frequenies for trap (number at length scaled to number of times the trap was hauled) broken down by NAFO subdivision and year.

Figure 49. Relative length frequency (number at length / amount of gear) for control and experimental gears, Black Tickle Gillnet $51 / 2 \mathrm{in}$.

Figure 50 . Average Catch per Unit Effort for Control Sites, Black Tickle Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 51 . Average Catch per Unit Effort for Experimental Sites, Black Tickle Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 33. Summary data for Williams Harbour 2.J
Control Sets Gillnet $51 / 2 \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	54	7	47	3	2
Ngear	81	48	52	36	27
Nhauls	27	16	18	12	9
Nzero	7	10	7	11	7

Table 34.

Div	2 J
Trip	72
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	15	19	9	14	40
Ngear	81	96	68	64	47
Nhauls	27	32	29	28	21
Nzero	20	22	27	23	13

Figure 52. Relative length frequency (number at length / amount of gear) for control and experimental gears, Williams Harbour Gillnet $51 / 2 \mathrm{in}$.

Figure 53 . Average Catch per Unit Effort for Control Sites, Williams Harbour Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 54 . Average Catch per Unit Effort for Experimental Sites, Williams Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 35. Summary data for Tub Harbour 2J Control Sets Gilinet $51 / 2 \mathrm{In}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	4	0	5	36	17
Ngear	33	14	7	8	18
Nhauls	11	5	4	4	9
Nzero	9	5	2	1	3

Table 36. Summary data for Tub Harbour 2J Exp

Div	2 J
Trip	76
Type	(All)
Gear	5
Mesh Size	5.5

	Year						
Data	1995	1996	1997	1998	1999		
Nmeas	1	0	2	3	19		
Ngear	33	13	13	12	27		
Nhauls	11	5	8	8	18		
Nzero	10	5	6	5	10		

Figure 55. Relative length frequency (number at length / amount of gear) for control and experimental gears, Tub Harbour Gillnet $51 / 2 \mathrm{in}$.

Figure 56 . Average Catch per Unit Effort for Control Sites. Tub Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 57 . Average Catch per Unit Effort for Experimental Sites, Tub Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 37. Summary data for Triangle 2J Control Sets GIllinet $51 / 2 \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	2	4	55	39	8
Ngear	33	14	16	14	32
Nhauls	11	7	8	7	16
Nzero	9	4	0	2	12
Table 38.	Summary data for Triangle 2 J Exp sets				
	Gillnet 5 $1 / 2 \mathrm{in}$.				

Div	2 J
Trip	75
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	12	26	77	99	134
Ngear	36	32	22	23	47
Nhauls	12	16	14	15	31
Nzero	11	11	4	3	21

Figure 58. Relative length frequency (number at length / amount of gear) for control and experimental gears, Triangle Gillnet 5 1/2 in.

Figure 59 . Average Catch per Unit Effort for Control Sites, Triangle Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Table 39. Summary data for Penny's Harbour 2 J Control Sets Gillnet 5 1/2 in.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	3	1	2	8	6
Ngear	62	32	32	32	32
Nhauls	23	16	16	16	16
Nzero	21	15	14	10	10
Table 40. Summary data for Penny's Harbour 2J					
	Exp sets Gillnet 5 $1 / 2$ in.				

Div	2 J
Trip	74
Type	(Ali)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	3	2	69	11	26
Ngear	59	62	47	45	48
Nhauls	22	32	26	30	32
Nzero	19	30	20	26	25

Figure 61 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Penny's Harbour Gillnet $51 / 2$ in.

Figure 62 . Average Catch per Unit Effort for Control Sites, Penny's Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 63 . Average Catch per Unit Effort for Experimental Sites, Penny's Harbour Gillnet $51 / 2$ in. (Number of Fish per Net)

Table 41. Summary data for St. Lewls 2J Control Sets Gillnet $5 \mathbf{1 / 2}$ in.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		3	0	1	4
Ngear		48	48	26	32
Nhauls		24	24	13	16
Nzero	21				24
Table 42.	Summary data for St. Lewis 2J Exp sets				

Gillnet 5 1/2 in.

Div	2 J
Trip	81
Type	(All $)$
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		7	19	18	5
Ngear		96	80	43	46
Nhauls		48	46	26	30
Nzero		42	40	22	26

Figure 64 . Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Lewis Gillnet $51 / 2$ in.

Figure 65 . Average Catch per Unit Effort for Control Sites, St. Lewis Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 66 . Average Catch per Unit Effort for Experimental Sites, St. Lewis Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 43. Summary data for Spear Harbour 2J Control Sets Gillnet $51 / 2$ in.

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas	9	3	197	92	84	
Ngear	72	46	46	46	32	
Nhauls	24	23	23	23	16	
Nzero	20	22	8	15	5	
Table 44.	Summary data for Spear Harbour 2J Exp					
	sets Gillnet $51 / 2$ in.					

Div	2 J
Trip	67
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	1998	1999
Nmeas	11	24	104	70	84
Ngear	72	89	78	72	48
Nhauls	24	47	45	48	32
Nzero	17	36	29	30	15

Figure 67 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Spear Harbour Gillnet $51 / 2 \mathrm{in}$.

Figure 68 . Average Catch per Unit Effort for Control Sites, Spear Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 69 . Average Catch per Unit Effort for Experimental Sites. Spear Harbour Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 45. Summary data for Cape Charles 2J
Control Sets Gillnet $51 / 2$ in.

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas	3	2	2	2	7	
Ngear	42	16	16	16	32	
Nhauls	14	8	8	8	16	
Nzero	11	7	6	6	11	
Table 46.	Summary data for Cape Charles 2J Exp					
	sets Gillnet $51 / 2$ in.					

Div	2 J
Trip	71
Type	(All $)$
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	5	1	2	0	7
Ngear	42	32	27	24	48
Nhauls	14	16	15	16	31
Nzero	10	15	13	16	27

Figure 70. Relative length frequency (number at length / amount of gear) for control and experimental gears, Cape Charles Gillnet $51 / 2 \mathrm{in}$.

Figure 71 . Average Catch per Unit Effort for Control Sites, Cape Charles Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 72 . Average Catch per Unit Effort for Experimental Sites, Cape Charles Gillnet $51 / 2$ in. (Number of Fish per Net)

rable 47. Summary data for Lunare 3 K Control Sets Gillinet $51 / 2 \mathrm{in}$.

Oiv	$3 K$
Trip	32
Type	F
Gear	5
Mesh Size	5.5

	Year					
Data	1995	1996	1997	1898	1999	
Nmeas	67	151	32	60	260	
Ngear	57	34	30	28	40	
Nhauls	19	17	15	14	20	
Nzero	5	6	9	5	6	
Table 48.	Summary data for Lunaire 3K Exp sets					
	Gillnet 5 $1 / 2$ in.					

Div	$3 K$
Trip	32
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	18	393	184	120	465
Ngear	57	67	59	55	78
Nhauls	19	34	30	32	40
Nzero	8	8	6	14	13

Figure $\quad 73$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Lunaire Gillnet $51 / 2 \mathrm{in}$.

Figure $\quad 74$. Average Catch per Unit Effort for Control Sites, Lunaire Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 75$. Average Catch per Unit Effort for Experimental Sites, Lunaire Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 49. Summary data for Great Brohat 3K Control Sets Gillnet 5 1/2 in.

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas	43	106	62	107	62	
Ngear	81	48	46	46	20	
Nhauls	27	24	23	23	10	
Nzero	17	8	9	10	7	
Table 50.	Summary data for Great Brehat 3K Exp					
	sets Gillnet $51 / 2$ in.					

	Year				
Data	1895	1996	1997	1998	1999
Nmeas	51	267	115	343	33
Ngear	84	96	84	88	40
Nhauls	28	48	42	47	20
Nzero	18	7	16	13	13

Figure 76 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Great Brehat Gillnet 5 1/2 in.

Figure $\quad 77$. Average Catch per Unit Effort for Control Sites, Great Brehat Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 78 . Average Catch per Unit Effort for Experimental Sites, Great Brehat Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 51. Summary data for Goose Cove 3K Control Sets Gillinet $5 \mathbf{1 / 2} \mathbf{~ i n .}$

Div	$3 K$
Trjp	54
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		11	7	41	7
Ngear		16	24	16	12
Nhauls		8	12	8	6
Nzero		5	8	1	3

Div	$3 K$
Trip	54
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1095	1996	1997	1998	1999
Nmeas		99	186	616	1195
Ngear		30	76	96	80
Nhauls		15	38	48	40
Nzero		2	6	8	6

Figure 79. Relative length frequency (number at length / amount of gear) for control and experimental gears, Goose Cove Gillnet $5 \mathbf{1 / 2}$ in.

Figure 80 . Average Catch per Unit Effort for Control Sites, Goose Cove Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Figure 81 . Average Catch per Unit Effort for Experimental Sites, Goose Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 53. Summary data for Conche 3K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	3 K
Trip	16
Type	F
Gear	5
Mesh Size	5.5

	Year								
Data	1995	1996	1997	1998	1999				
Nmeas	25	151	91	141	274				
Ngear	57	30	32	32	40				
Nhauls	19	15	16	16	20				
Nzero	14	1	1	2	4				
Table 54.									
	Summary data for Conche 3K Exp sets								
	Gillnet $51 / 2$ in.								

