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Abstract

In this paper we present Quasi-likelihood methods for stock size inferences based on an SPA and
estimation with relative abundance indices . These methods are applicable to a variety of types of
indices . These methods are semi-parametric in that they only require assumptions about the mean
and variance of the indices, and resulting inferences have a degree of distributional robusteness .
Profile quasi-likelihood methods are used to stochastically evaluate the impact of a commercial
fishing quota on future stock size . These methods are applied to a cod stock off the east coast of
Canada .

Résumé

Nous présentons ici des méthodes de quasi-vraisemblance permettant des inférences sur la taille
des stocks à partir d'une ASP et d'une estimation avec indices de l'abondance relative . Ces
méthodes, qui s'appliquent à divers types d'indices, sont semi-paramétriques car elles ne
demandent que des hypothèses sur la moyenne et la variance des indices, et les inférences obtenues
possèdent un certain degré de rbbustesse sur le plan de la distribution . Les méthodes de profil par
quasi-vraisemblance servent à évaluer stochastiquement l'impact d'un quota de pêche commerciale
sur la taille future d'un stock . Ces méthodes sont appliquées à un stock de morue sur la côte est du
Canada .

1 Introduction

For most fish stocks it is impossible to get direct estimates of the size of the population . The
data usually available only give estimates of the size of some component or subgroup of the
stock. However, when a stock is commercially exploited by an extensive fishery whose landings
are accurately monitored then it is often possible to reconstruct historical stock abundance for
extinct cohorts using time series of commercial catches . A cohort model is used for the recon-
struction, which essentially involves adding up annual catches from a cohort to give a minimum
estimate of the population size, when first exploited by the fishery, that must have existed
so that subsequent catches could be observed . If a relative index of population abundance is
also available then this information can be used to estimate current stock size based on the
relationship between historical stock size and the abundance index .

We develop semi-parametric estimators of current stock size in this paper . The estimators
are semi-parametric in that they do not require completely specified stochastic models for
the relative abundance indices used in estimation . These data are usually composites from
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complex surveys, and assumed distributions such as the lognormal are tenuous . As such it
is desirable to have an inferential procedure that is robust to the exact stochastic nature of
the abundance data. The methods in this paper require specification only of the mean and
variance functions for the abundance indices . The variance function can easily be specified to
accommodate Normal, Poisson, and Gamma/Lognormal types of variation . Estimation and
inference is based on the quasi-likelihood method (see McCullagh and Nelder, 1989) .

When the stock abundance when first exploited by the fishery is known then the complete
exploited abundance can be constructed using a cohort model . This is called a sequential
population analysis (SPA) . The model considered here is based on the assumption that the
commercial catches are removed at the middle of the year . Let Nay denote the unknown
beginning of year stocks numbers at age a in year y, an let Cay denote the commercial catch
from Nay during the year . The cohort model is

MQv -Mav / 2
Na+l y+l = Naye- - Caye , (1 )

where May is the known natural mortality. In this model stock numbers decline for the first half
of the year, with total mortality equal to exp(-May/2) . Commercial catches are removed at
mid-year from the surviving population . The population surviving fishing then further declines
due to natural mortality, with total mortality again equal to exp(-May/2) . Ages and years are
standardized so that a = 1, . . ., A, and y = 1, . . .Y . Model (1) is commonly used in fisheries,
and provides very reasonable results even if the fishery is prosecuted at times other than the
mid-year (see Mertz and Myers, 1996) .

Of course Nly's, the stock abundance first exploited by the fishery, are rarely known and
usually must be estimated using additional population assumptions or auxiliary stock status
information. Alternatively, the numbers at age for the final exploited stock stages can be
estimated using (1) backwards . This is a common approach, and is followed here .

We assume that one or more indices of stock size are available for estimation purposes, and
we also assume a relationship between the indices and the size of some stock component . Let
Rsay denote the value of the sth index for age a and year y . The basic relationship we consider

is Rsay =.~ qsaNay. The qsa term is referred to as the catchability of the index and is typically
unknown. We assume that the index represents only a portion of the stock, but that portion
is the same in each year . Stock numbers at age and catchabilities are commonly estimated
(e.g. Gavaris, 1988; Myers and Cadigan, 1995) using nonlinear least squares with (1) and a
stochastic observation model

log(Rsay) = log(qsa) + (1 - t) log(Nay) + t log(Na+iy+i) + Esay, (2)

where esay is a random error term with mean zero and constant, but unknown, variance . The
variance term includes both measurement variability in the indices and process error in (1) .
Model (2) is based on an index that is observed at a fraction t since the beginning of the year .

When the e96y's are independent then standard asymptotic inferential procedures can be
employed that require relatively minor additional assumptions about the distribution of the
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errors (see Seber and Wild, 1989), and so the above procedure has a degree of distributional
robustness .

In this paper we present quasi-likelihood methods that retain the same degree of distribu-
tional robustness but allow more arbitrary models for the variance of the indices . An overview
of quasi-likelihood methods is presented in Section 2 .1, and specific procedures for estimating
stock abundance are developed in Section 2.2. Inferential procedures for forecasts of stock size
remaining after a commercial fishery are presented in Section 3. In Section 4 the methods
are applied to a cod data set. Finally, a discussion of the methods and results is presented in
Section 5 .

2 Quasi-likelihood estimators of stock abundance

In this section a brief review of quasi-likelihood estimation theory is first presented, followed
by specific procedures for estimating stock abundance .

2 .1 Overview of quasi-likelihood theory

Quasi-likelihood estimators are based only on assumptions about the mean and variance of a
random variable . The mean and variance functions we assume for stock abundance indices ar e

E(Rsay) - µsay =
qsayNay\t) i

Var(Rsay) = 0
.,
µesay )

where Nay(t) = Nây tNa+ly-~1~ ~s is the dispersion parameter, and B is a fixed parameter used
to model heterogeneity in the random variables, as a function of the mean . A wide variety of
data can be efficiently analyzed using this model . For example, normally distributed indices
can be analyzed by setting 9= 0 ; poisson distributed indices can be analyzed with B= 1 ;
gamma or lognormally distributed indices can be analyzed with 9= 2 . The latter specification
for B leads to a constant coefficient of variation model and is particularly useful for fisheries
data. In practise B is often chosen through trial and error with the aid of residual plots .

