Canadian Stock Assessment Secretariat Research Document 99/89

Not to be cited without permission of the authors1 Secrétariat canadien pour l'évaluation des stocks Document de recherche 99/89

Ne pas citer sans autorisation des auteurs¹

Status of Rocky and Little Rivers Atlantic Salmon (Salmo salar L.) Stocks of the Newfoundland Region in 1998

C.E. Bourgeois, J. Murray and V. Mercer

Science Branch **Department of Fisheries and Oceans** P.O. Box 5667 St. John's, NF A1C 5X1

Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

¹ This series documents the scientific basis for ¹ La présente série documente les bases the evaluation of fisheries resources in scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

ISSN 1480-4883 Ottawa, 1999

Abstract

The status of Atlantic salmon in two systems, namely Rocky River and Little River are assessed. In 1998 the Rocky River achieved it's highest adult escapement. Egg deposition for each watershed was 54% and 50% respectively of the required conservation egg deposition. The 1997 Rocky River smolt count of 12,163 was the third highest on record.

Résumé

L'état du saumon de l'Atlantique dans deux réseaux, Rocky River et Little River, est évalué. En 1998, Rocky River a atteint son échappée d'adultes la plus élevée. Les dépôts d'œufs dans chaque réseau hydrographique ont été respectivement de 54 et de 50 % des niveaux requis pour la conservation. Le dénombrement de saumonneaux de Rocky River en 1997 était de 12 163, troisième valeur la plus élevée enregistrée.

Introduction

The watersheds discussed in this paper have all undergone enhancement/fry stocking activities.

Rocky River, in SFA 9 was the site of a colonization project where a run of Atlantic salmon was established. Little River, in SFA 11 is the site of an ongoing ranching project with associated fry stocking.

The intent of this document is to review the status of Atlantic salmon stocks in the Rocky River and Little River watersheds in 1998.

Methods

Biological Characteristics

Biological characteristics used in this document are those determined for individual stocks (see Tables 2,3,7, and 10).

Habitat Determinations

Rocky River, the largest watershed on the Avalon Peninsula, encompasses a drainage area of 296 km² (Porter et al. 1974) flowing to the sea in Salmon Fishing Area 9 (SFA 9) (Fig. 1). Prior to fishway construction in 1987 a natural falls at the mouth of this river, made this watershed inaccessible to anadromous Atlantic salmon. Rocky River requires 3.4 million eggs to meet the required conservation egg deposition (Table 1).

The Little River flows into Bay d'Espoir in SFA 11(Fig. 1), approximately 4 km south of the Conne River. The watershed encompasses 183 km² (Porter et al. 1974) with a complete obstruction at kilometer 4.8 on the main stem of the river, which results in anadromous Atlantic salmon having access to less than 30% of the watershed. Little River requires 313,920 and 976,072 eggs for the accessible and inaccessible portions of the watershed, respectively, for conservation (Table 1).

Enhancement/Stocking Activities

The Rocky River was stocked with unfed fry from a controlled flow spawning channel from 1984 to 1987; unfed fry from 1995 to 1996 from a recirculation incubator; 90 day fingerlings from the latter source in 1995 and adult salmon in 1987. For the stockings from 1984 to 1987, the brood source was Little Salmonier River with Rocky River serving as the brood source for the latter years. For additional detail on stocking activities refer to Table 4.

Little River was stocked with unfed fry from 1989 to 1997 with the exception of 1995. Eggs from Little River were incubated in deep substrate incubation boxes and in recent years in fiberglass troughs. For additional detail on stocking activities refer to Table 8.

Recreational Fishery

Rocky River, since the introduction of anadromous Atlantic salmon, has not been open for a recreational salmon fishery.

Little River downstream of the obstruction has been closed to angling since 1989.

