Department of Fisheries and Oceans Canadian Stock Assessment Secretariat Research Document 97/21

Not to be cited without permission of the author ${ }^{1}$

Ministère des péches et océans Secrétariat canadien pour l'évaluation des stocks Document de recherche 97/21

Ne pas citer sans autorisation de l'auteur ${ }^{1}$

STATUS OF ATLANTIC SALMON ON PRINCE EDWARD ISLAND IN 1996

David K. Cairns
Science Branch
Department of Fisheries and Oceans
Box 1236
Charlottetown
Prince Edward Island C1A 7M8
cairnsd@mar.dfo-mpo.gc.ca

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.
Table of Contents
Abstract. iii
Résumé iii
Introduction 1
Description of fisheries 1
Conservation requirement
Fisheries data. 2
Research data 3
Estimation of stock parameters 5
Assessment results 5
Ecological considerations 7
Forecasts/prospects. 7
Management considerations7
Research recommendations 7
Acknowiedgments 7
Literature cited 7
Table 1. Attantic salmon sport catches on the Morell River, 1955-1996 9
Table 2. Fishing seasons on the Morell River, 1996. 10
Table 3. Number of salmon required to produce 2.4 eggs per m^{2} of water in PEl salmon rivers. 10
Table 4. Numbers of juvenile Attantic salmon stocked in the Morell River, 1990-1996. 11
Table 5. Stocking dates and numbers of juvenile Atlantic salmon in the West, Dunk, Mill, Valleyfield, and Midgell Rivers 12
Table 6. Mailing and return statistics for the PEI licence stub survey, 1995 and 1996 13
Table 7. Salmon fishing effort and harvest in Prince Edward Island rivers, 1994-1996 14
Table 8. Atlantic salmon counted at Leards fishway and released into Leards Pond, 1981-1996 15
Table 9. Biological characteristics of fish recaptured at Mooneys, and mark-recapture estimates of salmon numbers 16
Table 10. Counts of Attantic salmon and brook trout on the Mill, Dunk, West, and Valleyfield Rivers 17
Table 11. Counts of Attantic salmon redds in Prince Edward Island rivers 18
Table 12. Attantic salmon and brook trout electrofishing densities on the Morell River, August-September 1996. 19
Table 13. Densities and populations of juvenile Atlantic salmon on the Morell River, 1975-1996. 20
Table 14. Origin, biological characteristics, and potential egg deposition of the 1996 Morell River salmon run. 23
Table 15. Return rates of Atlantic salmon stocked in PEI rivers 24
Table 16. Number of salmon stocked above Leards Dam, number of salmon released above Leards Pond fishway, and number of salmon redds counted above Leards Pond. 25
Table 17. Return rates of wild salmon to the Morell River. 25
Table 18. Exploitation rates of small Attantic salmon returning to PEl rivers. 26
Table 19. Attantic salmon entering Leards Pond and their potential egg deposition, 1981-1996. 26
Table 20. Potential egg deposition by Atlantic salmon in the Morell, Mill, Dunk, West, and Valleyfield Rivers 27

Abstract

Salmon, historically abundant in Prince Edward Island, were eliminated from most streams following European colonization. Since the mid-1980s enhancement and stocking efforts have re-established salmon runs, primarily of hatcheryreared fish, on several PEI rivers. Conservation requirements, developed for rivers with natural salmon runs, are calculated as the spawning escapement that produces 2.4 eggs m^{-2} of river area. On this basis conservation requirements are 537 large salmon and 288 small salmon for the five most important salmon streams on PEI, including 159 large salmon and 85 small salmon for the Morell, which is PEl's most important salmon stream.

Salmon stocking on PEI relies chiefly on fish that are reared in semi-natural open impoundments and released as $2+$ smolts. An estimated 42,691 juvenile salmon were released into the Morell in spring 1996, based on a presumed 65\% survival rate of 1+ parr placed in the pond in June 1995.

A licence stub survey estimated that anglers harvested 534 small salmon from PEI in 1996 during 6,478 rod-days. Estimates for the Morell were 397 retained small salmon and 4,156 rod-days. An additional 17 small salmon were taken by native harvesters in the Morell.

Counts of salmon ascending the fishway to Leards Pond totaled 249, of which 60 were removed for broodstock. Sample composition was 88% small ($<63 \mathrm{~cm}$ fork length) and 86% hatchery in origin. A mark-recapture experiment was conducted at Leards Pond and at Mooneys Pond to determine the capture efficiency of the Leards counting facility. Thirtyfour of 103 fish captured at Mooneys had been marked at Leards. The median Bayesian estimate of fish entering Leards Pond, adjusted for late running fish which did not ascend to Mooneys, was 563 fish. Counters enumerated 438 salmon redds on the Morell in 1996, of which 308 were above Leards Pond.

Counts at the Valleyfield River fence totaled 75 small and eight large salmon, the largest run in the time series.

Length distributions of juvenile salmon taken during electrofishing surveys were tri-modal, suggesting the presence of $0+1+$, and $2+$ age groups. River-wide juvenile populations, based on 14 electrofishing surveys in AugustSeptember and partitioned by age according to length distributions, were 24,312 0+ fish, 7,885 1+ fish, and 9,411 2+ fish.

The return rate of Atlantic salmon stocked above Leards, calculated from the mark-recapture estimate of arrivals to Leards, was 6%. However, this return rate contains substantial uncertainty because the number of fish released in 1995 is not reliably known.

The total 1996 Morell run can be calculated from the 1995 run as estimated by a mark-recapture experiment, assuming a constant efficiency of the Leards trap and a constant distribution of ascending fish to Leards and other destinations. The 1996 run estimated in this fashion 1,920 fish. Exploitation rate based on the stub survey and this estimate was 23.5%.

Salmon entering Leards Pond, corrected for trap efficiency but not adjusted for angler mortality, had a potential spawning deposition of 435,406 eggs in 1996. This represents 243% of calculated conservation requirement. For the Morell as a whole, an estimated post-fishery spawning escapement of 1,523 fish produced $1,537,225$ eggs, which is 270% of
conservation requirement. No other rivers on PEI have come close to achieving conservation requirements in recent years.

Résumé

Le saumon qui historiquement était abondant à l'île-du-Prince-Édouard a disparu de la plupart des cours d'eau par suite de la colonisation par les Europeens. Des efforts de mise en valeur et d'ensemencement menés depuis le milieu des années 1980 ont permis de rétablir les montaisons de saumon, essentiellement du saumon d'élevage, dans plusieurs rivières de li'le-du-Prince-Édouard. Afin de garantir la conservation dans les rivières où il se produit naturellement des montaisons de saumon, on a déterminé quill fallait un taux d'echappée des géniteurs produisant 2,4 oeufs par m² de fond de rivière. Or, pour assurer la conservation, il faudrait 537 gros saumons et 288 petits saumons dans les cinq plus importants cours d'eau à saumons de lit.-P.-É., dont 159 gros saumons et 85 petits saumons pour la rivière Morell, ia plus importante rivière à saumons de li'lle-du-Prince-Édouard.

A li'le-du-Prince-Edouard, pour ensemencer les cours d'eau, on compte essentiellement sur les poissons élevés dans des bassins ouverts semi-naturels qui sont relächés comme samoneaux de deux ans et plus. On évalue à 42691 le nombre de saumons juveniles qui ont été reláchés dans la rivière Morell au printemps de 1996, et ce en se fondant sur un taux de survie présumé de 65% des tacons âgés de 1+ qui avaient été placés dans le bassin au mois de juin 1995.

D'après un relevé des talons de permis de pêche, il est évalué que les pécheurs à la ligne ont pris 534 petits saumons des cours d'eau de l'Île-du-Prince-Édouard en 1996, et ce au cours de 6478 jours de pêche. Pour la rivière Morell, il y aurait eu 397 petits saumons de pris pendant 4156 jours de pèche. Toujours dans la rivière Morell, dix-sept autres saumons ont été capturés par des pécheurs autochtones.

Les denombrements de saumons remontant l'échelle à poisson de l'étang Leards s'établissaient au total à 249 , dont 60 ont été prélevés comme géniteurs. L'échantillon se présentait comme suit : 88% de petits saumons (< 63 cm longueur à la fourche) et 86% des poissons avaient été élevés en écloserie. Une expérience de marquage et de recapture a été menée à l'étang Leards et à l'étang Mooneys afin d'évaluer l'efficacité de capture de l'installation de denombrement de l'étang Leards. Trente-quatre des 103 poissons capturés a l'étang Mooneys avaient été marqués à l'étang Leards. L'estimation bayésienne moyenne du nombre de poissons qui pénètrent dans l'étang Leards ajustée pour tenir compte des poissons de montaison tardive qui ne se sont pas rendus jusqu'à l'étang Mooneys - était de 563 poissons. Les compteurs ont dénombré 438 nids de saumons dans la rivière Morell en 1996, dont 308 se trouvaient en amont de l'étang Leards.

Les dénombrements à la barrière de la rivière Valleyfield totalisaient 75 petits saumons et huit gros saumons, ce qui représente la plus importante montaison de la série chronologique.

Les distributions selon la longueur des saumons juvéniles capturés pendant les relevés de la pêche à l'électricité attestaient la présence de trois groupes d'âge : $0+1+$ et $2+$. D'après 14 relevés de péche à l'electricité effectués dans toute la riviere en août et septembre, les populations de
juveniles répartis selon l'åge et la longueur se présentaient comme suit : 24312 poissons de $0+, 7885$ poissons de $1+$ et 9411 poissons âges de $2+$.

Le taux de retour du saumon atlantique ensemencé en amont de l'étang Leards, calculé à partir des évaluations découlant du marquage et des recaptures des arrivants à l'étang Leards était de 6%. Ce taux de retour n'est cependant pas du tout fiable puisque l'on ne connaît pas avec certitude le nombre de poissons relâchés en 1995.

II est possible de calculer la montaison globale de 1996 dans la rivière Morell à partir de la montaison de 1995 estimee par l'expérience de marquage et de recapture, et ce en présumant une efficacité constante du trappe de l'étang Leards et une distribution constante du nombre de poissons remontant la riviere en direction de l'étang Leards et d'autres destinations. La montaison de 1996 ainsi évaluée se chiffrerait à 1920 poissons. D'après le relevé des talons de permis de péche et cette estimation, le taux d'exploitation s'établirait à $23,5 \%$.

Le saumon pénétrant dans l'étang Leards, compte tenu d'une correction pour l'efficacité du trappe mais sans ajustement pour la mortalité due à la pêche, avait en 1996 un potentiel de fraie de 435406 oeufs. Ceci correspond à 243% du besoin calculé aux fins de la conservation. Pour l'ensemble de la rivière Morell, une échappee approximative après la péche de 1523 poissons ont produit 1537225 oeufs, c'est-àdire 270% des besoins fixés pour la conservation. Aucune autre rivière de l'île-du-Prince-Édouard n'est venue près d'atteindre un tel niveau de conservation au cours des dernières annees.

Introduction
Because of its insular status; Prince Edward Island has a low diversity of freshwater fishes, and native game fish are limited to brook trout and Atlantic salmon. Early accounts indicated an abundance of salmon in the Island's short, barrier-free rivers, with fish arriving on the north shore in June and July and on the south shore in September and October (Dunfield 1985). A substantial commercial salmon fishery developed during the first half of the 18th century, with the greatest activity focused on the St. Peters Bay area.

Despite the imposition of fishing restrictions as early as 1780 , salmon declined rapidly and were eliminated from many rivers early in the 19th century (Dunfield 1985). Nevertheless a commercial fishery persisted. Some 10.5 tonnes of salmon were exported in 1865, and 727 kg were taken from the St. Peters Bay area in 1893 (Dunfield 1985). In the 20th century the salmon resource declined further, and by the mid-1970s few or no fish were being taken on the Morell River, which is the largest river emptying into St. Peters Bay (Table 1, Figs. 1-3).

At the present time, brook trout are ubiquitous in PEI streams, but salmon are commonly found in only a few of the larger rivers. Rainbow trout have been widely introduced, and have become established in a few watercourses.

In the early 1980s concerted efforts were launched to restore the Atlantic salmon populations of PEI rivers. Through the combined efforts of federal and provincial agencies and volunteer groups, enhancement programs were initiated on the Mill and Morell Rivers (Bielak et al. 1991; Figs. 1 and 2). These programs included habitat improvement, selective breeding of early-run genetic stocks, and the development of semi-natural pond rearing of smolts. The semi-natural rearing facility at Profitts Pond on the Mill River watershed began rearing salmon in 1984, and the Mooneys Pond facility on the Morell began operation in 1989. At both sites, volunteer groups (the O'Leary Wildlife Federation, the Morell River Management Co-op) raised fish furnished by the Cardigan Salmonid Enhancement Centre (SEC) of the Department of Fisheries and Oceans. These enhancement efforts were most successful in the Morell River, which by the late 1980s yielded annual angling harvests of several hundred salmon.

Habitat enhancement and stocking efforts have also been directed at the Dunk, West, and Valleyfield Rivers. In 1994, the Montague Watershed Management Co-op, in cooperation with the Cardigan SEC, set up a new semi-natural rearing facility at Gilberts Pond, and in the following year, established a cage culture facility at Munns Pond (Fig. 1).

The Morell River, in east-central PEI, drains an area of $171 \mathrm{~km}^{2}$. This document gives an update of the Atlantic salmon resource in the Morell, which remains the most important salmon stream on PEI, and reports stocking and monitoring efforts in the Mill, Dunk, West, and Valleyfield Rivers. In this paper, adult salmon under 63 cm in fork length are referred to as "small salmon"
and fish this length or greater are called "large salmon." Most fish classified as small salmon have spent one winter at sea and most fish classified as large salmon have spent two or more winters at sea.

The status of Atlantic salmon on the Morell and on PEI has been previously reviewed by Ducharme (1977), Bielak et al. (1991), Davidson and Bielak (1992), Davidson and Angus (1994), and Cairns et al. (1995, 1996).

Description of Fisheries

In most PEI waters the 1996 angling season for Atlantic salmon was 15 June - 15 September, but other open seasons applied in some rivers. In the Morell River, salmon fishing opened on 1 June and continued to 14 October at most sites (Table 2). In the main branch from MacKays to the Forks (Fig. 2) the salmon season continued to 31 October, and in Leards Pond it continued to 30 November. The extension of salmon fishing to 31 October also applied to the Valleyfield River below MacRaes Dam, the West River below Rte. 249, the Dunk River below Scales Pond, and the Mill River below Route 148.

The daily bag limit was one small salmon and the season limit was seven. Retention of large salmon was prohibited.

Residents of Prince Edward Island between the ages of 16 and 64 who are not farmers, commercial fishermen, or aboriginals were required to purchase a licence in order to fish for trout on PEI in 1996. Residents over 65 and farmers and commercial fishermen had to obtain a Courtesy or Farmer/fisher licence, issued gratis. Non-residents required a nonresident trout licence. To fish for salmon, an angler required both a salmon licence and the appropriate trout licence.