Quasi-likelihood estimators are defined in terms of an estimating equation from which a
fit function, or quasi-likelihood, can often be developed . This quasi-likelihood is useful for
inferences, and is also useful for deciding among estimates when multiple roots of the estimating
equation exist . The quasi-likelihood has many of the same properties that a regular likelihood
function has . Note that in the case of independent random variables a quasi-likelihood can
always be constructed, which is the case here . For a single set of indices the estimating equation
is

E ray Bµayµay , (3)
a,y

,/,
`~µay

where µay is the derivative of µay with respect to the unknown parameters . The lower case
r denotes an observed index . The unknown Nay's in (1) and the q's in (2) are estimated as
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the solution of setting (3) equal to zero. Equation (3) is optimal among all equations that are
linear in r (see McCullagh and Nelder, 1989) . The quasi-likelihood function associated with
this model is

µ -
Q(r, µ)

r t
= f tg dt .

r

The deviance function
D(r, µ) =-20 {Q(r, µ) - Q(r, r) }

is a measure of the discrepancy between r and M. The deviance for the power of the mean
variance model is

2[r log(r/µ) - (r - µ)], if 9= 1,

D(r, µ) = 2[r/µ - 1og(r/µ) - 1], if 9= 2,
2 y2-B-(2-B)yiL 1-B+(1-B)µ2-B if B 1 2.[ (1-0)(2- 0) ] 1 ~ ~

The total deviance for all ages and years is D= Ea,y D(ray ) µay) .
If the variance functions for indices differ, as will often be the case, then the deviances can

no longer be added together . Variance functions may differ if, for example, we use different
stock size indices, i .e . from different surveys, and we do not wish to assume that the dispersion
parameters (0s's) are the same for each set of indices . For this case we use a df-adjusted
extended quasi-likelihood function (see eq . 10.6 in MCCullagh and Nelder, 1989) :

Q+(rs , µ) =-2 log {27r¢9V3(rs)} - 2 Ds(rs, µ)/Os, (4 )

where vs =(ns - nP)/ns, ns is the total number of indices in the sth set, and nr is the number

of unknown parameters to estimate . The combined extended quasi-likelihood for all sets of

indices 1S Q+ = E s Ea,y Q+ (7'say I { L say) '

2 .2 Concentrated quasi-likelihood estimators of survivor s

In this section a concentrated quasi-likelihood function for inferences about stock abundance
is developed in which the only unknowns are the survivors, N1Y, . . ., NAY . Recall that these are
required for the backwards reconstruction of historical stock abundance using (1) . This is a sub-
stantial reduction in the number of potential unknowns, which are NA1, . . ., NAY-1, NiY) . . . , NAYi
{qsay ; a = 1, . . ., As, y = 1, . ., Y}, and 0S for each set s of indices . The s subscript for A in q is
used because the cohort model often extends beyond the last age in a set of indices, so that
As < A . Many of the unknowns are removed using constraints .

2.2 .1 Parameter constraints

Usually the qsay's are constrained to be equal for all years. In the approach taken here the q's
are merely assume to be equal for ds disjoint sets of ages and years, denoted as Cs1, . . ., Csd, .
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The unknown numbers at age A in years 1, . . .Y - 1 are also constrained as follows . Define the
fishing mortality for Nay as

Fay = log( Nay ) - May .
(5)

Na+1y+ 1

The NAy's are constrained so that their fishing mortalities equal the average for some range of
younger ages . In effect,

CA y eMA
,
+
/

2

NAy
=

1 - e-Feve b •

Note that Fa,,e y is a function of Na y+l's, so the result of the F constraint is that NAy's for
y < Y are constrained to be functions of unknown survivors . Hence, the only unknowns in the
cohort model are the Nay's .

2.2 .2 Concentrated quasi-likelihoo d

The concentrated quasi-likelihood is obtained by finding closed form expressions for the catcha-
bilities and the O's in terms of the survivors and other data, and substituting these expressions
for the respective parameters in the quasi-likelihood . This reduces the number of parameters
to iteratively estimate to just the survivors . Also, inference about population numbers based
on the concentrated quasi-likelihood automatically incorporates uncertainty resulting from the
unknown q's and O's .

The quasi-likelihood estimator of catchability i s

_ Ea,yEC,d rayNiay-B(t)
qsd -

Ea,yECed N y O(t )

under the assumption that B is constant for all a, y E Csd . If this assumption is invalid then

it does not seem possible to "concentrate-out" catchabilities from the quasi-likelihood . Re-
call that µsay = qsdNay(t) . It is not difficult to show that E(qsd) = qsd, and Var(qsd) _

Osqed/ Ea,yECsd Nâ
-0(t) . An estimator of 0s is

Z:a,y Dsay (rsay 3 Asay )

vsns

Substituting the qsd's and ~s's for the qsd's and Os's in (4) gives the concentrated df-adjusted

extended quasi-likelihood function (Q~ ), which apart from a constant term is

A = -2Q~ 7Lp) log Dsay(rsayi M say) (6)
, y

where µsay = 43ayNay(t) . The only unknowns in (6) are the survivors because qsay = qsay(Nly, . . ., NAy) .
A is the fit function used for stock size inferences . The elements of the gradient of A are given
by

an - ~ (71s - 12p) Ea,y (rsay - µsay)µsayDss(aµsay laN2y)~ i = 1, . . .,A
CJ~N{y s Ea,y Dsay(rsay , µsay)
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and are weighted sums of (3) for each set of indices . The weights are just 1/09 . The survivor
estimators are defined as the solution of

aA I

âNay I Na,~

= o .

They are analogous to non-nested mixed-effects linear regression estimators .

2.2 .3 Inferences

In this section we present methods for estimating standard errors and confidence intervals for
estimators obtained using (6) . The asymptotic distribution of Ny using linear approximation
theory is

Ny N Normal(Ny, EN,) ,

where
1VY aµsay aµsay

llµeaÿ Y's)'
s a,y aNy aNy

This covariance matrix can be consistently estimated by Ë= ENY . The basic condition for

this result is Amin(EN,,) 23' 0, where Amin(•) is the smallest eigenvalue of (•) . The number

of catchabilities estimated will increase Amin, and reduce the accuracy of the distributional

approximation .

