Fisheries Pêches

Canadian Stock Assessment Secretariat Research Document 98/104

Not to be cited without permission of the authors ${ }^{1}$

Secrétariat canadien pour l'évaluation des stocks Document de recherche 98/104

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Status of the Exploits River stock of Atlantic salmon (Salmo salar L.) in 1997

by

C. E. Bourgeois, J. Murray and V. Mercer
Science Branch
Department of Fisheries and Oceans
P. O. Box 5667
St. John's NF A1C 5X1

Abstract

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

1 La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

ISSN 1480-4883
Ottawa, 1998
Canadä

Abstract

The Exploits River was the site of an Atlantic salmon enhancement colonization program from 1957-1993. Counts at fishways and angling data provided the basis for assessing the status of the salmon population and determining percent of conservation egg deposition achieved. The 1997 freshwater escapement to the Exploits, of 16,144 (15,236 small and 881 large) was 77% of the average 1992-96 escapement and 202\%of the 1987-1991 mean. In 1997 the Exploits River received 26\% of its required egg deposition. A total of 2,996 small salmon were retained in the recreational fishery with a total of 2,169 hook-and-released fish. The Exploits River in addition to a conservation egg deposition has a management target of 13,000 spawners, which was used to manage the recreational fishery. This requirement was addressed within the context of the Exploits River achieving its conservation egg deposition.

Résumé

La rivière Exploits a été le site d'un programme de mise en valeur du saumon de l'Atlantique par colonisation de 1957 à 1993. Les dénombrements effectués aux passes à poissons et les données de la pêche sportive constituent le fondement de l'évaluation de l'état de la population de saumons et de la détermination de la ponte par rapport aux objectifs de conservation. L'échappée en eau douce de l'Exploits en 1997, de 16144 saumons (15236 petits et 881 grands) correspondait à 77% de la moyenne de 19921996 et à 202% de celle de 1987-1991. En 1997, la ponte nécessaire n'a été atteinte qu'à 26%. Au total, 2996 petits saumons ont été conservés par les pêcheurs récréatifs et 2169 saumons ont été capturés et relâchés. Dans la rivière Exploits, un objectif de gestion de 13000 géniteurs destinés à la pêche récréative vient s'ajouter à l'objectif de ponte nécessaire à la conservation. Ce besoin a été respecté dans le contexte de l'atteinte des objectifs de ponte.

Introduction

The Exploits River is the largest watershed in insular Newfoundland, encompassing a drainage area of $11,272 \mathrm{~km}^{2}$ (Porter et al. 1974). The river flows in a northeasterly direction, entering the ocean in SFA 4 (Fig. 1). Prior to the inception of enhancement activity (O'Connell and Bourgeois, 1987) less than 10% of the watershed area was available to anadromous Atlantic salmon due to the presence of natural and man-made obstructions (Taylor and Bauld, 1973). The Exploits River requires 95.9 million eggs (56,670 small salmon) to meet its conservation egg deposition requirement (see Table 1). However, to date, only 53% of the colonizable habitat within the watershed have been stocked.

The intent of this document is to review the status of the stock in 1997.

Background

Stocking Activities

For details of the fry stockings conducted in the various sections of the Exploits River (Fig.2), refer to Tables 2-4. With respect to the middle Exploits, 187,668 m^{2} (egg requirement $45,040,320$) of river habitat (Table 1) did not receive the required five years of stocking to establish a self-sustaining run.

Management measures implemented since 1992, which remained in place for 1997
1.Moratorium on commercial salmon fishing in insular Newfoundland.
2. Moratorium on the northern cod fishery affecting Salmon Fishing Areas (SFA's) 1-9 implemented on July 15, 1992. This measure eliminated by-catch of salmon in cod fishing gear.
3.Lower seasonal bag limits in the recreational fishery.

Other management measures

In 1994, due to the low egg deposition in the upper Exploits (Table 4) and expected low returns in 1995 from the last year of fry stocking, concern was expressed with respect to future returns to Red Indian Lake fishway. The increase in angling effort and catch (Table 5) realized on the Exploits in 1994 further reduced the rate of increase of spawners in the upper Exploits. In an effort to increase escapement at Red Indian Lake in 1995 DFO iniatiated an adult transfer from Grand Falls to a location within Red Indian Lake. This transfer has remained in place for 1997.

Industrial Activity

In September of 1995 Abitibi-Price, the operators of Grand Falls pulp and paper located in Grand Falls immediately downstream of the Grand Falls fishway, began operation of an Aeration Settlement Basin as a secondary waste water treatment process. This process reduced the Total Suspended Solids (TSS) and Biological Oxygen Demand (BOD) (see Bourgeois et. al., 1997 for additional detail).

In the fall of 1996, Abitibi-Price altered the forebay/penstock intakes at the Grand Falls generating station. Prior to this construction, the forebay emptied water to three penstock pipes through a series of trash racks. The new construction in 1996 altered this arrangement to remove these penstocks and create an approximate 1,700 foot long canal. Associated with this construction was the installation of a set of louvres and associated bypass to deflect smolt and kelts from this canal. A monitoring program to test the efficiency of the louvre array was conducted in 1997.

Methods

Adult Counts

Fish are enumerated at three fishway locations on the Exploits; i) Bishop's Falls fishway which enumerates all fish entering the river at the community of Bishop's Falls on the main stem of the river in the lower Exploits ii) Grand Falls fishway on the main stem of the Exploits at the community of Grand Falls-Winsor which enumerates all fish entering the middle and upper Exploits and iii) Red Indian Lake fishway at the outflow of Red Indian Lake which enumerates all fish entering the upper Exploits (see Fig. 2).

