Update on the Status of NAFO SA 3-6 Porbeagle Shark (Lamna nasus)

by

R.N. O'Boyle ${ }^{2}$, G.M. Fowler ${ }^{3}$, P.C.F. Hurley ${ }^{3}$, W. Joyce ${ }^{4}$, and M.A. Showell ${ }^{3}$

2. Office of the Regional Advisory Process
Bedford Institute of Oceanography
Dartmouth, Nova Scotia, B2Y 4A2
3. Marine Fish Division
Bedford Institute of Oceanography
Dartmouth, Nova Scotia, B2Y 4A2
4. Joyce Marine Research Limited Halifax, Nova Scotia

Abstract

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.
${ }^{\text {' }}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

The fishery in the Northwest Atlantic started in 1961 when Norway and Faroe Islands reported landing 1924t. Landings reached 9283t in 1964 and the resource appeared to have collapsed by 1967. The Faroe Islands reported annual landings of about 350 t during the 1970s-1980s, which appeared sustainable. Canada started directing for porbeagle in 1991. Landings rose to 1,925 t by 1992 and dropped to 1425 t in 1993 when the Faroese fleet left the fishery. Landings were 1054t and 1338 t in 1996 and 1997 against quotas of 1500 t and $1000 t$ respectively. Porbeagle has a relatively low pup production rate and is consequently very sensitive to over-exploitation. Since 1991, landings have averaged about 1500 t annually. There is some evidence of declines in spring catch rates in recent years which suggests that abundance may have declined. Given uncertainties in our knowledge of the resource, it would not be prudent to harvest above the 1997 TAC of $1000 t$ until the observed declines in catch rates can be explained. Further, while a 1000t TAC in 1998 would represent a reduction in catch, it is uncertain if this reduction would be sufficient to arrest the decline in population abundance suggested by the decline in catch rates.

Résumé

La pêche dans l'Atlantique nord-ouest a débuté en 1961 lorsque la Norvège et les îles Féroé ont signalé des débarquements de 1924 t. Ils ont atteint 9283 t en 1964 et il semble que les stocks étaient épuisés en 1967. Les îles Féroé ont signalé des débarquements annuels de 350 t environ au cours des années 1970 et 1980, ce qui semble être une valeur durable. Le Canada a amorcé une pêche dirigée du requin-taupe commun en 1991. Les débarquements ont atteint 1925 t en 1992 et sont tombés à 1425 t en 1993 lorsque la flottille des îles Féroé a abandonné cette pêche. Les débarquements se sont élevés à 1054 t en 1996 et à 1338 t en 1997 , pour des quotas respectifs de 1500 t et de 1000 t . Le taux de reproduction de ce requin est relativement faible et est donc très sensible à la surexploitation. Depuis 1991, les débarquements annuels moyens ont été de 1500 t environ. Il semble y avoir eu baisse des taux de capture de printemps au cours des dernières années, ce qui porte à croire à une baisse de l'abondance. Étant donné le caractère incertain de nos connaissances de cette ressource, il serait imprudent de dépasser le TAC de 1000 t fixé pour 1997 tant que le déclin des taux de capture n'aura pas été expliqué. Un TAC de 1000 t pour 1998 donnerait lieu à une baisse des captures mais il n'est pas certain qu'une telle réduction suffirait à stopper le déclin de la population que semble indiquer la baisse des taux de capture.

Introduction

The porbeagle shark is a cold-temperate species that occurs in the North Atlantic, South Atlantic and South Pacific areas. The species extends from Newfoundland to New Jersey and possibly to South Carolina in the West Atlantic and from Iceland and the Western Barents Sea to Madeira and Morocco and into the Mediterranean Sea in the East Atlantic. It is the only pelagic shark species for which a commercial fishery presently exists in Canadian Atlantic waters.

Prior to 1994, the Department of Fisheries and Oceans (DFO) did not have an active program of research on sharks. Increasing interest by industry to exploit sharks - particularly porbeagle and blue - stimulated the Marine Fish Division at the Bedford Institute of Oceanography (BIO) to initiate a modest research and assessment effort on sharks. The first Stock Status Report (SSR) on porbeagle was produced in June 1995 (Anon.,1995). In the fall of 1995, it was decided to form an Elasmobranch Assessment team which would undertake producing the Research Documents and Stock Status Reports (SSRs) for porbeagle and other elasmobranchs as part of the Maritime Region's Regional Advisory Process (RAP). The team produced the second and most recent SSR (Anon., 1996) in April 1996. It was planned at that time to update the SSR on porbeagle in April 1998.

The 1996 SSR stated that the 1995 catch and effort of porbeagle should be used as a ceiling to harvesting. DFO set the 1997 TAC at 1000 t for conservation reasons, which was lower than the maximum (1375 t) permissible by the 1996 SSR. Industry was concerned with this action and requested the update of the 1996 SSR before establishment of the 1998 TAC. It was agreed that an SSR would be produced for review at the 23-27 March 1998 meeting of RAP.

Since the 1996 RAP, the focus of the Elasmobranch Assessment team has been the establishment of new data collection and processing protocols to meet the long-term scientific monitoring needs of the fishery, as well as the processing of historical information. This has been a large task which is still on-going. Therefore, the team was not in a position to produce a full assessment of porbeagle at the March 1998 meeting. It was agreed that the review would consist of a summary of the information to date on the resource. Specifically, the remit of the 1998 RAP meeting for sharks was to:

- Review catch, effort and size information from the 1997 and historical fishery to provide guidance for the establishment of 1998 harvest levels. Prepare a Stock Status Report.

This report summarizes the most recent information on porbeagle sharks in the Northwest Atlantic. An earlier version of this report was presented to shark licence holders at BIO on 13 March, to solicit their input. The meeting minutes are attached (appendix I).

Management History

Efforts to develop a fisheries management plan for pelagic sharks in Atlantic Canada began in 1992. Pelagic sharks were not covered by fisheries regulations and amendments were required to the Fisheries Act. These amendments did not come into force until May 1994. Between 1992 and 1994, a plan was developed through the Atlantic Large Pelagics Advisory Committee (ALPAC), the Committee that develops the Management Plans for the bluefin tuna and
swordfish fisheries in Atlantic Canada. Following amendments to the Fisheries Act, a ban on "finning" sharks (the removal of the dorsal fin and at sea disposal of the finless carcass) was announced in June 1994 and a Management Plan for porbeagle, shortfin mako and blue sharks was announced in July 1994. However, there were problems implementing the Management Plan due to interpretation of the clause that determined eligibility for a license, and thus no licenses were issued in 1994. Further industry consultation outside of ALPAC was conducted in March 1995 and recreational interests were included at that time. Industry consensus was reached on the need to strength the control of the commercial fishery but no consensus was reached on how to regulate the recreational fishery. A revised but interim Management Plan was announced in July 1995.

The 1995 Fisheries Management Plan for pelagic sharks in Atlantic Canada established nonrestrictive catch levels for porbeagle (1500t), shortfin mako (250 t) and blue (250 t) sharks in the directed shark fishery, limited the number of licenses by defining eligibility criteria, specified that licenses would be exploratory (one year duration), prohibited "finning", restricted fishing gears, established seasons, restricted fishing area, limited by-catch of other species in the directed shark fishery, restricted the recreational fishery to hook and release only, and specified scientific data requirements. The non-restrictive catch levels approximated the reported landings of these species in Atlantic Canada in 1992 and were not based upon estimates of stock abundance. License eligibility criteria required active participation in the directed fishery in four of the previous five years, as documented by sales records. In addition, a limited number of licenses could be issued in areas of Atlantic Canada where there had been no previous fishing effort directed at these species. Exploratory licenses are valid only for the year that they are issued with no obligation that they be re-issued in the future. Fins could only be sold in proportion to a maximum of five percent of dressed carcass weight aboard a vessel and could not remain aboard the vessel after the associated carcasses were removed. Fishing gears to be used in the directed fishery were limited to longline, handline or rod and reel gear for commercial licenses and to rod and reel only for recreational licenses. The Management Plan included provision for restricting fishing seasons although there were no restrictions imposed in 1995. Vessels less than 65 ft in length were restricted to home areas by the Sector Management Policy of DFO, and specific time/area closures were implemented for all vessels to limit bycatches of bluefin tuna and small swordfish, where these were known to be a problem. Recreational licenses were limited to hook and release until such time as suitable criteria were developed which might allow for the retention of sharks by recreational anglers. These criteria have not yet been developed. The Management Plan made provision for the collection of catch and effort data, through completion and submission of logbooks, and for collection of sampling data (species, sex, length, weight) for each shark landed, through a dockside monitoring program (DMP).

