Not to be cited without permission of the authors ${ }^{\text {' }}$

DFO Atlantic Fisheries
Research Document 96/124

Ne pas citer sans autorisation des auteurs'

MPO Pêches de l'Atlantique
Document de recherche $96 / 124$

Stock status of Atlantic salmon (Salmo salar) in the Miramichi River, 1995

by
G. Chaput, M. Biron, D. Moore, B. Dube ${ }^{2}$, C. Ginnish ${ }^{3}$, M. Hambrook, T. Paul ${ }^{4}$, and B. Scott

Dept. of Fisheries and Oceans
Science Branch
P.O. Box 5030

Moncton, NB
E1C 9B6
${ }^{2}$ New Brunswick Dept. of Natural Resources and Energy
Miramichi, NB
${ }^{3}$ Eel Ground First Nations
Eel Ground, NB
${ }^{4}$ Red Bank First Nations
Red Bank, NB
${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.
${ }^{1}$ La présente sćric documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutót comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

TABLE OF CONTENTS

ABSTRACT 3
SUMMARY SHEETS 4
INTRODUCTION 7
DESCRIPTION OF FISHERIES 8
TARGET 11
RESEARCH DATA 11
ESTIMATION OF STOCK PARAMETERS 13
STATUS OF STOCK 19
ECOLOGICAL CONSIDERATIONS 21
FORECAST/PROSPECTS 23
MANAGEMENT CONSIDERATIONS 24
RESEARCH RECOMMENDATIONS 26
REFERENCES 26
TABLES 29
FIGURES 49
APPENDICES 74

Abstract

Atlantic salmon (Salmo salär) inthé Mrramichi River, New Brunswickeweroharvested by two user groups in 1995; First Nations and recreational fishers. The Aboriginal food fishery catches in 1995 represented an increase of 76% for small and a decrease of 50% for large salmon relative to previous years. Essentially all of the large salmon (98%) harvests and 80% of the small salmon harvests were taken prior to Sept. 1 in 1995. Recreational fishery catches for 1995 were not available at the time of the assessment but indications from a creel survey and from Crown Reserve waters were that angling catches were less than half of 1994 and the previous five years. For the Southwest Miramichi, 30500 small salmon and 17100 large salmon were estimated to have returned in 1995. After accounting for all removals, egg depositions in the Southwest Miramichi by both small and large salmon were 139% of target. For the Northwest Miramichi, 21700 small salmon and 15200 large salmon were estimated to have returned. Egg depositions by small and large salmon in the Northwest in 1994 were 265% of target. Egg depositions have exceeded the target in each branch during the last three years. The 1996 forecast for large salmon returning to the Miramichi is 30,507 with a probability of 81% meeting spawning requirements. The increased densities of juvenile salmon, since 1985 for fry and 1986 for parr, at the index sites sampled since 1971, indicate that the long-term prospect for the Atlantic salmon stock of the Miramichi is for continued and increased abundance of salmon.

RÉSUMÉ

Le saumon de l'Atlantique (Salmo salar) de la rivière Miramichi, Nouveau-Brunswick, a été exploité dans les pêches autochtones et dans les pêches récréatives. En 1995, les captures de grands saumons dans les pêches autochtones ont diminué de 50% par rapport à la moyenne des années antérieures tandis que les captures de madeleineaux ($<63 \mathrm{~cm}$ longueur à la fourche) ont augmenté de 76%. Presque tous les grands saumons (98%) et 80% des madelcineaux récoltés par les autochtones provenaient de la remontée d'été (avant le ler septembre). Les estimations de captures de madeleineaux et de grands saumons dans la pêche récréative n'étaient pas disponibles pour l'évaluation mais les captures observées dans les eaux de réserves de couronne et durant un recensemment sur le terrain indiquaient que les captures en 1995 étaient réduites d'au moins la moitié par rapport à 1994 et les cinq années antéricures. La montaison de saumon dans la rivière Miramichi sud-ouest s'est situé à 30500 madeleineaux et 17100 grands saumons. Les géniteurs auraient contribué à une ponte d'ocufs équivalente à 139% de la cible d'ocufs pour la rivière Miramichi sud-ouest. Dans la Miramichi nord-est, la montaison a été estimée à environ 21700 madeleineaux et 15200 grands saumons. Les géniteurs de cette montaison auraient contribué une ponte d'oeufs équivalente à 265% de la cible d'ocufs. Durant les trois dernières annćes, les pontes d'oeufs ont été supérieures aux cibles pour les deux affluents principales de la Miramichi, le sud-ouest et le nord-est. La prévision de la remontée de grands saumons pour 1996 est 30507 poissons. Il est toutefois probable, à 81%, que la remontéc soit égale ou supéricure au niveau de cible de géniteurs. Une amélioration des densités de juvéniles depuis 1985 pour les tacons d'age $0+$ et de 1986 pour les plus vicux, a été observée aux sites repères échantillonnées annuellement depuis 1971. Les prévisions à long-terme pour le stock de saumon de l'Atlantique de la rivière Miramichi sont de montaisons soutenues voire supérieures à celles observćes très récemment.

Stock: . Miramichi River, SFA 16
Life Stage: Small and large salmon
Target: "; - 132 million eggs (23,600 large; 22,600 small salmon)

	1990	1991	1992	1993	1994	1995	MIN ${ }^{1}$	MAX ${ }^{1}$	MEAN ${ }^{\text { }}$
Angling catch ${ }^{2}$									
Large	9258	6147	9476	8131	8451	8293	1792	14215	8293
Small	21372	11300	21482	16898	13415	16893	8310	30586	16893
Native harvest ${ }^{3}$									
Large	609	544	608	208	124	185	124^{6}	898^{6}	419
Small	2110	1111	1652	601	2977	3004	100^{6}	$3004{ }^{6}$	1690
Other harvest ${ }^{4}$									
Large	99	131	142	166	119	125	99^{7}	166^{7}	131
Small	142	189	198	236	270	164	142^{7}	270^{7}	207
Spawning escapement									
Large (x 1000)	28	29	36	35	27	32	4	36	31
Small (x 1000)	60	48	135	76	40	34	13	135	72
Total returns									
Large ($\times 1000$)	29	30	37	35	27	33	9	52	32
Small (x 1000)	83	61	153	92	57	54	24	153	89
\% Egg target met	152	159	242	170	130	178	23	242	171
' MIN MAX over the period 1971-1995 unless stated otherwise. ${ }^{2}$ Angling catch includes hook and release estimates. ${ }^{3}$ Native harvest includes catch reported by Burt Church, Red Bank, and Eel Ground Indian Bands. : ${ }^{4}$ Other harvest includes broodstock removals, mortalities at all index traps, and all samples. ${ }^{6}$ For 1975 to 1994. ${ }^{7}$ For 1990 to 1994.									

Recreational catches: Have ranged from 7686 to 14,215 large and 11,300 to 30,586 small salmon during the past 10 years. Effort in rod-days has increased in recent years. Angling catches for 1994 are revised final values. The 1995 catches are preliminary values based on the 1990-94 average because 1995 estimates are not yet available.

Data and assessment: For 1990-1991, returns were estimated from trap efficiency at a DFO trap operated in the estuary of the Miramichi River at Millbank. The efficiency of this trap was calibrated from tag recapture experiments in 1985 thru 1992. Index traps were operated in the estuaries of the Northwest and Southwest Miramichi Rivers in 1992 to 1995. Returns of small and large salmon were estimated separately from marks applied at these traps and recaptures upstream. Escapements were estimated as returns minus known removals.

State of the stock: Target egg deposition rates have been almost met or exceeded in each of the last ten years.
Forecast for 1996: The probability distribution model prediction for large salmon returns in 1996 is 30,507 with a probability of meeting the spawning target (23,600) of 81% (i.e., a 19% chance of returns being less than 23,600). No forecast available for small salmon.

STOCK: Northwest Miramichi River, SFA 16.
TARGET: 41 million eggs (7316 large, 7006 small salmon)

	1990	1991	1992	1993	1994	1995	MIN ${ }^{1}$	MAX ${ }^{1}$	MEAN ${ }^{7}$
Angling catch ${ }^{2}$									
Large	2229	1533	1794	2186	2249	1998	419	3836	1998
Small	6825	3056	6960	6171	5166	5636	2232	9825	5636
Native harvest ${ }^{3}$									
Large	502	462	580	54	81	172	54^{6}	$898{ }^{6}$	336
Small	2095	1109	1616	477	2921	1795	100^{6}	$2921{ }^{6}$	1644
Other harvest ${ }^{4}$									
Large	39	44	56	100	51	31			58
Small	0	29	61	106	68	115			53
Spawning escapement									
Large ($\times 1000$)	n.a.	n.a.	9	10	13	15			
Small (x 1000)	n.a.	n.a.	22	40	13	15			
Total returns									
Large (x 1000)	n.a.	n.a.	10	11	13	15			
Small ($\times 1000$)	n.a.	n.a.	31	46	21	22			
\% Egg target met	n.a.	n.a.	198	175	197	265			
' MIN MAX over the period 1972 to present unless stated otherwise. ${ }^{2}$ All angling catches are NB DNRE Fishsys values. Angling catch includes hook and release fish. ${ }^{3}$ Native harvest includes catch reported by Red Bank, and Eel Ground Indian Bands. ${ }^{4}$ Other harvest includes broodstock removals, mortalities at all index traps, and all samples. ${ }^{6}$ For 1972 to present. ${ }^{7}$ For 1990 to 1994.									

Recreational catches: New Brunswick Department of Natural Resources and Energy FISHSYS estimates indicate that over the period 1987-1991, 27-34\% (mean: 31\%) of total angling in the Miramichi River has occurred in the Northwest Miramichi. Values for 1992 to 1994 are final revised estimates of catch. The 1995 values are not yet available and the previous 5 -year catches are used as preliminary figures.
Data and assessment: Returns of small salmon and large salmon to the Northwest Miramichi River were estimated in 1992 to 1995 from a mark-recapture program, applying tags at Eel Ground Enclosure trap and recovering tags from traps at Redbank (NW), and from fences in the headwaters of the Northwest Miramichi and in Catamaran Brook. Spawners were estimated as returns minus known and estimated removals.

State of the stock: The spawning target for large salmon was exceeded in 1992 to 1995.
Forecast for 1996: Based on the forecast for the Miramichi River and proportion of total large salmon returning to the Northwest Miramichi (38\%), returns in 1996 should exceed the spawning requirements. No forecast available for small salmon.

STOCK: Southwest Miramichi River, SFA 16
TARGET: 88 million eggs (15730 large, 15063 small salmon)

	1990	1991	1992	1993	1994	1995	$\mathbf{M I N}{ }^{1}$	MAX ${ }^{1}$	MEAN ${ }^{7}$
Angling catch ${ }^{2}$									
Large	7029	4614	7682	5945	6202	6294	1373	10387	6294
Small	14547	8244	14522	10727	8249	11258	4570	22137	11258
Natlve harvest ${ }^{3}$									
Large	0	0	0	0	0	0			
Small	0	0	0	0	0	1170			
Other harvest ${ }^{4}$									
Large	49	39	75	66	68	94			-59
Small	0	39	26	130	202	49			79
Spawning escapement									
Large (x 1000)	n.a.	n.a.	27	22	14	17			
Small (x 1000)	n.a.	n.a.	106	33	26	19			
Total returns									\ldots
Large (x 1000)	n.a.	n.a.	27	22	14	17			
Small ($\times 1000$)	n.a.	п.a.	121	43	34	32			
\% Egg target met	n.a.	n.a.	259	150	108	139			
' MIN MAX over the period 1972 to present unless stated otherwise. ${ }^{2}$ All angling catches are NB DNRE Fishsys values. Angling catch includes hook and release fish. ${ }^{3}$ Eel Ground First Nations food fishery occurred in the Southwest branch using a trapnet. ${ }^{4}$ Other harvest includes broodstock removals, mortalities al all index traps, and all samples. ${ }^{6}$ For 1972 to present. ${ }^{7}$ For 1990 to 1994.									

Recreational catches: 'New Brunswick Department of Natural_Resources and Energy FISHSYS estimates indicate that over the period 1987-1991, 66-73\% (mean: 69\%) of total angling in the Miramichi River has occurred in the Southwest Miramichi. The 1995 values are preliminary and represent the average catches for the period 1990 to 1994 because the 1995 estimates are not yet available. Values for 1994 have been finalized.

Data and assessment: Returns of small salmon and large salmon to the Southwest Miramichi River were estimated in 1992 to 1995 from a mark-recapture program, applying tags at Enclosure trap and recovering tags from recapture trapnet upstream, from creel surveys, and from fences and barriers in the Southwest Miramichi. Spawners were estimated as returns minus known and estimated removals.

State of the stock: The egg deposition target was exceeded in 1992 to 1995.
Forecast for 1996: Based on the forecast for the Miramichi River and proportion of total large salmon returning to the Southwest Miramichi (62%), returns in 1996 should exceed the spawning requirements. No forecast available for small salmon.

INTRODUCTION

The Miramichi River, at a maximum axial length of 250 km and draining an area of about 14,000 km^{2}, has the largest Atlantic salmon run of eastern North America. There are two major branches: the Northwest Branch covers about $3,900 \mathrm{~km}^{2}$ and the Southwest Branch about $7,700 \mathrm{~km}^{2}$ of drainage arca (Randall et al. 1989). The two branches drain into a common estuary and subsequently drain into the Gulf of St. Lawrence at latitude $47^{\circ} \mathrm{N}$ (Fig. 1).

Annual assessments of the Atlantic salmon (Salmo salar) stock of the Miramichi River have been prepared since 1982. Until 1991, the assessments dealt exclusively with returns and escapement to the entire river (Randall and Chadwick MS1983a, b; Randall and Schofield MS1987, MS1988; Randall et al. MS 1985, MS1986, MS1989, MS1990; Moore et al. MS 1991, MS1992). Since 1992, separate assessments of the Northwest and Southwest branches have been prepared (Courtenay et al. MS1993; Chaput et al. MS 1994b, MS 1995).

There is considered to be two runs of Atlantic salmon in the Miramichi River. The early-run consists of salmon returning to the river up to August 31 whereas the late-run is considered to consist of salmon returning from September 1 onwards. Two size groups of salmon return to the river to spawn. The small salmon category consists of salmon of fork length less than 63 cm and are generally referred to as grilse. These fish have usually spent only one full year at sea (one-sea-winter) prior to returning to the river but the size group may also contain some previous spawners. The large salmon category consists of fish of fork length greater than or equal to 63 cm . This size group is generally referred to as multi-sea-winter or "salmon" and contains varying proportions of one-sea-winter, two-sea-winter and three-sea-winter maiden (first time) spawners as well as previous spawners (Moore et al. 1995). Salmon which have spawned and have not returned to sea until the spring of the year are referred to as kelts, or "black salmon" in contrast to "bright" salmon which are maturing adult salmon moving into freshwater from the ocean.

In addition to the different runs and size groups, the Miramichi River also contains several stocks of Atlantic salmon (Saunders 1981, Riddell and Leggett 1981). Separate branch assessments were introduced to account for some of this diversity and for the differences in exploitation between the Northwest and Southwest branches. Aboriginal fisheries were historically conducted almost exclusively in the Northwest Miramichi (exploitation also occurs in the estuarial waters of the Miramichi River, downstream of the confluence of the two branches) and recreational fisheries exploitation also differs between the Northwest and Southwest branches.

Temporal stock distinctiveness has also been highlighted as an important component of the Atlantic salmon resource (Saunders 1967). Early runs and late runs have different composition in terms of small and large salmon proportions and sex ratios. The early runs in both branches are also exploited more heavily than the late runs.

The objectives of the assessment are to estimate the returns of salmon, the spawning escapement after removals and to compare the escapement to the conservation target for the river. The status of the resource is determined by the proportion of the target achieved, the trends in returns, the juvenile densities, and the prospects. The returns and cscapements are estimated on a spatial and temporal scale corresponding to the available data. Returns by size group to the whole river are broken down into Northwest and Southwest Miramichi returns and further still into early and late run. We estimate egg depositions for each run in each branch by incorporating the variability in run composition, sex ratio, and size of fish. Juvenile surveys provide finer spatial scale assessments of spawning activity in the previous year. Finally, using time series data of returns, escapements, and juvenile surveys, we provide a prognosis for the future stock status of Atlantic salmon from the Miramichi River.

Input from industry, user groups and other government agencies was obtained during a science assessment workshop (minutes in Appendix 1). Peer review notes are available under separate cover (Anon. 1996).

DESCRIPTION OF FISHERIES

A distinction is made between catches and harvests. Catches consist of fish which are caught but not necessarily retained. Harvests represent fish which are caught and retained.

Atlantic salmon were harvested by two user groups in 1995; First Nations and recreational fishers. Aboriginal food fishery harvesting agreements were signed between DFO, the Eel Ground First Nation and the Red Bank First Nation (Table 1). The agreements focused on the reduction and elimination of gillnetting effort in the Northwest Miramichi, compensated by food fishery trapnets operated by the bands. In 1995, Eel Ground First Nation fished two food fishery trapnets in the Northwest Miramichi and one food trapnet in the Southwest Miramichi. Two food trapnets were fished by Red Bank First Nation at identical locations to previous years (confluence of the Northwest and Little Southwest Miramichi). A communal license was issued to Burnt Church First Nation (Table 1).

There were no significant changes in recreational fishery regulations in 1995 relative to previous years (Moore et al. MS 1995) (Table 2). Individual recreational quotas remained in effect: daily limits of 2 small salmon kept ($<63 \mathrm{~cm}$ fork length) and a maximum of 8 kept for the year, hook and release only of all large salmon ($>=63 \mathrm{~cm}$ fork length). There were numerous river closures in 1995 resulting from low water levels (Table 2). The Northwest Miramichi (upstream of the confluence with the Little Southwest Miramichi) was closed to angling on August 10, pending a resolution of the Big Hole Tract conflict, and reopened on September 20. An extended hook and release angling fishery for the period Oct. 1 to 15 was approved for the stretch of the Southwest Miramichi River between Doaktown and Deersdale bridge (a length of about 75 km) contingent on sufficient water levels to promote the movement of fish into the headwater spawning areas. The fishery never opened because of insufficient water levels and lack of movement of fish, as monitored at the Southwest Miramichi protection barrier.

To prevent the excessive harvesting of salmon in the Big Hole Tract waters (Fig. 1), outside the food fishery agreement, a protection barrier (small mesh barrier net) was installed on July 5 to prevent the migration of salmon upstream. The barrier net was removed on September 13.

Aboriginal Food Fisheries

The catches by size and week are summarized in Table 3. With the exception of the Burnt Church fishery, which occurred in estuary waters of Miramichi Bay, large salmon harvests were exclusively from the Northwest Miramichi. Small salmon harvests were divided 60% from the Northwest Miramichi and 40% from the Southwest Miramichi River: Repòrted harvests from food fisheries in the Northwest Miramichi in 1995 were 172 large salmon and 1795 small salmon. A total of 1170 small salmon were harvested from the Southwest Miramichi. These harvests are exclusive of those taken as food outside areas specified in the Aboriginal Communal Fishing licenses. The extent of these unreported harvests is unknown.

