Ne pas citer sans
permission of the authors ${ }^{1}$

Decision rules for the 4 T overwintering herring fishery in 4 Vn

by R. Claytor and C. LeBlanc
Department of Fisheries and Oceans P.O. Box 5030
Moncton, New Brunswick E1C 9B6

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

Biological information concerning timing and locations of herring concentrations in 4 Vn are presented to assist in the development of a decision rule on where to fish in 4 Vn (Decision Rule 4). A computer simulation model is used to examine the consequences of catching various amounts of fish (Decision Rule 1).

These analyses determined that for Decision Rule 4: the general principle of fishing in areas where stocks are randomly mixed is most likely to be met in northern areas of 4 Vn . Risk of fishing in areas where small vulnerable local stocks are concentrated is greater between Cape Smoky and Cape Dauphin, than north of Cape Smoky. Fishing below Cape Smoky increases the proportion of spring spawners in the catch. Therefore, given the declining situation in the Bras d'Or Lakes, the Cape Smoky line is appropriate at this time.

Similarly, for Decision Rule 1 it was determined that: the rule previously established, that the overwinter catch is not to exceed recent average landings, is still appropriate and would limit exploitation rates on local stocks within conservation target levels.

Résumé

Les renseignements biologiques ayant trait aux moments et aux lieux des concentrations de hareng en 4 Vn sont présentés afin de faciliter l'élaboration d'une règle de décision pour les lieux de pêche en 4 Vn (Règle de décision 4). Un modèle de simulation informatique est utilisé pour examiner les conséquences de la capture de diverses quantités de poisson (Règle de décision 1).

Les analyses ont permis de déterminer que, pour la règle de décision 4 , le principe général de la pêche dans des zones où les stocks sont mélangés de façon aléatoire sera très probablement respecté dans la partie nord de 4 Vn . Le risque de pêcher dans des zones où des stocks locaux petits et vulnérables sont concentrés est plus important entre le cap Smoky et le cap Dauphin qu'au nord du cap Smoky. La pêche au sud du cap Smoky donne lieu à une augmentation de la proportion de géniteurs de printemps au sein des captures. Par conséquent, étant donné le déclin des populations dans les lacs Bras d'Or, la ligne passant par le cap Smoky apparaît appropriée.

De façon semblable, il a été déterminé, pour la règle de décision 1, que la règle antérieurement établie, à savoir que les captures d'hiver ne devraient pas excéder les débarquements moyens récents, demeure appropriée et devrait limiter le taux d'exploitation des stocks locaux en deçà des niveaux de conservation cibles.

1. Introduction

There are three areas where herring are harvested in mixed-stock overwintering aggregations in the Maritimes Region; the Northeast Atlantic coast of Cape Breton (4Vn), Chedabucto Bay, and Halifax. The biological objective, to keep exploitation rates within $F_{0.1}$ or other conservation targets on all stocks in these fisheries is similar in each area. For herring, in the Maritimes Region, these range from about 20% to 25%, averaged over the principal ages in a fishery. The objective of these Decision Rules is to allow a mixed stock fishery, where information on contributing stocks is incomplete, to proceed and still limit exploitation rates on all stocks within conservation target levels.

Several issues in the 4 Vn area have lead to the development of these decision rules. Of primary importance is that 4 Vn is an overwintering area for 4 T and other stocks of 4 Vn , Bras d'Or lakes, and $4 W X$ origin. Each of these herring stocks has a different migratory pattern into and within 4 Vn . Thus, depending on where and when fisheries directed towards these stocks occur, other stocks may also be vulnerable to those fisheries as by-catch. This incidental catch is of particular concern when one of the stocks, vulnerable as by-catch, is very small or in a declining situation. This concern for a small and declining stock (Bras d'Or Lakes herring) and the unknown size and status of other local origin 4 Vn stocks is a major management issue in the 4 Vn herring fisheries. Because of the concern for these stocks and the possibility of incidental harvests by an overwintering fishery, several in-season management decisions were made in 1996 that interrupted the overwintering fishery. This situation is not satisfactory for the herring industry and so the concept of Decision Rules that would allow a fishery to continue in a safe manner, but whose affects would be evaluated as part of the assessment process was initiated. This document is the second one to evaluate these Decision Rules for 4 Vn in particular, and mixedstock fisheries in general.
The situation often encountered in a mixed stock fishery is that of a large stock migrating into an area which has one or more smaller local spawning stocks. In some cases, there may also be large or small fish stocks migrating into the mixed stock fishery from several areas. The ideal situation would be if the origin of all fish caught in a mixed stock fishery could be positively identified to stock origin, the size of each of these stocks was known, and removals of fish from these stocks in other fisheries was known. In this situation, determining the exploitation rates would simply be a matter of adding up the catches for each stock and dividing by the population size. After comparing these to the conservation targets, decisions could then be made to alter the fishery to reduce exploitation where it was too high or to make available other fishing opportunities in under-utilized areas. Often, however, the origin of the contributing stocks is not known, the size of each potentially contributing stock is also not known, and information on removals of stocks from other fisheries is incomplete. In these cases, advice for harvest decisions depends on identifying the probability that target fishing mortalities will be exceeded on individual stocks in particular situations. Once these probabilities are evaluated, specific operational considerations, or Decision Rules, can be established to ensure that the large stock predominates in the catch and that conservation objectives for all stocks are met. The results of the fishery are then evaluated against the Decision Rule objectives at a stock assessment review meeting, and any changes required to meet those objectives are recommended.
Previous documents (Anon., 1997) have indicated the general principles that would guide the assessment of the probabilities of exceeding target fishing mortalities on individual stocks. These were:

1. If mixing is random:

- Exploitation rates will on average be equal among all stocks, regardless of number of stocks.
- Exploitation rates will be more variable on the smaller stocks
II. If mixing is not random and fishing occurs where small stocks are concentrated:
- exploitation rates on small stocks will be much higher than those expected on the larger stocks.
It is thus important to identify situations which would lead to very high exploitation rates on the smaller, more vulnerable, stocks in an area. To identify these situations, information on the relative sizes of the contributing stocks, areas where small stocks are concentrated, and differences in biological characteristics, so that mixtures can be evaluated, are required. One way to ensure a reduction in probability of high exploitation on small stocks is to limit fishing activity to areas where small portions of large aggregations could be harvested rather than large portions of small aggregations.