The Management Plan was rolled over into 1996, with minor modifications, to provide time for the development of the more comprehensive plan. The latter was developed in 1996 and was finally released as the Canadian Atlantic Pelagic Shark Management Plan 1997-99 (Anon., 1997) in early 1997. The current Management Plan is designed to govern the exploitation of large pelagic shark species (porbeagle, blue, shortfin mako and other sharks, excluding spiny dogfish) during 1997-1999. The vision of this plan is the maintenance of a biologically sustainable resource supporting a self-reliant fishery. Conservation will not be compromised and a precautionary approach will guide decision-making. The specific objectives are:

- To provide for a reasonable scientific basis for management. This implies the collection of information essential to assess the health and potential of shark stocks in Canadian waters and which allow establishment of yield and effort levels for long-term sustainable harvesting.
- To control the commercial and recreational shark fisheries in Atlantic Canada so that they are economically viable in the long-term. To be viable implies the ability to survive downturns with only a normal business failure rate and without government assistance.
- To foster partnerships with the industry on the scientific study and management of this resource.

The current fishery is at the commercial and stock assessment stage, in which the emphasis is on determining whether or not the resource can sustain a commercially viable operation, and on collecting scientific data in order to build databases for stock assessment purposes. In this context, the fishing licences are considered exploratory.

During 1998 and 1999, discussions will be held to develop the shark management plan for 2000 and beyond.

Population Biology

Stock Structure

Research programs on shark distributions rely mainly on tagging studies. In 1962, the United States National Marine Fisheries Service (NMFS) initiated a shark tagging program which relied heavily on the volunteer participation of sport and commercial fishers. These program activities, although heavily concentrated in the northeastern US, have become international in scope and at the end of 1994, taggers from 31 countries were involved (Casey et al, 1995). This program has tagged 942 porbeagle sharks between 1962-97 within the coastal waters of New England and the Canadian Atlantic; 96 have been recaptured and indicate movement within this area. To date, there is no evidence of long distance migrations like those of the blue or mako shark (Kohler and Natanson, pers comm).

From 1961-84, Canada conducted a number of projects to tag large pelagic fishes, mainly swordfish and tunas; in a number of cases, sharks caught incidentally during these projects were also tagged (Burnett et al. 1987). Eight porbeagle were tagged; none have been recovered. In 1994, Canada initiated a shark tagging program in cooperation with sport and commercial fishers. Since the inception of the shark tagging program, 270 porbeagle sharks have been tagged and released throughout the Canadian Atlantic. To date, twelve recoveries have been made. One recapture was made in the Gulf of Maine and one on the Grand Banks; the other ten were all recaptured on the Scotian Shelf. These returns do not indicate TransAtlantic movement.

Aasen (1963) reported that 92 porbeagle sharks had been tagged in the northwest Atlantic in 1961. He indicated that porbeagles tagged on Platts Bank in the Gulf of Maine had been recaptured on the Scotian Shelf, in the Gulf of St. Lawrence, and on the Grand Banks. Myklevoll (1989) indicated that a total of about 550 porbeagle sharks had been tagged in the
northwest Atlantic and that 47 recaptures have been reported; however he reported no details of recapture locations.

Stevens (1990) reported that 26 porbeagle sharks had been tagged by recreational anglers in the coastal waters of England. Eight recaptures ranged from northern Norway to northern Spain and he concluded a homogeneous stock structure in the eastern Atlantic. Porbeagle sharks have also been tagged by recreational anglers in coastal waters of Ireland (Green, pers. comm) but no details are available.

As stated earlier, porbeagle sharks are thought to prefer cold temperate waters. Castro (1983) suggested that they preferred waters colder than $19^{\circ} \mathrm{C}$, while Scott and Scott (1988) suggested that the preferred temperature is colder than $16^{\circ} \mathrm{C}$. Preliminary data collected recently by commercial fishers in the Canadian Atlantic indicate this preference is in the the range of 10$14^{\circ} \mathrm{C}$. Carey et al. (1981) and Block and Carey (1985) demonstrated that porbeagle maintain an elevated body temperature, as much as $5^{\circ} \mathrm{C}$ above ambient water temperature, by means of a large suprahepatic rete mirabile, or counter-current heat exchanger. This capability likely contributes to the tolerance or preference of these relatively cold temperatures. This cold water temperature preference would largely restrict the species distribution to the north temperate waters of the Canadian continental shelf. It would also limit the occurrence of this species off the eastern United States.

In summary, the stock structure of the porbeagle shark is presently unknown, although the history of the fishery suggests that separate populations may exist in the east and west Atlantic. Based on tagging, there is no evidence of long distance migrations, as in blue and mako sharks and for pragmatic purposes, the stock is defined by NAFO Subareas 3 to 6 .

Reproduction

Porbeagles are ovoviviparous and oophageous, with litter size ranging from 1 to 5 (Compagno, 1984). Males mature between $150-200 \mathrm{~cm}$ in total length while females mature between 200 250 cm (Aasen, 1961). This provides an age at first maturity of four and eight for males and females respectively (see below). Aasen (1963) observed no embryos in mature females during July - September, while large embryos were reported by fishermen on Flemish Cap in late May. Similar observations had been made in the Gulf of Maine in November and January (Bigelow and Schroeder, 1948). This suggests that parturition occurs in the spring (late May - early June), a time when porbeagle ascend from the deeper water into the surface water and feed intensively (Aasen , 1963). Aasen (1963) felt that porbeagle reproduce every year and that gestation (development of the embryo) lasts about 8 months. These observations and the presence of full sperm sacs in the female point to an autumn (September - October) mating, and suggest a gap between parturition and mating. Gauld (1989) reports that off the Shetlands, mating occurs later, in December - January, while parturition occurs in summer or autumn, rather than the spring. It may be that the reproductive cycle is later in the Northeast Atlantic.

Aasen's (1963) estimate of eight months for the length of gestation is at variance with estimates made by other authors. Based on the size frequency of embryos that he observed, Shann (1923) reported that gestation could take two years. Holden (1974) pointed out that, based on Aasen's (1963) data, growth in the first year of life was about $20 \mathrm{~cm} /$ year. He pointed out that length at
birth is around 66-75 cm (Aasen, 1963) with an L_{0} of 72 cm . Holden (1974) considered that the production of such large young after only eight months would require an in-utero growth rate of $100 \mathrm{~cm} /$ year. He felt that this was unreasonable and indicated a longer gestation period. More recently, preliminary analysis by Pratt (pers comm) of material collected in the Canadian Atlantic in October/November 1993 and April 1994 tends to suggest that gestation is about eight months duration. The majority of females examined in the fall were gravid, supporting an annual reproductive cycle.

Based on the above, it is suggested that mating in the Northwest Atlantic occurs in September October. The embryos grow in the uterus and are born the following spring. The mean number of embryos born per female observed by Aasen (1963) was 3.7, or about two per horn of the uterus. If gestation is only 8 months long and the reproductive cycle is annual, then maximum average pup production is four per year.

Movements

Observations on many shark species suggest that there is segregation by sex and size (Pratt, 1979). In some cases, after mating, the pregnant females move to separate areas during gestation and pupping. The females appear to remain separated from males and juveniles until the next breeding season. Pups are seldom observed with juveniles or adults of either sex, suggesting the existence of discrete nursery areas. There are observations from commercial fisheries that support sex segregation in porbeagles. Gauld (1989), in his observations of the 1987-88 winter fishery off the Shetland Islands, noted a sex ratio (M/F) of 1:1.3. In the Spanish swordfish longline fishery off Spain and the Azores, the majority of porbeagle bycatch occurs in the winter with males outnumbering females two to one (Mejuto, 1985), suggesting a seasonal difference in distribution by sex. In the first year of commercial exploitation of this species in the northwest Atlantic, Aasen (1963) reported an overall sex ratio of 1:1, with some catches containing marked predominance of one or the other sex. He concluded shoaling by sex. In examining the July - September 1961 fishery, he also noted that the size of porbeagles increased from west to east and concluded that the migration was size specific.

Size composition data collected by the DFO Scotia-Fundy Fisheries Observer Program (FOP) from 1987-96 were used to evaluate the seasonal migration of porbeagle sharks in the Canadian Atlantic. These data come from 1032 sets made by Faroese and Canadian offshore vessels directing for porbeagle (tables 1 and 2, figures 1 and 2). Aasen (1961) indicated that female porbeagle in the northeast Atlantic matured between $200-250 \mathrm{~cm}$. Here, 200 cm is used as an estimate of size at first maturity. The number of porbeagle caught by sex, the sex ratio, and the proportions of females greaster than 200 cm were used to examine the seasonal migration of the porbeagle shark in the Canadian Atlantic.