Management Measures

Management restrictions implemented in 1992 that impacted marine exploitation of salmon were as follows:

- Moratorium on commercial salmon fishing along the coast of insular Newfoundland.
- 2. Moratorium on the cod fishery in areas 2J, 3K and 3L implemented on July 15, 1992. This reduced the by-catch of Atlantic salmon.
- 3. Moratorium on the cod fishery in 4R implemented in August of 1993 further reduced the by-catch of Atlantic salmon.

Fecundity

Detail of a fecundity study conducted on Rocky River are in the following table:

Year	Number of females examined	Number of females examined for egg retention
1994	19	19
1995	30	5

Female salmon examined for fecundity were sampled for fork length and whole weight and scale sampled. Fish were manually stripped of their eggs, fertilised and then counted directly. Fish examined for egg retention were sacrificed and any remaining eggs removed, kept separate, fertilised and then counted directly. Percentage of eggs retained were used to adjust the egg counts of fish that were released alive.

The authors have chosen to utilise a length based relationship to determine egg deposition as fish length records are likely more accurate than fish weight records. An analysis of covariance revealed a significant relationship between the length of female fish and number of eggs (p <0.05); however no significant relationship was found with year. As a result of this, fecundity data from the two years were combined. Regression analysis of raw, and log transformed data revealed significant relationships for both and

provided R² values of 0.57 and 0.56 respectively. Figure 2 displays the regression line and equation for the linear regression of total number of eggs on fish length.

Fecundity values for Little River are those determined for the Conne River in 1993.

Egg Depositions

The conservation egg requirement was calculated based on 2.40 egg/m² of fluvial habitat and 368 eggs/ha of standing water. Smolt production of 7 smolt/ha was divided by 1.9% to convert this to eggs, (O'Connell et al., 1991).

Egg deposition was calculated by solving the regression equation using mean length of female salmon. The Rocky River egg deposition was calculated based on average number of eggs/cm of fish (female) fork length. Percentage females in the population was calculated using the sex ratio of broodstock for the particular year and mean weight of females collected from broodstock. Rocky River egg deposition in 1996-1998 was based on the combined fecundity relationship for 1994 and 1995 years.

In order to determine the egg deposition in areas where fry stocking occurred, an estimate of egg-to-fry survival of 20% (Sturge, 1968) was used to back-calculate the number of fry released to equivalent naturally spawned eggs. Sturge (1968), in his work, gave a range of 10-30% for egg-to-fry survival and indicated that a figure of 20% appeared to be a reasonable value. Parr were back calculated to eggs by dividing the number of parr stocked by 0.125(V. Pepper, pers. comm.) based on parr stocking data obtained from Black Brook. Assumptions are that natural egg to fry survival is 20% and that 40% of the wild fry survive to their first fall. Inherent in this calculation is that 80% of fry placed in grow out cages survive to 90 day fingerlings.

Spawning escapements were calculated from fishway/fence counts less known removals with a 10% mortality rate applied to hook-and-released salmon.

Smolt Operations

In 1998 a smolt fence was operated on the Rocky River for the ninth year; dates of operation and dates of first and last smolt listed below.

Year	Dates of Operation	Date of First Smolt	Date of Last Smolt
1990	Apr. 26 - June 8	Apr. 27	June 8
1991	Apr. 23 - June 19	May 1	June 19
1992	Apr. 27 - June 16	Apr. 29	June 15
1993	Apr. 28 - June 14	May 4	June 11
1994	Apr. 29 - June 16	May 1	June 16

1995	May 2 - June 14	May 2	June 14
1996	Apr. 25 - May 22	Apr. 26	May 22
1997	May. 5 - June 23	May 6	June 23
1998	Apr. 24 – June 15	Apr. 26	June 15

The Rocky River smolt fence operated from April 26 – June 15 during 1998 with the exception of one 24 hour period when rods were removed due to high water and associated debris. Rods were removed on June 2 at 1000 hours and the fence was operational at 1000 on June 3. The adjustment for June 2 was to double the count from 0000 hours to 0800 hours and the adjustment for June 3 for the time period 0000-1000 hours was to use the count for the previous day for the 0000-0800 period.