Fry Stocking

Fry stocking was conducted in riverine habitat utilizing mainly helicopters with some distribution via vehicle (in accessible locations). Stocking was conducted such that the habitat that was stocked received 75 fry per $100 \mathrm{~m}^{2}$ of habitat. Fry were stocked along the river banks in areas of low flow with depth less than 30 cm in areas where gravel/cobble substrate was present. If suitable habitat was available, fry were stocked at one quarter kilometer intervals on opposite sides of the river. The number of fry released in individual drops ranged from 5,000-50,000 depending on the available habitat to be stocked. Releases in excess of 25,000 fry/drop were only conducted on the main stem of the middle Exploits.

Angling Statistics

Angling catch and effort data prior to 1994 were supplied by DFO staff and from 1994 to 1996, the data were collected by DFO staff and River Monitors. In 1997 angling data below Bishop Falls only was collected by DFO staff and river monitors up to the mid-
season review. Angling statistics were previously reported for 7 various locations of which five are located in the lower Exploits; Lower Exploits I) downstream of the Bishops Falls fishway ii) Bishop Falls fishway to Grand Falls fishway (main stem of river only) iii) Great Rattling Brook downstream of Camp 1 fishway (includes angling at the mouth of Great Rattling Brook and therefore all fish angled at this location are not destined for Great Rattling Brook) iv) Great Rattling Brook upstream of Camp 1 fishway v)Stoney Brook (includes angling at the mouth of Stoney Brook and therefore all fish angled at this location are not destined for Stoney Brook) middle vi) Grand Falls fishway to Red Indian Lake fishway upper vii) upstream of Red Indian Lake. From 1985-1993, angling data was collected from four locations and prior to 1985, data was collected from three locations (Table 5). Due to recent changes in data collection, angling data for the Exploits River will in future be presented for the lower, middle and upper sections of the Exploits.

Angling exploitation rates for above and below Bishop Falls are calculated as follows; Below Bishop Falls fishway = angling below Bishop Falls fishway / (count at Bishop Falls fishway + (angling below Bishop Falls fishway $+10 \%$ hook-and-release mortality on hook-and-released fish)+ known removals); Above Bishop Falls fishway = angling above Bishop Falls fishway / count at Bishop Falls fishway

Biological Characteristics

Biological characteristic data presented in Tables 6 and 7 were collected from various locations within the Exploits watershed.

Egg Depositions

Habitat determinations and conservation egg depositions are detailed in Table 1. Conservation egg requirement was calculated based on $2.40 \mathrm{egg} / \mathrm{m}^{2}$ and $7 \mathrm{smolts} / \mathrm{ha}$ of standing water. Smolt production of 7 smolt/ha was divided by 1.9% to convert this to eggs (O'Connell et al., 1991).

Spawning escapement was calculated by subtracting angling catches including a 10\% mortality on hook and released fish and known removals from counts at fishways without inclusion of an estimate for poaching and disease. In 1992 and 1993 spawning surveys on various tributaries of the lower Exploits were utilized in calculating egg deposition.

Egg deposition is calculated based on a length fecundity relationship based on mean length of female fish. Data collected from broodstock from 1984-1991 were used to determine mean female length and percent female fish in the run. Calculations use a mean female length of 52 cm (a mean no. of eggs per female of 2198) and that females compromise 77% of the run. Caution: Mean length of female fish may have changed since the 1992 management changes to commercial exploitation due to increased returns of large fish.

In order to calculate the egg deposition in areas where fry stocking occurred, an estimate of egg-to-fry survival of 20% (Sturge, 1968) was used to back calculate fry to eggs. Sturge (1968) gave a range of 10-30\% for egg-to-fry survival and indicated that a figure of 20% appeared to be a reasonable value.

Egg depositions for the various sections of the watershed in 1997 were calculated by apportioning the recreational catch based on previous angling history.

1997 Management Plan for Exploits River

The following Management Plan was announced for the 1997 angling fishery:
Exploits River and tributaries below Grand Falls
Catch-and-retain angling June 21 - August 16. No quota
Catch-and-release angling only August 17 - September 1
Main stem - Stoney Brook to Grand Falls closed to all angling for entire season An in season review in late July would determine if a spawning escapement of 13,000 would be achieved and if not angling would revert to catch-and-release only before August 16.

Exploits River above Grand Falls

The main stem of the river from Grand Falls to Red Indian Lake, and all tributaries above Red Indian Lake Dam, will be open only for catch-and-release angling for the entire season.
Tributaries between Grand Falls and Red Indian Lake will be open for catch-and-retain angling June 21 - August 16. Catch-and-release angling only August 17 - September 1.
In addition, it was agreed that an adult transfer from Grand Falls to Red Indian Lake would take place.

Management Target

The recreational fishery on the Exploits River is managed by a management target of 13,000 spawners. The rationale for this target was to allow for a recreational fishery while the Exploits stock, which has undergone extensive enhancement activities, continues to increase.

Results and Discussion

Table 1 details the accessible rearing area and conservation egg deposition requirement for the Exploits River. The use of fixed parameters, such as $240 \mathrm{eggs} / \mathrm{m}^{2}$
of fluvial habitat and 7 smolts/ha of standing water habitat, has certain limitations (see O'Connell \& Dempson, 1991 for discussion on this topic).

Fishway Counts

Table 8 details the 1975-1996 counts from the various fishways on the Exploits whilst Tables 6-7 detail smolt and adult biological characteristics.

