

CSAS

SCÉS

Canadian Stock Assessment Secretariat

Secrétariat canadien pour l'évaluation des stocks

Research Document 2000/168

Document de recherche 2000/168

Not to be cited without permission of the authors¹ Ne pas citer sans autorisation des auteurs¹

Estimated Bycatch in the British Columbia Shrimp Trawl Fishery

N. Olsen¹, J.A. Boutillier¹, and L. Convey²

Fisheries and Oceans Canada

¹Pacific Biological Station 3190 Hammond Bay Road Nanaimo B.C. V9R 5K6

²Operations Branch Fisheries Management, Pacific Region 3225 Stephenson Point Road Nanaimo B.C. V9T 1K3

¹ This series documents the scientific basis for Canada. As such, it addresses the issues of documents it contains are not intended as dictés. definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

official language in which they are provided to the Secretariat.

¹ La présente série documente les bases the evaluation of fisheries resources in scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des the day in the time frames required and the problèmes courants selon les échéanciers Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Ce document est disponible sur l'Internet à: This document is available on the Internet at: http://www.dfo-mpo.gc.ca/csas/

> ISSN 1480-4883 Ottawa, 2000 anac

Abstract

This paper is the third in a series of PSARC documents that utilise data from the bycatch sampling programme to address the issue of bycatch in the British Columbia shrimp trawl fishery. The first two papers dealt specifically with the bycatch of halibut and eulachon, while the focus of the current paper is to provide information on the bycatch of other non-target species in the shrimp-by-trawl fishery.

Bycatch sampling took place from 1997 to 1999 in 20 different Shrimp Management Areas. The majority of the sampling was conducted on otter trawlers off the West Coast of Vancouver Island and in Queen Charlotte Sound. Coverage of beam trawlers was more limited and focused on inshore areas and the Strait of Georgia.

Beam trawler bycatch was dominated by Selachii (dogfish, ratfish, and skates), followed by commercial flatfish, commercial roundfish, non-commercial roundfish, non-commercial invertebrates, and prawns. Selachii were particularly prevalent in beam trawl catches from the Strait of Georgia and Johnstone Strait. Otter trawl bycatch was dominated by eulachon, commercial flatfish, non-commercial roundfish, commercial roundfish, and Selachii.

Total estimated bycatch of beam trawls was generally higher than otter trawls both in terms of weight, and the percent of the total catch weight. Beam trawls from the Strait of Georgia had the highest ratios of bycatch to recorded catch. Otter trawls generally had much lower ratios of estimated bycatch to recorded catch, a notable exception being Area PRD in 1997.

The authors note that current levels of bycatch sampling are not adequate to address coastwide bycatch issues and recommend that specific bycatch concerns be identified and appropriate programmes developed to address those concerns. Alternatively, if monitoring of bycatch coastwide continues to be an objective, the authors recommend that a more expensive programme be considered that will provide greater sampling effort. In addition, they support the establishment of a multi-sector working group to address bycatch issues in all fisheries.

Résumé

La présente étude est la troisième d'une série de documents du CEESP fondée sur les données issues du programme d'échantillonnage des prises accessoires pour régler le problème des prises accessoires récoltées dans le cadre de la pêche de la crevette au chalut en Colombie-Britannique. Les deux premières études portaient nommément sur les prises accessoires de flétan et d'eulakane, tandis que la présente vise à fournir des renseignements sur les prises accessoires d'autres espèces non ciblées par les pêcheurs de crevette au chalut.

L'échantillonnage des prises accessoires a été fait dans 20 différentes zones de gestion des crevettes de 1997 à 1999. La plus grande partie de l'activité a visé les bateaux de pêche au chalut à panneaux pêchant au large de la côte ouest de l'île de Vancouver et dans le bassin Reine-Charlotte. La couverture des bateaux de pêche au chalut à perche, plus limitée, a visé les zones côtières et le détroit de Georgia.

Les sélaciens (aiguillat, chimère et raie) dominaient dans les prises accessoires à la perche, suivis de poissons plats marchands, de poissons ronds marchands et non commercialisables, d'invertébrés non commercialisables et de crevettes. Ils étaient particulièrement abondants dans les prises récoltées dans les détroits de Georgia et de Johnstone. L'eulakane, les poissons plats marchands, les poissons ronds marchands et non commercialisables et les sélaciens dominaient dans les prises accessoires au chalut.

Les prises accessoires totales estimatives à la perche étaient généralement plus élevées que celles obtenues au chalut, tant au plan du poids que du pourcentage du poids total des prises. Les bateaux de pêche à la perche dans le détroit de Georgia montraient le rapport des prises accessoires aux prises signalées le plus élevé, tandis que les bateaux de pêche au chalut affichaient généralement un rapport nettement moins élevé, la seule exception importante étant la zone PRD en 1997.

Les auteurs notent que les niveaux actuels d'échantillonnage des prises accessoires ne sont pas adéquats pour régler la question des prises accessoires à l'échelle de la côte. Ils recommandent donc que les problèmes particuliers de prises accessoires soient identifiés et que des programmes appropriés soient élaborés pour les régler. Par contre, si la surveillance des prises accessoires à l'échelle de la côte continue d'être un objectif, ils recommandent comme autre solution que l'on considère la mise en place d'un programme plus dispendieux d'échantillonnage plus exhaustif. Ils avalisent en outre la création d'un groupe de travail multisectoriel chargé d'étudier les problèmes de prises accessoires dans toutes les pêcheries.

Introduction

McCaughran (1992) defines bycatch as the sum of discarded catch plus incidental catch, where discarded catch is "the portion of the catch which is returned to the sea for economic, legal, or personal reasons" and incidental catch is "the retained catch of non-target species". During the 1990's, bycatch emerged as major issue in the management of fisheries throughout the world, largely due to increased public awareness through the actions of conservation and environmental groups (Alverson and Hughes 1995). Non-selective fishing techniques such as trawling have been targeted for concern due to the perception of waste, destruction of valuable and protected species, and inefficient use of available resources (Murawski 1995).

Estimating bycatch levels has traditionally been very difficult because bycatch is rarely reported in landings. Therefore, bycatch estimates are usually based on speculation or on the observation of a small sample of vessels. Despite the obvious uncertainty surrounding such figures, several authors have provided surprisingly large estimates of global bycatch and discard levels. Saila (1983) estimates a total world discard of 6.72 million tonnes, or 12% of total landings. Alverson et al (1994) estimate a global discard range of 17.9 – 39.5 million tonnes based on a total catch of 77 million tonnes. From a species and gear-type perspective, the shrimp trawl fisheries have been identified as having the highest ratio of discarded bycatch to landed catch, at 0.84 (Alverson et al 1994) and are considered the "dirtiest" fisheries in the world. However, this figure is based mainly on shrimp trawl fisheries in the tropics and west central Pacific.

The British Columbia shrimp trawl fishery has targeted primarily on three species of shrimp: *Pandalus jordani* (smooth pink), *P. borealis eous* (Northern pink), and *Pandalopsis dispar* (sidestripe). Species such as *Pandalus hypsinotus* (humpback), *P. danae* (coonstripe or dock), *P. goniurus* (flexed pink), and *P. platyceros* (prawn) have been caught incidentally or in small quantities. Only these seven species of shrimp can legally be retained in the shrimp trawl fishery, and there are limits on retention of prawns. However, a large variety of other species (both fish and invertebrates) are caught as bycatch and then discarded.

In 1995, a Shrimp Sectoral Bycatch Subcommittee was formed to address bycatch issues. The subcommittee met in December of 1995 to develop a coordinated approach to address bycatch problems in the shrimp trawl fishery. One of the key areas identified for action by the subcommittee was the development of a sampling programme to document the spatial and temporal nature of bycatch associated with this fishery. In April of 1996, the Department of Fisheries and Oceans, DFO, Ministry of Agriculture, Fisheries and Food, and MAFF, developed a collaborative agreement to train a student and initiate a bycatch sampling program over the summer of 1996. Since 1997, more concerted efforts were made at addressing this issue with funding being jointly provided by both DFO and industry.

The shrimp trawl industry has voluntarily adopted 100% implementation of bycatch reduction devices (BRDs) for the year 2000 fishery. As a result, bycatch composition and distribution may change significantly. It will be necessary to continue sampling over the next several years in order to monitor any changes in bycatch.

This paper is the third in a series of PSARC documents that utilise data from the bycatch sampling programme to address the issue of bycatch in the British Columbia shrimp trawl fishery. The first two papers dealt specifically with the bycatch of

halibut (Boutillier et al 1999a) and eulachon (Hay et al 1999). The focus of the current paper is to provide information on the bycatch of other non-target species in the shrimp-by-trawl fishery. Specifically, the paper addresses the following objectives:

- 1. To describe the 1997-99 B.C. shrimp trawl bycatch monitoring programme and provide estimates of total bycatch and bycatch by species group by geartype, Shrimp Management Area, and year.
- 2. To examine variations in bycatch due to gear differences such as gear-type and the use of bycatch reduction devices (BRDs).
- 3. To examine spatial and temporal variations in bycatch in the B.C. shrimp trawl fishery.
- 4. To compare bycatch levels in the B.C. shrimp trawl fishery to those in other trawl fisheries.
- 5. To review management strategies used in other trawl fisheries to reduce bycatch, and to provide bycatch reduction options for managers of the B.C. shrimp trawl fishery.

Methods

Observers were hired and trained to identify and sample target and bycatch species taken by commercial vessels in the British Columbia shrimp trawl fishery. The intent was to collect bycatch information for a variety of areas, times, and gear types.

During bycatch sampling, observers generally board a beam-trawl or otter-trawl vessel prior to the start of a fishing trip, and remain on board for all or part of the fishing trip, usually 2 or 3 days. Throughout the trip, observers sample the catch from each trawl set as it is brought on board. If possible, the entire catch is sorted to species and weighed. However, this is usually not feasible due to the large size of most catches. In these cases, observers obtain a random sample from the catch, sort this to species, and weigh. The estimated total catch weight of each species is then extrapolated by multiplying each species weight from the sampled catch by the total catch weight, divided by the weight of the sampled catch. For example, if the total catch weight is 500 kg and a random sample of 10 kg is sorted to species and weighed, a species weight of 2 kg would yield an estimated total catch for that species of 2 kg \times 500 kg \div 10 kg, or 100 kg. Species that are present in amounts too small to weigh are recorded as "trace" and are ultimately coded with a weight of 0.1 kg. In addition to catch data, associated information such as trawl location, gear-type, date, time, and duration of trawl are also recorded. Data are sent to the Shellfish Data Unit at the Pacific Biological Station, and are stored in an Access database, along with other shrimp trawl research data. Information on commercial effort by year, gear-type, and area are obtained from mandatory commercial logbooks. The Shellfish Data Unit also maintains these data in an Access database.

This analysis focuses on all species captured. The bycatch of selected commercially important species, or species that are caught in relatively large amounts, are presented individually. However, rather than present all of the numerous bycatch species individually, species are also categorised into larger groups based on broader taxonomic, management, and economic considerations (Table 1). Total bycatch of

individual species or species groups is estimated by multiplying the mean observed catch rate of each by the total commercial effort for a given area. No bycatch estimate is made for areas where bycatch sampling did not occur. Temporal-spatial analysis is presented by year (1997 to 1999) and by Shrimp Management Area (Fig. 1). All confidence limits for the mean bycatch estimates were obtained using the bootstrap technique (S-PLUS, 1999).

Results

1. Bycatch Observer Coverage

Bycatch sampling took place from 1997 to 1999 in 20 different Shrimp Management Areas (124OFF, 125OFF, 12IN, 12OUT, 14, 16, 17, 18, 19, 23IN, 23OFF, 26IN, 27IN, 27OFF, 2IN, 8IN, FR, GSTE, PRD, and QCSND) (Table 2). The majority of the sampling was conducted on trawlers using otter trawl gear off the West Coast of Vancouver Island (23OFF, 27OFF, 123OFF, and 125OFF) and in Queen Charlotte Sound (QCSND). Coverage of beam trawlers was somewhat more limited and focused on inshore areas and the Strait of Georgia. This coverage reflects the distribution of the vessels using each gear type, as otter trawlers tend to fish offshore areas while beam trawlers fish inshore areas. The emphasis on otter trawlers reflects the level of concern over the bycatch of eulachon and halibut in offshore areas using this gear type. Over all areas and years, commercial beam trawlers were sampled at a level of approximately 1% in 1997 and 1999, and 0.5% in 1998, in terms of the number of tows and hours sampled, while otter trawl tows were sampled at a level of approximately 4% in 1997, 3% in 1998, and 2% in 1999.

The use of bycatch reduction devices (BRDs) in sampled sets was highly weighted towards otter trawls (Table 3). In fact, over the 3 years of sampling, about 97% of the sampled otter trawl sets had BRDs installed (Table 3). In contrast, only about 19% of sampled beam trawl sets had BRDs and most of these were used in one area, 230FF.

2. Bycatch Composition

Based on available bycatch samples, the bycatch of beam trawlers is dominated by Selachii (dogfish, ratfish, and skates), followed by commercial flatfish, commercial roundfish, non-commercial roundfish, non-commercial invertebrates, and prawns (Fig. 2). Selachii are particularly prevalent in beam trawl catches from the Strait of Georgia and Johnstone Strait. In fact, in 1997, the percent of Selachii in the sampled catch was nearly equal to that of shrimp in areas 16 and FR, was almost double that of shrimp in area 17, and in 1999, was almost 5 times that of shrimp in Area 12OUT (Table 3). Similarly, the percent of commercial flatfish exceeded that of shrimp in sampled catches from Area 17 in 1997, and in Area 12OUT in 1999, while commercial roundfish exceeded shrimp in Area 17 in 1997, and Area 12OUT in 1999 (Table 4). Most of the beam trawls sampled did not have BRDs. Given that the use of these devices became mandatory in 2000, the catch composition of beam trawls may change dramatically in 2000.

Otter trawl bycatch is dominated by eulachon, commercial flatfish, non-commercial roundfish, commercial roundfish, and Selachii (Fig. 2). Aside from 2 tows sampled from Area 1240FF in 1998 that apparently yielded no shrimp, and 1 tow sampled

from Area 27IN in 1998, the percent of bycatch in sampled otter trawls never exceeded the catch of shrimp (Table 4, Fig. 3b, 3d, and 3f). Certain bycatch groups did exceed 10% of the total catch in several years and areas, most notably, eulachon in Area QCSND in 1997, commercial flatfish in Area PRD in 1997, commercial roundfish in Areas 12IN and 18 in 1998, and Area 19 in 1999, non-commercial roundfish in Area 18 in 1998, and Selachii in Area PRD in 1997 (Table 4). High bycatch in otter trawls in PRD in 1997 is probably mainly due to the relatively large number of sets sampled for which no BRD was used (Table 3).

3. Estimated Bycatch

Estimates of the total bycatch of each species group by year, gear, and area, were made by multiplying the mean catch per unit effort recorded from bycatch sampling (Table 5), by the commercial effort expended for the same year, gear, and area groups. Results are presented in Table 6. Table 7 lists the median and lower and upper 95% confidence limits for the mean bycatch estimates, obtained using bootstrap techniques (S-PLUS, 1999), while Table 8 provides estimates for individual species, rather than species groups. The analysis is obviously highly sensitive to the mean CPUE values recorded from bycatch samples, which are often quite variable and based on only a few tows. Therefore, the uncertainty in the estimates of total bycatch is sometimes considerable. For example, the lower and upper 95% confidence limits for the estimated bycatch of commercial flatfish in Area 17 by beam trawlers, based on only 3 sets sampled, are 2,034 Kg and 26,780 Kg, respectively (Table 7). No attempt is made to estimate bycatch in unsampled areas. Therefore, total, coastwide bycatch estimates are likely higher than the sum of the estimates presented here.

The total estimated bycatch of beam trawls is generally higher than otter trawls both in terms of total weight, and as a percent of the catch weight (Fig. 4). By Shrimp Management Area, estimates for beam trawls range from a high of over 200 tonnes (244% of the reported shrimp catch) in Area FR in 1997 (Fig. 4a), to a low of under 20 tonnes (22% of the reported shrimp catch) in Area 2IN in 1999 (Fig. 4e). In general, areas in the Strait of Georgia appear to have the highest ratios of bycatch to recorded catch (Fig. 4a, 4c, and 4e). Area FR stands out as having the highest overall bycatch estimate of any area for the years 1997-99 and is dominated by Selachii, commercial flatfish, non-commercial roundfish, and commercial roundfish (Table 6 and 7). In fact, in 1997 the estimated bycatch of Selachii is approximately 50 tonnes greater than the estimated or reported shrimp catch (Table 6). Unfortunately, despite the fact that this area is one of the most heavily trawled regions on the coast by beam trawlers, relatively little bycatch sampling occurred here between 1997 – 99 with only 0.4% of the commercial tows sampled.