Catches in March occur primarily on the edge of the Scotian Shelf between Georges Bank and Sable Island. Males are predominant in March catches (sex ratio 1.5:1 male:female) (Table 3). Females in March catches are mostly immature, only 7\% of females caught in catches were mature (based on first maturity at 200 cm , Aasen 1961) (Table 3, Figure 1). This suggests that mature females have segregated away from the main body of the population. The mean size of females of 151 cm is much lower than 163 cm for males, due to few large females in catches (Table 3, Figure 1a). The fishery extends eastward along the Shelf edge in April. Although
there are more females in the catches, males are still predominant and the sex ratio is 1.3. The size compositions and percent mature females are similar to March. As fishing progresses up onto the Shelf in May, males are still predominant in catches and sex ratio remains 1.3. However there is an increase in the proportion of larger porbeagle in the catches. The mean size of 179 cm of males is still larger than of females $(172 \mathrm{~cm})$. The proportion of mature females in catches increases, and 23% of females are mature. As fishing extends further onto the Shelf and eastward in June, males are still predominant in catches, but the sex ratio falls to 1.2. There is a further increase in the proportion of larger sharks in the catches. The mean size of both sexes increases, males to 183 cm and females to 179 cm , and 27% of females in the catch are mature. Very small porbeagle ($80+\mathrm{cm}$) first appear in catches on the Shelf in June/July, and may be young-of-the-year, consistent with the length at t_{0} of 72 cm from the von Bertalanffy growth curve of Aasen (1963). Fishing progresses into the Gulf of St. Lawrence and onto the Grand Banks in late June/early July. On the Shelf, the sex ratio is 1.0 in July and less than one through August, September and October. Mean size falls to approximately 170 cm for both sexes in July and August and decreases further in September on the Shelf. The majority of females in catches on the Shelf are immature. In November and December, males predominant in catches again on the Shelf and mean size of both sexes increases.

In the Gulf, catches are predominantly males in July (sex ratio 2.3) and are composed primarily of large porbeagle. Mean size of males and females are 193 cm and 180 cm respectively and 29% of females are mature. In August, there are more females in the catch. The sex ratio is 0.8 and the mean size of males decreases to 186 cm while for females, mean size increases to 190 cm and 40% of females are mature. In September, the sex ratio decreases to 0.7 and mean size of males decreases to 177 cm but mean size of females remains at 188 cm and 38% of females are mature. In October, the mean size of females drops to 164 cm and only 13% of females are mature. The mean size of females in November is 170 cm and 20% are mature. There are predominantly large porbeagle in catches initially but mean size decreases through to November

On the Grand Banks, primarily large porbeagle of both sexes occur in June catches. In August, catches are still primarily of large porbeagle with 46% of the females being mature. Females are predominant in catches in September to November, and mean size increases for both sexes. The proportion of mature females increases from 47 to 84%.

In summary, males and immature females predominate in catches on the Shelf edge in March and April. The data indicate that mature females segregate from the main body of the population during this period. This would be consistent with segregation of gravid females. The proportion of mature females in the catches increases in May and June and this would be consistent with segregation of females during parturition, which is believed to occur in May/June. Fish move onto the Shelf in May and eastward along the Shelf in May and June, moving into the Gulf of St. Lawrence and onto Grand Banks in late June/early July. Larger porbeagle move off the Shelf into the Gulf of St. Lawrence and onto the Grand Banks first, followed by the younger sharks; males may move earlier than females. Large porbeagle begin to leave the Gulf in September and large females predominate catches on the Grand Banks in September to November. This is when mating is believed to occur and aggregations on the Grand Banks are likely mating aggregations.

These observations were generally confirmed during the industry consultation. The offshore sector noted that as the season progressed, sharks in their catches got larger whereas the opposite was experienced by the inshore sector on the Scotian Shelf. The offshore vessels, not limited by Sector Management, follow the larger porbeagle into the Gulf of St. Lawrence and onto the Grand Banks, while inshore vessels restricted to the Scotian Shelf likely exploit primarily juveniles during the summer and early fall period.

Growth and Natural Mortality

Since O'Boyle et al (1996), there is no new information to report on growth and mortality. However, modes occur in the fishery size frequency data. It might be possible to use this to confirm or otherwise, the Aasen (1963) growth model currently being used. Also, MFD has undertaken a joint age and growth study with NMFS which will use this information.

The Fishery

Landings Trends

As more fully reported in O'Boyle et al (1996), the fishery for porbeagle started in the Northeast Atlantic prior to 1930 (Table 4). During 1930-65, Norway was the principle harvester. In the early 1960s, the Norwegian fleets left the Northeast Atlantic and exploited the relatively virgin resource in the Northwest Atlantic (Figure 3). The population apparently collapsed by the mid 1960s (Myklevoll, 1989) and the Norwegian fleet returned to the Northeast. After a peak in landings in the early 1970s, the yield has remained low.

In the Northwest Atlantic, annual landings in the Norwegian fishery peaked at 8060 t in 1964, the highest ever observed, either before or since (Figure 4). At about the same time, the Faroese fleet entered the fishery, with landings over 1000 t reported in 1964-65. While the Norwegians left the area, the Faroese remained, annually catching about 350 t until the late 1980s. Since 1987, landings by the Faroese fleet, as reported by Canadian observers, increased to 1199 t and 1171 t in 1991 and 1992 respectively. This fleet was restricted to 400 t in 1993 and was excluded from the Canadian zone thereafter. It is interesting to note that the rise of Faroese landings during 1991-92 was coincident with this fleet leaving the high seas salmon fishery (Windsor and Hutchinson, 1994). It is also worthwhile noting that the 1987-93 Faroe landings, as reported to NAFO, are lower than the Canadian observer estimates. The FOP estimates are used in this assessment.

	$\mathbf{1 9 8 7}$	$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$
FOP	381	374	479	551	1199	1171	467
NAFO	260	270	456	530	610	559	

The Japanese fleet reported modest landings in the late 1960s. More recently, the US has reported minor landings of porbeagle and France (SP) reported $39 t$ for the first time in 1996.

The Canadian fleet caught minor amounts of porbeagle until 1991, when effort dramatically increased. Canada became the main exploiter of porbeagle in the North Atlantic when the

Faroese was restricted from the Canadian zone in 1994. The recent TAC and Canadian landings history for porbeagle are:

Year	1995	1996	1997
Catch Limits	1500	1500	1000
Canadian Catch	1375	1015	1338

It is important to note that, contrary to the non-restrictive catch limits set in 1995 and 1996, the 1997 TAC is a true harvest limit that should not in principle be overrun. However, in 1997, exactly this happened. Trip hails are used to monitor landings against a TAC. When the total of the hails is within a certain percent of the TAC, the fishery is closed. The final landings are subsequently tallied from the official statistical files. In 1997, some of the trip hails reported sharks, not specified, as being landed. Consequently, these landings were not counted against the porbeagle quota. When the landings reports were subsequently made, it was realized that the 1997 TAC had been overrun.

In 1997, landings were 1338t, up from the 1015 t of 1996 but below Canadian landings of 1550 and 1375 t in 1994 and 1995 respectively. It should be noted that at time of writing of this report, 1304t of this total had been assigned by fleet. The following tables are based on the 1304 t catch. Preliminary reports for 1998 indicate that landings are down at the beginning of the season (Table 5). In the industry consultations, it was felt that this was due to abnormally cold water temperatures in the fishing area. Drinkwater (pers comm) confirmed that a body of cold water was first observed on the Halifax line and further south in October 1997. By December, this water was starting to penetrate into the Emerald Basin and by February 1998, temperatures in the Basin were abnormally low by about one degree. This cold water is currently entering the Gulf of Maine.

Porbeagle are also caught incidentally to other Canadian fisheries (Table 6). However, reported landings of this activity are very low, compared to the directed fishery.

Seasonal Trends in the Fishery

During 1987-93, the Faroese fleet was fully observed by DFO. Thus, there is very accurate information on when and where this fleet was fishing, and the size composition of the catch. Unfortunately, the size composition information is only currently available for the Scotia-Fundy FOP. Table 7 provides an overview of this fleet's landings by year, month, and area. Fishing occurred in two pulses during the year - March to June and September to November.

For the Canadian fishery, the analysis of temporal and spatial patterns was made possible by the compilation of set by set logbook information for 1991-97. This dataset was also used in the catch rate analysis presented later in the section on Resource Status. The Canadian fishery can be considered as composed of two fleets - those vessels greater than 100 ft length overall (LOA) and the rest being primarily smaller vessels in the $40-60 \mathrm{ft}$ LOA range (Table 8).

The seasonal movements of the vessels greater than 100 ft LOA (Figure 5, Table 9a) show initial fishing in the south, with movement up the coast as the season progresses. From an interannual perspective (Figure 6), this fleet did not fish as extensively in 4 T after 1994, as in
previous years. Also, landings of this fleet sector declined from a maximum of 1457 t in 1994 to 846 t in 1997. It should be kept in mind however that effort dramatically dropped in 1996 with the loss of one of the three vessels fishing. In 1995, this fleet fished 416 sets. This compares to 286 sets fished in 1997, an almost 30 percent drop in effort.