The 4 T overwintering fishery in 4 Vn (Fig. 1) does not fit the ideal. The characteristics of the overwintering fishery and the large 4T migrating stock are relatively better known and defined than the information on the abundance, catches, and biological characteristics of local stocks. As a result, the $4 T$ overwintering fishery in 4 Vn is a case where specific rules are needed in order to allow the fishery to proceed in such a manner that the uncertainties are taken into account, that the large migrating $4 T$ stock predominates in the catch, and that exploitation rates on local stocks are limited to conservation target levels.

The Decision Rules derived in this document refer specifically to the 4T herring overwintering fishery in 4 Vn . These Decision Rules and the principles outlined above, however, apply generally to mixed stock fisheries and, combined with the examples from this overwintering fishery, may be used to guide the development of Decision Rules for other mixed stock fisheries

2. Decision Rules for 4Vn - Background

Previously four decision rules were addressed to guide the 19974 Vn herring purse seine overwintering fishery. The issues addressed are identified below and the decisions or rules made are in bold and quoted from Anon (1997) as follows:
Decision Rule 1: How many fish to catch? Overwinter catch not to exceed recent average landings, for example 1990-1996.
Decision Rule 2: When to start? Starting date: November 1
Decision Rule 3: Size of fish to catch? No more than 10% of catch by number can be below 24.5 cm fork length.

Decision Rule 4: Fishing Area? Restrict fishing to area of 4T winter distribution, position of boundary to be determined among science, management, and industry.

This paper examines Fishing Area (Decision Rule 4) because it was not previously resolved (Anon., 1997). It also examines How many fish to catch (Decision Rule 1) because this rule may be affected by the decision on where to fish. There is no additional information at this time that warrants a re-examination of Decision Rule 2: When to Start and Decision Rule 3: Size of fish to catch.
A desired result of the Decision Rule approach is to begin defining a model that would guide the acquisition of additional knowledge that would indicate when changes are to be made in these decision rules.

While the information presented here is focused on concerns related to the 4 T overwintering fishery in 4 Vn ; the management of other fisheries in the area will also be affected by the general principles outlined above. For example, local inshore fisheries may also occur on mixtures of stocks depending on when and where these fisheries occur and the amounts of fish they are allocated.

3. Description of the overwintering fishery

Catches in the 4T herring overwintering fishery in 4 Vn in 1997 were 3605 t , of which 96% were fall spawners (Table 1). Landings, for both spawning groups combined, from 1978 to 1997, ranged from 2600 t to 4700 t. From 1978 to 1986 , fall spawners ranged from 50% to 80% of the catch. In recent years, from 1987 to 1997, a higher proportion, 80% to 96%, of the catch has been fall
spawners. A survey conducted by a purse seiner, in 1997, to investigate biomass south of Cape Smoky resulted in an additional catch of 59 in this area as compensation for survey costs. Fall spawners were 95% of the this survey catch.

The fishery began in 1997 on November 1 and ended November 22. Peak landings, in 1997, occurred on November 12. At least one sample was collected each day of the fishery except November 8 (Table 2). Since 1990, this fishery has been completed by the end of November. The exception was 1996, when one night of fishing occurred on December 3-4.
In 1997, for the first time, fishing was restricted to north of Cape Smoky for the duration of the overwintering fishery (Fig. 1). This restriction came about because of concern over potential catches of Bras d'Or Lakes spring spawning herring, that might occur from fishing in the St. Ann's Bay-Bird Islands area. On December 3-4, 1996, purse seine catches of 524t occurred of which 167 t were spring herring. Of these $167 \mathrm{t}, 64 \mathrm{t}$ were identified as 4 T origin. It could not be determined which stock the remaining 103t came from, 4 T or the Bras d'Or Lakes. Because of the concern over the declining situation in the Bras d'Or Lakes spring spawning stock, the fishery was then restricted to north of Cape Smoky, where harvests of spring spawners are a very low percentage of the catch. After the restriction to limit fishing north of Cape Smoky was implemented, no additional fishing occurred in 1996. An additional change, made in 1997, was that seiners were permitted to fish in 4 T and 4 Vn during the overwintering fishery but no fishing occurred in 4 T .

Year-classes dominant in the 4 T population can be followed through the 4 Vn fishery. For example, the 1983 year-class appeared first as four year-olds in 1987, and the 1987 year-class in 1991 (Fig. 2). Recent 4T above average year-classes, 1990 and 1992, are also dominant in the 4 Vn overwintering fishery (Fig. 2).
The 1993 year-class which is estimated to be very large in the 4T population is not as evident in the overwintering catch. The requirement to release all fish $<24.5 \mathrm{~cm}$ fork length, which includes a portion of age 4 herring, is consistent with this difference between the age 4 population and the age 4 overwintering catch (Fig. 3).
Spring spawners have been a much smaller percentage (Table 1) and number in the catch in recent years than prior to 1986 (Fig. 4). Age 6, the 1991 year-class which is dominant in 4T, was also dominant in 1997 catches in 4 Vn (Fig. 5).

Declines in mean weight-at-age were similar in the 4T population and the overwintering catch (Fig. 6). Average mean weight at age, however, was slightly higher in 1997 than 1996 for fall and spring spawners but was still lower than during the late 1980s and early 1990s (Tables 3,4).
These similarities in dominant year-classes and mean weight-at-age trends are consistent with the majority of the overwintering catch coming from herring of 4 T origin.

In 1996 the fishery was closed from November 9 to 21 because catches of herring less than 24.5 cm fork length were higher than 10%. The purpose of this size regulation, described in Decision Rule 3, is to maintain the harvest of immature herring within the target fishing mortalities projected for the 4T stock and to protect local juvenile herring (Claytor 1997a). In 1996, catches of immature herring for 4 T and 4 Vn combined were within the $4 \mathrm{~T} \mathrm{~F}_{0,1}$ levels and were 7% of the total spring and fall spawner catch (Claytor 1997a). The average length of a 3 year-old herring caught in 4 Vn is about 27.5 cm total length (unpublished data). In 4 T , during fall spawning, about 50% of three year-old herring are mature (unpublished data). Percentage of catches $<27.5 \mathrm{~cm}$ by number for 1996 were 19% and 18% for 1997 (Table 5). These results suggest that the amounts of small fish landed in 4 Vn are meeting the objectives of Decision Rule 3 and that it is still applicable.