Gillnets in the Northwest Miramichi accounted for 18% of the large salmon harvests and 4% of the small salmon harvest. The Eel Ground First Nation released all the large salmon from the food fishery trapnets (549 salmon) and 3% of the small salmon catch (47 of 1842 small salmon). The Red Bank First Nation released 84% of the large salmon catch (722 of 863 large salmon) and 23% of the small salmon catch (333 of 1433 small salmon). Food fishery harvests from the estuary by Burnt Church First Nation were low in 1995, 39 small and 13 large salmon; all were taken by gillnets (Table 3). The food fisheries mainly targeted the early run; 98% of the large salmon and 80% of the small salmon were harvested before September 1 (Table 3). The Aboriginal food fishery harvests in 1995 represented an increase of 76% for small salmon and a decrease of 50% for large salmon relative to the previous 5 -year mean (Table 4).

Recreational Fisheries

Angling catch data have in the past been available from two sources: EISHSYS (mail-out survey after season closure of part of the angling license holders) from the New Bruñswick Department of Natural Resources and Energy (DNRE), and from the Government of Canada Department of Fisheries and Oceans (DFO) (Moore et al. MS1995). For the Miramichi River system, the DNRE estimates are considered to be more accurate than the DFO estimates (Randall and Chadwick MS1983a). DFO estimates of catch, which have generally been lower than the DNRE estimates, were not collected after 1994.

The FISHSYS data for 1995 were not available at the time of preparation of this document (Table 5, Fig. 2).

Historical catches from the Miramichi River and for each branch are summarized in Figure 2. Large salmon catches (kept and released) in the Miramichi peaked in 1986 and have since declined to just over 5,000 salmon per year, similar to 1978 to 1984 levels (Fig. 2). Small salmon catches fluctuate annually, having peaked in 1988 at almost 31,000 fish and since declining to under 15,000 . The catches of small and large salmon increased the most in the Northwest Miramichi since the closure of commercial fisheries and the introduction of hook and release angling in 1984 (Fig. 2). Catches of large salmon in the Southwest Miramichi peaked in 1986:and have steadily declined to under 5,000 fish per year.

The Crown Reserve waters of the Northwest Miramichi are regulated in terms of effort. Total effort in 1995 was the lowest since 1972 and was down 26% relative to the previous 5-year average (Fig. 3 and Table 5). Catches of small salmon were also the lowest ever and were down 58%. Large salmon catches were the third lowest since 1972 and were down 24%. The effort and catch of small salmon was down the most in the Sevogle and Northwest Miramichi crown reserve stretches; these stretches were affected by the barrier installed below Big Hole Tract on July 5 and the closure to angling on Aug. 10. The Little Southwest Miramichi effort would have been affected by the Aug. 10 closure as well but it reopened on Aug. 26. River closures in 1995 resulted in 540 fewer rod days available (-17%) for use by Crown reserve anglers. There was also a season extension to Sept. 15 (from the regular Aug. 31 closure) for the Little Southwest crown reserve stretches in 1995. The extension was already in place at the start of the season (June 10).

Quarryville Pool Creel Survey

A creel survey was conducted at Quarryville Pool during the period July 12 to Oct. 15. Quarryville Pool is the first pool on the Southwest Miramichi and is located at the confluence of the Renous River and the Southwest Miramichi (Fig. 1). The objectives of the survey were to quantify the variation in catches and effort over the season and to estimate the proportion of the angled catch which were adiposeclipped (fish of satellite rearing or semi-natural pond rearing origin). Angling activity for the entire pool could be easily monitored from a vantage point on the northeast bank. Monitoring occurred from 600 to 2200 hrs every day of the week. Angling effort (hours of fishing activity) was estimated by counting the active rods in the pool every fifteen minutes and these quarter hour estimates of effort were summed to give effort for the entire day in terms of hours fished. Total small salmon kept, small salmon released and large salmon released were obtained by direct observation of activity in the entire pool. Part of the small salmon catch (those small salmon landed on the same side of the river as the creel clerk) was sampled for the presence of a carlin tag and the presence of the adipose fin.

The total average daily fishing effort was lowest in August (53 hours) and highest in September (179 hours). There were large fluctuations in daily effort during the season (Fig. 4). The catch of small salmon was 202 kept and 10 released. Of the 155 small salmon sampled by the clerk, 10 had carlin tags and only one had an adipose clip: The number of large salmon released was 95 of which at least 4 had been tagged (tag reported to clerk by anglers).

The catch of small salmon in 1995 was only one-third of the catch estimated by creel survey for approximately the same time period in 1993: 644 small salmon kept, 30 released (Chaput et al. MS

1994b):Large salmon catch in 1995 was almost as high as in 1993 (116 large salmon released). Small salmon catches in 1995 compared with 1993 were especially low in August through October (Fig. 4). Large salmoñ"ätches' in '1995.were verylow in July and August but higher in October than observed in 1993 (Fig. 4). The distribution of effort in both years was more similar than the catches; about 50% of the effort for the year occurred after September 1 (Fig. 4). In both years, the survey began more than one month after the opening of the angling season (first week of June).

Timing of Harvests

Recreational fisheries exploit both the early and late runs. The small salmon catch from the Miramichi River has been historically comprised of 81% early and 19% late (after Aug. 31) run whereas 74% of the large salmon catch is taken in the summer (Moore et al. MS 1995). These proportions differed for the two major branches. Catches in the Northwest tend to be high from the early run whereas Southwest catches are only slightly higher in the early season: 75% of large and 83% of small for the Northwest, 56% of large and 61% of small for the Southwest.

A smaller proportion of total tags relcased in 1995 were returned by anglers compared to previous years but the slightly higher return rate of July tags in 1995 is similar to that observed in 1992 and 1993. Exploitation hías generally been heaviest on the carly run fish and decreases progressively for September and October tag groups.

Percent of tags returned from fish marked in each month					
Grilse	June	July	August	September	October
1992	16%	16%	10%	9%	6%
1993	11%	14%	13%	8%	5%
1994	6%	6%	6%	8%	2%
1995	3%	5%	4%	3%	2%

The lower proportion of tags returned by anglers in 1994 and 1995 may in part be attributed to a change in tag return compensation. Prior to 1994, a $\$ 10$ reward was paid for each tag returned. In 1994, angling badges rather than monetary rewards were given out and in 1995, a lottery with cash prizes ranging between $\$ 50$ and $\$ 1000$ was initiated. The changes in 1994 and 1995 were introduced in response to program reductions. Low tag returns in 1994 and 1995 may alśo correspond to reduced availability of fish to angling resulting from low water levels.

TARGET

The conservation spawning requirement for the Miramichi River and cach branch separately is based on an egg requirement of $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ of spawning and rearing habitat area (CAFSAC 1991). Habitat area estimates are from Amiro (MS1983). The objective is to obtain all the egg depositions from large salmon. Fish required are calculated using the average biological characteristics of the Miramichi stock. Since large salmon have a high proportion of females (greater than 80%) wherease the small salmon are mostly males (less than 20% female), a small salmon requirement is used to provide a minimum theoretical 1:1 sex ratio on the spawning grounds at the conservation level.

			Fish required	
	Habitat area $\left(\right.$ million $\left.\mathrm{m}^{2}\right)$	Egg requirement (millions)	Large salmon	Small salmon
Miramichi River	54.6	132	23,600	22,600
Main Miramichi	1.1	3	554	531
Southwest Miramichi	36.7	88	15,730	15,063
Northwest Miramichi	16.8	41	7.316	7.006

RESEARCH DATA

Data collected in 1995 pertain to the estimation of returns, size distribution, sex ratios, abundance of juvenile salmon, and hatchery stocking. Returns are estimated from mark and recapture experiments. The size distribution and sex ratio data are collected at the tagging and recapture trapnets, from food fishery trapnets and from broodstock seining operations. The abundance of juvenile salmon is estimated from electrofishing surveys.

Estimation of returns

Trapnets were operated below head of tide in both branches of the Miramichi River (Fig. 1). The Southwest Enclosure trapnet and the Northwest Eel Ground Index trapnct were the main tagging trapnets. An upstream trapnet on the Southwest Miramichi (Millerton, Fig. 1) was used for tagging and recapture. Additional tagging in the Northwest and Southwest Miramichi was conducted at the food fishery trapnets operated by Eel Ground First Nation. The Red Bank trapnets were the main recapture gear for the Northwest Miramichi. The trapnets were fished once a day at slack tide, sometimes twice a day at Red Bank. The dates of operation, total fish caught, and total tags released, by size group, are summarized in Table 6.

The trapnets, with the exception of the Eel Ground food fishery trapnets, were constructed of 5.5 cm stretched mesh, knotless twine. The leaders were constructed of 12.5 cm knotted stretched mesh. The leaders at the Red Bank trapnets were constructed of 7.5 cm knotted stretched mesh twine. The Eel Ground food fishery trapnets and leaders were constructed of 5 cm knotted stretched mesh. The nets were identical to those used in 1994.

Salmon were marked with individually numbered blue Carlin tags (dimensions $9.5 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ by 1.0 mm thick) attached to the back just anterior to the dorsal fin with narrow gauge stainless steel wire. Fork length and external sex determination (fall period) were obtained from all salmon at the tagging
trapnets. Scale samples, for determination of age, were removed from the standard location (along the imaginary line:joining the posterior of the dorsal fin and the anterior of the anal fin, two to four rows above the lateral line) from all-large salmon and from every second small salmon. Scale samples were stored dry.

Food fishery catches at Eel Ground and Red Bank were sampled for number of salmon caught (by size) and number as well as sex of salmon harvested (by internal examination). Almost all the large salmon from the Eel Ground trapnets were tagged before being released (Table 6). The number of tags placed and the time and location of recaptures, by size group and month, at each of the tagging facilities in 1995 are summarized in Appendix 2.

Recaptured fish at all trapnets had the tag number recorded, the size (small or large), date and trapnet location where recaptured before being released or when sampled from the food fishery harvests.

Daily counts of salmon, by size, were obtained at several barrier fence and counting fence facilities within the Northwest and Southwest Miramichi (Fig. 1). Tag numbers of marked fish passing through these barriers were recorded prior to release upstream. Broodstock seining also provided samples of size, number, tag numbers of marked fish, and sex ratio of salmon.

Voluntary returns of tags from the angling fishery were used to describe the emigration of tagged fish outside the branch where they were originally marked (Appendix 2).

Juvenile Surveys in the Miramichi River

Electrofishing surveys were conducted at 36 sites (17 in the Northwest Miramichi and 19 in the Southwest Miramichi) between August 14 and September 26 1995, 13 of which have been sampled every year since 1970, except for 1991 (Fig. 5). A combination of open (26 in total) and closed (10 in total) sites was used. The density of salmon juveniles at closed sites was estimated using the successive removal method. Sites were closed using upstrean and downstream fine-mesh barrier nets. Population estimates were obtained by the Zippin method (Zippin 1956). Open sites, fished in a manner similar to 1993 and 1994, provide an estimate of abundance based on catch per effort. Fishing was conducted bank to bank, in an upstream direction, with three people: one person with the shocker unit, a second person with a one metre wide by 0.75 metre high lip seine, and a third person with the fish holding bucket and dipnet. The amount of fishing effort was recorded from the timer on the shocker unit and represents the total seconds of actual shocking time. Catch per effort was transformed to density (number of fish. 100 m ${ }^{2}$) by calibrating the open site technique within the closed site (see Chaput et al. 1995). Percent habitat saturation (PHS) values were.calculated for each site (Grant and Kramer 1990). The procedure is more fully described in Moore et al. (1996).

All fish were identified to species and measured for length (fork length except lamprey and American eel for which total length was recorded). At several sites, whole weights to the nearest 0.1 g were obtained using a portable electronic balance. Large eels were counted but not measured. Fish were anesthetized, using sodium bicarbonate salts, before measuring.

Hatchery Stocking

Various life stages are reared and stocked annually to the Miramichi River. Satellite rearing was initiated in 1984 and in 1995 a total of 80.000 young-of-the-year were distributed to satellite facilities and reared for release as fall fingerlings (Table 7). Smolt stocking is also an important component of the hatchery program. Over $27,0002+$ smolts were released to the Dungarvon River (Southwest Miramichi) in 1995 and 2,700 $2+$ smolts were released to Little River (Northwest Miramichi). Smolt releases to the Northwest Miramichi were negligible in 1995 because the approximately 30,000 smolts reared in the semi-natural ponds during 1994 tested positive for bacterial kidney disease and were destroyed. Unfed fry releases to the Northwest Miramichi consisted of 75,000 to the Sevogle River (Northwest Miramichi). 165,000 to the Little Southwest (Northwest Miramichi) and 40,000 to the Dungarvon River (Southwest Miramichi) (Table 7). Detailed descriptions of releases by date, location and life stage are available in

Appendix 3. All releases into the Miramichi; except for unfed fry and about 150 fall fingerlings stocked to the Renous River, were marked with an adipose fin clip before release (Table 7, Appendix 3).

Broodstock collections in 1995 consisted of 50 large salmon and 37 small salmon from the Southwest Miramichi, 16 large salmon and 79 small salmon from the Northwest Miramichi (Table 8).

ESTIMATION OF STOCK PARAMETERS

Estimation of Returns

The objectives of the assessment were to estimate the returns to each branch for early and late run periods. If seasonal stratification was not possible, then estimates to cach branch for the whole year were obtained. Scasonal stratification was not possible for large salmon in the Northwest Miramichi because only one large salmon was recaptured at Red Bank during June to August. The returns to the Miramichi River were estimated from the sum of the returns to each branch.

There are two approaches to estimating returns to each branch:
I-calculate returns to each branch separately by adjusting the tags available for recapture based on the emigration rate estimates described below, or
2 - use spatially-stratified estimators to estimate returns to each branch, and the total, simultaneously.
The tag and recapture matrices differ between the two methods (Table 9). In the first approach, fish tagged at Millerton in the Southwest Miramichi and recaptured at the Red Bank (Northwest Miramichi) trapnets can be used. These additional recoveries (21 small salmon and 10 large salmon, Appendix 2) represent 34% of the small salmon recaptures and 30% of the large salmon recaptures at Red Bank. These data would be ignored in method 2 because the Millerton trapnet would be treated exclusively as a recapture trapnet. Method 2 is attractive because it directly calculates the emigration rates. These emigration rates, based on trapnet recoveries, do not necessarily correspond to the rates obtained using angling recoveries.

There are two stratified estimators available: the Schaefer model (Ricker 1975) and the Darroch model (Arnason et al. 1995). Recent studies have indicated that the Schaefer model is unbiased if there is either constant capture rates or constant recovery rates (in temporal stratification, this would mean either constant tagging proportion or constant recapture probabilities in early and late runs) (Arnason et al. 1995). Under these conditions, the authors indicated that the pooled Petersen estimator is also unbiased and more precise (usually because it uses the aggregated recaptures). The Darroch model does not require the rigid assumptions of the pooled Petersen and Schaefer model. It will be less biased but also less precise than the pooled Petersen when the probability of capture or recapture varies but the reduced biasedness outweighs the loss of precision (Arnason et al. 1995). Unfortunately, the Darroch model does not always produce valid results (capture probabilities in some strata can be negative) especially under conditions of small sample sizes (recaptures in strata frequently 0 or less than 5). For comparative purposes and as an indicator of important assumption failures, we calculated the Schaefer and Darroch stratified estimates as well as the pooled Petersen estimates. As a confirmation of the estimated returns to each branch and to the Miramichi River, the Darroch and Schaefer models were fitted to the spatiallystratified matrix. The matrices used for both approaches are summarized in Table 9. The Darroch model could not provide valid parameter estimates for the combined temporal and spatial stratifications.

Only marks placed up to and including Oct. 15 are considered to be available for recapture. Tagging in the Southwest finished on Oct. 19 while in the Northwest, the last day of tagging was Oct. 15. The recapture trapnets in the Northwest Miramichi fished until Oct. 13; the upper trapnet on the Southwest Miramichi fished until Oct. 20. Returns are estimated up to the point of the recapture trapnets in each
branch (would exclude harvests which occurred downstream of each recapture trapnet) and constitute the returns up to and including Oct. 15. .

At the recapture traps, both the previously marked fish and the unmarked fish are known without error but the marks available for recapture are not.

1-In 1995, salmon with tagging scars were recorded at recapture trapnets in the Northwest (3 small salmon, 1 large salmon at Red Bank) and Southwest (5 small salmon, 1 large salmon at Millerton). The tags may have been shed or could have resulted from anglers removing tags and releasing the fish. This would necessitate a fall-back to tidal waters of angled fish which does occur because in the fall of 1995, two salmon were caught at the trapnets with artificial flies embedded in the jaw. Since all fish at the trapnets are examined for tags and tagging scars, marked fish at the recapture facilities were considered as known without error.
2 - In the 1994 tag retention experiment, none of the tagged broodstock fish held for about 60 days had shed their tags in the hatchery tank. This result was similar to the 1992 experiment on small salmon (Courtenay et al. MS 1993). Similar experiments conducted for the Margaree River assessment indicated that tag shedding for large salmon was in the order of 1% per day (Chaput et al. MS1994a). Mortality of tagged fish resulting from tagging and handling has not been estimated although there have not been any recorded mortalities of tagged fish held in hatchery facilities (Chaput et al. MS 1994a, Courtenay et al. MS1993). Mortalities of tagged fish (2 large salmon and 1 small salmon) were recorded in the river in 1995 (Appendix 2). In the absence of survival rate data, a combined tag loss/tagged fish mortality factor of 10% was assumed (varying between 0% and 20%), similar to previous assessments (Randall et al. MS 1989).
3 - Tagged fish frequently migrated out of the branch in which they were tagged (Appendix 2). The emigration rate of marked fish out of the branch where they were tagged was calculated using recaptures from angling (Chaput et al. MS 1995). If we assume that the reporting rate of tags from the angling fisheries in the Northwest and Southwest branches are identical (but unknown), and that the return rate (RR) of tags through the mail is a function of the exploitation rate factored by the tag reporting rate, then we can estimate the rate of emigration using the following equations:

$$
\begin{aligned}
& \frac{N W_{N W}}{R R_{N W}}+\frac{N W S W}{R R_{S W}}=\text { Total Tags } S_{N W} \\
& \frac{S W_{N W}}{R R_{N W}}+\frac{S W_{S W}}{R R S W}=\text { Total Tags } s_{S W}
\end{aligned}
$$

where $\mathrm{NW}_{\mathrm{Nw}} \quad=$ Northwest tags returned from Northwest Miramichi angling (known), $\mathrm{NW}_{\mathrm{sw}} \quad=\quad$ Northwest tags returned from Southwest Miramichi angling (known),
$\mathrm{RR}_{\mathrm{Nw}} \quad=$ return rate of tags angled in the Northwest Miramichi (unknown),
$\mathrm{RR}_{\mathrm{sw}} \quad=$ return rate of tags angled in the Southwest Miramichi (unknown),
Total Tags $\mathrm{Nw}=$ total tagged fish released in the Northwest Miramichi (known),...
The solutions to these two linear equations are obtained by inverting the recapture matrix followed by multiplication of the tagged vector (Table 10).