The number of angling licences issued on PEI in 1996 is as follows:

Resident trout $\quad 9,338$
Courtesy resident trout (over 65) $\quad 1,633$
Farmer/Commercial Fisher 1,608
Non-resident trout $\quad 1,101$
Total seasonal trout $\quad 13,680$
Non-resident day trout 230
Salmon 697
The Department of Fisheries and Oceans and the PEI Native Council concluded an agreement providing for a native allocation of 400 small Atlantic salmon from the Morell River in 1996.

Conservation requirement

Spawning conservation requirements for Atlantic salmon are set as numbers of adults required to fully utilize available habitat. It is assumed that populations attain this requirement if egg deposition by spawning adults reaches or surpasses 2.4 eggs per m^{2} of non-tidal, non-impounded river area. The conservation requirement concept was developed for rivers with wild salmon runs, and may be less applicable to PEI streams where most salmon are of hatchery origin.

Conservation requirements are calculated from fecundities and sex ratios of Morell salmon reported by Davidson and Bielak (1992) and Cairns et al. (1995). River areas for the Mill, Dunk, West, Morell, and Valleyfield Rivers are derived from habitat surveys in which the width of the wetted area was measured in cross-stream transects (Davidson and Angus 1994, Cairns et al. 1995). The Morell contains $237,176 \mathrm{~m}^{2}$, of which $74,727 \mathrm{~m}^{2}$ (32\%) is upstream from Leards Pond (Table 3).

Spawning requirements are calculated in Table 3 according to the method below (Morell River data are used as an example). Note that some figures do not sum exactly because of rounding.
i) Number of eggs required for the river $=$ river area x $2.4 \mathrm{eggs} / \mathrm{m}^{2}$. [237,176 $\left.2.4=569,222\right]$
ii) Number of large females required to produce these eggs $=$ number of eggs/fecundity. It is assumed that all eggs come from large females. This assumption is justified because large females produce more eggs than small females, and because most small salmon are males. $[569,222 / 4963=115]$.
iii) Number of large males required $=$ number of large females \times (100 minus percent of large salmon that are female)/percent of large salmon that are female. This gives the number of large males that would accompany the required number of large females, given the sex ratio measured in previous years. [115 $x(100-72.1) / 72.1=44]$.
iv) Total number of large salmon required $=$ number of large female salmon required + number of large male salmon required. $[115+44=159]$.
v) Male deficit $=$ number of large females required number of large males required. This gives the number of additional males required to provide each spawning female with a mate. [115-44=70].
vi) Total number of small salmon required, if small salmon meet the male deficit $=100 \times$ male deficit/percent of small salmon that are male. [100 x $70 / 82.5=85$].
The Morell requirements were estimated at 159 large salmon and 85 small salmon, including 50 large and 27 small salmon above Leards Pond. Total conservation requirements for the five rivers are 537 large salmon and 288 small salmon.

In addition to the Morell's natural spawning needs, there is a requirement for about 20 large salmon and 50 small salmon for use as broodstock at the Cardigan Salmonid Enhancement Centre. These fish are collected from the trap at Leards Pond.

Fisheries data

Stocking
Most salmon stocked on PEI are cultured through a process known as semi-natural rearing. Fish are hatched at the Cardigan Salmonid Enhancement Centre and are placed in Mooneys, Profitts, or Gilberts Ponds, or in the cages in Munns Pond in the spring following their year of hatching. Stocked fish are marked by removal of the adipose fin. Mooneys, Profitts, and

Gilberts are artificial impoundments which have barriers at their inlets and outlets to retain fish. The fish are fed artificial food in these ponds, but they are exposed to natural mammalian and avian predation. Natural food is also available. The fish are released into streams as age 2+ smolts. Juvenile salmon raised in Profitts Pond suffered complete kills in 1995 and 1996. In 1995 the salmon died after a tank carrying potato fungicide overturned and its contents made their way into the pond. In 1996, the fish died during or after a rainfall which occurred during a period of intensive pesticide application in the pond's watershed.

At Profitts Pond, the smolts are collected by lowering the pond level and concentrating the fish with seines. At Mooneys, the fish have been traditionally collected by lowering the pond and trapping them as they leave. In 1995 some fish were trapped and others were allowed to enter the West Branch of the Morell on their own accord (details in Cairns et al. 1997). In 1996, the stoplogs at Mooneys were removed on 27 April, permitting the fish to descend the river at will without being counted.

Numbers of juvenile salmon stocked in major PEI streams in 1996 are given in Tables 4 and 5. As exit counts at Mooneys were not conducted in 1996, releases of juvenile salmon into the Morell were estimated by applying a 65% survival rate (R. Angus, pers. comm.) to the 72,397 1+ parr placed in the pond in June 1995, and adjusting for removals to other rivers. This yields an estimated release of 42,691 fish.

The Mill River was stocked in 1996 with 1065 2+ smolts, which had been placed as $1+$ parr in Profitts Pond after the 1995 kill (Table 5). The Dunk River received 11,350 of these fish. The West River received $6,9712+$ fish from Munns and Mooneys Pond, and the Valleyfield received 15,305 , mostly $2+$ smolts, from semi-natural ponds and the Cardigan SEC. The Valleyfield stockings included fish from Gilberts Pond, which has no counting facility at its outlet. Hence stockings from that site were estimated by applying the 65% survival rate to the fish released in the pond in the previous year (Table 5).

Angler surveys

Prince Edward Island salmon angling catch and effort have been estimated by a mail-out survey which covered the 1994 fishing year (Caims 1996), and by licence stub surveys which covered the 1995 and 1996 seasons. The 1996 licence survey stub was similar to the one used in the preceding year, except that provision for recording hatchery/wild status of catches was discontinued (Fig. 4). On 13-17 December 1996, reminder cands were mailed to licence-holders from whom cards had not been received. Twenty-three additional cards were mailed on 9-15 January after the final licence books were returned from vendors. The reminder cards had space for daily records as well as seasonal summaries (Fig. 4), and also had business reply addresses. No provision was made for postage for reminder cards sent to US addresses. Reminder cards were numbered with the licence serial number to allow
detection of cases where both the stub and reminder were returned.

Mailing, return, and participation statistics are given in Table 6. Two hundred fourteen usable replies were obtained from 697 licence-holders (30.7\%). Among respondents 80.4% reported fishing salmon in 1996. Survey results indicated a PEI-wide salmon fishing effort of 6,478 rod-days in 1996, including 4,156 rod-days on the Morell (Table 7). The survey estimated retained sport catches of 397 small salmon on the Morell, 26 on the Mill, 7 on the Trout, 3 on the Dunk, 62 on the West; and 36 in the Valleyfield.

Native fishing reports

The Prince Edward Island Native Council reported that its members harvested 17 small salmon from the pool at the outlet to Mooneys Pond in August 1996.

Research data

Morell adult movements

Upstream movements of Atlantic salmon have been monitored at the Leards Pond fishway since 1981 (Table 8, Fig. 5). Numbers rose sharply in the mid 1980s, reaching a peak of 1,481 fish in 1988. Counts fluctuated before falling to 65 fish in 1994, which reflects a weak stocked cohort due to a die-off in Mooneys Pond in 1992. Counts since 1994 have shown a modest recovery.

The Morell salmon run, as shown by Leards counts, has two seasonal peaks (Fig. 6). The bulk of the fish enter in late June and July, but a smaller fall run occurs in September-October. Run timing in 1996 was similar to that of the long-term mean. Some fish may enter Leards Pond before trapping starts in some years, and thus escape counting. However, daily counts were zero or low at the beginning of trap operations in nearly all years, and do not increase substantially until mid-June (Fig. 6). This suggests that the number of fish that avoid counting by entering Leards before the trap opens is low.

In keeping with previous years, most salmon recorded at Leards were small (88\%) and of hatchery origin (86\%).

In the 1994, only two female salmon were released from the Leards fishway into the pond, but redd and electrofishing surveys and conversations with anglers indicated substantial salmon activity upstream from the pond. This suggested that fish were circumventing the trap and entering the pond without being counted (Caims et al. 1996). However, thorough searches in both 1995 and 1996 could locate no gaps or passages either in the bypass, which is blocked by two fish fences, or the fishway.

In 1996, a mark-recapture experiment was conducted to determine how many salmon were evading the Leards counting facility. All salmon placed in the pond were dye-marked with alcian blue, using a Madajet needleless injector. Dots were applied to the lower flank close to the tail, in patterns which identified the month of marking. Fish processed after 1 August were also given caudal hole-punches.

Salmon commonly congregate in the pool below Mooneys Pond, whose exit is blocked during the summer and fall. Mark-recapture estimates were made of fish entering Leards Pond by recaptures at the Mooneys outlet pool by native harvesters in August, and by dipnetting and seining in October. In the first October session, when fish were captured in the culvert and well under the dam, V-notches were applied to the tail. Recaptures in the second session, when fish were captured by seining, allowed an estimate of the pool's population.

All marked salmon captured at Mooneys in October had single dots on the left or right flanks, indicating that they were processed at Leards from 31 May to 31 July. This suggests that fish passing Leards in August and later did not ascend to Mooneys in 1996. Hence markrecapture estimates are for fish passing through Leards prior to 1 August.

All dots on recaptured fish were clear and distinct. This suggests that mark loss was not a problem, because if dots faded with time a gradation from clear to faint should have been seen.

Mark-recapture analysis was performed on the pooled sample of small and large fish because recovery rates of marked fish of the two groups were similar (23 and 25% respectively, Table 9) and because recaptures of large fish were not sufficiently numerous for analysis.

Mark-recapture statistics are presented in Table 9. Of eight fish captured on 2 October and V-notched, four were recaptured among the 99 taken on 5 October. Leards counts in May-July totaled 207 fish, but 60 of these were removed for broodstock. Of the 147 fish which were dye-marked and placed in Leards Pond, four were recovered among the 17 fish harvested by natives in August. Thirty-four of the 103 fish captured in October had dye-marks (33\%).

Populations were estimated as the median of Bayesian probability distributions (Table 9, Fig. 7)(Gazey and Staley 1986). The population of the pool below Mooneys was estimated as 285 fish (Table 9). However, this number could be upwardly biased. Mark-recapture theory requires that marked fish be equally available for capture, relative to other animals in the population, during the first and second sampling session. The first marking session was in the culvert and well below the dam, while the second was in the lower part of the pool where a clear bottom allowed unrestricted seining. It seems plausible that fish marked at the culvert and well might tend to hold in the upper area of the pool. This would lower their risk of recapture in the second sampling session, and upwardly bias the population estimate.

Estimates of salmon entering Leards Pond in MayJuly were 868 ($95 \% \mathrm{Cl} 368-2558$) and 458 ($95 \% \mathrm{Cl} 354-$ 622) from the native and October recaptures, respectively. Since the October estimate was based on a larger sample, it will be retained as the best estimate of the number of salmon entering Leards Pond.

The number of salmon arriving at Leards Dam and attempting to ascend into the pond is taken as the sum
of the mark-recapture estimate and broodstock removals $(458+60=518$, Table 9). Leards capture efficiency, based on total counts divided by total estimated arrivals, was 0.400 . Application of this efficiency to salmon arriving after 31 July yields an estimate of 105 fish. Total estimates for the season are 623 fish arriving at Leards, of which 563 entered the Pond.

Scales were taken from nine small salmon, of which three had dye marks. Ring patterns past the sea-entry mark were similar in all scales, and all showed one sea winter. This indicates that fish in the sample were not wintering in Leards Pond. Of six scales which could be read for river age, three were read as two river years, two as three river year, and one as four river years (Table 9).

Salmon appear to have been able to circumvent the counting facility at Leards in substantial numbers at least since 1994. Application of the Leards trap efficiency measured in 1996 to the period 1994-1996 permits an estimate of total arrivals at Leards for this period (Table 8, Fig. 5). However, comparisons must be made with caution because there is no basis for estimating trap efficiencies in earlier years.

Movements in other rivers

A counting fence was operated at Phantom Lane on the Valleyfield River in 1996 (Table 10). Eighty-eight small and eight large salmon were trapped there, the highest numbers on record.

Redd surveys

Redd counts in PEI salmon rivers are presented in Table 11 and Fig. 8. Redd counts in the Morell, supplied by D.L. Guignion and R. MacFarlane, totaled 438, of which 308 (70\%) were above Leards Pond. Trout River counts, furnished by D. Biggar and C. Crane, totaled 42 redds. Both Morell and Trout River counts were in the mid-range of results from earlier years.

In 1996, redd surveys were conducted in several other streams not traditionally known as salmon rivers. Counters recorded 49 redds on Bristol Creek, 73 on the Midgell, and 30 on the St Peters, and 88 on the Naufrage.

Morell electrofishing

Densities of juvenile salmon were measured by electrofishing at 14 sites in the Morell in AugustSeptember 1996 (Table 12, Figs. 2 and 9). At five survey sites, crews equipped with lip seines conducted three sweeps within stream sections that were bounded by barrier nets. Single-sweep surveys without barrier nets and without lip seines were conducted at nine sites. Densities in triple-sweep sites were estimated by the Zippin method (Zippin 1958). Densities in single-sweep sites were estimated from the capture efficiency of Sweep 1 as measured in the sites with multiple sweeps (Table 12). Adjustments for the absence of lip seines in single-sweep surveys were not made because of lack of multiple-sweep trials without lip seines.

Densities ranged from 0 at Gill Road, which is above Mooneys Pond and therefore inaccessible to adult salmon, to 31.6 fish m^{-2} at Leards Bridge (Table 12). The recent series of Morell electrofishing sites are in the same areas as four sites measured in 1975 by Ducharme (1977), and closely overlap with six sites surveyed by R. Gray and K. Davidson in 1984-1985 (Cairns et al. 1996) (Table 13, Fig. 9). Extrapolation of measured densities to river wetted area permits estimation of total populations of juvenile salmon (Table 13). Total population in August-September 1996 was estimated as 32,197 juvenile salmon. Estimates for the Main Branch showed irregular fluctuations over the time series, but West-South and East Branches showed relatively constant numbers, except for a sharp peak in August-September 1994 (Fig. 10). This peak was largely due to high numbers at Kennys Hole and at Cranes.

Length-frequency distributions of fish taken during electrofishing vary among years in their modal patterns (Fig. 11). In 1984 and 1994, distributions were distinctly bi-modal, suggesting the presence of only two year classes ($0+$ and 1+). In 1996, three distinct modes were present, suggesting $0+$, 1+, and $2+$ cohorts. In 1995 the distribution was bi-modal, but many intermediate values were present, suggesting fluctuation in growth rate, or the presence of some $2+$ fish.

Age composition of unclipped fish captured at the Indian Bridge smolt trap in 1995 (Cairns et al. 1997) and 1996 is as follows:

Age	1995			1996	
Number of fish	Percent		Number of fish	Percent	
$1+$	0	0		1	3
2 or $2+$	8	67		34	97
3	2	17		0	0
4	2	17		0	0

In this summation, 2+ fish are those which are at least 2 years old. The presence of fish older than 2 years in the 1995 wild smolt run calls into question the simple two-cohort age structure inferred by the 1994 length frequency distribution.