4. Decision Rule 4: Fishing Area?

4.1 Questions

The following questions need to be answered to determine where to fish:

1. What is the location of the large 4 T migrating stock during the timing set by Decision Rule 2 for the overwintering fishery? Decision Rule 4 requires that the overwintering fishery be restricted to this area.
2. What local stocks are in the area of the overwintering fishery and what is their relative size compared to the 4 T migrating stock? The general principles require this information to determine the probability that fishing in a particular area will be on a random mixture of stocks or will be disproportionately on concentrations of small local stocks.
3. What are the biological characteristics of the local stocks? This information will help assess the effects of all current fishing practices on these populations.
4. What are the biological characteristics of local 4 Vn stocks compared to the large 4 T migrating stock? This comparison will help determine the relative proportions of stocks mixing in the overwintering catch.
These questions and issues are dealt with collectively below.

4.2 Location of major concentrations during the time of the overwintering fishery

Determining the location of the major concentrations during the overwintering fishery indicates the areas where the large 4T migrating stock is likely to be during the fishery and where the requirement for random mixing is most likely to be met.

Historical information from the fishery and acoustic surveys identifies areas where herring are concentrated after the November 1 fishery starting date. Acoustic survey results, using research vessels from 1990 to 1997, and a purse seiner in 1997, indicate two areas of fish concentration, one in Aspy Bay and one off New Waterford-Glace Bay south of the Cape Dauphin Line, and low biomass indices for the St. Ann's Bay-Bird Islands area (Figs. 7, 8, 9).

Examination of spawning group identifies areas where mixtures of 4T and local stocks are most likely to occur. The percentage of spring spawners in the surveys, has always been less than 10% in the Aspy Bay area but has been as high as 27% south of Cape Dauphin (Figs. 7, 8, 9).
The overwintering fishery shows this same pattern. In Aspy Bay, where most of the fishing has occurred recently, the percentage of spring spawners has been less than 10\% except for 1996 (Fig. 10). In 1997, fishing occurred exclusively in Aspy Bay and the percentage of spring spawners was 4\% (Table 1). When fishing has occurred in the St. Ann's Bay-Bird Islands area, the percentage of spring spawners is higher than in Aspy Bay but is similar to the percentage of spring spawners in the 4 T population (Table 6).
In Aspy Bay, the relatively high numbers of fall spawners from 4T, estimated from fall surveys, migrating into 4 Vn would be very much larger than any of the small local fall spawning stocks in that area.

The St. Ann's Bay-Bird Islands area has been the area where spring spawners from Bras d'Or lakes have been caught in the purse seine fishery in the past (see tagging discussion below). Relatively low biomass estimates from fall surveys are also observed in this area compared to north of Cape Smoky.

These results indicate that for areas north of the Cape Dauphin Line:

- The requirement for random mixing and the location of the 4T migrating stock is most likely to be met north of Cape Smoky.
- The higher percentage of spring spawners, south of Cape Smoky and lower biomass near St. Ann's Bay-Bird Islands area, indicate that the area south of Cape Smoky is more likely to be a
mixture of $4 T$ and local stocks and less likely to be an area of random mixing than north of Cape Smoky.

4.3 Location of major concentrations at times other than the overwintering fishery

Examinations of major concentrations at times other than the overwintering fishery provides information on the locations and relative sizes of local stocks compared to the larger 4T migrating stock.

A comparison of the January, July, and September bottom trawl surveys provides information on the relative size of the migrating 4T stock compared to local stocks. This comparison is useful because during the January survey the entire 4T stock is in the overwintering area, and during July and September all herring observed are assumed to be of local origin.

January bottom trawl surveys to investigate winter fish distributions generally found herring in distinct concentrations in the north, middle, and southern portions of 4 Vn (Figs. 11, 12, 13). Herring were observed in the July and September bottom trawl surveys only in the St. Ann's BayBird Islands area and south of the Cape Dauphin Line. No major concentrations were observed north of Cape Smoky (Figs. 14-19).

Minimum trawlable biomass in the July survey ranged from 0 to 39,000 tonnes from 1970 to 1996 and from 5,000 to 9,000 tonnes in the September survey (Table 7). In comparison, acoustic survey estimates ranged from 4,000 to 440,000 tonnes during 1984-97 (Table 7).
Ages of fall spawners in the 4 Vn September 1994 and 1995 surveys do not show any sign of the large 1990 year-class that was dominant in the 4T population and 4T portion of the September bottom trawl survey in those years (Fig. 20). Maturity stages of these fish were greater than 90% spent, indicating they were of local origin.
Local fisheries also provide information on the location of concentrations at times other than the overwintering fishery. Catches of herring have occurred in trapnets set in Aspy Bay during May, June, and July from 1989 to 1997 (Table 8). Ages of spring and fall spawners in these trapnets have a similar age distribution to 4T, except for 1995 (Figs. 21, 22).

The distribution of lobster licenses indicates that most of the effort for herring as bait is probably south of Cape Smoky (Fig. 23). This situation depends on the assumption that fishing and catch of herring for bait is directly related to the number of lobster licenses in each area. This license distribution is important because the lobster fishery was reported, at a workshop held in Sydney, Feb. 1997, to last about 50 days and require about 300 pounds/day of bait per license. If this amount were all herring and were harvested locally, then the total herring catch in the bait fishery could be as high as 3500 tonnes.
Historical tagging studies also indicate areas where local stocks may be vulnerable during the overwintering fishery. From April 14 - May 1, 1981, 2975 herring were tagged in St. Ann's Bay. Of the 38 tags recovered, 8 were recovered from Bras d'Or lakes during the spring in 1981 and 1982 combined, and 25 from the purse seine fishery in 4 Vn during October to December of 1981. Although unadjusted for effort, these results indicate the presence of Bras d'Or Lakes herring in the St. Ann's Bay area during the time of the overwintering fishery (Simon and Stobo 1983). These results are summarized below:

Recovery Location	Ap-June	July-Sep.	Oct.-Dec	Total
4 Vn	1		25	26
Bras d'Or	8			8
4 Wa		1		1
4 T	2	1		3

Thus, an overwintering fishery in St. Ann's Bay has the potential for catching local stocks from Bras d'Or Lakes.

A number of points are relevant with respect to the potential impact of a fishery in this area would have on Bras d'Or Lakes herring.
First, the Bras d'Or Lakes spring spawning component has declined in recent years. Herring have been absent from traditional spawning beds, low larval densities are observed during surveys, and fishing effort in the Lakes has increased and become more concentrated in the last two years (Stephenson et al. 1998).
Second, the age structure of spring spawners caught in the St. Ann's Bay area in 1996 suggests that 4 T spring spawners would predominate in catches from this area. For example, age structure of spring herring caught in Aspy Bay were similar to those caught in St. Ann's Bay-Bird Islands area in 1996. These ages were also similar to those expected from examinations of the 4T spring spawner population age structure. Dominant year-classes of spring spawners in the overwintering catch, with considerations for gillnet mesh sizes were different from those in the Bras d'Or Lakes population (Fig. 24).
Third, herring have occasionally been taken under the ice in Bras d'Or Lakes, indicating that not all Bras d'Or Lakes herring overwinter in 4 Vn .