Inferences about survivors can also be based on inverting the asymptotic distribution of (6) .
This procedure is particularly useful when only a subset of survivors, or a function of survivors,
are of interest . We use this procedure in Section 3 for inferences about stock projections . This
approach is similar to profile likelihood inference (see Ch . 9 in Cox and Hinkley, 1979 ; for a
more detailed discussion see Cox and Barndorfi Nielsen, 1994) . For a fixed Nay ,

y) - A a%~ XiA(Nay )

where A(Nay) is the value of (6) obtained with the other survivors equal to their quasi-likelihood
estimators obtained for the fixed Nay. A (1 - a) 100% confidence interval for Nay may be com-
puted as the two values of Nay that solve A(Nay) - A = Xi,l_, where Xi,i_« is the 1- a
percentile of a Xi distribution . Such an interval is usually called a profile quasi-likelihood inter-
val (PQL) . PQL intervals are invariant to nonsingular transformations of parameters . Examples
of these procedures are presented in Nelder and Pregibon (1987) . These authors show that a
PQL interval is similar to a bootstrap result for one example they considered .

3 Forecasting stock size remaining after a fishery

In this section we describe a procedure for determining the probability that an estimator of
next year's stock size surpasses a reference point, given a total allowable catch (TAC) by th e

6



commercial fishery. We first describe a procedure for projecting stock size based on a TAC
and a known population, and then we describe methods for stochastically projecting stock size
based on an estimated population .

3 .1 Forecasting stock size for a fixed TAC option

The basic procedure used when evaluating the impact of a TAC on future stock size is to
forecast stock abundance at age following the removal of a TAC by the commercial fishery .
We assume that only data up to year Y is available for forecasting, and we consider only a
TAC option for the year Y + 1; that is, next year . In previous sections we have shown how
Nay's may be estimated . Using (1) and known commercial catches in year Y we can estimate
stock abundance at the beginning of Y + 1 for all ages, except a = 1 . A common procedure
is to estimate N1y+1 using the geometric mean of NY -2, Nl y_1, and Nly, and we use this

procedure here . The TAC is removed from the Na y+l's . This involves partitioning the TAC
into catch numbers at age (Cab) and then using (1) again .

The partitioning of the TAC is based on an assumed pattern of fishing mortalities relevant
for the commercial fleet sector likely to operate in Y + 1 . Once we know the Fa Y+1's we can
estimate stock size remaining after the fishery in Y + 1, i.e . Nay+2's, using (5) for a > 1 . We
again use the geometric mean of Nl y_1i Nl y_2i and N1y+1 to forecast Nl y+2 . The first step
in fixing the Fa y+l's is to assume that

FaY+1=FPa, 0<Pa<1 ,

where Pa is the known partial recruitment of age a fish to the fishery, and F is the unknown
fully recruited fishing mortality. The Pa's are usually based on historic information about the
relevant commercial fleet sector . The second step in fixing the Fa y+l's is to express F in terms
of the TAC. This is obtained using the forecasted commercial catches in Y + 1 :

CaY+1 = NaY+le-Mar-i/2(1 - e-F°Y+1 )

This equation is obtained by solving for Cay in (1), and using (5) . The TAC is usually expressed
in weight, so the Ca y+l's are multiplied by average commercial catch weights at age, wâ's, and
summed to give the forecasted TAC given F ; that is ,

TAC = E wt Y+1 CaY+1 = EwâY+1Na Y+1
(1 - e-FVa)e-n~aY+l/2 .a

a a

This equation can be used to solve for F . The projection is straightforward once a value for F
is available .

3 .2 Stochastic description of future stock size relative to historic
reference points .

We use profile quasi-likelihoods to describe the distribution of the forecasted stock size relative

to a reference point . More specifically, we compute Pr(B,n,y+2 < SB,ny+l) where B„ty is the
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beginning of year spawner (mature) biomass in the year Y, and ô= 1, 1 .1, and 1 .2. We also
considered Pr(F > F0.1), where F0.1 is a reference level of fishing morta lity.

These probabilities can be formulated within a general framework. Define

EY+z
E

wn N
y=yo a ay a'y

Y+2 d
K +

~y=yo ~a wayNay

The above probabilities can be specified as Pr(R < 1) using appropriate definitions of waÿ, wây,
and K. For example, if K = 0 and

ây

and wây

PaywQy, for y = Y + 2,
0, otherwise,

Payway/6, for y = Y + 1,
0, otherwise ,

where wây are the beginning of year weights at age and Pay are the proportions mature at
age, then Pr(R < 1) is equivalent to Pr(B,,,,Y+2 < 6B,,,,Y+1) . The probability of exceeding
F0.1 can also be formulated within this framework by noting that F>_ F 0 .1 ~:* Na+l Y+2
NaY+1e-F0 . 1P°-MaY+I, so for any age a' set

n
Way =

and wQy =

1, fory=Y+2anda=â +1,

0, otherwise,

e-F0 , 1P°-M°Y, for y= Y + 1 and a = a',
0, otherwise .

The constant K is included in the generalization to accommodate fixed reference points ; how-
ever, these are not considered in this paper . The generalized framework also facilitates the
use of historic reference points ; however, there is considerable debate about what these points
should be, and they are also not considered here .

3 .3 Profile quasi-likelihood probabilitie s

In this section we describe the procedure we use for computing Pr(R. < 1) . Let A(r) denote
the value of (6) evaluated when R= r is fixed, and let A denote the unrestricted minimum
value for A. Usually r = 1, but it is eas ier to understand the procedure for an arbitrary r . The
asymptotic distribution of the quasi-loglikelihood difference

0,. = A(r) - A

is chi-square with one degree of freedom, because the survivors have one nonlinear parameter
constraint given by R= r . Let RQL denote the unrestricted quasi-likelihood estimate of R. If
r < RQL and a = Pr [Xi > 0,.] then r is the lower bound on a 1 - a confidence interval for
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R. There is another value ru such that ru > 1ZQL and Pr [Xi > O,.u] = a. As such we cannot
not directly infer Pr(7ZQL < r) unless we know the two tail area probabilities of the confidence
interval. We assume they are equal, which for r = 1 gives

Pr(RQL < 1) = a/2, if 1ZQL > 1 .