The seasonal fishing patterns of the remaining vessels are quite different (Figure 7, Table 9b). This fleet fishes throughout the year almost exclusively in 4WX, with some fishing in SA 5. As seen from the inter-annual pattern (Figure 8), this has not changed over time, except for an overall increase in effort. This fleet is far more active now than in 1994, when it first recorded significant landings.

Size Composition of the Landings

Size composition information in the 1987-93 offshore fishery is available from the FOP. This has been presented earlier in Figure 2. As stated above, only the data for the Scotia-Fundy FOP was available.

Catch size composition information has also been collected directly by the Canadian fishing industry. During 1995-96, a special study was undertaken to capture lenth and weight data of individual sharks for all sharks caught on one of the offshore vessels. In addition, since 1996, the dressed weights of individual sharks have been collected on receiving tallies. This information is to be supplemented with length data in 1998. So far, a data base of these data has been established but more data processing is required to provide a consistent dataset of size frequency information.

Resource Status

The only sources of information available to determine resource abundance trends are commercial catch rates (CPUE) from the Faroese and Canadian fleets. Regarding the former, the fleet was 100 percent observed from 1987 to 1993, the last year this fleet operated in the Canadian zone. Unfortunately, only the Scotia-Fundy FOP dataset was available by the time the analyses below were undertaken.

Regarding the Canadian fishery, as stated earlier, much of the logbook information since 1991 has been processed and has been used in the analysis below. Observer information on the Canadian fishery is relatively sparse (only one observed trip in 1997) and has not been used. This is the first analysis of catch rates for this fishery utilizing Canadian commercial logbook data. The data for the Canadian offshore fishery have been combined with those from the Faroese fishery in a multiplicative analysis to provide trends in catch rates and, by assumption, relative abundance, during 1987-97. In all cases, catch rate is defined as kg per hook. Also, it should be noted that null sets were not included (no information on these). Otherwise, all set information was included. Finally, a lognormal distribution was assumed in all analyses.

As mentioned earlier, the Canadian inshore fishery is relatively new, having increased in effort only since 1994. As well, this fleet has undergone catch rate improvements normally associated with a developing fishery. Consequently, the CPUE trends are not used as abundance indices.

Offshore Catch Rates

There have only been a handful of vessels involved in the offshore fishery since 1987. The raw, unstandardized catch rate trend during 1987-97 (Figure 9a) indicates an overall decline from about $3.5 \mathrm{~kg} / \mathrm{hk}$ in 1990 to below $2 \mathrm{~kg} / \mathrm{hk}$ in 1996, with a small increase in 1997. Over the same period, there was a rise in both the total number of hooks and sets to reach a peak in 1994 with a reduction thereafter, this being explained by the exit of one of the offshore vessels from the fishery, as explained earlier (Figure 9b). However, the number of hooks per set has increased as well (Figure 9c), a trend which produces a relatively constant catch per set (Figure 9d). Catch per hook is considered to be more reflective of abundance than catch per set.

An initial analysis of variance (ANOVA) of the catch per hook data was undertaken to resolve the significance of vessel, month, year, and area effects as well as interaction terms. As seen from the table below, inclusion of all offshore data into one analysis resulted in a number of significant interaction terms, which confound the main effects, including year.

Df Deviance Resid. Df Resid. Dev	F Value	Pr (F)				
NULL			2997	3494.029		
YEARC	10	125.6722	2987	3368.357	13.67923	0.000000000
MONTHC	10	107.5742	2977	3260.783	11.70929	0.000000000
CFV	4	56.4145	2973	3204.369	15.35158	0.000000000
REGION	5	13.9951	2968	3190.373	3.04670	0.009540898
YEARC:MONTHC	62	266.6517	2906	2923.722	4.68139	0.000000000
YEARC:CFV	11	52.8501	2895	2870.872	5.22968	0.000000033
MONTHC:REGION	34	89.4144	2861	2781.457	2.86254	0.000000075
CFV:REGION	35	107.0304	2826	2674.427	3.32860	0.000000000
MONTHC:CFV	18	44.8218	78.3528	2808	2629.605	2.71044
0.000126687						

Exploratory analyses were then undertaken to see if further breakdown of the dataset would eliminate the interaction terms. Specifically, as the porbeagle fishery is characterized by separate April - June Scotian Shelf and September - November Grand Banks concentrations of effort, we next focused the analysis on these two predominant fisheries. The ANOVA tables for these two seasons are given below. As the Newfoundland FOP data was not available, the fall analysis was restricted to 1991-97. It is interesting to note that whereas the raw CPUE for the spring fishery (Fig 10) declined during 1991-97, that for the fall fishery (Fig 11) first declined, increased to 1996 , and then declined in 1997. If the population movements described above are correct, the spring catch rates would be reflective of smaller sharks than those in the fall on the Grand Banks. The fall fishery may be fishing the mating aggregations which would complicate interpretation of catch rates as an abundance index. For this reason, only the spring catch rates were considered further.

```
GRAND BANKS (SA 2-3), SEPT-NOV
                Df Deviance Resid. Df Resid. Dev F Value Pr(E)
\begin{tabular}{rrrrrrr} 
NULL & & 553 & 402.8235 & & \\
CFV & 4 & 36.02580 & 549 & 366.7977 & 15.42076 & 0.0000000 \\
YEARC & 6 & 29.99538 & 543 & 336.8023 & 8.55964 & 0.0000000 \\
MONTHC & 2 & 1.90732 & 541 & 334.8950 & 1.63285 & 0.1963769 \\
YEARC:MONTHC & 12 & 18.32061 & 529 & 316.5743 & 2.61403 & 0.0021526 \\
YEARC:CFV & 4 & 5.64994 & 525 & 310.9244 & 2.41844 & 0.0476732 \\
MONTHC:CFV & 7 & 8.38815 & 518 & 302.5363 & 2.05173 & 0.0471605
\end{tabular}
```

Df	Deviance Resid. Df	Resid. Dev	F Value	Pr (F)		
NULL			1247	1510.060		
YEARC	10	116.9101	1237	1393.150	11.68362	0.0000000
CFV	4	26.8831	1233	1366.267	6.71653	0.0000241
MONTHC	2	14.7531	1231	1351.514	7.37191	0.0006581
REGION	1	1.2327	1230	1350.281	1.23191	0.2672630
YEARC:MONTHC	19	80.0773	1211	1270.204	4.21193	0.0000000
YEARC:REGION	10	42.3895	1201	1227.815	4.23627	0.0000083
YEARC:CFV	8	28.9668	1193	1198.848	3.61856	0.0003621
CFV:REGION	4	8.1405	1189	1190.707	2.03384	0.0874803
MONTHC:REGION	2	2.3432	1187	1188.364	1.17085	0.3104625
MONTHC:CFV	8	8.6184	1179	1179.746	1.07662	0.3768430

A number of further data explorations were undertaken to see if the interaction terms could be eliminated. Various month, area and vessel combinations were attempted. Year - vessel interactions were eliminated by removal of vessels that prosecuted the fishery for under four years each, although, as seen from the following table, other interactions with year persisted.

Df	Deviance Resid. Df	Resid. Dev	F Value	Pr (F)		
NULL			894	1109.615		
YEARC	10	112.7866	884	996.828	11.06045	0.0000000
MONTHC	2	11.1279	882	985.700	5.45633	0.0044215
CFV	2	2.7426	880	982.958	1.34475	0.2611643
REGION	1	0.8385	879	982.119	0.82223	0.3647874
YEARC:MONTHC	18	75.5499	861	906.570	4.11601	0.0000000
YEARC:REGION	10	34.1242	851	872.445	3.34640	0.0002754
CEV: REGION	1	2.3830	850	870.062	2.33687	0.1267188
MONTHC:CFV	3	6.3598	847	863.703	2.07893	0.1014949
MONTHC:REGION	2	2.9943	845	860.708	1.46816	0.2309375
YEARC:CFV	3	2.0971	842	858.611	0.68550	0.5610283

Therefore six unique area-month models (4W-4X, April - June) were run to avoid the interactions with year. All except the 4X June model were significant (Table 10, Figure 12). April catch rates in 4 W exhibit high variability with no trend (fig 12a) whereas those in 4 X in the same month undergo a consistent decline since the late 1980s (fig 12b). In May, 4W catch rates undergo a significant decline in 1988 and 1989, rise to relatively high rates by 1991 and then decline thereafter (fig 12c). In 1997, catch rates increase from the low values observed in 1996. In contrast, the 4X May catch rates (fig 12d) initially rise to a series high in 1989, are relatively stable until 1993 and decline thereafter. Again, catch rates increase between 1996 and 1997. In June, 4W catch rates (fig 12e) were very high in the late 1980s and have declined since with again a modest rise between 1996 and 1997. The observed catch rates for 4X in June (fig 12f) show high values in the late 1980s - early 1990s with a decline thereafter. Unfortunately there is no data for 1997.