Div	3 K
Trip	16
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	$\mathbf{1 9 9 6}$	$\mathbf{1 9 8 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$
Nmeas	65	521	219	$\mathbf{4 8 1}$	494
Ngear	57	64	62	64	80
Nhauls	19	32	31	32	40
Nzero	10	1	3	2	8

Figure $\quad 82$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Conche Gillnet $51 / 2 \mathrm{in}$.

Figure 83. Average Catch per Unit Effort for Control Sites, Conche Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 84 . Average Catch per Unit Effort for Experimental Sites, Conche Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 56. Summary data for Englee 3K Control Sats GIIInot $51 / 2 \mathrm{in}$.

Dlv	$3 K$
Trip	22
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1095	1996	1987	1998	1999
Nmeas	34	207	94	371	192
Ngear	60	34	32	32	32
Nhauls	20	16	16	16	16
Nzoro	9	1	2	5	0
Table 56.	Summary Gillnet $51 /$	ata for in.	glee	Exp	

Div	$3 K$
Trip	22
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	25	398	281	292	615
Ngear	60	62	62	55	58
Nhauls	20	30	31	32	32
Nzero	15	3	3	13	2

Figure 85. Rolative length frequency (number at length / amount of gear) for control and experimental gears, Englee Gillnet 5 1/2 in.

Figure 86 . Average Catch per Unit Effort for Control Sites, Englee Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Flgure 87 . Average Catch per Unit Effort for Experimental Sites, Englee Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Dly	$3 K$
Tfip	53
Type	F
Gear	5
Mesh size	5.5

	Year									
Data	1996	1996	1997	1998	1899					
Nmeas	19	60	65	271	107					
Noear	54	32	26	28	32					
Nhauls	18	15	13	14	16					
Nzero	7	6	2	1	3					

Div	$3 K$
Trip	53
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1097	1998	1999
Nmaas	353	736	347	861	336
Ngear	54	62	44	49	52
Nhauls	18	30	25	28	30
Nzero	4	1	2	5	5

Figure 88, Relative length frequency (number at length / amount of gear) for control and experimental gears, Harbour Deep Gillnet $5 \mathbf{1 / 2}$ in.

Figure 89 . Average Catch per Unit Effort for Control Sites, Harbour Deep Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 90$. Average Catch par Unit Effort for Experimental Sites, Harbour Deep Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 58. Summary data for Jackson's Arm 3K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	3 K
Trip	65
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	247	2856	1191	1224	197
Ngear	63	80	65	83	52
Nhauls	21	38	33	48	30
Nzero	1	4	2	5	3

Figure $\quad 91$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Jackson's Arm Gillnet $51 / 2$ in.

Figure 92 . Average Catch per Unit Effort for Control Sites, Jackson's Arm Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 61. Summary data for Coachman's Cove 3 K Control Sels Gilinet 5 1/2 in.

Div	$3 K$
Trip	15
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1897	1998	1989
Nmeas	27	383	253	302	169
Ngear	30	16	20	20	26
Nhauls	10	8	10	10	13
Nzero	7	0	0	0	0

Div	$3 K$
Trip	15
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	88	1139	1101	1234	419
Ngear	30	32	50	53	63
Nhauls	10	16	28	30	36
Nzaro	4	0	0	2	2

Figure 94. Relative length frequency (number at length / amount of gear) for control and experimental gears, Coachman's Cove Gilinet $51 / 2$ in.

Figure 95 . Average Catch per Unit Effort for Control Sites, Coachman's Cove Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 96 . Average Catch per Unit Effort for Experimental Sites, Coachman's Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 03. Summary data for Ming's Bight 3 K Control Sets Gilinet $51 / 2 \mathrm{in}$.

Dlv	$3 K$
Trip	20
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				129	53
Ngear			10	18	
Nhauls			5	9	
Nzero			0	1	

Div	$3 K$
Trip	20
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				420	443
Ngear				26	54
Nhauls				12	23
Nzero				0	1

Figure $\quad 97$, Relative length frequency (number at length / amount of gear) for control and experimental gears, Ming's Bight Gillnet $51 / 2$ in.

Figure $\quad 98$. Average Catch per Unit Effort for Control Sites, Ming's Bight Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 99$. Average Catch per Unit Effort for Experimental Sites, Ming's Bight Gilinet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Table 65. Summary data for La Scle 3K Control Sets Gillnet 5 t/2 in.

Div	$3 K$
Trip	66
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1896	1997	1988	1999
Nmeas		353	112	863	325
Ngear		12	10	10	16
Nhauls		6	6	6	8
Nzero		0	0	0	0
Table 66	Summary data for La Scie 3K Exp sets Gillnet $51 / 2 \mathrm{in}$.				

Dly	$3 K$
Trip	66
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		488	218	1411	455
Ngear		24	23	23	28
Nhauls		12	12	12	16
Nzero		0	1	0	0

Figure 100 . Relative length frequency (number at length / amount of gear) for control and experimental gears, La Scie Gillnet $51 / 2$ in.

Figure 101 . Average Catch par Unit Effort for Control Sites, La Scie Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 67. Summary data for Shoe Cove 3 K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	3 K
Trip	35
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		200	207	241	517
Ngear		12	10	10	20
Nhauls		6	5	5	10
Nzero		0	0	0	0
Table 68.	Summary data for Shoe Cove 3K Exp				
	sets Gillnet $51 / 2$ in.				

Div	$3 K$
Trip	35
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$
Nmeas		457	157	485	529
Ngear		24	20	24	40
Nhauls		12	10	12	20
Nzero		0	1	0	1

Figure 103. Relative length frequency (number at length / amount of gear) for control and experimental gears, Shoe Cove Gillnet $51 / 2$ in.

Figure 104 . Average Catch per Unit Effort for Control Sites, Shoe Cove Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure $\quad 105$. Average Catch par Unit Effort for Experimental Sites, Shoe Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Div	3 K
Trip	48
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	701	1916	2037	2090	547
Ngear	87	72	72	72	48
Nhauls	29	24	24	24	16
Nzero	3	0	1	0	0
Table 70.	Summary Exp sets	ata for ilnet 5	mith's 2 in.	arbou	

Div	3 K
Trip	48
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	764	1152	1431	1515	389
Ngear	90	81	74	72	48
Nhauls	30	40	38	48	32
Nzero	3	1	3	1	3

Figure 106. Relative length frequency (number at length / amount of gear) for control and experimental gears, Smith's Harbour Gillnet $51 / 2$ in.

Figure 107 . Average Catch per Unit Effort for Control Sites, Smith's Harbour Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 108 . Average Catch per Unit Effort for Experimental Sites, Smith's Harbour Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 71. Summary dala for Jackson's Cove 3 K
Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	$3 K$
Trip	60
Type	F
Gear	5
Mesh Size	5.5

	Year						
Data	1995	1996	1997	1998	1999		
Nmeas	778	1171	1473	2120	350		
Ngear	84	72	72	65	46		
Nhauls	28	24	24	24	16		
Nzero	1	7	1	0	1		

Div	$3 K$
Trip	60
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1029	1364	1333	1614	474
Ngear	84	72	72	79	50
Nhauls	28	24	24	24	16
Nzero	1	1	0	3	1

Figure 109. Relative length frequency (number at length / amount of gear) for control and experimental gears, Jackson's Cove Gillnet $51 / 2$ in

Figure 110 . Average Catch per Unit Effort for Control Sites, Jackson's Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 111 . Average Catch per Unit Effort for Experimental Sites, Jackson's Cove Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Div	3 K
Trip	38
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	797	1620	2046	1646	213
Ngear	84	74	96	85	56
Nhauls	28	44	47	47	32
Nzero	0	1	1	1	1

Figure 112. Relative length frequency (number at length / amount of gear) for control and experimental gears, Miles Cove Gillnet $51 / 2$ in.

Figure 113 . Average Catch per Unit Effort for Control Sites, Miles Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 114 . Average Catch per Unit Effort for Experimental Sites, Miles Cove Gillnet $51 / 2$ in. (Number of Fish per Net)

Table 75. Summary data for Summeriord 3K Control Sets Gillnet $51 / 2$ in.

Div	3 K
Trip	57
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1895	1996	1997	1998	1998
Nmeas	860	1055	1367	1557	544
Ngear	90	48	48	46	52
Nhauls	30	24	24	23	26
Nzero	0	0	0	0	1
Table 76.	Summary data for Summerford 3K Exp sets Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$.				

Div	$3 K$
Trip	57
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	697	1890	1985	2095	763
Ngear	90	91	83	80	91
Nhauls	30	48	47	46	52
Nzero	1	0	0	0	6

Figure 115 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Summerford Gillnet $5 \mathbf{1 / 2}$ in.

Figure 116 . Average Catch per Unit Effort for Control Sites, Summerford Gilnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 117 . Average Catch per Unit Effort for Experimental Sites, Summerford Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Figure 118. Relative length frequency (number at length / amount of gear) for control and experimental gears, Durrell Gillnet 5 1/2 in.

Figure 119 . Average Catch per Unit Effort for Control Sites, Durrell Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 120 . Average Catch per Unit Effort for Experimental Sites, Durrell Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

rable 79. Summary data for Too Good Arm 3K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Dlv	$3 K$
Trip	13
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1895	1996	1997	1998	1899
Nmeas	293	626	493	639	187
Ngear	60	32	29	32	28
Nhauls	20	16	15	16	14
Nzero	1	0	0	0	0
Table 80.	Summary data for Too Good Arm 3K Exp sets Gillnet $51 / 2 \mathrm{in}$.				