Angling tag returns of both small and large salmon up to Oct. 15 were used to estimate the emigration rates (Table 10) because:

1 - we need to estimate emigration rates for both size groups,

2 - large salmon emigration rates could not be.estimated because of insufficient returns of large salmon tags,
3-sâmple sizes were insufficient in early and late periods to provide emigration rate estimates.

The point estimates and the resampling estimates for small and large salmon emigration in 1995 were:

Origin
Point Estimate Resampling median
90% C.I.
Southwest

Enclosure	0.264	0.243	0.009 to 0.830
Millerton	0.081	0.081	0.009 to 0.273
orthwest	0.359	0.331	0.019 to 0.608

The uncertainty around the estimation of returns consists of two or three components:
1 - Random variation in the tag loss/tag mortality factor was incorporated as a uniformly distributed function between 0% and 20% (mean of 10%).

2 - Uncertainty of the emigration rate was estimated by resampling within the rows of the observed matrix of angling returns, the rows representing the tag returns from either the Northwest or Southwest Miramichi with tagging origin as the columns. Prior probabilities of tag origin were set at the observed proportions in the tag returns from angling.

3 - Uncertainty in the temporally-stratified recapture matrix was estimated by resampling within the rows of the observed matrix of recaptures at the trapnets. In this case, the prior probabilities for a marked fish in the total catches at the trapnets was set at the observed proportion for each tag release stratum. Recoveries were also assigned to one of the temporal strata at the recapture nets based on the observed distribution of recoveries.

For the spatially-stratified approach which did not use the emigration rate component, only tag loss and the stochastic variation in recaptures ($1 \& 3$) were considered.

Returns by size, season and branch were obtained using a resampling technique as follows:
Step 1: select a tag loss/tag mortality factor, estimate emigration rate, define recapture matrix.
Step 2: calculate returns using Schaeffer, Darroch and Petersen, save result.
Step 3: repeat steps 1 and 2 a large number of times (2000 replications were performed).
Step 4: summarize distribution of returns from step 3.

Returns to the Southwest Miramichi in 1995

An estimated 30500 small salmon returned to the Southwest Miramichi in 1995 with a 95% probability that the returns were more than 10400 fish (Table 11, Fig. 6). By season, just under 18000 small salmon returned early and 12000 returned in the late run. Large salmon returns were estimated at 17100 fish with a 95% probability that the returns were at least 5661 fish (Table 11, Fig. 7). Just over 3100 large salmon returned early and 13900 returned in the late run. Estimates using the pooled Petersen and the Darroch models were generally close to the Schaefer estimated values (Table 11).

The large salmon returns to the Southwest Miramichi estimated with the spatially stratified matrix were not obtainable with the Darroch model (negative population values were obtained more than 10% of the time) whereas the Schaefer estimate for the Southwest was 20928 fish, 22% higher than the estimate using the emigration rate procedure (Table 11). Small salmon estimates from the Schaefer model were 23% lower than the corresponding estimates from the emigration rate procedure while the Darroch model
estimated returns which were 49% lower than the Darroch derived values from the emigration rate 'procedure. The coefficients of variation (CV) of the'Schaefer derived estimates were about 10%.

The overall efficiency'of thë Milleiton recapture trap was similar for-smallsalmon.but higher for large salmon than in 1994.

	Catch	Return	Efficiency	1994 efficiency
Small salmon	2362	30500	7.7%	7.9%
Large salmon	1503	17100	8.8%	6.9%

Alternate estimates of the efficiency of the Southwest Miramichi recapture trapnet were obtained from sampling at the Renous partial fence. After adjusting for emigration and tag loss factors, the efficiency of the Millerton trapnet was estimated at 7.9% for small salmon and 8.6% for large salmon. These values are essentially identical to those calculated using tag recoveries at Millerton (see above).

Returns to the Northwest Miramichi in 1995

About 21700 small salmon returned to the Northwest Miramichi in 1995 with a 95% probability that the returns were more than 7100 fish (Table 11, Fig. 6). By season, just under 10600 small salmon returned early and 11000 returned in the late run. Large salmon returns were estimated at 15200 fish with a 95% probability that the returns were at least 7752 fish (Table 11, Fig. 7). Early and late returns of large salmon were estimated directly from the timing of the large salmon catches at the Red Bank trapnets, less than 20% early. Estimates using the pooled Petersen and the Darroch models were generally close to the Schaefer estimated values for small salmon (Table 11).

With the spatially-stratified matrix, the large salmon returns to the Northwest Miramichi were estimated:at just under 13000 fish with the Schaefer model and 24329 fish with the Darroch model (Table 11). Compared to the emigration-rate-derived procedures, the Schaefer estimate was 16% lower and the Darroch estimate was 60% higher. For small salmon, the Darroch estimates from the spatially stratified matrix were identical to the emigration rate derived value but the Schaefer estimate was 26% lower (Table 11). The CVs of the Schaefer-derived estimates were also low, about 10%.

As with the Southwest Millerton trapnet, the overall efficiency of the Red Bank recapture trapnets (2) was similar for small salmon but higher for large salmon than in 1994.

	Catch	Return	Efficiency	1994 efficiency
Small salmon	1402	21684	6.5%	6.7%
Large salmon	851	15196	5.6%	3.9%

Returns to the Miramichi River in 1995

In 1995, 32600 large salmon and 52200 small salmon returned to the Miramichi River (Table 11, Fig. 6, 7). With the spatially-stratified matrix, the large salmon returns to the Miramichi were estimated at just under 34000 fish with the Schaefer model and 38700 fish with the Darroch model (Table 11). The Darroch calculation for the Miramichi was not useful because of its extremely high CV. The Schaefer derived estimate was identical to the value obtained from the emigration rate procedure (4% higher). For small salmon, the Darroch and Schaefer model estimates were essentially identical, about 40000 fish but about 23% lower than the emigration-rate-derived values. The precision was much better (CV's between 9% and 12% compared to CV's of 28% to 39% from the emigration rate procedure) and there was only a 5% chance that returns of small salmon to the Miramichi were under 34000 fish. On the other hand, there was only a 5% chance that the returns were greater than 46000 or 49000 from the spatially stratified matrix approach.

We have chosen the emigration-rate-derived values for the estimation of returns in 1995 because the estimates obtained with the spatially-stratified approach assume that fish recovered at the recapture
trapnets are all destined to stay in that branch:. From the 1994 tagging study (Chaput et al MS1995) and the recoveries of fish tagged at the Millerton trapnet in the Red Bank trapnets in 1995, we know that this is not true. There was no difference in the large salmon estimates but thesmallisalmon estimate which we chose is about 30% higher than indicated by the spatially-stratified matrix. We do acknowledge that the estimation of the emigration rates using the angling recoveries is not perfect. Preliminary simulations indicate that when the emigration rates from the two branches are identical regardless of relative run size, the estimated emigration rates are unbiased. When the emigration rates are different, there is a tendency to underestimate the higher rate and overestimate the lower rate. Small sample size (low tag return rate) reduces the precision (G. Chaput, unpublished data). The less precise estimates derived from the emigration rate procedure result from the uncertainty introduced by the estimates of emigration rates which are not part of the spatially-stratified procedure.

Estimation of Egg Depositions in 1995

The estimated egg depositions in 1995 are obtained from the estimates of the escapement of small and large salmon and their respective observed biological characteristics in 1995.

Escapement in 1995

The escapement of salmon refers to fish which were not harvested in fisheries or otherwise removed from the river. Known losses are included; seizures in nets, reported mortalities in the river. Removals also include broodstock collections, scientific sampling, and incidental mortalities at the tagging trapnets (Table 12).

The total harvests and removals of salmon from the Miramichi River in 1995 were 20061 small salmon and 559 large salmon (Table 12). Total removals in the Northwest Branch were 7546 small salmon and 263 large salmon while Southwest Branch removals were 12477 small salmon and 283 large salmon.

The point estimates of escapements of small and large salmon in each branch by season are summarized below.

		Returns to recapture trapnets	Harvests below recapture trapnets	Total returns	Total removals	Escapement
Northwest Miramichi						
Small	Early	10,595	693	11,288	6,163	5,125
	Late	10,810	2	10,812	1,383	9,429
	Lotal	21,684	695	22,379	7,546	14,833
Large'	Early	2,735	31	2,766	249	2,517
	Late	12,460	0	12,460	14	12,446
	Total	15,196	31	15,227	263	14,964

		Returns to recapture trapnets	Harvests below recapture trapncts	Total returns	Total removals	Escapement
Southwest Miramichi						
Small	Early	17.895	1,148	19,043	8,435	10,608
	Late	12,045	22	12,067	4,042	8,025
	Total	30,505	1,170	31,675	12,477	19,198
Large	Early	3,170	0	3,170	207	2,963
	Late	13,866	0	13,866	76	13,790
	Total	17,097	0	17,097	283	16,814
Miramichi River						
Small	Total	52,241	1,904	54,145	20,061	34,084
Large	Total	32,583	44	32,627	559	32,068

${ }^{1}$ returns of large salmon in the Northwest Miramichi early and late are based on the timing of the catches at the Red Bank recapture trapnets which were 18% of total up to Aug. 31 and 82% of total after.

Biological Characteristics of Salmon in 1995

All salmon sampled at the tagging trapnets were measured for fork length. All large salmon and every second small salmon were scale sampled. Sex of large salmon from the early run in the Northwest Miramichi was determined from the internal examinations of the Red Bank food fishery harvests. Sex of small salmon from the early run was determined by internal examinations of food fishery harvests of Eel Ground and Red Bank. In the fall, both internal and external sex determinations of small salmon were obtained whereas only external determinations of sex were obtained for the large salmon. Additional sex ratio information was obtained from the broodstock seining samples.

Sex ratios

The percent female in the small salmon component was significantly higher in the early run than in the late run for both Southwest and Northwest samples (Table 13). The sex ratios of small salmon were similar in the two branches for both the early and late runs: 32% female in the early run and 12% female in the late run. Large salmon were mostly female in both the Northwest and Southwest branches. The early run salmon had a higher percent female component (94%) than the late run (88%) (Table 14). The proportion female observed in 1995 is higher than the 80% female observed in 1994 (Chaput et al. MS 1995). Broodstock seining samples generally supported the sex ratios observed at the trapnets (Table 15). There was an anomalously high female proportion observed in the small salmon samples from the Little Southwest Miramichi. Such high female proportions (60%), also observed in the Little Southwest in 1994 (Chaput et al. MS 1995), may suggest that only June and July fish had managed to reach the upper stretches or that the upper Little Southwest is primarily a ISW salmon stock (such stocks tend to have a high female proportion) (Porter et al. 1986).

Size and age

The éárly runs in both the Northwest and Southwest Miramichị were dominated by small salmon (Table 11, Fig. 8, 9). In the Northwest Miramichi, small salmon represented ${ }^{\circ} 79 \%{ }^{\circ}$ of the returns compared to 85% of the returns to the Southwest. In the late run, large salmon were more abundant in both the Northwest and Southwest branches (54% of all fish). Small salmon in the fall run were slightly longer than in the early run but the average fork length of the large salmon decreased slightly (Table 16). Based on an age-length key, previous spawners made up just under 20% of the large salmon in both branches. In the 1994 return, a similar age-length analysis indicated that previous spawners comprised 28% to 30% of the returns. Age determinations of the 1994 samples indicated that previous spawners represented 25% of the large salmon returns in the Southwest Miramichi and 30% in the Northwest.

Egg depositions in 1995

In the Northwest Miramichi, almost four times as many eggs were contributed by the late run fish as compared to the early run (Table 17). The late run in the Southwest accounted for three times the eggs of the early run. Large salmon contribute the largest proportion of the eggs in both the early (66% to 78%) and late runs (over 95%) in each branch. Early run small salmon have the potential to be a more important contributor to the egg depositions (proportionally larger returns than in the fall, higher proportion of females) but because of the larger removals of small salmon in the early run, the resultant early run escapement was lower than the fall run. In the Miramichi River overall, large salmon contributed more than 88% of the total egg depositions (Fig. 10, Table 17).

STATUS OF STOCK

Total egg depositions to the Miramichi by large salmon were 157% of target, with a greater than 99% probability of having met or exceeded the target. Egg depositions by both small and large salmon were 178% of target, with a greater than 99% probability of the target having been met or exceeded.

The average returns and escapements of small salmon to the Miramichi since 1986 are higher than the average of the previous years (Table 18, Fig. 11). The return in 1995 of 54,145 small salmon is 39% " below and 16% below the previous 5 -year and historical (1971 to 1994) average returns to the river, respectively. The escapement of small salmon was 41% below the 5 -year'average and 12% below the historical average. The large salmon returns were 7% below and 1% above the previous 5 -year and 三 historical averages respectively. The large salmon cscapement was 5% below but 38% above the 5 -year and historical averages, respectively (Fig. 11, Table 18). Since 1990, large salmon returns have averaged 32000 fish, a 52% increase from the average return between 1984 and 1989 (21000) (Fig. 11).

Egg depositions to the Miramichi River have been met or exceeded every year since 1985 (Fig. 12). Conservation requirements (2.4 eggs per m^{2}) have been met by large salmon alone every year since 1990. Large salmon egg depositions cqualled or exceeded the conservation level in only four years between 1971 and 1989. The relative contribution of small salmon to the total egg depositions in the Miramichi in 1995 was 12%. Since the 1984 management plan, small salmon have contributed on average 22% of the total egg deposition, the most important contribution by small salmon occurred in 1981 at 58% (Fig. 12).

In the Southwest and Northwest branches, returns of small salmon have declined since 1992 but 1994 and 1995 returns are similar. Large salmon returns have declined since 1992 in the Southwest but have continued to increase in the Northwest Miramichi.

	Small salmon		Large salmon		
	Median	5th to 95th Percentile	Median	5th to 95th Percentile	
Southwest Miramichi					
1992	120,701	85,263 to 157,794	25,028	17,657 to 32,744	
1993	42,600	22,700 to 73,800	21,900	10,800 to 58,900	
1994	33,775	23,450 to 54,150	14,000	9,100 to 22,850	
1995	31,675	11,580 to 46,512	17,097	5,661 to 24,150	
Northwest Miramichi					
1992	30,321	23,040 to 40,864	10,000	-	
1993	46,200	27,700 to 97,500	10,541	3,700 to 37,500	
1994	20,600	11,750 to 38,525	12,600	6,450 to 31,300	
1995	22,379	7,795 to 33,290	15,227	7,783 to 31,481	

A total of 108.5 million eggs, 123% of target, were deposited by large salmon in the Southwest Miramichi in 1995. There was a 71% probability that the egg depositions by large salmon in the Southwest Miramichi exceeded the target (Fig. 13). Egg depositions by both small and large salmon were 139% of target, with a 81% probability of having met or exceeded the target.

In the Northwest Miramichi, 96.8 million eggs were contributed by large salmon (236% of target) (Table 18). There was a 95% probability that the target egg deposition was exceeded by large salmon alone (Fig. 13). Egg depositions by small and large salmon were 265% of target with a 99% probability of having met or exceeded the target.

Egg depositions in both the Northwest and Southwest branches have exceeded the conservation levels every year since 1992 (Fig. 12). Large salmon egg depositions exceeded the target in three of the four years. Small salmon have contributed slightly more to the total egg depositions in the Southwest Miramichi (mean $=18 \%$) than in the Northwest Miramichi (mean $=14 \%$).

Headwater Barrier Fences

Large and small salmon have been enumerated at headwater barrier fences on the Southwest branch (North Branch of SW Miramichi, Dungarvon River) since 1981 and on the Northwest branch (Northwest Miramichi River) since 1988 (Table 19). The fences are operated for varying periods each year but generally cover the entire migration period. The trend in the counts of large salmon in 1995 at the barrier fences of the Southwest Miramichi were contradictory; at the Southwest Miramichi fence, counts of large salmon were 12% higher than the previous 5 -year mean but at the Dungarvon barrier, the large salmon counts were down by 58% (Table 19). Small salmon counts were down at both barriers.

Returns of large salmon at the Northwest Barrier were the highest observed since 1990 but relatively unchanged ($+3 \%$) from the previous 5 -year average (Table 19). Small salmon counts were the lowest recorded since the beginning of operations in $1988,45 \%$ below the previous 5 -year average. Counts of small and large salmon at Catamaran Brook, a mainly fall-run tributary, were the highest for large salmon and the second highest for small salmon since 1990 (Table 20).

All the barrier and counting fences on the Miramichi, except for the Dungarvon Barrier, indicated that large salmon returns were similar to or above returns since 1992. Small salmon counts at all the headwater barriers were the lowest observed since 1991. Only Catamaran Brook received higher
numbers of smáll salmon: These trends are similar to the trends in returns estimated using mark and recapture experiments at the estuarine trapnets.

ECOLOGICAL CONSIDERATIONS

Seasonal and Environmental Conditions

The Southwest Miramichi River received relatively normal flow conditions between January and May 1995 but flows were deficient (in the lower quartile) for the months of June to October (Caissie MS 1996). A record low monthly discharge was observed in July while in November an excessive (in the upper quartile) flow condition occurred (Caissie MS1996). The lowest daily discharge recorded on the Miramichi in 1995 occurred on August 23 and was equivalent to a 15 -year low flow event.

Surface water temperatures in tidal waters at the index trapnets on occasion peaked above $25^{\circ} \mathrm{C}$ but the average temperatures never exceeded $25^{\circ} \mathrm{C}$ (Fig. 14). Bottom temperatures in the estuary were cooler than surface temperatures, especially during the last half of June and in late July, early August. Temperatures at the Southwest Miramichi headwater barriers were on average $4^{\circ} \mathrm{C}$ cooler than in the estuary but the Northwest barrier temperatures were on average more than $6^{\circ} \mathrm{C}$ cooler throughout the summer (Fig. 14).

Timing and Movements of Salmon in 1995

Run timing of salmon at the recapture trapnets in the Northwest Miramichi (at Red Bank) and in the Southwest Miramichi (at Millerton) was nearly identical in 1995 (Fig. 15). The small salmon movements were earlier than the large salmon; by Aug. 31, about 40% of the small salmon for the year had been counted as compared to only 18% of the large salmon. Comparable values are available for the Millerton trapnet in 1994 when 16% of the count of large salmon and 36% of the small salmon had been sampled by Aug. 31 (Chaput et al. MS 1995). Large salmon tagged in the early-run had a more delayed migration upriver than the small salmon (Table 9). For large salmon, 93% of the Red Bank recaptures of early-run tagged salmon and 63% of the Millerton recaptures of early-run tagged salmon were recovered after September 1. For small salmon, about 60% of the early-run tagged fish were recovered at the recapture trapnets prior to Sept. 1. With improved water conditions in the late fall, rapid upstream movements of salmon were observed. Both small and large salmon marked in the estuary in October were recaptured at the Southwest Miramichi barrier fence that same month with a large salmon covering the distance (more than 150 kms) in 12 days.