In 1975, Ducharme (1977) collected 35 scale samples from the Morell. Thirty-four were age $1+$ and one was $2+$. This sample is notable for the absence of the $0+$ group. This absence, and the variable length-frequency patterns from more recent electrofishing surveys, implies that growth rates and age structures of young salmon in the Morell vary among years.

Table 13 presents population estimates partitioned among age classes on the basis of length-frequencies. However, it must be noted that such a procedure, in the absence of full aging data, carries substantial uncertainty. In particular, fish classified as 1+ probably include some 2+ animals. This analysis yielded estimates of 24,312 0+, 7,885 1+, and 9,411 2+ juvenile salmon in the Morell in 1996.

Morell smolt movements

A smolt fence was operated on the Morell River from 22 April to 19 May 1996, at a site about 500 m upstreäm
from the location of the 1995 smolt fence (Cairns et al. 1997). The 1996 fence was constructed of electrical conduit set in channel iron, and stretched completely across the river. There were no major snow or rain falls during the period of operation, and no washouts were experienced.

A large influx of descending smolts began on 28 April, the day after the removal of stoplogs barring the exit of cultured smolts from Mooneys Pond (Fig. 12). Substantial smolt movements continued until mid-May. Movements of wild smolts closely paralleled those of hatchery fish (Fig. 12). Length-frequencies of clipped and unclipped smolts are presented in Fig. 13.

The proportion of unclipped fish which were of hatchery origin was calculated from dorsal fin examinations at Indian Bridge and at Mooneys Pond (Mooneys data supplied by K. Davidson). It is assumed that dorsal fins of wild fish are uneroded. Calculations are as follows:

Percent of smolts at Mooneys Pond that
had frayed dorsal fins
Fin examination, unclipped fish at Indian Bridge: Fish examined 571 Fish with frayed dorsal fins 71 Percent with frayed dorsal fins 12.4
Percent of unclipped fish at Indian Bridge that are of hatchery origin $(1 / 0.36) * 0.124 \quad 34.5$
A displacement experiment was conducted to determine the capture efficiency of the trap (text table below). On five occasions, small notches or cuts were applied to tails of fish captured at the trap. These fish were then placed in a plastic fish pan and canoed 0.3 to 1 km upstream, where they were released. Results were:

Experiment	Number of fish displaced	Number of fish recovered	Percent of fish recovered
1	116	31	26.7
2	59	2	3.4
3	70	7	10.0
4	134	94	70.1
5	69	22	31.9
Total	448	156	34.8

Recovery rates represent a minimum estimate of the trap's capture efficiency, as some displaced fish may not have continued their descent of the river after they were handled and displaced.

The table below gives direct counts of clipped and unclipped fish, estimates of hatchery and wild fish movements based on the calculated rate at which hatchery fish escaped clipping, and adjusted total movements assuming that trap efficiency is the same as the overall recovery rate from the displacement experiment.

Smolts, from direct counts

Clipped	16,149
Unclipped	2,591
Hatchery	17,044
Wild	1,696
Total	18,740

Smolts - adjusted by displacement recapture rate

46,405 Unclipped

7,445 Hatchery 48,977 Wild: 4,874 Total 53,851
Black salmon Clipped 10 Unclipped 13 Total. 23
This analysis indicates that the 1996 hatchery smolt exodus was between 17,044 (direct count adjusted for non-clipping rate) and 48,977 (direct count adjusted for non-clipping rate, and assuming the minimum trapping efficiency). The estimate of juvenile releases derived from applying a 65% survival rate to $1+$ parr placed in Mooneys Pond in 1995 (42,691, Table 4) lies between these figures.

Estimation of stock parameters

In 1995, a mark-recapture experiment was conducted in the Morell in which fish tagged at a trap below head of tide were recovered at the Leards trap. The run-size estimate from this procedure was 1550 fish. Run sizes for 1994 and 1996 can be calculated from the 1995 estimate by assuming constancy during 1994-1996 in Leards trap efficiency and in the proportion of the Morell's total run that ascended the West Branch to Leards. In the table below, run sizes for 1994 and 1996 are calculated from the ratios of Leards counts for each of these years to 1995 Leards counts (Table 8, Table 14). Size and age composition of these estimates is based on that found at Leards for the year in question. All of these assumptions are untested and the resulting estimates must be considered rough approximations only. In particular, the proportion of returning salmon that ascend Leards fishway is likely a function of the proportion of smolts that were stocked above Leards in the previous year, which varied from year to year (Table 4).

	1994	1995	1996
Small hatchery	216	1326	1450
Small wild	62	108	239
Large hatchery	208	77	200
Large wild	15	39	31
Total	501	1550	-1920

Total run of the Valleyfield River is taken as the fish fence count of 75 small and 8 large salmon (Table 10). Fish counts were not made in PEl's other salmon rivers in 1996.

Assessment results

Return rates

The return rates of stocked Atlantic salmon to rivers where they were released can be calculated by tracing cohorts through time (Table 15). This analysis assumes that fish stocked as $0+$ and $1+$ parr leave the river as $2+$ smolts, that fish stocked as $1+$ smolts, $2+$ parr, and $2+$
smolts leave the river immediately after release, that small salmon have spent one winter at sea, and that large salmon have spent two winters at sea. The analysis also assumes that no fish return to the river a second time.

Return rates for fish stocked above Leards Dam and returning as small salmon ranged from 0.1% to 8.4% (Table 15, Fig. 14). In 1995, an estimated 7,822 seminaturally reared $2+$ smolts were stocked into the Morell above Leards. The raw return rate based on direct Leards counts was 2.4%. The adjusted return rate, based on Leards counts corrected for trapping efficiency, was 6.0% (Table 15). This return rate is second only to that obtained in 1987 (Fig. 14). However, it must be emphasized that 1995 releases, upon which this return rate is based, are known only approximately (Cairns et al. 1997).

Return rates for the entire Morell were calculated from total releases in the river and estimates of run size based on the 1995 mark-recapture experiment. Estimated returns of small salmon were 1.0% in 1994, when the run derived from $1+$ parr and growthaccelerated $1+$ smolts, and 5.1% in 1995. In 1996 small salmon return rate was calculated as 9.3%, but this estimate may contain substantial error because of uncertainty in the 1995 release numbers.

Return rates derived from the Valleyfield fence were 0.25% in 1996 (Table 15). This stream is stocked mostly with $0+$ and $1+$ parr, which presumably suffer higher river mortality than fish released as smolts. Retum rates that ignore these fish, and use only stocking numbers for $2+$ smolts, were 3.3% in 1995 and 0.5% in 1996.

Fig. 15 plots the number of adults trapped at Leards against the number of juveniles released above Leards during the previous year. In general, fish raised seminaturally showed better return rates than those raised entirely in a hatchery (see also Fig. 14). The plot shows a curvilinear pattern, with stockings of intermediate size yielding the greatest returns. Use of a correction factor for trap efficiency in 1994-1996 does not change the overall shape of the plot. The scattergram's curvilinear form does not demonstrate a causal relation, because return rate is subject to marine survival which varies widely. However, Fig. 15 makes it clear that increasing stocking numbers does not necessarily mean that more fish will return.

The number of fish stocked above Leards shows no clear relation with redd counts in the year of return (Table 16, Fig. 16). The number of salmon released above Leards in 1990-1996 was not significantly related to redd counts in the same year (Fig. 17). This result must be viewed with caution, because it covers a period when the efficiency of Leards trap may have been changing.

The number of redds counted above Leards has exceeded 50% of the river total since 1992 (Table 11). In 1995, redds counted above Leards composed 61\% of the river total, whereas a mark-recapture analysis indicated that only 28% of the Morell run ascended Leards (Tables 19 and 20). The discrepancy between
these percentages suggests that either the redd counts or the proportion ascending Leards might be in error. The same crews have been counting Morell redds since 1990, and feel confident that they can locate most salmon redds in the river and reliably distinguish them from trout redds (D.L. Guignion pers. comm.). In the absence of information on the number and variability of redds produced per spawning salmon, the discrepancy of percentages noted above cannot be resolved, except to say that it undertines the uncertainty inherent in both data sets.

Population estimates based on electrofishing data (Table 13) permit the calculation of return rates of wild fish. Population estimates for the 1983-1985 cohorts above Leards Pond were zero or very low, and subsequent returns to Leards included only a handful of wild fish (Table 17). Retums from the 23,058 1+ parr estimated above Leards in 1994 were calculated as 0.134% based on direct Leards counts, and 0.338\% based on adjusted Leards counts. Return rate for the entire Morell from the estimated population of 22,765 1+ parr in August-September 1994 was 1.05\%.

Exploitation rates

Exploitation rates of Morell salmon were estimated for 1995 as the quotient of the retained catch from the stub survey (Table 6) and the run estimate from the markrecapture experiment. Calculated exploitation rate was 34.0% in 1994, 34.7\% in 1995, and 23.5\% in 1996 (Table 18). Exploitation rates based on fishway counts on the Valleyfield were 33.3, 27.6, and 48.0% in the three years, respectively.

Conservation requirements

Potential spawning by Atlantic salmon released from the Leards trap rose sharply in the mid-1980s but fell again in the 1990s (Table 19, Fig. 18). However, application of the correction factor to Leards counts for 1993-1996 boosted estimated egg deposition to the midrange of the time series. Egg deposition derived from adjusted Leards counts was 82% of assumed conservation requirement in 1994, but rose to 160% in 1995 and 243% in 1996. These depositions are not adjusted for angling harvest, as harvest estimates specific to the Morell above Leards are not available.

Total spawning for the river was estimated for 19941996 using the 1995 mark-recapture run estimate adjusted for Leards counts. Spawning escapement after sport and native harvests produced estimated egg depositions equivalent to 158,166 , and 270% of spawning requirements in 1994-1996, respectively (Table 20). There are substantial uncertainties in these estimates, but it appears safe to say that 1996 egg deposition at least met conservation requirements and likely exceeded 1995 depositions.

Table 20 also presents returns, escapements, and potential egg depositions in the Mill, Dunk, West, and Valleyfield Rivers. None of these rivers has met conservation requirements in years for which data are available. The best result was 70% of conservation
requirement in the Mill River in 1995. Despite its record run, the Valleyfield attained only 16% of requirements in 1996.

Ecological considerations

Salmon are vulnerable to high water temperatures in warm summers. The summer of 1996 was cooler than the previous two, and water temperatures did not pose problems for salmon (Fig. 19). Caissie (1997) provides further details of 1996 hydrological conditions.

Forecasts/prospects

The Morell salmon run consists of wild and hatcheryreared fish, with the latter predominating. This paper has reviewed data on electrofishing densities and stocking rates in relation to returns of wild and hatchery fish, respectively. However, no relations have emerged that have predictive value for future returns. There is therefore no formal basis for predicting returns in 1997. Clearly, any major decline in wild juvenile populations or stocking might portend lower returns. As no such decline occurred in 1996, the most likely prospect is that returns will be similar to those of 1996.

Management considerations

Despite intensive stocking and habitat enhancement since the early 1980s, the Morell River supports only modest runs of wild salmon. Potential wild runs under various scenarios are calculated in Table 21. The estimated run in 1996 was 239 small and 31 large salmon. This estimate for small wild fish was 57% of recent estimated harvests, which means that the wild run could not meet angler expectations even if all fish were taken. In the absence of exploitation, the estimated 1996 run would attain only 43% of conservation requirements.

Wild runs projected from smolt fence estimates and electrofishing densities ranged from 11 to 85% of conservation requirements.

This analysis suggests that, under current conditions, wild salmon production on the Morell cannot be expected to meet angler expectations and conservation requirements.

The mean estimated Morell harvest for 1995-1996 was 423 small salmon. The wild run needed to supply this harvest can be calculated by assuming that all eggs are deposited by large females and that small male salmon fill the male deficit of large salmon. A run of 530 small and 147 large salmon would just meet conservation requirements and produce a harvestable surplus of 451 small salmon under the above circumstances. This run is 2.5 times as large as that estimated for 1996.

Factors limiting wild salmon production on Prince Edward Island are unknown, but presumably involve quality of physical habitat. Most rivers on Prince Edward Island have high silt loading which is deleterious to salmonid survival and reproduction. Siltation threats are currently increasing due to the expansion of row crop agriculture. In addition, salmonids face risks from
intensive use of pesticides, a risk which was highlighted in 1996. by the second complete kill in two years of juvenile salmon in Profitts Pond. The degradation of Prince Edward Island fish habitat by siltation and pesticide contamination negates much of the enhancement work undertaken by volunteer groups and government agencies. If these pollutants could be kept in check, rivers would have a better chance of building runs of wild salmon that would satisfy angler demands and meet conservation requirements.

It is clear that the Morell and other PEI rivers will continue to rely on stocking to supply their salmon runs. For this reason, and because escapement on the Morell exceeds currently defined conservation requirements, no change to current management is recommended.

Research recommendations

The method of assessing the Morell River salmon run should be reviewed. The 1995 mark-recapture experiment provided the only basis for estimating the Morell's total run, but this work will not likely be repeated because of its cost and a perceived risk of delaying upstream migration. The mark-recapture experiment at Leards and Mooneys in 1996 provided a means of estimating numbers of salmon entering Leards Pond, but comparison of adjusted Leards numbers with earlier figures is problematic because trapping efficiencies in earlier years are not known. Alternative approaches that would permit estimates of total run should be investigated. This might include seining or a partial fence on the lower river, with recaptures at Leards or Mooneys. The assessment scheme must take into account changing priorities and interests as government fish hatcheries are divested to private groups.

Acknowledgments

This assessment is a cooperative venture, involving the cooperation of dozens of individuals, many of whom worked long hours without pay under adverse conditions. For field work, data, advice, and comments, I am indebted to Randy Angus, Catherine Baquette, Dave Biggar, Shannon Campbell, John Clarey, Cindy Crane, Carla Cushing, Kevin Davidson, Bob Dingwell, Curtis Dingwell, Jeff Dingwell, Kevin Dingwell, Todd Dupuis, Robbie Gallant, Dave Groman, Chris Gunn, Cynthia Hickox, Falk Huettmann, Ben Hoteling, Mathew Hughes, Daryl Guignion, S. Kelly, Germaine Kolisnyk, Samuel Landry, Joey Lannigan, Inis LeBlanc, Jean Lemoine, Charlie MacAdam, Colin MacAdam, Gary MacAdam, Kevin MacAdam, Tyler MacAdam, Vonda MacDonald, Rosie MacFarlane, Todd MacLean, Allie MacLennan, Gordon MacMillan, John MacMillan, Francis MacLean, Alan Mason, Randall Morgan, Mike Murray, Dwaine Oakley, Thomas Oakley, Rosalyn Sellick, Art Smith, Bruce Smith, Jason Stewart, Melissa White, and D. Wile.