Div	$3 K$
Trip	13
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1898	1998
Nmeas	508	2855	973	1514	453
Ngear	57	64	51	52	50
Nhauls	19	32	29	30	28
Nzero	0	0	0	0	1

Figure 121. Relative length frequency (number at length / amount of gear) for control and experimental gears, Too Good Arm Gillnet 5 1/2 in.

Figure 122 . Average Catch per Unit Effort for Control Sites, Too Good Arm Gillinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 123 . Average Catch per Unit Effort for Experimental Sites, Too Good Arm Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Figure 124 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Deep Bay Gillnet $51 / 2$ in.

Figure 125 . Average Catch per Unit Effort for Control Sites, Deep Bay Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 83. Summary data for Fogo 3K Control Sets Gillnet 5 1/2 ln

Div	$3 K$
Trip	88
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1896	1897	1998	1999
Nmeas					308
Ngear			31		
Nhauls			16		
Nzero					

Div	$3 K$
Trip	88
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					1533
Ngear					60
Nhauls				32	
Nzero					

Figure 127 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Fogo Gillinet $51 / 2$ in.

Figure $\quad 128$. Average Catch per Unit Effort for Control Sites, Fogo Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 129 . Average Catch per Unit Effort for Experimental Sites, Fogo Gilinet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Div	$3 K$
Trp	29
Type	F
Gear	5
Mesh Slze	5.5

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas	54	454	17	270	383	
Ngear	12	12	4	18	46	
Nhauls	4	6	2	9	23	
Nzero	0	1	1	1	1	
Table 86.	Summary data for Joe Batt's Arm 3K Exp					
	sets Glllnet $51 / 2 \mathrm{in}$.					

Div	3 K
Trip	29
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1895	1996	1997	1998	1999
Nmeas	10	1671	0	492	820
Ngear	12	20	4	28	77
Nhauls	4	10	2	16	44
Nzero	0	0	2	0	2

Figure 130. Relative length frequency (number at length / amount of gear) for control and experimental gears, Joe Batt's Arm Gillnet $51 / 2 \mathrm{in}$.

Figure $\quad 131$. Average Catch per Unit Effort for Control Sites, Joe Batt's Arm Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

[^0]

Table 87. Summary data for Tiliting 3K Control Sets Gillnet $5 \mathbf{1 / 2} \mathbf{~ I n}$

Dlv	3 K
Trip	31
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	44	512	182	454	1035
Ngear	18	22	20	20	50
Nhauls	6	11	10	10	25
Nzero	1	0	0	0	0
Table 88.	Summary data for Tilling 3K Exp sets				
	Gillinet 5 $1 / 2 \mathrm{in}$.				

Div	$3 K$
Trip	31
Typa	(Ali)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1096	1997	1998	1999
Nmeas	42	645	304	1083	2943
Ngear	18	38	38	35	92
Nhauls	6	19	19	20	50
Nzero	2	0	1	0	1

Figure 133. Relative length frequency (number at length / amount of gear) for control and experimental gears, Tilting Gillnet $51 / 2$ in.

Figure 134 . Average Catch per Unit Effort for Control Sites, Tilting Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 138. Relative length frequency (number at length / amount of gear) for control and experimental gears, Seldom Gillnet $51 / 2 \mathrm{in}$.

Table 89. Summary data for Seldom 3K Control Sets Gillnet $51 / 2 \mathrm{in}$.

Div	3 K
Trp	17
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1988	1999
Nmeas	73	218	49	294	326
Ngear	54	28	12	28	48
Nhauls	18	14	6	14	24
Nzero	7	0	0	1	0
Table 8	Summary data for Seldom 3K Exp sets Gillnet 5 1/2 in.				

Div	$3 K$
Trip	17
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	73	980	210	1484	1867
Ngear	54	54	22	38	90
Nhauls	18	27	11	23	45
Nzero	5	1	0	0	1

Figure 137 . Average Catch per Unit Effort for Control Sites, Seldom Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 01. Summary data for Aspen Cove 3K Control Sets Gillnet $51 / 2 \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		594	50	320	133
Ngear		20	14	16	20
Nhauls		10	7	8	10
Nzero		0	0	0	0

Div	$3 K$
Trip	33
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		613	398	722	310
Ngear		38	40	32	40
Nhauls		19	20	16	20
Nzero		1	1	0	1

Figure $\quad 139$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Aspen Cove Gillnet $51 / 2$ in.

Figure $\quad 140$. Average Catch per Unit Effort for Control Sites, Aspen Cove Gillinet $5 \mathbf{1 / 2} \mathrm{in}$. (Number of Fish per Net)

Trable 93. Summary data for Lumsden 3 K Control Sets Gillnet 5 1/2 in.

	Year				
Data	1996	1996	1997	1998	1999
Nmaas	330	1700	506	1095	471
Ngear	30	32	38	32	28
Nhauls	10	16	18	16	14
Nzero	0	0	0	0	0
Table 94.					
	Summary data for Lumsden 3K Exp sets				
	Gillnet 5 $1 / 2$ in.				

Div	$3 K$
Trip	37
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	338	2404	1558	1996	929
Ngear	30	64	70	64	56
Nhauls	10	32	34	32	28
Nzero	0	0	0	0	0

Figure 142 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Lumsden Gillnet $51 / 2$ in

Figure 143 . Average Catch per Unit Effort for Control Sites, Lumsden Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 144 . Average Catch per Unit Effort for Experimental Sites, Lumsden Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

$\left[\begin{array}{r}- \\ \cdots-98 \\ --97 \\ \cdots-98 \\ \cdots-99\end{array}\right]$
Table 95. Summary data for Wesleyville 3L. Control Sets Gillinet $51 / 2 \mathrm{ln}$.

Div	$3 L$
Trip	41
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1095	1996	1997	1998	1999
Nmeas	203	819	892	987	766
Ngear	30	32	36	32	24
Nhauls	10	16	18	16	12
Nzero	0	0	0	0	0

Div	$3 L$
Trip	41
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	$\mathbf{1 9 9 9}$
Nmeas	398	1348	1788	1664	1672
Ngear	30	62	56	47	40
Nhauls	10	31	36	31	26
Nzero	0	0	0	0	0

Figure 145. Relative length frequency (number at length / amount of gear) for control and experimental gears, Wesleyville Gillnet $51 / 2 \mathrm{in}$.

Figure $\quad 146$. Average Catch per Unit Effort for Control Sites, Wesleyville Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 147 . Average Catch per Unit Effort for Experimental Sites, Wesleyville Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 97. Summary data for Centreville 3L Control Sets Gillnet $51 / 2 \mathrm{in}$.

	Year				
Data	1995	1896	1997	1998	1999
Nmeas	891	825	1148	744	256
Ngear	56	48	48	48	30
Nhauls	20	16	16	16	10
Nzero	0	0	0	0	0
Table 98.	Summary data for Centreville 3L Exp sets Gillnet 5 1/2 in.				

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	712	748	862	691	191
Ngear	56	42	48	48	30
Nhauls	20	14	16	16	10
Nzoro	0	0	1	0	0

Figure 148. Relative length frequency (number at length / amount of gear) for control and experimental gears, Centreville Gillnet $51 / 2 \mathrm{in}$.

Figure 149 . Average Catch per Unit Effort for Control Sites, Centreville Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Figure 150 . Average Catch per Unit Effort for Experimental Sites, Centreville Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 90. Summary data for St Chad's 3L. Control Sets Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$.

	Year				
Data	1995	1986	1997	1998	1999
Nmeas	515	1585	1647	2139	
Ngear	90	84	83	82	
Nhauls	30	36	37	34	
Nzero	1	3	1	0	

Figure 151 . Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Chad's Gillnet $51 / 2$ in.

Figure 152 . Average Catch per Unit Effort for Control Sites, St. Chad's Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure
Average Catch per Unit Effort for Experimental Sites, St. Chad's Gillnet $51 / 2$ in. (Number of Fish per Net)

Table 101. Surmmary data for Plate Cove West 3 L . Control Sets Gillnet 5 1/2 in.

Div	$3 L$
Trip	44
Type	F
Gear	5
Mesh Size	5.5

Year					
Data	1995	1996	1997	1998	1999
Nmeas	552	794	1780	2285	619
Ngear	39	33	32	32	28
Nhauls	13	16	16	16	14
Nzero	0	1	0	0	0

Div	$3 L$
Trip	44
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	267	1768	1567	2170	982
Ngear	42	62	51	56	48
Nhauls	14	30	29	32	27
Nzero	0	2	2	5	2

Figure 154. Relative length frequency (number at length / amount of gear) for control and experimental gears, Plate Cove West Gillnet $51 / 2$ in.

Figure 155 . Average Catch per Unit Effort for Control Sites, Plate Cove West Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 156 . Average Catch per Unit Effort for Experimental Sites, Plate Cove West Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 103. Summary data for Bonavista 32 Control Sets Gillnet $51 / 2 \mathrm{in}$

Dlv	$3 L$
Trip	64
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1998
Nmeas		953	884	1545	1779
Ngear		32	16	16	25
Nhauls		16	8	8	13
Nzero		1	0	0	0

Table 104.