The low flow conditions encountered in June through October had a dramatic effect on the movements of salmon through the Southwest Miramichi barrier where more than 90% of the large salmon and 75% of the small salmon were counted after Oct. 9 (Fig. 16). At the Dungarvon River barrier, the movements of small and large salmon were relatively early compared to previous years, 95% of the large salmon and 90% of the small salmon had been counted through by the end of July with essentially no fish moving in August to the middle of October (Fig. 17). The Dungarvon Barrier was removed on Oct. 13 although in previous years, very few fish ascended into the barrier late in the season. Low water conditions also affected the movements of salmon through the Renous partial fence: for the period 16 June to 26 September, 69% of the small salmon and 51% of the large salmon were counted in the month of July, and only 7% of the small salmon and 14% of the large salmon were counted in September (Appendix 2). Relatively early movements of large salmon and small salmon were also observed at the Northwest Miramichi barrier followed by almost three months with relatively no movement of large salmon and a dribble of small salmon (Fig. 18). The movements of salmon through this barrier should have been impacted by the protection barrier net installed below Big Hole tract. This net held back all the salmon in the Northwest Miramichi from July 5 to Sept. 13. Considering the extremely low water levels observed in the Northwest Miramichi (although not monitored, levels were determined to have been as
low as those recorded in the Southwest Miramichi), upstream migrations of salmon after July would have been minimal.

Spawner Distribution and Habitat Utilization

In 1994, spawning occurred throughout the Northwest and Southwest Miramichi. At 71\% of the sites in the Northwest, fry densities were greater than 50 fish per $100 \mathrm{~m}^{2}$ (Fig. 19). No fry were observed at three sites in the Northwest Miramichi:

I - salmon did not spawn at the Catamaran Brook site (number 46) in 1994 because a beaver dam blocked access to spawners (R. Cunjak, pers. comm.),

2 - Cave Brook, tributary of North Pole Stream, is inaccessible to anadromous salmon but nonfeeding fry were stocked there in 1994.

3 - Tuadook River, in the headwaters of the Little Southwest Miramichi, had minimal spawning activity as evidenced by no fry and only one fry sampled at an adjacent site.

At those locations where fry were found, densities in the Northwest averaged 75 fry per $100 \mathrm{~m}^{2}$ (Fig. 19). Parr densities were above 30 per $100 \mathrm{~m}^{2}$ at 5 of 17 sites and averaged 36.8 fish per $100 \mathrm{~m}^{2}$ (Fig. 19). Elson (1967) had indicated that parr densities of 38 fish per $100 \mathrm{~m}^{2}$ (24 small parr and 14 large parr) were normal average values for New' Brunswick rivers producing 3-year old smolts and normal average fry densities were in the order of 29 per $100 \mathrm{~m}^{2}$ (Elson 1967). Percent Habitat Saturation (PHS) values ranged between 16 and 54.5 (mean $=28.8$) for the whole Northwest Miramichi. A PHS value of 28 is used as a reference point for acceptable habitat use; it represents the value at which density dependent effects have a 50% probability of being expressed at the site (Grant and Kramer 1990). PHS values at the Little Southwest Miramichi sites averaged 24.9, slightly less than the 32.2 value for the remaining Northwest Miramichi sites.

Spawning had occurred in the vicinity of all the sites in Southwest in 1994; fry densities were greater than 50 per $100 \mathrm{~m}^{2}$ at all 19 sites sampled (Fig. 20) and averaged 145 per $100 \mathrm{~m}^{2}$. Parr densities were also high, greater than 30 per $100 \mathrm{~m}^{2}$ at 11 of 19 sites (58%) and averaged 42 parr per $100 \mathrm{~m}^{2}$. PHS values were above 30 at 10 of the 19 sites, averaging 36.6 (range 8.3 to 92.1).

Spawning had also occurred throughout the Miramichi River in 1991 to 1993 (Chaput et al. MS1994b, MS 1995).

PHS values have increased at the index sites since 1970 (Fig. 21) corresponding to an increase in juvenile production resulting from higher egg deposition and/or higher survival in the river.

FORECAST/PROSPECTS

Short Term

A non-parametric model (probability density function) has been used to forecast the large salmon returns based on the small salmon returns in the preceding year (Claytor et al. MS1991, Claytor et al. 1992) (Fig. 22). Based on this relationship and a 1995 return of small salmon to the Miramichi of 54000 fish, the 1996 forecast for large salmon returning to the Miramichi is 30,507 with a 81% probability of meeting spawning requirements (23,600 large salmon). This model, used since 1992, has tended to underestimate the observed returns:

Forecast year	Forecast value	Actual return	$\%$ (Predicted-Actual)/Actual
1992	29,000	37,000	-22%
1993	18,315	35,200	-48%
1994	28,200	27,500	$+3 \%$
1995	30,040	32,583	-8%
1996	30,507		

Since 1992, the large salmon returns to the Miramichi have been divided about 62% Southwest and 38% Northwest Miramichi. This would indicate that the returns to the Northwest Miramichi would be about 11,700 large salmon whereas returns to the Southwest would be about 18,800 large salmon.

There is no forecast model for small salmon but based on the smolt counts at Catamaran Brook in 1995 and the observed temporal trend in smolt counts in year i, small salmon returns to the Northwest in year $i+1$, we would expect the small salmon returns in 1996 to be in the order of those observed in 1995 and 1994, about 20,000 fish to the Northwest.

Long Term

The increased densities of juvenile salmon, since 1985 for fry and 1986 for parr, at the index sites sampled since 1971 indicate that the long-term prospect for the Atlantic salmon stock of the Miramichi is for continued and increased abundance of salmon (Fig. 23 and 24). At least in the freshwater portion of the life cycle, the abundance of the cohorts is increasing in both the Northwest and Southwest Miramichi.

In terms of the Miramichi system, large salmon returns have averaged 32000 fish between 1990 and 1995, a 52% increase from the average return during 1984 to 1989 (21000) (Fig. 11). Given an average life cycle of 5 to 6 years (migration to migration) for large salmon, the returns to the Miramichi in 1996 to 2001 will be the progeny of the 1990 to 1995 escapements. Between 1971 and 1989, large salmon escapements equalled or exceeded 30,000 spawners 3 times and the returns of large salmon 6 years later from these escapements ranged from 28000 to 37000 fish (Table 18, Fig. 11). While the trends in abundance of some stocks of Atlantic salmon in Canada correlate with an index of winter marine habitat (Anon. 1995), the Miramichi River large salmon returns do not. This is not to say that the sea survival of Atlantic salmon from the Miramichi in recent years has not been affected by colder marine conditions. If the Miramichi stock has been affected, then smolt output from the Miramichi must be at a level which masks declining sea survival and produces fairly constant returns of large salmon.

MANAGEMENT CONSIDERATIONS

Was conservation met in 1995 ?

The conservation (egg deposition) targets for the Southwest Miramichi, Northwest Miramichi and Miramichi River system were exceeded in 1995. The conservation targets are for the entire run to the river. There is a higher exploitation rate on the early run small and large salmon but the exploitation rates on large salmon remain low; 9% of the early-run large salmon in the Northwest and 6% of the early-run large salmon in the Southwest were removed prior to spawning. Small salmon are more heavily utilized; 36% of the total returns in the Northwest and 40% of total returns to the Southwest Miramichi were removed.

Will the returns in 1996 exceed the conservation targets for the river?

There is a very good chance (81% probability) that the returns of large salmon in 1996 will at least meet the conservation target for the Miramichi River. Based on the relative returns to each branch since 1992, the returns to each branch should also exceed the target. Relative to the conservation target, the returns to the Northwest have been relatively better than those to the Southwest. The exploitation rates of small and large salmon which occurred in the last 4 years, if continued into 1996, should not threaten the resource. Since the 1996 forecast is for returns during the whole year, the exploitation of both small and large salmon would be most wisely distributed across the entire migration. In the Northwest and Southwest Miramichi rivers, this would represent about 20% of potential harvests of large salmon taking place prior to Sept. 1 and 80% of harvests after Aug. 31. For small salmon, more fish return early, 40% up to and including Aug. 31 and 60% after Aug. 31.

Are assessments required at a finer spatial resolution?

Since 1992, assessments of the returns of salmon to the Northwest and Southwest Miramichi rivers have been prepared. The separate branch assessments were initiated to address the concerns regarding the differences in stock characteristics and exploitation levels. The assessments indicate that returns and escapements have exceeded the conservation targets in each branch. There are concerns that in the Northwest Miramichi, one of the two major tributaries (Little Southwest Miramichi) may not be receiving adequate spawning escapement. In spite of concerns regarding the status of the Little Southwest Miramichi stock, the crown reserve angling season was extended by two weeks in 1995. The crown reserve stretches are in the upper sections of the river and early-run salmon would be the main target of angling activity. Returns to the lower sections of the Little Southwest, as monitored at Catamaran Brook, have not declined and were the highest ever in 1995.

The concerns for the Little Southwest Miramichi are based on the declines in angling catches and the lower juvenile densities compared to the Northwest Miramichi. The Little Southwest Miramichi may also be subject to pH depressions in the spring and to very high water temperatures in the summer (maximum water temperature of $30^{\circ} \mathrm{C}$ on August 11, 1995 reported by Caissie MS 1996). Separate targets for the Little Southwest Miramichi and the Northwest Miramichi could be calculated because the two rivers join together at the head of tide and freshwater production below the confluence would be minimal.

Enhancement activities on the Renous/Dungarvon River were initiated to increase the early returns of small and large salmon. A division of the Renous/Dungarvon River from the Southwest Miramichi would also be possible since the Renous enters the Southwest at the head of tide. Assessing the returns to each of these rivers requires additional monitoring such as the partial fence operated on the Renous River in 1995. Although a separate estimate of returns to the Renous River was not part of this assessment, such a calculation could be done using the recaptures at the Dungarvon barrier of fish tagged at the fence (Appendix 2). The calculation for 1995 indicates that about 9000 small salmon returned to the Renous River in 1995 (June to October), one-third of the total Southwest Miramichi returns. Similar initiatives could be undertaken by user groups for the Little Southwest Miramichi. Additionally, more extensive
juvenile surveys of these rivers could assist in determining if there are low production areas within the rivers. Low production could be the result of inadequate habitat and/or low escapement.

What is the contribution of hatchery origin salmon to the Miramichi?

The broodstock collections in 1995 amounted to about 0.2 million eggs from the Northwest and 0.3 million eggs from the Southwest. These represent less than 0.1% of the in-river egg depositions in both the Northwest and Southwest.

Overall, returns of adipose clipped fish (exclusive of non-feeding fry stocking which are not marked) represent a minute proportion of the total returns to each branch (Table 21). In 1995, small salmon sampled at the Enclosure and Millerton trapnets in the Southwest were predominantly ($>99.5 \%$) wild in both the early and late runs. Large salmon returns were essentially all wild origin ($>99.5 \%$) in the Southwest Miramichi. In the Northwest Miramichi, both small salmon and large salmon were predominantly of wild origin ($>99 \%$) (Table 21).

In the tributarics which received most of the adipose-clipped stocking in recent years, returns of adipose-clipped fish comprised a higher percentage of the returns. The Renous River received 33000 smolts in 1994 and the headwaters of the Northwest Miramichi were stocked with more than 41000 smolts (Chaput et al. MS1995). At the partial counting fence on the Renous River, adipose-clipped small salmon made up 3% of the returns during June to August, the highest proportions were in June and July (Table 21). At Rocky Brook, 70% of the small salmon were wild; this tributary has received about 15000 fall fingerlings from satellite rearing in recent years. No adipose-clipped large salmon were recovered in any of the tributaries sampled.

A counting trap was operated on Little River between Oct. 15 and 25. Little River had been stocked with about $15002+$ smolts reared in lake cages near Heath Steele mines. The counts at the Little River trap are not considered to be complete because salmon had probably ascended the river before installation of the trap. On numerous occasions, holes in the trapnet and leaders (due to rodents) were discovered and repaired. During that time, 44 small salmon were counted, 2 of which had adipose clips (4.5% of total small) (Table 21). Two small salmon and one large salmon had been previously tagged at the estuary trapnets.

The contribution of adipose-clipped fish to the returns and subsequent egg depositions in the Miramichi is negligible. Adipose-clipped fish were relatively abundant in only the Rocky Brook sampling. The contributions of adipose-clipped fish to the 1996 returns are expected to be less than in 1995. Smolts in 1995 were stocked almost exclusively to the Renous/Dungarvon River because the Northwest Miramichi semi-natural pond stock (about 27000 fish) was destroyed after testing positive for bacterial kidney disease (BKD). Smolt stocking in 1996 is expected to be in the order of 30000 fish in each of the Renous/Dungarvon River and Northwest Miramichi River. For 1997, Little Southwest Miramichi stocking will be undertaken instead of the Northwest Miramichi.

Did the Big Hole Tract protection barrier in 1995 have a negative impact on the Atlantic salmon resource?

The protection barrier was installed on July 5 and removed on Sept. 13, 1995. During that time, the highest water levels were observed during the week following installation and then dropped continually up to the time the barrier was removed. Activity at the barrier (fish jumping just below the net) was highest in the first two weeks. Water temperatures became warm in late July and peaked at $28^{\circ} \mathrm{C}$ on Aug. 1 (Fig. 25). There were large daily fluctuations in temperatures. On Aug. 11 when the water temperature in the Little Southwest Miramichi peaked at $30^{\circ} \mathrm{C}$, the maximum temperature at Big Hole Tract was $27^{\circ} \mathrm{C}$ (Fig. 25). There were unconfirmed reports of salmon mortalities resulting from the barrier but these
reported mortalities were no greater in number than the mortalities observed in the Southwest Miramichi during late July and August, at the peak of water temperatures.' Low water levels in the Northwest Miramichi limited the movement of salmon into the river. Even if the barrier-had not:been in place, it is unlikely that many fish would have moved upstream as shown by the movements of salmon through the Dungarvon and Southwest Miramichi barriers. Once the barrier was removed and water levels improved in October, salmon were abundant in the Northwest Miramichi (comments from user groups at the Science workshop). There was no apparent negative impact on salmon of the Northwest Miramichi in 1995.

RESEARCH RECOMMENDATIONS

1- Emigration of tagged fish between the branches continues to be a complicating factor in the assessment of returns to the individual branches. The use of tags recaptured by angling to assess the emigration rate should be explored further through simulation to determine the sensitivity of the estimation process to the sample:size, temporal and spatial heterogeneity and other factors. Alternate ways of estimating emigration should be explored, especially if the estimates are sensitive to small sample size.
2 - Biological characteristics of salmon spawned at the fish culture station should be examined and used to update, if warranted, the fecundity data currently used for the Miramichi. Similarly, the type of fecundity data (green eggs versus stripped eggs as in the hatchery) used in the derivation of 240 eggs per $100 \mathrm{~m}^{2}$ needs to be described. If green eggs were used, then potential egg depositions should also use green egg derived fecundity values.

REFERENCES

Amiro, P.G. MS 1983. Aerial photographic measurement of Atlantic salmon habitat of the Miramichi River, New Brunswick. CAFSAC Res. Doc. 83/74.
Anonymous 1995. Report on the status of Atlantic salmon stocks in castern Canada in 1994. DFO Atlantic Fisheries Stock Status Report 95/2.
Anonymous 1996. Proceedings of peer review and client consultations for diadromous fish stocks in the Maritime provinces in 1995. DFO Atlantic Fisheries Proceedings 96/1.
Arnason, A.N., C.W. Kirby, C.J. Schwarz, and J.R. Irvine. 1995. Computer analysis of data from stratified mark-recovery experiments for estimation of salmon escapements and other populations. Can. Tech. Rep. Fish. Aquat. Sci. No. 0000 (In press).
CAFSAC. 1991. Quantification of Conservation for Atlantic Salmon. CAFSAC Adv. Doc. 91/16.
Caissie, D. MS 1996. Hydrological conditions for Atlantic salmon rivers in the Maritime Provinces in 1995. DFO Atlantic Fisheries Res. Doc. (In prep.).

Chaput, G., M. Biron, D. Moore, B. dube, M. Hambrook, B. Hooper. MS 1995. Stock status of Atlantic salmon (Salmo salar) in the Miramichi River, 1994. DFO Atlantic Fisheries Res. Doc. 95/131. 77p.
Chaput, G., R. Jones, L. Forsyth, and P. Leblanc. MS1994a. Assessment of the Atlantic salmon (Salmo salar) stock of the Margaree River, Nova Scotia, 1993. DFO Atlantic Fisheries Res. Doc. 94/6.

Chaput, G., D. Moore, M. Biron, and R. Claytor. MS 1994b. Stock status of Atlantic salmon(Salmo salar) in the Miramichi River, 1993. DFO Atlantic Fisheries Res. Doc. 94/20.
Claytor, R.R., G.A. Nielsen, and P.A. Shëlton. 1992. Using jackknife and Monte Carlo simulation experiments to evaluate forecast models for Atlantic salmon (Salmo salar). p. 203-219. In S.J. Smith, J.J. Hunt and D. Rivard [ed.] Risk evaluation and biological reference points for fisheries management. Can. Spec. Publ. Fish. Aquat. Sci. 120.
Claytor, R.R., R.G. Randall, and G.J. Chaput. MS 1991. Forecasting preseason and inseason Atlantic salmon returns to the Miramichi River: parametric and non-parametric approaches. CAFSAC Res. Doc. 91/15. 72p.
Courtenay, S.C., D.S. Moore, R. Pickard, and G. Nielsen. MS 1993. Status of Atlantic salmon in the Miramichi River in 1992. DFO Atlantic Fisheries Res. Doc. 93/56. 63p.
Elson, P.F. 1967. Effects on wild young salmon of spraying DDT over New Brunswick forests. J. Fish. Res. Bd. Canada, 24:731-767.
Grant, J.W.A. and D.L. Kramer. 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Can. J. Fish. Aquat. Sci. 47: 1724-1737.
Moore, D.S., G. Chaput, and R. Pickard. 1995. The effect of fisheries on the biological characteristics and survival of mature Atlantic salmon (Salmo salar) from the Miramichi River. In E.M.P. Chadwick [ed.] Water, science, and the public: the Miramichi ecosystem. Can. Spec. Publ. Fish. Aquat. Sci. 123.
Moore, D.S., G. Chaput, and R. Pickard. 1996. Juvenile salmonid surveys from the Miramichi River, 1950 to 1995. Can. Tech. Rep. Fish. Aquat. Sci. (in prep).
Moore, D.S., B. Dubee, B. Hooper, and M. Biron. MS1995. Angling catch and effort for the Miramichi River from 1969 to 1994. DFO Atlantic Fisheries Res. Doc. 95/4.
Moore, D.S., S.C. Courtenay, R. Claytor, and R. Pickard. MS 1992. Status of Atlantic salmon in the Miramichi River during 1991. CAFSAC Res. Doc. 92/38. 40p.
Moore, D.S., S. Courtenay, and P.R. Pickard. MS 1991. Status of Atlantic salmon in the Miramichi River during 1990. CAFSAC Res. Doc. 91/8. 33p.
Porter, T.R., M.C. Healey, M.F. O'Connell (with E.T. Baum, A.T. Bielak, and Y. Côté). 1986. Implications of varying the sea age at maturity of Atlantic salmon (Salmo salar) on yield to fisheries, p. 110-117. In D.J. Meerburg [ed.] Salmonid age at maturity. Can. Spec. Publ. Fish. Aquat. Sci. 89.