A smolt fence has operated on the Little River since 1992 and from Apr. 25 – June 16 in 1998.

Smolt that were sampled had the following data collected; fork length; whole weight; scale sample; sex.

Smolt condition was calculated as weight/length³.

Adult Counts

In 1998, as in past years, a trap was installed in the uppermost pool of the Rocky River fishway which, was operated from June 22 – September 18.

An adult counting fence operated on Little River from May 3 – Oct.7 in 1998.

Smolt to adult survival

Smolt to adult survival was calculated based on the portion of virgin 1 SW fish in the escapement. This was determined by removing the repeat spawners from the fish enumerated based on scale analysis.

Fin-clipped smolt

As part of the 1995 enhancement activities on Rocky River, 50,000 fry were raised for 90 days in semi-natural conditions resulting in the release of 31,983 parr that were adipose fin-clipped. Evaluation of the 2⁺ component of this stocking was undertaken in 1997 in part through the examination of 30% of the run for the presence of adipose finclips. Evaluation of the 3⁺ component of this stocking was undertaken in 1998 in part through the examination of 28% of the run for the presence of adipose fin-clips.

Results and Discussion

The use of fixed parameters, such as 2.4 eggs m² and 7 smolts/ha of standing water, has certain limitations (see O'Connell & Dempson, 1995 for discussion on this topic).

Rocky River

Egg Deposition

The 1998 freshwater escapement (total returns) of 553 (423 small and 130 large) adults to Rocky River was the highest on record and was 227% of the 1987-1991 mean and 153% of the 1992-1997 mean. In 1998 Rocky River achieved 54 % of it's conservation egg deposition (Table 4.).

Smolt Count

In 1998, 11,716 smolt were enumerated in a partial smolt count; the adjusted smolt count was 12,163. Adjustments made included 447 smolt for the June 2-3 washout. This is the third highest smolt count in the time series (see Table 5).

This count (see Table 5) is 128% of the 1990 - 1997 mean smolt count. The 1998 smolt run was comprised of 27.4% age 2^+ , 62.4% age 3^+ , 8.5% age 4^+ and 1.7% age 5^+ smolt (from the 1993 - 1996 egg depositions) (Table 3).

Smolt-to-Adult Survival

Figure 3 displays smolt-to-adult survival from 1990-1997 which averaged 3.0% and ranged from 2.2% to 4.2%. In 1998 smolt-to-adult survival decreased to 2.2% and was the lowest value for the years when data are available. The 1998 adult returns were resultant from natural spawning and parr stocking in 1995.

Figure 3 also displays the relative condition factor of the outmigrating smolt which was one of the highest in 1997, but yielded the lowest smolt-to-adult survival rate observed to date.

Figure 4 reveals the relationship between virgin 1SW returns plotted against smolt condition.

Egg-to-Smolt survival

Table 6 provides insight into the egg/fry-to-smolt survival on the Rocky River. At present it appears that egg-to-smolt survival has been improving since 1990 with the 1992 and 1993 egg depositions yielding the highest survival figures recorded to date.

Parr Rearing

In 1997, river age 2⁺ smolts from the 1995 stocking of 31,983 reared parr were first observed. These smolt had an average mean length and weight of 17.5 cm and 49.1 g respectively and were larger than the average of the 1997 unmarked smolt (see Table 3). The river age 3⁺ smolt from this stocking were observed in 1998. These smolt had a mean length and weight of 18.09 cm and 54.22 g respectively.

In 1997, examination of 32.8% of the total smolt run yielded 765 fin-clipped smolt with examination of 25.6% of the total smolt run in 1998 yielding 608 fin-clipped smolt. To date estimated smolt production from the rearing of 50,000 fry, which resulted in the release of 31,983 parr, is 4,705. Of these smolt, 49.6% and 50.4% smoltified as 2⁺ and 3⁺ smolts, respectively.

Survival, to date, from fry and 1⁺ parr to smolt was 9.4% and 14.7% respectively for the 90 day fingerlings.