Div	3 L
Trip	64
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		1662	675	1352	1788
Ngear		48	16	16	33
Nhauls		24	8	8	17
Nzero		0	0	0	0

Figure 157. Relative length frequency (number at length / amount of gear) for control and experimental gears, Bonavista Gillnet $51 / 2$ in.

Figure 158 . Average Catch per Unit Effort for Control Sites, Bonavista Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 159 . Average Catch per Unit Effort for Experimental Sites, Bonavista Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

	Year				
Data	1995	1896	1997	1998	1999
Nmeas	1582	2438	3377	3339	2475
Ngear	84	36	46	36	22
Nhauls	30	24	23	24	18
Nzero	0	0	0	0	0

Table 106. Summary data for Little Catalina 3L Exp

Div	3 3
Trip	26
Type	(All)
Gear	5
Mesh Slze	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1772	4090	2564	3157	1043
Ngear	83	58	49	40	11
Nhauls	30	35	31	30	10
Nzero	0	0	0	0	0

Figure 160. Relative length frequency (number at length / amount of gear) for control and experimental gears, Little Catalina Gillnet $51 / 2$ in.

Figure 161 . Average Catch per Unit Effort for Control Sites, Little Catalina Gillnet $5 \mathbf{1 / 2} \mathbf{i n .}$. (Number of Fish per Net)

Figure 162 Average Catch per Unit Effort for Experimental Sites, Little Catalina Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 107. Summary data for Petey 3L Control Sets Gillnet $5 \mathbf{1 / 2} \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1085	2341	2846	2496	2748
Ngear	60	60	56	36	59
Nhauls	20	32	32	22	34
Nzero	0	0	0	0	0

Figure $\quad 163$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Petley Gillnet $51 / 2 \mathrm{in}$.

Figure 164 . Average Catch per Unit Effort for Control Sites, Petley Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 165$. Average Catch per Unit Effort for Experimental Sites, Petley Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 109.
Sets Gillnet $51 / 2 \mathrm{im}$

	Year				
Data	1996	1996	1897	1998	1999
Nmeas	194	1391	1829	782	314
Ngear	90	96	92	88	64
Nhauls	30	48	46	44	32
Nzero	4	2	1	3	4

Figure 166. Relative length frequency (number at length / amount of gear) for control and experimental gears, Thornlea Gillnet $51 / 2$ in.

Figure $\quad 167$. Average Catch per Unit Effort for Control Sites, Thornlea Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 168 . Average Catch per Unit Effort for Experimental Sites, Thornlea Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 111. Summary data for Hopeall IL Control Sets Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$.

Div	3L
Trip	27
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	40	468	237	408	208
Ngear	60	48	48	48	48
Nhauls	20	16	16	16	16
Nzero	3		0	0	0

Div	3 L
Trip	27
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1996	1997	1998	1999
Nmeas	130	624	593	952	403
Noear	60	48	47	48	48
Nhauls	20	16	16	16	16
Nzero	0	0	0	0	0

Figure 169. Relative length frequency (number at length / amount of gear) for control and experimental gears, Hopeall Gillnet $51 / 2$ in.

Figure $\quad 170$. Average Catch per Unit Effort for Control Sites, Hopeall Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 171 . Average Catch per Unit Effort for Experimental Sites, Hopeall Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 113. Summary data for Hearts Content 3 L. Control Sets Gillinet $51 / 2 \mathrm{in}$.

Div	$3 L$
Trp	50
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		843	506	1957	790
Ngear		24	8	24	24
Nhauls		8	4	12	12
Nzero		0	0	0	1

	Year				
Data	1995	1996	1997	1988	1999
Nmeas		411	698	1666	793
Ngear		24	12	36	36
Nhauls		8	8	24	24
Nzero		0	0	1	2

Figure 172. Relative length frequency (number at length / amount of gear) for control and experimental gears, Heart's Content Gillnet $5 \mathbf{1 / 2}$ in.

Figure 173 . Average Catch per Unit Effort for Control Sites, Heart's Content Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Figure $\quad 174$. Average Catch per Unit Effort for Experimental Sites, Heart's Content Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 115. Summary data for Bay do Verde 3 . Control Sets Gilinet 5 1/2 $\mathbf{i n}$.

Div	3 L
Trip	79
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1996	1997	1998	1989
Nmeas		954	850	3283	1333
Ngear		22	26	26	28
Nhauls		11	13	13	14
Nzero	0				

Div	3L
Trip	79
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		1217	1852	3366	1750
Ngear		36	48	24	46
Nhauls		18	27	14	26
Nzero		0	0	0	0

Figure 175 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Bay de Verde Gillnet $5 \mathbf{1 / 2}$ in.

Figure 176 . Average Catch per Unit Effort for Control Sites, Bay de Verde Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 177 . Average Catch per Unit Effort for Experimental Sites, Bay de Verde Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	92	639	410	1542	515
Ngear	60	50	64	64	64
Nhauls	20	25	32	32	32
Nzero	3	1	3	0	0

Figure 178 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Ochre Pitt Cove Gilinet $5 \mathbf{1 / 2}$ in.

Figure 179 . Average Catch per Unit Effort for Control Sites, Ochre Pitt Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 180 . Average Catch per Unit Effort for Experimental Sites, Ochre Pitt Cove Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 119. Summary data for Carbonear 3L Control Sels Gillnet $51 / 2 \mathrm{in}$.

	Year					
Data	1995	1996	1997	1998	1999	
Nmeas	270	781	518	1237	263	
Ngear	57	38	36	40	30	
Nhauls	19	18	18	20	14	
Nzero	0	0	0	0	0	
Table 120.						
	Summary data for Carbonear 3L. Exp sets					
	Gillnet 5 1/2 in.					

Div	3 L
Trip	55
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1897	1998	1999
Nmaas	249	1097	715	1639	463
Ngear	60	69	70	80	54
Nhauls	20	34	35	40	26
Nzero	1	1	1	1	1

Figure 181. Relative length frequency (number at length / amount of gear) for control and experimental gears, Carbonear Gillnet $51 / 2$ in.

Figure
182. Average Catch per Unit Effort for Control Sites, Carbonear Gillnet $51 / 2$ in. (Number of Fish per Net)

Figure 183 . Average Catch per Unit Effort for Experimental Sites, Carbonear Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 121. Summary data for Port de Grave 3L Control Sets Gillnet 5 1/2 ln .

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	54		429	1031	583
Ngear	60		32	32	32
Nhauls	20		16	16	16
Nzero	5	0	0	0	
Table 122.					
	Summary data for Port de Grave 3L Exp				
	sets Gillnet 5	$1 / 2$ in.			

Div	3L
Trip	36
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	54		1741	2862	1472
Ngear	60		64	64	64
Nhauls	20		32	32	32
Nzero	4		1	0	0

Figure 184 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Port de Grave Gillnet $5 \mathbf{1 / 2}$ in.

Figure 185 . Average Catch per Unit Effort for Control Sites, Port de Grave Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 186 . Average Catch per Unit Effort for Experimental Sites, Port de Grave Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 123. Summary data for Foxtrap 3L. Control Sets Gillnet 5 1/2 in.

Dlv	3L
Trip	51
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1996	1896	1997	1898	1999
Nmeas	80	1464	991	2087	1073
Ngear	48	54	48	48	42
Nhauls	16	18	16	16	14
Nzero	0	0	0	0	0

Div	$3 L$
Trip	51
Type	(All)
Geer	5
Mesh Size	5.5

	Year				
Data	1896	1996	1997	1998	1999
Nmas	72	1139	730	1449	853
Ngear	48	55	32	32	28
Nhauls	16	19	16	16	14
Nzero	2	0	0	0	0

Figure 187. Relative length frequency (number at length / amount of gear) for control and experimental gears, Foxtrap Gillnet $51 / 2 \mathrm{in}$.

Figure
188. Average Catch per Unit Effort for Control Sites, Foxtrap Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 189 . Average Catch per Unit Effort for Experimental Sites, Foxtrap Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 190 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Pouch Cove Gillnet $51 / 2$ in.

Figure 191 . Average Catch per Unit Effort for Control Sites, Pouch Cove Gillnet $5 \mathbf{1 / 2} \mathbf{i n .}$ (Number of Fish per Net)

Table 127. *N/A

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					2530
Ngear					60
Nhauls					30
Nzero			0		

Figure 193 \#N/A

Figure
194 \#N/A

Figure 195 \#N/A

Table 129. Summary data for Bay Bulls 3L Control Sets Gillnet 5 1/2 in.

Div	3L
Trip	69
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1896	1997	1998	1999
Nmeas	271	771	855	705	526
Ngear	87	66	60	48	32
Nhauls	29	22	24	24	16
Nzero	2	3	1	1	0

Figure 198. Relative length frequency (number at length / amount of gear) for control and experimental gears, Bay Bulls Gillnet $51 / 2$ in.

Figure 197 Average Catch per Unit Effort for Control Sites, Bay Bulls Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Figure 198 . Average Catch per Unit Effort for Experimental Sites, Bay Bulls Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 131. Summary data for Bay Bulls 3L Control Sets GIIInet $5 \mathbf{1 / 2} \mathbf{~ I n .}$

	Year				
Data	1895	1996	1997	1998	1999
Nmeas	232	1344	1132	1548	427
Ngear	57	65	75	72	48
Nhauls	19	23	25	24	16
Nzero	1	0	1	2	1

Figure $\quad 199$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Bay Bulls Gillnet $51 / 2$ in.