Randall, R.G. 1989. Effect of sea age on the reproductive potential of Atlantic salmon (Salmo salar) in eastern Canada. Can. J. Fish. Aquat. Sci. 46: 2210-2218.
Randall, R.G. and E.M.P. Chadwick. MS1983a. Assessment of the Miramichi River salmon stock in 1982. CAFSAC Res. Doc. 83/21. 24p.

Randall, R.G. and E.M.P. Chadwick. MS1983b. Biological assessment of Atlantic salmon in the Miramichi River, N.B., 1983. CAFSAC Res. Doc. 83/83. 18p.
Randall, R.G., E.M.P. Chadwick, and E.J. Schofield. MS 1985. Status of Atlantic salmon in the Miramichi River, 1984. CAFSAC Res. Doc. 85/2. 21p.
Randall, R.G., E.M.P. Chadwick, and E.J. Schofield. MS 1986. Status of Atlantic salmon in the Miramichi River, 1985. CAFSAC Res. Doc. 86/2. 23p.
Randall, R.G., D.M. Moore, and P.R. Pickard. MS1990. Status of Atlantic salmon in the Miramichi River during 1989. CAFSAC Res. Doc. 90/4. 36p.
Randall, R.G., M.F. O'Connell, and E.M.P. Chadwick. 1989. Fish production in two large Atlantic coast rivers: Miramichi and Exploits, p. 92-308. In D.P. Dodge [ed.] Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish. Aquat. Sci. 106.

Randall, R.G., P.R. Pickard, and D. Moore. MS 1989. Biological assessment of Atlantic salmon in the Miramichi River, 1988. CAFSAC Res. Doc. 89/73. 36p.
Randall, R.G. and E.J. Schofield.'MS 1987. Status of Atlantic salmon-in then Miramichi River, 1986. CAFSAC Res. Doc. 87/5. 32p.
Randall, R.G. and E.J. Schofield. MS 1988. Status of Atlantic salmon in the Miramichi River, 1987. CAFSAC Res. Doc. 88/49. 37p.
Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191. 391p.
Riddell, B.E. and W.C. Leggett. 1981. Evidence of an adaptive basis for geographic variation in body morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 38:308-320.
Saunders, R.L. 1967. Seasonal pattern of return of Atlantic salmon in the Northwest Miramichi River, New Brunswick. J. Fish. Res. Bd. Canada 24:21-32.
Saunders, R.L. 1981. Atlantic salmon (Salmo salar) stocks and management implications in the Canadian Atlantic Provinces and New England, USA. Can. J. Fish. Aquat. Sci. 38:1612-1625.
Zippin, C: 1956. An evaluation of the removal method of estimating animal populations. Biometrics 12: 163-189.

Table 1. Food fishery agreements on the Miramichi River for_1.995.

Location	Allocation	Gear	Time Period
	Small Large		

Eel Ground First Nation

Northwest	1980	100	trapnets ${ }^{1}$, gill nets ${ }^{2}$ and recreational ${ }^{3}$	May 1 to Aug. 31
	800	-	trapnets ${ }^{1}$, gill nets ${ }^{2}$ and recreational ${ }^{3}$	Sept. 1 to Oct. 31
Southwest	1420	-	trapnet ${ }^{4}$ and recreational ${ }^{3}$	May 1 to Aug. 31
	800	-	trapnet ${ }^{4}$ and recreational ${ }^{3}$	Sept. 1 to Oct. 31

Red Bank First Nation

Little Southwest	1320	60	trapnet 4 and recreational ${ }^{3}$	June 1 to Aug. 31 trapnet 4 and recreational
Sept. 1 to Oct. 31				

Burnt Church First Nation ${ }^{6}$

Miramichi Bay	1300	80	gill nets ${ }^{\text {a }}$ and angling	May 1 to July 31
	700	120	gill nets ${ }^{5}$ and angling	Aug. 1 to Oct. 15

[^0]Table 2: Bright salmon angling seasons for 1995.

General Season:

June 8 to October 15

Exceptions to the General Season:

Opens June 8, closes August 31

- NW Miramichi River upstream from Little River
- Rocky Brook, tributary of SW Miramichi River
Opens June 8, closes September 15
- All tributaries of SW Miramichi River above Cains River except Rocky Brook
- Big Sevogle River above Square Forks
- Dungarvon River above the Furlong Bridge
- LSW Miramichi River above Catamaran Brook
- North and South branches of the SW Miramichi Rjver
- North and South branches of the Renous River
- SW Miramichi River upstream from McKiel Brook, not including tributaries Opens June 8, closes September 30
- Big Sevogle River downstream from Square Forks
- Dungarvon River downstream from the Furlong Bridge
- LSW Miramichi River below Catamaran Brook
- SW Miramichi River upstream of the mouth of Burnt Land Brook to McKiel Brook
- NW Miramichi River downstream from Little River
- Renous River downstream from the confluence of the North and South branches Opens June 10, closes August 31
- Crown Reserve waters on the NW Miramichi and Sevogle rivers
Opens June 10, closes September 15
- Crown Reserve waters on the LSW Miramichi River

Variation Orders altering the above seasons during 1995:

1995-092 - The Northwest Miramichi upstream from the Johnson Bridge to Wildcat Brook was closed to all fishing from July 5 to December 31. 1995. This closure was not revoked when the rest of the river opened on September 20. 1995
1995-122 - Closed to angling from July 31 to December 31, 1995, the Southwest Miramichi River 100 meters upstream and downstream of the Quarryville bridge.
1995-123 - Closed to angling the Renous River above the mouth of Crown Pt. Brook from July 31 to December 31, 1995.

1995-127 - Closed to angling the entire Renous and Dungarvon rivers as well as their tributaries from August 9 to December 31, 1995.
1995-128 - Closed all waters of the NW Miramichi, Big Sevogle, and LSW Miramichi rivers to angling from August 10 to December 31, 1995.
1995-139 - Revoked 1995-128 and opened the LSW Miramichi River to angling August 26, 1995. NW Miramichi and Big Sevogle rivers remained closed to angling.
1995-142 - Revoked 1995-139 and repeats the closure of the NW Miranichi and Big evogle rivers from September 2 to December 31, 1995. Closed all lakes tributary to these rivers to angling from September 16 to December 31, 1995.
1995-143 - Revoked 1995-127 and repeats closure of the Renous and Dungarvon rivers from September 5 to December 31, 1995. Closed all lakes tributary to these rivers to angling from September 16 to December 31, 1995. 1995-155 - On September 20, 1995, this revoked 1995-139 and opened the NW Miramichi and Big Sevogle rivers to angling.
1995-158 - On September 28, 1995, this revoked 1995-143 and opened the Renous and Dungarvon rivers to angling.

Table 3. Harvest and effort (net days) for native food Gisheries on the Miramichi in 1995 for early and late runs by week, as reported by band councils.*

Week	Burnt Church		Eel Ground					Red Bank			
	Gillnets		Gillnets**			$\frac{\text { Trapnet }}{(\mathrm{SW})}$	$\frac{\text { Trapnets }}{\text { (NW) }}$	Trapnet (NW)		Trapnet (LSW)	
	Small	Large	Effort	Small	Large	Small	Small	Small	Large	Small	Large

Early run											
May 21-27	-	-	5	0	0	-	-	-	-	-	-
May 28-June 3	-	-	5	0	1	-	0	-	-	-	-
June 4-10	-	-	34	2	7	-	0	1	3	-	-
June 11-17	-	-	20	2	1	-	5	3	1	0	0
June 18-24	1	2	29	12	0	2	3	1	0	7	1
June 25-July 1	4	3	28	14	8	37	28	4	3	4	2
July 2-8	.	-	30	20	8	211	125	55	6	12	2
July 9-15	12	2	25	12	6	158	112	42	14	18	5
July 16-22	7	1	11	4	0	275	174	120	22	1	0
July 23-29	15	5	9	0	0	157	33	128	37	7	1
July 30-Aug. 5	-	-	4	4	0	83	73	35	14	7	1
Aug. 6-12	.	-	-	-	-	70	9	8	3	39	15
Aug. 13-19	-	-	0	0	0	35	12	6	3	9	1
Aug. 20-26	-	-	0	0	0	50	36	10	1	0	3
Aug. 27-Sept. 2	-	-	0	0	0	70	13	0	0	2	0
Subtotal	39	13	200	70	31	1148	623	413	107	106	31
Late run											
Sept. 3-9	-	${ }^{-}$	0	0	0	22	2	21	2	18	1
Sept. 10-16	-	-	0	0	0	-	-	67	-	2	-
Sept. 17-23	-	-	0	0	0	-	-	50	-	30	-
Sept. 24-30	-	-	-	-	-	-	-	15	-	9	-
Oct. 1-7	-	-	-	-	-	-	-	168	-	48	-
Oct. 8-14	-	-	-	-	-	-	-	101	-	52	-
Subtotal	0	0	0	0	0	22	2	422	2	159	1
Total Season	39	13	200	70	31	1170	625	835	109	265	32
\% Early run	100\%	100\%	100\%	100\%	100\%	98.3\%	99.7\%	49.5\%	98\%	40\%	97\%

* These figures do not include harvest and effort data for native fishing off reserve
$\left.\right|_{* *}$ Data obtained from 'Eel Ground First Nation, 'Native Fisheries Officers Program, 1995 Final Report prepared by Romeo Francis (Supervisor). Effort units are net-days

Table:4. Recorded harvests of salmon in all fisheries, Miramichi River and Bay, 1951-95 (includes commercial, by-catch, recreational, and native). Kelts angled in year i are added to landings in year i-1. 1995 data are preliminary. All data are numbers X 1000.

Angling Fisheries														
	Commercial Fishery			Kelts ($\mathrm{yr} \mathbf{i}+1$)			Brights (yri)				Native Fishery		Total	All Fisheries
Year	Small	Large	Total	Small	Large	Total	Small	Large	Total	All	Small	Large		
1951		27.6	27.6			12.0			9.6	21.6				49.2
1952		27.3	27.3			11.3			15.9	27.2				54.5
1953		24.4	24.4			10.1			18.2	28.3				52.7
1954		50.6	50.6			11.2			23.5	34.7				85.3
1955		15.3	15.3			8.9			14.7	23.6				38.9
1956		24.7	24.7			9.3			28.9	38.2				62.9
1957		29.9	29.9			8.4			19.5	27.9				57.8
1958		25.2	25.2			10.2			36.7	46.9				72.1
1959		37.3	37.3			9.5			10.3	19.8				57.1
1960		30.8	30.8			5.6			4.5	10.1				40.9
1961		30.0	30.0			9.5			11.0	20.5				50.5
1962		41.6	41.6			7.3			10.3	17.6				59.2
1963		40.7	40.7			5.2			50.9	56.1				96.8
1964		69.8	69.8			9.0			35.1	44.1				113.9
1965		69.5	69.5			16.0	38.7	3.9	42.6	58.6				128.1
1966		72.9	72.9			20.0	51.7	5.9	57.6	77.6				150.5
1967		102.2	102.2			14.1	41.8	4.1	45.9	60.0				162.2
1968		48.5	48.5			6.9	7.0	1.5	8.5	15.4				63.9
1969		41.3	41.3	3.7	1.6	5.3	24.3	3.8	28.1	33.4				74.7
1970		39.7	39.7	2.4	1.4	3.8	19.6	3.3	22.9	26.7			-	66.4
1971		18.3	18.3	1.5	0.5	2.0	13.7	1.8	15.5	17.5				35.8
1972		2.5	2.5	1.5	3.0	4.5	19.1	8.9	28.0	32.5				35.0
1973		0.9	0.9	1.5	3.0	4.5	13.9	6.0	19.9	24.4				25.3
1974		1.0	1.0	1.8	3.1	4.9	18.2	7.2	25.4	30.3				31.3
1975	0.4	0.7	1.1	2.3	1.4	3.7	15.6	6.3	21.9	25.6	0.4	0.2	0.6	27.3
1976	1.8	0.9	2.7	2.4	2.2	4.6	27.2	7.4	34.6	39.2	0.2	0.2	0.4	42.3
1977	0.4	6.9	7.3	1.4	2.1	3.5	13.6	11.6	25.2	28.7	0.5	0.4	0.9	36.9
1978	1.2	8.4	9.6	1.5	1.7	3.2	8.3	4.9	13.2	16.4	0.4	0.4	0.8	26.8
1979	5.5	1.7	7.2	2.2	1.5	3.7	14.5	2.7	17.2	20.9	0.1	0.2	0.3	28.4
1980	2.7	10.9	13.6	1.7	2.1	3.8	12.0	6.5	18.5	22.3			1.5-	35.9
1981	1.6	7.8	9.4	2.7	1.4	4.1	22.7	3.2	25.9	30.0	1.0	0.5	1.5	40.9
1982	2.3	12.5	14.8	2.1	1.0	3.1	21.4	4.6	26.0	29.1	0.7	0.4	1.1	45.0
1983	1.6	17.1	18.7	0.9	0.7	1.6	8.4	2.2	10.6	12.2	0.4	0.2	0.6	32.5
1984	0.0	0.0	0.0	2.4	0.0	2.4	18.8	0.0	18.8	21.2	0.4	0.3	0.7	21.9
1985	0.0	0.0	0.0	2.5	0.0	2.5	18.4	0.0	18.4	20.9	0.5	0.3	0.8	21.7
1986	0.0	0.0	0.0	2.7	0.0	2.7	26.2	0.0	26.2	28.9	2.0	0.6	2.6	31.5
1987	0.0	0.0	0.0	4.2	0.0	4.2	20.8	0.0	20.8	25.0	1.3	0.9	2.2	27.2
1988	0.0	0.0	0.0	5.4	0.0	5.4	30.6	0.0	30.6	36.0	0.9	0.3	1.2	37.2
1989	0.0	0.0	0.0	3.9	0.0	3.9	24.4	-0.0	24.4	28.3	1.1	0.5	1.6	29.9
1990	0.0	0.0	0.0	2.4	0.0	2.4	21.7	0.0	21.7	24.1	2.1	0.6	2.7	26.8
1991	0.0	0.0	0.0	2.3	0.0	2.3	11.3	0.0	11.3	13.6	1.1	0.5	1.6	15.2
1992	0.0	0.0	0.0	1.8	0.0	1.8	21.5	0.0	21.5	23.3	1.7	0.6	2.3	25.6
1993	0.0	0.0	0.0	0.9	0.0	0.9	15.3	0.0	15.3	16.2	0.6	0.2	0.8	17.0
1994	0.0	0.0	0.0				11.2	0.0	11.2		3.0	0.1	3.1	
1995	0.0	0.0	0.0	-	-	-					3.0	0.2	3.2	
$\begin{aligned} & \text { 1990-94 Mean } \\ & \text { change }=(95-\text { mean }) / \text { mean } \end{aligned}$						18.8	0.0	48.8	\cdots	1.4	$\begin{aligned} & 0.5 \\ & +76 \% \end{aligned}$	$\begin{aligned} & 1.9 \\ & -50 \% \end{aligned}$	+52\%	-

Note: Angling catches from 1951-68 are from DFO while catches from 1969-94 are from DNRE FISHSYS
'Table 5. Recreational Atlantic salmon fishery statistics from the Miramichi River, 1995. Mean is for the years 1990 to 1994. \% change represents 1995 minus mean divided by mean. Detailed catches are in Moore et al. (MS1995) of which 1994 data have been finalized. 1995 data are preliminary. Grown reserve data for 1995 are from: B. Dubee and S. Tulle. Salmon catch and effort on crown reserve waters of the Miramichi River system NewBrunswick 1995. N.B. Department of Natural Resources and Energy, Newcastle, New Brunswick. Manuscript, 7p.

Table 6. Summary of trapnet operation dates, catch, and tags applied in the Miramichi River, 1995. Catch represents all fish sampled, including recaptures.

Trapnets	Time Period	Catch		Tagged	
		Small	Large	Small	Large
NW Miramichi					
Eel Ground Index	June 2 to Oct. 15	457	252	393	228
Eel Ground FFT\#I (food trapnet)	May 31 to Aug. 31	474	114	0	101
	Sept. 1 to Sept. 5	5	4	0	4
	Total	479	118	0	105
Eel Ground	May 28 to Aug. 31	165	32	0	29
Hatchery	Sept. I	0	0	0	0
(food trapnet)	Total	165	32	0	29
Red Bank NW (food trapnet)	June 6 to Oct. 13	1029	588	0	0
Red Bank LSW (food trapnet)	June 15 to Oct. 13	404	275	0	0
SW Miramichl					
Eel Ground	June 21 to Aug. 31	1162	359	0	318
SWFFT	Sept. 1 to Sept. 4	36	40	0	38
(food trapnet)	Total	1198	399	0	356
Enclosure	May 25 to Oct. 15	1296	836	1155	744
	Oct. 16 to Oct. 19	19	56	17	50
	Total	1315	8.92	1172	794
Millerton	May 23 to Oct. 15	2531	1598	2143	1384
	Oct. 16 to Oct. 20	97	136	66	92
	Total	2628	1734	2209	1476

Table 7. Distribution of salmon juveniles in the Miramichi River in 1995. Under Mark, $\mathrm{AC}=$ adipose-clip, $\mathrm{NM}=$ unmarked.

River	Life Stage	Mark	Number of Fish Stocked
Northwest	2^{+}smolts	AC	2,734
	2^{+}parr	AC	137
	0^{+}parr	-	0
	Non-feeding fry	NM	240,000
	Satellite distribution	AC	21,143
Southwest	2^{+}smolts	AC	27,123
	2^{+}parr	AC	5,893
	0^{+}parr	AC	15,575
	Non-feeding fry	NM	40,000
	Satellite distribution	AC	65,018
		NM	150
Miramichi (total)	2^{+}smolts	AC	29,857
	2^{+}parr	AC	6,030
	0^{+}parr	AC	15,575
	Non-feeding fry	NM	280,000
	Satellite distribution	AC	86,311
		NM	150

Table 8. Summary of broodstock collection in 1995.

Stock Collected	Date Collected	Female Salmon	Female Grilse	Male Salmon	$\begin{gathered} \text { Male } \\ \text { Grilse } \end{gathered}$	$\begin{gathered} \hline \text { Collection } \\ \text { Site } \\ \hline \end{gathered}$
Northwest						
L. S. W.	09/11/95	4	0	0	11	Smith Fork \& Moose
						Landing
	10/04/95	3	38	1	24	Smith Fork \& Moose Landing
N. W.	09/20/95	4	0	1	3	Barrier Pool
Sevogle	10/12/95	3	0	0	3	Trash Heap Pool
Subtotal		14	38	2	41	
Southwest						
Clearwater	09/08/95	11	0	1	9	Bridge at Clearwater
Cains	10/13/95	1	0	0	1	Black Brook Salmon Club
	10/14/95	3	0	0	0	George Holmes, Island Pool
	10/16/95	0	0	1	1	Black Brook Salmon Club
Dungarvon	09/12/95	25	0	2	23	Barrier Pool
$\begin{array}{lllllll}\text { Rocky } \\ \text { Brook } & \text { 09/09/95 } & 5 & 0 & 1 & \end{array}$						
Subtotal		45	0	5	37	
Total		59	38	7	78	

Tablé 9: Raw data matrices used in the estimation of returns of small salmon and large salmon to the Miramichi River in 1995.