Similarly,
Pr(RQL < 1) = 1- a/2, if 7ZQL < 1 .

The difficult part of computing probabilities in this manner is finding A(1) . This involves a
constrained optimization. The algorithm we employ involves finding the roots of the Lagrangian
equation associated with minimizing A subject to the constraint R= 1 (see eq. 3.6.7 in Bard,
1974) . For an SPA this only seems feasible if an analytic gradient for A is available, and
computing this gradient is not a simple task . Convergence when J RQL - 11 is large is also
a problem, although in this case the probabilities may be set to zero or one with sufficient
accuracy.

4 Results : St . Pierre Bank Cod

An example is presented that involves cod off the south coast of Newfoundland in NAFO
division 3PS. This stock has historically provided a substantial and important fishery . By
the early 1990's this stock declined dramatically in size, and a moratorium on commercial
fishing was established in 1993 . In 1997 a 10000 tonne quota was permitted. The results from
SPA's play an important role in establishing stock quota's ; therefore, a reliable framework for
inferences about stock size is necessary .

The core data available for the assessment of this stock ar e

1 . Canadian research survey during the winter and spring from 1983-1997 (see Table 1 in
the Appendix) ,

2. French research survey during the winter from 1980-1991, and

3. landings from the commercial fishery from 1959-1997 .

The research surveys involve stratified random sampling with a survey trawl . Strata-size
weighted averages of the number of cod caught in a standardized tow of a trawl are used
as indices of stock abundance . Details about the survey design are available in Doubleday
(1981) . The construction of stock size indices is an important topic but beyond the scope of
this paper . The commercial catch data consists of total numbers at age caught by most fishers
operating in 3PS . The catch has been subdivided into offshore and inshore components since
1977, and the offshore data is presented in Table 2 in the Appendix .

The SPA we investigate involves only offshore catches because that is the region covered
by the research survey, and there is a concern that trends in the survey indices do not reflec t
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trends in the inshore components of 3PS cod (see Shelton et . al., 1996) . The cohort model
includes ages 3 to 14 . The FAy's are set equal to the average F's for ages 7-10 . Catchabilities
are estimated separately for each age and survey. Also, because of evidence that seasonal timing
affects catchability, we estimate different catchabilities for Canadian surveys that occur in the
winter and those that occur in the spring of the year. Surveys were conducted in the winter
(February and March) in 1985-92 .

Estimates of survivors are presented in Table 3 in the Appendix, along with coefficients
of variation (CV's) and linear approximation confidence intervals . Note that loge survivors
were actually estimated, and the confidence intervals in Table 3 are exponentiated log survivor
intervals. The rationale for this procedure is that the local linear approximation is more valid
for loge(NdY) than Na,Y . The estimates of 0 are 0 .971 and 0 .570 for the Canadian and French
surveys respectively. Estimates of catchabilities and their standard errors are presented in
Table 4. The estimates generally increase with age . The catchabilities for winter surveys
appear higher than for spring surveys for ages < 8, but lower otherwise .

We can test the statistical significance of differences in catchabilities between winter and
spring using the procedures outlined in Section 2 .2.3. The PQL statistic for this hypothesis is
60.07, with 10 degrees of freedom . The degrees of freedom in this case equal the number of ages
in the Canadian survey; that is, the number of catchability constraints in the null hypothesis .
The p-value for this test is < 0 .0001, based on a chi-square distribution ; hence, modelling winter
and spring catchabilities separately significantly improves the model fit .

Estimates of population numbers, biomass, and fishing mortalities are presented in Tables
5-7. These abundances and biomass are also plotted in Figures 1-2 for several age groups . The
results suggest a decline in stock abundance and biomass since the mid 1980's, followed by an
increase in abundance since the 1991, and in total biomass since 1993 . Estimated fishing mor-
talities (see Table 7) increased relatively sharply in 1990-1992, but have declined rapidly since
the fishing moratorium . The increase in estimated 3+ abundance is not caused by an increase
in recruitment ; that is, the estimated number of age 3 fish has not increased substantially in
the 1990's. The increase seems more related to the survival of strong year classes first seen in
1992 and 1993; that is, 1989 and 1990 year classes . The rather dramatic increases in biomass
reflect the large portion of seven and eight year old fish in the stock . This proportion, 0 .31, is
the by far highest since 1980 . These trends will not continue in future years unless recruitment
increases .

Predicted and observed indices are plotted in Figures 3a-b . Standardized Pearson residuals,
(rsay - Asay)ISE(µsay), and unstandardized residuals are presented in Tables 8-9 . Residuals
are plotted in Figures 4a-b . These plots are useful in assessing the adequacy of the assumed
model. Year effects are apparent in the survey indices ; however, this is not pursued further for
reasons given in the Discussion. The residuals appear homogeneous in terms of age. There
is some evidence in the lower panel of Figure 4a that the constant CV assumption may not be
correct. This will be investigated in future research .

The residuals in Table 9 are often quite large, and indicate substantial discrepancies between
the observed and predicted stock indices. This is illustrated in Figures 5a-b, in which th e
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observed indices are plotted versus their predicted values . While the correlations between ro,y

and Ray can be large, the scatter of points quite often departs substantially from a one-to-one
relationship. Note that the large residuals are not apparent in Table 8 because of the large
variance associated with the unstandardized residuals .

Estimated stock size trajections computed with Y, the last year in the cohort model, equal
to 1990' . . .' 1997 are presented in Figures 6a-c. These are commonly referred to as retrospective
plots . A retrospective pattern is apparent for many ages and years ; that is, for a fixed year y ' ,
Nay1 decreases as Y increases. For example, based on data up to 1995, the estimated spawner
biomass in 1995 was over 100000 tonnes (see Figure 6c) . Based on 1997 data we estimate
the 1995 biomass to be just less than 52000 tonnes . This represents a 50% change in our 1995
population inference . It seems likely that our 1997 and 1998 estimates will be revised downwards
in future years. The retrospective problem is endemic within fisheries, and is clearly present in
this application .