Literature Cited

Bielak, A.T., R.W. Gray, T.G. Lutzac, M.J. Hambrook, and P. Cameron. 1991. Atlantic salmon restoration
in the Morell River, P.E.I., and the Nepisiguit, N.B., Canada. Pp. 122-139 in D. Mills (Ed.). Proceedings of a joint conference on strategies for the rehabilitation of salmon rivers, London, 1990. The Atlantic Salmon Trust, Institute of Fisheries Management, and the Linnean Society of London.
Cairns, D.K. 1996. Effort, harvest, and expenditures of trout and salmon anglers on Prince Edward Island in 1994, from a mail-out survey. Can. Manu. Rep. Fish. Aquat. Sci. No. 2367.
Caims, D.K., R. Angus, M, Murray, and K. Davidson. 1996. Status of Atlantic salmon in the Morell, Mill, Dunk, West, and Valleyfield Rivers, Prince Edward Island, in 1995. DFO Atlantic Fisheries Research Document 96/120.
Cairns, D.K., K. Davidson, and R. Angus. 1995. Status of Atlantic salmon in the Morell, Mill, Dunk, West, and Valleyfield Rivers, Prince Edward Island, in 1994. DFO Atlantic Fisheries Research Document 95/100.
Cairns, D.K., K. MacAdam, and D.L. Guignion. 1997. The Atlantic salmon smolt exodus from the Morell River in 1995. Technical Reports of Prince Edward Island Environmental Science No. 2.
Caissie, D. 1997. Hydrological conditions for Atlantic salmon rivers in the Maritime Provinces in 1996. DFO Atlantic Fisheries Research Document 97/. In prep.
Davidson, K.G. and R. Angus. 1994. An update on the status of salmonid resources in the Morell, Valleyfield, Dunk, West, and Mill Rivers - Prince Edward Island. DFO Atlantic Fisheries Research Document 94/4.
Davidson, K.G., and A.T. Bielak. 1992. An update on the biological characteristics and status of Atlantic salmon in the Morell River, Prince Edward Island. Can. Atl. Fish. Sci. Adv. Comm. Res. Doc. 92/40.
Ducharme, L.J.A. 1977. Atlantic salmon enhancement on the Morell River, Prince Edward Island. Dept. Fisheries and the Environment Tech. Rep. Mar/T-772.

Dunfield, R.W. 1985. The Atlantic salmon in the history of North America. Can. Spec. Publ. Fish. Aquat. Sci. No. 80.
Gazey, W.J., and M.J. Staley. 1986. Population estimation from mark-recapture experiments using a sequential Bayes algorithm. Ecology 67:941-951.
MacFarlane, R., and D.L. Guignion. 1992. 1991 survey of resident Atlantic salmon anglers on Prince Edward Island. Unpubl. report, Morell River Management Coop .
MacFarlane, R., and D.L. Guignion. 1993. Survey of Atlantic salmon anglers on Prince Edward Island in 1992. Unpubl. report, Morell River Management Coop.
O'Neil, S.F., and D.A.B. Swetnam. 1984. Collation of Atlantic salmon sport catch statistics, Maritime Provinces, 1970-79. Can. Data Rep. Fish. Aquat. Sci. No. 481.
O'Neil, S.F., and D.A.B. Swetnam. 1991. Collation of Atlantic salmon sport catch statistics, Maritime

Provinces, 1951-1959. Can. Data Rep. Fish. Aquat. Sci. No. 860.
Smith, S.J. 1981. Atlantic salmon sport catch and effort data, Maritimes Region, 1951-79. Can. Data Rep. Fish. Aquat. Sci. No. 258.
Swetnam, D.A.B., and S.F. O'Neil. 1984. Collation of Atlantic salmon sport catch statistics, Maritime Provinces, 1980-83. Can. Data Rep. Fish. Aquat. Sci. No. 450.
Swetnam, D.A.B., and S.F. O'Neil. 1985. Collation of Aflantic salmon sport catch statistics, Maritime Provinces, 1960-69. Can. Data Rep. Fish. Aquat. Sci. No. 533.
Zippin, C. 1958. The removal method of population estimation. J. Wildl. Manage. 22:82-90.

Table 1
Atlantic salmon sport catches on the Morell River, 1955-1996.

Year	Salmon caught and retained			Salmon caught and released			Fishing effort (rod-days)	Licences issued on PEI
	Small	Large	Total	Small	Large	Total		
1955 ${ }^{\text {a }}$			21				18	
1956			29				87	
1957			3				52	
1958			9				52	
1959			4				34	
1960			4				44	
1961			15				45	
1962			13				50	
1963			51				280	
1964			12	\because			46	
1965			12				115	
1966			10				N/A	
1967			26				206	
1968			10				192	
1969			12				214	
1970	0	13	13				204	
1971	0	0	0	,			83	
1972	0	7	7				138	
1973	2	0	2				168	
1974	0	2	2				78	
1975	0	0	0				0	
1976	6	1	7				250	
1977	0	0	0				105	
1978	0	0	0				60	
1979	1	2	3				54	
1980	5	1	6				119	
1981	108	4	112				914	
1982	73	8	81				2,088	
1983	7	2	9				686	321
1984	7	0	7				675	68
1985	47	N/A	47				1,007	117
1986	236	N/A	236				2,725	279
1987	476	N/A	476				N/A	461
1988	643	N/A	643				4,994	719
1989	167	N/A	167				4,506	646
1990	768	N/A	768				9,000	793
$1991{ }^{\text {b }}$	657	N/A	657	1,033	164	1,197	11,552	716
1992	781	N/A	781			1,044	11,700	928
1993	N/A	N/A	N/A				N/A	829
1994	89	0	89	111	99	210	4,911	587
$1995{ }^{\text {c }}$	469	1	470	146	95	241	5,073	633
1996	414	0	414	270	150	420	4,156	697

${ }^{2}$ Figures for 1955-1990 are estimates by DFO fisheries officers (Smith 1981; O'Neil and Swetnam 1984, 1991; Swetnam and O'Neil 1985, 1985; Bielak et al. 1991).
${ }^{\mathrm{b}}$ Figures for 1991, 1992, and 1994 are from angler mail-out surveys (MacFarlane and Guignion 1992, 1993; Cairns 1996).
${ }^{\text {c }}$ Figures for 1995-1996 are angler harvest estimated from licence stub surveys, plus native harvest.

Table 2
Fishing seasons on the Morell River, 1996

Area	Includes sites	Period ${ }^{\text {a }}$						
		$\begin{aligned} & 15 \mathrm{Apr}- \\ & 28 \mathrm{Apr} \end{aligned}$	29 Apr- 12 May $^{\text {b }}$	$\begin{aligned} & 9 \text { May- } \\ & 31 \text { May } \end{aligned}$	$\begin{aligned} & 1 \text { Jun- } \\ & 15 \text { Sep } \end{aligned}$	$\begin{aligned} & 16 \text { Sep- } \\ & 14 \text { Oct } \end{aligned}$	$\begin{aligned} & 15 \text { Oct- } \\ & 31 \text { Oct } \end{aligned}$	1 Nov30 Nov
From river mouth to just above MacKays	Andersons, Morell, MacKays	T	T	T	T, S	-	-	-
From just above MacKays to Forks	Indian Bridge, Mooneys Bridge, Grants	T	-	T	T, S;ff	S;ff,bo	S;ff,bo	-
West Branch between the Forks and just below Leards Pond	Leard's Bridge, Landing Pool	T	-	T	T,S;ff	S;ff;bo	-	-
Leard's Pond	Leard's Pond	T	-	T	T,S;ff	S;ff,bo	S;ff,bo	S;ff,bo
West Branch above Leards Pond	West Branch stream crossings on Peakes Road (Route 320), Pisquid Pond	T	-	T	T.S	-	-	-
East Branch between the Forks and Hazelgreen Road (Route 329)	Cranes	T	-	T	T,S;ff	S;ff;bo	-	-
East Branch above Hazelgreen Road	Kneabones, Everglades, Martinvale	T	T	T	T, S	-	-	-

${ }^{2} T$ = open season for trout, $\mathrm{S}=$ open season for Atlantic salmon, ff = fly fishing only, bo = barbless hooks only
${ }^{b}$ Closed period for the release of stocked salmon smolts

Table 3
Number of salmon required to produce 2.4 eggs per m^{2} of non-tidal, non-impounded water in PEI salmon rivers, based on the biological characteristics of Morell River salmon.

	Morell	Morell above Leard's	Mill	Dunk	West	Valleyfield	Total
River area ($\left.\mathrm{m}^{2}\right)^{\text {a }}$	237,176	74,727	58,300	193,078	184,500	127,500	800,554
Eggs required at 2.4 eggs per m^{2}	569,222	179,345	139,920	463,387	442,800	306,000	1,921,330
Mean fecundity ${ }^{\text {b }}$	4,963	4,963	4,963	4,963	4,963	4,963	
Number of large female salmon required	115	36	28	93	89	62	387
Percent of large salmon that are female ${ }^{\text {c }}$	72	72	72	72	72	72	361
Number of large male salmon required	44	14	11	36	35	24	150
Total number of large salmon required	159	50	39	129	124	86	537
Male deficit (number of females - number of males)	70	22	17	57	55	38	237
Percent of small salmon that are male ${ }^{\text {c }}$	83	83	83	83	83	83	413
Total number of small salmon required, if small salmon meet the male deficit	85	27	21	69	66	46	288
Total number of salmon required	244	77	60	199	190	131	825

${ }^{\text {a }}$ River area for the Valleyfield from Davidson and Angus 1994; other river areas as compiled by Cairns et al. 1995
${ }^{\text {b }}$ From Davidson and Bielak 1992

Table 4
Numbers of juvenile Atlantic salmon stocked in the Morell River, 1990-1996, and their stages at release. (Stocking numbers for 1978-1989 are given by Cairns et al. 1996.)

Year	Genetic stock	Rearing location	Numbers released and location ${ }^{\text {ab }}$				Total released
			Parr		Smolt		
			1+	2+	1+	2+	
1990	Morell mixed	Mooneys Pond		398 Mo		48,475 Mo	59,810
		Profitts Pond		681 Gr		10,256 Gr	
1991	Morell mixed	Mooneys Pond		18 Mo		24,638 Mo	36,496
				3 Ma		1,997 Ma	
				2,032 Gr		7,808 Gr	
1992	Morell mixed	Mooneys Pond	2,200 ${ }^{\text {c Mo }}$	339 Mo		35,524 Mo	47,822
				29 Pe		2,342 Pe	
				$1,483 \mathrm{Gr}$		2,468 Ma	
						$3,437 \mathrm{Gr}$	
1993	Morell mixed	Cardigan SEC			14,372 Mo		19,379
					5,007 Pe		
1994	Morell mixed	Mooneys Pond		$136^{\mathrm{d}} \mathrm{Mo}$		10,814 ${ }^{\text {d }}$ Mo	26,000
				7 Ma		4,360 Ma	
				594 Gr		10,089 Gr	
1995	Morell mixed	Mooneys Pond ${ }^{\text {e }}$		1,270 Mo		6,552 Mo	15,568
				503 Ca		2,230 Ca	
				89 Gr		$4,924 \mathrm{Gr}$	
1996	Morell mixed	Mooneys Pond ${ }^{\text {f }}$		5,106 Mo		37,585 Mo	42,691

${ }^{\text {a }}$ Release locations are Mooneys Pond outlet (Mo), Peakes Road Bridge (Pe), Old Cardigan Road (Ca), MacAuleys (Ma), and Grants Bridge (Gr)
${ }^{\text {b }}$ All fish were released in April or May except $1+$ parr which were released in the fall.
${ }^{\text {c }}$ These fish were the survivors of a die-off of salmon in Mooneys Pond in the summer of 1992. Numbers are approximate.
${ }^{d}$ Numbers given are actual counts $+40 \%$ in order to account for fish released without counting.
${ }^{\text {e }}$ Includes fish counted at the outlet to Mooneys Pond, and estimations derived from counts at the Indian Bridge smolt fence (Cairns et al. 1997).
${ }^{f}$ Fish were released into the outlet to Mooneys Pond without counting. Numbers are based on a 65% survival rate of the 72,3971+ parr placed in the pond in June 1995, removals to other stocking sites, and the smolt:parr ratio recorded in 1995.

Table 5
Stocking dates and numbers of juvenile Atlantic salmon stocked in the Mill, Dunk, West, Midgell, and Valleyfield Rivers, 1990-1996. (Stocking numbers for 1985-1989 are given in Cairns et al. 1996).

Year	Rearing location	Stage stocked	$\begin{aligned} & \text { Date } \\ & \text { stocked } \end{aligned}$	Numbers stocked				
				Mill River	Dunk River	West River	Midgell River	Valleyfield River
1990	Cardigan SEC	0+ parr	16 Nov-10 Dec	0	0	0	0	89,003
		1+ smolt	27-30 May	0	0	0	0	738
	Profitts Pond	2+ parr	4-8 May	25	0	0	0	0
		2+ smolt	4-8 May	3,082	0	0	0	0
1991	Cardigan SEC	$0+$ parr	13-15 Nov	0	0	0	0	55,723
		0+ parr	20-23 Nov	0	0	50,750	0	0
		$1+$ smolt	7 May-5 June	0	0	0	0	5,259
	Profitts Pond	2+ parr	6-10 May	159	0	0	0	0
		2+ smolt	6-10 May	1,873	717	0	0	0
	Mooneys Pond	2+ smolt	10-11 May	0	1,300	0	0	0
1992	Cardigan SEC	0+ parr	12 Nov	0	0	0	0	32,494
		2+ smolt	13-16 May	0	0	0	0	1,693
	Profitts Pond	2+ parr	4-5 May	169	0	0	0	0
		$2+$ smolt	4-5 May	3,657	0	1,260	0	0
	Mooneys Pond	1+ parr	21 Sep-1 Oct	0	0	0	0	10,014
			28-29 Sep	0	0	10,173	0	0
		2+ smolt	13-16 May	0	0	0	0	10,307
			11-20 May	0	0	10,221	0	0
1993	Cardigan SEC	0+ parr	13 Oct	0	0	0	0	14,467
			1 Dec	0	0	0	20,000	0
		1+ parr	16-23 Jun	0	0	0	0	28,898
	Profitts Pond	1+ parr	28 May-22 Jun	0	17,225	0	0	0
		2+ parr	3-4 May	200	0	0	0	0
		2+ smolt	3-4 May	2,772	5,325	0	0	0
1994	Cardigan SEC	0+ parr	Nov-97	0	0	0	20,000	20,000
		1+ smolt	9-10 May	0	0	0	0	5,896
			12-15 May	0	0	3,965	0	0
	Profitts Pond	2+ parr	2-3 May	127	341	209	0	0
		$2+$ smolt	2-3 May	2,584	7,259	3,355	0	0
	Mooneys Pond	$2+$ smolt	28 Apr-7 May	0	0	0	0	1,980
1995	Cardigan SEC	1+ parr					$9,367^{\text {a }}$	11,585 ${ }^{\text {b }}$
		2+ smolt	19 Apr-5 May			5,037		6,220
	Profitts Pond	2+ parr	1-2 May	364	280			
		$2+$ smolt	1-2 May	3,923	5,179			
	Mooneys Pond	2+ parr	13 May			2,915		3,937
		2+ smolt	13 May			586		1,330
	Gilberts Pond	2+ smolt	Spring					$4,030^{\text {c }}$
1996	Mooneys Pond	2+ parr	24 Apr			212		140
		2+ smolt	24 Apr			2,005		2,010
	Munns Pond	2+ smolt	25-26 Apr			4,754		5,962
	Profitts Pond	$2+$ smolt	29-30 Apr	1,065	11,350			
	Cardigan SEC	1+ smolt	22 Apr					1,733
		1+ parr	1 Nov				8,564	
	Gilberts Pond	2+ smolt	Spring					5,460 ${ }^{\text {c }}$

[^0]Table 6
Mailing and return statistics for the PEI salmon licence stub survey, 1995 and 1996.