Otter trawls generally have much lower ratios of estimated bycatch to recorded catch than beam trawls (Fig. 5) probably mainly due to the use of BRDs. However, the estimated bycatch in Area PRD in 1997 is almost three times as large as the reported shrimp catch and is dominated by commercial flatfish, Selachii, and non-commercial roundfish (Fig. 5b; Table 5 and 6). However otter trawl sets from PRD in 1997 include 11 sets where a BRD was not used. Although total otter trawl bycatch estimates in other areas are relatively low compared to recorded catch, the estimated bycatch of specific groups in some areas are still fairly high. In particular, eulachon in Areas QCSND and 230FF in 1997 and 1998, and in Area 230FF in 1999, commercial flatfish in Area QCSND in 1997 and 1998, commercial roundfish in Area QCSND in 1998 and in Area 23OFF in 1999, and non-commercial roundfish in Area QCSND in 1998 and 1998 (Table 5 and 6).

The bycatch of individual commercial species in the shrimp trawl fishery is generally negligible compared to the guotas imposed for these species in their target fisheries. However, there are a few notable exceptions for some species in some years. For example, the estimated bycatch of Quillback and Copper rockfish in 1997 was just over 9 tonnes (Table 8). This is comparable to the 2000 groundfish trawl quota for these two species which, combined in an aggregate group with China and Tiger rockfish, was only 10 tonnes. It's also almost 10% of the 2000 quota for the inside hook-and-line fishery, which is main fishery for this species aggregate. Also noteworthy is the estimated bycatch of English sole in 1997 and 1999 (Table 8). At about 44 tonnes it represents nearly 6% of the total 2000 groundfish trawl quota of 771 tonnes. In addition, Dover sole bycatch estimates were relatively high in 1997 and 1999, at approximately 9 to 10 tonnes (Table 8), although this represents less than 1% of the 2000 groundfish trawl guota of 1,375 tonnes. Other species with high bycatch estimates, although not necessarily significant in terms of the quotas in their target fisheries, include Pacific Hake, which had a bycatch estimate of over 100 tonnes in 1999, Walleye Pollock, which had a bycatch estimate of over 30 tonnes in both 1998 and 1999, and Spiny Dogfish, which had bycatch estimates of over 100 tonnes in 1997 and over 50 tonnes in 1998 and 1999 (Table 8).

4. Variations in Bycatch CPUE: Spatial, temporal, and gear considerations

In general, the bycatch observer data is not consistent enough across years, areas, and gear-types to enable coastwide analyses of spatial and temporal trends in bycatch. However, there are a few areas where the data are extensive enough so that specific questions can be posed. These are listed in the following sections.

a. Does the use of BRDs significantly reduce bycatch CPUE?

This question can be addressed of both beam trawlers in Area 23OFF in 1998, and of otter trawlers in Area PRD in 1997. As Fig. 5a shows, the use of BRDs in beam trawls in 23OFF in 1998 did significantly reduce the bycatch CPUEs of several major species groups including commercial roundfish, commercial flatfish, and Selachii, and reduced, albeit not significantly, the catch of non-commercial roundfish. In 1997, otter trawlers in Area PRD that utilized BRDs had significantly lower bycatch CPUEs of commercial and non-commercial roundfish, commercial flatfish, and Selachii (Fig. 5b). The catch rates of eulachon in PRD were negligible (Fig. 5b).

b. Does bycatch CPUE vary between gear types?

An analysis of bycatch CPUEs from otter and beam gear fishing with BRDs in Area 230FF in 1999 suggests that the CPUE of commercial roundfish and commercial flatfish are quite similar between the two gear types (Fig. 6). On the other hand, eulachon and non-commercial roundfish CPUE is significantly higher for otter trawlers, especially eulachon CPUE (Fig. 6). The CPUE of Selachii is low for both gear types (Fig. 6).

c. Does bycatch CPUE vary annually?

This question can be addressed of otter trawlers using BRDs in Area 23OFF in 1997 and 1999, and also for beam trawlers without BRDs in the same area in 1997, 1998, and 1999. Results indicate that for otter trawlers, bycatch CPUE dropped between 1997 and 1999 for all species groups except commercial roundfish (Fig. 7a). For beam trawlers, bycatch CPUE appears to have declined somewhat for most species groups over the period of 1997 to 1999, but the declines are not significant (Fig. 7b). In contrast, the CPUE of commercial roundfish went up significantly in 1999 (Fig. 7b). In 1999 there was a large increase in the catch of hake in Area 23OFF for both gear types. This accounts for the large increase in commercial roundfish CPUE seen for both gear types (Figs. 8a and 8b) and may be due to a change in the distribution of hake in 1999 compared to previous years.

d. Does bycatch CPUE vary spatially?

This question can be addressed using CPUEs from beam trawlers with no BRDs operating in Areas 23OFF and FR (Fig. 1) with data combined over the 3 years of sampling. Results indicate that bycatch CPUE is generally higher in Area FR, especially for non-commercial roundfish and Selachii (Fig. 8). There were no eulachon caught as bycatch in Area FR (Fig. 8).

5. Bycatch in Other Trawl Fisheries

Bycatch is a problem for world fisheries and may even be considered "the major problem" in many respects (Hall 1999). It has always been recognised as a problem but it wasn't until the 1990's that it became a very public issue including a United Nations General Resolution 49/118. This resolution called upon all states to take into consideration the effect on associated and dependent species when establishing conservation and management measures for target species in fisheries (Everett 1996). This resolution subsequently led FAO to formulate bycatch and discard provision in its Code of Conduct for fisheries.

Worldwide for all fisheries, Alverson et al (1994) estimated bycatch of 27 million tonnes of discards on a target catch of 77 million tonnes. Mean bycatch from the shrimp fisheries was estimated by Alverson et al (1994) to be 11.2 million tonnes while Andrew and Pepperell (1992) estimated the global discard figure of 16.7 million tonnes for shrimp fisheries alone. This is an extreme problem in some areas such as the United States South East Atlantic shrimp fishery, which has bycatch rates of weight of fish to shrimp in the order of 2.3:1, and in the Gulf of Mexico of 4.3 to 1 (Graham 1996). If one is to look at this question only in the context of what Alverson and Hughes (1996) define as Ecological Use Efficiency (EUE) i.e. the Retained Catch / Total Catch (Retained + Discarded) then we can see from Fig. 3, that the shrimp trawl fisheries in B.C. in comparison to other shrimp fisheries in the world are fairly clean. In particular, the otter trawlers seem to consistently have very good EUE ratios, which is probably due to their quick voluntary adoption of bycatch reduction devices (BRD). The beam trawlers on the other hand had much higher EUE rations in some of the inside areas although still not in the range of the Gulf of Mexico. This may be a function of both area and use of BRD. For the fishery in 2000, industry requested that the fishery made the use of BRD mandatory in all areas and with all gear types. Hopefully, this will significantly reduce the bycatch EUE for beam trawls.

Unfortunately as Hall (1999) points out, it is not just a question of how much is caught but more importantly it is necessary to classify the bycatch according to the

type and level of effect. He developed the following categories to illustrate these issues:

- 1. Critical bycatches bycatch of populations or species in danger of extinction.
- 2. Non-sustainable bycatches- populations not at risk but will lead to declines in population.
- 3. Sustainable bycatches levels of bycatch that would not lead to declines in levels of abundance.
- 4. Non-biologically significant bycatches bycatches so low they are considered negligible from the view of populations involved.
- 5. Bycatch of unknown levels situation where we lack the basic data on abundance and mortality to determine the extent and sustainability of the bycatch.
- 6. Ecosystem-level impacts the focus here is on the complex of animals being removed.
- Charismatic bycatches this category reflects different societal values and that some species have a special emotional value that may be independent of the level of the effect exerted or the conservation status of the species.

For the shrimp fishery in B.C. the bycatch issues vary between areas and between gear types and as such there is probably not a single solution to this complex problem.

6. Bycatch Management Strategies Used in Other Trawl Fisheries

Solutions to the issue of bycatch management are being sought globally. Thomson (1995) summarises the bycatch regulations in use in the fisheries off Alaska and provides a comprehensive list of techniques that may be utilised to manage bycatch:

- Time and area closures.
- Aggregate prohibited species caps (tonnage or number of individuals)
- Bycatch rates and mortality rates for both prohibited species and nontarget species
- Allocation to selective gears with lower bycatch mortality
- "Pay-as-you-go" onboard observer programs
- Performance trawl definition
- Gear restrictions
- Techniques to release and minimise harm to bycatch
- Protection zones when abundances are below threshold levels
- Catch and bycatch data production and analysis with reports available to the public on a timely basis
- Publication of vessel-by-vessel bycatch rates, which identify the "dirty dozen", a peer pressure mechanism that has proven effective

Other techniques that have been suggested that recognise that some of the problem belongs to the management system that deals with allocation between user groups. Davis (1996) notes that it may be impossible to develop technology that would allow single species removal and suggests a multispecies management regime that shares the quota among all the impacting fisheries.

In some jurisdictions, some or all of the bycatch from trawling is utilised. In New South Wales, Australia, bycatch from the prawn trawl fishery is divided into bycatch that is discarded and "by-product" that is landed and marketable. This "by-product" is usually considered "acceptable" in terms of inter-fishery conflicts because alternative fisheries [for these species] are negligible (Kennelly 1994). In the Oregon shrimp trawl fishery, retention of commercially important groundfish species is permitted under retention limits of fish per trip and monthly limits for individual species. However, retention of some groundfish species was reduced in 1999 under a groundfish stock rebuilding strategy, and Oregon shrimpers have begun investigating the use of fish excluders to reduce the incidence of groundfish in shrimp trawls and improve shrimp quality (Hannah and Jones 2000).

In order to keep bycatch from increasing or force a reduction in bycatch, the first choice in bycatch management is usually a limit on the amount of bycatch or on bycatch mortality. Bycatch limits are usually necessary, but without additional management actions the result is often a race to fish. Individual incentive programs can be developed, such as assigning bycatch limits to individual vessels or vessel pools, which could effectively reduce the race to harvest fish before bycatch limits are reached (Trumble 1995). Limits (prohibited species caps) have been placed on the total harvest of prohibited species taken as bycatch in the groundfish fisheries of the Bering Sea, Aleutian Islands and Gulf of Alaska and there are currently several hundred individual bycatch limits explicitly or implicitly established in the management regime for these fisheries (Smith 1995). In the Eastern Bering Sea flatfish fisheries, regulations governing bycatch of prohibited species include area closures and aggregate bycatch caps. In the Eastern Bering Sea, data reporting is also used to identify bycatch rates and bycatch hot spots through satellite transmission of observer data, which are rapidly converted into plotted reports and bycatch rate assessments to allow the fleet to rapidly respond (both individually and collectively) to high bycatch rates, minimise bycatch of prohibited species, and to more effectively stay within the overall prohibited species bycatch caps (Gauvin 1995).

Within Canada's Pacific region, selective fishing strategies are being developed for all fisheries in which bycatch is an issue, in order to meet specified standards of selectivity (by 2005 for shellfish fisheries). The shrimp trawl fishery has already undertaken to initiate selective and responsible fishing practices. Management measures currently in place to control bycatch include time and area closures, "bycatch action levels" for particular species of concern (roughly equivalent to prohibited species caps), mandatory use of selectivity gear (fish excluders), retention and retention limits on incidental catch of some species, non-retention of finfish, and the dumping of species caught under the authority of the licence is prohibited. In addition, the catch sampling program collects catch and bycatch information to provide for, among other things, in-season monitoring of action levels. Extended fishing opportunities have been provided to gear that has been shown to be more selective for a particular species of concern and experimentation with selective fishing gear is ongoing. The industry has identified a Selective Fishing Subcommittee and Future Management Committee that report to the main advisory body for the

fishery on issues related to bycatch and selective fishing practices.

Discussion

Since the programme began in 1997, bycatch sampling of shrimp trawls has been very inconsistent both spatially and temporally. Except in a few areas, most notably Area 23OFF, the data are insufficient to support analyses that would help determine spatial and temporal trends in bycatch. In addition, sampling of beam trawlers was heavily weighted towards those vessels that did not use BRDs while almost all of the otter trawls sampled had BRDs. This makes comparisons of bycatch between gear types difficult. In addition, given that the use of BRDs became mandatory in 2000, concerns over bycatch levels in beam trawls identified in this paper may already be resolved. Therefore, both the species composition and estimates of bycatch given in this paper, especially with respect to beam trawls, should only be considered a "snapshot" of conditions prior to 2000. In 2000 and beyond, we might expect to see a marked decline of bycatch in both beam and otter trawls.

To date, the mandate of the bycatch sampling program has really been nothing more than to "monitor changes in bycatch" with respect to time, area, and gear. Unfortunately, this objective is far too vague given the available level of sampling effort. In the future, specific objectives will need to be identified and prioritised and appropriate long-term programmes developed. If coastwide sampling continues to be an objective, then a more expensive programme will have to be considered as current levels of observer coverage are simply not adequate to address coastwide bycatch issues.

The existing data do provide a few opportunities to address some specific questions concerning the variation in bycatch catch rates between gear types, areas, and years. In particular, it seems that the use of BRDs significantly reduces the bycatch CPUE of most species groups in both otter trawls and beam trawls. Nevertheless, despite the use of BRDs, the bycatch of eulachon in otter trawls continues to be relatively high on the West Coast of Vancouver Island. With or without BRDs, bycatch CPUE seems to be declining over time for both beam and otter trawls, at least off the west coast of Vancouver Island. It's unclear whether this reflects changes in fishing practices or changes in the actual abundance of bycatch species. In at least one instance, a large increase in the abundance of hake on the west coast of Vancouver Island appears to have caused large increases in bycatch for both gear types. A limited comparison of beam trawls in Area 230FF and Area FR suggests that bycatch does vary between areas, at least for certain species. For example, the bycatch of Selachii appears to be greater in Area FR while eulachon bycatch is greater in 230FF. However, a more extensive and directed sampling programme will be required before between-area variation can effectively addressed.

Conclusions and Recommendations

Hall (1999) points out that knowing the mortality numbers themselves are not especially helpful, what we are concerned about is the impacts on the population. He suggests that understanding the impacts on populations will require a minimum of three pieces of information:

1. Reliable estimates of by-catch numbers.

- 2. Knowledge of stock identity and migration.
- 3. Reliable estimates of population size.

With respect to his first point, most shrimp trawl bycatch sampling effort has focused on otter trawls in Queen Charlotte Sound and off the West Coast of Vancouver Island, in a response to concerns over the bycatch of eulachon and halibut. The data are inadequate to address bycatch issues in most other areas, especially since the sampling effort has been inconsistent over the years. It is unlikely, given the current levels of funding, that sampling effort will ever be adequate to address bycatch concerns in all areas over all years.

Recommendation 1: Identify and prioritise specific bycatch concerns and develop long-term cost-effective sampling programs that will provide sufficient data to address these concerns.

If coastwide bycatch trends are indeed a priority then the sampling programme must be expanded accordingly. More funds may be required.

Recommendation 2: If coastwide sampling continues to be the focus, a more expensive bycatch sampling program should be considered, involving at-sea charters with observers that get on and off vessels at sea. Additionally, 100% observer coverage might be considered in certain areas.

Although we quantify the bycatch of individual species, we make no attempt to categorise species according to Hall's criteria listed in section 5. In most cases, we simply do not have enough information to make these judgements.

Recommendation 3: A DFO multi-sector working group should be established to identify species that are believed to fall in the categories: critical bycatch, non-sustainable bycatch, bycatch of unknown levels, and charismatic bycatch. The working group should identify data needs, in particular to address the questions of stock identity and migration and obtaining reliable population estimates.

References

- Alverson, D.L. and S.E. Hughes. 1995. Bycatch: from emotion to effective natural resource management. *In* Solving Bycatch: Considerations for Today and Tomorrow. Alaska Sea Grant College Program Report. 96-03: 13-28.
- Alverson, D.L., M.H. Freeberg, S.A. Murawski, and J.G. Pope. 1994. A global assessment of bycatch and discards. FAO Fisheries Technical Paper. 339: 233p.
- Andrew, N.L. and J.G. Pepperell. 1992. The by-catch of shrimp trawl fisheries. Oceanography and Marine Biology. An Annual Review. 30: 537-565.
- Boutillier, J.A., J.A. Bond, and H. Nguyen. 1999a. Halibut by-catch in the British Columbia shrimp trawl fishery. DFO Canadian Stock Assessment Secretariat Reasearch Document 99/122. 11p.
- Boutillier, J.A., J.A. Bond, and H. Nguyen. 1999b. Shrimp Survey Bulletin 99-01: Results of the West Coast of Vancouver Island Survey. Shrimp Trawl Homepage, Shellfish – Pacific Region. http://www.pac.dfo-mpo.gc.ca/ops/fm/shellfish/shrimp
- Davis, S. 1996. Multispecies Management: An alternative Solution to the Bycatch Problem. Alaska Sea Grant College Program Report No. 96-03, University of Alaska Fairbanks.
- Everett, G. 1996. Fisheries Bycatch and Discards A Report From FAO. In Solving Bycatch: Considerations for Today and Tomorrrow. Alaska Sea Grant College Program Report No. 96-03, University of Alaska Fairbanks.
- Gauvin, J. R., K. Haflinger and M. Nerini. 1995. Implementation of a voluntary bycatch avoidance program in the flatfish fisheries of the Eastern Bering Sea. *In* Solving bycatch: considerations for today and tomorrow: proceedings of the Solving Bycatch Workshop, September 25-27, 1995, Seattle Washington. University of Alaska, Alaska Sea Grant College Program (publ.). 322 pp.
- Graham, G. 1996. Finfish Bycatch from the South East Shrimp Fishery. In Solving Bycatch: Considerations for Today and Tomorrrow. Alaska Sea Grant College Program Report No. 96-03, University of Alaska Fairbanks.
- Hall, S.J. 1999. The effects of fishing on marine ecosystems and communities. Fish Biology and Aquatic Resources Series 1. Blackwell Science Ltd., London.
- Hannah, R. and S. Jones. 2000. 11th Annual Pink Shrimp Review. *Produced by* the Oregon Department of Fish and Wildlife. 8 pp.
- Hay, D.E., R. Harbo, J. Boutillier, E. Wylie, L. Convey, and P.B. McCarter. 1999.
 Assessment of by-catch in the 1997 and 1998 shrimp trawl fisheries in British Columbia, with emphasis on eulachons. DFO Canadian Stock Assessment Secretariat Reasearch Document 99/179. 47p.
- Kennelly, S.J. 1994. Development of by-catch reducing trawl gears in NSW's prawn trawl fisheries. *In*: Bycatches in Fisheries and their impact on the ecosystem.