Stochastic descriptions of 1999 stock size arising from 7 TAC options are presented in Figure
7. Most notable in this figure are :

1 . The estimated increase in spawner biomass in 1999 is, if there is no fishing, about 12500
tonnes .

2. The probability that, with no fishing, the spawner biomass will not increase is about 0 .05 .

3. There is a 90% chance that the spawner biomass will decrease with a 30000 tonne quota
in the offshore of 3PS .

4. The probability that the stock will not increase very much between 1998 and 1999, even
with no fishing, is large ; that is, there is a 50% chance the stock will not grow by more
than 10%, and a 75% chance the stock will not grow by more than 20% .

5 . There is about a 10% chance that fishing mortality will exceed F0 .1 = 0 .24 with a 12500
tonne quota. This probability increases to 0 .8 for a 30000 tonne quota .

5 Discussion and Conclusions

In this paper a semi-parametric and practical methodology has been developed for stock size
inferences based on an SPA and estimation with relative abundance indices . The methods are
applicable to a variety of types of indices and distributional assumptions . The methods are
semi-parametric in that the exact distribution for abundance indices is not required .

If the distribution is within the exponential family then the estimators proposed here are
maximum likelihood estimators (MLE's), and will have high efficiency. Otherwise, the loss of
efficiency is usually not great . Firth (1987) studied the asymptotic relative efficiency (ARE), or
the ratio of asymptotic variances, of quasi-likelihood estimators compared with MLE's . For the
lognormal and inverse gaussian distributions (constant CV models) he found that ARE 0 . 7
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when 0 = 1 and ARE : 0.9 when 0 = 0 .2 . Note that the quasi-deviance for a constant
CV model is identical to the deviance for the gamma distribution . Firth (1988) found that
the ARELN(G) > AREG (LN), where ARELN(G) is the ARE of gamma MLE's when the
population distribution is lognormal, and likewise for AREG(LN) ; however, the differences
were small when 0 was small .

The 3PS application is reasonably valid apart from the large variability in the estimates . A
likely model misspecification concerns the independence of survey indices within years, which
the methods developed in this paper can not address . Myers and Cadigan (1995) consider an
SPA that accounted for random years effects . The type of model was not used here for three
reasons .

1 . Foremost, the year effects in Figures 4a may not be completely random, and little is
known about the consequences of using a misspecified random effects model .

2. Little is known about the ability of such a model to detect trends in stock abundance .

3. The extension of quasi-likelihood theory to correlated observations is not trivial becaus e
a unique quasi-likelihood function no longer necessarily exists . This complicates the basis
for inference .

Further research into these issues is required.
The assumption about the variance structure may have a significant effect on current stock

size inferences (unreported results) . It would be desirable to have methods that reliably dis-
criminate the correct variance structure, which may be more complicated than the power model
considered in this paper . This will likely involve developing inferential procedures for the vari-
ance parameter(s) rather than simply assuming a value . This will be considered in future
research .
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Appendix

Table 1 . 3PS survey stratified mean numbers per tow from the Canadian
(CAN) and French (Frn) reserach surveys .

Age
Year 3 4 5 6 7 8 9 10 11 12
1983 6.52 1 .14 3 .72 1.62 0.48 0.89 1 .61 0 .75 0 .36 0 .14
1984 2.33 1 .55 0.63 2.11 0.77 0.37 0 .46 0 .71 0 .18 0 .15
1985 14.88 12.57 9.96 3.28 2.66 0.79 0 .48 0 .42 0 .42 0 .49
1986 5.65 6.48 7.95 6.33 2.13 1 .47 0 .84 0 .29 0 .24 0 .29
1987 5.67 4.97 13.82 8.31 3.35 1 .29 0 .69 0 .28 0 .23 0 .16
1988 5.93 2.96 2.84 6.50 5.84 3.65 1 .49 0 .84 0 .74 0 .35

Can 1989 4.66 3.17 1 .51 1.16 2.15 1 .21 0 .67 0 .37 0 .41 0 .13
1990 9.82 14.49 10.89 5.67 3.84 3.14 1 .15 0 .71 0 .32 0 .16
1991 5.03 10.00 11 .24 5 .75 2.84 1 .58 1 .19 0 .74 0 .56 0 .22
1992 6.95 2.11 4.15 2.03 1 .03 0.53 0 .26 0 .24 0 .08 0 .04
1993 1 .99 4.04 1 .49 1 .35 0.47 0.10 0 .04 0 .03 0 .04 0 .01
1994 1 .46 4.31 6.10 1.73 1 .62 0.50 0 .08 0 .04 0 .03 0 .02
1995 1 .19 1 .54 12 .04 18 .08 4.05 5.29 2 .01 0 .23 0 .18 0 .01
1996 3.52 3.74 1 .26 2 .56 2.77 0.51 0 .44 0 .09 0 .09 0 .02
1997 2.33 1 .04 0.50 0 .28 0.30 0.24 0 .14 0 .05 0 .02 0 .00
Year 3 4 5 6 7 8 9 10 11 12
1980 1 .72 0.50 2.67 4.52 1 .66 0.67 0 .29 0 .22 0 .18 0 .11
1981 4.91 4.94 5 .14 7.45 5.64 1 .60 1 .19 0 .47 0 .15 0 .14
1982 1 .96 8.32 7.97 6 .06 4.55 5.30 1 .58 0 .87 0 .42 0 .15
1983 5.40 2.98 7.21 6 .11 4.55 2.77 2 .08 0 .75 0 .25 0 .19
1984 7.64 15.07 8.74 18 .97 5.59 2.13 3 .09 2 .21 0 .61 0 .16

Frn 1985 14.49 7.47 3.93 1 .06 1 .95 1 .14 0 .78 0 .86 1 .09 1 .32
1986 4.21 15.19 26.47 21 .66 9.12 6.97 3 .85 0.79 0 .59 0 .72
1987 11.51 2.83 8.30 12 .49 8.32 2.95 1 .94 0.95 0 .20 0 .36
1988 14 .89 9.22 3.62 6 .53 4.69 1 .60 0.78 0.35 0 .35 0 .16
1989 16 .02 8.20 5.81 3 .48 4.43 2.03 1 .01 0.27 0 .13 0 .06
1990 18 .26 20.11 7.66 2 .46 0.73 1 .00 0.44 0.26 0 .11 0 .09
1991 7.08 12.96 12.68 7.56 2.42 1 .07 0.91 0.62 0 .06 0 .15
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Table 2. 3PS offshore commercial catches (1000's) for ages 3-14 during 1980-1997 .