These similarities and differences, while suggesting a predominance of $4 T$ spring spawners in the St. Ann's Bay-Bird Islands area catch in 1996, do not guarantee a reduction in the risk to local spring stocks from fishing in this area.
The general principle of fishing in areas where stocks are randomly mixed is most likely to be met in northern areas of 4 Vn . Risk of fishing in areas where small vulnerable local stocks are concentrated is greater between Cape Smoky and Cape Dauphin, than north of Cape Smoky. Fishing below Cape Smoky increases the proportion of spring spawners in the catch. Fall spawning stocks local to areas south of Cape Dauphin are not likely to be found north of Cape Smoky during the overwintering fishery. Therefore, given the declining situation in the Bras d'Or Lakes and the small likelihood of southern fall spawning stocks in the area during the overwintering fishery, the Cape Smoky line is appropriate at this time.

5. Decision Rule 1: How many fish to catch?

Decision Rule 1 (Anon., 1997) states that the overwintering catch is not to exceed recent average landings, for example, 1990-1996. The relevant points leading to this conclusion were that the presence of a high proportion of age 11+ herring, of unknown stock origin, in northern local coastal fall fisheries (Neil's Harbour) and the continued presence of local fisheries, suggested that fishing levels, since 1983, had not been detrimental to local spawning components. While this was recognized as a weak biological rationale for advice, it was stated that until additional information becomes available on the 4 Vn spawning components, it would form the current advice for catch allocations.

There is no additional information that can be used to directly assess fishing mortalities on the Neil's Harbour local stock. As a result, the general principles cited above are used to assess the effect that various harvest levels in the overwintering fishery may have on these stocks.
The magnitude of the effects that would result under different TACs and assumptions about school size and mixing of stocks was investigated using a previously developed computer simulation model (Claytor 1997b). Using this model, the relative changes in exploitation rate that would result from a range of TAC levels, a range of migratory situations for the 4 T stock, and a range of local stock sizes were examined. For each analysis it was assumed that the school size was 40 t for the migratory and local stocks. The range of levels of the 4 T stock that had migrated to 4 Vn during the fishery were $20,000 \mathrm{t}, 40,000 \mathrm{t}$, and $120,000 \mathrm{t}$ out of the current estimated 4 T fall spawner stock size of 350,000 t. Local stock abundance ranged from $2,500 t, 5,000 t, 10,000 t$, and 20,000 t. The TAC varied from $3,700 \mathrm{t}, 4,200 \mathrm{t}, 4,800 \mathrm{t}$, and $8,400 \mathrm{t}$ and did not depend on the size of the $4 T$ stock. The levels of 3,700 t to 4,800 t were chosen because they represent levels that have been suggested by various user groups. The 8,400 level was chosen so that an extreme situation could be examined.

Results of simulations, with TAC fixed at 4,200t, indicate that when a small proportion of the 4 T stock has migrated to 4 Vn , exploitation rates on local stocks between 10 and 30% can be expected (Fig. 25). If, however, a large portion of the 4 T stock has migrated to the area, then exploitation rates of less than 10% can be expected (Fig. 25). These exploitation rates would be due to the overwintering fishery and would be additional to exploitation rates from other fisheries. This situation has been recognized and was the reason that November 1 was the chosen starting date, ensuring that most of the 4T migration is underway before fishing starts.
The worst situation develops when the local stock size is smallest, and so the consequences of differing levels of TAC were examined assuming the local stock size is 2500 . Two levels of 4T migration were examined ($20,000 \mathrm{t}$ and $120,000 \mathrm{t}$). These results indicate that local stock exploitation rates will exhibit greater variation at low 4T migration levels (Fig. 26).
At the higher 4T migration rate, 120,000t, there was little relative difference among the 3,700-4,200-4,800t TAC levels. Exploitation rates resulting from the 8,400t TAC, as expected, were about twice as great as the lower rates (Fig. 26).

The risk of exceeding target fishing levels increases when fishing occurs before the large migratory stock is well underway. Acoustic and bottom trawl surveys conducted since 1984 indicate the 4T migration is well established by November 1. As a result, November 1 (Decision Rule 2) was chosen as the starting date for the 4 Vn overwintering fishery. Under these conditions, expected exploitation rates on local stocks would be below target fishing levels and there would be little difference in risk of exceeding fishing mortality targets between TACs of 3,700 to 4,800 t in northern fishing areas. These results support the continued application of Decision Rule 1 that the overwinter catch is not to exceed recent averages.

6. Acknowledgments

We would like to thank the Captain and crew of the Gemini and Jim Dale for conducting the seiner survey south of Cape Smoky, Jim Fennell for collecting port samples during the fishery, Ghislain Chouinard for assistance with the January survey data, Mike Power for assistance with the July survey data, and Clarence Bourque and Colin MacDougall for processing and aging the biological samples from the surveys and fisheries.

7. References

Anon. 1997. Decision rules for overwintering fisheries. DFO Maritimes Region FSR 97/1.
Claytor, R. 1997a. The 1996 large seiner fishery in 4Vn. Department of Fisheries and Oceans Canadian stock assessment secretariat Res. Doc. 97/87.
Claytor, R. 1997b. Decision rules for overwintering herring fisheries. Department of Fisheries and Oceans Canadian stock assessment secretariat Res. Doc. 97/88.
Simon, J., and W.T. Stobo. 1983. The 1982-83, 4 Vn herring biological update. Canadian Atlantic Fisheries Scientific Advisory Committee Res. Doc. 83/49.
Stephenson, R.L., M.J. Power, K.J. Clark, G.D. Melvin, F.J. Fife, and S.D. Paul. 1998. 1998 evaluation of 4 VWX herring. Department of Fisheries and Oceans Canadian stock assessment secretariat Res. Doc. 98/52.

Table 1. Catches by large seiners in 4T overwinter fishery in 4Vn from 1978-1997.