The 1997 total count at the Bishop's Falls fishway of 14,428 (13,547 small and 881 large) was $110 \%, 191 \%$ and 72% of the 1982-1986 mean (13,105), 1987-1991 mean $(7,564)$ and of 1992-1996 (post moratorium) mean $(20,070)$ respectively(Table 8$)$.

Freshwater Escapement

The 1997 freshwater escapement of 16,144 (count at Bishops Falls fishway + retained angling below the fishway $+10 \%$ of hook-and-released fish below Bishops + known removals) to the Exploits was 77% of the 1992-96 escapement and 202\% of the 19871991 mean and 123\% of the 1982-1986 mean. The 1992-1996 freshwater escapement plus bycatch (unknown) is equal to watershed adult production.

Recreational Fishery

Table 5 details the angling statistics for the Exploits watershed which revealed a total angling catch of 5,165 (2,996 small retained and 2,169 hook-and-released). In 1995 the recreational fishery was managed by a retention season and a retention quota whilst in 1996 the fishery was managed by a retention season only making comparisons with previous years difficult. The 1997 season prior to the closure of the retention fishery was only managed by season dates. The 1997 total recreational catch is the second highest on record. The 1997 retained catch and the hook-and-released catch are the third highest in the time series.

In 1997, unusually large numbers of landlocked (sea age undetermined) salmon were angled immediately below of Red Indian Lake dam fishway.

Run Timing

Run timing (cumulative percent of run to date) for Bishop Falls fishway is presented in Table 9. The average date for the 1986-1997 time period for 50 percent of the escapement to Bishop Falls fishway is the week of July 20-27 which is the appropriate date to conduct a mid season review.

Egg Deposition and Percent of Conservation Egg Achieved

With the change in the collection of angling data, that commenced in 1997 the task of calculating egg depositions for the various sections of the watershed has become very
problematic as angling data is not broken down by watershed section. Angling data only exists for the middle Exploits from 1994 onwards. With the 1995 and 1996 management plans for the recreational fishery being different from 1994 three years of data, exist none of, which are comparable. Additionally, the recreational fishery within the middle Exploits is just developing and use of previous data is likely not appropriate. Therefore, the percentage of conservation egg deposition for the total watershed will be accurate while the egg deposition for the various sections of the watershed are estimates.

Total Watershed

In 1997, the Exploits River watershed achieved 26\% of its conservation egg deposition. The 1992-1996 mean value was 41%.

Lower Exploits

Table 2 details the number of spawners and subsequent egg deposition and percent of conservation egg deposition achieved for the lower Exploits for the period 1957-1997.

In 1997, the lower Exploits achieved 70\% of it's required egg deposition which is 57\% and 159\% of the 1992-1996 mean and the 1987-1991 mean respectively. The egg deposition for Great Rattling Brook can no longer be calculated due to cessation of the count at Camp 1 fishway in 1997.

Middle Exploits

The middle Exploits requires a deposition of 64.2 million eggs to meet its total conservation requirement (Table 1); however $187,668100 \mathrm{~m}^{2}$ of habitat in the main stem of the river (egg requirement 45×10^{8}) have not received adequate stocking to be producing a self-sustaining run of adults. Furthermore, it is questionable whether or not smolt production in the order of three smolts per unit should be expected from this habitat. The main stem of the middle Exploits River is fast flowing and 1-2 metres deep in many areas, which could lower its smolt production potential.

The angling catch for this section of the watershed is the difference between total catch and catch in the lower exploits.

The middle Exploits received 19\% of it's conservation egg deposition in 1997. (Table 3) which is 74% and 136% of the 1992-1996 mean and the 1987-1991 mean respectively.

Figure 4 details the count at Grand Falls and the percent of the fish released at Bishop Falls that were enumerated at Grand Falls. The 1996 count at Grand Falls of 14,343 adults was more than double any previous count at this facility and was resultant from the low egg depositions in 1990 and 1991 based on 3^{+}and 4^{+}smolt ages.

The returns to Grand Falls in 1997 were the offspring of the natural spawners from 1990-1992 (1710 in total) and fry stocking in 1992-1993.

Upper Exploits

The upper Exploits requires an egg deposition of 15.4 million eggs but only received 10% of this conservation requirement in 1997(Table 4). This was in part accomplished by the transfer of 504 adults from Grand Falls fishway. With the cessation of stocking in 1991 and extremely low natural egg depositions in 1990-1994 returns during the next few years are expected to be very low. The 1997 returns of 194 are resultant from 1992 and 1993 natural egg depositions (141 and 585 spawners respectively). The authors strongly recommend that measures be undertaken to increase the egg deposition in the upper Exploits before any fishery is permitted.

Stock Development

The Exploits watershed was the site of very intensive stock enhancement from 1957 1993 primarily focused on developing runs of salmon to areas of the watershed previously inaccessible to anadromous Atlantic salmon. During the 1959-1963time frame, mean escapement through Bishop Falls was 1,100 adult salmon with the 1992 1996 mean being 20,070. This is indeed a tremendous accomplishment, however the conservation egg requirement in terms of adults (small salmon) is 56,670 salmon. Because of management changes that have occurred since the project's inception the only management option left to increase spawning escapement is through regulation of the recreational fishery. The recreational fishery on the Exploits River (Table 5) operated prior to 1995 without any restrictions except control of the season dates. An important consideration of the last management change (i.e. the moratorium on commercial salmon fishing) was to ensure that no reallocation of fish occurred between the commercial and recreational fisheries which failed on the Exploits River (see text table below).