Fisheries Centre Research Reports Vol. 2 No. 2. Fisheries Center, University of British Columbia. 86 pp.

- McCaughran, D. A. 1992. Standardized nomenclature and methods of defining bycatch levels and implications. Proceedings of the National Industry Bycatch Workshop (R.W. Schoning, R.W. Jacobsen, D.L. Alverson, T.G. Gentle, and J. Augyon, eds). pp. 200-201. Natural Resources Consultants, Seattle, Washington.
- Murawski, S.A. 1995. Meeting the challenges of bycatch: New rules and new tools. *In* Solving bycatch: considerations for today and tomorrow: proceedings of the Solving Bycatch Workshop, September 25-27, 1995, Seattle Washington. University of Alaska, Alaska Sea Grant College Program (publ.). 322 pp.
- Perkins, P.C. and E.F. Edwards. 1994. A mixture model for estimating bycatch from data with many zero observations: Tuna bycatch in the eastern tropical Pacific Ocean. Southwest Fisheries Science Center Administrative Report LF-94-07. 28pp.
- Saila, S. 1983. Imporatance and assessment of discards in commercial fisheries. FAO Circular 765, UN/FAO, Rome, Italy.
- Smith, T.P. 1995. Solving the bycatch problem: an economic perspective. In Solving bycatch: considerations for today and tomorrow: proceedings of the Solving Bycatch Workshop, September 25-27, 1995, Seattle Washington. University of Alaska, Alaska Sea Grant College Program (publ.). 322 pp.
- S-PLUS 2000 Guide to Statistics, Volume 2. 1999. Data Analysis Products Division, MathSoft, Seattle, WA.
- Thomson, A. 1995. Critical elements for sustainable harvests of king and tanner crabs in the Eastern Bering Sea, with a focus on bycatch regulations. *In* Solving bycatch: considerations for today and tomorrow: proceedings of the Solving Bycatch Workshop, September 25-27, 1995, Seattle Washington. University of Alaska, Alaska Sea Grant College Program (publ.). 322 pp.
- Trumble, R.J. 1995. Management of Alaskan Longline fisheries to reduce halibut mortality. *In* Solving bycatch: considerations for today and tomorrow: proceedings of the Solving Bycatch Workshop, September 25-27, 1995, Seattle Washington. University of Alaska, Alaska Sea Grant College Program (publ.). 322 pp.

Appendix A. Request for Working Paper submitted by managers.

PSARC INVERTEBRATE SUBCOMMITTEE

Request for Working Paper

Date Submitted: October 13, 1999

Individual or group requesting advice:

(Fisheries Manager/Biologist, SWG, PSARC, Industry, Other stakeholder etc.) Shrimp by Trawl industry, PCSCA, stakeholders and managers

Proposed PSARC Presentation Date: June 2000

Subject of Paper (title if developed): Catch composition of BC Shrimp Trawls and estimations of bycatch (3rd paper in a three part series).

Stock Assessment Lead Author: Boutillier et al

Fisheries Management Author/Reviewer: Rick Harbo , Kim West, Laurie Convey.

Rationale for request:

(What is the issue, what will it address, importance, etc.)

Two reports have been tabled on the bycatch, with emphasis on halibut (PSARC 99/122) and eulachon (PSARC I-99) in the shrimp trawl fishery. The bycatch of other non-target species remains an outstanding issue identified by the PSARC review. This report would be the third in a three part series to complete the examination of bycatch in this fishery. A commitment was made to industry and managers to provide a report for the 1997/98 season, using all available data on effort, landings and bycatch (current and historical). A selective fishing policy for Pacific fisheries has been announced. RMEC encourages reduction of bycatch in the shrimp trawl fishery (from 1998 levels) and notes there should be linkages to the selective fishing policy.

(To be developed by initiator) **Objective of Working Paper:**

(To be developed by FM & StAD)

To be able to meet the selective fishing objective by the target date of 2005 for shellfish fisheries. The selective fishing objective as stated in *Selective Fishing in Canada's Pacific Fisheries, A new Direction: The third in a Series of Papers from Fisheries and Oceans Canada* is that: "All Pacific Fisheries, in which bycatch is an issue, will meet specified standards of selectivity. In fisheries where selective harvesting standards are not met, and bycatches remain a constraint to achievement of conservation objectives, fishing opportunities will be curtailed". To recommend approaches to bycatch reduction in this fishery - time, area closures for AVOIDANCE and gear options for EXCLUDE and ESCAPE options.

Questions To be addressed in the Working Paper:

What is the quantity of bycatch in this fishery? A summary of the quantity of bycatch (total 'other non-target' species) by shrimp management area for each trawl gear type for each fishing season (as per table 8 in the eulachon PSARC paper in prep.). Identify areas with highest

bycatch.

How has the quantity of bycatch changed between fishing seasons? Identify changes in amount of bycatch between seasons. Are those changes fishery dependent or not? What behavioural changes and gear changes have there been?

What is the catch composition in shrimp trawls by gear and shrimp management area? A summary of the catch composition for each shrimp management area and for each trawl gear type, listing by species. What commercially important or rare species are in the bycatch? May need to be summarized by family or grouping of species - as was discussed, by functional groups - rather than by species. Alternatively, as a shortened list and/or with a full list of species provided as an appendix.

What is the bycatch as a percentage of the total catch (likely based on data from catch sampling data only) by shrimp management area and gear type? A summary of the catch composition – target species and total non-target species - for each shrimp management area and for each trawl gear type as a percentage of the total catch.

Does the bycatch vary by month or within the season? A summary of bycatch by month. Sample size may dictate whether this can be determined for each shrimp management area, trawl gear, and season.

Summaries may include eulachon estimates from PSARC I-99.

To finalize the available historical sampling data, including historical sampling data by a student(s) in 1996, and the 1997/98, 1998/99 and 1999/2000 catch sampling programs and to estimate bycatch as per the method recommended in PSARC I-99 Assessment of bycatch in the 1997 and 1998 shrimp trawl fisheries in British Columbia, with emphasis on eulachons.

Reference (citation) to the PSARC papers on eulachon and halibut bycatch to complete a three part series on bycatch.

Data from the gear questionnaire should be summarized and evaluated. **How many vessels are using escapement devices, etc. How many use beam, otter or are combination vessels?** The form may require revision and updating – if so, recommendations should be made.

Is there a gear type with lower bycatch? A comparison of the bycatch between vessels with and without selectivity devices. The comparison should be made within each gear type (beam or otter).

How does bycatch in this fishery compare to other trawl fisheries? A

summary of bycatch or ongoing bycatch studies in other Canadian fisheries- Pacific groundfish fisheries, east coast groundfish and shrimp fisheries should be presented for comparison. What management strategies are used in other trawl fisheries to reduce bycatch? Including any specific management strategies (e.g. mandatory exclusion devices, time or area closures) employed in other jurisdictions.

What was the level of observer coverage over the sampling seasons? Levels of observer coverage in the 1997/98 and 1998/99 and 1999/2000 fishery should be documented by time, area, and gear. Are there recommendations for design of future Catch Sampling Programs? Recommendations should be made for the design of future bycatch programs and research topics (e.g. fish behaviour). Recommendations for the catch sampling program for the 2001/2002 fishery in preparation to meet strategies of the selective fishing policy. **Table 1.** List of all species encountered during bycatch sampling of the British Columbia commercial shrimp trawl fleet, and the assigned species groups.

Shrimp		Eula	Eulachon		
Species	Common	Species	Common		
Pandalopsis dispar	Sidestripe shrimp	Thaleichthys pacificus	Eulachon		
Pandalus borealis	Pink shrimp				
Pandalus danae	Coon stripe shrimp	Hal	ibut		
Pandalus goniurus	Flexed pink shrimp	Species	Common		
Pandalus hypsinotus	Humpback shrimp	Hippoglossus stenolepis	Pacific halibut		
Pandalus jordani	Smooth pink shrimp				

Bird			Unknown		
Species	Common	Species	Common		
Family Phalacrocoracidae	Cormorants		Fish eggs Unknown fish		
F	Prawn				
Species	Common				
Pandalus platyceros	Prawn				

Comm	ercial Rockfish	Non-comme	ercial Rockfish
Species	Common	Species	Common
Family Scorpaenidae	Scorpionfish	Subfamily Sebastinae	Rockfish
Sebastes aleutianus	Rougheye rockfish		
Sebastes alutus	Pacific ocean perch	Dogfish, ratf	ish, and skates
Sebastes babcocki	Redbanded rockfish	Species	Common
Sebastes borealis	Shortraker rockfish	Family Chimaeridae	Ratfish
Sebastes brevispinis	Silvergray rockfish	Family Rajidae	Skates
Sebastes caurinus	Copper rockfish	Hydrolagus colliei	Spotted ratfish
Sebastes crameri	Darkblotched rockfish	Raja binoculata	Big skate
Sebastes diploproa	Splitnose rockfish	Raja rhina	Longnose skate
Sebastes elongatus	Greenstriped rockfish	Squalus acanthias	Spiny dogfish
Sebastes entomelas	Widow rockfish		
Sebastes flavidus	Yellowtail rockfish		
Sebastes maliger	Quillback rockfish	Commerci	al Roundfish
Sebastes paucispinis	Bocaccio	Species	Common
Sebastes pinniger	Canary rockfish	Anoplopoma fimbria	Sablefish
Sebastes proriger	Redstripe rockfish	Gadus macrocephalus	Pacific cod

Table 1. continued.

Commercial Rockfish (continued)		Commercial Rou	ndfish (continued)
Species	Common	Species	Common
Sebastes reedi	Yellowmouth rockfish	Merluccius productus	Pacific hake
Sebastes ruberrimus	Yelloweye rockfish	Microgadus proximus	Pacific tomcod
Sebastes variegatus	Harlequin rockfish	Ophiodon elongatus	Lingcod
Sebastes zacentrus	Sharpchin rockfish	Theragra chalcogramma	Walleye pollock
Sebastolobus alascanus	Shortspine thornyhead		· · ·
Subfamily Sebastolobinae	Thornyheads		

Non-commer	cial Roundfish	Commercia	al Flatfish
Species	Common	Species	Common
Agonomalus mozinoi	Kelp poacher	Atheresthes stomias	Arrowtooth flounder
Allosmerus elongatus	Whitebait smelt	Family Bothidae	Lefteye flounders
Alosa sapidissima	American shad	Citharichthys sordidus	Pacific sanddab
Anarrhichthys ocellatus	Wolf eel	Eopsetta exilis	Slender sole
Aptocyclus ventricosus	Smooth lumpsucker	Eopsetta jordani	Petrale sole
Artedius lateralis	Smoothhead sculpin	Errex zachirus	Rex sole
Bothrocara brunneum	Twoline eelpout	Hippoglossoides elassodon	Flathead sole
Catostomus macrocheilus	Largescale sucker	Microstomus pacificus	Dover sole
Chitonotus pugetensis	Roughback sculpin	Platichthys stellatus	Starry flounder
Clupea pallasi	Pacific herring	Pleuronectes bilineatus	Rock sole
Cryptacanthodes aleutensis	Dwarf wrymouths	Pleuronectes vetulus	English sole
Cryptacanthodes gigantea	Giant wrymouth	Order Pleuronectiformes	Flatfish
Cymatogaster aggregata	Shiner perch	Pleuronichthys coenosus	C-o sole
Engraulis mordax mordax	Northern anchovy	Psettichthys melanostictus	Sand sole
Eptatretus deani	Black hagfish		
Eptatretus stouti	Pacific hagfish		
Family Acipenseridae	Sturgeons	Non-commer	cial Flatfish
Family Agonidae	Poachers	Species	Common
Family Cottidae	Sculpins	Citharichthys stigmaeus	Speckled sanddab
Family Cryptacanthodidae	Wrymouths		
Family Cyclopteridae	Lumpfishes and snailfishes	Commercial II	nvertebrates
Family Engraulidae	Anchovies	Species	Common
Family Hexagrammidae	Greenlings	Cancer magister	Dungeness crab
Family Icosteidae	Ragfishes	Cancer productus	Red rock crab

Table 1. continued.

Non-commercial Roundfish (continued)		Commercial Invertebrat	tes (continued)
Species	Common	Species	Common
Family Macrouridae	Grenadiers	Chionoecetes tanneri	Tanner crab
Family Myxinidae	Hagfish	Chlamys hastata	Spiny scallop
Family Osmeridae	Smelts	Class Holothuroidea	Sea cucumbers
Family Pholidae	Gunnels	Loligo opalescens	Opal squid
Family Ptilichthyidae	Quillfish	Strongylocentrotus droebachiensis	Green urchin
Family Stichaeidae	Pricklebacks	Order Octopoda	Octopus
Family Zoarcidae	Eelpouts	Octopus spp.	Octopus
Gasterosteus aculeatus	Threespine stickleback		
Hemilepidotus hemilepidotus	Red irish lord	Non-commercial Inv	vertebrates
Hexagrammos decagrammus	Kelp greenling	Species	Common
Hypomesus pretiosus	Surf smelt	Actiniaria (order)	Anemone
Liparis fucensis	Slipskin snailfish	Amphipoda (order)	Amphipods
Lycodes palearis	Wattled eelpout	Anomura (section)	
Nautichthys oculofasciatus	Sailfin sculpin	Anthozoa (class)	
Odontopyxis trispinosa	Pygmy poacher	Asteroidea (class)	Starfish
Oncorhynchus gorbuscha	Pink salmon	Atelostomata (superorder)	Heart urchins
Oncorhynchus tshawytscha	Chinook salmon	Berryteuthis magister	Red squid
Platax teira	Longfin batfish	Bivalvia (class)	Bivalves
Podathecus acipenserinus	Sturgeon poacher	Cancridae (family)	Cancer crabs
Porichthys notatus	Plainfin midshipman	Cephalopoda (family)	
Regalecus glesne	Oarfish	Chionoecetes bairdi	
Rhacochilus vacca	Pile perch	Chionoecetes spp	Tanner crabs
Sardinops sagax	Pacific sardine	Chorilia longipes	Redclaw crab
Scomber japonicus	Chub mackerel	Cirripedia (subclass)	Barnacles
Scorpaenichthys marmoratus	Cabezon	Crangon spp	
Subfamily Cyclopterinae	Lumpfishes	Crustacea (class)	Crustaceans
Subfamily Liparinae	Snailfishes	Echinacea (superorder)	Sea urchins
Trachurus symmetricus	Jack mackerel	Eualus spp	
Trichodon trichodon	Pacific sandfish	Gastropoda (class)	Gastropods
Zaprora silenus	Prowfish	Gnathostomata (superorder)	Sand dollars
		Hydrozoa (class)	Hydroid
		Lebbeus groenlandicus	Spiny side shrimp
		Lopholithodes spp	Box crabs

Table 1. continued.

Non-commercial Invertebrates (continued)					
Species	Common				
Mediaster aequalis	Vermillion starfish				
Moroteuthis robusta	Giant squid				
Munida quadrispina	Squat lobster				
Nantantia (order)	Shrimp				
Nudibranchiata (suborder)	Seaslugs				
Ophiuroidea (class)					
Oxyrhyncha (superfamily)	Spider crabs				
Pandalidae (family)	Pandalid shrimp				
Pandalus montaqui tridens	Yellowleg shrimp				
Pandalus stenolepsis	Bluespot shrimp				
Paracrangon echinata	Spike shrimp				
Pasiphaea pacifica	Glass shrimp				
Pectinidae (family)	Scallop				
Pennatulacea (order)	Sea pens				
Phylum annelida	Segmented worms				
Phylum arthropoda					
Phylum echinodermata	Echinoderms				
Polyplacophora (subclass)	Chitons				
Pugettia gracilis					
Repiantia (suborder)					
Rossia pacifica	Squat squid				
Scyphozoa (class)	Jellyfish				
Sedentaria (subclass)	Tube worms				
Sepiodea (order)	Sepiolea and cuttlefish				
Teuthoidea (order)	Squid				
Upogebiinae (subfamily)	Ghost shrimp				

Table 2. Level of bycatch sampling compared to total commercial effort by year, gear, and area. N = number of commercial trawls, n = number of sampled trawls, %N = percent of commercial trawls sampled, E = total commercial effort (hrs), e = commercial effort sampled (hrs), %E = percent of commercial effort sampled. Commercial effort data were obtained from logbooks.