Predicted adult returns

Forecasts in terms of virgin grilse returns in year X + 1 have been made since 1994 for Rocky River and are listed in the text table below. Forecasts were made based on the range of smolt-to-adult survivals observed to date.

Year	Prediction	Observed
1998	410-740 virgin grilse	370 virgin grilse
1997	300-496 virgin grilse	353 virgin grilse
1996	189-323 virgin grilse	314 virgin grilse
1995	234-318 virgin grilse	324 virgin grilse

Little River

In 1998 a fence count of 313 (264 small & 49 large) adults was recorded. The 1998 returns are 329% of the 1987-1991 mean and 104% of the 1992-1997 mean.

In 1998 Little River achieved 50% of it's required conservation egg deposition (see Table 8). Note figure is preliminary due to fry stocking.

Table 9 details the dates of counting fence operation and the number of smolt and parr enumerated for 1992 - 1998. Table 10 details the biological characteristics of smolt sampled in Little River. Of interest is the large number of parr enumerated at the fence each year. The fence site is located approximately 1 km upstream of the river mouth but is under tidal influence. This is suggestive that these parr are smoltifying downstream of the fence site.

In 1998 two salmon of hatchery origin(thought to be of Bay d'Espoir origin) were observed in Little River.

Smolt-to-adult survival figures were not calculated as they would not likely be indicative of the entire smolt output.

There were no fry were stocked in Little River in 1998.

References

- Bourgeois C. E. J. P. Davis, J. Murray and V. Mercer. 1996. Status of five enhanced Atlantic salmon (*Salmo salar* L.) stocks of the Newfoundland Region in 1995. DFO Atlantic Fisheries Res. Doc. 96/88. 23pp.
- O'Connell, M. F., and J. B. Dempson. 1995. Target spawning requirements for Atlantic salmon, <u>Salmo salar</u> L., in Newfoundland Rivers. Fisheries management and ecology. 2:161-170.
- Porter, T. R., L. G. Riche, and G. R. Traverse. 1974. Catalogue of rivers in insular Newfoundland. Vol. D. Resource Development Branch, Newfoundland Region. Data Record Series No. NEW/D-74-9: 353p.
- Sturge, C. C. 1968. Production studies of the young stages of Atlantic salmon (Salmo salar L.) in an experimental area of Indian River, Notre Dame Bay, Newfoundland. M.Sc. Thesis, Dept. Biology, Memorial University of Newfoundland. 134p.

Table 1: Rearing area and conservation egg deposition for watersheds referenced in present study.

wares.	Riverine habitat (m²)	Lacustrine habitat (ha)	Conservation egg deposition
Rocky River	10,823	2,191	3,404,730
Little River	5,221	989	1,253,040
-accessible	1,308	0	313,920
-inaccessible	3,913	989	939,120

Table 2. Biological characteristics of Rocky River adults.

_								Freshw	ater Age	
Year 	No. Sampled	% Female	No. 2 Sea Winter Virgin	Mean Length(cm)	Mean Weight(kg)	% Repeat Spawners	2+	3 ⁺	4 ⁺	5 ⁺
1990	21	N/A	0	57.1	2.2	14	6	72	16	6
1991	32	N/A	0	56.9	2.2	9	15	58	27	0
1992	24	N/A	0	58	2.4	17	18	55	27	0
1993	32	N/A	0	56.5	2.2	13	3	69	24	3
1994	68	79	0	56.9	2.0	31	16	72	12	0
1995	111	86	1	56	2.0	22	14	77	9	0
1996	18	N/A	0	54.9	2.0	17	6	61	33	0
1997	41	N/A	1	59.6	2.5	34	13	85	2	0
1998	38	N/A	1	57.5	2.3	33	3	90	5	2

Table 3 . Biological characteristics of Rocky River smolt.