Age
year 3 4 5 6 7 8 9 10 11 12 13 14 3+
1980 137 280 1038 1933 1018 259 51 9 2 3 3 1 4734

1981 159 505 765 1429 1841 500 110 31 12 11 4 1 5368
1982 46 1229 1448 1047 1057 918 201 70 28 10 4 4 6062

1983 127 620 3008 1606 706 454 323 61 25 5 2 2 6939
1984 92 1982 1776 2211 1066 258 275 123 45 15 3 1 7847

1985 97 2623 5537 2787 2257 656 249 215 176 66 8 7 14678
1986 32 1843 6706 7042 2791 1095 375 111 89 70 38 8 20200

1987 101 766 5397 6145 3248 991 649 206 98 27 55 7 17690
1988 696 2399 2904 3273 3177 1089 427 136 51 48 25 11 14236

1989 567 3233 2577 1083 827 534 284 151 61 13 14 7 9351
1990 555 3347 3639 1388 611 855 467 220 85 60 24 13 11264

1991 436 2210 4557 3050 921 458 410 323 56 59 29 15 12524
1992 136 1000 1616 2149 900 260 133 135 113 53 23 26 6544

1993 4 305 457 752 313 128 32 20 30 9 5 2 2057
1994 1 9 19 8 6 3 1 0 0 0 0 1 48
1995 0 1 6 15 6 5 2 1 0 0 0 1 37

1996 1 4 7 16 27 7 7 4 1 0 0 1 75
1997 0 27 52 30 126 130 17 1 6 0 0 0 389
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Table 3. 1997 estimates of 3PS offshore population abundance (No,y's in 1000's), with
coefficients of variation (CV's), and 95% confidence intervals (95% L, 95% U) .

Age
Nay

CV
95% L
95% U

3 4 5 6 7 8 9 10 11 12 13 14

18529 14803 9259 4418 11939 11339 2442 2720 197 15 20 5

0.92 0.66 0.54 0.50 0.39 0.33 0.34 0 .31 0.43 0.55 0.75 1 .09

3065 4087 3219 1665 5545 5882 1261 1469 85 5 5 1
112000 53621 26634 11722 25707 21860 4726 5038 452 43 87 43

Table 4 . Estimated 3PS catchabilities (q's), with standard errors (SE's) . Values are
in 1000's .

Canadian and French surveys .

Canada
Spring
Canada
Winter

France

Age 3 4 5 6 7 8 9 10 11 12
q 0.133 0.167 0.277 0.369 0.429 0.701 1 .854 2.394 2 .912 1 .366

SE 0.050 0.062 0.103 0.137 0.160 0.261 0.690 0.892 1 .085 0 .509
q 0.416 0.469 0.677 0.838 1 .141 1 .186 1 .045 1 .011 1 .697 1 .971

SE 0.145 0 .163 0.236 0.292 0.397 0.413 0.364 0.352 0.591 0.687
Age 3 4 5 6 7 8 9 10 11 12

q 0.494 0 .563 0.782 1.222 1.323 1 .463 2.016 2.392 2 .657 4.233
SE 0.108 0 .123 0.170 0.266 0.288 0.319 0.439 0.521 0.579 0.922
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Table 5. Estimated 3PS offshore population abundance (1000's) for ages 3-14 during 1980-1997 .

Age
year 3 4 5 6 7 8 9 10 11 12 13 14 3+

1980 14164 7342 7798 8250 2763 731 214 56 38 26 7 3 41390

1981 24417 11472 5757 5445 5006 1341 364 129 37 29 19 3 54019
1982 22594 19847 8936 4022 3165 2432 645 198 77 20 14 12 61962

1983 40970 18457 15137 6006 2345 1635 1161 346 99 38 7 8 86209
1984 41033 33428 14550 9672 3464 1281 928 658 228 58 27 4 105332

1985 26541 33512 25575 10306 5918 1872 816 511 428 146 34 19 105677
1986 11541 21642 25064 15929 5916 2803 939 442 224 191 60 21 84771

1987 13706 9420 16052 14453 6670 2318 1304 429 262 102 93 15 64824
1988 19975 11130 7019 8259 6273 2522 1001 480 165 126 59 26 57036

1989 18763 15724 6942 3119 3800 2261 1079 433 270 89 59 26 52567
1990 18862 14849 9949 3352 1574 2363 1368 627 218 166 61 36 53424
1991 10743 14941 9129 4853 1488 736 1161 697 314 102 82 28 44274

1992 31513 8402 10233 3351 1213 385 188 580 279 206 30 41 56420
1993 26630 25678 5974 6916 799 179 80 33 352 126 121 4 66892

1994 8064 21800 20747 4477 4982 371 31 37 9 261 95 95 60968
1995 13818 6601 17840 16969 3659 4073 301 24 30 8 214 78 63615

1996 18082 11313 5404 14601 13880 2990 3330 244 19 25 6 175 70069
1997 18529 14803 9259 4418 11939 11339 2442 2720 197 15 20 5 75686

1998 16667 15170 12095 7534 3590 9661 9166 1984 2226 155 12 16 7827 7
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Table 6. Estimated 3PS offshore biomass (tonnes) for ages 3-14 during 1980-1997 .