	1995	1996
Number of licences issued	633	697
Number of licence records available for keypunching	633	646
Number of licence records indicating province/state	645	
Number of licence records indicating purchase by PEI residents	585	
Number of licence records indicating purchase by Can. residents outside PEI	37	
Number of licence records indicating purchase by US residents	23	
Number of stubs returned before 13 Dec	30	38
Percent of stubs returned before 13 Dec	4.7	5.5
Number of stubs returned after 13 Dec	29	25
Total number of stubs returned	59	63
Percent of stubs returned	9.3	9.0
Number of licence records with legible addresses	614	634
Number of reminder cards mailed	589	596
Number of reminder cards returned as undeliverable	35	28
Number of reminder cards returned by anglers	168	175
Percent of reminder cards retumed by anglers	28.5	29.4
Number of anglers who returned both stub and reminder cards	6	1
Total number of non-redundant cards returned	221	237
Number of non-redundant cards as a percent of licences issued	34.9	34.0
Number of non-redundant cards with full catch and effort data	200	214
Non-redundant cards with full catch and effort data as a percent of licences issued	31.6	30.7
Non-redundant cards with full data which reported fishing	161	172
Percent fishing	80.5	80.4

Table 7
Salmon fishing effort and harvest in Prince Edward Island rivers, 1994-1996.

	Morell			Mill			Trout			Dunk		
	$1994{ }^{\text {a }}$	$1995{ }^{5}$	1996^{6}	1994	1995	1996	1994	1995	1996	1994	1995	1996
Percent of respondents who fished river		72	66		2	7		3	7		4	7
Estimated total number of anglers who fished the river		453	462		9	52		19	46		25	52
Mean number of rod-days per angler who fished the river		11.2	9.0		9.0	4.2		13.5	6.1		12.9	6.8
Estimated total rod-days		5,073	4,156		85	218		256	277		326	352
Mean catch per rod-day												
Small salmon kept		0.089	0.096		0.000	0.119		0.025	0.024		0.000	0.009
Small salmon released		0.029	0.065		0.000	0.075		0.012	0.000		0.010	0.306
Large salmon released		0.019	0.036		0.000	0.030		0.012	0.024		0.000	0.037
All salmon		0.136	0.197		0.000	0.224		0.049	0.047		0.010	0.352
Estimated total catch												
Smali salmon kept	89	449	397	11	0	26	5	6	7	11	0	3
Small salmon released	111	146	270	$N A^{\text {c }}$	0	16	6	3	0	38	3	107
Large salmon released	99	95	150	0	0	7	0	3	7	5	0	13
All catches	299	690	818	NA	0	49	11	13	13	54	3	124
Native harvest												
Small salmon		19	17									
Large salmon		1	0									
Total lethal harvest	299	469	414	NA	0	26	11	6	7	54	0	3
		West			alleyfield ${ }^{\text {d }}$			ontague ${ }^{\text {d }}$			All rivers	
	1994	1995	1996	1994	1995	1996	1994	1995	1996	1994	1995	1996
Percent of respondents who fished river		16	24		4	12		1	0		80	81
Estimated total number of anglers who fished the river		101	166		22	85		6	0		506	563
Mean number of rod-days per angler who fished the river		12.7	6.1		28.1	5.5		1.5	NA		15.1	11.5
Estimated total rod-days		1,282	1,006		624	466		9	0		7,669	6,478
Mean catch per rod-day												
Small salmon kept		0.010	0.061		0.025	0.077		0.000	NA		0.063	0.082
Small salmon released		0.030	0.055		0.015	0.049		0.333	NA		0.027	0.073
Large salmon released		0.017	0.042		0.025	0.042		0.000	NA		0.018	0.037
All salmon		0.057	0.159		0.066	0.168		0.333	NA		0.109	0.192
Estimated total catch												
Small salmon kept	20	13	62	5	16	36		0	0	142	484	534
Small salmon released	38	38	55	28	9	23		3	0	NA	209	472
Large salmon released	NA	22	42	5	16	20		0	0	NA	139	238
All catches	NA	73	160	38	41	78		3	0	NA	832	1244
Native harvest 0 NA 203120												
Small salmon											19	17
Large salmon											1	0
Total lethal harvest	NA	13	62	38	16	36		0	0	NA	504	551

${ }^{1} 1994$ data are from a mail-out survey (Cairns 1996).
1995-1996 data are from licence stub surveys.
${ }^{\text {c }}$ Harvest estimates that are implausibly high (Cairns et al. 1996) are omitted from this table.
${ }^{\top} 1994$ Montague data are included with those of the Valleyfield.
Table 8
Atlantic salmon counted at Leards fishway and released into Leards Pond after broodstock removals, 1981-1996.

Year	Small salmon						Large salmon						All salmon				
	Counted in trap					Released in pond	Counted in trap					Released in pond	Counted in trap				Released in pond
	Wild	Hatchery	Total	$\begin{gathered} \% \\ \text { wild } \end{gathered}$	$\begin{gathered} \% \\ \text { small } \end{gathered}$		Wild	Hatchery	Total	$\begin{gathered} \text { \% } \\ \text { wild } \end{gathered}$	$\begin{gathered} \% \\ \text { large } \end{gathered}$		Wild	Hatchery	Total	$\begin{gathered} \text { \% } \\ \text { wild } \end{gathered}$	
Actual counts																	
1981	0	39	39	0.0	86.7	39	6	0	6	100.0	13.3	6	6	39	45	13.3	45
1982	6	27	33	18.2	91.7	33	1	2	3	33.3	8.3	3	7	29	36	19.4	36
1983	1	1	2	50.0	50.0	2	0	2	2	0.0	50.0	2	1	3	4	25.0	4
1984	3	2	5	60.0	55.6	5	2	2	4	50.0	44.4	4	5	4	9	55.6	9
1985	2	12	14	14.3	93.3	14	1	0	1	100.0	6.7	1	3	12	15	20.0	15
1986	1	619	620	0.2	99.0	278	2	4	6	33.3	1.0	3	3	623	626	0.5	281
1987	2	1,166	1,168	0.2	94.5	658	2	66	68	2.9	5.5	54	4	1,232	1,236	0.3	712
1988	8	1,386	1,394	0.6	94.1	1,290	2	87	89	2.2	6.0	20	10	1,471	1,481	0.7	1,310
1989	12	323	335	3.6	72.8	330	0	125	125	0.0	27.2	48	12	448	460	2.6	378
1990	44	365	409	10.8	86.7	368	4	59	63	6.3	13.3	44	48	424	472	10.2	412
1991	33	294	327	10.1	89.3	280	11	28	39	28.2	10.7	14	44	322	366	12.0	294
1992	64	843	907	7.1	95.2	824	8	38	46	17.4	4.8	14	72	881	953	7.6	838
1993	44	584	628	7.0	98.3	461	0	11	11	0.0	1.7	0	44	595	639	6.9	461
1994	8	28	36	22.2	55.4	2	2	27	29	6.9	44.6	3	10	55	65	15.4	5
1995	14	172	186	7.5	92.5	130	5	10	15	33.3	7.5	2	19	182	201	9.5	132
1996	31	188	219	14.2	88.0	169	4	26	30	13.3	12.0	20	35	214	249	14.1	189
Adjusted counts ${ }^{\text {a }}$																	
1994	20	70	90			56	5	68	73			47	25	138	163		103
1995	35	430	465			409	13	25	38			25	48	455	503		434
1996	78	470	548			498	10	65	75			65	88	535	623		563
Totals and means ${ }^{\text {b }}$																	
Total	273	6,049	6,322			4,883	50	487	537			238	323	6,534	6,857		5,121
Mean	17.1	378.1	395.1	4.3	92.2	305.2	3.1	30.4	33.6	9.3	7.8	14.9	20.2	408.4	428.6	4.7	320.1

${ }^{1}$ Estimated number of fish entering Leards Pond, based on the fishway trapping efficiency calculated for 1996 (40.0\%) ${ }^{\text {b Based on actual counts }}$

Table 9
Biological characteristics of fish recaptured at the pool below Mooneys Pond,
and mark-recapture estimates of salmon numbers on the Morell River, 1996

	Number	Percent
Counts at Leards, 31 May-31 July		
Small salmon counted	189	
Large salmon counted	18	
Small salmon removed for broodstock	50	
Large salmon removed for broodstock	10	
Dye-marked fish put into pond		
Small	139	
Large	8	
Total	147	
Captures at pool below Mooneys Pond		
Number of salmon		
Taken by natives in August	17	
With dye-marks, harvested by natives	4	23.5\%
Captured on 2 October, and V-notched	8	
Captured on 5 October	99	
Captured on 5 October with V-notches	4	4.0\%
Captured on 2-5 October - total ${ }^{\text {a }}$	103	
Captured on 2-5 October - small	99	
Captured on 2-5 October - large	4	
Captured on 2-5 October with dye marks - total	34	33.0\%
Captured on 2-5 October with dye marks - small	32	
Captured on 2-5 October with dye marks - large	2	
Percent of marked fish which were recaptured at Mooneys 2-5 Oct		
Small		23.0\%
Large		25.0\%
Overall		23.1\%
Timing and age of October captures at Mooneys		
Fish marked at Leards 31 May-30 June	53	
Recaptured at Mooneys	15	28.3\%
Fish marked at Leards July	94	
Recaptured at Mooneys	19	20.2\%
Fish marked at Leards August-November	42	
Recaptured at Mooneys	0	0.0\%
Small salmon aged ${ }^{\text {b }}$	6	
Age 2.1+	3	50.0\%
Age 3.1+	2	33.3\%
Age 4.1+	1	16.7\%
Mark-recapture estimates		
Number of salmon in pool below Mooneys		
Baysian median	285	
95\% confidence limits	105-933	
Fish entering Leards Pond, 31 May-31 July		
Estimated from native recaptures		
Baysian median	868	
95\% confidence limits	368-2558	
Estimated from recaptures on 2 \& 5 Oct		
Baysian median	458	
95\% confidence limits	354-622	
Fish arriving at Leards, 31 May-31 July (from October recaptures) (Estimate of fish entering Leards Pond + broodstock removals)	518	
Capture efficiency (total counted/total estimated arrivals)	0.400	
Number of salmon counted at Leards after 31 July	42	
Broodstock removals after 31 July	0	
Fish arriving at Leards after 31 July (based on capture efficiency)	105	
Estimated total arriving at Leards	623	
Estimated total entering Leards Pond	563	

[^1]Table 10
Counts of Atlantic salmon and brook trout at counting facilities on the Mill, Dunk, West, and Valleyfield Rivers, 1986-1996

Year	Direction	Mill River					Dunk River ${ }^{\text {a }}$						West River					Valleyfield River				
		Trout	Salmon				Trout	Salmon					Trout	Salmon				Trout	Salmon			
			Adult			Juvenile		Adult				Juvenile		Adult			Juvenile		Adult			Juvenile
			Small	Large	Total			Small L	Large		otal			Small	Large	Total		Small Large Total				
1986	Upstream																	723			0	
1987	Upstream						937											-			-	
1988	Upstream						1,507											-			-	
1989	Upstream						4,189						-	31	19	50		1,220			0	
1990	Upstream	2,594			176		-						3,935	25	23	48		2,173	36		36	
	Downstream	-			-		-						2,986			-		-			-	
1991	Upstream	4,221			-		1,733						-	-		-		1,565	5		5	
	Upstream	-			-		1,132						-			-		741	25		25	
1993	Upstream	219	17	5	22		1,295				0		$2,151$	$\begin{array}{r} 250 \\ (248)^{b} \end{array}$	$\begin{array}{r} 12 \\ (12) \end{array}$	$\begin{array}{r} 262 \\ (260) \end{array}$		1,027	84		84	
	Downstream	-			-		-				-		1,006			10	66	-			-	
$1994{ }^{\text {c }}$	Upstream	1,947	$\begin{array}{r} 11 \\ (11) \end{array}$	0	$\begin{aligned} & 111 \\ & (11) \end{aligned}$		N/A				N/A		2,072	$\begin{array}{r} 8 \\ (4) \end{array}$	$\begin{array}{r} 6 \\ (6) \end{array}$	$\begin{gathered} 14^{\mathrm{d}} \\ (10) \end{gathered}$		1,609	15	7	22	
	Downstream									1				1	1	2		-			-	
1995	Upstream	320	3	27	30		121	40	0		40							1,401	58	4	62	95
	Downstream						32	2	0	0	2	11						39	3	0	3	19
1996	Upstream																	977	75	8	83	23
	Downstream																	51	2	0	2	10

${ }^{a}$ Counts from fish fence above Johnston's Bridge in 1995; counts from Scales Pond fishway in all other years.
${ }^{\text {b }}$ Brackets indicate hatchery-reared salmon
${ }^{c}$ Counting facilities operated from 30 May to 17 September (West River), from 27 May to 27 October (Mill River), and from 29 May to 3 November (Valleyfield River).
${ }^{d}$ Every second conduit was removed from the counting fence, allowing some small salmon to pass through the fence.

Table 11
Counts of Attantic salmon redds in Prince Edward Island rivers, 1990-1996.