Year Gear	Area	Ν	n	%N	E	е	%E
1997 Beam	10IN	123			196		
	11IN	1			0		
	1240FF	248	6	(2.4)	578	15	(2.6)
	1250FF	5			14		
	1260FF	2			1		
	12IN	1,008	25	(2.5)	1,424	57	(4.0)
	12OUT	348			1,108		
	14	1,769	17	(1.0)	2,766	30	(1.1)
	16	491	9	(1.8)	1,256	20	(1.6)
	17	559	3	(0.5)	1,129	4	(0.3)
	18	2,242	13	(0.6)	3,613	18	(0.5)
	19	1,195	24	(2.0)	1,632	34	(2.1)
	23IN	1,625	14	(0.9)	3,444	33	(1.0)
	23OFF	2,982	62	(2.1)	6,149	116	(1.9)
	24IN	20			27		
	25IN	29			36		
	27IN	16			144		
	270FF	2			2		
	2IN	7			20		
	3IN	317			645		
	5IN	4			5		
	6IN	43			138		
	7IN	74			85		
	9IN	2			22		
	FR	2,534	10	(0.4)	7,583	19	(0.3)
	GSTE	1,610	22	(1.4)	3,186	38	(1.2)
	PRD	1,916			4,975		
	QCSND	3			6		
		19,175	205	(1.1)	40,182	382	(1.0)

Year Gear	Area	N	n	%N	E	е	%Е
1997 Otter	10IN	1			1		
	1240FF	1,858	57	(3.1)	3,367	102	(3.0)
	1250FF	478	18	(3.8)	675	18	(2.6)
	1260FF	2			1		
	12IN	1			0		
	14	256	15	(5.9)	339	16	(4.8)
	16	9			10		
	17	11			14		
	18	17			25		
	19	1			1		
	210FF	37			51		
	23IN	185	14	(7.6)	397	23	(5.8)
	230FF	1,645	32	(1.9)	2,712	47	(1.7)
	24IN	46			63		
	25IN	7			8		
	270FF	114			128		
	2IN	4			7		
	3IN	79			101		
	5IN	44			41		
	50FF	3			7		
	6IN	470			583		
	7IN	40			48		
	8IN	8			11		
	9IN	90			112		
	DXE	7			8		
	FR	5			4		
	GSTE	175			104		
	PRD	1,550	90	(5.8)	2,533	109	(4.3)
	QCI	2			3		
	QCSND	2,082	137	(6.6)	3,652	263	(7.2)
		9,227	363	(3.9)	15,004	578	(3.9)

Table 2 continued

Year Gear	Area	Ν	n	%N	E	е	%Е
1998 Beam	10IN	34			32		
	11IN	83			104		
	1240FF	33			78		
	1250FF	2			4		
	12IN	1,249	22	(1.8)	1,508	32	(2.1
	120UT	397			1,108		
	14	3,024	11	(0.4)	6,497	20	(0.3
	16	513			1,368		
	17	506			1,174		
	18	2,611	11	(0.4)	5,143	19	(0.4
	19	492			655		
	20	2			4		
	210FF	5			11		
	23IN	1,060	20	(1.9)	2,343	43	(1.8
	230FF	8,211	38	(0.5)	18,520	87	(0.5
	24IN	14			22		
	25IN	25			77		
	26IN	6			4		
	27IN	90			227		
	270FF	16			28		
	2IN	210			393		
	3IN	115			229		
	5IN	18			44		
	6IN	16			117		
	60FF	5			25		
	7IN	135			174		
	8IN	28	2	(7.1)	30		
	9IN	481			1,146		
	FR	3,570	15	(0.4)	10,593	33	(0.3
	GSTE	1,695			3,313		
	PRD	1,744	15	(0.9)	4,498	29	(0.6
	QCSND	151	1	(0.7)	286	3	(0.9
		26,541	135	(0.5)	59,752	264	(0.4

le 2 continue Year Gear	Area	Ν	n	%N	E	е	%Е
1998 Otter	10IN	1		(0.0)	1		(0.0)
	1240FF	246	2	(0.8)	406	2	(0.6)
	1250FF	938			1,825		
	1260FF	10			19		
	12IN	71	2	(2.8)	91	3	(3.0)
	120 UT	8			13		
	14	281			399		
	16	12			24		
	18	177	1	(0.6)	249	1	(0.4)
	19	4			5		
	210FF	10			15		
	23IN	5			9		
	230 FF	2,584	4	(0.2)	4,617	8	(0.2)
	25IN	39			87		
	26IN	91	1	(1.1)	148		
	27IN	3	1	(33.3)	1	1	(100.0)
	270FF	290	23	(7.9)	412	22	(5.3)
	2IN	65			78		
	3IN	76			146		
	5IN	2			3		
	50FF	2			2		
	6IN	336			389		
	60FF	37			44		
	7IN	155			214		
	8IN	56	1	(1.8)	84		
	9IN	282		. ,	489		
	FR	6			16		
	GSTE	12			11		
	PRD	1,787			3,687		
	QCI	3			3		
	QCSND	3,716	296	(8.0)	7,172	587	(8.2)
		11,305	331	(2.9)	20,656	624	(3.0)

Year Gear	Area	Ν	n	% N	E	е	% E
1999 Beam	10IN	58			96		
	11IN	2			3		
	1240FF	50			111		
	12IN	292	31	(10.6)	299	32	(10.6
	120UT	395	2	(0.5)	1,129	2	(0.1
	14	1,195	11	(0.9)	2,319	20	(0.9
	16	1,020	4	(0.4)	2,407	10	(0.4
	17	147			339		
	18	363	3	(0.8)	751	9	(1.2
	19	254	1	(0.4)	494	2	(0.4
	20	6			7		
	23IN	696	26	(3.7)	1,579	68	(4.3
	230FF	4,491	64	(1.4)	10,679	143	(1.3
	24IN	41			106		
	25IN	18			43		
	2IN	67	6	(9.0)	259	12	(4.6
	3IN	192			372		
	5IN	61			108		
	6IN	6			12		
	60FF	16			35		
	7IN	23			32		
	8IN	12			19		
	9IN	239			776		
	FR	2,650	10	(0.4)	7,548	26	(0.3
	GSTE	1,686	12	(0.7)	3,246	28	(0.9
	PRD	1,323			3,446		
	QCI	3			12		
	QCSND	22			121		
		15,328	170	(1.1)	36,347	351	(1.0

Table 2 continued

Table 2 continue	ed.						
Year Gear	Area	Ν	n	%N	E	е	%Е
1999 Otter	1240FF	37			66		
	1250FF	263	18	(6.8)	432	29	(6.7)
	12IN	38			59		
	12OUT	5			4		
	14	214	8	(3.7)	262	10	(3.9)
	16	4			5		
	17	20			57		
	18	16			49		
	19	19	1	(5.3)	22	2	(10.1)
	210FF	2			1		
	23OFF	2,570	80	(3.1)	4,734	162	(3.4)
	24IN	4			8		
	25IN	86			140		
	26IN	23			51		
	27IN	31			41		
	270FF	182	14	(7.7)	243	16	(6.7)
	3IN	104			153		
	5IN	57			58		
	6IN	88			133		
	7IN	7			8		
	8IN	12			35		
	9IN	376			873		
	DXE	3			5		
	FR	16			36		
	GSTE	98			263		
	PRD	1,797			3,584		
	QCSND	221	5	(2.3)	329	7	(2.3)
		6,293	126	(2.0)	11,650	228	(2.0)

Table 2 continued. Summary of bycatch sampling effort by year and gear type.

Year Gear	N	n	%N	E	е	%E
1997 Beam	19,175	205	(1.1)	40,182	382	(1.0)
Otter	9,227	363	(3.9)	15,004	578	(3.9)
1998 Beam	26,541	135	(0.5)	59,752	264	(0.4)
Otter	11,305	331	(2.9)	20,656	624	(3.0)
1999 Beam	15,328	170	(1.1)	36,347	351	(1.0)
Otter	6,293	126	(2.0)	11,650	228	(2.0)
	87,869	1,330	(1.5)	183,591	2,427	(1.3)

			Bean	n		Otte	r
Year	Area	BRD	None	Proportion	BRD	None	Proportion
1997	1240FF	0	6	0.00	57	0	1.00
	1250FF				18	0	1.00
	12IN	0	25	0.00			
	14	0	17	0.00	15	0	1.00
	16	0	9	0.00			
	17	0	3	0.00			
	18	0	13	0.00			
	19	0	24	0.00			
	23IN	0	14	0.00	14	0	1.00
	230FF	0	52	0.00	42	0	1.00
	FR	0	10	0.00	42	0	1.00
		7					
	GSTE	1	15	0.32	70		0.00
	PRD				79	11	0.88
	QCSND				137	0	1.00
1997 To		7	188	0.04	362		0.97
1998	1240FF		~~~		2	0	1.00
	12IN	0	22	0.00	0	2	0.00
	14	0	11	0.00			
	18	0	11	0.00	0	1	0.00
	23IN	6	14	0.30			
	230FF	20	18	0.53	3	1	0.75
	26IN				0	1	0.00
	27IN				1	0	1.00
	270FF				22	1	0.96
	8IN	0	2	0.00	0	1	0.00
	FR	0	15	0.00			
	PRD	10	5	0.67			
	QCSND		Ū	0.01	297	0	1.00
1998 To		36	98	0.27	325	7	0.98
1999	1250FF			0.21	18	0	1.00
1000	12IN	0	31	0.00	10	Ŭ	1.00
	120UT	0	2	0.00			
	12001	0	11	0.00	0	8	0.00
					0	0	0.00
	16	0	4	0.00			
	18	0	4	0.00	•		
	19	0	1	0.00	0	1	0.00
	23IN	9	17	0.35			
	230FF	44	15	0.75	85	0	1.00
	270FF				14	0	1.00
	2IN	0	6	0.00			
	FR	0	10	0.00			
	GSTE	0	12	0.00			
	QCSND				5	0	1.00
1999 To		53	113	0.32	122	9	0.93
Total:		96	399	0.19	809	27	0.97

Table 3. The use of bycatch reduction devices (BRD) in bycatch sampled sets. BRD = Number of sets with BRD installed; None = Number of sets with no BRD installed; Proportion = Proportion of sets with BRD installed.

Table 4. Catch composition by percent of major species groups in bycatch sampled tows. Groups are B = birds, E = eulachon, FC = commercial flatfish, FNC = non-commercial flatfish, H = halibut, IC = commercial invertebrates, INC = non-commercial invertebrates, IS = "structural" invertebrates (sponges and corals), P = prawns, RKC = commercial rockfish, RKNC = non-commercial rockfish, RDC = commercial roundfish, RDNC = non-commercial roundfish, SHR = shrimp, S = Selachii (dogfish, skates, and ratfish), U = unknown.

Year Ge	ar Area	В	Ε	FC	FNC	Н	IC	INC	IS	Р	RCK	RKNC	RDC	RDNC	SHR	S	U
1997 Beam	1240FF		0.11	9.67			0.18	0.18		0.13			1.11	0.33	85.87	2.43	0.01
	12IN		0.01	8.71			0.03	2.14	0.03	2.77	0.04		0.55	2.99	65.55	14.39	2.78
	14		0.06	7.53			0.40	7.01		4.62	0.93		4.34	6.08	49.80	19.22	
	16		0.01	15.20			0.08	0.32		2.30	1.31		24.45	4.04	26.36	25.92	
	17			18.72				0.28		0.05	6.39		12.10	31.73	10.88	19.86	
	18			4.02				0.49		1.23	0.11		2.79	9.62	81.52	0.21	
	19			6.60	0.08		0.20	4.16		1.21	0.38		4.76	3.34	56.83	22.45	
	23IN	0.16	0.80	5.64			0.01	0.13		0.10	0.14		5.74	2.63	80.10	4.55	
	230FF		0.91	5.34			0.22	0.19		0.07	0.20		2.58	2.31	80.01	8.16	
	FR			7.64			0.10	2.66		2.07	1.32		4.34	7.52	39.47	34.88	
	GSTE			1.44			0.03	0.74		2.03	1.12		7.51	8.60	68.20	10.31	
	Total	0.02	0.36	6.71	0.01		0.13	1.47	0.01	1.30	0.40		4.00	3.87	69.62	11.59	
1997 Otter	1240FF		0.96	1.67			0.00	0.13		0.01	0.10		2.97	0.27	93.42	0.13	0.34
	1250FF		2.92	0.71			0.03				0.06		0.06	1.17	95.05		
	14		0.09	0.98			0.10	0.42		3.04	0.37		3.35	6.03	85.56	0.06	
	23IN		5.94	3.91			0.13	0.12		0.07	0.01		1.43	2.14	86.21	0.03	
	230FF		5.78	1.80			0.06	0.05		0.06	0.01		0.79	3.03	88.06	0.35	
	PRD		0.46			0.89	2.21	0.50	0.36	0.43	3.13		2.04	5.38	57.38	13.22	0.00
	QCSND		13.61	2.59		0.05	0.07	0.16		0.01	0.20		0.04	2.43	80.73	0.11	0.00
	Total		8.74	3.69		0.13	0.31	0.19	0.04	0.12	0.50		0.90	2.52	81.15	1.65	0.05
1998 Beam	12IN		0.05	4.48			0.27	0.34		0.55	0.02		2.71	2.05	85.27	4.26	
	14			6.69			0.17	1.46		1.60	0.61		2.45	7.79	75.09	4.13	
	18			10.49			0.49	23.05		0.43	0.17		6.20	9.72	38.04	11.40	
	23IN		0.43	2.96			0.07	6.48		1.69		0.01	3.57	4.30	76.81	3.67	0.01
	230FF		1.23	2.32	0.00		0.13	0.93		0.27	0.02		1.74	1.65	88.70	2.99	0.00
	FR			5.64	3.38		0.90	4.14	0.01	0.56	0.46		8.39	10.85	55.51	10.17	
	PRD		0.21	34.42			0.32	0.46		0.22	0.80		3.38	1.43	46.75	12.02	
	Total		0.35	7.78	0.28		0.28	3.32	0.00	0.63	0.18	0.00	3.41	3.73	74.25	5.79	0.00

Year Ge	ear Area	B E	FC	FNC	Н	IC	INC	IS	Р	RKC	RKNC	RDC	RDNC	SHR	S	U
1998 Otter	1240FF		36.15			6.92						20.77	29.23		6.92	
	12IN	2.37	0.17				4.78		0.23			29.92	1.48	61.06		
	18		6.78			3.39						45.76	33.90	8.47	1.69	
	230FF	9.79	0.39				1.21		1.15			1.17	0.83	85.46		
	27IN		20.00									60.00		20.00		
	270FF	0.71	7.45			0.03			0.02	0.07		3.05	1.55	84.70	2.41	
	QCSND	1.62	1.85			0.07	0.34		0.01	0.15		1.67	0.96	93.31	0.03	
	Total	1.64	1.99			0.06	0.38		0.02	0.15		2.02	0.99	92.66	0.10	
1999 Beam	12IN	0.10	8.41				0.45		1.78			2.89	5.30	76.40	3.49	
	12OUT		12.43				0.30					4.74	17.44	10.35	54.74	
	14		5.80			0.05	0.30		1.15	0.07		1.32	7.29	74.65	9.37	
	16		6.64				1.58	0.05	4.53	2.65		3.38	2.04	52.85	26.28	
	18		15.40			0.92	3.02		1.28			8.95	3.83	60.47	6.13	
	19		5.53				0.17		4.16			12.52	5.57	72.05		
	23IN	0.12	1.84			0.06	0.10		0.15	0.00		18.06	2.75	75.68	1.24	
	230FF	0.47	2.05			0.02	0.11		0.10	0.00		7.57	1.21	87.48	0.98	
	2IN		6.53				0.14		0.52	0.08		4.92	0.86	83.49	3.46	
	FR		9.58			1.90	1.58		1.66	0.78	0.02	8.66	6.02	53.72	16.08	
	GSTE		7.88			0.19	0.89		1.46	0.11		4.08	8.58	75.47	1.34	
	Total	0.21	4.84			0.17	0.41	0.00	0.83	0.13	0.00	7.69	3.59	77.88	4.06	
1999 Otter	1250FF	2.82	0.19						0.01	0.04		0.01	0.00	96.92		
	14		7.06				0.27		0.06	0.02		3.44	4.88	84.13	0.13	
	19		5.16			4.10	3.24		1.02			11.33	2.03	65.92	7.19	
	230FF	3.87	0.63			0.03	0.08		0.10	0.00		2.64	1.00	91.64	0.01	0.00
	270FF	0.97	2.01			0.56	1.24					1.39	0.54	89.25	1.25	2.78
	QCSND													100.00		
	Total	3.27	1.06			0.07	0.12		0.08	0.01		2.19	1.06	91.98	0.11	0.04

Table 4 continued.