Using method based on prior estimation of emigration rates using angling.recaptures.
Matrices for Estimating Large Salmon Returns to the Northwest Miramichi in 1995

Recaptured at Red Bank
Tagged
Early Early

Late
13
$19 \quad 208 \quad 689 \quad 1095$

Tags placed in 1995

NW	SWEncl	SWMill
155	414	294
208	689	1095

Matrices for Estimating Large Salmon Returns to the Southwest Miramichi in 1995
Recaptured at Millerton Tags placed in 1995

Tagged	Early	Latc	NW	SWEncl
Early	12	20	155	414
Late	0	38	208	689
Total recoveries	315	1118		

	Recaptured at Red Bank		Tags placed in 1995		
Tagged	Early	Late	NW	SWEncl	SWMill
Early	10	7	103	446	1024
Late	0	45	289	708	1114
Total recoveries	548	813			

Matrices for Estimating Small Salmon Returns to the Southwest Miramichi in 1995
Recaptured at Millerion Tags placed in 1995
Early Late NW SWEncl

Tagged	Early	Late	NW	SWEncl
Early	12	8	103	446
Late	0	59	289	708

$\begin{array}{lll}\text { Total recoveries } & 1107 & 1176\end{array}$

Using spatial stratification without prior estimation of emigration rates
Large Salmon in 1995

	Recaptures in		
Tagged in	NW	SW	Tags placed
NW	8	10	363
SW	15	60	1103
Total recoveries	851	1503	

Small Salmon in 1995

	Recaptures in		
Tagged in	NW	SW	Tags placed
NW	17	6	353
SW	24	73	1037
Total recoveries	1402	2362	

Table 10. Tagging and recapture matrices used to estimate the emigration rate of tagged fish outside the branch where they were marked. Recaptures are exclusively returns from angling.

Small and Large Salmont Recoveries in Angling Fishery Combined

| Enclosure vs NW Index | | | | Tags |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Prom | To | | | Emigration |
| Rate | | | | |

Example calculation for Enclosure vs NW Index

1 - invert recapture matrix:
$\begin{array}{llrr}5 & 10 \text { Inverted-:- } & 0.2462 & -0.0385 \\ 6 & 64 & -0.0231 & 0.0192\end{array}$
2 - multiply by tag vector
755 -->> 99.12 = NW weighting for tag recoveries
2255
25.94 = SW weighting for tag recoveries

3 - estimate tag distribution in each branch by multiplying recapture matrix by respective weightings from step 2

(5×99.12)	(10×25.94)	$--\gg$	496	259
(6×99.12)	(64×25.94)		595	1660

4 - estimate emigration rate by dividing tags from branch A estimated to have moved to branch B relative to tags placed in branch A.

$$
\begin{array}{lll}
\text { NW tags to SW branch }= & (259 / 755)= & 34.3 \% \\
\text { SW tags to NW branch }= & (595 / 2255)= & 26.4 \%
\end{array}
$$

Table 11. Estimates of returns of small salmon and large salmon by season for the Northwest Miramichi, Southwest Miramichi, and Miramichi River in 1995. Estimates were obtained by resampling technique. Values in bold are the estimates used for returns in 1995.

Size		Estimator	Southwest				Northwest				Miramichi River			
	Season		Median	5 th perc.	95th perc.	CV	Median	5 th perc.	95th perc.	CV	Median	5th perc.	95th perc.	CV

Usin	thod ba	ed on prior	tion of	igratio	tes us	angling								
Large	Early	Petersen						
		Schaefer	3170	1063	4814	35.4\%	-	.						
		Darroch	1692	217	5449	88.5\%	-	
	Late	Petersen												
		Schaefer	13866	4597	19612	32.3\%	.	.				.		
		Darroch	14578	4735	21192	33.7\%	.	.		.				
	Total	Petersen	17235	5653	24155	32.2\%	15196	7752	31450	44.5\%	32583	19703	50304	27.4\%
		Schaefer	17097	5661	24150	32.2\%								
		Darroch	16601	5401	23750	33.5\%		
Small	Early	Petersen		.										
		Schaefer	17895	5910	29707	39.6\%	10595	3243	18375	42.3\%	28542	9165	47911	38.9\%
		Darroch	22541	7410	45645	55.6\%	12925	3664	27043	52.1\%	35456	11073	72602	50.7\%
	Late	Petersen												
		Schaefer	12045	4391	17053	29.5\%	10810	3771	15418	32.2\%	23275	8481	30147	27.2\%
		Darroch	11095	4082	15716	29.8\%	10082	3573	14718	32.8\%	21580	8006	27922	26.6\%
	Total	Petersen	25656	9050	35234	29.2\%	19440	6598	27288	32.3\%	45636	16049	59796	28.0\%
		Schaefer	30505	10410	45342	32.7\%	21684	7100	32595	34.7\%	52241	17795	75562	32.2\%
		Darroch	34521	11672	58230	41.7\%	23584	7538	38804	38.7\%	58006	19181	97320	38.9\%
Using	patial str	atification	prior	mation	emigrat	n rates								
Large	Total	Schaefer	20928	18020	24969	10.2\%	12736	10806	15547	11.4\%	33728	29126	40036	10.0\%
		Darroch	14179	-15736	27532	334.1\%	24329	5702	79795	408.4\%	38691	28822	69450	134.1\%
Small	Total	Schaefer	23460	20342	27344	9.4\%	15938	13542	19167	10.8\%	39461	34365	45998	9.0\%
		Darroch	17661	6316	25078	37.9\%	22734	14686	39527	36.2\%	40610	34755	49268	11.9\%

Table 12. Removals of Atlantic salmon by size and season from the Northwest Miramichi, Southwest Miramichi and Miramichi River system in 1995.

	Northwest Miramichi			Southwest Miramichi			EstuaryEarly	Miramichi River		
	Early	Late	Total	Early	Late	Total		Early	Late	Total
Small Salmon										
Food Fisheries	1212	583	1795	1148	22	1170	39	2399	605	3004
Angling'	4836	800	5636	7239	4019	11258	-	12124	4769	16893
Seizures ${ }^{2}$	30	-	30	-	-	-	-	30	-	30
Broodstock	79	-	79	37	-	37	-	116	-	116
Incidental	6	0	6	11	1	12	-	17	1	18
Mortalities ${ }^{3}$										
Total	6163	1383	7546	8435	4042	12477	39	14686	5375	20061
Large Salmon										
Food Fisheries	169	3	172	0	0	0	13	182	3	185
Angling ${ }^{4}$	49	11	60	115	74	189	-	164	85	249
Seizures ${ }^{2}$	15	-	15	22	-	22	-	37	-	37
Broodstock	16	-	16	50	-	50	-	66	-	66
	0	0	0	20	2	22	-	20	2	22
Mortalities ${ }^{3}$ Total	249	14	263	207	76	283	13	469	90	559

1: Average harvest of small salmon (1990-1994) from DNRE Fishsys.
2: Reported by DFO Conservation and Protection staff.
3: Include trapnet mortalities, meshed fish mortalities and other 'seen' mortalities.
4: Based on 3\% of average catch of large salmon (1990-1994) from DNRE Fishsys.

Table 13. Sex ratio (\% female) of small salmon by trap, season, and river system for 1995.

	Early Run	Late Run	X^{2}	P. value	DF
NW Eel Ground	33.06\%	12.83\%	29.974	0.000	1
NW Red Bank	33.72\%	12.27\%	73.696	0.000	1
X^{2}	0.032	0.053	average		
P. value	0.858	0.818	early:	33.51\%	
DF	1	1	late:	12.44\%	
	Early Run	Late Run	X^{2}	P. value	DF
SW Enclosure	30.75\%	9.86\%	86.785	0.000	1
SW Millerton	N/A	13.38\%	-	-	-
X^{2}	-	5.223	average		
P. value	-	0.022	early:	30.75\%	
DF	-	1	late:	12.05\%	
	Early Run	Late Run	X^{2}	P. value	DF
NW Miramichi	33.51\%	12.44\%	103.589	0.000	1
SW Miramichi	30.75\%	12.05\%	105.599	0.000	1
X^{2}	1.069	0.087	average		
P. value	0.301	0.768	early:	32.40\%	
DF	1	1	late:	12.17\%	

Table 14. Sex ratio (\% female) of large salmon by trap, season, and river system for 1995.

	Early Run	Late Run	X^{2}	P. value	DF
NW Eel Ground	N/A	85.56\%	-	-	-
NW Red Bank	93.84\%	87.63\%	4.547	0.033	1
X^{2}	-	0.539	average		
P. value	-	0.463	early:	93.84\%	
DF	-	1	late:	87.13\%	
	Early Run	Late Run	X^{2}	P. value	DF
SW Enclosure	N/A	88.41\%	-	-	-
SW Millerton	N/A	88.85\%	-	-	-
X^{2}	-	0.085	average		
P . value	-	0.770	early:	N/A	
DF	-	1	late:	88.69\%	
	Early Run	Late Run	X^{2}	P. value	DF
NW Miramichi	93.84\%	87.13\%	5.306	0.021	1
SW Miramichi	N/A	88.69\%	-	-	-
X^{2}	-	1.291	average		
P. value	-	0.256	early:	93.84\%	
DF	-	1	late:	88.24\%	

Table 15. Sex ratios (\% female) of small and large salmon observed during broodstock collections and at the Renous River partial counting fence. All determinations are based on external characteristics.

	Small salmon			Large salmon		
	females	males	\% females	females	males	\% females
Broodstock Collection						
Southwest Miramichi Clearwater Brook (Aug. 9, 1995)	9	45	17\%	11	1	92\%
Renous, Furlong Bridge (Sept. 12, 1995)	16	34	32\%	3	0	100\%
Dungarvon Barrier (Sept. 19, 1995)	73	120	38\%	56	6	90\%
Northwest Miramichi Sevogle, Trash Heap Pool (Oct. 12, 1995)	24	32	43\%	3	0	100\%
Little Southwest Miramic						
Moose Landing (Sept. 11, 1995)	11	12	48\%	4	0	100\%
(Sept. 21, 1995)	17	17	50\%	0	0	-
(Oct. 4, 1995)	16	12	57\%	0	0	-
Smith Forks (Sept. 11, 1995)	10	7	59\%	1	0	100\%
(Sept. 21, 1995)	36	22	60\%	0	0	100\%
(Oct. 4, 1995)	23	14	62\%	2	0	100\%
Counting Fence						
Southwest Miramichi						
Renous River (June 17 to Aug. 31)	91	325	22\%	17	18	49\%
(Sept. 1 to Sept. 26)	1	29	3\%	3	2	60\%
Total	92	354	21\%	20	20	50\%

Table 16. Biological characteristics (fork length, sex ratio, fecundity and previous spawner composition) of small and large salmon for the Southwest and Northwest Miramichi and Miramichi River system for 1995.

	Small Salmon		Large Salmon	
	Estimate	Std. Dev.	Estimate	Std. Dev.
Northwest Miramichi				
\% Female				
carly:	33.5		93.8	
late:	12.4		87.1	
total:	22.9		88.3	
Fork length				
early:	52.4	2.80	77.5	7.60
late:	55.5	2.68	76.8	5.88
total:	54.0	3.13	76.9	6.59
Fecundity*				
early:	992		6907	
late:	442		6331	
total:	714		6434	
\% Previous spawners				
early:			25.1	
late:			18.1	
total:			19.4	
Southwest Miramichi				
\% Female				
early:	30.8		- 7	
late:	12.1		88.7	
total:	23.2		88.7	
Fork length				
early:	52.8	2.47	78.3	8.62
late:	55.7	2.72	77.0	6.08
total:	54.0	2.97	77.2	6.61
Fecundity*				
early:	933		6623	
late:	433		6468	
total:	732		6497	
\% Previous spawners				
early:			24.7	
late:			17.2	
total:			18.6	
Miramichi System				
\% Female				
early:				
late:				
total:	23.1		88.5	
Fork length early:				
late:				
total:	54.0		77.1	
early:				
late:				
\% Previous spawners early: late: total:			19.0	
$\begin{aligned} & \text { * Note: Eggs per fish } \\ & \text { spawner (small) }=\% \text { F } \\ & \text { (large) }=\% \text { Female }{ }^{l}{ }^{l} \end{aligned}$	are based	relationsh	Randall 19	

Table 17. Egg deposition (millions of eggs) and \% of conservation target met for early, late and total spawners for the NW Miramichi, SW Miramichi and Miramichi system in 1995.

		Small	Large	Total	Contribution by Large	$\begin{gathered} \% \text { Egg target } \\ \text { met } \\ \hline \end{gathered}$
Northwest	Early	5.1	17.6	22.7	77.5 \%	
	Late	4.5	78.6	83.1	94.6\%	
	Total	11.8	96.7	108.5	89.1 \%	
	Target			41.0	235.9 \%	264.6 \%
Southwest	Early	10.4	19.9	30.3	65.7 \%	
	Late	3.8	88.5	92.3	95.9 \%	
	Total	14.1	108.5	122.6	88.5 \%	
	Target			88.0	123.3 \%	139.3 \%
Miramichi	Early					
	Late					
	Total	28.0	207.1	235.1	88.1\%	
	Target			132.0	156.9 \% =	178.1\%

Table 18.'Estimated returns and escapement to the Miramichi River (to Millbank 1971 to 1991; to enclosure area 1992 to 1995) of small and large salmon. $\%$ change is 1995 minus mean relative to the mean.

Year	Returns to the Estuary		Escapement	
	Small Salmon	Large Salmon	Small Salmon	Large Salmon
1971	35,673	24,407	21,946	4,347
1972	46,275	29,049	27,135	17.671
1973	44,545	27,192	30,688	20,349
1974	73,418	42,592	55,186	34,445
1975	64,902	28,817	48,469	21,448
1976	91,580	22,801	62,380	14,332
1977	27,743	51,842	13,247	32,917
1978	24,287	24,493	14,353	10,829
1979	50,965	9,054	30,848	4,541
1980	41,588	36,318	26,894	18,873
1981	65,273	16,182	39,929	4,608
1982	80,379	30,758	56,000	13,258
1983	25,184	27,924	14,849	8,458
1984	29,707	15,137	18.929	14,687
1985	60,800	20,738	$=41,815$	20,122 ${ }^{\text {m }}$
1986	117,549	31,285	89,398	30,216
1987	84,816	19,421	62,777	18,056
1988	121,919	21,745	90,278	20,980
1989	73,231	17,211	48,385	15,540
1990	83,148	28,574	59,524	27.588
1991	60,869	29,949	48,269	29,089
1992	152,647	37,000	129,288	35,927
1993	92,400	35,200	76,416	34,702
1994	56,929	27,544	42,479	27,147
1995	54,145	32,627	33,347	32,093
\% change 5-year	-39\%	-7\%	-41\%	-5\%
historical	-16\%	+1\%	-12\%	+38\%

Table 19: Numbers of large and small salmoncounted at barriers in three tributaries of the Miramichi River, 1981 to 1995.

Tributary		Year	Large	Small	Total	Dates Operated	No. o	Days $_{-}^{-}$
North Branch of SW Miramichi River								
		1981	54	671	725	Jul. 5-Oct. 4	92	
		1982	282	621	903	Jun. 30-Oct. 8	101	
		1983	219	290	509	Jul. 4-Oct. 10	99	
		1984	297	230	527	Jul. 10-Oct. 16	99	
		1985	604	492	1096	Jul. 1-Oct. 20	112	
		1986	1138	2072	3210	Jun. 30-Oct. 19	110	
		1987	1266	1175	2441	Jul. 2-Oct. 19	110	
		1988	929	1092	2021	Jun. 30-Oct. 24	117	
		1989	731	969	1700	Jul. 1-Oct. 24	116	
		1990	994	1646	2640	Jun. 29-Oct. 14	108	
		1991	476	495	-971	Jun. 30-Oct. 21	107	\cdots
		1992	1047	1383	2430	Jun. 30-Oct. 20	113	
		1993	1145	1349	2494	Jun. 30-Oct. 22	115	
		1994	877	1223	2100	June 29-Oct. 30	124	
		1995	1019	811	1830	Junc 15-Oct. 28	136	
	1990-94	Mean	908	1219	2127			
Change (95-mean)/mean				12\%	- 34%	-14\%		-
Dungarvon River		1981	112	550	662	Jun. 24-Oct. 8	107	
		1982	122	483	605	Jun. 28-Oct. 15	110	
		1983	126	330	456	Jun. 28-Oct. 14	109	
		1984	93	315	408	Jul. 5-Oct. 12	100	
		1985	162	536	698	Jun. 25-Oct. 10	108	
		1986	174	501	-675=	Jun. 25-Oct. 21	119	\cdots
		1987	202	744	946	Jun. 25-Oct. 14	112	
		1988	277	851	1128	Jun. 2-Oct. 25	151	
		1989	315	579	894	Jun. 1-Oct. 10	132	
		1990	318	562	880	Jun. 1-Oct. 11	133	
		1991	204	296	500	Jun. 4-Oct. 14	133	
		1992	232	825	1057	Jun. 4-Oct. 16	135	
		1993	223	659	882	Jun. 14-Oct. 27	131	
		1994	153	358	511	June 7-Oct. 20	136	
		1995	95	329	424	May 31-Oct. 13	136	
	$1990-94$		226	540	766			
	Change (95-mean)/mean			-58\%	-39\%	-45\%		
Northwest Miramichi River								
		1988	234	1614	1848	Jun. 27-Oct. 26	122	\cdots
		1989	287	966	1253	May 30-Oct. 12	136	
		1990	331	1318	1649	May 29-Oct. 18	143	
		1991	224	765	989	Jun. 4-Oct. 18	137	
		1992	219	1165	1384	Jun. 3-Oct. 16	136	
		1993	216	1034	1250	Jun. 14-Oct. 27	136	
		1994	228	673	901	June 5-Oct. 14	132	
		1995	252	548	800	June 1-Oct. 12	134	
	1990-94	4 Mean	244	991	1235			
Change (95-mean)/mean				3\%	-45\%	-35\%		

Table.20. Counts of migrant parr, smolts, small salmon and large salmon at Catamaran Brook, Northwest Miramichi 1990 to 1995. Data courtesy of R. Cúnjak (DFO Science, Moncton, NB). Migrant parr (ages ≥ 1) counts are for May to November. Survivals back to the fence as small and largesaimon are based on smolt counts only.

	Downstream		Upstream		Survival to	
Year	Migrant parr	Smolts	Small salmon	Large salmon	Small salmon	Large salinon=
1990	851^{\prime}	760	83^{\prime}	28^{\prime}	0.103	0.086
1991	1684	1165	78	49	0.109	0.037
1992	1229	2135	127	65	0.050	0.012
1993	1371	426	106	43	0.134	0.169
1994	1779	887	57	25	0.133	
1995	1620	935	118	72		
${ }^{1}$ incomplete count because of damage to counting fence						

Table 21. Relative contribution of wild (non-adipose clipped) salmon to the returns in 1995.