River	Sector	Number of salmon redds						
		1990	1991	1992	1993	1994	1995	996 ${ }^{\text {a }}$
Morell	Main Branch below Forks + West Branch from Forks to Leards Dam	89	204	145	125	65	104	75
	West Branch above Leards Pond	158	177	344	138	17	$46^{\text {b }}$	145
	South Branch	207	118	306	77	$45^{\text {b }}$	144	163
	East Branch	202	138	122	37	35	15	55
	Total above Leards Pond	365	295	650	215	N/A	190	308
	Total	656	637	917	377	N/A	309	438
Mill	Bridge on Rte 143 (Maggies Hole) to Roadside Hole, where the river comes close to road 2.01 km upstream from the Howlan railway bridge (Transects 10-102)	N/A	N/A	N/A	100	N/A	N/A	N/A
	Roadside Hole to Howlan railway bridge (Transects 102-169)	N/A	N/A	N/A	55	N/A	N/A	N/A
	Howlan railway bridge to the head of tide in Bloomfield Park (Transects 169-336)	N/A	N/A	N/A	156	144	N/A	N/A
	Total	N/A	N/A	N/A	311	N/A	N/A	N/A
Trout	From railroad bridge just below Leards Pond to base of the former Getsons Dam (Transects 1-180)	N/A	N/A	33	58	33	N/A	42
Dunk	Head of tide to Scales Pond	N/A	N/A	N/A	6	N/A	N/A	N/A
West	Sector 1 - Head of tide to first bridge above Crosbys Pond	6	N/A	15	6	17	13	N/A
	Sector 2 - First bridge above Crosbys Pond to bridge on Rte. 249 at Green Bay	41	19	168	77	25	44	N/A
	Sector 3 - Bridge on Rte 249 at Green Bay to bridge on Rte 249 at Emyvale	N/A	4	91	59	N/A	N/A	N/A
	Sector 4 -Bridge on Rte. 249 at Emyvale to the point where the main branch crosses Rte. 13 at Brookvale; also the tributary to the bridge on Rte. 235	N/A	5	N/A	22	17	N/A	N/A
	Sector 5 - From bridge on Rte. 235 at Brookvale, following the east branch to the bridge on Rte. 225 at Hartsville	N/A	0	N/A	N/A	N/A	N/A	N/A
	Sector 6 - From Bridge at Rte. 235 to Carraghers Pond, just above Rte. 244.	N/A	2	N/A	0	N/A	N/A	N/A
	Sector 7 - From the head of Carraghers Pond to the bridge at Rte. 245	N/A	0	N/A	N/A	N/A	N/A	N/A
	Sector 8 - Howells Brook from the bridge on Rte. 245 to the bridge on Rte. 244	N/A	3	N/A	0	0	N/A	N/A
Bristol Creek		N/A	N/A	N/A	41	N/A	N/A	49
Midgell	From Pius MacDonalds Pond to head of tide	N/A	N/A	N/A	77	N/A	N/A	73
St. Peters		N/A	N/A	N/A	93	N/A	N/A	30
Naufrage	From Larkins Pond to head of tide	N/A	N/A	N/A	32	N/A	N/A	88
North Lake Creek		N/A	29	200	36	N/A	N/A	N/A

${ }^{\text {a Data supplied by D.L. Guignion, D. Biggar, C. Crane, T. Dupuis, and R. MacFarlane }}$
${ }^{\text {b }}$ Minimum count, some fish ascended the river after the redd survey was completed

Table 12
Atlantic salmon and brook trout electrofishing densities on the Morell River, August-September 1996.

Site	Date	Area of site (m^{2})	Atlantic salmon													Brook trout						
			Fish captured in sweep							Zippin estimates						Fish captured in sweep				Zippin estimates		
			1	2	3	Total	\% age distribution ${ }^{\text {a }}$			$\begin{aligned} & \text { Total } \\ & \text { pop. } \\ & \text { in site } \end{aligned}$	$\begin{gathered} 95 \% \\ \mathrm{CI}, \\ \pm \\ \hline \end{gathered}$	Fish/100 m ${ }^{2}$ within site				1	2	3	Total	Total pop. in site ${ }^{\text {c }}$	$\begin{gathered} 95 \% \\ \mathrm{Cl} \\ \pm \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { fish/ } \\ 100 \mathrm{~m}^{2} \end{gathered}$
							$0+$	1+	2+			0+	1+	2+	Total							
Rowells Rifile	4 Sep	337	13	8	3	24	29.2	62.5	8.3	27.7	NA	2.6	5.6	0.7	8.2	8	5	2	15	17.6	NA	5.2
Forks	21 Aug	406	44	25	9	78	23.1	61.5	15.4	87.8	13.7\%	5.9	15.7	3.3	21.6	18	6	4	28	30.5	NA	7.5
Grants	21 Aug	472	16	NA	NA	16	37.5	37.5	25.0	34.5	NA	3.7	3.7	1.8	7.3	19	NA	NA	19	38.0	NA	8.1
Above Landing Pool	30 Aug	432	9	NA	NA	9	66.7	22.2	11.1	19.4	NA	3.4	1.1	0.5	4.5	8	NA	NA	8	16.0	NA	3.7
Leard's Bridge	19 Aug	255	36	20	11	67	82.1	4.5	13.4	80.7	20.2\%	30.0	1.6	4.2	31.6	0	0	0	0	0.0	NA	0.0
Kenny's Hole	14 Aug	92	16	5	0	21	33.3	0.0	66.7	21.2	NA	23.0	0.0	15.3	23.0	32	19	8	59	68.7	15.7\%	74.5
Upper Kenny's	19 Aug	185	14	NA	NA	14	57.1	7.1	35.7	30.2	NA	14.5	1.8	5.8	16.3	22	NA	NA	22	44.0	NA	23.8
Mooney Tracks	22 Aug	140	17	NA	NA	17	64.7	5.9	29.4	36.6	NA	24.0	2.2	7.7	26.2	22	NA	NA	22	44.0	NA	31.5
Gill Road	28 Aug	84	4	NA	NA	4	0.0	100.0	0.0	8.6	NA	0.0	10.3	0.0	10.3	20	NA	NA	20	40.0	NA	47.7
Old Cardigan III	15 Aug	165	4	NA	NA	4	50.0	25.0	25.0	8.6	NA	3.5	1.7	1.3	5.2	8	NA	NA	8	16.0	NA	9.7
Lower Crane's	29 Aug	212	15	NA	NA	15	40.0	26.7	33.3	32.3	NA	9.1	6.1	5.1	15.2	23	NA	NA	23	46.0	NA	21.7
Crane's	20 Aug	365	34	16	7	57	52.6	14.0	33.3	63.1	10.7\%	13.6	3.6	5.8	17.3	24	10	4	38	40.8	NA	11.2
Everglades	28 Aug	212	0	NA	NA	0	NA	NA	NA	0.0	NA	0.0	0.0	0.0	0.0	3	NA	NA	3	6.0	NA	2.8
Martinvale	26 Aug	150	0	NA	NA	0	NA	NA	NA	0.0	NA	0.0	0.0	0.0	0.0	5	NA	NA	5	10.0	NA	6.7

${ }^{2}$ Ages determined from length distribution (Fig. 11). Fish below 8.25 cm are $0+$, fish above 11.45 cm are 2+
Where only single sweeps were performed, populations were estimated from Sweep 1 captures as a percent of Zippin estimates, in sites where multiple sweeps were performed.
Mean=46.4\%, $N=20$.
${ }^{\text {c }}$ Populations estimated from single sweeps as for salmon; mean=50.0\%, $\mathrm{N}=16$.

Table 13
Densities and populations of juvenile Atlantic salmon on the Morell River, 1975-1996.

Site ${ }^{\text {a }}$		$\begin{gathered} 8-12 \\ \text { Sep } \\ 1975 \end{gathered}$	$\begin{gathered} 11 \text { Aug- } \\ 11 \text { Sep } \\ 1984 \\ \text { (wild) } \\ \hline \end{gathered}$	$\begin{gathered} 11 \text { Aug- } \\ 11 \mathrm{Sep} \\ 1984 \\ \text { (hatchery) } \end{gathered}$	21 Aug5 Sep 1985	$\begin{gathered} 23 \text { Aug- } \\ 7 \mathrm{Sep} \\ 1994 \end{gathered}$	$\begin{gathered} \text { 15-27 } \\ \text { Dec } \\ 1994 \end{gathered}$	$\begin{aligned} & 24 \text { Jul- } \\ & 22 \text { Aug } \\ & 1995 \end{aligned}$	$\begin{aligned} & 24 \text { Oct- } \\ & 7 \text { Nov } \\ & 1995 \end{aligned}$	$\begin{gathered} 14 \text { Aug- } \\ 4 \text { Sep } \\ 1996 \end{gathered}$
	Source	$\begin{gathered} \hline \text { Ducharme } \\ 1977 \end{gathered}$	Cairns et al. 1995	Cairns et al. 1995	Cairns et al. 1995	Cairns et al. 1995	Cairns et al. 1995	Cairns et al. 1996	Cairns et al. 1996	This study

Main Stem (mouth to Forks)

Indian Bridge	$0+$ fish $/ 100 \mathrm{~m}^{2}$	0.0								
	$1+$ fish $/ 100 \mathrm{~m}^{2}$	0.6								
	2+ fish $/ 100 \mathrm{~m}^{2}$	0.0								
	Total fish $/ 100 \mathrm{~m}^{2}$	0.6								
Rowells Riffle	$0+$ fish $/ 100 \mathrm{~m}^{2}$				9.4	1.0	0.0	8.1	5.9	2.6
	$1+$ fish $/ 100 \mathrm{~m}^{2}$				3.5	5.5	3.3	1.2	2.6	5.6
	2+ fish $/ 100 \mathrm{~m}^{2}$				0.0	0.0	0.0	0.0	0.0	0.7
	Total fish $/ 100 \mathrm{~m}^{2}$				12.9	6.5	3.3	9.3	8.5	8.2
Mooneys Bridge	$0+$ fish $/ 100 \mathrm{~m}^{2}$	0.0			7.2	1.7	0.0			
	1+fish $/ 100 \mathrm{~m}^{2}$	1.5			4.1	2.3	1.3			
	$2+$ fish $/ 100 \mathrm{~m}^{2}$	0.0			0.0	0.0	0.0			
	Total fish $/ 100 \mathrm{~m}^{2}$	1.5			11.3	4.0	1.3			
Grants	$0+$ fish $/ 100 \mathrm{~m}^{2}$	0.0						2.3	4.3	3.7
	$1+$ fish $/ 100 \mathrm{~m}^{2}$	3.8						2.9	3.8	3.7
	2+ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	1.8
	Total fish $/ 100 \mathrm{~m}^{2}$	3.8						5.2	8.1	7.3
Forks	$0+$ fish $/ 100 \mathrm{~m}^{2}$	0.0	9.8	0.0		25.9	3.8	13.6	23.2	5.9
	$1+$ fish $/ 100 \mathrm{~m}^{2}$	5.9	7.2	0.3		12.4	0.5	3.7	8.4	15.7
	$2+$ fish $/ 100 \mathrm{~m}^{2}$	0.0	0.0	0.0		0.0	0.0	0.0	0.0	3.3
	Total fish $/ 100 \mathrm{~m}^{2}$	5.9	17.0	0.3		38.4	4.3	17.3	31.7	21.6
Main Stem means and totals:										
$0+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean	0.0	9.8	0.0	8.3	9.5	1.3	8.0	11.2	4.1
	SD	0.0	NA	NA	1.5	14.2	2.2	5.7	10.5	1.7
$1+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean	3.0	7.2	0.3	3.8	6.7	1.7	2.6	4.9	8.3
	SD	2.4	NA	NA	0.4	5.2	1.4	1.2	3.1	6.5
2+ fish/100 m ${ }^{2}$	Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9
	SD	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	1.3
Total fish/100 m^{2}	Mean	3.0	17.0	0.3	12.1	16.3	3.0	10.6	16.1	12.4
	SD	2.4	NA	NA	1.1	19.2	1.6	6.2	13.5	8.0
	N	4	1	1	2	3	3	3	3	3
Area (m^{2})	92,494									
Population	0+ fish	0	9,098	0	7,660	8,826	1,172	7,388	10,321	3,752
	1+ fish	2,729	6,615	276	3,531	6,240	1,592	2,394	4,568	7,703
	2+ fish	0	0	0	0	0	0	0	0	1,800
	Total fish	2,729	15,713	276	11,191	15,066	2,764	9,783	14,889	11,455
West and South Branches										
Above Landing Pool	$0+$ fish $/ 100 \mathrm{~m}^{2}$							9.8	11.4	3.4
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							1.0	2.8	1.1
	$2+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	0.5
	Total fish /100 m ${ }^{2}$							10.8	14.2	4.5
Lower Leards	$0+$ fish / $100 \mathrm{~m}^{2}$				10.4					
	$1+$ fish $/ 100 \mathrm{~m}^{2}$				4.0					
	$2+$ fish $/ 100 \mathrm{~m}^{2}$				0.0					
	Total fish $/ 100 \mathrm{~m}^{2}$				14.3					
Leards Bridge	$0+$ fish $/ 100 \mathrm{~m}^{2}$	0.0	17.0	0.0	11.0	19.4	10.1	27.1	16.6	30.0
	$1+$ fish / $/ 100 \mathrm{~m}^{2}$	5.1	1.7	1.3	9.7	4.4	3.0	4.5	15.0	1.6
	2+ fish $/ 100 \mathrm{~m}^{2}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2
	Total fish / $100 \mathrm{~m}^{2}$	5.1	18.7	1.3	20.7	23.9	13.1	31.6	31.6	31.6

Table 13 (continued)

Site ${ }^{\text {a }}$		$\begin{gathered} \text { 8-12 } \\ \text { Sep } \\ 1975 \end{gathered}$	11 Aug11 Sep 1984 (wild)	$\begin{gathered} 11 \text { Aug- } \\ 11 \mathrm{Sep} \\ 1984 \\ \text { (hatchery) } \end{gathered}$	$\begin{aligned} & 21 \text { Aug- } \\ & 5 \text { Sep } \\ & 1985 \end{aligned}$	$\begin{gathered} 23 \text { Aug- } \\ 7 \text { Sep } \\ 1994 \end{gathered}$	$\begin{gathered} 15-27 \\ \text { Dec } \\ 1994 \end{gathered}$	$\begin{aligned} & \text { 24 Jul- } \\ & 22 \text { Aug } \\ & 1995 \end{aligned}$	$\begin{aligned} & \hline 24 \text { Oct- } \\ & 7 \text { Nov } \\ & 1995 \end{aligned}$	$\begin{gathered} 14 \mathrm{Aug}- \\ 4 \mathrm{Sep} \\ 1996 \end{gathered}$
Kennys Hole	$0+$ fish $/ 100 \mathrm{~m}^{2}$		0.0	0.0	0.0	112.1	22.0	0.0	6.3	23.0
	$1+$ fish $/ 100 \mathrm{~m}^{2}$		0.6	1.9	2.7	30.9	0.0	16.8	10.5	0.0
	$2+$ fish $/ 100 \mathrm{~m}^{2}$		0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.3
	Total fish $/ 100 \mathrm{~m}^{2}$		0.6	1.9	2.7	142.9	22.0	16.8	16.7	23.0
Upper Kennys	0+ fish $/ 100 \mathrm{~m}^{2}$							0.0	2.2	14.5
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							9.7	1.1	1.8
	$2+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	5.8
	Total fish $/ 100 \mathrm{~m}^{2}$							9.7	3.2	16.3
Mooney Tracks	$0+$ fish $/ 100 \mathrm{~m}^{2}$							14.5	21.0	24.0
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							30.5	14.0	2.2
	2+ fish /100 m ${ }^{2}$							0.0	0.0	7.7
	Total fish $/ 100 \mathrm{~m}^{2}$							45.0	35.1	26.2
Gill Road	$0+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	0.0
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							2.5	0.0	10.3
	2+ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	0.0
	Total fish $/ 100 \mathrm{~m}^{2}$							2.5	0.0	10.3
Oates	$0+$ fish $/ 100 \mathrm{~m}^{2}$							1.6	2.3	
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							4.7	1.6	
	$2+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	
	Total fish $/ 100 \mathrm{~m}^{2}$							6.2	3.9	
Old Cardigan III	$0+$ fish $/ 100 \mathrm{~m}^{2}$							13.6	12.6	3.5
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							32.6	25.2	1.7
	2+ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	1.3
	Total fish /100 m ${ }^{2}$							46.1	37.8	5.2
West and South Branches means and totals: ${ }^{\text {b }}$										
$0+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean	0.0	8.5	0.0	7.1	65.8	16.0	9.5	10.3	16.4
	SD	NA	12.0	0.0	6.2	65.5	8.4	10.0	7.2	11.2
1+ fish/100 m ${ }^{2}$	Mean	5.1	1.1	1.6	5.5	17.7	1.5	14.2	10.0	1.4
	SD	NA	0.7	0.4	3.7	18.7	2.1	12.8	8.9	0.8
2+ fish/100 m ${ }^{\text {2 }}$	Mean	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.8
	SD	NA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.4
Total fish/100 m ${ }^{2}$	Mean	5.1	9.7	1.6	12.6	83.4	17.6	23.7	20.4	17.8
	SD	NA	12.8	0.4	9.1	84.2	6.3	17.0	14.5	11.2
	N	1	2	2	3	2	2	7	7	6
Area (m^{2})	103,996									
Population	0+ fish	0	8,860	0	7,407	68,378	16,681	9,879	10,751	17,037
	1+ fish	5,304	1,194	1,681	5,685	18,356	1,575	14,811	10,422	1,472
	2+ fish	0	0	0	0	0	0	0	0	6,048
	Total fish	5,304	10,054	1,681	13,092	86,733	18,256	24,690	21,173	18,509
West and South Branches means and totals (above Leards oniy): ${ }^{\text {b }}$										
$0+$ fish/100 m${ }^{2}$	Mean		0.0	0.0	0.0	112.1	22.0	4.9	7.4	13.0
	SD		N/A	N/A	N/A	N/A	N/A	7.1	8.0	11.0
1+ fish/100 m ${ }^{2}$	Mean		0.6	1.9	2.7	30.9	0.0	16.1	8.7	3.2
	SD		N/A	N/A	N/A	N/A	N/A	12.9	9.9	4.0
$2+$ fish/100 m ${ }^{2}$	Mean		0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
	SD		N/A	N/A	N/A	N/A	N/A	0.0	0.0	6.1
Total fish/100 m^{2}	Mean		0.6	1.9	2.7	142.9	22.0	21.1	16.1	16.2
	SD		N/A	N/A	N/A	N/A	N/A	21.1	16.1	16.2
	N		1	1	1.	1	5	6	6	5
Area (m^{2})	74,727									
Population	0+ fish		0	0	0	83,739	16,428	3,692	5,531	9,707
	1+ fish		473	1,418	2,037	23,058	0	12,041	6,516	2,391
	2+ fish		0	0	0	0	0	0	0	4,506
	Total fish		473	1,418	2,037	106,797	16,428	15,733	12,047	12,099