Table 5. Mean CPUE (kg/hr) of major species groups recorded from bycatch samples. B = birds, E = eulachon, FC = commercial flatfish, FNC = non-commercial flatfish, H = halibut, IC = commercial invertebrates, INC = non-commercial invertebrates (sponges and corals), P = prawns, RKC = commercial rockfish, RKNC = non-commercial rockfish, RDC = commercial roundfish, RDNC = non-commercial roundfish, SHR = shrimp, S = Selachii (dogfish, skates, and ratfish), U = unknown.

year gear	area	В	E	FC	FNC	Н	IC	INC	IS	Р	RKC	RKNC	RDC	RDNC	SHR	S	U
1997 Beam	1240FF	-	0.138	11.085	-	-	0.205	0.236	-	0.175	-	-	1.314	0.394	103.862	2.888	0.007
	12IN	-	0.008	6.271	-	-	0.029	1.766	0.071	2.213	0.030	-	0.387	2.113	47.829	12.057	2.470
	14	-	0.037	3.641	-	-	0.205	3.615	-	2.395	0.437	-	2.060	3.116	25.332	8.666	-
	16	-	0.004	5.282	-	-	0.029	0.113	-	0.846	0.621	-	8.569	1.456	9.456	9.445	-
	17	-	-	11.622	-	-	-	0.177	-	0.033	4.023	-	7.198	17.985	6.620	12.020	-
	18	-	-	1.868	-	-	-	0.240	-	0.535	0.043	-	1.359	5.052	39.695	0.104	-
	19	-	-	4.266	0.095	-	0.175	2.178	-	0.716	0.339	-	3.965	1.722	37.312	20.716	-
	23IN	0.144	0.646	5.265	-	-	0.015	0.117	-	0.106	0.147	-	5.198	2.570	70.489	4.438	-
	230FF	-	0.536	3.539	-	-	0.175	0.134	-	0.045	0.175	-	1.450	1.525	48.549	6.018	-
	FR	-	-	3.227	-	-	0.026	0.829	-	0.583	0.372	-	1.762	3.103	12.907	19.517	-
	GSTE	-	-	0.857	-	-	0.023	0.466	-	1.098	0.648	-	3.373	3.735	36.698	5.034	-
1997 Be	eam Average:	0.013	0.124	5.175	0.009	-	0.080	0.897	0.006	0.795	0.621	-	3.330	3.888	39.886	9.173	0.225
Otter	1240FF	-	1.472	2.134	-	-	0.002	0.391	-	0.008	0.100	-	4.178	0.328	125.164	0.177	0.374
	1250FF	-	2.661	0.728	-	-	0.020	-	-	-	0.094	-	0.048	1.810	80.527	-	-
	14	-	0.089	0.940	-	-	0.107	0.428	-	2.836	0.361	-	3.365	6.547	91.382	0.056	-
	23IN	-	11.245	4.660	-	-	0.202	0.217	-	0.099	0.028	-	2.337	2.630	123.023	0.047	-
	230FF	-	6.886	1.902	-	-	0.081	0.069	-	0.075	0.014	-	0.947	3.199	119.247	0.382	-
	PRD	-	0.510	22.576	-	1.255	3.553	0.755	0.969	0.677	3.631	-	2.535	9.621	54.235	19.330	0.001
	QCSND	-	25.957	4.497	-	0.089	0.114	0.289	-	0.020	0.353	-	0.085	4.462	152.046	0.188	0.006
	tter Average:	-	6.974	5.348	-	0.192	0.583	0.307	0.138	0.531	0.655	-	1.928	4.085	106.518	2.883	0.054
1997 Aı	-	0.008	2.788	5.242	0.005	0.075	0.276	0.668	0.058	0.692	0.634	-	2.785	3.965	65.799	6.727	0.159
1998 Beam	12IN	-	0.093	8.196	-	-	0.424	0.649	-	1.100	0.126	-	3.441	3.264	212.649	8.687	-
	14	-	-	1.924	-	-	0.054	0.376	-	0.492	0.135	-	0.792	1.955	25.450	0.780	-
	18	-	-	5.757	-	-	0.263	13.885	-	0.226	0.083	-	3.299	5.566	22.030	5.038	-
	23IN	-	0.167	1.143	-	-	0.028	2.373	-	0.725	-	0.006	1.479	1.783	32.290	1.645	0.003
	230FF	-	0.366	0.997	0.001	-	0.044	0.385	-	0.116	0.009	-	0.729	0.720	30.088	1.231	0.001
	FR	-	-	1.901	1.181	-	0.315	1.900	0.003	0.196	0.247	-	3.589	4.285	18.911	3.423	-
	PRD	-	0.108	16.480	-	-	0.240	0.227	-	0.101	0.385	-	1.886	0.777	25.741	6.403	-
1998 Be	eam Average:	-	0.105	5.200	0.169	-	0.195	2.828	0.000	0.422	0.141	0.001	2.174	2.621	52.451	3.887	0.001

year gear	area	В	E	FC	FNC	Н	IC	INC	IS	Р	RKC	RKNC	RDC	RDNC	SHR	S	U
Otter	1240FF	-	-	1.120	-	-	0.231	-	-	-	-	-	0.623	0.958	-	0.231	-
	12IN	-	6.200	0.467	-	-	-	12.933	-	0.600	-	-	85.100	3.900	163.327	-	-
	18	-	-	2.000	-	-	1.000	-	-	-	-	-	13.500	10.000	2.500	0.500	-
	230FF	-	4.826	0.186	-	-	-	0.533	-	0.619	-	-	0.568	0.412	40.804	-	-
	27IN	-	-	4.775	-	-	-	-	-	-	-	-	14.324	-	4.775	-	-
	270FF	-	0.726	8.234	-	-	0.049	-	-	0.023	0.078	-	3.300	1.751	98.175	2.328	-
	QCSND	-	2.352	2.284	-	-	0.095	0.459	-	0.008	0.216	-	1.970	1.311	123.341	0.041	-
1998 Ot	ter Average:	-	2.015	2.724	-	-	0.196	1.989	-	0.179	0.042	-	17.055	2.619	61.846	0.443	-
1998 Av	erage:	-	1.060	3.962	0.084	-	0.196	2.409	0.000	0.300	0.091	0.000	9.614	2.620	57.149	2.165	0.000
1999 Beam	12IN	-	0.048	11.041	-	-	-	0.504	-	2.983	-	-	2.460	6.142	124.752	4.697	-
	120UT	-	-	10.042	-	-	-	0.263	-	-	-	-	4.167	14.094	8.239	47.470	-
	14	-	-	4.105	-	-	0.028	0.183	-	1.007	0.099	-	0.677	4.737	51.864	7.412	-
	16	-	-	2.835	-	-	-	0.580	0.019	1.941	0.718	-	1.167	0.890	22.815	10.352	-
	18	-	-	4.415	-	-	0.190	0.783	-	0.308	-	-	2.555	0.975	17.046	1.431	-
	19	-	-	7.371	-	-	-	0.229	-	5.543	-	-	16.686	7.429	96.057	-	-
	23IN	-	0.042	0.806	-	-	0.023	0.056	-	0.063	0.001	-	7.025	1.059	32.261	0.537	-
	230FF	-	0.264	1.046	-	-	0.014	0.062	-	0.061	0.002	-	4.049	0.620	44.980	0.506	-
	2IN	-	-	4.436	-	-	-	0.098	-	0.359	0.046	-	3.276	0.563	56.762	2.213	-
	FR	-	-	4.763	-	-	0.598	0.801	-	1.069	0.517	0.022	5.236	3.285	30.522	7.776	-
	GSTE	-	-	3.816	-	-	0.099	0.441	-	0.800	0.056	-	2.024	4.394	38.704	0.684	-
1999 Be	eam Average:	-	0.032	4.971	-	-	0.087	0.364	0.002	1.285	0.131	0.002	4.484	4.017	47.637	7.552	-
Otter	1250FF	-	5.655	0.363	-	-	-	-	-	0.018	0.094	-	0.013	0.007	186.308	-	-
	14	-	-	12.282	-	-	-	0.490	-	0.102	0.048	-	6.628	8.292	179.852	0.215	-
	19	-	-	5.867	-	-	4.667	3.689	-	1.156	-	-	12.889	2.311	74.978	8.178	-
	230FF	-	3.765	0.628	-	-	0.025	0.085	-	0.135	0.002	-	2.937	1.128	96.887	0.015	0.005
	270FF	-	0.276	0.531	-	-	0.152	0.329	-	-	-	-	0.394	0.146	31.844	0.357	0.751
	QCSND	-	-	-	-	-	-	-	-	-	-	-	-	-	10.762	-	-
	ter Average:	-	1.616	3.278	-	-	0.807	0.765	-	0.235	0.024	-	3.810	1.981	96.772	1.461	0.126
1999 Av	erage:	-	0.591	4.373	-	-	0.341	0.505	0.001	0.914	0.093	0.001	4.246	3.298	64.979	5.403	0.044

Table 6. Estimated catch (kg) of major species groups based on mean CPUE from bycatch samples multiplied by commercial effort. B = birds, E = eulachon, FC = commercial flatfish, FNC = non-commercial flatfish, H = halibut, IC = commercial invertebrates, INC = non-commercial invertebrates, IS = structural invertebrates (sponges and corals), P = prawns, RKC = commercial rockfish, RKNC = non-commercial rockfish, RDC = commercial roundfish, RDNC = non-commercial roundfish, SHR = shrimp, S = Selachii (dogfish, ratfish, and skates), U = unknown.

year gear	area	В	E	FC	FNC	H	IC	INC	IS	Р	RKC	RKNC	RDC	RDNC	SHR	S	U
1997 Beam	1240FF	-	78	6,322	-	-	117	135	-	100	-	-	750	225	59,236	1,647	4
	12IN	-	11	8,779	-	-	41	2,472	99	3,098	42	-	542	2,959	66,959	16,880	3,458
	14	-	99	9,796	-	-	552	9,728	-	6,444	1,175	-	5,541	8,384	68,158	23,317	-
	16	-	6	6,575	-	-	37	140	-	1,053	773	-	10,667	1,812	11,772	11,757	-
	17	-	-	12,914	-	-	-	196	-	37	4,470	-	7,998	19,984	7,356	13,356	-
	18	-	-	6,547	-	-	-	842	-	1,875	151	-	4,761	17,704	139,101	365	-
	19	-	-	6,830	152	-	280	3,488	-	1,147	543	-	6,349	2,758	59,743	33,170	-
	23IN	484	2,170	17,694	-	-	51	395	-	356	495	-	17,469	8,638	236,871	14,912	-
	230FF	-	3,253	21,493	-	-	1,065	813	-	274	1,062	-	8,808	9,260	294,878	36,555	-
	FR	-	-	24,180	-	-	194	6,212	-	4,369	2,791	-	13,204	23,255	96,718	146,244	-
	GSTE	-	-	2,682	-	-	71	1,460	-	3,437	2,028	-	10,561	11,694	114,900	15,760	-
1997 Be	am Total:	484	5,617	123,813	152	-	2,408	25,881	99	22,189	13,531	-	86,650	106,671	1,155,691	313,964	3,462
Otter	1240FF	-	4,935	7,154	-	-	6	1,312	-	27	336	-	14,006	1,101	419,555	595	1,253
	1250FF	-	1,777	487	-	-	13	-	-	-	63	-	32	1,209	53,792	-	-
	14	-	30	313	-	-	36	143	-	944	120	-	1,121	2,180	30,426	19	-
	23IN	-	4,463	1,849	-	-	80	86	-	39	11	-	928	1,044	48,824	19	-
	230FF	-	18,549	5,124	-	-	219	186	-	202	38	-	2,550	8,618	321,211	1,028	-
	PRD	-	1,286	56,889	-	3,164	8,954	1,902	2,442	1,707	9,150	-	6,388	24,243	136,665	48,710	2
	QCSND	-	93,696	16,233	-	322	412	1,044	-	71	1,275	-	308	16,107	548,834	679	23
1997 Ot	ter Total:	-	124,736	88,049	-	3,486	9,720	4,672	2,442	2,991	10,993	-	25,332	54,502	1,559,306	51,049	1,279
1997 To	tal:	484	130,353	211,861	152	3,486	12,128	30,553	2,541	25,180	24,523	-	111,982	161,173	2,714,998	365,013	4,741
1998 Beam	12IN	-	139	12,209	-	-	632	967	-	1,639	188	-	5,125	4,862	316,773	12,941	-
	14	-	-	12,238	-	-	347	2,393	-	3,132	857	-	5,041	12,437	161,900	4,963	-
	18	-	-	28,893	-	-	1,319	69,685	-	1,135	417	-	16,557	27,935	110,558	25,286	-
	23IN	-	381	2,610	-	-	63	5,419	-	1,655	-	14	3,378	4,073	73,744	3,757	7
	230FF	-	6,688	18,231	19	-	802	7,037	-	2,117	160	-	13,316	13,153	549,932	22,497	27
	FR	-	-	19,917	12,376	-	3,296	19,908	27	2,054	2,590	-	37,600	44,889	198,105	35,861	-
	PRD	-	480	73,421	-	-	1,070	1,011	-	448	1,717	-	8,402	3,462	114,682	28,528	-
1998 Be	am Total:	-	7,689	167,519	12,395	-	7,528	106,419	27	12,179	5,929	14	89,420	110,811	1,525,694	133,833	34

year gear	area	В	Е	FC	FNC	Н	IC	INC	IS	Р	RKC	RKNC	RDC	RDNC	SHR	S	U
1998 Otter	1240FF	-	-	445	-	-	92	-	-	-	-	-	247	380	-	92	-
	12IN	-	537	40	-	-	-	1,121	-	52	-	-	7,375	338	14,155	-	-
	18	-	-	488	-	-	244	-	-	-	-	-	3,296	2,442	610	122	-
	230FF	-	22,118	852	-	-	-	2,444	-	2,834	-	-	2,604	1,887	186,987	-	-
	27IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	270FF	-	292	3,313	-	-	20	-	-	9	32	-	1,328	704	39,501	937	-
	QCSND	-	16,593	16,116	-	-	669	3,238	-	55	1,525	-	13,899	9,254	870,293	289	-
1998 Ott	ter Total:	-	39,539	21,254	-	-	1,025	6,803	-	2,950	1,556	-	28,749	15,005	1,111,546	1,440	-
1998 To	tal:	-	47,228	188,773	12,395	-	8,553	113,222	27	15,130	7,486	14	118,170	125,816	2,637,240	135,273	34
1999 Beam	12IN	-	14	3,282	-	-	-	150	-	887	-	-	731	1,826	37,083	1,396	-
	120UT	-	-	11,258	-	-	-	295	-	-	-	-	4,671	15,800	9,237	53,218	-
	14	-	-	9,282	-	-	64	415	-	2,277	224	-	1,531	10,713	117,287	16,762	-
	16	-	-	6,777	-	-	-	1,386	46	4,639	1,717	-	2,789	2,128	54,538	24,745	-
	18	-	-	3,252	-	-	140	576	-	227	-	-	1,881	718	12,555	1,054	-
	19	-	-	3,592	-	-	-	111	-	2,701	-	-	8,130	3,620	46,804	-	-
	23IN	-	65	1,234	-	-	35	86	-	97	1	-	10,754	1,621	49,383	822	-
	230FF	-	2,778	11,021	-	-	148	655	-	640	22	-	42,664	6,532	473,914	5,336	-
	2IN	-	-	1,150	-	-	-	25	-	93	12	-	849	146	14,716	574	-
	FR	-	-	35,471	-	-	4,456	5,966	-	7,964	3,847	165	38,993	24,464	227,292	57,903	-
	GSTE	-	-	12,172	-	-	317	1,405	-	2,553	179	-	6,457	14,016	123,446	2,181	-
1999 Be	am Total:	-	2,857	98,490	-	-	5,160	11,071	46	22,077	6,003	165	119,451	81,584	1,166,254	163,991	-
Otter	1250FF	-	2,440	157	-	-	-	-	-	8	41	-	6	3	80,392	-	-
	14	-	-	3,123	-	-	-	125	-	26	12	-	1,685	2,108	45,730	55	-
	19	-	-	110	-	-	88	69	-	22	-	-	242	43	1,406	153	-
	230FF	-	17,646	2,942	-	-	119	398	-	631	7	-	13,766	5,285	454,081	71	25
	270FF	-	65	126	-	-	36	78	-	-	-	-	93	35	7,558	85	178
	QCSND	-	-	-	-	-	-	-	-	-	-	-	-	-	3,536	-	-
1999 Oti	ter Total:	-	20,152	6,457	-	-	243	670	-	687	60	-	15,793	7,474	592,703	364	203
1999 To	tal:	-	23,009	104,948	-	-	5,403	11,741	46	22,764	6,063	165	135,244	89,058	1,758,958	164,355	203

Table 6 continued.

Table 7. Median and upper and lower confidence intervals for the estimated mean catch (kg) of major species groups based on bootstrapped mean CPUE from bycatch samples multiplied by commercial effort. B = birds, E = eulachon, FC = commercial flatfish, FNC = non-commercial flatfish, H = halibut, IC = commercial invertebrates, INC = non-commercial invertebrates, IS = structural invertebrates (sponges and corals), P = prawns, RKC = commercial rockfish, RKNC = non-commercial rockfish, RDC = commercial roundfish, RDNC = non-commercial roundfish, SHR = shrimp, S = Selachii (dogfish, ratfish, and skates), U = unknown.