Time Frame	Mean Retained Catch

Mean
Hook-and-
Released
catch

Total
Recreational
Kill

Mean

Spawning Escapement

$1975-1976$	1,777	0	1,777	10,350
$1977-1981$	1,683	0	1,683	6,254
$1982-1986$	2,133	0	2,133	9,132
$1987-1991$	1,241	0	1,241	2,934
$1992-1996$	1,877	1,869	2,064	18,778

Because of increased spawning from 1992-1996 coupled with the cessation of fry stocking in 1993 the future development of the Exploits stock needs addressing. The
stock must now be managed in a fashion to achieve its conservation egg deposition. Based on the 1992-1996 spawning escapement the watershed is achieving approximately 33% of its required egg deposition. In an effort to assure additional spawners the present spawning requirement of 13,000 adults must be increased to ensure timely development of the Exploits stock. Recruit to spawner ratios (see Bourgeois et. al 1996) for the Exploits stock indicates that a recruit to spawner ratio of $1: 1$ is very easily achievable. With a view to increasing spawner escapement without total closure of the recreational fishery, a required spawning escapement for the 1998 2002 time frame of 18,000 adults appears to be easily achievable.

Management Considerations

Increase the required spawning escapement from 13,000 adults to 18,000 adults for the 1998 season.

One of DFO'S objectives on the Exploits River is to increase spawning escapement above Red Indian Lake. To further address the escapement above Red Indian Lake it is recommended that at least 1,000 adults be trucked from Grand Falls fishway to Red Indian Lake.

The 1997 recreational fishery on the Exploits angled 5,165 fish of which 2,996 were retained. Concern is expressed over earlier openings of the retention recreational fishery as this fishery has the potential to seriously erode egg deposition within the various sections of the Exploits watershed.

References

Bourgeois, C. E., J. Murray and V. Mercer. 1997. Status of the Exploits River stock of Atlantic salmon (Salmo salar L.) in 1996.DFO Atlantic Fisheries Res. Doc. 97/32. 40p.

O'Connell, M. F., and C. E. Bourgeois. 1987. Atlantic Salmon Enhancement in the Exploits River, Newfoundland, 1957-1984. N. Am. J. Fish. Manage. 7:207-214.

O'Connell, M. F., and J. B. Dempson. 1991. Atlantic salmon (Salmo salar L.) target spawning requirements for rivers in Notre Dame Bay (SFA 4), St. Mary's Bay (SFA 9), and Placentia Bay (SFA 10), Newfoundland. CAFSAC Res. Doc. 91/18. 14p.
O^{\prime} Connell, M. F., J. B. Dempson, and R. J. Gibson. 1991. Atlantic salmon (Salmo salar L.) smolt production parameter values for fluvial and lacustrine habitats in insular Newfoundland. CAFSAC Res. Doc. 91/19. 11p.

O'Connell, M. F., D. G. Reddin, and E.G. M. Ash. 1996. Status of Atlantic salmon (Salmo salad L.) in Gander River, Notre Dame Bay (SFA 4), Newfoundland, 1996. DFO Atlantic Fisheries Res. Doc. 97/41. 30p.

Porter, T. R., L. G. Riche, and G. R. Traverse. 1974. Catalogue of rivers in insular Newfoundland. Vol. D. Resource Development Branch, Newfoundland Region. Data Record Series No. NEW/D-74-9: 353p.

Sturge, C. C. 1968. Production studies of the young stages of Atlantic salmon (Salmo salar L.) in an experimental area of Indian River, Notre Dame Bay, Newfoundland. M.Sc. Thesis, Dept. Biology, Memorial Univ. of Newfoundland. 134p.

Taylor, V. R., and B. R. Bauld. 1973. A program for increased Atlantic salmon (Salmo salar) production on a major Newfoundland River. Int. Atl. Salmon Found. Spec. Publ. Ser. 4: 339-347.

Table 1: Rearing area and conservation egg deposition for sections of the Exploits River.
Exploits River \quad Riverine Habitat ($\mathrm{m}^{\mathbf{2}}$) Lacustrine Habitat (ha) Target Egg Deposition

Lower	57,552	6,915	$16,360,112$
Middle	234,873	21,178	$64,171,941$
main stem	187,668	0	$45,040,320$
tributaries	47,205	21,178	$19,131,621$
Upper	55,437	5,665	$15,384,617$
Total	347,862	33,758	$95,916,670$

Table 2. Egg depositions Lower Exploits 1957-1997.

Year	No. Fry Stocked	No. Spawners	Total Eggs	\% Conservation Target Achieved
1957		$610+$	1,032,401	6
1958		786+	1,330,274	8
1959		1,334	2,257,742	14
1960		1,677	2,838,255	17
1961		1,203	2,036,029	12
1962		1,212+	2,051,262	13
1963		1,269	2,147,732	13
1964		1,886+	3,191,980	20
1965		1,371	2,320,363	14
1966		1,412+	2,389,754	15
1967		2,033	3,440,771	21
1968		2,021+	3,420,462	21
1969		1,454	2,460,837	15
1970		1,222+	2,068,186	13
1071		1,229	2,080,033	13
1972		843	1,426,744	9
1973		*	*	*
1974		2,647+	4,479,942	27
1975		8,826	14,937,652	91
1976		2,987	5,055,378	31
1977		5,027	8,507,996	52
1978		2,810	4,755,813	29
1979		5,482	9,278,066	57
1980		4,611+	7,803,933	48
1981		5,401	9,140,976	56
1982		5,135	8,690,782	53
1983		3,252+	5,503,880	34
1984		11,857	20,067,498	123
1985		9,664	16,355,933	100
1986		5,777	14,132,236	86
1987	195,127	3,466	10,819,136	66
1988	870,979	2,796	7,869,743	48
1989	990,614	2,620	7,898,800	48
1990	627,525	2,324	4,315,677	26
1991	692,911	3,079	5,211,084	32
1992	76,480	9,737	16,479,483	101
1993	0	15,363	26,001,263	159
1994	0	8,660	14,656,704	90
1995	0	9,174	15,526,628	95
1996	0	16,050	27,163,983	166
1997	0	6,800	11,508,728	70
+ = partial count		* $=$ no data		

Table 3. Details of egg deposition Middle Exploits 1967-1997.