Table 13 (continued)

Site ${ }^{\text {a }}$	$\begin{gathered} 8-12 \\ \text { Sep } \\ 1975 \end{gathered}$	$\begin{aligned} & \hline 11 \text { Aug- } \\ & 11 \text { Sep } \\ & 1984 \\ & \text { (wild) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 11 \text { Aug- } \\ 11 \mathrm{Sep} \\ 1984 \\ \text { (hatchery) } \end{gathered}$	$\begin{gathered} \hline 21 \text { Aug- } \\ 5 \mathrm{Sep} \\ 1985 \end{gathered}$	$\begin{gathered} 23 \text { Aug- } \\ 7 \mathrm{Sep} \\ 1994 \end{gathered}$	$\begin{gathered} \hline 15-27 \\ \text { Dec } \\ 1994 \end{gathered}$	$\begin{gathered} 24 \text { Jul } \\ 22 \text { Aug } \\ 1995 \end{gathered}$	$\begin{aligned} & 24 \text { Oct- } \\ & 7 \text { Nov } \\ & 1995 \end{aligned}$	$\begin{gathered} 14 \text { Aug- } \\ 4 \text { Sep } \\ 1996 \end{gathered}$

East Branch										
Lower Cranes	$0+$ fish $/ 100 \mathrm{~m}^{2}$							2.0	9.4	9.1
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							6.0	2.8	6.1
	$2+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	5.1
	Total fish /100 m ${ }^{2}$							8.0	12.2	15.2
Cranes	$0+$ fish $/ 100 \mathrm{~m}^{2}$		6.7	0.0	2.5	36.1	6.5	6.4	12.0	13.6
	$1+$ fish $/ 100 \mathrm{~m}^{2}$		1.3	0.0	2.0	2.0	0.0	4.7	8.9	3.6
	$2+$ fish $/ 100 \mathrm{~m}^{2}$		0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.8
	Total fish /100 m ${ }^{2}$		8.0	0.0	4.6	38.1	6.5	11.1	21.0	17.3
Everglades	0+ fish $/ 100 \mathrm{~m}^{2}$							0.0	1.0	0.0
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							6.0	3.1	0.0
	2+ fish /100 m${ }^{2}$							0.0	0.0	0.0
	Total fish /100 m ${ }^{2}$							6.0	4.1	0.0
Martinvale	$0+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	0.0
	$1+$ fish $/ 100 \mathrm{~m}^{2}$							1.2	3.3	0.0
	$2+$ fish $/ 100 \mathrm{~m}^{2}$							0.0	0.0	0.0
	Total fish $/ 100 \mathrm{~m}^{2}$							1.2	3.3	0.0
East Branch means and totals:										
$0+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean		6.7	0.0	2.5	36.1	6.5	2.1	5.6	5.7
	SD		ND	ND	ND	ND	ND	3.0	6.0	6.8
$1+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean		1.3	0.0	2.0	2.0	0.0	4.5	4.5	2.4
	SD		NA	NA	NA	NA	NA	2.3	2.9	3.0
2+ fish/100 m ${ }^{2}$	Mean		0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7
	SD		NA	NA	NA	NA	NA	0.0	0.0	3.1
Total fish/100 m^{2}	Mean		8.0	0.0	4.6	38.1	6.5	6.6	10.2	8.1
	SD		NA	NA	NA	NA	NA	4.2	8.2	9.4
	N		1	1	1	1	1	4	4	4
Area (m^{2})	40,686									
Population	0+fish		2,714	0	1,035	14,672	2,647	854	2,286	2,319
	1+ fish		521	0	826	834	0	1,822	1,849	991
	$2+$ fish		0	0	0	0	0	0	0	1,103
	Total fish		3,235	0	1,861	15,505	2,647	2,677	4,135	3,310
Morell River means and totals ${ }^{\text {b }}$										
$0+$ fish/100 m ${ }^{2}$	Mean	0	8.38622	0	6.74566	32.698	7.06434	7.0614	9.16584	10.251
	SD	0	7.07679	0	4.50507	41.2241	8.27706	7.98196	7.37998	9.9776
1+ fish $100 \mathrm{~m}^{2}$	Mean	3.38	2.68223	0.88283	4.34455	9.59815	1.36538	8.9555	7.3675	3.3245
	SD	2.2775	3.01008	0.88617	2.73479	11.0742	1.48496	10.3895	6.89209	4.2196
$2+\mathrm{fish} / 100 \mathrm{~m}^{2}$	Mean	0	0	0	0	0	0	0	0	3.9677
	SD	0	0	0	0	0	0	0	0	4.2554
Total fish/100 m ${ }^{\text {2 }}$	Mean	3.38	11.0684	0.88283	11.0902	42.2961	8.42972	16.0169	16.5333	13.575
	SD	2.2775	8.40571	0.88617	6.61293	51.4658	7.78605	14.4806	12.6928	10.204
	N	5	4	4	6	6	6	14	14	13
Area (m^{2})	237,176									
Population	0+ fish	0	19,890	0	15,999	77,552	16,755	16,748	21,739	24,312
	$1+$ fish	8,017	6,362	2,094	10,304	22,765	3,238	21,240	17,474	7,885
	2+ fish	0	0	0	0	0	0	0	0	9,411
	Total fish	8,017	26,252	2.094	26,303	100,316	19,993	37,988	39,213	32,197

[^2]Table 14
Origin, biological characteristics, and potential egg deposition of the 1996 Morell River salmon run.

	Small salmon			Large salmon			All salmon		
	Wild	Hatchery	Total	Wild	Hatchery	Total	Wild	Hatchery	Total
Leards counts	31	188	219	4	26	30	35	214	249
Percent of all salmon	12.4	75.5	88.0	1.6	10.4	12.0	14.1	85.9	100.0
Number early (before 1 Sep)	23	171	194	1	17	18	24	188	212
Percent early	74.2	91.0	88.6	25.0	65.4	60.0	68.6	87.9	85.1
Mooneys counts	4	95	99	0	4	4	4	99	103
Percent of all salmon	4	92	96	0	4	4	4	96	100
Number early (before 1 Sep)	4	95	99	0	4	4	4	99	103
Percent early	100.0	100.0	100.0	N/A	100.0	100.0	100.0	100.0	100.0
Number female	2	25	27	0	1	1	2	26	28
Percent female	50.0	26.3	27.3	N/A	25.0	25.0	50.0	26.3	27.2
Estimated number in run ${ }^{\text {a }}$	239	1,450	1,689	31	200	231	270	1,650	1,920
Estimated harvest	56	341	397	0	0	0	56	341	397
Estimated escapement	183	1,109	1,292	31	200	231	214	1,309	1,523
Estimated females in escapement ${ }^{\text {b }}$	32	194	226	22	145	167	54	339	393
Number of eggs deposited ${ }^{\text {c }}$	100,577	609,949	710,526	110,376	717,445	827,821	210,953	1,327,394	1,538,347
Percent of conservation requirement ${ }^{\text {a }}$	18	107	125	19	126	145	37	233	270

${ }^{a}$ Total run $=$ (1995 total run estimated by mark-recapture)*(1996 total Leards count)/(1995 total Leards count)
The estimated 1996 run is partitioned into origin and size classes according to the proportions in Leards samples
${ }^{\text {b }}$ Based on 17.5% females among small salmon and 72.1% females among large salmon
${ }^{\text {c }}$ Based on fecundities of 3,143 for small salmon and 4,963 for large salmon
${ }^{d}$ Conservation requirement is 569,222 eggs, based on 2.4 eggs m^{2} in $237,176 \mathrm{~m}^{2}$ of habitat

Table 15
Return rates of Atlantic salmon stocked in PEI rivers. Fish from the Cardigan SEC and Profitts Pond, hatched in 1983-1985 and released above Leards Dam, were distinguished on their return by nose tagging.

Hatching year (Yr)	Number and origin of fish stocked ${ }^{\text {a }}$				Salmon returning ${ }^{6}$						
	$\begin{gathered} \hline 0+ \\ \text { parr } \\ \text { in } \\ \mathrm{Yr} \end{gathered}$	$\begin{gathered} \text { 1+ } \\ \text { parr } \\ \text { in } \\ \mathrm{Yr}+1 \end{gathered}$	$\begin{gathered} 1+ \\ \text { smolts } \\ \text { in } \\ Y_{\mathrm{r}+2} \end{gathered}$		Small salmon in $\mathrm{Yr}+3$		Large salmon in $\mathrm{Yr}+4$		$\begin{aligned} & \text { Both sizes, } \\ & Y_{r}+3 \text { and } Y_{r}+4 \end{aligned}$		Both sizes, from semi-natural $2+$ smolts only Percent returning
					Number	Percent	Number	Percent	Number	Percent	
						returning		returning		returning	
Morell above Leards Dam ${ }^{\text {c }}$											
From direct fishway counts:											
1983	9,000 C			10,428 C	96	0.5	10	0.1	106	0.5	
				10,997 P	523	4.8	56	0.5	579	5.3	5.3
1984				1,529 C	74	4.8	6	0.4	80	5.2	
				13,099 P	1,094	8.4	79	0.6	1,173	9.0	9.0
1985				3,055 C	84	2.7	1	0.0	85	2.8	
				25,729 P	1,302	5.1	124	0.5	1,426	5.5	5.5
1986			4,405 C	10,173 P	323	2.2	59	0.4	382	2.6	3.8
1987				10,225 P	365	3.6	28	0.3	393	3.8	3.8
1988				48,873 M	294	0.6	38	0.1	332	0.7	0.7
1989				26,656 M	843	3.2	11	0.0	854	3.2	3.2
1990				40,702 M	584	1.4	27	0.1	611	1.5	1.5
1991		2,200 M	19,379 C		28	0.1	10	0.0	38	0.2	
1992				15,317 M	172	1.1	26	0.2	198	1.3	1.3
1993				7,822 M	188	2.4	N/A	N/A			0.0
Fishway counts adjusted for trapping efficiency: ${ }^{\text {d }}$											
1991		2,200 M	19,379 C		70	0.3	25	0.12	95	0.4	
1992				15,317 M	430	2.8	65	0.42	495	3.2	3.2
1993				7,822 M	470	6.0	N/A	N/A			
Entire Morell ${ }^{\text {® }}$											
1990				45,622	N/A	N/A	208	0.5			
1991		2,200 M	19,379 C		216	1.0	77	0.4	293	1.4	
1992				26,000 M	1,326	5.1	200	0.8	1,526	5.9	5.9
1993				15,568 M	1,450	9.3	N/A	N/A			
Mill River											
1987				3,065 P	176	5.7			176	5.7	5.7
1990				3,826 P	17	0.4	0	0.0	17	0.4	0.4
1991				2,972 P	11	0.4	27	0.9	38	1.3	1.3
1992				2,711 P	3	0.1	N/A	N/A			
West River											
1986			1,390 C		31	2.2	23	1.7	54	3.9	
1987				1,324 P	25	1.9	N/A	N/A			
1990				11,481 MP	248	2.2	6	0.1	254	2.2	2.2
1991	50,750 C	10,173 M			4	0.0	N/A	N/A			
Valleyfield River											
1987	0	0	6,299 C	0	36	0.57	0	0.00	36	0.57	
1988	0	2,491 C	738 C	0	5	0.15	0	0.00	5	0.15	
1989	0	0	5,259 C	0	25	0.48	0	0.00	25	0.48	
1990	89,003 C	0	0	12,000 MC	84	0.08	7	0.01	91	0.09	
1991	55,723 C	10,014 M	0	0	15	0.02	4	0.01	19	0.03	
1992	32,494 C	28,898 C	5,896 C	1,980 M	58	0.08	8	0.01	66	0.10	3.3
1993	14,467 C			15,517 CGM	75	0.25	N/A	N/A			0.5

[^3]Table 16
Number of salmon stocked above Leards Dam, number of salmon counted at Leards fishway trap and released in Leards Pond, and number of salmon redds counted above Leards Pond.