					Percei	ntage at va	arious Fre	shwater	Ages
Year	No. Sampled	% Female	Mean Length(cm)	Mean Weight(g)	2 ⁺	3 ⁺	4 ⁺	5 ⁺	6 ⁺
1988	28	57.1	17.5	54.5	0	64	36	0	0
1989	28	N/A	14.9	32.4	18	67	11	4	0
1990	101	84.2	17.3	46.5	1	66	29	4	0
1991	146	86.3	17.0	43.2	16	70	13	1	0
1992	71	78.9	17.0	44.7	1	76	21	2	0
1993	88	71.6	18.9	58.2	13	57	24	6	0
1994	160	83.8	17.0	45.1	2	66	29	3	0
1995	124	77.4	17.0	44.8	16	77	7	0	0
1996	203	83.4	16.7	44.1	7	82	10	0	1
1997	110	75.5	17.2	46.3	11	76	13	0	0
Finclip	116	56.3	17.5	49.1	100	0	0	0	0
1998	119	55.7	17.0	44.1	27	62	9	2	0
Finclip	90	55.0	18.1	54.2	0	100	0	0	0

Table 4. Details of egg deposition Rocky River.

Year Fry Stocked		Parr Stocked	Adults Stocked		Adult Count		Broodstock	Total Eggs	% Conservatior Egg
				Total	Small	Large		·	
1983	0		0				0	1,538,875	45
1984	307775		0				0	2,172,500	64
1985	434500		0				0	970,000	29
1986	194000		0				0	1,998,225	59
1987	399645		140	81	80	1	0	743,595	22
1988	0		0	319	313	6	0	1,011,527	30
1989	Ō		0	177	168	9	0	561,255	17
1990	Ō		0	418	401	17	0	1,359,420	40
1991	Ö		Ō	227	211	16	0	730,874	22
1992	Ö		0	283	237	46	0	961,811	28
1993	Ö		0	364	292	72	0	1,148,320	34
1994	Ö		0	177	158	19	62	857,862	25
1995	50,000	31,983	0	424	385	39	76	1,918,012	56
1996	162,231	0	Ö	401	356	45	0	1,163,295	34
1997	0	Ö	0	524	435	89	0	1,917,225	56
1998	Ŏ	Ö	Ö	553	423	130	0	1,834,473	54

⁻The 1998 biocharacteristics for Rocky River egg deposition are the same as those used for 1996.

Table 5. Details of smolt enumeration Rocky River 1990-1998.

Year	Smolt	% Smolt-to-Adult
	Count	Survival
1990	8287	2.47
1991	7732	2.93
1992	7813	3.49
1993	5115*	2.30
1994	9781	3.39
1995	7577	4.15
1996	14,261* +	2.8
1997	16,900*	2.19
1998	12,163*	

^{*} Smolt count is an estimate due to fence washout + No. Of smolt released is 13,057

Table 6. Details of egg/fry to smolt survival for Rocky River.

Year	egg to smolt survival (%)	fry to smolt survival (%)	Smolt classes
1985		0.08	5+
1986		1.3	4+,5+
1987		1.6	3+, 4+ , 5+
1987	1.00		2+, 3+, 4+, 5+
1988	0.86		2+,3+,4+,5+
1989	1.04		2+, 3+,4+,5+
1990	0.56		2 ⁺ ,3 ⁺ ,4 ⁺ ,5 ⁺
1991	1.02		2 ⁺ ,3 ⁺ ,4 ⁺ ,5 ⁺
1992	1.61		2 ⁺ ,3, 4 ⁺
1993	1.25		2 ⁺ , 3 ⁺ 2 ⁺
1994	0.23		2 ⁺
1995			

Table 7. Biological characteristics Little River adults 1990, 1992 – 1996, 1998.