Age
year 3 4 5 6 7 8 9 10 11 12 13 14 3+
1980 5977 3987 6682 10684 5589 2214 953 304 259 202 62 33 36946

1981 9254 7354 5614 7764 9781 3818 1441 714 268 236 158 29 46431

1982 7433 12067 8587 6165 6523 6261 2307 952 459 158 122 114 51148
1983 17740 11351 15319 9165 5026 4535 3825 1538 583 275 66 78 69500

1984 23881 25974 15772 15659 7939 3996 3650 3013 1257 450 259 41 101893
1985 15314 25101 28926 16314 13925 5641 3548 2728 2492 961 323 207 115479

1986 5216 14868 25089 23958 12340 8339 3610 2325 1363 1393 456 225 99184
1987 6346 6076 15297 20046 13753 6279 4816 2012 1529 674 730 121 77680

1988 11106 7546 6429 11744 11799 6550 3292 2231 884 804 429 209 63023
1989 10113 11227 6769 4158 7364 6114 3739 1866 1513 569 425 210 54068

1990 9620 10929 10088 4911 3144 6139 5159 2867 1251 1149 476 323 56054
1991 5995 9861 9156 7216 3117 1964 3862 2947 1784 710 662 254 47528
1992 11881 5419 9025 4527 2388 1009 652 2621 1453 1454 267 412 41106

1993 6232 14354 5167 8569 1455 449 284 141 1795 874 886 33 40239
1994 4233 11728 19523 6335 8688 896 98 160 48 1576 677 704 54668

1995 5223 4779 20195 27592 7840 9735 927 95 130 39 1410 613 78578
1996 10560 8100 6068 26179 31424 8058 9985 913 86 110 34 1304 102821

1997 9468 11517 10491 7364 27067 32442 7801 9181 845 81 128 45 116429
1998 8517 11803 13704 12559 8138 27641 29286 6695 9573 861 76 145 12899 7
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Table 7. Estimated 3PS offshore fishing mortalities for ages 3-14 during 1980-1997 .

Age
year 3 4 5 6 7 8 9 10 11 12 13 14

1980 0.011 0.043 0.159 0 .300 0.523 0.497 0.306 0.197 0.060 0.136 0.630 0.381

1981 0 .007 0.050 0.159 0 .343 0.522 0.531 0.407 0.309 0.439 0.543 0.271 0 .442

1982 0 .002 0.071 0.197 0.339 0.461 0.540 0.422 0.494 0.510 0.823 0.386 0.479

1983 0 .003 0.038 0.248 0.350 0.405 0.367 0.367 0.216 0.327 0.157 0.374 0 .339

1984 0.002 0.068 0.145 0.291 0.416 0.252 0.397 0.231 0.246 0.334 0.133 0.324

1985 0.004 0.090 0.273 0.355 0.547 0.490 0.412 0.626 0.607 0.690 0.298 0.519

1986 0.003 0.099 0.351 0.671 0.737 0.565 0.583 0.325 0.580 0.520 1.202 0.552

1987 0.008 0.094 0 .465 0.635 0.773 0.640 0.799 0.756 0.534 0.344 1.062 0.742

1988 0.039 0.272 0 .611 0.576 0.820 0.649 0.638 0.375 0.418 0.548 0.625 0.620

1989 0.034 0.258 0 .528 0.484 0.275 0.302 0.344 0.486 0.287 0.176 0.301 0.352

1990 0.033 0 .286 0 .518 0.612 0.560 0.511 0.474 0.491 0.563 0.509 0.570 0.509

1991 0.046 0 .178 0 .802 1 .186 1.152 1 .165 0.495 0.717 0.219 1 .026 0.498 0 .882

1992 0.005 0 .141 0 .192 1 .234 1 .714 1 .370 1 .525 0.298 0.594 0.334 1.912 1.227

1993 0.000 0 .013 0 .088 0.128 0 .568 1 .563 0.582 1.080 0.099 0.082 0.047 0.948
1994 0.000 0 .000 0.001 0.002 0 .001 0.009 0.037 0.000 0.000 0.000 0.000 0.012

1995 0.000 0.000 0.000 0.001 0 .002 0.001 0.007 0 .047 0.000 0.000 0.000 0 .014

1996 0.000 0.000 0.001 0.001 0 .002 0.003 0.002 0 .018 0 .060 0.000 0.000 0 .006

1997 0.000 0.002 0.006 0.008 0 .012 0.013 0.008 0 .000 0 .034 0.000 0.000 0 .000
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Table 8 . 3PS standardized residuals . Root mean square residual follows the
country code .

Age
Year 3 4 5 6 7 8 9 10 11 12
1983 0.41 -0.71 -0.00 -0 .21 -0.37 0.08 0 .15 0 .46 0.76 1 .68
1984 -0.71 -0.91 -1 .07 -0 .45 -0.35 -0.48 -0 .67 -0 .31 -0.61 1 .06
1985 0.61 -0.23 -0.54 -0 .77 -0.67 -0.66 -0 .35 -0 .04 -0.30 0.98
1986 0.32 -0.46 -0.71 -0.59 -0.77 -0.55 0 .04 -0 .27 -0.22 -0.08
1987 0.06 0.24 0.66 -0.24 -0.58 -0.50 -0 .41 -0 .22 -0.38 -0.10
1988 -0.37 -0.54 -0.45 0.08 -0 .02 0.50 0 .64 0 .81 1.73 0.50

Can 1989 -0.53 -0.76 -0.84 -0.60 -0 .55 -0.60 -0 .38 -0 .09 -0.03 -0.18
0.87 1990 0.42 1.64 1 .05 1 .58 1 .75 0.34 -0.12 0 .21 -0.03 -0.43

1991 0.22 0.67 1 .42 0.90 1 .25 1 .27 0.10 0 .16 0 .13 0.24
1992 -0.67 -0.56 -0.50 -0.12 0 .03 0.47 0.60 -0 .57 -0 .79 -0.86
1993 -0.50 0.06 -0.06 -0.56 0 .80 0.37 -0.47 -0.18 -0 .99 -0.80
1994 0.51 0 .40 0.12 0.05 -0 .13 1 .20 0.64 -0.25 0 .31 -0.88
1995 -0.35 0 .60 1 .99 2.55 2 .28 1 .50 3.68 3 .59 1 .33 0.06
1996 0.71 1 .40 -0.15 -0.70 -0 .60 -0.82 -1 .19 -0.74 0 .88 -0 .22
1997 0.03 -0 .64 -0.97 -0.96 -1 .21 -1.32 -1 .21 -1 .29 -0 .93 -0 .65
Year 3 4 5 6 7 8 9 10 11 12
1980 -1 .13 -1 .26 -0.79 -0.81 -0 .67 -0.35 -0.26 0.86 0.97 0 .11
1981 -0 .93 -0 .29 0.36 0.40 -0 .01 -0.08 1 .01 0.84 0.79 0 .36
1982 -1 .33 -0 .34 0.40 0.58 0 .37 1 .03 0.51 1 .38 1 .56 1 .16
1983 -1 .26 -1 .14 -0.54 -0.12 0 .89 0.36 -0.00 0.05 0.14 0 .30
1984 -1 .05 -0 .28 -0.28 1 .25 0 .53 0 .29 1 .13 0.79 0.22 -0 .26