Offshore Catch Rates by Shark Size

Analyses were undertaken to determine if changes in shark size composition in the fishery throughout the year could account for the interaction with year effects observed in the models given above. Set by set total length frequency data for one of the vessels were available from the FOP. Data have also been provided by industry - largely interdorsal lengths as well as over 2500 fork length/interdorsal length pairs. Regression analysis of these data gave a good fork length to
interdorsal length relationship (Table 11), which, in conjunction with the total length to fork length relationship

$$
\text { Fork Length }=1.794+0.897 \text { (Total Length) }
$$

of Kohler et al (1993), was used to convert the interdorsal length information into total lengths. These data were then matched to the set by set catch and effort data and the mean length of porbeagle in that set calculated. An examination of the catch rates by mean length per set for each year (Figure 13) indicated a difference in catch rates for sets with sharks of a mean length above and below 180 cm . Therefore, the catch rates for one of the offshore vessels was reanalysed using year, month (April - June) and shark length (LT and GE 180 cm) as factors. Due to data availability, area had to be restricted to 4WX, and 1988, 1994, and 1997 were lost from the analysis. Also, 1996 was reduced to the month of May, and had only one mean length across all sets (a trip length frequency).

The ANOVA model below shows only one significant interaction with year, and that is with length.

The nature of the interaction between year and length, depicted in Figure 14, is interesting. While catch rates decline over time, on an annual basis, whenever catch rates for large sharks increase, the catch rates for small sharks decline, and vice versa. This may be related to porbeagle segregating by size and/or maturity. This requires further examination. Splitting the dataset by larger/smaller sharks gave the model provided in Table 12 for sharks under 180 cm total length. With both 4W and 4X, plus April - June, there are no significant interactions with year.

Regarding large sharks, there is insufficient data to eliminate the interactions with year (see table below) and thus the analysis was not pursued further.

Df	Deviance R		DE	d. Dev	Value	$\operatorname{Pr}(\mathrm{F})$
			142	156.1461		
YEARC	6	15.52572	136	140.6204	2.867085	0.0118668
REGION	1	7.86325	135	132.7571	8.712488	0.0037702
MONTHC	1	2.62751	134	130.1296	2.911282	0.0904255
MONTHC: REGION	1	7.30488	133	122.8247	8.093813	0.0051855
MONTHC: YEARC	3	7.47306	130	115.3517	2.760053	0.0449693
YEARC: REGION	4	1.63331	126	113.7183	0.452426	0.7704657

Inshore Catch Rates

With no data for this component of the fishery prior to 1994, and very little data prior to 1996, the inshore catch rates are not considered indicative of abundance trends. A preliminary analysis of 4 WX catch rates for directed and licensed vessels less than 100 ft LOA, shows a consistent increase in catch rates since 1995. Such a trend is however symptomatic of a learning curve for new entrants to the porbeagle fishery, and has been observed with other new vessels even when prevailing trends among experienced fishers was downward. As the majority of the licenses for this component did not become active until 1996, it is likely that an appropriate time series of index catch rates can only be initiated in 1998.

Summary

The Norwegians and Faroese exploited a virgin resource in the early 1960s and with landings of over 9000 t, apparently collapsed the population. During the 1970s and 1980s, the Faroese caught about 350 t annually. Given the low productivity of porbeagle, the population likely recovered only slowly during this period. In the late 1980 s, the first time that reliable catch rate data are available, the Faroese fleet increased its effort and pushed catch over 1000t. Canadian fishing effort increased in the early 1990s, however that for the offshore subsequently decreased from the mid-1990s while that for the inshore increased. Prior to 1992, catch rates were relatively high, compared to subsequent years. Since 1994, landings have averaged 1306t, and during this period, depending on the area and season chosen, catch rates have either remained stable or declined.

Outlook

Since the 1996 assessment (O’Boyle at al. 1996), considerable progress has been made to improve the assessment of Subarea 3-6 porbeagle shark. Data sets have been established on the catch, effort and size composition of the fishery, as well as sampling protocols put in place to ensure the collection of this information in the future. However, much remains to be done and it is not possible at this time to provide an assessment based on Sequential Population Analysis (SPA) and Yield Per Recruit (YPR) models, as applied in many stock assessments. However, the catch rate trends presented in the previous section show some evidence of abundance declines since the mid 1990s and are a source for concern. This is particularly relevant when one considers that the fishery is for scientific monitoring purposes.

O'Boyle at al (1996) provide an analysis of the sensitivity of this resource to exploitation, based on the equilibrium model of Brander (1981), which is a modification of that of Holden (1974). At that time, it was considered that E, the annual litter size, could be either two or four, depending on whether or not gestation lasted 8 or 20 months. Recent work by Pratt (pers comm) suggests that the gestation period is 8 months and thus E is four. If one assumes t_{m}, the mean age of first maturity of a female as eight, and natural and thus immature shark mortality $\left(Z_{i}\right)$ as 0.18 , then total mortality on the adults could go as high as 0.47 (Figure 15). If 0.18 of this has to account for natural mortality, this allows a maximum of 0.29 for fishing mortality. As pointed out by O'Boyle et al (1996), these calculations are very sensitive to the estimates of Z_{i}, E and t_{m}. For instance, increasing t_{m} by two years to 10 decreases the replacement Z_{m} to 0.33 , while decreasing it by two years increases the replacement Z_{m} to 0.68 . The sensitivity of Zm to Zi is
given in Figure 15. For E and t_{m} of 4 and 8, increasing Zi above 0.18 will result in Zm falling below Zi at a Zi value of about 0.25 . From the commercial size composition information, it is evident that a large part of the catch is of immature animals and thus Zi is likely to be greater than 0.18 . The uncertainties in these relationships underline the need to take a precautionary approach to the harvesting of the resource.

Porbeagle sharks are long-lived, and produce low numbers of offspring. This combination of life history characteristics makes porbeagle sharks highly susceptible to over-exploitation. The high catch levels experienced in the early 1960s did not appear sustainable. However, the fishery appeared sustainable during the 1970s and 1980s when landings averaged 350 t annually. The catch level of $1,500 \mathrm{t}$ in the 1995 and 1996 Management Plans was not based upon estimates of stock abundance and may not be sustainable. Since 1991, landings have averaged about 1500 t annually, and there is some evidence from spring catch rates to suggest that abundance may have declined. Given the uncertainties in our knowledge of the resource, it would not be prudent to harvest above the 1997 TAC of 1000 t until the observed recent declines in catch rates can be explained. Further, while a 1000 t TAC in 1998 would represent a reduction in catch, it is uncertain if this reduction would be sufficient to arrest the decline in population abundance suggested by the decline in catch rates.

It is very important that the provisions of the 1997-99 Shark Management Plan be implemented to ensure orderly harvesting of the resource. In particular, the scientific component to collect the information necessary to fill the identified knowledge gaps should be enhanced.

This species is part of a large pelagic species complex that includes tunas, swordfish, billfishes, and other species of large sharks. Management of the porbeagle shark fishery needs to consider interactions with other species in the complex.

The stock area of this species extends beyond the Canadian Zone. Management of this resource in the future could benefit from bilateral cooperation. Notwithstanding this, benefits to Canadian fisheries could be realized through unilateral action.

References

Aasen, O. 1961. Some Observations on the Biology of the Porbeagle Shark (Lamna nasus L.). ICES CM Near Northern Seas Committee. No. 109. 7pp. (Mimeo).

Aasen, O. 1963. Length and Growth of the Porbeagle (Lamna nasus, Bonnaterre) in the North West Atlantic. Fiskerdirektoratets Skrifter Serie Havundersokelser. 13(6): 20-37.

Anon. 1995. Scotia-Fundy Spring 1995 Stock Status Report for Pelagics, Invertebrates and Marine Mammals. DFO Atl. Fish. Scotia-Fundy Reg. SSR 95/1.

Anon. 1996. Porbeagle Shark. DFO Atl. Fish. Stock Status Report 96/33E.
Anon. 1997. Canadian Atlantic Pelagic Shark Management Plan 1997-1999. DFO
Bigelow, H.B., and W.C. Schroeder. 1948. Fishes of the Western North Atlantic. Part One, Sharks. Mem. Sears Fdn Mar. Res. 1(1):59-546.

Block, B.A., and F.G. Carey. 1985. Warm brain and eye temperatures in sharks. J. Comp. Physiol. B. 156:229-236.

Brander, K. 1981. Disappearance of Common Skate Raja batis from Iris Sea. Nature. 290: 48 49.