Year	Life Stage	Fork Length				t	River Age			
	oluge	Mean (No.)	S.D.	Range	Mean (No.)	S.D.	Range	Mean (No.)	S.D	Range
1990	1SW	51.41 (73)	3.79	44.00-62.80	1.34 (73)	.32	.700-2.500	3.02 (62)	.50	2-4
	Repeat	57.40 (4)	1.19	56.20-59.00	1.82 (4)	.15	1.700-2.000	3.00 (4)	.00	3
1992	1SW	51.51 (89)	2.53	46.50-59.00	1.48 (88)	.22	1.100-2.200	3.00 (68)	.42	2-4
	Repeat	63.85 (12)	6.45	53.50-73.00	3.05 (11)	1.20	1.700-5.900	2.80 (10)	.42	2-3
1993	1SW	51.68 (154)	2.81	40.90-59.10	1.486(154)	.29	1.000-2.700	3.05 (144)	.38	2-4
	Repeat	60.55 (13)	5.62	53.70-72.70	2.29 (12)	.65	1.400-3.800	2.92 (12)	.29	2-3
1994	1SW	51.33 (62)	2.93	41.80-60.20	1.33 (62)	.25	.800-2.200	2.95 (58)	.35	2-4
	Repeat	58.19 (8)	7.42	48.70-71.00	1.97 (8)	.82	1.300-3.600	3.14 (7)	.69	2-4
1995	1SW	51.17 (111)	3.34	44.70-67.60	1.25 (111)	.26	.800-2.900	2.86 (108)	.50	2-4
	2SW	68.00 (1)	-	-	3.00 (1)	-	•	<u>-</u>	-	-
	Repeat	61.81 (7)	5.49	55.50-70.80	2.24 (7)	.71	1.500-3.300	3.00 (7)	.58	2-4
1996	1SW	53.12 (113)	2.23	46.00-58.70	1.41 (Ì13)	.21	.960-2.120	2.60 (110)	.60	1-4
	Repeat	66.50 (1)	-	-	1.58 (1)	-	-	<u>-</u>	-	-
1998	1SW	51.5(105)	4.32	42.4-69.8	1.40(105)	.36	.800-3.65	3.17(104)	.49	2-5
	Repeat	66.7(49)	5.62	56.0-79.6	3.06(50)	.78	1.65-4.7	2.68(50)	.68	2-4

Table 8. Egg deposition rates for Little River 1987-1995.

Year	Fence	Count	Spawning Escapement	Fry	Stocked	Natural Egg Deposition	% Conservation Wild	Total Eggs	% Conservation Total
	Small	Large		Below Falls	Above Falls		Below Falls		
1987	64	3	67	0	0	91,410	29%	91,410	7%
1988	65	3	68	0	0	92,774	29%	92,774	7%
1989	102	5	64	100350	0	90,046	28%	190,396	15%
1990	158	15	93	204835	0	124,154	40%	328,989	26%
1991	55	6	31	103715	0	42,294	14%	146,009	12%
1992	104	21	26	102835	553380	35,473	11%	691,688	55%
1993	169	11	75	148,090	444,270*	102,325	80%	694,685	55%
1994	73	11	84	0	0	114,604	37%	114,604	9%
1995	118	17	45	115,660	346,980	61,395	56%	524,035	42%
1996	674	127	663	0	729,605	904,551	288%	1,634,156	130%
1997	399	79	461	0	0	633,049	200%	633,049	51%
1998	264	49	116	0	0	158,262	50%	158,262	13%

Egg deposition for 1998 is preliminary

Table 9. Details of smolt and parr enumeration Little River.

Year	Dates of Operation	No. Smolt	No. Parr 1,404	
1992	May 11-July 5	382		
1993	May 15-July 5 324 1,56		1,500	
1994	May 6- June 13	501	4,018	
1995	May 2 - June 22	May 2 - June 22 2,712 1,586		
1996	May 1 - June 5	4,449	585	
1997	May 14 - July 8	2,521	336	
1998	Apr. 25 – June 16	3,320	739	

Table 10. Biological characteristics of Little River smolt.