	Counts of fish by origin					
	Small salmon			Large salmon		
	Wild	Adipose-cl	\% Wild	Wild	Adipose-clipped	\% Wild
Southwest Miramichi						
Sampling at Enlcosure and Millerton trapncts						
June to August	1629	5	99.7\%	434	2	99.5\%
Sept. to October	2305	3	99.9\%	2185	5	99.8\%
Total	3934	8	99.8\%	2619	7	99.7\%
Creel survey at Quarryville Pool						
July	50	1	98.0\%	.	.	.
August	37	0	100.0\%		.	
September	91	0	100.0\%	.	.	
October	33	0	100.0\%		.	
Total	211	1	99.5\%	.	.	
Renous River						
Partial counting fence						
June	34	4	89.5\%	4	0	100.0\%
July	294	10	96.7\%	22	0	100.0\%
August	74	0	100.0\%	11	0	100.0\%
September	30	0	100.0\%	6	0	100.0\%
Total	432	14	96.9\%	43	0	100.0\%
Seining at Furlong Bridge of Dungarvon River						
Sept. 12	34	0	100.0\%	3	0	100.0\%
Clearwater Brook (received satellite reared fall fingerlings)						
Sening at Bridge Pool						
Scpt. 8	42	2	95.5\%	12	0	100.0\%
Rocky Brook (received satellite reared fall fingerlings)						
Seining at McGrath Pool						
Sept. 9	39	17	69.6\%	23	0	100.0\%
Northwest Miramichi						
Sampling at Red Bank trapnets						
June to August	558	6	98.9\%	153	1	99.4\%
September to October	867	2	99.8\%	709	0	100.0\%
Total	1425	8	99.4\%	862	1	99.9\%
Little Southwest Miramichi (no marked fish stocked here prior to 1995)						
Seining at Moose Landing and Smiths Forks						
Sept. 11 to Oct. 4	87	1	98.9\%	6	0	100.0\%
Northwest Miramichi (at DNRE barrier)						
Sept. 20	55	0	100.0\%	29	0	100.0\%
Sevogle River (Trash heap Pool)						
Oct. 12	56	0	100.0\%	3	0	100.0\%
Little River (counting trap)						
Oct. 15 to Oct. 25	42	2	95.5\%	17	0	100.0\%

Trapnets
1 Eel Ground Northwest (3 traps)
Northwest Miramichi
2 Red Bank (2 traps)
3 Southwest Enclosure (2 traps)
4 Southwest Millerton (1 trap)

Counting fences, barriers
Southwest Miramichi
1 Northwest Barrier (DNRE)
2 Catamaran Brook (DFO)
3 Dungarvon Barrier (DNRE)
4 North Branch Southwest Barrier (DNRE)
5 Renous River partial fence (Association)

Figure 1. The Miramichi River indicating major branches, major tributaries and location of trapnets and counting fences operated in 1995.

Figure 2. Trends in angling catches of small and large salmon from the Miramichi River (top), Northwest Miramichi (middle) and Southwest Miramichi (bottom), 1969 to 1994.

Figure 3. Trends in effort and catch of small and large salmon from the Crown Reserve waters of the Northwest Miramichi, 1972 to 1995.

Figure 4. Catches of small and large salmon as well as daily (1995) and weekly distribution of effort at Quarryville pool determined by creel survey in 1993 and 1995.

Figure 5. Juvenile salmon electrofishing sites, identified by sequential site number, sampled in 1995. Circled sites are index sites. Asterisk indicates closed sites.
Miramlchl - Small salmon - 1995

- Frequency -Cumulative proportion
SWMiramichi - Small salmon - 1995

$$
\text { - Frequency } \quad \text { - Cumulative proportion }
$$

Figure 6. Estimated returns of small salmon to the Miramichi River (upper), Northwest Miramichi (middle) and Southwest Miramichi (lower) in 1995.

- Frequency - Cumulative proportion

- Frequency -Cumulative proportion

Figure 7. Estimated returns of large salmon to the Miramichi River (upper), Northwest Miramichi (middle) and Southwest Miramichi (lower) in 1995.
' NW Miramichi Trapnets, 1995

Figure 8. Proportion at length, egg deposition at length and cumulative egg deposition at length for early, late and total spawners in the Northwest Miramichi during 1995.

SW Miramichi Trapnets, 1995

Late

Figure 9. Proportion at length, egg deposition at length and cumulative egg deposition at length for early, late and total spawners in the Southwest Miramichi during 1995

Miramichi River System, 1995

Figure 10. Proportion at length, egg deposition at length and cumulative egg deposition at length for the total spawners of the Miramichi system during 1995.

Figure 11. Total returns to the Miramichi River estuary and number of spawners of large (upper) and small (lower) salmon, 1971 to 1995.

Figure 12. Annual egg depositions (eggs per m^{2}) by small (circle stipled line), large (dots and narrow line) and combined (thick line) for the Miramichi River, 1971 to 1995 (upper) and for the Northwest and Southwest branches, 1992 to 1995 (lower). Dashed line is the target egg deposition level of 2.4 eggs per m^{2}.

Southwest Miramichi

Large salmon

Northwest Miramichi
Large salmon
Large salmon + small salmon

Figure 13. Probability plots of the estimated egg depositions to the Southwest Miramichi (upper) and the Northwest Miramichi (lower) in 1995. Target egg deposition for both branches is 2.4 eggs per m^{2}.

Figure 14. Water temperature profiles from the Soutwest Enclosure trapnet site and at the three DNRE protection barriers in the Southwest and Northwest branches in 1995.

Figure 15. Distribution and timing of small and large salmon at the Millerton trapnet (Southwest Miramichi) and the Red Bank trapnets (Northwest Miramichi) in 1995.

Figure 16. Distribution and timing of small and large salmon runs for the Bridge Pool (Juniper) Barrier (Southwest Miramichi) from 1981 to 1993 and 1995. 1994 data were not available.

Figure 17. Distribution and timing of small and large salmon runs for the Dungarvon Barrier (Southwest Miramichi) from 1980 to 1993, 1995. Data for 1994 were not available.

Figure 18. Distribution and timing of small and large salmon runs for the NW Miramichi Barrier (Northwest Miramichi) from 1988 to 1993 and 1995. Data for 1994 were not available.

Figure 19. Observed fry (upper) and parr (lower) densities in the Northwest Miramichi in 1995.

Figure 20. Observed fry (upper) and parr (lower) densities in the Southwest Miramichi in 1995.

Figure 21. Percent Habitat Saturation (PHS) index of juvenile Atlantic salmon at nine index sites in the Southwest Miramichi (upper) and four index sites in the Northwest Miramichi (lower) for 1970 to 1995. Box plots are interpreted as follows: vertical line $=5$ th to 95 th percentile range, box $=25$ th to 75 ih percentile range, square $=$ median value .

Figure 22. Preseason forecast model of the large salmon returns to the Miramichi (upper) and the 1996 large salmon return forecast probability (lower).

Figure 23. Atlantic salmon fry (upper) and parr (lower) densities at four index sites in the Northwest Miramichi, 1970 to 1995. Box plots are interpreted as in Figure 21.

Figure 24. Atlantic salmon fry (upper) and parr (lower) densities at nine index sites in the Southwest Miramichi, 1970 to 1995. Box plots are interpreted as in Figure 21.

Figure 25. Water temperatures recorded in the Northwest Miramichi at the Big Hole Tract protection barrier in 1995.
-Appendix'1: Minutès of the science workshop on Atlantic salmon stock status, Jan. 11, 1996
Meeting was's held ât the 'Eè 'Ground First Nations Band Office (9:30 to 16:30, 18:30:to:21:30)..
Chairperson:
Gérald Chaput
DFO, Science, Moncton
Day session:

Robert Allain
Alex Bielak
Michel Biron*
Junior Denny
Bermie Dubee
Dave Dunn
Clifford Ginnish*
Mark Hambrook*
John Hayward
Bill Hooper
Rod Hooper
Dave Moore*
Wes Myles
Joe Sheasgreen
Bill Scott
Harold Somerville
Weldon Ward
Bruce Whipple

DFO. Tracadie-Sheila
DNRE, Fredericton
DFO, Science, Moncton
Eel Ground First Nation, Eel Ground
DNRE, Miramichi
DFO, Moncton
Eel Ground First Nation, Eel Ground
DFO, Science, Miramichi SEC
DFO, Science, Miramichi SEC
DNRE, Fredericton
Correctional Services Canada, Miramichi
DFO, Science, Moncton
Sportfish Advisory Committee, Doaktown
DFO, Science, Miramichi SEC
DFO, Miramichi
Burnt Church First Nation, Burnt Church
Burnt Church First Nation, Burnt Church
Northumberland Salmon Protection Association, Miramichi

Renous/Dungarvon Rivers Enhancement
Miramichi Watershed Management Committee, Renous DFO, Science, Moncton
Northumberland Salmon Protection Association, Miramichi

* attended day and evening sessions.

Workshop objectives were described as follows:

- accounting of harvests
- estimation of returns by priority

1 Miramichi River
2 Northwest and Southwest branches
3 by season

- estimation of escapement (spawners)
- escapement compared to target
- confirmation of estimates using abundance indices
- prospects - short term (1996) and long term (beyond 1996)
- management considerations to be included in the assessment

1 - harvestable surplus
2 - distribution of harvest by season and branch
3 - environmental effects on availability

- activities and questions for 1996 and beyond

Points of Discussion

Initial definitions:
Small salmon - salmon less than 63 cm fork length, also' referred to as 1 SW salmon
Large salmon - salmon $>=63 \mathrm{~cm}$ fork length, also referred to as MSW salmon
Early run - fish sampled at the trapnets up to and including Aug. 31
Late run - fish sampled at the trapnets after Aug. 31.

Landings

Two user groups in 1995: First Nation food fisheries and recreational fisheries
Food fishery agreements were signed with Eel Ground First Nation and Red Bank First Nation. A communal license was issued to Burnt Church First Nation. Harvests from Eel Ground and Red Bank are complete. There was a harvest of small salmon from the Southwest Miramichi by Eel Ground First Nation.

Recreational fisheries seasons affected by river closures - in the Northwest Miramichi, Little Southwest Miramichi, and Renous River. Closures were due to low water, warm temperatures and Big Hole Tract fisheries crisis. Angling catches for 1995 from FISHSYS are expected to be available in mid-February. Crown reserve catches from the Northwest and Little Southwest will be available next week. Preliminary crown reserve data indicated that catch, effort and CPUE were down in all' crown reserve stretches.

The only angling data available was from a creel survey conducted at Quarryville Pool at the mouth of the Renous River. Catches of small salmon in 1995 were one-third the catches estimated for similar time period in 1993. Effort distribution was similar in both years. Based on these data, angling catches in 1995 are expected to be down from previous years.

Southwest Miramichi angling was down in 1995 compared to previous years due to low water and warm water. Miramichi Salmon Museum was unable to maintain its angling camp index because outfitters were reluctant to report catches. In Northwest Miramichi, July fishing was poor but there were large numbers of fish in the south and north branches of the Sevogle in the fall.

Target

No change in target for the Miramichi from values used in previous years.
Evaluation of habitat areas at Catamaran Brook (DFO) and Bartibog River (DNRE initiative) indicated that the aerial photo measurements for Catamaran underestimated ground surveyed habitat because of the extensive tree cover. Same result for Bärtibog River, tributary of the Miramichi Bay. There was concern expressed that the areas for the Miramichi could be underestimated and the target be too low. If techniques for measuring habitat are different than those used to calculate the $2.4 \mathrm{eggs} \mathrm{m} \mathrm{m}^{-2}$ optimal egg deposition target, then 2.4 may no longer be appropriate.

Data

Returns were estimated using mark and recapture experiments.
Recaptures from the recreational fishery are used to estimate the emigration rates of tagged fish between the branches. Estimate in 1995 was not as precise because of the smaller number of recaptures than expected, especially in the Northwest Miramichi (result of angling closures).

Returns to the Miramichi were estimated at 32000 large salmon and 52000 small salmon.

Removals

- Angling data for 1995 were not available, the average of the previous five years was used. Large salmon angling removals are calculated as 3% for hook and release mortality.
- Seizures by DFO officers were included in the removals. DNRE enforcement activity was not tabled but numerous nets were seized. Concerns that poaching may be important on some parts of the system and is likely
more detrimental.on smaller tributaries than on the main branches. Poaching removals are not possible to quantify but juvenile abundance trends indicate that substantial escapement has occurred.

Biological characteristics

- age determinations for 1995 not available but based on age-length key from previous years, about 20% of large salmon would have been previous spawners.
- sex ratio: internal sex determinations of food fishery catches of small salmon from Eel Ground and small as well as large salmon from Red Bank. External determinations for fall fish. Early run fish have a higher proportion of females, both small and large salmon. Trapnet ratios were consistent with barrier pool seining samples.
- fecundity: calculated using mean length and length-fecundity relationship derived from counts of oocytes of unripe ovaries. Preliminary comparisons of hatchery (ripe, stripped eggs) fecundities indicate that unripe oocyte estimates are higher than hatchery derived values. Verification of the fecundity values used in the derivation of the target is required before a different fecundity relationship is to be used.

Egg depositions:
Miramichi received 178% of target, Southwest Miramichi received 139%, Northwest Miramichi received 265%. More than 80% of eggs were contributed by late-run fish which prompted the comment that a late-run fishery was being developed.

Abundance Indices

Barrier fences

Trends in estimated returns in 1995 correspond to returns of large salmon at the Northwest Miramichi barrier and the North Branch of the Southwest Miramichi (Juniper) barriers. Dungarvon barrier counts were lowest since 1984. Small salmon counts were also consistent with mark and recapture estimates.

Juvenile surveys

Historical sites from the Northwest Miramichi sampled in the 1950's and 1960's (Fisheries Research Board) were presented. These sites showed the same trend as the index sites: fry and parr abundances were low in the 1970's and increased in the late 1980's. Southwest Miramichi sites also showed improvement from the 1970's and early 1980's. Fry and parr densities in 1995 were among the highost or the highest in the time series. A verification of the possible effects of low water conditions in 1995 on the estimated densities is required - could low water in 1995 have resulted in crowding of salmon such that high densities are misinterpreted as high abundance?

Ecological considerations

Average monthly discharge conditions in the Southwest Miramichi in June to October were deficient (below the 25 th percentile). Discharge in November was excessive. The Southwest Miramichi station is the only remaining active station for the watershed.

Water temperatures were high in July and August. Cooler temperatures were registered at the headwater barriers than at the estuary trapnets. Warmest temperatures were recorded in the Little Southwest Miramichi (above Catamaran Brook) where maximum of 30 C was recorded on Aug. 11. Temperature range was also the greatest on the Little Southwest Miramichi.

Low water levels had a dramatic effect on the movements of salmon through the. Southwest Miramichi (Juniper) barrier; 90% of the small salmon and 95% of the large salmon moved through the fence during Oct. 10 to 30 . In other years, 10% to 80% of the fish have been counted by Sept. 15 .

Low water levels held back fish in the estuary. In previous years, tags recovered at the Juniper barrier were exclusively from fish tagged before Sept. In 1995, almost half of the tags recovered at the Juniper barrier were of fish tagged in the estuary during September and October.

Juvenile salmon densities around the headwater barrier site in the Northwest Miramichi were very high, PHS values of 55 to 87 . Jüvenile sürveys' throughout Northwest and Southwest Miramichi.indicated that spawning had occurred throughout the watershed in 1994.

Prospects

Short term

Largetsalmonreturns to the Miramichi are predicted from small salmon returns the year before. Predicted return of large salmon to the Miramichii River in 1996, based on a return of 52000 small salmon in 1995 is in the order of 30000 fish. Smolt counts at Catamaran Brook in 1995 were similar to 1994 suggesting a similar return of small salmon in 1996 to that of 1995.

Long term

Juvenile densities have been increasing since 1984. Returns of large salmon in 1992 to 1995 are the result of fry present in 1987 to 1991 (assume 2 and 3 year smolt production). Densities have not changed since 1985. We expect returns of large salmon to be at least as high as those observed in 1992 to 1995.

Enhancement Initiatives

Stocking in 1995 by life stage and tributary was summarized. 2-year smolt stocking was only half the anticipated amount because of BKD infected Northwest Miramichi smolts from semi-natural ponds were destroyed. Broodstock in 1995 were collected from the Little Southwest, Dungarvon and smaller quantities from Southwest and Northwest to support the satellite rearing program.

Adipose-clipped salmon were counted at estuary trapnets, Renous River partial fence, and at the Little River fence in late October. The Little River fence was installed to monitor the returns of adipose-clipped cage-reared smolts released in 1994. Generally, adipose-clipped grilse represented less than 1% of total fish sampled, Renous River partial fence had 3\% adipose-clipped grilse returning before September.

Management Considerations

There were concerns about the state of the stock of the Little Southwest Miramichi. Although a surplus to conservation for the Miramichi is expected in 1996, how can we reduce the impact on the Little Southwest Miramichi? Based on broodstock seining efforts in 1995, large salmon were not abundant in the upper stretches of the Little Southwest, even into October. In 1994, juvenile densities were lower than in the Northwest. More extensive juvenile surveys in the Little Southwest could help define its status relative to the Northwest Miramichi. This is something that user groups could undertake.

Allocations of surpluses should take into account the relative state of the stocks on a finer scale than presently used: suggested Little Southwest, Northwest, Renous/Dungarvon, Southwest.

FISHSYS provides the only estimate of angling catch for the Miramichi. The data are not available for the assessment and there is an indication that this survey may take place every two years if at all. Stock status can only be determined if the losses to spawning are known. It becomes more difficult to obtain harvest data from First Nations if there is no effort to quantify the removals from the largest user group (recreational fishery).

Research recommendations and initiatives

Proposal has been submitted by DFO Science to estimate the smolt production from the Southwest Miramichi. A portion of the available resources would have to be reallocated to the smolt program - juvenile surveys was identified as the program which would be affected.

Habitat surveying was suggested as a more pressing initiative - especially in view of the findings from Catamaran and Bartibog. Habitat surveys will not provide information which will allow the development of a target specific to the Miramichi. Estimates of freshwater production (smolts) and subsequent adult returns are the only way of developing a river-specific target.

A report looking at the implications to angling potential as a result of closures.due to warm water is being prepared (A. Bielak, DNRE). It will be reviewed in March.

FISHSYS statistical review is nearing finalization. Report addresses the gain to precision of surveying 15% versus 30% of angling license holders.

Other initiatives of potential interest

Habitat database compatible with GIS format is being developed for the Miramichi.
Habitat surveys of Catamaran Brook and Bartibog River have been completed and data are being structured to fit the GIS format. Surveys should be described in reports from the client groups supported by Cooperative Agreement on Recreational Fisheries.

Habitat surveys of headwaters of the North and South branches of the Southwest Miramichi have been completed. Same requirement for reporting.

Appendix 2. Tag and recapture histories for small salmon In the Southwest Mirsmichi, 1995.