1997 Beam 1240/F . . 23 67 125 2.556 5.072 9.845 .	Year Ge		Area	(40	B	1, Tut		E	((3), 0	- um	FC			FNC			Н	
12IN - - 6 24 4,494 6,515 6,669 -				-	-	-	23	67	125	2,556	5,507	9,845	-	-	-	-	-	-
14 - - - 83 205 5.072 8.230 11.478 -				-	-	-	-						-	-	-	-	-	-
16 - - 5 15 4,285 6,059 7,486 -			14	-	-	-	-	83	205	5.072		11.478	-	-	-	-	-	-
17 - - - 2.034 11.436 26.780 -				-	-	-	-			-	-		-	-	-	-	-	-
18 - - - 3.944 5.539 7.404 -				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19 - - - 3.522 5.066 7.184 - 114 341 -				-	-	-	-	-	-	-			-	-	-	-	-	-
23NF - 4.31 1.293 1.120 1.912 2.812 10.229 15.705 21.873 -				-	-	-	-	-	-				-	114	341	-	-	-
230FF - - 1,781 2,918 4,200 14,388 19,166 24,571 - <				-	431	1 293	1 120	1 912	2 812				-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-	-,	-						-	-	-	-	-	-
GSTE - - - 1.490 2.306 3.371 -				-	-	-	-	2,010	1,200				-	-	_	_	-	_
Otter 1250FF - - 2.415 4.052 6.177 3.805 5.942 8.675 -				-	-	-	-	-	-				-	-	-	-	-	-
1250FF - - 744 1,284 1,918 164 348 617 - 230 0.57 0.53 0.50	Ott			-	-	-	2 4 1 5	4 0 5 2	6 177	-	-		-	-	_	-	-	-
14 - - - 23 49 125 240 434 - 100 30 30 - - - - 230 10 10 10 10 10 10 10 10 100 100 100 100 100 100 100 100	ou			-	-	-	-		,		-	-	-	-	_	_	-	_
23N - - - 1,466 3,800 7,616 851 1,616 2,517 - <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>_</td> <td>_</td> <td>-</td> <td>_</td>				-	-	-							-	-	_	_	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					_		1 466		-					_	_		_	
PRD QCSND - - - 587 64,383 969 75,511 15,36 43,116 75,359 75,512 - - 150 2,304 5,922 6,512 1998 Beam 12IN - - 43 104 186 3,355 8,748 18,155 -				_	-	_	· ·				,	,	-	-	-		-	_
QCSND - - 64,383 75,511 86,894 10,431 12,997 15,702 - - 249 651 1998 Beam 121N -				_	-	-							-	-	-	150	2 304	5 922
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						_			-							150	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1009 Box			-	-	-							-	_		-	243	031
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1990 Dea			-	-	-	43	104	100	-	-		-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	-	-	-	-		-	-	-	-	-	-	-
230FF - - 4,044 6,054 8,444 8,133 16,512 28,961 - 17 52 - - - - - 5,164 19,163 36,815 2,245 11,598 22,520 -				-	-	-	-	-	-				-	-	-	-	-	-
FR - - - - 5,164 19,163 36,815 2,245 11,598 22,520 - <th< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>				-	-	-	-						-	-	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-	-	-	4,044	6,054	8,444	-	-		-			-	-	-
Otter 1240FF - - - 134 381 627 -				-	-	-	-	-	-				2,245	11,598	22,520	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	1/6		/85				-	-	-	-	-	
18 - - - 346 346 346 346 -	Ott			-	-	-	-		-				-	-	-	-	-	-
230FF - - 16,089 19,113 21,789 311 736 1,161 - <td< td=""><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>198</td><td>341</td><td>484</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>				-	-	-	198	341	484				-	-	-	-	-	-
27IN -				-	-	-	-	-	-				-	-	-	-	-	-
270FF - - 130 229 371 1,718 2,673 3,732 -				-	-	-	16,089	19,113	21,789	311	730	1,101	-	-	-	-	-	-
QCSND - - 11,005 14,058 19,069 10,727 13,837 17,359 -				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-				-	-		-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000 5			-	-	-							-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1999 Bea			-	-	-	6	23	48		-		-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	-	-	-	-	-	-	-		-	-	-	-	-	-
18 - - - - 1,689 5,289 10,417 -				-	-	-	-	-	-				-	-	-	-	-	-
19 - - - - 4,836 4,836 4,836 -				-	-	-	-	-	-				-	-	-	-	-	-
23IN - - - 28 59 99 847 1,140 1,424 -				-	-	-	-	-	-	-			-	-	-	-	-	-
230FF - - - 1,376 2,460 4,391 6,806 10,391 15,127 -				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2IN - - - - 480 1,085 1,796 - <				-	-	-					-	-	-	-	-	-	-	-
FR -				-	-	-	1,376	2,460	4,391		,		-	-	-	-	-	-
GSTE - - - 5,803 13,477 24,178 -				-	-	-	-	-	-		-	-	-	-	-	-	-	-
Otter 1250FF - - - 1,671 2,037 2,377 93 129 165 -<				-	-	-	-	-	-				-	-	-	-	-	-
14 - - - - 2,806 6,015 11,055 -				-	-	-	-	-	-				-	-	-	-	-	-
19 - - - 411 411 411 -<	Ott			-	-	-	1,671	2,037	2,377				-	-	-	-	-	-
230FF 12,383 16,358 21,128 1,821 2,725 4,007				-	-	-	-	-	-				-	-	-	-	-	-
270FF 7 52 106 2 100 292				-	-	-	-	-	-				-	-	-	-	-	-
				-	-	-	12,383	16,358				,	-	-	-	-	-	-
QCSND				-	-	-	7	52	106	2	100	292	-	-	-	-	-	-
		(QCSND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 7 continued.

Year	Gear	Area		IC			INC			IS			Р			RKC			RKNC	
1997	Beam	1240FF	4	105	214	46	121	197	-	-	-	4	89	191	-	-	-	-	-	-
		12IN	-	31	92	1,139	1,803	2,787	-	74	223	1,601	2,315	3,082	-	31	87	-	-	-
		14	191	456	763	641	8,100	22,974	-	-	-	2,785	5,344	8,668	663	983	1,311	-	-	-
		16	-	29	91	94	127	165	-	-	-	573	968	1,318	117	662	1,676	-	-	-
		17	-	-	-	-	174	446	-	-	-	-	33	98	339	3,958	9,819	-	-	-
		18	-	-	-	-	715	2,145	-	-	-	970	1,602	2,317	54	130	212	-	-	-
		19	3	206	598	796	2,561	4,600	-	-	-	417	860	1,336	81	386	811	-	-	-
		23IN	-	45	119	153	342	581	-	-	-	167	311	503	94	421	912	-	-	-
		230FF	292	946	1,837	437	733	1,066	-	-	-	70	228	483	192	925	2,296	-	-	-
		FR	-	186	521	2,947	5,890	9,331	-	-	-	2,072	4,175	6,357	1,489	2,706	3,765	-	-	-
		GSTE	-	58	171	857	1,253	1,750	-	-	-	1,973	2,957	4,040	1,190	1,746	2,366	-	-	-
	Otter	1240FF	-	5	12	197	1,071	2,782	-	-	-	10	23	39	41	280	748	-	-	-
		1250FF	-	10	29	-	-	-	-	-	-	-	-	-	-	46	120	-	-	-
		14	-	26	70	84	113	147	-	-	-	209	704	1,623	42	93	151	-	-	-
		23IN	42	71	105	23	74	143	-	-	-	20	35	54	-	9	24	-	-	-
		230FF	105	182	278	70	153	275	-	-	-	86	171	274	2	30	77	-	-	-
		PRD	1.940			547	1.429	2.729	-	1.893	5 681	622	1,280	2.272	3,051	6,841		-	-	-
		QCSND	182	322	493	369	810	1,633	-	-		37	57	82	761	1,017	1,286	-	-	-
1998	Beam	12IN	55	463	1,130	366	693	1,247	-	-	-	235	1,178	2,576	-	136	397	-	-	-
1000	Doam	14	162	313	473		2,121	3,549	-	-	-		2,628	5,773	168	758	1,883	-	-	-
		18	223	1.168	2,244			137,253	-	-	-	173	963	2,487	-	374	1,069	-	-	-
		23IN	26	57	90	875	4,845	12,515	-	-	-	-	1,450	3,190	-		-	-	13	39
		230FF	375	734	1,212		6,450	8,844	_	_	-		1,893	3,418	21	144	306	-	-	-
		FR		3,109	6,043		18,061	32,650	_	26	77		,	2,775	752	2,305	4,895	_		_
		PRD		1,000	2,910	526	944	1,448	_	20		1,200	410	894	293	1,484	3,628	_		_
	Otter	1240FF		78	157				-	-	-	- 100		- 00	- 200	- 1,404		-	-	-
	Ottor	124011 12IN	_	10	107	671	711	752	_	_	-	11	33	55		-		_		_
		18	173	173	173			102	-	-	-			-	-	-	-	-	-	-
		230FF		-		-	2,112	6,336	-	-	-	-	2.449	7,348	-	-	-	-	-	-
		27IN	-	-	-	-		- 0,000	-	-	-	-			-	-	-	-	-	-
		270FF	_	16	46		-		_	_	-		8	23	2	23	62	-		_
		QCSND	351	566	-	2,175	2,753	3,384	-	-	-	17	46	85	1,012	1,309	1,635	-	-	-
1000	Beam	12IN	001		040	188	255	332				725	1,460	2,920	1,012	1,000	1,000			
1333	Deam	120UT	-	_	-	277	322	367		-	-	125	1,400	2,320	-	-	-	-	-	-
		12001	-	- 91	274	296	582	891	-	-	-	572	3,126	7,653	-	301	881	-	-	-
		14	-	91	214	1,092	1.540	1,936	-	51	102	1,989		9,351	155	1.908	5,325	-	-	-
		18	-	228	647	389	938	1,330	-	51	102	24	369	714	100	1,300	5,525	-	-	-
		19	-	220	047	150	150	1,311	-	-	-			3,636	-	-	-	-	-	-
		23IN	- 3	30	75	40	78	130	-	-	-	45	3,030 87	3,030 144	-	- 1	-	-	-	-
		230FF	83	139	202	367	594	1,003	-	-	-	387	593	842	-	20	46	-	-	-
		23011 2IN	05	139	202	507	24	43	-	-	-	21	88	203	-	12	26	-	-	-
		FR	015	-	-				-	-	-				-		11,224	-	176	= = 20
		GSTE	045	· ·	11,113 989		5,997 1,591	11,934 1,939	-	-	-	,	,	13,877 4,891	141 22	3,952	496	-	176	528
	Otter	1250FF	-	326	909	1,203	1,591	1,939	-	-	-	1,240	2,821	4,891	22	33	496	-	-	-
	Otter		-	-	-	120	-	205	-	-	-	31						-	-	-
		14	-	-		129	236	385	-	-	-		49	79	6	24	42	-	-	-
		19 22055	327	327	327	258	258	258	-	-	-	81	81	81	-		-	-	-	-
		230FF	62	108	171	263	369	486	-	-	-	247	571	1,036	-	7	15	-	-	-
		270FF	-	29	60	2	60	171	-	-	-	-	-	-	-	-	-	-	-	-
		QCSND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 7 continued.

Year	Gear	Area		RDC			RDNC			SHR			S			U	
1997	Beam	1240FF	372	673	946	90	200	317	38,260	53,460	66,705	513	1,471	2,444	-	4	11
		12IN	172	391	637	1,538	2,203	2,931	40,337	49,579	58,749	8,945	12,368	16,598	-	2,566	7,699
		14	2,773	4,607	6,685	4,780	7,064	9,707	38,090	55,791	80,752	9,138	18,709	34,103	-	-	-
		16	6,079	9,950	12,834	977	1,666	2,349	7,395	10,780	14,839	6,047	10,569	15,648	-	-	-
		17	3,051	7,083	13,390	13,734	17,697	24,102	1,092	6,514	13,837	4,068	11,828	18,655	-	-	-
		18	1,442	3,960	8,522	11,048	15,132	19,418	94,863	117,787	139,574	-	310	930	-	-	-
		19	2,554	4,615	7,793	954	2,007	3,531	37,612	44,657	52,544	13,478	24,378	38,896	-	-	-
		23IN	11,618	15,543	19,674	5,916	7,602	9,548	164,645	208,949	263,592	6,976	12,913	21,408	-	-	-
		230FF	4,913	7,830	11,432	5,666	8,331	11,409	232,318	266,646	305,890	18,093	32,623	51,890	-	-	-
		FR	5,539	12,291	23,044	10,485	21,319	39,416	62,622	92,763	123,184	35,265	134,038	298,339	-	-	-
		GSTE	5,099	9,031	14,093	2,962	9,831	23,771	81,811	99,145	121,168	8,097	13,557	22,245	-	-	-
	Otter	1240FF	6,309	11,756	18,018	200	921	2,329	297,000	355,257	414,119	112	468	1,179	-	1,059	4,238
		1250FF	-	24	55	119	861	2,296	25,529	38,849	54,740	-	-	-	-	-	-
		14	414	876	1,476	975	1,694	2,500	16,388	23,672	34,034	-	15	44	-	-	_
		23IN	501	811	1,318	815	932	1,073	32,305	42,944	63,045	4	16	37	-	-	-
		230FF	1,181	2,137	3,203	4,420	7,195	11,042	222,047	273,586	332,786	307	886	1,636	-	-	-
		PRD	2,814	4,766	8,030	7,861	18,118	34,205	90,629	105,459	122,893	22,517	37,911	57,735	-	2	5
		QCSND	160	243	358	-	12,947			441,103		235	539	951	5	18	36
1998	Beam	12IN	2,020	3,797	6,161	2,188	3,602	5,517		236,883		2,013	9,085	21,197	-	-	_
		14	3,080	4,562	6,056		10,687			145,823	,	-	4,529	13,544	-	-	_
		18	,	14,318	,		24,142			99,776		6,184	22,354	43,997	-	-	_
		23IN	1,967	3,079	4,284	1,903	3,586	6,272	51,536		84,377	790	3,113	6,967	-	6	18
		230FF	,	12,131		-	12,047			504,928		5,443	20,574	42,762	-	25	
		FR							154,757				33,415	48,491	-	-	_
		PRD	4,755		11,692	1,728	3,119			105,811			26,855	37,034	-	-	_
	Otter	1240FF	110	212	314	24	326	627	-	-	-	-	78	157	-	-	-
		12IN	2,453	4,681	6,908	143	214	286	7,278	8,983	10,688	-	-	-	-	-	-
		18	2,336	2,336	2,336	1,730	1,730	1,730	433	433	433	87	87	87	-	-	-
		230FF	1,881	2,250	2,866	1,368	1,630	1,893	88,936	161,585	256,433	-	-	-	-	-	-
		27IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		270FF	652	1,065	1,561	379	569	799	26,894	32,190	37,065	380	754	1,269	-	-	-
		QCSND	8,398	11,837	16,097	6,454	7,966	9,514	678,914	746,606	829,642	171	248	339	-	-	-
1999	Beam	12IN	706	1,238	2,001	2,063	3,134	4,385	38,922	62,931	88,939	1,029	2,341	4,240	-	-	-
		120UT	4,180	5,092	6,003	9,696	17,223	24,749	4,524	10,069	15,613	53,476	58,009	62,542	-	-	-
		14	522	2,065	4,378	6,636	14,957	25,972	53,532	162,909	297,412	2,918	22,666	52,247	-	-	-
		16	1,056	3,143	4,781	66	2,331	6,319	30,278	60,597	90,363	19,938	27,495	35,067	-	-	-
		18	1,578	3,060	4,536	619	1,167	1,716	12,554	20,422	28,288	104	1,714	3,383	-	-	-
		19	10,946	10,946	10,946	4,873	4,873	4,873	63,013	63,013	63,013	-	-	-	-	-	-
		23IN	7,993	10,003	12,181	1,128	1,494	1,871	39,044	45,231	54,169	356	735	1,282	-	-	-
		230FF	26,712	39,745	59,275	4,422	6,097	8,065	386,192	447,362	510,754	2,788	5,032	7,677	-	-	-
		2IN	72	808	2,158	60	141	220	10,893	14,023	17,495	13	463	1,334	-	-	-
		FR	20,684	40,900	67,170	10,849	25,755	44,522	171,939	241,673	318,454	18,471	58,896	127,340	-	-	-
		GSTE	4,343		10,826		15,384	27,961	96,072	141,173	190,792	543	2,489	4,648	-	-	-
	Otter	1250FF	1	5	9	-	2	6	56,199	66,472	75,783	-	-	-	-	-	-
		14	1,662	3,241	4,954	1,398	3,941	7,502	51,870	91,650	131,697	12	104	267	-	-	-
		19	902	902	902	162	162	162	5,248	5,248	5,248	572	572	572	-	-	-
		230FF	7,561	12,709	20,711	3,636	4,927	6,483	372,294			45	67	90	3	21	53
		270FF	[′] 17	74	136	2	26	71	4,048	5,965	8,326	17	68	127	7	135	
		QCSND	-	_		-	-	-	2,953	3,361	3,627	- 1	-	-	L _	_	_