Year	No. Sampled	% Female	Mean Length(cm)	Mean Weight(g)	% at Age		
					2 ⁺	3 ⁺	4 ⁺
1993	43	97.7	17.58	50.73	32.6	58.1	9.3
1995	31	87.1	14.86	28.87	90.3	9.7	0
1996	51	94.1	16.16	39.40	5.9	90.2	3.9
1997	79	85.7	15.69	41.62	23.1	71.8	5.1
1998							

Note: 1993 & 1995 smolt samples were collected on a single day.

¹⁹⁹⁶ samples collected over 5 days. 1997 samples collected May 22 - June 11

¹⁹⁹⁸ samples collected May

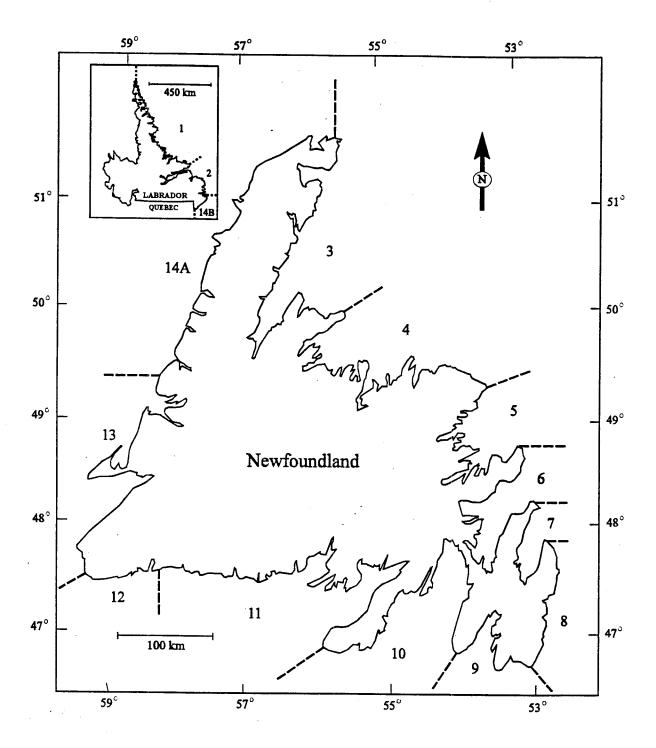


Fig. 1. Map showing the 14 Salmon Fishing Areas of the Newfoundland Region.

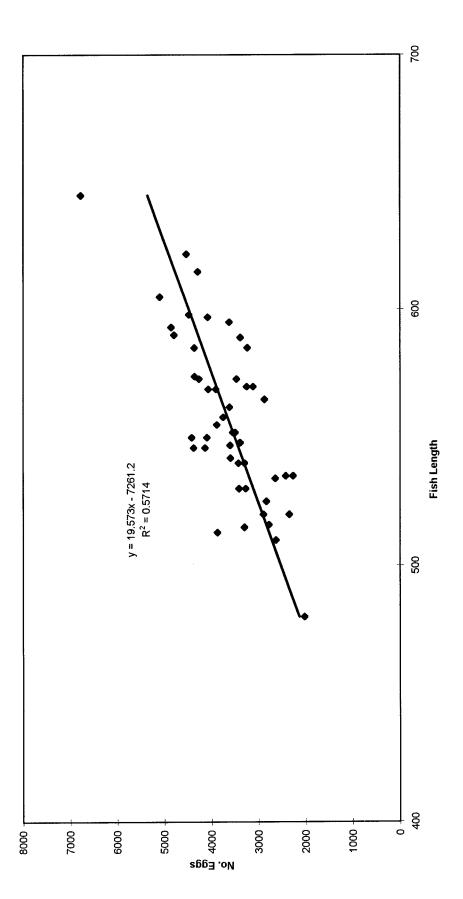
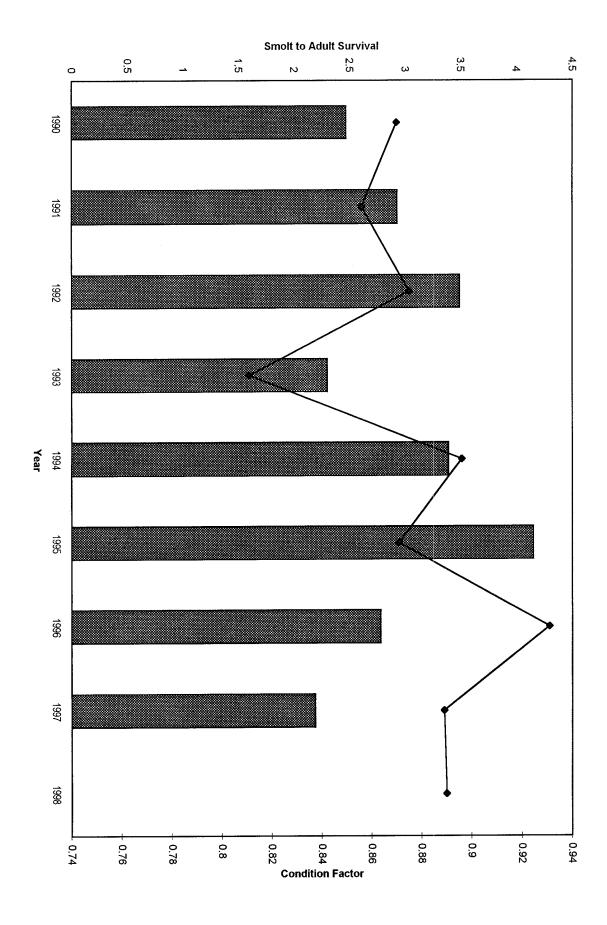