Burnett, C.D., J.S. Beckett, C.A. Dickson, P.F.C. Hurley, and T.D. Iles. 1987. A summary of releases and recaptures in the Canadian large pelagic fish tagging program 1961-86. Can. Rep. Fish. Aquat. Sci. 673: iii +99 p.

Carey, F.G., J.M. Teal, and J.W. Kanwisher. 1981. The visceral temperatures of mackerel sharks (Lamnidae). Physiol. Zool. 54:334-344.

Casey, J.G., L.J. Natanson, H.W. Pratt, Jr., R. Briggs, P.A. Turner, and N.E. Kohler. MS 1995. The shark tagger 1994 summary: Newsletter of the cooperative shark tagging program. US Dept. Commerce. NMFS. Northeast Fisheries Science Center, Narraganset, R.I.
Castro, J.I. 1983. The Sharks of North American Waters. 180p. Texas A\&M University Press.

Compagno, L.J.V. 1984. FAO Species Catalogue. Vol. 4. Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species known to date. Part 1. Hexanchiformes to Lamniformes. FAO Fisheries Synopsis. (125) 4: Pt 1: 249 pp .

Gauld, J.A. 1989. Records of Porbeagles Landed in Scotland, with Observations on the Biology, Distribution and Exploitation of the Species. Scottish Fisheries Research Report No. 45. 16pp.

Holden, M.J. 1974. Problems in the Rational Exploitation of Elasmobranch Populations and Some Suggested Solutions. In: F.R. Harden Jone's [Ed.] Sea Fisheries Research. Elek Science. London.

Mejuto, J. 1985. Associated Catches of Sharks, Prionace glauca, Isurus oxyrhinchus and Lamna nasus with NW and N Spanish Swordfish, in 1984. ICES CM 1985/H:42. 16pp (mimeo).

Myklevoll, S. 1989. Norway's porbeagle fishery. Working paper presented at the ICES Study Group on Elasmobranch Fisheries, Dublin, Ireland, 26-28 April, 1989.

O'Boyle, R, G.M. Fowler, P.C.F. Hurley, M.A. Showell, and W.T. Stobo. 1996. Observations on Porbeagle Shark (Lamna nasus) in the North Atlantic. DFO Atlantic Fisheries Research Document 96/24.

Pratt, H. L. Jr. 1979. Reproduction in the blue shark, Prionace glauca. Fish. Bull., U.S. 77:445470.

Scott, W.B., and M.G. Scott. 1988. Atlantic Fishes of Canada. Can. Bull. Fish. Aquat. Sci. 219: 731 p .

Shann, E.W. 1923. The Embryonic Development of the Porbeagle Shark, Lamna cornubica. Proceedings of the Zoological Society of London. 11: 161-171.

Stevens, J.D. 1990. Further results from a tagging study of pelagic sharks in the north-east Atlantic. J. Mar. Biol. Ass. U.K. 70:707-720.

Windsor, M.L. and P. Hitchinson. 1994. International Management of Atlantic Salmon, Salmo salar L., by the North Atlantic Salmon Conservation Organization, 1984-1994. Fish. Manag. Ecol. 1:31-44.

Appendix I. Pre-RAP Presentation of Porbeagle Assessment Results to Industry and DFO Science

As a prelude to the presentation, it was noted that this is the second stock assessment for porbeagle in Canadian waters, and much is left to be done. In particular, most of the time leading up to this meeting was spent in compilation and confirmation of the basic catch-effort data. A more complete analysis of the data must await the next assessment cycle.

Trends presented in the biological review of porbeagle were generally accepted. The offshore industry agreed that smaller individuals were caught only on the Scotian Shelf in the fall, and that larger individuals were caught more often on the Grand Banks. The spatial patterns in size described from observer data of offshore vessels were not seen by the inshore vessels, mainly because they were restricted to fishing on the Scotian Shelf, as inshore vessels are limited to home ports by the DFO Sector Management Policy.

Further analysis of these data are required to determine if distribution is affected by water temperature, and if the modes in the length frequency plots represent age groups.

Most of the discussion focused on the offshore catch-effort data, since the inshore data only started being collected seriously in 1995. The catch figures were accepted as given, although it was noted that the decline in landings over the last 1-2 years was due in part to the sale of one of the three offshore vessels which directed for porbeagle. The 1997 effort data for the inshore fleet is believed to be more accurate than that of previous years; the accuracy of the offshore catch and effort data was discussed and this resulted in a sebsequent comparison of data.

Interpretation of the catch rate trends was not straight forward. Further analysis is required to determine if the catch rates for April and June are similar to those of May. In addition, the catch rates need to be disaggregated by vessel, given the recent loss of one vessel. Substantial shifts in the annual size composition indicate that the catch rates also need to be broken down by size category. These additional analyses may remove the interaction effects which currently confound the catch rate analysis.

Table 1. Distribution of Scotia-Fundy observed fishing nets.

Year	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	Total
1											
2							11	2	15	43	71
3			27	30	25	48	55		4	1	199
4	9		30	30	53	46	55				226
5	12		8	32	54	50	28				172
6					21	26				47	
7					2	25	28	5			60
8					71	51	9	28		159	
9					10	31				41	
10						20			24	44	
11									13		13
12	21	0	65	92	236	297	186	35	56	44	1032

Table 2. Summary of Scotia-Fundy fisheries observer data (1987-96).

| Year | No. vessels | No. trips | No. sets | No. hooks | No. males | No. females |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1987 | 1 | 2 | 21 | 32544 | 610 | 478 |
| 1988 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1989 | 1 | 1 | 65 | 11136 | 3496 | 2341 |
| 1990 | 1 | 3 | 92 | 38496 | 4573 | 3789 |
| 1991 | 3 | 10 | 236 | 224506 | 8283 | 7691 |
| 1992 | 2 | 10 | 297 | 320134 | 7449 | 7105 |
| 1993 | 3 | 7 | 186 | 166380 | 6545 | 4955 |
| 1994 | 1 | 1 | 35 | 47080 | 391 | 381 |
| 1995 | 2 | 3 | 56 | 25152 | 1640 | 1186 |
| 1996 | 2 | 2 | 44 | 78273 | 1509 | 851 |
| Total | | 39 | 1032 | 943701 | 34496 | 28777 |

Table 3. Sex ratio of porbeagle catches in directed fishery (percent females caught), percent of females mature, and mean total length (ccm) by month by area from S-F Observer data (1987-96).

area	month	number males caught	number females caught	total caught	$\begin{array}{r} \text { sex } \\ \text { ratio } \\ \hline \end{array}$	percent female caught	percent female mature $(200+\mathrm{cm})$	mean length males	$\begin{array}{r} \text { mean } \\ \text { length } \\ \text { females } \end{array}$
Shelf									
Shelf	2								
Shelf	3	2790	1832	4622	1.52	39.64	6.71	162.76	150.51
Shelf	4	9178	7035	16213	1.30	43.39	6.30	160.69	153.35
Shelf	5	8808	6716	15524	1.31	43.26	23.21	178.59	172.45
Shelf	6	5841	4853	10694	1.20	45.38	26.58	183.30	178.97
Shelf	7	780	775	1555	1.01	49.84	21.68	171.24	170.44
Shelf	8	51	84	135	0.61	62.22	33.33	172.67	173.14
Shelf	9	322	387	709	0.83	54.58	15.25	139.86	149.43
Shelf	10	178	190	366	0.93	51.91	16.32	168.55	163.22
Shelf	11	456	279	735	1.63	37.96	15.41	167.29	146.54
Shelf	12	79	47	126	1.68	37.30	63.83	199.99	209.15
Shelf	total	28519	22276	50795	1.28	43.85	17.05	171.39	165.25
Gulf	1								
Gulf	2								
Gulf	3								
Gulf	4								
Gulf	5								
Gulf	6								
Gulf	7	405	174	579	2.33	30.05	28.74	192.54	179.90
Gulf	8	260	327	587	0.80	55.71	39.76	186.04	190.45
Gulf	9	1503	2083	3586	0.72	58.09	37.83	176.90	188.02
Gulf	10	421	350	771	1.20	45.40	13.43	173.77	163.76
Gulf	11	281	341	622	0.82	54.82	19.65	185.29	169.91
Gulf	12	218	53	271	4.11	19.56	26.42	205.94	188.83
Gulf	total	3088	3328	6416	0.93	51.87	32.93	180.29	183.44
Grand Banks	1								
Grand Banks	2								
Grand Banks	3								
Grand Banks	4								
Grand Banks	5								
Grand Banks	6	140	190	330	0.74	57.58	63.16	205.79	206.78
Grand Banks	7								
Grand Banks	8	533	335	868	1.59	38.59	46.27	196.81	191.07
Grand Banks	9	1706	1921	3627	0.89	52.96	46.64	187.97	191.83
Grand Banks	10	482	606	1088	0.80	55.70	60.40	191.83	200.90
Grand Banks	11	214	305	519	0.70	58.77	83.93	206.93	223.28
Grand Banks	12								
Grand Banks	total	3075	3357	6432	0.92	52.19	52.83	192.24	197.09