Year		No. Spawners	Natural Egg Deposition	Fry to Egg Equivalent	Total Eggs	\% Conservation Target
1967	0	0	0	768600	768600	1.2
1968	153720	0	0	841700	841700	1.3
1969	168340	0	0	1644600	1644600	2.6
1970	328920	0	0	1479730	1479730	2.3
1971	295946	0	0	1612530	1612530	2.5
1972	322506	0	0	2053445	2053445	3.2
1973	410689	0	0	1779000	1779000	2.8
1974	355800	31	88491	1063050	1151541	1.8
1975	212610	650	1855455	6463125	8318580	13.0
1976	1292625	79	225509	6733930	6959439	10.8
1977	1346786	27	77073	6832050	6909123	10.8
1978	1366410	0	0	3628785	3629785	5.7
1979	725757	47	134164	9352470	9486634	14.8
1980	1870494	2246	6411309	4513470	10924779	17.0
1981	902694	2586	7381855	3941270	11323125	17.6
1982	788254	1229	3508236	1926610	5434846	8.5
1983	385322	810	2312182	3960965	6273147	9.8
1984	792193	3750	10704545	2539510	13244055	20.6
1985	507902	2981	8509400	2558670	11068070	17.2
1986	511734	0	0	5333120	5333120	8.3
1987	1066624	80	228364	5243995	5472359	8.5
1988	1048799	5	14273	7854460	7868733	12.3
1989	1570892	0	0	8758425	8758425	13.6
1990	1751685	2	5709	7436240	7441949	11.6
1991	1487248	267	762164	9304990	10067154	15.7
1992	1605761	1441	4113400	8464850	12578250	19.6
1993	1692970	5174	14769418	0	14769418	23.0
1994	0	5857	16719073	0	16719073	26.1
1995	0	5416	15460218	0	15460218	24.1
1996	0	12,615	27341834	0	27341834	42.6
1997	0	5,509	11,940,243	0	11,940,243	18.6

Note: Egg target is 64 million (45 for main stem and 19 for tributaries)

Table 4. Details of egg deposition Upper Exploits.

Year	No. Fry Released	Fry to egg	Adults Spawning	Total Eggs	\% Target egg Deposition
1975	0	952665	0	952665	6.19
1976	190533	892390	0	892390	5.80
1977	178478	155580	0	155580	1.01
1978	31116	0	0	0	0.00
1979	0	0	0	0	0.00
1980	0	3326500	0	3326500	21.62
1981	665300	4460735	0	4460735	28.99
1982	892147	2041055	0	2041055	13.27
1983	408211	1992570	0	1992570	12.95
1984	398514	4403050	0	4403050	28.62
1985	880610	8189350	0	8189350	53.23
1986	1637870	11078265	0	11078265	72.01
1987	2215653	14895245	0	14895245	96.82
1988	2979049	19275305	0	19275305	125.29
1989	3855061	18345255	0	18345255	119.24
1990	3669051	13471645	0	13471645	87.57
1991	2694329	0	28	47389	0.31
1992	0	0	141	238637	1.6
1993	0	0	585	990089	6.4
1994	0	0	633	1071327	7.0
1995	0	0	1102	1865091	12.1
1996	0	0	1846	4001032	26.0
1997	0	0	698	1512850	9.8

Table 5. Angling statistics for Exploits River

Year	Lower Exploits	Middle Exploits	Upper Exploits	Total Retained Catch	Total Released Catch	Total Effort
1975	1,619			1,619		5,702
1976	1,934			1,934		5,775
1977	1,852			1,852		6,944
1978	1,840			1,480		5,031
1979	1,431			1,431		8,363
1980	1,790			1,790		7,427
1981	1,861			1,861		7,515
1982	1,733			1,733		9,630
1983	1,353			1,353		5,079
1984	2,424			2,424		9,459
1985	2,998			2,998		8,600
1986	2,057			2057		8,123
1987	1,935			1935		5,891
1988	1,731			1731		6,181
1989	577			577		3,813
1990	917			917		5,869
1991	1,045			1045		5,931
1992	1,408			1408	199	4,347
-1993	1,655			1655	3,039	7,896
1994	2,962	110	0	3072	1,175	16,330
1995	1,334	2	0	1,336	1,603	10,089
1996	1,787	128	0	1,915	3,313	11,987
1997	2,891	105	0	2,996	2,169	No data

Data up to 1996 collected by DFO and river monitors
Data for 1997 based on DFO stats collected below Bishop Falls

Table 6. Biological characteristics of Exploits River smolt 1984-1997.