Figure 2. Fecundity relationship for Rocky River salmon.

Figure 3. Smolt-to-adult (1SW) survival and relative condition factor of Rocky River smolt.

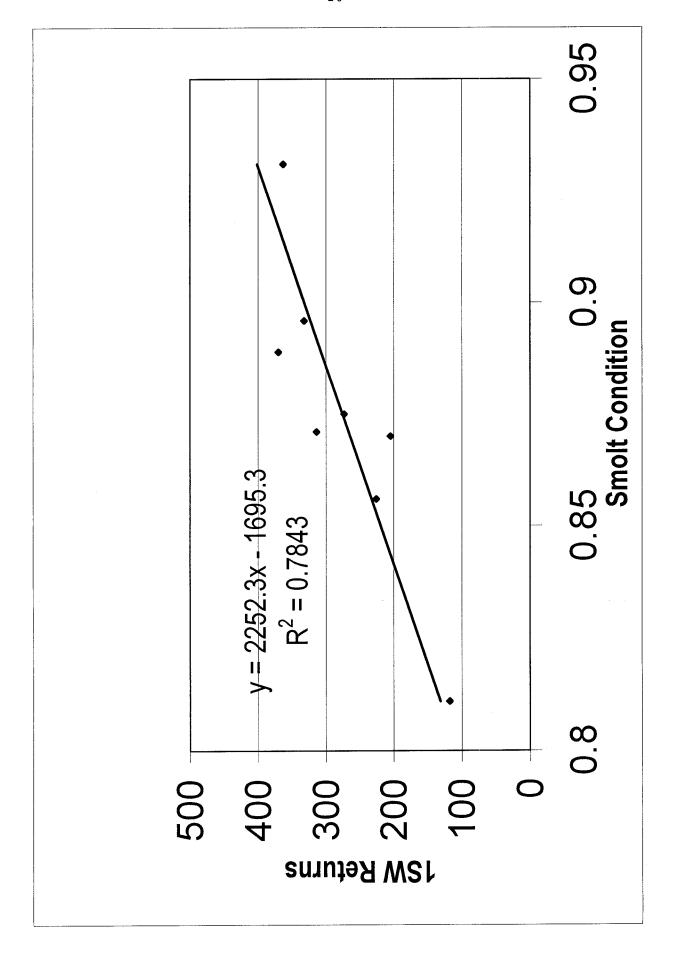


Figure 4. Smolt condition in year X versus 1 SW returns in year X+1.