Table 4. Reported Landings (t) by Country of Porbeagle Shark in the North Atlantic
22

Yoar	Cansda	Faroa is	Morway	USA	France (SP)	Spain	Japen	keland	Toted
1050									
1951									
1052									
1053									
1854									
1055									
1956									
1857									
1658									
1859									
1880									
1981		100	1824						1924
1082		800	2218						3018
1963		800	5783						6563
1084		1214	8080					9	8283
1885	28	1088	4045						5161
1988		741	1373						2114
1087		589					36		625
1888		862	288				138		1089
1889		885					208		1073
1970		205					874		878
1971		231					221		452
1872		280	87						347
1973		268							289
1974									
1975		80							80
1976		307							307
1977		285				2			297
1978	1	121							122
1878	2	299							301
1980	1	425							428
1981		344							344
1982	1	259							280
1983	θ	250							285
1884	20	128	17						183
1885	26	210							${ }^{238}$
1888	24	270							284
1987	59	381		12					452
1988	83	374		32					489
1889	73	479		3					555
1890	78	551		19					848
1091	329	1199		18					1544
1892	741	1171		13					1925
1893	919	487		39					1425
1994	1550			64					1814
1985	1375								1375
1998	1015				39				1054
1897	1338								1338

Denmeark	Farools	France	Icotand	Morway	Portugad	Span	Swoden	Chamed to	Gormany	Total
4000				3300						3200
1800				800						2400
1800				800						2200
1100	100			700						1800
700	300			600						1600
800	100			800						1600
400				800						1300
600	100			1100						1800
900	300			1100						2300
800	800			800						2100
400	500			1500						2400
600				1000						1600
400				100						500
200				100						300
300				100						400
200				300						500
200				300						500
200				400						600
100				800						1000
100				800						1000
200				300		3800				4300
400				200		3800				4400
500				300		2700				3500
200				200						400
170			2	185			3		3	343
285			4	304			1		3	577
233	1		3	258			1			487
289	5		3	77						374
112	9	833		78		2087	3			3120
71	28	1092	1	105			1			1285
175	8	898	1	84			8			1172
158	6	768		93			5			1031
85	17	198	1	34			${ }^{6}$			341
45	12	782		32			5			888
38		411	1	88			0			558
72	12	254		80			10	12		440
114	12	260		24			8	7		425
55	33	280		25	3		5	3		494
32	18	448		12	3		3	${ }^{8}$		523
33	14	351		28	2		3	15		444
48	14	581		44	2		2	15		684
85	7	309		32	1		2	14		450
80	20	488	1	42			4			843
${ }^{1}$	78	843	3	23			3			839
${ }^{84}$	48	${ }^{828}$	4	25			2		22	1023
88	44	621	6	27			2			788

Northwest Attantic Data (Faroe is \& Norway) for 1081-83 is from FAO (ICCAT Report of Shark Wording Grow. Mianm, 28-28 February 1898)
Northwest Atantic Data (Faroe is \& Norway) for 1881 - 83 is trom FAO (ICCAT Report
Northwest Atlantic Data (Faroe is \& Norway) for 1984-88 is from NaFO Compueer filo

Northwast Atantio Data (Other) for 1981 - 97 is from NaFO Computer fle (1998 is G. Moution, pers cormm)
Northeast Attartic Data is from FAO Statistics(1997)

Table 6. Canadian Reported Landings (t) of Porbeagle Shark by Fishery

Year	Directed Longline	Bycatch Swordfish	Bycatch Tuna	Bycatch Other	Total
1987					
1988					
1989					
1990				0	329
1991	329			7	741
1992	734	0	0	6	919
1993	913	0	2	8	1550
1994	1533	7	0	13	1375
1995	1347	15	1	8	1015
1996	1002	4	15	1304	
1997	1284	5	0	15	

Notes: $\quad 1997$ is preliminary

Table 7. Catch (t) of Porbeagle Shark by the Faroese Fishery in the Canadian Zone as reported by the Fishery Observer Program

Table 8. Characteristics of Scotia-Fundy vessels with licences to direct for porbeagle.

Fleet	Tonnage Class	Gross Tonnage	Length (ft)	Horsepower
	4	354	154	600
Offshore	5	585	153	746
	4	360	105	600
	4	186	94	671
	3	84	64	475
	3	77	64	1150
	3	92	54	425
Rest	3	65	54	404
	2	45	48	265
	2	46	44	300
	2	48	44	349
	2	28	42	270
	2	29	42	210
	2	28	42	210
	2	28	42	198
	2	30	39	154
	1	7	38	152

Table 9a. Reported Landings (t) of Porbeagle Shark by Licensed \& Directing Canadian Vessels >=100'.

Notes: 1997 is preliminary

Table 9b. Reported Landings (t) of Porbeagle Shark by Canada, excluding Vessels in Table 9a.

Notes: 1997 is preliminary

Table 10a. Catch Rate Standardization Model for Offshore Vessels operating in 4W during April

(Dispersion Parameter for Gaussian family taken to be 0.6539764)

Year	1987	1988	1989	1990	1992	1993	1994	1995	1996	1997
Predicted CPUE	3.129	1.699	1.509	2.384	2.262	2.569	4.548	2.011	1.746	3.213
CPUE Variance	7.329	2.028	1.251	3.989	3.591	4.560	14.979	2.612	2.381	7.443

Table 10b. Catch Rate Standardization Model for Offshore Vessels operating in 4W during May

(Dispersion Parameter for Gaussian family taken to be 0.9390533)

Year	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
Predicted CPUE	4.191	0.405	0.293	2.362	3.643	2.653	3.153	3.451	2.361	1.114
CPUE Variance	11.207	0.649	0.776	3.342	8.553	4.252	6.096	7.353	3.154	0.349

Table 10c. Catch Rate Standardization Model for Offshore Vessels operating in 4W during June

Df	Deviance	Resid Df	Resid Dev	F Value	$\operatorname{Pr}(\mathbf{F})$
NULL		146	325.5189		
YEAR 9	146.7008	137	178.8181	12.48818	$2.531308 \mathrm{e}-014$
Coefficients	Value	Std. Error	t value		
(Intercept)	1.0775613	0.5109288	2.1090244		
YEAR_89	1.3795362	0.8343433	1.6534396		
YEAR_90	0.1860772	0.5518662	0.3371781		
YEAR_91	-0.5990601	0.5742344	-1.0432326		
YEAR_92	-0.7367424	0.5899698	-1.2487799		
YEAR_93	-0.7051548	0.7225625	-0.9759084		
YEAR 94	-0.1171909	0.5546747	-0.2112787		
YEAR 95	-2.4239991	0.6689628	-3.6235182		
YEAR_96	-3.1612398	0.6162033	-5.1301894		
YEAR_97	-1.3635417	0.5616345	-2.4278098		

(Dispersion Parameter for Gaussian family taken to be 1.305241)

Year	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997
Predicted CPUE	4.975	18.119	6.681	3.009	2.598	2.458	4.926	0.457	0.226	1.411
CPUE Variance	14.538	211.464	23.568	4.506	3.192	3.241	12.736	0.713	0.589	0.396

Table 10d. Catch Rate Standardization Model for Offshore Vessels operating in 4X during April

Df	Deviance		Resid Df		Resid De		F Value		$\operatorname{Pr}(\mathbf{F})$	
NULL			159		148.4099					
YEAR 9	18.81778		150		129.59		2.420129		0.01354846	
Coefficients	Value		Std. Error		t valu					
(Intercept)	0.6515945		0.2078398		3.135					
YEAR_88	0.2365063		0.2788463		0.848					
YEAR_89	-0.3006020		0.2871719		-1.046					
YEAR_90	0.2451845		0.3019842		0.811					
YEAR_92	-0.4291001		0.3174805		-1.351					
YEAR_93	-0.1294094		0.3599891		-0.359					
YEAR_94	-0.8395296		0.4326530		-1.940					
YEAR_95	-0.8556257		0.3489098		-2.452					
YEAR_96	-0.2338308		0.2788463		-0.838					
YEAR_97	-0.6273108		0.3888326		-1.613					
(Dispersion Parameter for Gaussian family taken to be 0.8639475)										
Year	1987	1988	1989	1990	1992	1993	1994	1995	1996	1997
Predicted CPUE	2.900	3.690	2.152	3.697	1.875	2.494	1.191	1.211	2.306	1.500
CPUE Variance	5.363	8.843	2.669	8.944	1.830	3.957	0.520	0.396	3.165	0.655