Hatching year (Yr)	Number and origin of fish stocked ${ }^{\text {a }}$				Number of salmon counted at Leards fishway and released in pond			$\begin{gathered} \hline \text { Redds } \\ \text { in } \\ \mathrm{Yr}_{\mathrm{r}+3} \end{gathered}$
	$\begin{gathered} 1+ \\ \text { parr } \\ \text { in } \\ Y_{r+1} \end{gathered}$	$\begin{gathered} \hline 1+ \\ \text { smolts } \\ \text { in } \\ \mathrm{Yr}+2 \end{gathered}$	$\begin{gathered} 2+ \\ \text { parr \& } \\ \text { smolts } \\ \text { in } \mathrm{Yr}+2 \\ \hline \end{gathered}$	Total for cohort				
					Small salmon in $\mathrm{Yr}+3$	Large salmon in $\mathrm{Yr}+4$	Total salmon in $\mathrm{Yr}+3$	
1987			10225 P	10225	368	14	412	365
1988			48,873 M	48873	280	14	294	295
1989			26,656 M	26656	824	0	838	650
1990			40,702 M	40702	461	3	461	215
1991	2,200 M	19,379 C		21579	2	2	5	N/A
1992			15,317 M	15317	130	20	132	190
1993			7,822 M	7822	169	N/A	189	308

${ }^{\text {a Origins }}$ are Profitts Pond (P), Cardigan Salmonid Enhancement Centre (C), and Mooneys Pond (M)

Table 17
Return rates of wild Atlantic salmon to the Morell River, based on juvenile populations estimated from electrofishing surveys.

Hatching year (Yr)	Estimated popuation, survey date			Wild salmon returning			Returns as a percent of population
	0+ parr in Yr	1+	arr in $\mathrm{Yr}+1$	Small salmon in $\mathrm{Yr}+3$	Large salmon in $\mathrm{Y} \mathrm{r}+4$	Total returns from cohort	
Morell above Leards - from direct fishway counts							
1983		473	Aug-Sep 84	1	2	3	0.634
1984	0 Aug-Sep 84			2	2	4	Not calculable
1984		2,037	Aug-Sep 85	2	2	4	0.196
1985	0 Aug-Sep 85			8	0	8	Not calculable
1993		23,058	Aug-Sep 94	31	N/A	31	0.134
1993		0	Dec-94	31	N/A	31	Not calculable
Morell above Leards - adjusted fishway counts							
1993		23,058	Aug-Sep 94	78	N/A	78	0.338
1993		0	Dec 94	78	N/A	78	Not calculable
Entire Morell							
1993		22,765	Aug-Sep 94	239	N/A	239	1.050
1993		3,238	Dec 94	239	N/A	239	7.381

Table 18
Exploitation rates (sport and Native) of small Atlantic salmon returning to PEI rivers.

River	Number of small salmon entering river ${ }^{\text {a }}$			Retained catch of small salmon ${ }^{\text {a }}$			Percent exploitation		
	1994	1995	1996	1994	1995	1996	1994	1995	1996
Morell	262	1352	1689	89	469	397	34.0	34.7	23.5
Dunk		40			0			0.0	
Valleyfield	15	58	75	5	16	36	33.3	27.6	48.0

${ }^{{ }^{1} 1994}$ and 1996 estimates of small salmon entering the Morell are based on the 1995 markrecapture estimate, adjusted by the ratio of small salmon counted at Leards in these years: small salmon counted at Leards in 1995. Dunk and Valleyfield numbers are from trap counts.
${ }^{\text {b }}$ From an angler mail-out survey (1994) and licence stub surveys (1995-1996).

Table 19
Atlantic salmon entering Leards Pond and their potential egg depositions, 1981-1996. Potential egg depositions are not adjusted for human harvests.

Year	Total entering Leards Pond		Potential egg deposition above Leards Pond ${ }^{\text {a }}$			
			From	From	Total	Percent of
	Small salmon	Large salmon	small salmon	large salmon		conservation requirement
From direct fishway counts						
1981	39	6	21,451	21,470	42,921	24
1982	33	3	18,151	10,735	28,886	16
1983	2	2	1,100	7,157	8,257	5
1984	5	4	2,750	14,313	17,063	10
1985	14	1	7,700	3,578	11,279	6
1986	278	3	339,444	14,889	354,333	198
1987	658	54	361,916	193,229	555,146	310
1988	1,290	20	709,532	71,566	781,099	436
1989	330	48	181,508	171,760	353,268	197
1990	368	44	202,409	157,446	359,855	201
1991	280	14	154,007	50,097	204,104	114
1992	824	14	453,221	50,097	503,317	281
1993	461	0	253,562	0	253,562	141
1994	$2{ }^{\text {b }}$	$3{ }^{\text {c }}$	3,143	14,889	18,032	10
1995	130	$2^{\text {b }}$	71,503	4,963	76,466	43
1996	169	20	92,954	49,630	142,584	80
Fishway counts adjusted for trapping efficiency ${ }^{\text {d }}$						
1994	56	47	30,851	115,570	146,421	82
1995	409	25	225,216	60,890	286,106	160
1996	498	65	273,939	161,484	435,423	243

[^4]Table 20
Potential egg deposition by Atlantic salmon in the Morell, Mill, Dunk, West, and Valleyfield Rivers.

Year	Total returns		Escapement		Egg deposition ${ }^{\text {a }}$				
	Small salmon	$\begin{gathered} \hline \text { Large } \\ \text { salmon } \end{gathered}$	Small salmon	Large salmon	Small salmon	Large salmon	Total	Conservation requirement	Percent of requirement
Morell River									
1994	278	223	189	223	103,955	797,966	901,921	569,222	158
1995	1,434	116	966	115	531,324	411,507	942,831	569,223	166
1996	1,689	231	1,292	231	710,632	826,593	1,537,225	569,224	270
Mill River									
$1993{ }^{\text {b }}$	17	5			9,350	17,892	27,242	139,920	19
1995	3	27	3	27	1,650	96,615	98,265	139,920	70
Dunk River									
1995	40	0	40	0	22,001	0	22,001	463,387	5
West River									
$1989{ }^{\text {b }}$	31	19			17,051	67,988	85,039	442,800	19
$1990^{\text {b }}$	25	23			13,751	82,301	96,052	442,800	22
$1993{ }^{\text {b }}$	250	12			137,506	42,940	180,446	442,800	41
Valleyfield River									
$1990{ }^{\text {b }}$	36	0			19,801	0	19,801	306,000	6
$1991{ }^{\text {b }}$	5	0			2,750	0	2,750	306,000	1
$1992{ }^{\text {b }}$	25	0			13,751	0	13,751	306,000	4
$1993{ }^{\text {b }}$	84	0			46,202	0	46,202	306,000	15
1994	15	7	10	7	5,500	25,048	30,549	306,000	10
1995	58	4	55	4	30,251	14,313	44,565	306,000	15
1996	75	8	39	8	21,451	28,627	50,078	306,000	16

${ }^{3}$ Based on fecundities from Davidson and Bielak 1992 and sex ratios from Davidson and Bielak 1992 and Cairns et al. 1995
${ }^{\mathrm{D}}$ Egg deposition calculated from total returns because escapements are unavailable

Table 21
Potential runs of wild Atlantic salmon on the Morell River, based on various scenarios.

Scnenario	Wild run size			Small wild run as a percent of recent harvests ${ }^{\text {a }}$	Wild run aspercent ofestimated totalrun, $1995-1996^{\mathrm{b}}$	Percent of conservation requirement ${ }^{\text {© }}$
	Small	Large	Total			
Wild runs estimated for 1994-1996						
1994	62	15	77	15	4	15
1995	108	39	147	26	8	35
1996	239	31	270	57	16	43
Wild escapement equals conservation requirement, small:large ratio from the mean of Leards in 1986-1996, fecundity and sex ratios as in Table 14						
Run equals escapement (no fishing mortality)	369	102	471	87	27	100
30% exploitation rate of small fish	413	114	527	98	30	100
Returns calculated from 1996 smolt fence, assumes 5% will return as 1 SW small salmon and 0.3% will return as 2SW large salmon						
Minimum estimate of wild smolt exodus $(1,696)$	85	5	90	20	5	11
Maximum estimate of wild smolt exodus $(4,874)$	244	15	258	58	15	33
Returns calculated from estimated populations of 1+ juveniles from electrofishing surveys, assuming 0.5 overwinter survival, sea exodus at age $2+, 5 \%$ survival to 1SW small, and 0.3\% survival to 2SW large						
Surveys in Sep $1975(8,033)$ (excludes East Branch)	201	12	213	47	12	27
Surveys in Aug-Sep 1984 (8,330)	208	12	221	49	13	28
Surveys in Aug-Sep $1995(10,043)$	251	15	266	59	15	34
Surveys in Aug-Sep $1994(25,429)$	636	38	674	150	39	85
Surveys in Dec $1994(3,167)$	79	5	84	19	5	11
Surveys in Jul-Aug $1995(19,028)$	476	29	504	112	29	64
Surveys in Oct-Nov $1995(16,839)$	421	25	446	100	26	57
Surveys in Aug-Sep 1996 (10,166)	254	15	269	60	16	34
Mean of surveys (12,629)	316	19	335	75	19	42

[^5]

Fig. 2
The Morell River, showing electrofishing, thermograph, and stocking sites.

Fig. 3
Atlantic salmon sport catches on the Morell River, and PEI salmon licence sales, 1983-1996.

1996 Salmon Report Card

Please com-	Mo.	Date	River		ise	
plete and return this card at the end of the fish-				Number caught \& kept	Number caught 8 released	salmon: Number caught \& released
ing season. even if you did	acan.	18	Example Rlur	1	2	0
not fish for sal-	gear.	27	Example Rluor	0	0	2
mon in 1996.						
Fill in a new line each day						
you fish for sal-						
don't catch any,						
enter zeros for						
If you run out						
of space, write						
the information on a separate						
sheet of paper.						
Put the paper in an envelope						
and tape this						
card to it. No postage is re-						
quired.						
Check here if you did not fish						
for salmon in 1996						
1996.						

№ 000629

Mo.	Date	River	Gritse		Large salmon: Number caught $\&$ released
			Number caught \& kept	Number caught 8 released	
aten.	18	Example Rlum	1	2	0
quen.	27	Exarnfilc Rluor	0	0	2
			-		
					\cdots
			-		
-			-		-

Fig. 4
Stub attached to 1996 PEI salmon licences (left), and reminder card sent to licence-holders who did not return their stubs (right).

Fig. 5
Atlantic salmon returns to Leards fishway, 1981-1996, and return composition by origin and size.
"Adjusted total" estimates total movements, based on trap efficiency measured in 1996.

Fig. 6
Run timing of hatchery (upper panels) and wild (lower panels) salmon ascending the Leards Pond fishway, 1985-1996.

Fig. 6 (continued)

Fig. 7
Bayesian probability distributions of salmon numbers from mark-recapture experiments on the Morell River, 1996.

Fig. 8
Counts of Atlantic salmon redds in the Morell, Trout, and West Rivers. Data from D.L. Guignion, D. Biggar, C. Crane, T. Dupuis, and R. MacFarlane.

Fig. 9
Densities of juvenile salmon at selected sites on the Morell River, 1975-1996.

Fig. 10
Estimated populations of juvenile salmon in the Morell River, 1975-1996, based on electrofishing surveys.

Fig. 12
Downstream movement of hatchery and wild juvenile salmon through the Indian Bridge smolt fence, April-May 1996.

Fig. 13
Frequency distribution of juvenile Atlantic salmon lengths from the Indian Bridge smolt fence.

Rearing location, hatching year, and return year for small salmon

Rearing location, hatching year, and return year for small salmon

Rearing location, hatching year, and return year for small salmon

Rearing location, hatching year, and return year for small salmon

Fig. 14
Return rates of cultured salmon to PEI rivers. Rearing sites are Cardigan SEC (C), Profits Pond (P), Mooneys Pond (M), and Gilberts Pond (G). Semi-natural 2+ smolts include some parr. Return rates are based on hatchery fish only where origin was recorded. Returns for the 1993 cohort do not include large salmon. In the Morell, adjusted Leards counts are corrected for trap efficiency as measured in 1996.

Fig. 15
Relation between the number of salmon stocked above Leards Dam and subsequent counts of hatchery-reared adult fish from the same cohort at Leards fistway. Labels denote the hatching year of the cohort. Underlined labels indicate stocking other than $2+$ smolts reared in semi-natural ponds.

Fig. 16
Relation between number of juveniles, hatched in Yr 0 and stocked in the Morell River above Leards Dam, and the number of salmon redds counted above Leards Pond in $\mathrm{Yr}+3$. Labels indicate $\mathrm{Yr}+3$.

Fig. 17
Relation between the number of salmon released from the Leards fishway into Leards Pond, and the number of salmon redds counted above Leards Pond in the same year. Labels indicate the year of the counts.

Fig. 18
Potential egg deposition by salmon released above Leards dam, 1981-1996. Deposition from adjusted Leards counts is based on a correction derived from Leards trapping effiency measured in 1996.

Fig. 19
Morell River water temperatures at Martinvale and McKenna's, 1994-1996.

[^0]: ${ }^{2}$ Stocked 27 November
 ${ }^{\text {b }}$ Stocked 5 July
 ${ }^{\text {c }}$ Smolts leave in spring on their own accord, without being counted. Numbers are estimated from numbers of $1+$ parr released in the pond in the previous year (6,200 in June 1994, 8,400 in June 1995), and assuming a
 survival rate of $65 . \%$.

[^1]: ${ }^{9}$ Fish captured on both days are counted here only once
 ${ }^{\mathrm{b}}$ The first digit is river age, the second digit is sea age

[^2]: ${ }^{\text {a }}$ Site boundaries in 1994-1996 are defined in Cairns et al. 1995. Except for Lower Leards, sites used in 1984-1985 are close to those repeated in 1994-1996, but boundaries may have shitted by several metres. Exact locations of 1975 sites were not recorded (L.A. Ducharme, pers. comm.). These sites are in the same general areas as those used later, but probably do not overlap with them.
 ${ }^{\text {b }}$ Calculations exclude Gill Road which is not accessible to ascending salmon due to the barriers at Mooneys Pond.

[^3]: ${ }^{9}$ Origins are Profitts Pond (P), Cardigan Salmonid Enhancement Centre (C), Mooneys Pond (M), and Gilberts Pond (G)
 ${ }^{\text {b }}$ Counts include hatchery fish only, where origin of fish was recorded. Return rates for the Mill, West, and the
 Valleyfield are minimal values as some angling takes place below the traps.
 ${ }^{\text {c }}$ Stocking numbers are fish released above Leards Dam, return numbers are hatchery fish counted at Leards Pond fishway
 ${ }^{\text {d }}$ Fishway counts are adjusted for trapping efficiency measured in 1996 (40.0\%)
 ${ }^{\text {e }}$ Stocking numbers are the total released in the Morell watershed, return numbers are hatchery-reared fish estimated from the 1995 mark-recapture experiment.

[^4]: ${ }^{\text {a }}$ Based on fecundities from Davidson and Bielak 1992 and sex ratios from Davidson and Bielak 1992 and Cairns et al. 1995
 ${ }^{\mathrm{b}} 1$ male, 1 female
 ${ }^{\text {c }}$ All females
 ${ }^{\mathrm{d}}$ Fishway counts are adjusted for trapping efficiency as calculated for 1996

[^5]: ${ }^{a}$ Mean of retained catches, 1995-1996, from stub surveys (423)
 ${ }^{\mathrm{b}}$ Mean of estimated total runs, 1995-1996 $(1,735)$
 ${ }^{c}$ Assumes no angling mortality except where noted. Fecundities and sex ratios from Table 14.