Table	, 00.		a bycatch (Arrowtooth				Flathead					Slender	Starry
Year	Gear	Area	flounder	sole	sole	sole	sole	sole	sole	sole	sole		flounder
	Beam	1240FF	157	-	157	1,458	-	381	867	34	-	87	-
		12IN	1,411	-	282	1,093	2,780	-	950	-	-	-	-
		14	570	-	738	2,416	485	-	858	163	-	2,972	-
		16	137	-	62	2,954	741	-	383	44	-	1,693	-
		17	2,345	-	-	2,678	-	-	6,264	-	-	-	149
		18	-	-	121	183	242	198		1,465	155	28	-
		19	33	-	597	1,565	4	5	644	579	83	6	-
		23IN	275	-	575	3,979	1,513	81	2,860	-	-	2,634	-
		230FF	2,325	-	2,390	1,438	1,333	376	3,225	212	5	1,422	-
		FR	-	-	415	13,651	1,625	-	914	1,113	123	4,457	-
		GSTE	854	-	52	1,340	-	-	84	-	-	-	-
1997 E	Beam T	otal:	8,107	-	5,389	32,757	8,723	1,041	17,224	3,610	366	13,300	149
	Otter	1240FF	3,351	-	59	-	283	-	1,644	-	3	818	-
		1250FF	-	-	-	-	148	-	207	-	-	-	-
		14	-	-	-	15	29	-	-	8	51	144	-
		23IN	-	-	24	72	49	46	418	-	-	759	-
		230FF	422	-	495	156	-	425	1,661	-	-	335	-
		PRD	7,749	-	2,387	11,124	19,838	-	1,653	924	-	15	448
		QCSND	5,154	-	700	12	1,094	33	3,320	-	27	2,710	-
<u>1997 C</u>		otal:	16,676	-	3,664	11,380	21,442	504	8,902	931	81	4,781	448
1997 T			24,783	-	,	44,137	30,165	1,545	26,127	-	447	18,081	597
1998	Beam	12IN	2,445	-	219	1,755	2,884	-	461	569	139	199	501
		14	-	-	79	2,829	449	-	501	-	-	7,309	-
		18	153	-	1,347	5,753	5,861	33	2,794	821	1,324	5,793	-
		23IN	97	5	127	106	450	-	440	-	7	657	-
		23OFF	2,334	-	751	1,126	1,049	-	2,264	120	-	1,717	-
		FR	170	-	270	8,298	3,010	-	1,703	292	511	3,747	-
4000 5) T	PRD	29,309	-	1,112	13,066	19,476	-	5,987	15	-	302	-
1998 E			34,508	5	3,905	32,933	33,178	33	14,150 290	1,817	1,981	19,725 12	501
	Otter	124OFF 12IN	-	-	-	-	-	-	290	-	-	12	-
		18	-	-	-	173	-	-	87	-	-	-	-
		230FF	- 279	-	- 308	175	-	-	105	-	-	- 44	-
		23011 27IN	219	-	500	-	-	-	105	-	-	- 44	-
		270FF	1,422	_	102	_	169	8	983	_	_	_	_
		QCSND	6,329	_	672	92	1,867	140	2,220	_	15	2,275	_
1998 C)tter Tr		8,030	_	1,082	265	2,036	149	3,694	-	15	2,349	_
1998 T		- curr	42,538	5	4,986	33,198	35,215	181	17,844		1,996	22,073	501
	Beam	12IN	59	-	60	1,908	890	112		1,673	176	231	271
1000	Boam	120UT	-	-	719	6,989	1,984		2,510	69	-		
		14	-	-	-	2,486	356	-	98	-	272	9,943	-
		16	-	-	1,135	2,036	-	-	1,092	59		3,089	-
		18	-	-	506	1,513	515	-	431	-	411	112	-
		19	-	-	1,799	600	-	-	-	-	-	-	-
		23IN	-	-	98	148	454	-	134	12	-	188	-
		230FF	1,679	-	2,456	1,367	534	591	2,800	5	420	348	-
		2IN	-	-	-	-	-	-	114	125	219	650	-
		FR	211	-	2,171	19,662	4,443	-	710	160	-	7,346	81
		GSTE	-	-	37	8,615	-	-	33	66	-	5,166	-
1999 E	Beam T		1,949	-	8,983	45,324	9,177	703	8,185		1,498	27,074	352
	Otter	1250FF	-	-	-	. 1	-	10	62	-	-	56	-
		14	-	-	-	1,000	171	-	-	-	-	4,921	-
		19	-	-	81	327	-	-	3	-	-	-	-
		230FF	60	-	548	37	180	36	1,327	22	379	36	-
		270FF	-	-	-	-	-	-	55	-	-	45	-
		QCSND	-	-	-	-	-	-	-	-	-	-	-
4000 0	ttor To	ntal·	60	_	629	4 265	254	16	4 4 4 0	22	270	E 0 E 0	
<u>1999 C</u> 1999 T		Jiai.	2,009	-	9,611	1,365 46,688	<u>351</u> 9,528	46 749	1,448	22 2,192	379 1,877	5,058 32,132	352

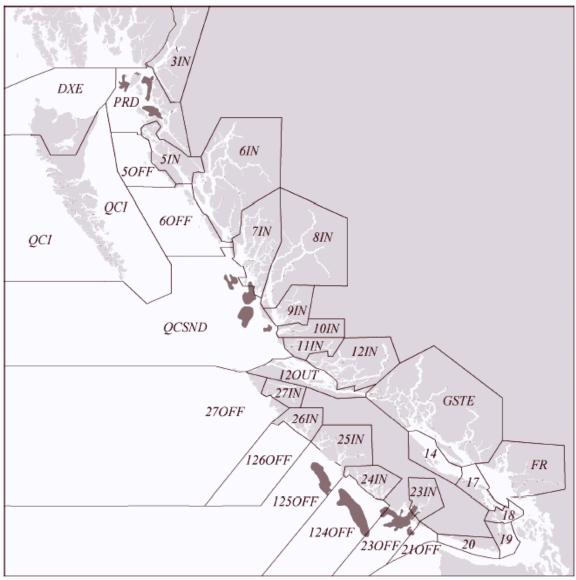
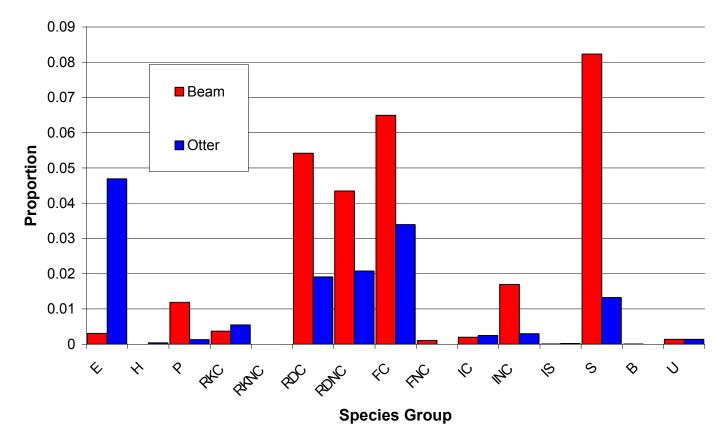

Table 8a. Estimated bycatch (kg) of selected commercially important flatfish.

Table			acca by	Canary		Selected Pacific		Redbanded	Redstripe	Rougheye	Shortraker	Shortspine	Silvergray	Widow	Yelloweye	Yellowmouth	Yellowtail
Year		Area	Bocaccio	-		ocean perch	rockfish	rockfish	rockfish	rockfish	rockfish	thornyhead	rockfish	rockfish	rockfish	rockfish	rockfish
1997	Beam	1240FF	-	-	-	-	-		-	-	-	-	-	-	-	-	-
		12IN	-	-	-	-	-	7	-	-	-	-	-	-	-	-	-
		14 16	-	-	-	-	- 573	-	-	-	-	-	-	-	-	-	-
		17	_	_	_	_	526	_	_	_	_	_	_	_	_	_	_
		18	-	-	-	-		-	-	-	-	-	-	-	-	-	-
		19	-	-	61	-	331	-	-	-	-	-	-	-	-	-	-
		23IN	-	-	-	-	201	-	45	-	-	-	-	-	-	-	195
		230FF	39	30	-	5	644	-	32	-	-	-	-	-	-	-	134
		FR	-	-	-	-	590	-	325	-	-	-	-	-	-	-	-
	_	GSTE	-	-	-	_	184		-	-	-	-	-	-	104	-	-
1997 E			39	30	61	5	3,047	7	402	-	-	-	-	-	104	-	329
	Otter	1240FF 1250FF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	234
		1250FF 14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		23IN	-	-	-	-		-	10	-	-	_	-	-		-	-
		230FF	-	_	-	6	-	-	21	-	-	-	-	-	-	-	2
		PRD	-	-	2,948	553	189	-	742	-	932	4	-	-	-	948	387
		QCSND	3	-	-	606	-	74	-	113	-	145	-	10	-	-	1
1997 C			3	-	2,948	1,165	189	74	773	113	932	149	-	10	-	948	624
1997 T			42	30	3,009	1,170	3,237	81	1,176	113	932	149	-	10	104	948	953
1998	Beam	12IN	-	-	-	-	131	-	5	-	-	-	-	-	-	-	-
		14	-	-	94	-	-	-	-	-	-	-	-	-	-	-	-
		18 221N	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		23IN 230FF	-	-	-	-	-	-	- 102	-	-	-	-	-	-	-	-
		FR	_	-	-	-	-	-	102	-	_	-	115	-	_	-	-
		PRD	-	_	-	147	-	-	-	1,287	133	-	-	_	-	-	-
1998 E	Beam T		-	-	94	147	131	-	107	1,287	133	-	115	-	-	-	-
	Otter	1240FF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		12IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		230FF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		27IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		270FF	-	-	-	3	-	-	-	- 42	-	-	-	-	-	-	-
1998 C	ttor To	QCSND	-	-	-	245 248	-	24 24	-	42 42	10 10	603 603	-	-	-	-	16 16
1998 T		Jian.			94	395	131	24	107	1,329	143	603	115				16
1999		12IN	-	-	-	-	-					-	-	-	-	-	
	Doam	120UT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		16	-	-	-	-	-	-	-	319	-	66	-	-	-	-	-
		18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		23IN	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		23OFF 2IN	-	-	-	-	-	-	- 7	-	-	-	-	-	-	-	7
		FR	-	-	-	-	4	-	/	-	-	-	- 44	-	-	-	-
		GSTE	-	-	-	-	-	-	-	-	-	-	44 53	-	-	-	-
1999 E	eam T		-	-	-		4	_	7	319	-	66	97	-	-	-	7
	Otter	1250FF	-	-	-	-		-	-	-	-	-	-	-	-	-	
		14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		19	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		230FF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		270FF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	–	QCSND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1999 C		otal:		-	-	-	-	-		-	-	-	-	-	-	-	<u> </u>
1999 T	otal:		-	-	-	-	4	-	7	319	-	66	97	-	-	-	7


Table 8b. Estimated bycatch (kg) of selected commercially important rockfish.

lab	<u>le 8c</u>	. Estin			h (kg)	ot sele	ected cor	mmerc	ially impo	ortant re				ates,	skates		
			Pacific	Pacific	Pacific			Walleye	Dungeness	Red rock	Sea	Green	Opal	Spiny	Big	Longnose	Spiny
	Gear	Area	cod			Lingcod	Sablefish	pollock	crab	crab	cucumber	urchin	squid	scallop	skate		dogfis
1997	Beam	1240FF	461	90	121	-	-	-	86	-	-	-	4	-	-	1,039	28
		12IN 14	- 102	1 3,799	-	-	-	401 739	-	-	-	-	-	-	- 38	1,535 1,347	5,62 5,22
		14	495	3,799 8,657	-	200	-	451	-		- 29	-	-	-	- 30	23	8,18
		17	827	3,738	_	200	_	2,518	-	-		-	_	_	_	- 20	10,23
		18	702	41	25	187	-	3,085	-	-	-	-	-	-	233	-	7
		19	95	-	87	-	-	4,572	-	-	13	-	-	-	200	3,604	7,58
		23IN	55	13,239	-	44	129	2,097	-	-	-	-	18	-	298	1,433	
		230FF	600	4,786	234	283	27	2,032	48	-	-	-	15	-	1,183	5,805	4,09
		FR	557	8,647	-	-	-	3,408	150	-	-	-	-	-	137		134,79
		GSTE	173	8,450	-	32	-	523	-	-	-	-	-	-	25	7	8,49
1997	Beam T		4,068	51,448	467	747	155	19,826	284	-	42	-	37	-	2,114	15,209	184,59
	Otter	1240FF	3	11,580	-	187	-	287	-	-	-	-	3 10	-	306	-	7
		125OFF 14	- 11	24 828	-	46	-	-	-	-	-	-	10	-	-	- 7	
		23IN	108	315	-	40	-	409	-	-	-	-	72	-	-	'	:
		230FF	223	501	_	_	_	1,455	_		_	_	42	_		_	19
		PRD	244		-	_	1,546	3,167	4,251	_	2,247	_	-	_	14,914	500	43
		QCSND	46	194	-	-	7	-		-	284	-	-	-		447	7
1997 (Otter To	otal:	634	13,441	-	233	1,553	5,318	4,251	-	2,530	-	126	-	15,220	955	78
1997			4,701	64,889	467	980	1,709	25,144	4,534	-	2,572	-	163	-	17,334	16,164	185,38
1998	Beam	12IN	268	2,698	195	-	68	620	328	-	2	-	-	-	-	-	6,30
		14	26	3,584	607	-	-	383	-	-	-	-	-	-	-	-	1,21
		18	930	93	2,751	-	-	11,079	205	-	-	-	-	-		-	11,88
		23IN	11	2,838	26	24	-	184	-	-	-	-	16	-	10	774	1
		230FF	188	6,499	-	499	-	5,036	-	-	-	-	113	-	-	-	13,59
		FR PRD	1,062	28,288	-	630	-	5,830	2,481	-	378	-	-	-	4 770	-	16,39
1008	Beam T		534 3,020	1,639 45,640	3,579	- 1,152	256 324	5,497 28,628	3,014	-	380	-	130	-	4,770 4,780	2,664 3,439	18 49,58
19901	Otter	1240FF	<u>3,020</u> 78	133	3,379	1,132	524	20,020	5,014				- 130		4,700		49,50
	01101	12IN	-	4,540	-	-	-	141	-	-	-	-	-	_	-	-	
		18	-	346	-	-	-	1,990	-	87	-	87	-	-		-	
		230FF	-	799	-	-	-	1,451	-	-	-	-	-	-		-	
		27IN	-	-	-	-	-	-	-	-	-	-	-	-		-	
		270FF	-	751	-	-	-	325	-	-	-	-	-	-	-	-	
		QCSND	-	7,222	-	23	50	4,651	-	-	489	-	1	-	-	5	1
	Otter To	otal:	78	13,791	-	23	50	8,558	-	87	489	87	1	-		5	1
1998			3,098	59,431	3,579	1,176	375	37,186	3,014	87	869	87	131	-	.,	3,443	49,59
1999	Beam	12IN	169	559	116		5	409	-	-	-	-	-	-	02.	-	3
		120UT	2,148	2,714	69	-	69	92	-	-	-	-	-	-	161	-	00.00
		14 16	703 30	1,287 1,948	50	91	-	39	-	-	-	-	-	-	-	-	22,26 5,18
		18	- 30	298	- 397		-	1,121 2,365	-	-	-	-	-	-	-	-	5,10
		19	37	290	597	-	-	10,908	-	-	-	-	-	-	-	-	
		23IN		9,245	52		194	428	20		5	_	_		_	175	4
		230FF	540	34,852	15	431	2,852	1,500	- 20		-	_	25	_	588	863	89
		21001 1 21N	-	683	-	-	45	90	-	-	-	-		-			10
		FR	763	33,019	-	-	-	7,699	4,205	-	-	-	-	-	-	-	25,38
		GSTE	-	3,024	-	-	-	4,359	333	-	-	-	-	-		-	92
1999 I	Beam T	otal:	4,389	87,628	700	522	3,166	29,011	4,558	-	5	-	25		1,269	1,038	54,82
	Otter	1250FF	-	4	-	-	-	1	-	-	-	-	-	-	-	-	
		14	-	3,288	-	-	-	-	-	-	-	-	-	-		-	
		19	-	-	-	-	-	902	-	-	327	-	-	-		-	
		230FF	228	11,569	226	18	-	854	2	-	-	-	49	3	3	-	
		270FF	8	66	-	-	-	-	-	-	29	-	-	-	-	-	
4000	044a # T -	QCSND	-	-	-	-	-	4 750	-	-	-	-	-	-	-	-	
	Otter To	nal:	236	14,927	226 926	<u>18</u> 540	- 2 460	1,758 30,769	<u>2</u> 4,560	•	355	-	49 74	3	-	- 1,038	54,82
1999	i Oldi:		4,0∠0	102,555	926	540	3,166	30,709	4,500	-	361	-	14	3	1,272	1,038	54,82

Table 8c. E	-stimated bycatch	(ka) of	f selected commercially	v important roundfish	. invertebrates	, skates, and dogfish.