Table 10e. Catch Rate Standardization Model for Offshore Vessels operating in 4X during May

Df	Deviance	Resid Df	Resid Dev	F Value		$\operatorname{Pr}(\mathrm{F})$
NULL		164	168.3944			
YEAR 8	23.54	156	144.8544	3.168907		0.002350777
Coefficients	Value	Std. Error	t value			
(Intercept)	0.521991513	0.3047218	1.71301027			
YEAR_88	-0.004941298	0.3702326	-0.01334647			
YEAR_89	0.379758798	0.3549901	1.06977288			
YEAR_90	0.286857927	0.3702326	0.77480458			
YEAR_91	0.241330435	0.3800548	0.63498850			
YEAR_92	0.293687370	0.4125952	0.71180507			
YEAR_93	0.351844242	0.4309417	0.81645448			
YEAR_96	-0.582826789	0.3491026	-1.66949981			
YEAR_97	-0.527543776	0.4053178	-1.30155578			
(Dispersion Parameter for Gaussian family taken to be 0.9285535)						
Year	19871988	19891990	19911992	1993	1996	1997
Predicted CPUE	$2.567 \quad 2.617$	$3.867 \quad 3.504$	$3.336 \quad 3.470$	3.650	1.480	1.531
CPUE Variance	$4.074 \quad 4.114$	$9.401 \quad 7.718$	$6.994 \quad 7.704$	8.623	0.239	0.390

Table 11. Regression analysis of the relationship between fork length and interdorsal length for porbeagle sharks. This relationship was used in the generation of total lengths in offshore catch rate models.

Regression: Fork Length vs Interdorsal Length

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.946^{a}$.894	.894	9.30

a. Predictors: (Constant), Interdorsal Length

ANOVA ${ }^{\text {b }}$

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1849876.614	1	1849876.614	21369.590	$.000^{2}$
	Residual	219184.718	2532	86.566		
	Total	2069061.333	2533			

a. Predictors: (Constant), Interdorasal Length
b. Dependent Variable: Fork Length

Coefficients ${ }^{\text {a }}$

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	27.967	. 875		31.967	. 000
	Interdorsal Length	2.718	. 019	946	146.183	. 000

a. Dependent Variable: Fork Length

INTERDORSAL LENGTH

Table 12. Catch Rate Analysis of one offshore vessel using only sets where the mean length was less than 180 cm .

	Df	Deviance	Resid Df	Resid Dev	F Value	$\operatorname{Pr}(\mathrm{F})$
NULL			249	252.3015		
YEAR	7	38.82829	242	213.4732	6.90282	0.0000002
REGION	1	10.09289	241	203.3803	12.56005	0.0004796
MONTH	2	1.37835	239	202.0019	0.85764	0.4255505
MONTH:REGION	2	9.31371	237	192.6882	5.79521	0.0035166
YEAR:REGION	5	4.29088	232	188.3973	1.06795	0.3789678
MONTH:YEAR	8	8.39755	224	179.9998	1.30629	0.2413391
	Df	Deviance	Resid Df	Resid Dev	F Value	$\operatorname{Pr}(\mathbf{F})$
NULL			249	252.3015		
YEAR	7	38.82829	242	213.4732	6.82250	0.0000002
REGION	1	10.09289	241	203.3803	12.41391	0.0005112
MONTH	2	1.37835	239	202.0019	0.84766	0.4297111
MONTH:REGION	2	9.31371	237	192.6882	5.72778	0.0037214
Coefficients		Value	Std. Error	t value		
(Intercept)		1.0381120	0.2655507	3.9092807		
YEAR_89		-1.0418481	0.2659367	-3.9176544		
YEAR_90		-0.4213585	0.2534408	-1.6625521		
YEAR_91		-0.4303384	0.3161977	-1.3609789		
YEAR_92		-0.7437806	0.2615774	-2.8434439		
YEAR_93		-0.3720022	0.3150985	-1.1805905		
YEAR_95		-0.7882886	0.3044873	-2.5889046		
YEAR_96		-1.5154208	0.2916970	-5.1951889		
REGION		0.1627684	0.2034553	0.8000206		
MONTHC5		-0.2576354	0.1951318	-1.3203145		
MONTHC6		-0.8663374	0.2926808	-2.9600082		
REGION:MONTHC5		0.1893908	0.2569807	0.7369845		
REGION:MONTHC6		1.2807795	0.3831039	3.3431648		

(Dispersion Parameter for Gaussian family taken to be 0.8130305)

Year	1987	1989	1990	1991	1992	1993	1995	1996
Predicted CPUE	4.859	1.737	3.237	3.142	2.340	3.325	2.199	1.067
CPUE Variance	16.084	1.418	6.905	6.644	3.395	7.487	3.008	0.340
Catch, t	93.288	104.918	185.999	96.517	122.853	82.331	61.051	33.758
Effort, (CATCH /CPUE)	453.281	182.200	602.164	303.329	287.515	273.778	134.275	36.005

Figure 1. Mean length of porbeagle sharks by month by area by sex from S-F Observer data.

Figure 2 (a): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in March, from S-F Observer data 1987-96.

Males	Females
Shelf	Shatt
Gulf	Gulf
Grand Banks	Grand Banks

Figure 2 (b): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in April, from S-F Observer data 1987-96.

Males

shat	Shell
Gut	Gut
Grand Banks	Grand Banks

Figure 2 (c): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in May, from S-F Observer data 1987-96.

Males	Females
Shalf	ShatI
Gulf	Gut
Grand Banks	Grand Banks

Figure 2 (d): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in June, from S-F Observer data 1987-96.

Males	Females
Shelf	Shelf
Gulf	Gulf
Grand Banks	Grand Banks

Figure 2 (e): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in July, from S-F Observer data 1987-96.

Males	Females
Sheff	Shelf
Gult	Gulf
Grand Banks	Grand Banks

Figure 2 (f): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in August, from S-F Observer data 1987-96.

Figure $2(\mathrm{~g})$: Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in September, from S-F Observer data 1987-96.

Males	Females
Shell	Shall
Gult	Gur
Grand Banks	Grand Banks

Figure 2 (h): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in October, from S-F Observer data 1987-96.

Figure 2 (i): Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in November, from S-F Observer data 1987-96.

Figure 2(j). Size composition of male and female porbeagle sharks (in 1 cm intervals) by area, in the directed fishery in December; frơm S-F Observer data 1987-96.

Males

Shelf	Shelf
Gulf	Gulf
Grand Banks	Grand Banks

Figure 3. Reported Landings (\mathbf{t}) of Porbeagle in the North Atlantic

Figure 4. Reported Landings (t) by Country of Porbeagle in the Northwest Atlantic

Figure 5. 1991-97 seasonal catch rates ($\mathrm{kg} / \mathrm{hook}$) of porbeagle shark by Canadian vessels greater than or equal to 100^{\prime}.

Figure 6. Annual 1991-97 set catch rates (kg/hook) of porbeagle shark by Canadian vessels greater than or equal to 100 '.

Figure 7. 1994-97 seasonal catch rates ($\mathrm{kg} / \mathrm{hook}$) of porbeagle shark by Canadian vessels less than 100^{\prime}.

Figure 8. Annual 1994-97 set catch rates (kg/hook) of porbeagle shark by Canadian vessels less than 100'.

Figure 9a. Catch rates (kg/hook) of porbeagle directed vessels greater than 100' LOA for all months and areas.

Directing Vessels > 100', All Months \& Areas

YEAR CAUGHT

Figure 9b. Trends in Effort for Canadian Vessels greater than 100 ft LOA

Figure 9c. Trend in Hooks per set for Canadian Vessels greater than 100 ft LOA

Figure 9d. Trends in Aggregate Catch Rates for Canadian Vessels greater than 100 ft LOA

Figure 10. Catch rates (kg/hook) for porbeagle directed vessels greater than 100^{\prime} LOA operating in NAFO Divisions 4WX during the spring.

Figure 11. Catch rates (kg/hook) for porbeagle directed vessels greater than 100" LOA operating on the Grand Banks furing the fall.

Figure 12. Offshore catch rates (vessels greater than 100^{\prime} LOA) in 4WX during spring for years providing 5 or more sets. Predicated values from models denoted by plus (+) signs.
4W, April

YEAR CAUGHT

YEAR CAUGHT

YEAR CAUGHT

YEAR CAUGHT
$4 X$, June

Figure 13. Mean total lengths per set of porbeagle shark used in the analysis of catch rates with length as a factor.

Metan Total Lenghth per Sel

Mean fotal Lengoh par Sat

Mean Totad Length per Sol (per Tifp tor May)

Figure 14.Catch Rate Interaction of Length with Year

YEAR CAUGHT

Figure 15. $\mathbf{Z}_{\mathbf{i}}$ and $\mathbf{Z m}$ for Equilibrium in a Porbeagle Population