YEAR	FORK LENGTH			WEIGHT		RIVER AGE			
	MEAN (NO.)	S.D	RANGE	MEAN (NO.)	S.D	RANGE	MEAN (NO.)	S.D	RANGE
1984	$16.4(954)$	2.3	$12.0-26.8$	$57.6(39)$	9.4	$38.2-76.8$	$3.5(938)$	0.6	$2.0-6.0$
1985	$16.6(280)$	1.9	$10.6-26.7$	$42.7(252)$	15.8	$12.4-169.0$	$3.2(276)$	0.5	$2.0-5.0$
1986	$15.4(1378)$	2.3	$6.70-26.7$	$34.1(1212)$	14.8	$7.8-207.0$	$3.6(1299)$	0.7	$2.0-7.0$
1987	$17.3(779)$	2.3	$10.8-28.4$	$51.3(776)$	22.4	$15.6-228.1$	$3.4(780)$	0.7	$2.0-6.0$
1988	$16.3(823)$	3.1	$10.3-26.7$	$46.4(823)$	29.7	$12.8-333.8$	$3.7(805)$	0.8	$2.0-7.0$
1989	$15.7(600)$	2.8	$10.1-26.3$	$43.6(593)$	23.2	$13.7-176.8$	$3.4(613)$	0.7	$2.0-5.0$
1990	$16.2(557)$	3.0	$8.8-33.9$	$46.7(555)$	27.8	$8.1-246.0$	$3.4(552)$	0.7	$2.0-5.0$
1991	$17.5(100)$	2.8	$12.3-28.4$	$52.2(100)$	27.3	$21.6-190.7$	$3.3(98)$	0.7	$2.0-5.0$
1992	$16.5(173)$	1.5	$12.9-21.6$	$42.3(170)$	11.7	$18.2-104.6$	$3.4(173)$	0.6	$2.0-5.0$
1993	$16.6(201)$	1.9	$12.8-23.0$	$46.4(201)$	16.0	$20.6-119.0$	$3.3(197)$	0.6	$2.0-5.0$
1994	$15.9(215)$	1.8	$9.2-21.0$	$38.3(215)$	12.4	$10.7-79.0$	$3.5(214)$	0.6	$1.0-5.0$
1995	$15.7(189)$	1.9	$11.2-23.7$	$34.6(199)$	14.5	$13.2-124.4$	$3.2(199)$	0.7	$1.0-5.0$
1996	$16.2(265)$	1.7	$12.6-21.7$	$39.9(265)$	12.6	$17.4-99.5$	$3.4(266)$	0.6	$2.0-5.0$
1997	$14.8(2780$	1.8	$8.7-21.0$	$34.1(278)$	11.9	$7.1-93.0$	$3.2(276)$	0.6	$2.0-7.0$

[^0]Table 7. Biological Characteristics Exploits River Adults 1984-1996.

Year	Life Stage	Fork Length			Weight			River Age		
		Mean (no.)	S.D.	Range	Mean (no.)	S.D.	Range	Mean (no.)	S.D.	Rang e
1984	1SW	49.63 (1735)	2.77	39.00-60.00	1.18 (1735)	0.21	0.51-2.40	3.22 (1501)	0.46	2-5
	Repeat	56.17 (65)	4.99	46.50-76.00	1.83 (65)	0.60	0.80-4.80	3.32 (53)	0.55	2.5
	2SW	65.00 (1)			2.20 (1)					
	small	49.91 (1960)	3.00	38.50-62.00	1.21 (1958)	0.24	0.55-2.80	3.22 (1550)	0.46	2-5
	large	67.56 (8)	4.95	63.00-76.00	2.97 (8)	0.90	2.20-4.80	3.00 (3)	0.00	3.00
1985	1SW	50.96 (3604)	2.75	37.00-67.00	1.35 (3604)	0.21	0.55-2.96	3.46 (3111)	0.56	2-7
	Repeat	54.11 (102)	3.38	48.00-63.00	1.56 (101)	0.30	0.98-2.64	3.25 (80)	0.52	2-4
	2SW	53.50 (1)			1.40 (1)					
	small	51.10 (3851)	2.80	37.00-62.50	1.36 (3850)	0.22	0.55-2.96	3.45 (3188)	0.57	2-7
	large	64.40 (7)	1.73	63.00-67.00	2.22 (7)	0.41	1.60-2.84	3.50 (4)	0.58	3-4
1986	1SW	52.23 (243)	5.17	41.10-66.50	1.42 (238)	0.44	0.65-2.90	3.56 (242)	0.60	2-5
	Repeat	66.74 (69)	6.43	44.30-81.00	3.00 (68)	0.74	1.00-4.30	3.19 (67)	0.47	2-4
	2SW	68.10 (21)	2.48	64.50-73.80	3.13 (21)	0.42	2.60-3.99	3.14 (21)	0.57	$2-5$
	small	52.25 (2505)	3.13	29.90-62.90	1.45 (285)	0.44	0.45-3.20	3.54 (259)	0.60	2-5
	large	69.22 (80)	3.30	63.00-81.00	3.24 (79)	0.47	2.35-4.30	3.17 (72)	0.50	2-5
1987	1SW	50.13 (456)	6.42	27.70-74.00	1.22 (413)	0.54	0.40-3.85	3.47 (394)	0.61	2-6
	Repeat	63.40 (124)	6.81	38.30-77.00	2.50 (96)	0.84	0.50-4.60	3.31 (97)	0.57	2-5
	2SW	68.90 (3)	4.55	64.00-73.00	2.80 (1)			2.50 (2)	0.71	2-3
	small	51.29 (4225)	3.88	23.00-62.90	1.27 (507)	0.49	0.10-2.60	3.48 (443)	0.64	2-6
	large	69.61 (110)	3.59	63.00-78.00	3.30 (72)	0.61	2.00-4.60	3.25 (56)	0.58	2-4
1988	1SW	48.58 (475)	5.66	34.60-67.10	1.12 (426)	0.38	0.45-2.60	3.50 (448)	0.65	2-6
	Repeat	58.09 (35)	7.24	39.00-74.00	2.03 (31)	0.86	0.65-4.50	3.61 (28)	0.79	2-6
	2SW	66.20 (4)	6.13	60.50-72.80	2.87 (4)	0.90	2.10-3.99	3.25 (4)	0.50	3-4
	small	50.59 (5104)	3.74	25.40-62.50	1.12 (566)	0.45	0.30-2.40	3.65 (531)	0.83	2-8
	large	69.22 (16)	4.78	63.10-81.00	3.17 (16)	0.71	2.20-4.50	3.50 (6)	0.55	3-4
1989	1SW	51.97 (387)	5.68	37.60-68.80	1.38 (376)	0.42	0.55-3.00	3.53 (323)	0.63	2.7
	Repeat	56.73 (37)	8.08	41.00-75.00	1.87 (36)	0.75	0.70-4.20	3.33 (30)	0.55	3-5
	2SW	67.17 (3)	3.41	65.00-71.10	2.73 (3)	0.53	2.25-3.30	3.00 (3)	0.00	3-3
	small	52.45 (4332)	3.68	25.00-62.50	1.29 (479)	0.46	0.30-2.30	3.75 (398)	0.93	2-9
	large	67.01 (21)	3.10	63.00-75.00	2.78 (21)	0.55	2.00-4.20	3.42 (12)	0.51	3-4
1990	1SW	53.00 (340)	5.58	40.50-67.00	1.38 (338)	0.41	0.58-2.66	3.49 (320)	0.62	2-6
	Repeat	61.95 (52)	6.75	44.10-80.20	2.30 (52)	0.87	0.62-5.20	3.36 (44)	0.49	3-4
	2SW	66.50 (3)	2.60	63.50-68.00	2.85 (3)	0.45	2.34-3.12	3.67 (3)	0.58	3-4
	small	52.92 (3801)	3.63	29.20-62.90	1.41 (739)	0.37	0.20-2.66	3.56 (364)	0.75	2-9
	large	66.81 (36)	3.92	63.00-80.20	2.79 (34)	0.75	1.90-5.20	3.42 (24)	0.50	3-4