Frn 1985 0 .30 -1 .02 -1 .38 -1 .50 -1 .11 -0 .73 -0.59 -0.17 0.24 1 .77
0.83 1986 -0 .32 0 .52 0 .87 0.50 0 .57 1 .31 1 .76 -0.15 0.27 0 .06

1987 1 .24 -0 .66 -0 .43 -0.34 0.15 -0 .03 -0.18 0.17 -0.74 -0 .06
1988 0.99 0 .89 -0 .36 -0.43 -0.52 -0 .72 -0.72 -0.78 -0.04 -0 .71
1989 1 .37 0 .01 0 .34 0.05 -0.05 -0 .47 -0.64 -0.82 -0.90 -0 .88
1990 1 .79 2 .61 0 .24 -0.41 -0.77 -0 .93 -1 .10 -0.98 -0.84 -0 .96
1991 0.65 1 .02 1 .73 0 .92 0.72 0 .29 -0.74 -0.68 -1 .07 -0 .59
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Table 9 . 3PS unstandardized residuals. Root mean square residual follows the
country code .

Age
Year 3 4 5 6 7 8 9 10 11 12
1983 1 .53 -1 .58 -0 .00 -0.35 -0.26 0 .06 0.18 0.24 0.17 0 .10
1984 -2.71 -3.38 -3 .13 -1 .19 -0.35 -0 .32 -0.70 -0.28 -0.29 0 .09
1985 4.42 -2.22 -5 .51 -4.10 -2.65 -1 .03 -0.25 -0.02 -0.18 0 .25
1986 1 .10 -3.05 -6 .97 -4.35 -2.97 -1 .21 0.03 -0.11 -0.07 -0 .03
1987 0.24 0.79 4.33 -1.66 -2.50 -0 .94 -0.41 -0.09 -0.15 -0 .02
1988 -2.09 -2.02 -1 .48 0 .36 -0.09 1 .05 0.56 0.38 0.48 0 .1 2

Can 1989 -2.86 -3.84 -2.77 -1 .17 -1 .63 -1 .19 -0 .36 -0.04 -0.01 -0 .04
2.35 1990 2.25 7.89 4.74 3 .20 2.32 0 .69 -0 .14 0.12 -0.01 -0.14

1991 0.73 3.28 5.77 2 .39 1 .49 0 .87 0 .10 0.10 0.06 0.05
1992 -5.69 -1 .66 -2.36 -0 .22 0.03 0 .17 0 .11 -0.31 -0.34 -0.33
1993 -1 .29 0.18 -0.09 -1 .14 0.22 0.03 -0 .06 -0.01 -0.72 -0.14
1994 0.47 1 .03 0.51 0 .07 -0.20 0.29 0 .04 -0.02 0.01 -0.29
1995 -0.51 0.55 7.23 11 .78 2.71 2 .94 1 .59 0.19 0.11 0.00
1996 1 .30 2.04 -0.19 -2 .84 -2.28 -1 .21 -4 .21 -0.30 0.05 -0.01
1997 0.05 -1 .18 -1 .99 -1 .36 -4.05 -6.29 -3 .27 -4.33 -0.41 -0.02
Year 3 4 5 6 7 8 9 10 11 12
1980 -4.79 -3.43 -2.92 -4.55 -1.49 -0.27 -0 .09 0.11 0.09 0.01
1981 -6.30 -1.18 1 .03 1 .54 -0.03 -0.10 0 .56 0 .21 0.07 0.04
1982 -8.40 -2.19 1 .65 1 .71 0.94 2.24 0 .46 0 .49 0.26 0.09
1983 -13.6 -6.96 -3.58 -0.52 1.78 0.59 -0.00 0 .03 0 .03 0.05
1984 -11 .3 -2.85 -1 .81 8.19 1.50 0.39 1 .44 0 .85 0 .10 -0.06

Rn 1985 2.19 -10.5 -14.3 -10 .4 -4.93 -1 .32 -0.68 -0 .14 0 .18 0.81
3.84 1986 -1 .14 3.62 8.83 4.87 2.45 3.33 2 .22 -0.12 0.11 0.03

1987 5.14 -2.23 -2.92 -3 .04 0.71 -0.07 -0.29 0 .12 -0.37 -0.02
1988 5 .67 3.41 -1 .15 -2 .36 -2.35 -1 .66 -0 .96 -0 .63 -0.01 -0.29
1989 7 .39 0.04 1 .09 0.11 -0 .16 -1 .02 -0.93 -0 .59 -0 .47 -0.28
1990 9 .65 12.56 1.04 -0.99 -1 .04 -2.01 -1 .91 -0 .96 -0 .34 -0.49
1991 2 .15 5.10 6.75 2.90 0 .87 0.21 -1 .13 -0 .71 -0 .65 -0.18
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Figure 1 . Estimated 3PS offshore population abundance .
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Figure 2. Estimated 3PS offshore population biomass .
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Figure 5b . Age disaggregated French 3PS survey index versus its predicted value . The correlation
between ro,y and Ra,y, for y = 1, . . ., Y is presented at the top of each panel .
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Figure 6a . Eight retrospective estimates, Y = 1990, . . ., 1997, of stock components from the 3PS
offshore SPA .
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Figure 6b . Eight retrospective estimates, Y = 1990, . . ., 1997, of stock components from the 3PS

offshore SPA .
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Figure 6c . Eight retrospective estimates, Y = 1990, . . .,1997, of spawner biomass from the 3PS
offshore SPA .
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Figure 7. Profile quasi-likelihood based stochastic descriptions of the change in offshore 3PS spawner
biomass (SB) and fishing mortality (F) for 7 TAC options . The top panel presents the prob-
abilities that 1999 SB will not grow by more than 0, 10, and 20% of 1998 SB, along with the
probability of exceeding F0 .1, which is taken as 0 .24 for this stock . The bottom panel presents
the estimated change in SB and F for the various TAC's .
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