Figure 200 Average Catch per Unit Effort for Control Sites, Bay Bulls Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 201 . Average Catch per Unit Effort for Experimental Sites, Bay Bulls Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Div	3 L
Trip	58
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		396	585	885	1533
Ngear		8	8	11	20
Nhauls		4	4	5	10
Nzero		0	0	0	0

Div	3 L
Trip	58
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		267	275	564	1573
Ngear		12	16	15	40
Nhauls		6	8	7	19
Nzero		0	0	0	1

Figure 202. Relative length frequency (number at length / amount of gear) for control and experimental gears, Calvert Gillnet $51 / 2$ in.

Figure 203 . Average Catch per Unit Effort for Control Sites, Calvert Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 135. Summary data for Ferryiand 3L Control Sets Gillinet $51 / 2$ in.

Div	3L
Trip	73
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1095	1998	1997	1998	1999
Nmeas	317	310	209	529	620
Ngear	87	28	24	22	35
Nhauls	29	14	12	12	13
Nzero	1	0	0	2	2

Table 136. Summary data for Feryland 3L Exp sets
Gillnet 5 $1 / 2 \mathrm{in}$.

Div	3 L
Trip	73
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	363	632	624	1544	1465
Ngear	87	54	41	47	47
Nhauls	29	28	23	24	22
Nzero	1	2	0	2	0

Figure 205. Relative length frequency (number at length / amount of gear) for control and experimental gears, Ferryland Gillnet $51 / 2$ in.

Figure 206 . Average Catch per Unit Effort for Control Sites, Ferryland Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 137. Summary data for Aquaforte 3L Control Sets Gillinet 5 1/2 in

Div	3 L
Trip	24
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	472	2028	2700	2154	1058
Ngear	87	69	71	66	48
Nhauls	29	23	24	23	16
Nzero	2	0	0	0	0

Table 138.

Div	3 L
Trip	24
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	578	1082	2529	1947	884
Ngear	90	66	72	67	48
Nhauls	30	22	24	24	16
Nzero	2	0	0	0	1

Figure 208. Relative length frequency (number at length / amount of gear) for control and experimental gears, Aquaforte Gillnet $5 \mathbf{1 / 2}$ in.

Figure 209 . Average Catch per Unit Effort for Control Sites, Aquaforte Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

Figure 210 . Average Catch per Unit Effort for Experimental Sites, Aquaforte Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 130. Summary data for Renews 3L Control Sets Gillnet 5 1/2 in

Div	$3 L$
Trip	43
Type	F
Gear	5
Mesh Size	5.5

	Year				
Data	1895	1996	1997	1998	1999
Nmeas			374	423	463
Naear			39	39	48
Nhauls		13	13	16	
Nzero			0	4	2

Figure 211. Relative length frequency (number at length / amount of gear) for control and experimental gears, Renews Gillnet $51 / 2$ in.

Figure 212 . Average Catch per Unit Effort for Control Sites, Renews Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 213 . Average Catch per Unit Effort for Experimental Sites, Renews Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 214 . Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Shott's Gillnet $51 / 2 \mathrm{in}$.

Figure 215 . Average Catch per Unit Effort for Control Sites, St. Shott's Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 216 . Average Catch per Unit Effort for Experimental Sites, St. Shott's Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 143. Summary data for Riverhead 3L Control Sets Gllinet $51 / 2 \mathrm{ln}$.

	Year				
Data	1095	1996	1997	1998	1999
Nmeas	476	1925	968	1001	992
Ngear	40	75	66	54	57
Nhauls	14	25	22	18	19
Nzero	2	1	0	0	0
Table 144.	Summary data for Riverhead 3L Exp sels				
	Gillnet 5 1/2 in.				

Div	$3 L$
Trip	23
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	413	2968	2019	2728	3093
Ngear	40	90	63	53	57
Nhauls	14	30	21	18	19
Nzero	3	0	0	0	0

Figure 217 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Riverhead Gillnet $5 \mathbf{1 / 2}$ in.

Figure 218 . Average Catch per Unit Effort for Control Sites, Riverhead Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 219 . Average Catch per Unit Effort for Experimental Sites, Riverhead Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Table 145. Summary data for Rlverhead 3L. Control Sets Gillnet $51 / 2 \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		163	284	758	34
Ngear		15	27	54	30
Nhauls		5	9	18	10
Nzero		1	0	3	4

Div	3 L
Trip	63
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		43	280	989	548
Ngear		15	30	54	44
Nhauls		5	10	18	15
Nzero		2	0	3	2

Figure $\quad 220$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Riverhead Gillnet $5 \mathbf{1 / 2}$ in.

Figure 221 . Average Catch per Unit Effort for Control Sites, Riverhead Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Div	3 L
Trip	28
Type	(All)
Gear	5
Mesh Size	5.5

	Year				
Data	1895	1996	1997	1998	1999
Nmeas	408	2786	1280	1341	690
Ngear	93	82	44	42	27
Nhauls	31	28	25	30	19
Nzero	3	0	0	0	3

Figure 223. Relative length frequency (number at length / amount of gear) for control and experimental gears, Admiral's Beach Gilinet $5 \mathbf{1 / 2}$ in.

Figure 224 . Average Catch per Unit Effort for Control Sites, Admiral's Beach Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 225 . Average Catch per Unit Effort for Experimental Sites, Admiral's Beach Gillnet $5 \mathbf{1 / 2}$ in. (Number of Fish per Net)

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	2495	4960	2682	4451	2
Ngear	74	82	78	77	9
Nhauls	30	28	26	25	3
Nzero	0	0	0	1	2

Figure 226 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Point Lance Gillnet $51 / 2$ in.

Figure 227 . Average Catch per Unit Effort for Control Sites, Point Lance Gillnet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

Figure 228 . Average Catch per Unit Effort for Experimental Sites, Point Lance Gillnet $5 \mathbf{1 / 2} \mathbf{i n}$. (Number of Fish per Net)

Table 151. Summary data for Black Tickle 2J Control Sets Gllinet 3 1/4 In.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	2 J
Trip	78
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			36	531	27
Ngear			16	14	16
Nhauls			16	14	16
Nzero			5	0	6

Figure 229 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Black Tickle Gillnet $31 / 4$ in.

Figure 230 . Average Catch per Unit Effort for Control Sites, Black Tickle Gillnet $31 / 4$ in. (Number of Fish per Net)

Figure 231 . Average Catch per Unit Effort for Experimental Sites, Black Tickle Gillnet $3 \mathbf{1 / 4} \mathrm{in}$. (Number of Fish per Net)

Table 153. Summary data for Whlliama Harbour 2J Control Sets Gillinet $31 / 4 \mathrm{in}$.

Div	2 J
Trip	72
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			3		
Ngear			1		
Nhauls			1		
Nzero			0		
Table 154. Summary data for Williams Harbour 2J					

Div	2 J
Trip	72
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1996	1996	1997	1998	1999
Nmeas			379	224	94
Ngear			10	10	8
Nhauls			10	10	8
Nzero			2	4	1

Figure

Figure 233 . Average Catch per Unit Effort for Control Sites, Williams Harbour Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 155. Summary data for Tub Harbour 2.J Control Sets Gillnot $31 / 4$ in

Div	2 J
Trip	76
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		11	200		
Ngear		1	1		
Nhauls		1	1		
Nzero		0	0		
Table 156. Summary data for Tub Harbour 2J Exp					

Div	2 J
Trip	76
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		5	27	98	27
Ngear		2	3	4	9
Nhauls		2	3	4	9
Nzero		0	0	0	3

Figure 235 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Tub Harbour Gillnet $31 / 4 \mathrm{in}$.

Figure 236 . Average Catch per Unit Effort for Control Sites, Tub Harbour Gilinet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Div	2 J
Trip	75
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	2 J
Trip	75
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		74	1192	521	158
Ngear		2	8	7	15
Nhauls		2	7	7	15
Nzero		0	0	0	4

1	$\square 95$
1	-96
1	戡 97
$\overrightarrow{9}$	*98
\% ${ }^{\text {\% }}$	$\square 99$

Figure

Div	2 J
Trip	74
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	2 J
Trip	74
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1998	1997	1998	1999
Nmeas		11	17	175	50
Ngear		2	5	15	16
Nhauls		2	5	15	16
Nzero		0	1	3	5

Figure 241 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Penny's Harbour Gillnet $31 / 4 \mathrm{in}$.

Table 161. Summary data for SI. Lowle 2J Control Sets Gllinet $31 / 4 \mathrm{ln}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			233	107	62
Ngear			11	9	14
Nhauls			11	9	14
Nzero			1	4	10

Figure 244 . Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Lewis Gillnet $31 / 4$ in.

Figure 245 . Average Catch per Unit Effort for Control Sites, St. Lewis Gillnet $31 / 4$ in. (Number of Fish per Net)

Figure $\quad 246$. Average Catch per Unit Effort for Experimental Sites, St. Lewis Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Div	2 J
Trip	67
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Noear					
Nhauls					
Nzero					

Div	2 J
Trip	67
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		6	777	330	235
Ngear		1	11	22	16
Nhauls		1	11	22	16
Nzero		0	0	1	2

Figure 247 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Spear Harbour Gillnet $31 / 4 \mathrm{in}$.