1991	1SW	52.51 (227)	5.47	35.00-64.10	1.43 (227)	0.40	0.50-2.40	3.60 (212)	0.65	2-6
	Repeat	56.57 (20)	3.20	47.40-61.50	1.82 (20)	0.27	1.10-2.30	3.72 (18)	0.75	3-5
	2SW	66.70 (1)			2.65 (1)					
	small	51.10 (1377)	4.42	26.60-61.80	1.36 (1372)	0.29	0.20-2.40	3.84 (273)	0.97	2-8
	large	64.60(3)	1.90	63.00-66.70	2.47 (3)	0.16	2.35-2.65	4.00 (1)		
1992	1SW	54.08 (243)	4.86	38.70-65.70	1.59 (243)	0.38	0.65-2.90	3.50 (423)	0.70	2-6
	Repeat	59.59 (40)	4.63	54.00-74.80	2.11 (40)	0.59	0.15-4.35	3.54 (52)	0.61	2-5
	2SW	68.57 (3)	3.86	64.20-71.50	3.27 (3)	0.64	0.25-3.80	3.17 (6)	0.41	3-4
	small	52.51 (1078)	3.68	29.00-62.80	1.48 (1077)	0.28	0.40-2.60	3.62 (271)	0.81	2-8
	large	68.20 (10)	4.29	63.00-74.80	3.04 (10)	0.90	1.35-4.35	3.63 (8)	0.74	3-5
1993	1SW							3.40 (94)	0.54	3-5
	Repeat							3.40 (10)	0.70	2-4
	small									
	large									
1994	1SW	54.43 (387)	2.99	46.00-63.00	1.69 (207)	0.35	0.91-2.90	3.38 (393)	0.62	2-5
	Repeat	58.75 (20)	3.27	51.00-63.00	2.19 (12)	0.62	1.36-2.99	3.20 (20)	0.62	2-5
	small	54.54 (407)	3.06	46.00-62.50	1.69 (216)	0.35	0.91-2.90	3.39 (403)	0.71	2-9
	large	63.00 (4)	0.00	63.00-63.00	2.87 (4)	0.25	2.49-2.99	3.25 (4)	1.26	2-5
1995	1SW	53.63 (56)	3.06	49.00-61.00	1.76 (32)	0.38	1.27-2.63	3.21 (56)	0.62	2-5
	Repeat	-	-	-	-	-	-	-	-	-
	small	53.63 (56)	3.06	49.00-61.00	1.76 (32)	0.38	1.27-2.63	3.21 (56)	0.62	2-5
	large									
1996	1SW	54.26 (56)	3.73	43.00-63.00	-	-	-	3.22 (59)	0.62	2-5
	Repeat	60.00 (5)	2.24	57.00-63.00	-	-	-	3.40 (5)	0.55	3-4
	small	54.45 (59)	3.70	43.00-61.00	-	-	-	3.25 (59)	0.60	2-5
	large	63.00 (2)	0.00	63.00-63.00	-	-	-	3.00 (2)	0.00	3-3

Table 8 . Counts at various counting facilities on the Exploits River.