	Spawning Group				
Year	Fall	Spring	Total	TAC	Percent Fall
Fishery					
78	1833	808	2641	8000	69
79	1418	1496	2913	3000	49
80	2981	870	3852	4500	77
81	2120	1162	3282	3000	65
82	2150	1373	3523	3000	61
83	2808	1167	3976	5000	71
84	3000	1004	4005	3500	75
85	2822	778	3600	3500	78
86	3105	1214	4319	4200	72
87	2093	279	2372	4200	88
88	2438	138	2576	4200	95
89	1959	159	2117	4200	93
90	3942	721	4663	4200	85
91	3871	921	4792	4200	81
92	3955	292	4247	4200	93
93	3722	219	3940	4200	94
94	2968	276	3244	4200	91
95	3990	153	4142	4200	96
96	3543	734	4276	6423	83
97	3462	143	3605	4200	96
Survey 4Vn					96
97			3	59	

Table 2. Daily landings and boats fishing in 4 T overwintering herring fishery in 4 Vn for 1997. Number of fish sampled for detailed analysis and date of sampling are indicated.

Date	Daily		Cumulative		Spawning Group		
	Catch	Boats	Catch	Boats	Number of Fish sampled		Number of Samples
					Fall	Spring	
Fishery							
1101	141	4	141	4	42	2	21
1104	179	4	320	8	129	5	5 3
1107	330	6	650	14	47	2	21
1108	185	5	835	19			
1112	744	6	1579	25	46	1	$1 \quad 1$
1115	120	5	1699	30	49	0	0 1
1117	496	5	2195	35	125	14	43
1119	627	6	2822	41	83	7	72
1120	650	5	3472	46			
1122	134	2	3606	48	37	3	$3 \quad 1$
Total	3606	48			558	34	413
Survey							
1122	59	1	3531	47	95	11	12

Table 3. Catch-at-age and weights-at-age (kg) for 4 Vn herring fall spawners, 1978-1997. Numbers are in thousands of fish.
Mobile Gear

AGE	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0	0	0	0	0	0	0	0	5	20	12	0	0	0	0	0	0	0	0	0
2	42	5827	628	377	1888	1352	997	827	604	816	441	26	0	0	0	25	15	14	237	166
3	563	2622	2865	541	3147	4652	3551	1987	2533	1613	833	559	697	2105	20	159	280	137	1335	3648
4	1601	656	2602	6800	3103	3651	4271	3920	5162	4138	1103	1408	2264	5406	1096	456	1964	551	7966	3134
5	1092	167	888	693	1428	2114	2790	2982	2394	1413	3328	1130	1524	2547	3273	1814	722	4374	2560	6278
6	842	100	655	591	359	584	775	927	1375	735	2394	2443	413	750	1427	4357	2426	1266	3309	957
7	628	324	663	0	158	218	377	590	1770	1040	575	460	2716	856	1474	1687	3193	3844	1657	1560
8	365	0	636	206	40	50	66	66	967	620	734	684	642	1266	990	1473	984	3294	1176	561
9	449	0	905	236	47	83	58	130	245	165	346	429	857	1309	1379	1594	695	967	887	843
10	280	0	638	0	0	0	0	0	75	75	183	123	1686	539	983	1564	829	909	579	519
11+	156	0	493	0	57	38	19	48	7	22	79	292	3033	1699	4317	2587	1689	1732	589	635
	6019	9696	10973	9444	10227	12742	12904	11477	15137	10657	10028	7554	13832	16477	14959	15716	12797	17088	20295	18299

Mobile Gear

AGE	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0380	0.0390	0.0350	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.1930	0.1070	0.1300	0.0800	0.1180	0.1410	0.1260	0.1140	0.0890	0.0750	0.0960	0.1200	0.0000	0.0000	0.0000	0.0280	0.0910	0.0850	0.0850	0.0860
3	0.1830	0.1760	0.1650	0.1900	0.1950	0.1900	0.1990	0.2010	0.1480	0.1450	0.1590	0.1640	0.1730	0.1440	0.1320	0.1180	0.1390	0.1280	0.1220	0.1430
4	0.2470	0.2260	0.2330	0.2090	0.2360	0.2380	0.2410	0.2470	0.1840	0.1860	0.2090	0.2080	0.2030	0.1920	0.1800	0.1530	0.1610	0.1610	0.1460	0.1688
5	0.3040	0.2740	0.3040	0.2810	0.2570	0.2620	0.2660	0.2690	0.2200	0.2110	0.2400	0.2360	0.2240	0.2230	0.2090	0.1780	0.1800	0.1920	0.1650	0.1869
6	0.3320	0.2980	0.3370	0.3150	0.2940	0.2960	0.2930	0.2980	0.2540	0.2540	0.2610	0.2740	0.2650	0.2480	0.2380	0.2040	0.2120	0.2130	0.1860	0.2197
7	0.3560	0.3460	0.3660	0.0000	0.3250	0.3240	0.3190	0.3170	0.2600	0.2610	0.2940	0.2910	0.2920	0.2630	0.2470	0.2270	0.2300	0.2200	0.2060	0.2239
8	0.3740	0.0000	0.3920	0.4280	0.3610	0.3600	0.3540	0.3510	0.2930	0.2970	0.3190	0.3100	0.3150	0.2970	0.2760	0.2460	0.2470	0.2490	0.2280	0.2472
9	0.3880	0.0000	0.4000	0.4140	0.3960	0.4050	0.3590	0.3790	0.3280	0.3300	0.3330	0.3410	0.3360	0.3070	0.2860	0.2690	0.2820	0.2670	0.2380	0.2568
10	0.3990	0.0000	0.4140	0.0000	0.0000	0.0000	0.0000	0.0000	0.3200	0.3180	0.3520	0.3370	0.3420	0.3210	0.2850	0.2830	0.2990	0.2900	0.2630	0.2913
11+	0.4290	0.0000	0.4350	0.0000	0.4210	0.4190	0.4080	0.4210	0.4460	0.3920	0.3700	0.3480	0.3470	0.3540	0.3300	0.3110	0.3240	0.3390	0.3220	0.3464
	0.3050	0.1460	0.2720	0.2250	0.2100	0.2200	0.2330	0.2460	0.2050	0.1960	0.2430	0.2590	0.2850	0.2350	0.2640	0.2370	0.2320	0.2340	0.1750	0.1944

Table 4. Catch-at-age and weights-at-age (kg) for spring spawners caught by purse seines in 4Vn, 1978-1997. Numbers are in thousands of fish.
Mobile Gear