Figure $\quad 248$. Average Catch per Unit Effort for Control Sites, Spear Harbour Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 249 . Average Catch per Unit Effort for Experimental Sites, Spear Harbour Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	2 J
Trip	71
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1996	1996	1997	1998	1899
Nmeas		112	279	203	
Ngear		3	8	15	
Nhauls		3	8	15	
Nzero		0	0	3	

Figure 251 . Average Catch per Unit Effort for Control Sites, Cape Charles Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 167. Summary data for Lunaire 3K Control Sets Gillinet 3 1/4 in.

	Year				
Oata	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	32
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		13	12	168	1
Ngear		1	1	9	4
Nhauls		1	1	9	4
Nzero		0	0	2	3

Figure
253

Figure

Div	$3 K$
Trip	25
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	25
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				628	
Ngear			6		
Nhauls			6		
Nzero			0		

256. Relative length frequency (number at length / amount of gear) for control and experimental gears, Great Brehat Gillnet 3 1/4 in.

Figure 257 . Average Catch per Unit Effort for Control Sites, Great Brehat Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 171. Summary data for Englee 3K Control Sets Gllinet 3 1/4 in

Div	$3 K$
Trip	22
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	22
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1996	1996	1997	1998	1999
Nmeas				91	349
Ngear			9	8	
Nhauls			9	7	
Nzero				4	0

Figure 259. Relative length frequency (number at length / amount of gear) for control and experimental gears, E:nglee Gillnet 3 1/4 in.

Figure 260 . Average Catch per Unit Effort for Control Sites, Englee Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 173. Summary data for Harbour Doep $3 K$ Control Sets Gillnet $31 / 4 \mathrm{In}$.

Div	$3 K$
Trip	53
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	53
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1986	1997	1998	1999
Nmeas			90	136	193
Ngear			6	7	8
Nhauls		6	7	8	
Nzero		0	0	0	

Figure 262, Relative length frequency (number at length / amount of gear) for control and experimental gears, Harbour Deep Gillnet 3 1/4 in.

Figure 263 . Average Catch per Unit Effort for Control Sites, Harbour Deep Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 175. Summary data for Jackson's Arm 3K Control Sets Gillnet 3 1/4 in.

Div	3 K
Trip	65
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1998	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	65
Type	$($ All $)$
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			229	238	135
Ngear			5	12	8
Nhauls			5	12	8
Nzero			0	0	2

Figure 265. Relative length frequency (number at length / amount of gear) for control and experimental gears, Jackson's Arm Gillnet $31 / 4$ in.

Figure 266 . Average Catch per Unit Effort for Control Sites, Jackson's Arm Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Div	3 K
Trip	15
Type	F
Gear	5
Mesh Size	3.25

	Year				
Dala	1996	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	15
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			327	166	144
Ngear			8	7	9
Nhauls			8	7	9
Nzero			1	1	0

Figure 268 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Coachman's Cove Gillnet $31 / 4 \mathrm{in}$.

Figure 269 . Average Catch per Unit Effort for Control Sites, Coachman's Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 270 . Average Catch per Unit Effort for Experimental Sites, Coachman's Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 179. Summary data for La Scle 3K Control Sets Gillnet $31 / 4 \mathrm{ln}$.

Div	$3 K$
Trip	66
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			9	87	
Ngear			1	2	
Nhauls			1	2	
Nzero		0	0		

Div	3K
Trip	66
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				24	68
Ngear				1	4
Nhauls				1	4
Nzero			0	0	

Figure $\quad 271$. Relative length frequency (number at length / amount of gear) for control and experimental gears, La Scie Gillnet 3 1/4 in.

Figure 272 . Average Catch per Unit Effort for Control Sites, La Scie Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Div	$3 K$
Trip	38
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1996	1998	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	38
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Dala	1995	1996	1997	1998	1999
Nmeas		1019	951	394	203
Ngear		8	12	12	8
Nhauls		8	12	12	8
Nzero		0	0	0	0

Figure 274. Relative length frequency (number at length / amount of gear) for control and experimental gears, Miles Cove Gillnet $3 \mathbf{1 / 4}$ in

Figure 275 . Average Catch per Unit Effort for Control Sites, Miles Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 276 . Average Catch per Unit Effort for Experimental Sites, Miles Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 183. Summary data for Summerford 3 K Control Sets Gilinet $31 / 4 \mathrm{in}$.

Div	$3 K$
Trip	57
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	57
Type	$($ All $)$
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		790	373	762	958
Ngear		6	12	12	13
Nhauls		6	12	12	13
Nzero		0	1	0	2

Figure 277 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Summerford Gillnet $3 \mathbf{1 / 4} \mathbf{i n}$.

Figure 278 . Average Catch per Unit Effort for Control Sites, Summerford Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 279 . Average Catch per Unit Effort for Experimental Sites, Summerford Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 280 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Too Good Arm Gillnet $31 / 4 \mathrm{in}$.

Figure 281 . Average Catch per Unit Effort for Control Sites, Too Good Arm Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 187. Summary data for Deep Bay 3K Control Sets Gillnet $3 \mathbf{1 / 4} \mathbf{~ i n .}$

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	21
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1996	1996	1997	1998	1999
Nmeas				181	142
Ngear				7	7
Nhauls			7	7	
Nzero			0	0	

Figure 283. Relative length frequency (number at length / amount of gear) for control and experimental gears, Deep Bay Gillnet $31 / 4 \mathrm{in}$.

Figure 284 . Average Catch per Unit Effort for Control Sites, Deep Bay Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 285 . Average Catch per Unit Effort for Experimental Sites, Deep Bay Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 189. Summary data for Joo Batt's Arm 3K Control Sets Gllinet 3 1/4 in.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				77	115
Ngear				4	11
Nhauls				4	11
Nzero				0	0

Figure 286. Relative length frequency (number at length / amount of gear) for control and experimental gears, Joe Batt's Arm Gillnet $3 \mathbf{1 / 4} \mathrm{in}$.

Figure 287 . Average Catch per Unit Effort for Control Sites, Joe Batt's Arm Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 288 . Average Catch per Unit Effort for Experimental Sites, Joe Batt's Arm Gilinet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 191. Summary data for Tilting 3K Control Sets Gillinet 3 1/4 in

Div	$3 K$
Trip	31
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1998	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	$3 K$
Trip	31
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1998	1997	1998	1999
Nmeas				150	129
Ngear				5	7
Nhauls				5	7
Nzero				0	0

Figure 289 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Tilting Gillnet $31 / 4$ in.

Figure 290 . Average Catch per Unit Effort for Control Sites, Tilting Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 193. Summary deta for Seldom 3K Control Sets Gillnet $31 / 4 \mathrm{in}$.

Div	3K
Trip	17
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas				323	
Ngear				8	
Nhauls			8		
Nzero			0		

Figure 292 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Seldom Gillnet $31 / 4$ in.

Figure 293 . Average Catch per Unit Effort for Control Sites, Seldom Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 295 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Wesleyvilie Gillnet $31 / 4$ in.

Figure 296 . Average Catch per Unit Effort for Control Sites, Wesleyville Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 297 . Average Catch per Unit Effort for Experimental Sites, Wesleyville Gilinet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 197. Summary data for Plate Cove West 3L Control Sets Gillinet 3 1/4 in.

Div	3L
Trip	44
Type	F
Gear	5
Mesh Size	3.25

Div	3L
Trip	44
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			370	555	141
Ngear			7	8	7
Nhauls			7	8	7
Nzero			1	0	1

Figure 298 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Plate Cove West Gillnet $31 / 4 \mathrm{in}$.

Figure 299 . Average Catch per Unit Effort for Control Sites, Plate Cove West Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 300$. Average Catch per Unit Effort for Experimental Sites, Plate Cove West Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 301. Relative length frequency (number at length / amount of gear) for control and experimental gears, Little Catalina Gillnet $31 / 4$ in.

Figure $\quad 302$. Average Catch per Unit Effort for Control Sites, Little Catalina Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 201. Summary data for Petley 3L Control Seta Gillnet $3 \mathbf{1 / 4} \mathrm{ln}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	3 L
Trip	42
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		380	573	671	588
Ngear		4	8	8	9
Nhauls		4	8	8	9
Nzero		0	0	0	0

Figure

-	304	Relative leng
1		$\square 95$
1		-96
		497
3		N98
		$\square 99$

Figure

Figure 306 Average Catch per Unit Effort for Experimental Sites, Petley Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 307 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Heart's Content Gillnet $31 / 4$ in.

Figure 308 . Average Catch per Unit Effort for Control Sites, Heart's Content Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 309 . Average Catch per Unit Effort for Experimental Sites, Heart's Content Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 205. Summary data for Bay de Verde 3 L
Control Sets Gillnet $31 / 4 \mathrm{in}$.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	3 L
Trip	79
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1898	1999
Nmeas			545	310	179
Ngear		8	4	6	
Nhauls		8	4	6	
Nzero		2	0	0	

Figure 310 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Bay de Verde Gillnet $31 / 4$ in.

Figure 311 . Average Catch per Unit Effort for Control Sites, Bay de Verde Gillnet $31 / 4$ in. (Number of Fish per Net)

Figure 312 . Average Catch per Unit Effort for Experimental Sites, Bay de Verde Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 207. Summary data for Foxtrap 3L Control Sets Gillinet 3 1/4 in.