Year	Count at Bishop Falls			Count at Camp 1			Count at Grand Falls			Count at Red Indian Lake		
	small	large	total									
1959	886	119	*1005									
1960	1013	157	1170	94	9	103						
1961	839	118	957	319	53	372						
1962				1037	31	1068						
1963	1202	65	1267	491	37	528						
1964				1752	116	1868						
1965	1228	203	1431	587	190	777						
1966	829	506	*1335	942	470	1412						
1967	1372	710	2082	822	382	1204						
1968				1334	687	2021						
1969	979	498	1477	892	290	1182						
1970				1023	199	1222						
1971	961	300	1261	902	261	1163						
1972	794	113	907	495	234	*729						
1973	205	89	294									
1974	2538	411	2949				64	0	*64			
1975	9218	1439	10657	5531	505	6036	319	21	340			
1976	3991	460	4451	2935	117	3052	128	5	133			
1977	6148	581	6729	4300	271	4571	244	9	253			
1978	3790	303	4093	2704	81	2785	132	6	138			
1979	6715	277	6992	3925	124	4049	501	8	509			
1980				4597	426	5023	3062	23	3085			
1981	8114	1695	*9809	4264	514	4778	3809	227	4036			
1982	7605	181	7786	2796	122	2918	2321	67	2388			
1983				2952	302	*3254	2182	37	2219			
1984	17219	529	17748	6300	111	*6411	4993	50	5043			
1985	16652	183	16835	5985	38	6023	4992	11	5003			
1986	9697	355	10052	3072	174	3246	2243	67	2310			

1987	9014	310	9324	2327	41	2368	2211	41	2252			
1988	8974	147	9121	3433	10	3443	2535	34	2569			
1989	7192	89	7281	1694	14	1708	2737	70	2807			
1990	6629	122	6751	1057	15	1072	2697	118	2815			
1991	5245	99	5344	1060	40	1100			1614	29	0	29
1992	12538	314	12852	3520	242	3762	2609	64	2673	138	3	141
1993	21319	627	21946	5615	312	$* 5927$	5658	101	5759	571	14	585
1994	16168	916	17084	2488	333	$* 2821$	6430	196	6626	611	25	636
1995	15714	941	16655	2719	394	$* 3113$	N/A	N/A	6523	774	44	818
1996	29761	2053	31814	4502	578	$* 5080$	13489	906	14395	776	20	796
1997	13547	881	14428	N/A	N/A	N/A	5762	534	6296	170	24	194

Table 9. Cumulative percent of run to date for Bishops Falls fishway 1986-1997.

Date	Julian Day	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
June 9	160	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
June 15	166	0.00	0.12	0.00	0.07	0.00	0.02	0.02	0.00	0.06	0.00	0.20	0.54
June 22	173	0.41	0.97	0.24	0.76	0.15	0.07	0.10	0.59	0.28	0.38	3.02	1.94
June 29	180	1.36	4.65	2.58	3.02	2.38	0.34	0.32	1.41	2.31	2.50	14.22	8.01
July 6	187	7.72	15.08	5.50	17.13	15.63	1.63	2.24	14.29	15.74	16.38	44.08	25.94
July 13	194	22.45	43.14	30.78	43.83	39.37	7.24	21.52	31.35	39.29	46.61	68.40	49.56
July 20	201	40.11	72.33	59.51	65.16	60.73	29.12	47.32	45.94	62.54	65.68	82.50	59.37
July 27	208	63.51	87.67	81.43	79.55	77.34	53.87	75.12	71.56	75.94	81.69	90.57	70.02
Aug. 3	215	75.81	94.38	91.23	88.68	86.30	71.71	89.12	85.30	88.25	89.59	95.39	79.10
Aug. 10	222	88.93	97.13	96.26	93.34	91.57	80.00	95.16	93.99	93.49	93.74	97.32	89.08
Aug. 17	229	93.49	98.29	98.43	96.87	95.01	88.94	97.87	97.22	96.48	96.72	98.38	95.24
Aug. 24	236	96.93	98.80	99.52	99.00	98.06	94.40	99.24	98.79	97.71	98.08	99.18	97.46
Aug. 31	243	98.39	99.16	100.00	100.00	99.79	97.38	99.88	99.53	98.72	99.09	99.80	98.61
Sept. 7	250	99.05	99.44			100.00	98.95	100.00	99.79	99.22	99.86	100.00	99.43
Sept. 14	257	99.61	99.67				99.87		99.98	99.76	100.00		99.76
Sept. 21	264	99.73	99.97				100.00		100.00	100.00			99.83
Sept. 28	271	99.83	100.00										99.97
Oct. 5	278	99.90											100.00
Oct. 12	285	100.00											

Fig. 1. Map showing the 14 Salmon Fishing Areas of the Newfoundland Region.

Fig. 2. Detalled map of the Exploits River system.

Figure 3. Count of fish at Grand Falls and \% of run at Bishop's enumerated at Grand Falls.

[^0]: Sample Locations
 1984 - Bishops Falls forebay, Lake Ambrose, Lloyd's River
 1985 - Bishops Falls forebay
 1986 - Bishops Falls forebay, Badger Brook, Great Rattling Brook, Stoney Brook, Little Red Indian Brook, Red Indian Lake, Noel Paul's Brook
 1987-1990 Bishops Falls forebay, Badger Brook, Great Rattling Brook, Stoney Brook, Little Red Indian Brook, Red Indian Lake, Noel
 Paul's Brook, Three Brooks, Little Rattling Brook, Greenwoods Brook
 1991-1993 \& 1995 Bishops Falls forebay
 1994 - Bishops Falls forebay, Stoney Brook
 1996-97 Bishops Falls forebay