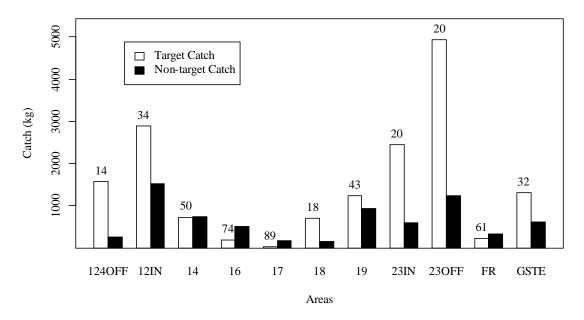


Fig. 1. British Columbia Shrimp Management Areas. Shaded areas indicate some of the areas that are annually surveyed by DFO stock assessment.

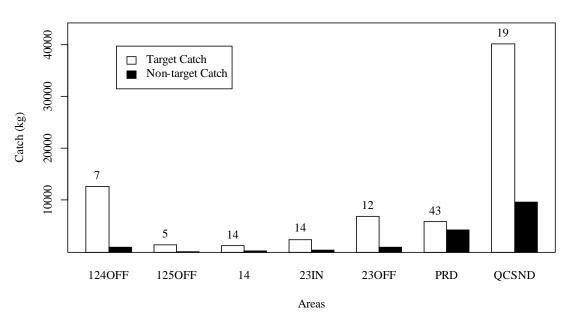
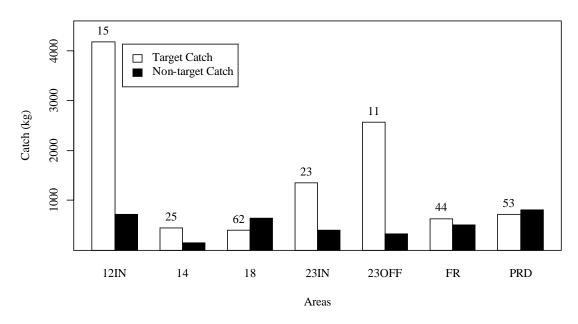


Fig. 2. Composition of bycatch as proportions of major species groups from beam trawls, and otter trawls. Proportions are averaged from coastwide, tow-by-tow records for 1997 – 99. Groups are E = eulachon, H = halibut, P = prawns, RKC = commercial rockfish, RKNC = non-commercial rockfish, RDC = commercial roundfish, RDNC = non-commercial roundfish, FC = commercial flatfish, FNC = non-commercial flatfish, IC = commercial invertebrates, INC = non-commercial invertebrates, IS = structural invertebrates (sponges and corals), S = dogfish, ratfish, and skates, B = birds, and U = unknown.

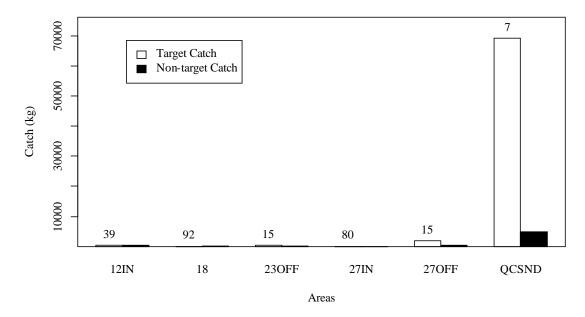
1997 beam trawls

(a)



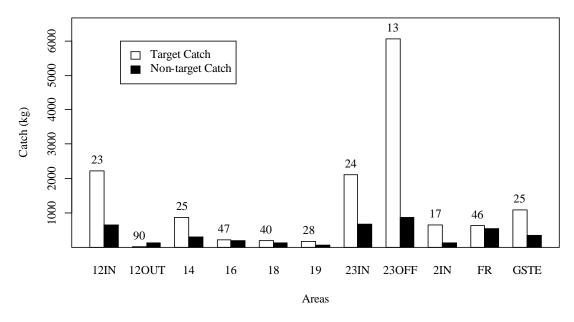
(b)

Fig. 3. 1997 target and non-target catch recorded from bycatch observer trawls by year, area, and gear type for (a) beam trawls, and (b) otter trawls.


1997 otter trawls

1998 beam trawls

(c)



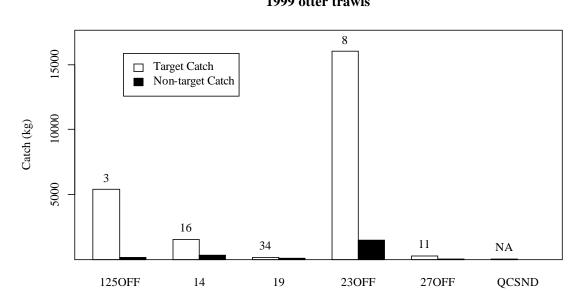
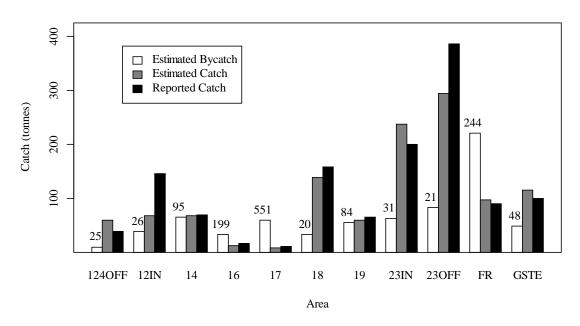

(d)

Fig. 3 continued. 1998 target and non-target catch recorded from bycatch observer trawls by year, area, and gear type for (c) beam trawls, and (d) otter trawls. The non-target catch, as percent of the total catch, is shown above each pair of bars.

1999 beam trawls

(e)



1999 otter trawls

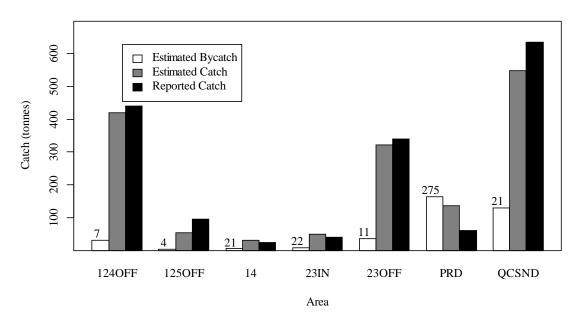
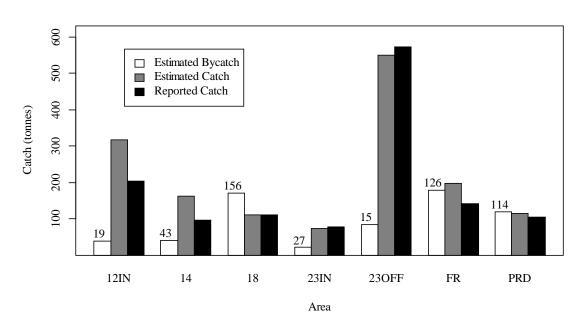
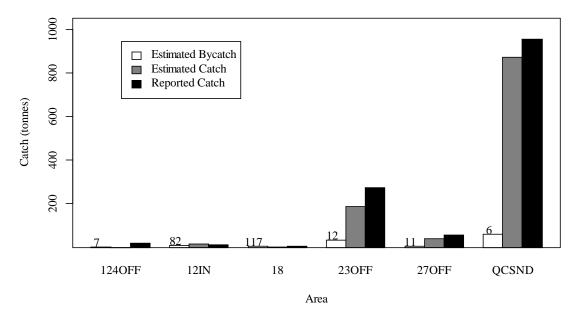

(f)

Fig. 3 continued. 1999 target and non-target catch recorded from bycatch observer trawls by year, area, and gear type for (e) beam trawls, and (f) otter trawls.

Areas

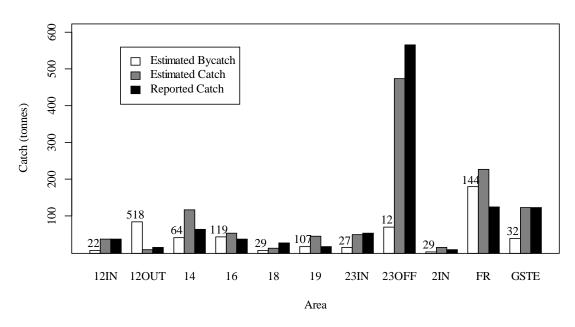


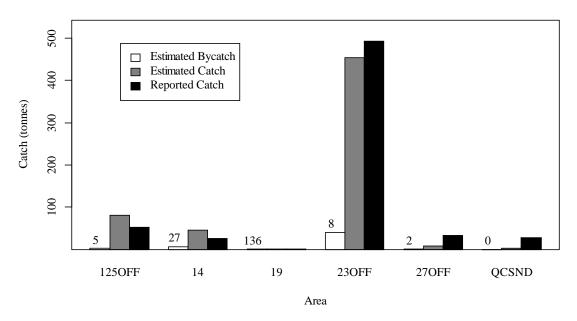
(a)



(b)

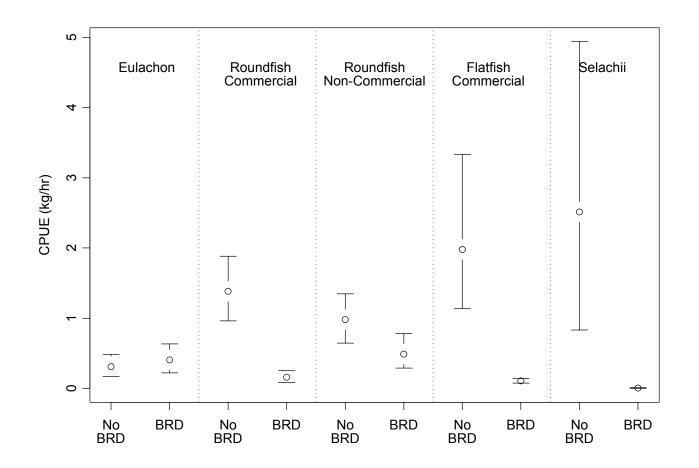
Fig. 4. 1997 reported catch from shrimp trawl commercial logbooks, and catch and bycatch estimated from bycatch samples and commercial effort for (a) beam trawls by area, and (b) otter trawls by area. The number above each white bar indicates the estimated bycatch (white bar) as a percent of the reported catch (black bar).

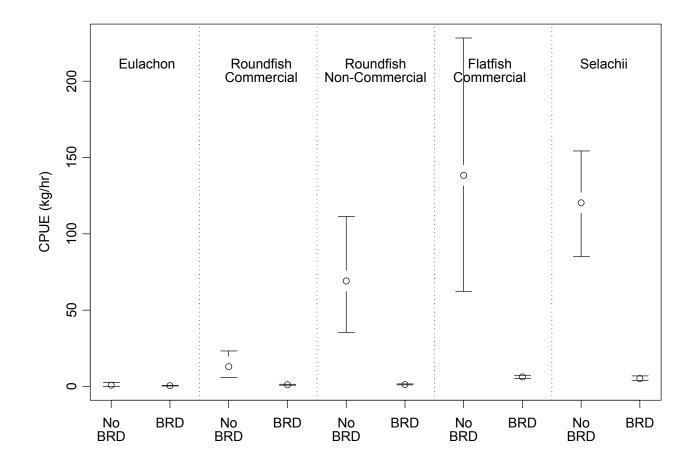




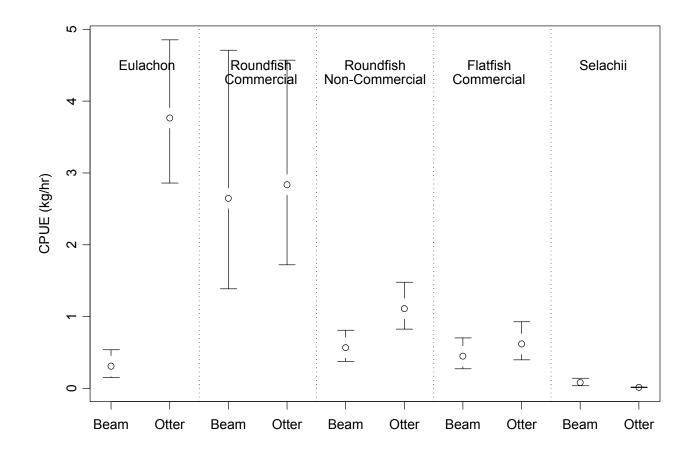
(d)

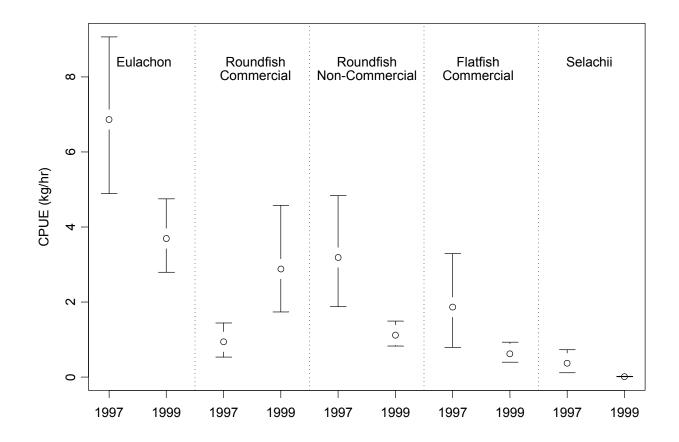
Fig. 4. continued. 1998 reported catch from shrimp trawl commercial logbooks, and catch and bycatch estimated from bycatch samples and commercial effort for (c) beam trawls by area, and (d) otter trawls by area. The number above each white bar indicates the estimated bycatch (white bar) as a percent of the reported catch (black bar).

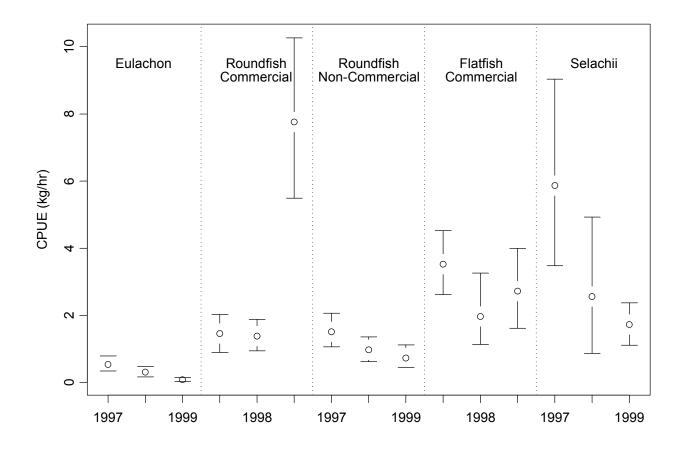




(f)


Fig. 4. continued. 1999 reported catch from shrimp trawl commercial logbooks, and catch and bycatch estimated from bycatch samples and commercial effort for (e) beam trawls by area, and (f) otter trawls by area. The number above each white bar indicates the estimated bycatch (white bar) as a percent of the reported catch (black bar).


Fig. 5a. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for beam trawl sets from Area 230FF in 1998. Each panel represents a species group; within each panel sets made with Bycatch Reduction Devices (BRDs) are compared to those made without BRDs.


Fig. 5b. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for otter trawl sets from Area PRD in 1997. Each panel represents a species group; within each panel sets made with Bycatch Reduction Devices (BRDs) are compared to those made without BRDs.

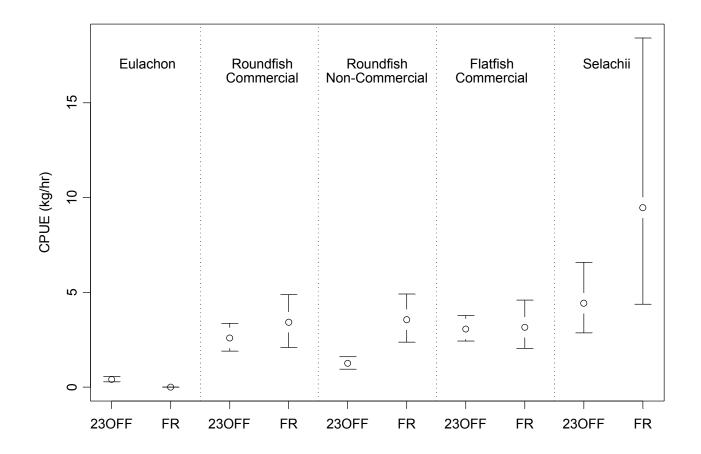

Fig. 6. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for trawl sets from Area 23OFF in 1999. Each panel represents a species group; within each panel sets made by Beam trawlers are compared to those made by otter trawlers.

Fig. 7a. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for otter trawl sets from Area 230FF. Each panel represents a species group; within each panel sets made in 1997 are compared to those made in 1999.

Fig. 7b. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for beam trawl sets from Area 23OFF. Each panel represents a species group; within each panel sets made in 1997, 1998, and 1999 are compared.

Fig. 8. Median and 95% confidence limits for the bootstrapped mean CPUE estimates of 5 major species groups for beam trawl sets from Area 23OFF and FR for the period 1997 to 1999. Each panel represents a species group; within each panel sets made in 23OFF are compared to those made in FR.