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	3 L
Trip	51
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		10	271	264	213
Ngear		1	8	8	7
Nhauls		1	8	8	7
Nzero		0	1	0	0

Figure $\quad 313$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Foxtrap Gillnet $31 / 4$ in.

Figure 314 . Average Catch per Unit Effort for Control Sites, Foxtrap Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 315$. Average Catch per Unit Effort for Experimental Sites, Foxtrap Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Div	3 L
Trip	61
Type	F
Gear	5
Mesh Size	3.25

	Year						
Data	1995	1996	1997	1998	1999		
Nmeas							
Ngear							
Nhauls							
Nzero							Table 210.
:---		Summary data for Pouch Cove 3L Exp					
:---							
sets Gillnet 3 $1 / 4 \mathrm{in}$.							

Div	3 L
Trip	61
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			238	356	401
Ngear			8	8	8
Nhauls			8	8	8
Nzero			0	0	0

Figure 316 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Pouch Cove Gillnet $31 / 4 \mathrm{in}$.

Figure 317 . Average Catch per Unit Effort for Control Sites, Pouch Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure $\quad 318$. Average Catch per Unit Effort for Experimental Sites, Pouch Cove Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 211. Summary data for Bay Bulls 3L. Control Sets Gillnet 3 1/4 in.

	Year				
Data	1995	1998	1897	1898	1998
Nmeas					
Ngear					
Nhauls					
Nzero					

Dlv	$3 L$
Trip	69
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			543	569	49
Ngear			6	12	8
Nhauls		6	12	8	
Nzero			0	0	1

Figure

320

$$
\stackrel{1}{m}
$$

Div	3 L
Trip	73
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1906	1997	1998	1999
Nmeas			91		
Ngear			2		
Nhauls			2		
Nzero		0			

Figure 322 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Ferryland Gillnet $31 / 4$ in.

Figure $\quad 323$. Average Catch per Unit Effort for Control Sites, Ferryland Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 324 . Average Catch per Unit Effort for Experimental Sites, Ferryland Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Figure 325 . Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Shott's Gillnet $31 / 4 \mathrm{in}$.

Figure 326 . Average Catch per Unit Effort for Control Sites, St. Shott's Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

Table 217. Summary datu for Adimiral's Beach 3L Control Sets Gilinet 3 1/4 in

Div	3 L
Trip	28
Type	F
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1996	1997	1998	1999
Nmeas					
Ngear					
Nhauls					
Nzero					

Div	3 L
Trip	28
Type	(All)
Gear	5
Mesh Size	3.25

	Year				
Data	1995	1998	1997	1998	1999
Nmeas		47	678	644	252
Ngear		2	18	24	15
Nhauls		2	18	24	14
Nzero		0	0	0	3

Figure 328 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Admiral's Beach Gillnet $31 / 4 \mathrm{in}$.

Figure 329 . Average Catch per Unit Effort for Control Sites, Admiral's Beach Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

[^1]

Div	$2 J$
Trip	76
Type	F
Gear	7
Mesh Size	0

	Year						
Data	1995	1996	1997	1998	1999		
Nmeas		18	7	15			
Ngear		1500	1500	1000			
Nhauls		6	6	4			
Nzero	2				4		Table 220.
:---							
Summary data for Tub Harbour 2J Exp							

Div	2 J
Trip	76
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		17	0	11	0
Ngear		1500	2250	1000	750
Nhauls		6	6	4	3
Nzero		3	6	1	3

Figure $\quad 331$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Tub Harbour Linetrawl

Figure $\quad 332$. Average Catch per Unit Effort for Control Sites, Tub Harbour Linetrawl (Number of Fish per 1000 hooks)

Figure 333 . Average Catch per Unit Effort for Experimental Sites, Tub Harbour Linetrawl (Number of Fish per 1000 hooks)

Div	$2 J$
Trip	71
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		20	9		
Ngear		1500	2700		
Nhauls		3	6		
Nzero	0				2

Div	2 J
Trip	71
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1095	1996	1997	1998	1999
Nmeas		20	5		
Ngear		2500	2700		
Nhauls		5	6		
Nzero		0	3		

Figure $\quad 334$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Cape Charles Linetrawl

Figure 335 . Average Catch per Unit Effort for Control Sites, Cape Charles Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 336$. Average Catch per Unit Effort for Experimental Sites, Cape Charles Linetrawl (Number of Fish per 1000 hooks)

Table 223. Summary data for Goose Cove 3 K Control Sets Linetrawl

	Year				
Data	1995	1996	1997	1898	1999
Nmeas	102	58	25		
Ngear	8300	4640	1000		
Nhauls	30	16	4		
Nzero	9	5	0		

Figure $\quad 337$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Goose Cove Linetrawl

Figure 338 . Average Catch per Unit Effort for Control Sites, Goose Cove Linetrawl (Number of Fish per 1000 hooks)

Figure 339 . Average Catch per Unit Effort for Experimental Sites, Goose Cove Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 341$. Average Catch per Unit Effort for Control Sites, Coachman's Cove Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 342$. Average Catch per Unit Effort for Experimental Sites, Coachman's Cove Linetrawl (Number of Fish per 1000 hooks)

Table 227. Summary data for Ming's Blght 3 K Control Sets Linetrawl

Div	$3 K$
Trip	20
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1054	622	891	181	14
Ngear	9950	6300	6650	3150	700
Nhauls	28	18	19	9	2
Nzero	0	0	0	0	0

Year									
Data	1995	1996	1997	1898	1999				
Nmeas	1541	1097	2091	697	66				
Ngear	9950	9800	9450	7350	3500				
Nhauls	28	28	27	21	10				
Nzero	0	0	0	0	0				

Figure $\quad 343$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Ming's Bight Linetrawl

Figure $\quad 344$. Average Catch per Unit Effort for Control Sites, Ming's Bight Linetrawl (Number of Fish per 1000 hooks)

Figure 346 . Relative length frequency (number at length / amount of gear) for control and experimental gears, La Scie Linetrawl

Figure 347 . Average Catch per Unit Effort for Control Sites, La Scie Linetrawl (Number of Fish per 1000 hooks)

Table 231. Summary data for Shoe Cove 3K Control Sets Linetrawl

Div	$3 K$
Trip	35
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1988	1998
Nmeas	2338	1268	2351	1161	413
Ngear	12000	7200	7200	6850	3850
Nhauls	30	18	18	18	9
Nzaro	0	0	0	0	0
Table 232	Summary data for Shoe Cove 3K Exp sets Linetrawl				

Div	$3 K$
Trip	35
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	1998	1999
Nmeas	2285	1467	2824	1069	449
Ngear	12000	6800	6650	6400	4550
Nhauls	30	17	18	18	13
Nzero	0	0	0	1	0

Figure 349 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Shoe Cove Linetrawl

Figure 350 . Average Catch per Unit Effort for Control Sites, Shoe Cove Linetrawl (Number of Fish per 1000 hooks)

Figure 351 . Average Catch per Unit Effort for Experimental Sites, Shoe Cove Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 353$. Average Catch per Unit Effort for Control Sites, Durreil Linetrawl (Number of Fish per 1000 hooks)

Figure 354 . Average Catch per Unit Effort for Experimental Sites, Durrell Linetrawl (Number of Fish per 1000 hooks)

Table 235. Summary data for Deep Bay 3K Control Sets Linetrawl

Div	3 K
Trip	21
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	132	105	288		
Ngear	1350	900	1050		
Nhauls	9	6	7		
Nzero	0	0	0		

Div	$3 K$
Trip	21
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1998	1997	1998	1999
Nmeas	84	238	495		
Ngear	1350	1650	2100		
Nhauls	9	11	14		
Nzero	1	0	2		

Figure 355 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Deep Bay Linetrawl

Figure $\quad 356$. Average Catch per Unit Effort for Control Sites, Deep Bay Linetrawl (Number of Fish per 1000 hooks)

Figure 357 . Average Catch per Unit Effort for Experimental Sites, Deep Bay Linetrawl (Number of Fish per 1000 hooks)

Table 237. Summary data for Fogo 3 K Control Sets L.inetrawl

Div	3K
Trip	88
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1998	1997	1898	1998
Nmeas					269
Ngear					1800
Nhauls					8
Nzero					0
Table 238	Summary data for Fogo 3K Exp sets Linetrawl				

Div	3K
Trip	88
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1895	1996	1997	1998	1999
Nmeas					184
Ngear					1600
Nhauls				8	
Nzero					

Figure $\quad 358$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Fogo Linetrawl

Figure $\quad 359$. Average Catch per Unit Effort for Control Sites, Fogo Linetrawl (Number of Fish per 1000 hooks)

Table 239. Summary data for Joo Batt's Arm 3K Control Sets Linetrawl

Div	$3 K$
Trip	29
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1310	280	713	262	
Ngear	6000	2700	2750	1500	
Nhauls	20	9	11	6	
Nzero	0	1	0	0	

Div	$3 K$
Trip	29
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1067	143	778	234	
Ngear	6000	1500	2750	1500	
Nhauls	20	5	11	6	
Nzero	0	0	0	0	

Figure $\quad 361$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Joe Batt's Arm Linetrawl

Figure 362 . Average Catch per Unit Effort for Control Sites, Joe Batt's Arm Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 363$. Average Catch per Unit Effort for Experimental Sites, Joe Batt's Arm Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 364$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Tilting Linetrawl