AGE	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	58	5679	349	595	1525	302	522	615	117	73	0	0	8	0	0	16	0	0	0	20
2	809	5007	2614	2829	3074	3383	1759	953	929	226	214	0	218	167	28	43	35	36	72	61
3	978	383	901	1833	1994	1561	1702	1129	4064	827	132	105	552	108	11	27	474	13	551	88
4	358	0	143	0	667	526	636	636	1466	441	145	180	608	990	74	51	187	289	209	37
5	330	0	117	438	362	289	371	418	0	0	127	99	701	289	182	176	138	104	1442	19
6	455	298	277	0	0	0	0	0	265	64	0	219	333	134	573	265	208	113	932	156
7	0	0	0	0	0	0	0	0	0	0	59	0	218	381	0	150	183	141	79	10
8	114	0	43	0	0	0	0	0	413	67	29	109	35	1157	0	120	53	27	27	43
9	14	0	17	0	0	0	0	0	0	0	0	0	47	186	0	0	83	4	96	116
10	0	0	0	0	0	0	0	0	0	0	0	0	99	186	0	0	0	8	4	31
11+	32	0	55	0	0	0	0	0	0	0	0	0	0	194	148	0	0	20	64	51
	3148	11367	4516	5695	7622	6061	4990	3751	7254	1698	706	712	2819	3792	1016	848	1361	755	3477	631

Mobile Gear

AGE	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
1	0.071	0.097	0.110	0.106	0.100	0.118	0.099	0.090	0.056	0.057	0.000	0.000	0.079	0.000	0.000	0.059	0.000	0.000	0.070	0.0695
2	0.174	0.154	0.156	0.182	0.166	0.168	0.169	0.168	0.121	0.121	0.123	0.000	0.157	0.094	0.140	0.099	0.151	0.108	0.103	0.0957
3	0.228	0.181	0.215	0.230	0.221	0.220	0.224	0.234	0.156	0.158	0.181	0.145	0.217	0.113	0.179	0.163	0.149	0.126	0.136	0.1401
4	0.290	0.000	0.275	0.000	0.252	0.254	0.257	0.263	0.192	0.188	0.198	0.177	0.242	0.181	0.207	0.222	0.195	0.177	0.183	0.1911
5	0.323	0.000	0.314	0.369	0.289	0.301	0.300	0.313	0.000	0.000	0.242	0.213	0.279	0.228	0.243	0.233	0.187	0.199	0.221	0.1958
6	0.370	0.364	0.383	0.000	0.000	0.000	0.000	0.000	0.228	0.228	0.000	0.274	0.280	0.245	0.294	0.269	0.220	0.218	0.228	0.2447
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.287	0.000	0.319	0.265	0.000	0.296	0.296	0.241	0.265	0.2771
8	0.363	0.000	0.387	0.000	0.000	0.000	0.000	0.000	0.293	0.294	0.390	0.279	0.279	0.282	0.000	0.342	0.254	0.239	0.324	0.2859
9	0.480	0.000	0.483	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.360	0.335	0.000	0.000	0.296	0.321	0.310	0.3151
10	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.341	0.335	0.000	0.000	0.000	0.317	0.314	0.3129
11+	0.433	0.000	0.441	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.329	0.392	0.000	0.000	0.314	0.318	0.3621
	0.257	0.132	0.193	0.204	0.180	0.193	0.201	0.207	0.167	0.165	0.195	0.223	0.256	0.243	0.287	0.258	0.203	0.202	0.211	0.2479

Table 5. Cumulative percentage by number and total length in seiner landing for 4 T overwintering herring fishery in 4 Vn for 1993 to 1997.

Total Length	93	94	95	96	97
20	0	0	0	0	0
20.5	0	0	0	0	0
21	0	0	0	0	0
21.5	0	0	0	0	0
22	0	0	0	0	0
22.5	0	0	0	1	0
23	0	0	0	1	1
23.5	0	0	0	2	1
24	0	0	0	2	1
24.5	0	0	0	3	1
25	1	0	0	4	1
25.5	1	1	0	5	2
26	1	2	1	8	3
26.5	2	3	1	11	6
27	2	5	1	15	11
27.5	3	8	2	19	18
28	3	12	3	25	26
28.5	4	16	4	31	33
29	5	19	6	38	42
29.5	7	23	10	45	51
30	10	28	20	53	60
30.5	14	34	30	60	68
31	19	41	41	67	75
31.5	27	50	51	73	80
32	35	58	60	78	85
32.5	43	65	68	84	88
33	51	71	75	88	90
33.5	57	76	80	90	92
34	62	79	83	93	94
34.5	68	83	86	95	95
35	73	86	89	96	96
35.5	78	89	91	97	97
36	84	92	93	98	98
36.5	88	95	95	98	98
37	92	97	97	99	99
37.5	95	99	98	99	99
38	98	99	99	100	100
38.5	99	100	100	100	100
39	100	100	100	100	100
39.5	100	100	100	100	100
40	100	100	100	100	100

Table 6. Percentage of spring spawners (tonnes) caught in the purse seine fishery in the two principal fishing areas, compared to percentage of spring spawners (age $4+$) in the $4 T$ population.

	Fishery		
Year	Aspy Bay	Bird - St. Ann's	4T Population
92	6	24	29
93	6	13	35
94	9		30
95	4		46
96	15	32	35
97	4		27
Average	7	23	34

Table 7. Biomass estimates (t) from bottom trawl and acoustic surveys, 1970-1997. There was no bottom trawl survey in July 1974 and no sets were made in the bottom trawl survey in July 1980. There were no acoustic surveys in 4 Vn in 1989 and 1994. The September bottom trawl survey in 4 Vn occurrred only in 1994 and 1995.

	Bottom Trawl		Acoustic	
	Biomass (t)		Biomass (t)	
Year	July	Sep	Sep-Dec	Dates
70	6155			
71	2459			
72	1835			
73	10968			
74				
75	739			
76	0			
77	667			
78	31			
79	0			
80				
81	0			
82	0			
83	0			
84	1940		75724	Nov 17-26
85	0		106865	Nov 23-26
86	230		127708	Dec 1-12
87	39345		443058	Nov 17-24
88	81		172886	Nov 21-22
89	0			
90	9		135249	Nov 4-8
91	4997		4418	Oct. 21-23
92	0		44845	Oct. 14-22
93	417		12512	Oct 15-20
94	8788	8773		
95	1773	5201	7295	Sep 24-26
96	0		21804	Oct. 14-16
97	n/a		17463	Oct. 9-11

Table 8. Daily herring catches from mackerel trap in Aspy Bay, 1989-1997.