Figure 365 . Average Catch per Unit Effort for Control Sites, Tilting Linetrawl (Number of Fish per 1000 hooks)

Figure 366 Average Catch per Unit Effort for Experimental Sites, Tilting Linetrawl (Number of Fish per 1000 hooks)

Table 243. Summary data for Seldom 3K Control Sets Linetrawl

Div	$3 K$
Trip	17
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1895	1996	1997	1998	1999
Nmeas		192			
Ngear		600			
Nhauls		3			
Nzero		0			

Div	$3 K$
Trip	17
Type	$(A l l)$
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas			204		
Ngear		800			
Nhauls			4		
Nzero			0		

Figure 367 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Seldom Linetrawl
 368 . Average Catch per Unit Effort for Control Sites, Seldom Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 370$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Aspen Cove Linetrawl

Figure $\quad 371$. Average Catch per Unit Effort for Control Sites, Aspen Cove Linetrawl (Number of Fish per 1000 hooks)

Figure 372 . Average Catch per Unit Effort for Experimental Sites, Aspen Cove Linetrawl (Number of Fish per 1000 hooks)

Table 247. Summary data for Lumadon 3 K Control Sets Linetrawl

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1141	1156	1061	568	339
Ngear	6750	3000	2750	2000	1500
Nhauls	27	12	11	8	6
Nzero	0	0	0	0	0

Div	$3 K$
Trip	37
Type	(AlI)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1790	1352	1094	471	355
Ngear	6750	3000	2750	1750	1500
Nhauls	27	12	11	7	6
Nzero	0	0	0	0	0

Figure $\quad 373$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Lumsden Linetrawl

Figure $\quad 374$. Average Catch per Unit Effort for Control Sites, Lumsden Linetrawl (Number of Fish per 1000 hooks)

Figure 375 . Average Catch per Unit Effort for Experimental Sites, Lumsden Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 376$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Wesleyville Linetrawl

Figure $\quad 377$. Average Catch per Unit Effort for Control Sites, Wesleyville Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 378$. Average Catch per Unit Effort for Experimental Sites, Wesleyville Linetrawl (Number of Fish per 1000 hooks)

Table 251. Summary data for Bonaviata 3L Control Sets Linatrawl

Div	$3 L$
Trip	64
Type	F
Gear	7
Mesh Size	0

Div	$3 L$
Trio	64
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		126	946	533	
Ngear		300	2350	3000	
Nhauls		1	5	4	
Nzero		0	0	0	

Figure 379 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Eonavista Linetrawl

Figure 380 . Average Catch per Unit Effort for Control Sites, Bonavista Linetrawl (Number of Fish per 1000 hooks)

Table 253. Summary data for Heart's Content 3L Control Sets Linetrawl

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	529	478	186		
Ngear	11200	6000	2718		
Nhauls	28	12	6		
Nzero	0	0	0		
Table 254.	Summary data for Heart's Content 3L. Exp				
	sets Linetrawl				

Div	3 L
Trip	50
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	933		591	251	
Ngear	11600	6000	2706		
Nhauls	29	12	12		
Nzero	0	0	1		

Figure 382 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Heart's Content Linetrawl

Figure
383 . Average Catch per Unit Effort for Control Sites, Heart's Content Linetrawl (Number of Fish per 1000 hooks)

Figure 384 . Average Catch per Unit Effort for Experimental Sites, Heart's Content Linetrawl (Number of Fish per 1000 hooks)

Figure 385 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Carbonear Linetrawl

Figure $\quad 386$. Average Catch per Unit Effort for Control Sites, Carbonear Linetrawl (Number of Fish per 1000 hooks)

Figure 387 . Average Catch per Unit Effort for Experimental Sites, Carbonear Linetrawl (Number of Fish per 1000 hooks)

Table 257. Summary data for Foxirap 3L Control Sets Linetrawl

Div	3 L
Trip	51
Type	F
Gear	7
Mesh Size	0

	Year								
Data	1995	1996	1997	1998	1999				
Nmeas	739	1065	1416	319	169				
Ngear	10500	6000	6000	6000	1500				
Nhauls	21	12	12	12	3				
Nzero	0	0	0	4	0				

Div	3L
Trip	51
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	$\mathbf{1 9 9 9}$
Nmeas	1355	1538	1575	416	211
Ngear	10500	6000	6000	6000	1500
Nhauls	21	12	12	12	3
Nzero	0	0	0	1	0

Figure 388 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Foxtrap Linetrawl

Figure 389 . Average Catch per Unit Effort for Control Sites, Foxtrap Linetrawl (Number of Fish per 1000 hooks)

Table 259. Summary data for Bay Bulls 3L Control Sets LInetrawl

Div	$3 L$
Trip	52
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1895	1998	1987	1998	1999
Nmeas	605				
Ngear	3000				
Nhauls	9				
Nzero	0				
Table 260	Summary data for Bay Bulls 3L Exp sets Linetrawl				

Div	$3 L$
Trip	52
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1996	1998	1997	1098	1999
Nmeas	411				
Ngear	2400				
Nhauls	8				
Nzero	0				

Figure $\quad 391$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Bay Bulls Linetrawl

Figure $\quad 392$. Average Catch per Unit Effort for Control Sites, Bay Bulls Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 393$. Average Catch per Unit Effort for Experimental Sites, Bay Bulls Linetrawl (Number of Fish per 1000 hooks)

Div	3 L
Trip	58
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	1441	350	726	754	12
Ngear	10800	4500	3900	5100	1550
Nhauls	30	15	13	17	5
Nzero	0	0	0	2	2

Div	3L
Trip	58
Type	(All)
Gear	7
Mesh Size	0

Year					
Data	1995	1996	1997	1998	1999
Nmeas	1325	1287	889	888	149
Ngear	7200	6300	6000	6800	3550
Nhauls	30	20	20	23	12
Nzero	3	0	0	1	1

Figure 394 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Calvert Linetrawl

Figure 395 . Average Catch per Unit Effort for Control Sites, Calvert Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 396$. Average Catch per Unit Effort for Experimental Sites, Calvert Linetrawl (Number of Fish per 1000 hooks)

Table 263. Summary data for Aquaforte 3L Control Sets Linetrawl

	Year				
Data	1995	1996	1897	1898	1998
Nmeas		24			
Ngear		150			
Nhauls		1			
Nzero		0			

Div	3 L
Trip	24
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas		21			
Ngear		350			
Nhauls		1			
Nzero		0			

Figure 397 . Relative length frequency (number at length / amount of gear) for control and experimental gears, Aquaforte Linetrawl

Figure $\quad 398$. Average Catch per Unit Effort for Control Sites, Aquaforte Linetrawl (Number of Fish per 1000 hooks)

Figure 399 . Average Catch per Unit Effort for Experimental Sites, Aquaforte Linetrawl (Number of Fish per 1000 hooks)

Table 265. Summary data for Renews 3L Control Sets Linetrawl

Div	3L
Trip	43
Type	F
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	0	336	54		
Ngear	3500	6200	300		
Nhauls	5	17	1		
Nzero	5	5	0		

Div	3L
Trip	43
Type	(All)
Gear	7
Mesh Size	0

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	0	544			
Ngear	1000	7050			
Nhauls	2	20			
Nzero	2	6			

Figure $\quad 400$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Renews Linetrawl

Figure 401 . Average Catch per Unit Effort for Control Sites, Renews Linetrawi (Number of Fish per 1000 hooks)

Figure 402 . Average Catch per Unit Effort for Experimental Sites, Renews Linetrawl (Number of Fish per 1000 hooks)
 Sets Linetrawl

	Year				
Data	1995	1996	1997	1998	1999
Nmeas	406	539			
Ngear	8100	6000			
Nhauls	17	12			
Nzero	8	0			

Year										
Data	1995	1986	1997	1998	1999					
Nmeas	799	917								
Ngear	8000	6000								
Nhauls	16	12								
Nzero	3	0								

Figure $\quad 403$. Relative length frequency (number at length / amount of gear) for control and experimental gears, St. Shott's Linetrawl

Figure 404 . Average Catch per Unit Effort for Control Sites, St. Shott's Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 406$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Riverhead Linetrawl

Figure 407 . Average Catch per Unit Effort for Control Sites, Riverhead Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 408$. Average Catch per Unit Effort for Experimental Sites, Riverhead Linetrawl (Number of Fish per 1000 hooks)

Figure $\quad 409$. Relative length frequency (number at length / amount of gear) for control and experimental gears, Riverhead Linetrawl

$\int \sqrt{\square}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \bar{n}

Figure $\quad 410$. Average Catch per Unit Effort for Control Sites, Riverhead Linetrawl (Number of Fish per 1000 hooks)

[^2]
[^0]: Figur
 . Average Catch per Unit Effort for Experimental Sites, Joe Batt's Arm Gilinet $51 / 2 \mathrm{in}$. (Number of Fish per Net)

[^1]: Figur
 Average Catch per Unit Effort for Experimental Sites, Admiral's Beach Gillnet $31 / 4 \mathrm{in}$. (Number of Fish per Net)

[^2]: Figure 411 . Average Catch per Unit Effort for Experimental Sites, Riverhead Linetrawl (Number of Fish per 1000 hooks)