		1989		1990		1991		1992		1993		1994		1995		1996		1997	
Month	Day	Catch	Cumul.																
5	1	800	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	2	2100	2900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	3	0	2900	10000	10000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	4	9450	12350	19000	29000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	5	0	12350	0	29000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	6	0	12350	0	29000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	7	0	12350	0	29000	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	8	0	12350	18000	47000	0	0	0	0	0	0	0	0	0	0	550	550	0	0
5	9	0	12350	0	47000	0	0	0	0	0	0	0	0	0	0	0	550	0	0
5	10	4280	16630	0	47000	50000	50000	0	0	6000	6000	0	0	0	0	20000	20550	0	0
5	11	0	16630	30000	77000	18000	68000	0	0	61000	67000	0	0	0	0	9000	29550	0	0
5	12	0	16630	0	77000	0	68000	0	0	20000	87000	0	0	0	0	0	29550	0	0
5	13	6900	23530	0	77000	16000	84000	0	0	9000	96000	0	0	0	0	0	29550	0	0
5	14	0	23530	0	77000	17870	101870	0	0	15000	111000	0	0	0	0	0	29550	0	0
5	15	16000	39530	35000	112000	3000	104870	0	0	6000	117000	0	0	0	0	50000	79550	0	0
5	16	44800	84330	40000	152000	0	104870	0	0	0	117000	0	0	0	0	0	79550	0	0
5	17	44800	129130	30000	182000	17000	121870	0	0	0	117000	0	0	0	0	0	79550	0	0
5	18	34400	163530	0	182000	9300	131170	0	0	0	117000	0	0	850	850	0	79550	0	0
5	19	0	163530	0	182000	0	131170	0	0	0	117000	0	0	0	850	0	79550	0	0
5	20	15000	178530	0	182000	40000	171170	0	0	0	117000	0	0	450	1300	0	79550	0	0
5	21	0	178530	0	182000	51400	222570	0	0	0	117000	0	0	0	1300	0	79550	0	0
5	22	17000	195530	0	182000	0	222570	0	0	0	117000	0	0	0	1300	0	79550	0	0
5	23		195530	10000	192000	0	222570	0	0	0	117000	0	0	0	1300	0	79550	0	0
5	24	0	195530	0	192000	0	222570	0	0	0	117000	0	0	200	1500	0	79550	0	0
5	25	0	195530	0	192000	0	222570	0	0	6000	123000	0	0	0	1500	0	79550	0	0
5	26	0	195530	0	192000	0	222570	0	0	0	123000	0	0	0	1500	0	79550	1350	1350
5	27	0	195530	0	192000	0	222570	0	0	0	123000	2000	2000	0	1500	8000	87550	0	1350
5	28	0	195530	15000	207000	0	222570	1500	1500	0	123000	7300	9300	0	1500	28000	115550	0	1350
5	29	0	195530	0	207000	0	222570	0	1500	0	123000	0	9300	0	1500	108000	223550	12500	13850
5	30	0	195530	8000	215000	0	222570	0	1500	0	123000	43500	52800	0	1500	0	223550	22500	36350
5	31	8000	203530	0	215000	0	222570	0	1500	0	123000	19000	71800	7000	8500	48000	271550	31000	67350

Table 8 (cont).

		1989		1990		1991		1992		1993		1994		1995		1996		1997	
Month	Day	Catch	Cumul.																
6	1	0	203530	17000	232000	0	222570	3000	4500	0	123000	8000	79800	0	8500	0	271550	39000	106350
6	2	0	203530	0	232000	0	222570	0	4500	0	123000	0	79800	0	8500	0	271550	16400	122750
6	3	0	203530	0	232000	11500	234070	0	4500	0	123000	5000	84800	0	8500	42000	313550	550	123300
6	4	2000	205530	0	232000	12000	246070	0	4500	0	123000	0	84800	0	8500	0	313550	2000	125300
6	5	0	205530	0	232000	70000	316070	0	4500	0	123000	2000	86800	0	8500	50000	363550	0	125300
6	6	0	205530	0	232000	15000	331070	0	4500	0	123000	0	86800	0	8500	0	363550	5000	130300
6	7	400	205930	0	232000	10000	341070	0	4500	0	123000	0	86800	0	8500	20000	383550	10000	140300
6	8	0	205930	0	232000	0	341070	0	4500	0	123000	0	86800	0	8500	0	383550	0	140300
6	9	0	205930	0	232000	0	341070	0	4500	0	123000	2500	89300	0	8500	0	383550	0	140300
6	10	0	205930	0	232000	0	341070	0	4500	0	123000	3000	92300	0	8500	0	383550	0	140300
6	11	0	205930	0	232000	15000	356070	0	4500	0	123000	0	92300	0	8500	0	383550	0	140300
6	12	0	205930	2000	234000	0	356070	0	4500	0	123000	2000	94300	7300	15800	0	383550	0	140300
6	13	0	205930	0	234000	24000	380070	0	4500	0	123000	3000	97300	6000	21800	0	383550	0	140300
6	14	0	205930	3000	237000	0	380070	0	4500	0	123000	2000	99300	0	21800	15000	398550	0	140300
6	15	900	206830	5000	242000	0	380070	0	4500	0	123000	5000	104300	0	21800	0	398550	81000	221300
6	16	1600	208430	0	242000	0	380070	0	4500	0	123000	2000	106300	0	21800	0	398550	90000	311300
6	17	0	208430	0	242000	7000	387070	0	4500	0	123000	0	106300	0	21800	0	398550	6000	317300
6	18	0	208430	0	242000	2500	389570	0	4500	0	123000	0	106300	0	21800	0	398550	25000	342300
6	19	0	208430	0	242000	0	389570	6000	10500	0	123000	2000	108300	0	21800	0	398550	75600	417900
6	20	0	208430	0	242000	20000	409570	500	11000	0	123000	0	108300	0	21800	0	398550	59000	476900
6	21	0	208430	0	242000	20000	429570	1200	12200	0	123000	0	108300	0	21800	0	398550	3000	479900
6	22	0	208430	0	242000	0	429570	0	12200	0	123000	0	108300	3300	25100	0	398550	0	479900
6	23	0	208430	14000	256000	0	429570	0	12200	0	123000	0	108300	0	25100	0	398550	45000	524900
6	24	0	208430	0	256000	0	429570	0	12200	0	123000	500	108800	7000	32100	6000	404550	0	524900
6	25	0	208430	0	256000	0	429570	0	12200	0	123000	0	108800			0	404550	0	524900
6	26	0	208430	0	256000	10000	439570	0	12200	0	123000	0	108800			0	404550	0	524900
6	27	4900	213330	0	256000	0	439570	0	12200	0	123000	0	108800			0	404550	0	524900
6	28	14000	227330	0	256000	0	439570	0	12200	0	123000	0	108800			0	404550	0	524900
6	29	7500	234830	0	256000	0	439570	0	12200	0	123000	200	109000			0	404550	0	524900
6	30	0	234830	0	256000	0	439570	5000	17200	0	123000					0	404550	5000	529900

Table 8 (cont).

		1989		1990		1991		1992		1993		1994		1995		1996		1997	
Month	Day	Catch	Cumul.																
7	1	0	234830	0	256000	0	439570	6500	23700	0	123000					13600	418150	8000	537900
7	2	0	234830	4300	260300	5000	444570	0	23700	0	123000							4500	542400
7	3	0	234830					0	23700	15000	138000							2400	544800
7	4	1750	236580					0	23700	3000	141000							0	544800
7	5							0	23700	1500	142500							4000	548800
7	6							14000	37700	0	142500								
7	7							3000	40700	0	142500								
7	8							0	40700	6000	148500								
7	9							0	40700	0	148500								
7	10							0	40700	0	148500								
7	11							6000	46700	0	148500								
7	12							0	46700	0	148500								
7	13							0	46700	0	148500								
7	14							2000	48700	0	148500								
7	15							0	48700	1000	149500								
7	16							0	48700										
7	17							0	48700										
7	18							0	48700										
7	19							0	48700										
7	20							0	48700										
7	21							3000	51700										
Total		236580		260300		444570		51700		149500		109000		32100		418150		548800	

Fig. 1. Place names and management lines indicated in text.

Fig. 2. Fall spawner catch at age for large seiners in 4 Vn .

Fig. 2 (cont). Fall spawner catch at age for large seiners in 4 Vn .

Fig. 3. Age structure from 1997 fishery and survey sampling in 4 T and 4 Vn for fall spawners.

6
4

Age

Fig. 4. Spring spawner 1997 catch at age for large seiners in 4 Vn .

Fig. 4. (cont). Spring spawner 1997 catch at age for large seiners in 4 Vn .

Fig. 5. Age structure for spring spawners from 19974 T and 4 Vn fisheries and surveys.

Fig 6. Mean weights for ages 5 to 7 for fall and spring spawners caught by seiners in 4 T and 4 Vn .

Fig. 7. Biomass indices in tonnes (rounded numbers) estimated during acoustic surveys in 4 Vn from 1990-93, and 1995-96. Percentages are for spring spawners in indicated areas. Gray scale indicates relative density with darkest being most dense. There was no survey in 4 Vn in 1994.

Fig. 8. Cape Breton area stratum and acoustic transect locations, with relative backscatter detected between Oct. 8 and 11, 1997. Percentages are for spring spawenrs in indicated areas.

Fig. 9. Gemini survey, Cape Breton area stratum and acoustic transect locations, with relative backscatter detected between Nov. 21-26, 1997. Percentages are for spring spawenrs in indicated areas.

Fig.10. Location of purse seine samples from 1992 to 1996. The percentages refer to spring spawners in the indicated areas.

Fig. 11. Distribution of herring during the January 1995 bottom trawl survey in 4 Vn .

Fig. 12. Distribution of herring during the January 1996 bottom trawl survey in 4 Vn .

Fig. 13. Distribution of herring during the January 1997 bottom trawl survey in 4 Vn .

Fig. 14. Distribution of herring during July bottom trawl surveys in 4Vn, 1970-75. Offshore lines are 50 and 100 m depth contours. Units are kg/standard tow. Cape Dauphin and Scaterie Lines are as in Fig. 1.

Fig. 15. Distribution of herring during July bottom trawl surveys in 4Vn, 1976-81. Offshore lines are 50 and 100 m depth contours. Units are $\mathrm{kg} / \mathrm{standard}$ tow. Cape Dauphin and Scateries Lines are as in Fig. 1.

Fig. 16. Distribution of herring during July bottom trawl surveys in $4 \mathrm{Vn}, 1976-81$. Offshore lines are 50 and 100 m depth contours. Units are $\mathrm{kg} / \mathrm{standard}$ tow. Cape Dauphin and Scaterie Lines are as in Fig. 1.

Fig. 17. Distribution of herring during July bottom trawl surveys in $4 \mathrm{Vn}, 1976-81$. Offshore lines are 50 and 100 m depth contours. Units are $\mathrm{kg} / \mathrm{standard}$ tow. Cape Dauphin and Scaterie Lines are as in Fig. 1.

Fig. 18. Distribution of herring during July bottom trawl surveys in $4 \mathrm{Vn}, 1994-96$. Offshore lines are 50 and 100 m depth contours. Units are kg/standard tow. Cape Dauphin and Scaterie Lines are as in Fig. 1.

Fig. 19. Herring kg/standard tow from September bottom trawl surveys in 4 Vn . Cape Dauphin and Scaterie Lines as in Fig. 1. Offshore line is 50 m depth contour.

Fig. 20. Comparison of fall spawner age structure from bottom trawl surveys in 1994 and 1995 in 4 Vn and 4 T .

Fig. 21. Comparison of fall spawner age structure in Aspy Bay trapnet during spring fishery, 4 T fall spawner population, and 4 T fall spawner catch all gears.

Spring Spawners 1994

Spring Spawners 1997

Fig. 22. Comparison of spring spawner age structure in Aspy Bay trapnet during spring fishery, 4T spring spawner population, and 4T spring spawner catch att gears.

Fig. 23. Number of lobster licenses (italics) in each statistical district (bold).

Fig. 24. Comparison of age structure for spring spawners caught in the seiner fishery in the northern part of the fishery (north of Cape Smoky), southern part of the fishery (St. Ann's Bay), and Bras d'Or lake gillnet fishery in 1996.

Fig. 25. Results of simulations investigating the exploitation rates expected by keeping the TAC constant at 4200 tonnes and varying the size of local stocks from 2500 tonnes to 20,000 tonnes and migrating stocks from 20,000 tonnes to 120,000 tonnes.

Fig. 25. Relative difference in exploitation rates expected if local stocks are kept constant at 2500 tonnes and migrating stock is 20,000 tonnes or 120,000 tonnes and the TAC varies between 3,700 tonnes to 8,400 tonnes.