Tagging Area Tags Placed		Southwest Enclosure						Southwest Food Fishery Trapnet					
		June	July	August	Sept.	Oct. 1-15		Total	Jume	July	August	Sept.	Total
		46	312	86	341	367	17	1169	0	.1	1	0	2
Percent reported													
Angling	Total	2.2\%	6.4\%	5.8\%	4.4\%	1.9\%		4.1\%	.	0.0\%	0.0\%	.	0.0\%
Traps	NW	4.3\%	2.9\%	2.3\%	5.9\%	5.2\%		4.4\%		0.0\%	0.0\%		0.0\%
	SW	8.7\%	8.0\%	11.6\%	15.0\%	14.7\%		12.4\%		00\%	0.0\%		0.0\%
Angling Recaptures													
in Southwest		1	16	5	13	7	0	42	0	0	0	0	0
	Unknown	.	1	2	1	1		5					0
	June							0					\cdots
	July	1	5		.	.	.	6	.	.	,		0
	August	.	6	1		.		7					0
	Sept.	,	3	2	3			8	.				0
	Oct.	.	1	.	9	6	.	16	.				0
In Northwest		0	4	0	2	0	0	6	0	0	0	0	0
	Unknown			0	.	.			0
	June							0					0
	July		3			.	-	3	.				0
	August		1	.	.			1	.				0
	Sept.		.	.				0	.	.			0
	Oct.	.	.	.	2	.		2	.	.			0
Miramichi U	Unknown			.				0	.	.			0
Mortalities recovered upriver (in treshwater)													
Northwest				0		.			0
Southwest			0		.			0
Unmarked fish recovered at facility above													
		52	323	87	345	377	17	1201	34	847	266	34	1181
Fish with tagging scars recovered at facility above													
Recoveries of tags placed at facility above													
Enclosure Trap	pnot		1	3	20	27	0	51 0	0	0	0	0	0
	June		i		-	-	:	1	.	'	.		0
	August	.	.	1			.	1	.	.	.		0
	Sopt.	-		1	10		.	11	.	.	.		0
	Oct. 1-15	.	.	1	10	27	.	38	.	.			0
	> Oft 15			0		.	.		\cdots
Southwest Foo	od Fishery Trap	0	0	7	2	0	0	9	0	0	0	0	0
	June	.			.		.	0	.	.			0
	July	,	.	6			.	6	.	.	.		0
	August	.	.		1		.	1	.	.			0
	Sept.		.	1	1	.	.	2	.	.	.		0
Millerton Trapnet		1	12	6	31	27	1	78	0	0	0	0	0
	June				.			0		.			0
	July	1	10	.	.		.	11	.	.	.		0
	August	.					.	0	.	.			0
	Sept.	.	2	5	13		.	20		.	.		0
	Oct. 1-15	.		1	18	23		42	.	.	.		0
	> Oct. 15		.	.	.	4	1	5	.	.	-	.	0
Renous River fence		0	8	1	0	0	0	0	0	0	0	0	0
	June			.				0	.	.	.		0
	July	.	7		.		.	7	0
	August	.	1		.		.	1	,	.	.	.	0
	Sept.	.	.	1	.	.	.	1	.	-	.	.	0
	Oct.	0	.	.	,	.	\cdots
	Nov.	0	0
Northwest Eal	Ground Trapnet	1	4	1	8	14		28	0	0	0	0	0
	June						.	0					0
	July	1	4	5	0
	August	0	0
	Sept.	.	.		1		.	1	0
	Oct. 1-15	.	.	1	7	14	.	22	0
Red Bank Trapnets		1	5	1	12	5		24	0	0	0	0	0
	June						.	0				.	0
	Juty	1	4	5	.	-			0
	August	0		.	.		0
	Sopt.			1	7		.	8	.	.	.		0
	Oc1. 1-15	.	1	.	5	5	-	11		.	.	.	0
Barrior Fences		3	4	0	2	6	0	15	0	0	0	0	0
Dungaron	June-Aug.	3	3	.		.	.	6	.	.		.	0
	Sopt-Oct.			.	.	.		0	.	.			0
SW Miramichi	June-Aug.	.	1	.			.	1	.	.	.		0
	Sept-Oct.			.	1	2	.	3					0
NW Miramleht	Juno-Aug.	.		.		.		0	0
	Sept-Oct.	0	0
Catamaran	June-Aug.	.		.			.	0	-	.	.	.	0
	Sept. Nov.	.	.	.	1	4	.	5	.	-	.	.	0
Broadstock Selning		0	1	0	0	0		1	0	0	0	0	0
	Dungarvon	0	.	.			0
	Southwest			.				0	.				0
	Litte Southwest		1					1	0
	Sevogle Northwest					.		0	.	\cdots	$\stackrel{\square}{*}$	\cdots	0

Appendix 2. Tag and recapture histories for amall salmon in the Southweat Miramichi, 1995.

	Togging Area		Milierton Trapnet - Southwest Miramlehi							Renous River - Partial Fenco -				
	Tags Placed	May 1		$\begin{aligned} & \text { July } \\ & 787 \end{aligned}$	August	Sept. 633	$\begin{array}{r} \text { Oct. 1-15 } \\ 481 \end{array}$	15 65	Total 2203	June 38		g. 69	Sept. 29	Total 444
Recapture Data Percent roported														
Angling	Total	.	5.9\%	5.2\%	3.2\%	2.8\%	2.1\%		3.5\%	13.2\%	36\%	1.4\%		3.8\%
Traps	NW		0.0\%	2.4\%	1.4\%	3.2\%	1.5\%		2.2\%	0.0\%	1.0\%	1.4\%		1.1\%
	SW		11.8\%	8.8\%	10.5\%	13.9\%	8.9\%		10.3\%	0.0\%	1.0\%	4.3\%		1.4\%
Angling Recaptures														
	Unknown			7	,	.	.		7		4			4
	June								0	1				1
	July		1	16		.	.		17	4	5	.		9
	August	.	.	8			.		8		1			1
	Sept.			5	5	5		.	15		1			1
	Oct.		.	5	2	10	10	.	27	:	.	1		1
In Northwest		0	0	0	0	3	0	0	3	0	0	0		0
	Unknown	1	.		1	.	.			0
						.			0					0
	July		0	.	.			0
	August	.	.	.	,	.	.	.	0					0
	Sopt.		0	.	.			0
	Oct.		.		.	2	-		2	.	.	.		0
Miramichi	Unknown	1	.		1	.	1	.		1
Mortalities recovered upriver (in freshwater)														
Northwest			.			.	.		0	.				0
Southwest	July	.	-	2	.	-	.	.	2	.	.	.		0
Unmarked fish recovered at fecility above														
		1	17	864	225	679	497	75	2358	38	312	70	29	449
Fish with tagging scars recovered at facllity above														
Recoveries of tags placed at faclity above														
Enclosure Trap	pnet		0	8	1	22	12	1	44	0	0	0	0	0
	June					.			0		.			0
	July	.	.	1		.	.	.	1	0
	August	.	.	1	.		.	.	1	0
	Sopt.	.	.	2		$\begin{array}{r}7 \\ \hline\end{array}$.	9	.	\cdot		.	0
	Oct 1-15	.		4	1	15	11		31	.	.			0
	$>$ Oct 15	1	1	2	-	.	,	.	0
Southwest Food	od Fishery Trap June	0	0	5	0	0	0	0	5	0	0	0	0	0
	July	.	.	4	4	0
	August	.	.	1	1		.	.	.	0
	Sept.			.	.	.	-	.	0	0
Millerton Trapnet 0			1	44	14	65	31	1	156	0	2	1	0	3
	June	0	.		.		0
	July	.	.	33		-	.	.	33	.	2	.	.	2
	Augusi			3	9		.	.	12					0
	Sept.	.		5	3	41		.	49	.	.	1	.	1
	Oct. 1-15	.	1	3	2	23	24		53	0
	> Oct. 15		.	.		1	7	1	9		.	.	.	0
Renous Rlver tence		0	1	17	8	1	0	0	27	0	1	2	0	3
	June						.		0		,			0
	July	,	1	15		.	,	-	18	-				0
	August	.		1	7		.	,	8		1	2	.	3
	Sept.	.	.	1	1	1	.		3		.	.	.	0
	Oct.	.	.	,	.	.	.		0	O
	Nov.	0	0
Northwest Eet Ground Trapnet		0	0	8	1	8	5	0	22	0	0	0	1	1
	June	0	0
	July	.	.	3		,	.	.	3	-	.	.	.	0
	August	.	.	2	1	.	.	.	3	0
	Sept.	0 16	.	.	-		${ }_{1}$
	Oet. 1-15	.		3	.	8	5	.	16	.	.	.	1	1
Red Bank Trapnets		0	0	5	2	12	2	0	21	0	0	1	0	O
	June							.	0	0
	July		-	2	.				2	0
	August		.				.		0	,	.	.	.	0
	Sept.	-	-	1	1	3		.	5	-			.	0
	Oct. 1-15	.	.	2	1	9	2	.	14	.	.	1	.	1
Barrier Fences		0	0	14	2	5	2	0	23	3	11	1	0	15
Dungarvon	June-Aug.	.	.	4	4	3	10			13
	Sopt-Oct.	.	.	3	3	.	1	.		1
SW Miramichi	June-Aug.	-	-					.	0	0
	Sept-Oct.		.	5	1	3	2	.	11	.	-		.	0
NW Niramichl	Juno-Aug.	0	0
	Sept-Oct.	.	-	.		1	.	.	1	.	.			0
Catamaran	June-Aug.	0	.	.		-	0
	Sopt.-Nov.	.	.	2	1	1	.	.	4	.	.	1	.	1
Broodstock Seining 0			0	6	0	0	0	0	6	0	3	0	0	3
	Dungarvon	.		3					3		3		.	3
	Southwest	.	.	1	-		.		1		.	.	.	0
	Litle Southwost	.	.	2	2		.		.	0
	Sevogle Northwest					$:$		$\stackrel{\square}{ }$	0	.	$\stackrel{ }{ }$:	i	0

Appendix 2 Tag and recapture histories for large salmon in the Southwest Miramichi, 1095.

Tagging Area		Southwest Enclosure								Southwest Food Fishery Trapnet				
	Tags Placed	$\begin{array}{r} \text { May } \\ 2 \end{array}$	June 17	$\begin{array}{r} \text { July } \\ 43 \end{array}$	August 34	Sept. 182	$\begin{array}{r} \text { Oct. } \begin{array}{r} 1-15 \\ 469 \end{array} \end{array}$	ct. 15	Total 797	June	$\begin{aligned} & \text { Juty } \\ & 128 \end{aligned}$	August 186	Sept. 38	Total 356
Recapture Data Percent reported														
Angling	Total	0.0\%	0.0\%	4.7\%	2.9\%	2.2\%	1.9\%	.	2.0\%	0.0\%	1.6\%	2.2\%	0.0\%	1.7\%
Traps	NW	0.0\%	0.0\%	0.0\%	8.8\%	3.8\%	1.1\%	0.0\%	1.9\%	0.0\%	2.3\%	3.8\%	2.6\%	3.1\%
	SW	0.0\%	0.0\%	4.7\%	5.9\%	9.9\%	10.4\%	8.0\%	9.4\%	0.0\%	8.6\%	9.1\%	10.5\%	9.0\%
Angling Recaptures														
	Unknown	.	.			2	2		4			1		1
	June	.		.					0					0
	July		0	.		.		0
	August	.	.				.		0	.				0
	Sopt.			1	1	2			4	.	1	1		2
	Oct.	.	.	1		.	7		8	.	1	2	.	3
In Northwest		0	0	0	0	0	0	0	0	0	0	0	0	0
	Unknown								0					0
	June			.			.		0	.				0
	July			0	.	.			0
	August	.	-	0	.				0
	Sept.		0	.				0
	Oct.	0	.		.		0
Unknown	Oct.		.	.		1	.		1	.	.	.		1
Mortaltioe recovered upriver (in freshwater)														
Northwest			0	.		.		0
Southwest		0	.	.		.	0
Unmarked fish recovered at facility														
		3	20	45	38	184	474	50	814	4	158	190	39	390
Fish with tagging scars recovered at facility														
Recoveries of tags placed at facifity above														
Enclosure Trap	pnet	0	0	0	0	6	22	0	28	0	2	2	2	6
	June		0	.		.		0
	July	0	.	1	.	.	1
	August		0	.	.	.		0
	Sept.	.				4		.	4	.			1	1
	Oct. 1-15			.	.	1	22	.	23	.	1	2	1	4
	> Oct. 15		.	.	.	1	.	.	1	-	.		.	0
Southwest Food	od Fichery Trap	0	0	1	1	0	0	0	2	0	0	5	0	5
	June		.			.	.		0	.		.	.	0
	Juty		.	1		.	.	.	1	.			.	0
	August		.		1	.	.	.	1	.				3
	Sept.	.	.	,	0	.		2	.	2
millerton Trapn		0	0	2	2	12	27	4	47	0	8	15	2	25
	June		.			.			0	.		.		0
	Juty	.	.	1		.		.	1	.	5		.	5
	August		.	1	-		,	.	1	.	1	3		4
	Sopt.	.	.		1	5		.	6	.		7	1	8
	Oct. 1-15	.	.	.		7	21		28		2	5		7
	$>$ Oct. 15	.	.	.	1		6	4	11	.	.	.	1	1
Renous River f	fence	0	0	0	0	0	0	0	0	0	0	0	0	0
	June		0			.		0
	July		.	.	.	,	.	.	0		.	.		0
	August	-	0		.	.	.	0
	Sopt.	.	-	0		.	,	,	0
	Oct.	,	.	.	0	,	.	.	.	0
	Nov.	0	0
Northwent Eed	Ground Trapnett	0	0	0	0	3	5	0	8	0	1	2	0	3
	June			0	.				0
	Juty		.	.	.	,	.	.	0	.	1	.	.	1
	August	;	.	.	0		.	.	.	0
	Sept.	1		.	1		.		.	0
	Oct. 1-15	2	5	.	7	.	.	2	-	2
Red Bank Trap	pnets	0	0	0	3	4	0	0	7	0	2	5	1	8
	June	0		.	.	.	0
	July	0	.	.	.		0
	August		0	.	i			0
	Sopt.	.	.	.	,	1	.	.	1	-	1	3	1	5
	Oct. 1-15	.	.	.	3	3	.	.	6	.	1	2	.	3
Barrier Fences			2	0	0	2	2	0	6	0	3	3	0	6
Dungarvon	June-Aug.	0	.	1	.		1
	Sopt-Oct.	0	.	.	.		0
SW Miramichi	Juno-Aug.	.		.				-	0	-				0
	Sept-Oct.	.	2	.		.	2	.	4		2	3		5
NW Miramichl	June-Aug.	0	.	.			0
	Sept.-Oct.				.		.	.	0	.	.	.		0
Catamaran	June-Aug.	,	0	0
	Sept-Nov.	2	.		2	0
Brootstock Seining			0	0	0	0	0	0	0	0	0	0	0	0
	Dungarvon								0	.	.	.		0
	Southwest				.		.		0	.	.	.		0
	Litte Southwest	.					.		0	0
	Sevogle		0	0
	Northwest	.	.						0		.	.		0

Appendix 2. Tag and recapture histories for large salmon in the Southwest Miramichi, 1985.

Tagging Area		Millerton Trapnet - Southwest Miramichi								
		May	June	July	August	Sopt.	Oct. 1-15 \sim ct. 15		$\begin{aligned} & \text { Total } \\ & 1482 \end{aligned}$	
Tags Placed		2	26	'160	106	570	525	93		
Recapture Dato Percent reported										
Angling	Total	0.0\%	3.8\%	5.6\%	1.9\%	3.7\%	1.9\%	.	2.9\%	
Traps	NW	0.0\%	3.8\%	1.9\%	0.0\%	1.9\%	1.3\%	0.0\%	1.5\%	
	SW	0.0\%	0.0\%	5.6\%	8.5\%	12.3\%	7.0\%	1.1\%	8.5\%	
	Unknown			1	.	6	1		8	
	June								0	
	July	.		1	.		.		1	
	August			2			.		2	
	Sept.		1		2	4			8	
	Oct.		.	4		11	9		24	
In Northwest		0	0	0	0	0	0	0	0	
	Unknown		.	.	.				0	
	June		.						0	
	July		0	
	August		.		.				0	
	Sopt.		0	
	Oct.		0	
Unknown	Oct.		.	1	.	.	.		1	
Mortalities recovered upriver (in freshwater)										
Northwest			.		.		.		0	
Southwost			0	
Unmerked fish recovered at tacility above										
		2	32	171	110	589	529	113	1546	
Fish with tagging sears recovered at facility above										
Recoveries of tegs placed at facility above										
	Juna		0	
	July	,	.	.	0	
	August	0	
	Sept.		.			5		.	3	
	Oct. 1-15		.	1	1	15	1	.	24	
	> Oct 15	.		.	.	1	1		2	
Southwest Food Fishery Trap 0			0	1	0	0	0	0	1	
	June	.				.		.	0	
	July	.	.	1	1	
	August			,		.	.	.	0	
	Sept.		0	
Millerton Trapnet		0	0	5	8	51	29	1	94	
	June		0	
	July		,	1		.	.	-	1	
	August			1	1		.		2	
	Sept.	.	.	1	4	31		.	36	
	Oct. 1-15	.	.	2	2	18	26		48	
	> Oct. 15	.	.	.	1	2	3	1	7	
Renous River fence		0	0	3	0	0	0	0	3	
	June			0	
	Juty	.	.	3	3	
	August		0	
	Sept.	0	
	Oct.		
	Nov.	0	
Northwoat Eel Ground Trapnotu		0	0	1	0	4	5	0	10	
	June		.			.	.		0	
	July			0	
	August		.	.	.		,	.	0	
	Sept.	.	.	1	:	3	5	.	19	
Red Bank Trapnets		0	0	1	0	7	2	0	10	
	June		0	
	July	,	0	
	August		
	Sept.				.	1		,		
	Oct. 1-15	.	-	1	.	6	2	.	9	
Barrier Fences		1	3	0	4	5	2	0	15	
Dungarvon	June-Aug.	1	2	3	
	Sopt.-Oct.		.		.	,			0	
SW Miramichi	June-Aug.	0	
	Sopt.-Oct.		1		2	4	.		7	
NW Miramichi	June-Aug.	0	
	Sopt-Oct.		,	0	
Catamaran	June-Aug.	.	-	.				.	0	
	Sopt.-Nov.	,	.	.	2	1	2	.	5	
Broodstock Selning Dungarvon Southwast Litile Southwest Sevogle Nonthwest		0	1	1	0	0	0	0	2	
				1	.		.		1	
			1					.	1	
			0	
			:	"	\cdots	\cdots	-	:	0	

Appendix 2. Teg and recapture histories for large salmon from the Horthwest Mramlahl River, 1995.

Appendix 3: Dètảited information onthe distribution of juvenile salmon in the Miramichi River System in 1995.

River	- LIfe Stage	Date	Stock	Tributarles	Site	Mark	Number of Fish Stocked		Total by Life Stage	
Northwest	2^{+}smolts	05/25/95	NWM	Little River	47146603	AC	2,734		2,734	
	2^{+}parr	05/25/95	NWM	Little River	47146603	AC	137		137	
	0^{+}parr	-	-	-	-	-	-	-	-0	…
	Non-feeding fry	$06 / 10 / 95$	LSW	L. S. W.	Tractor \& Equip. Devils Brook	NM	25,000			
							10,000			
		"	"	"	Father Murdock Bk	NM	5,000			
		"	"	"	Libbies Bk Above DFO Camp	NM	10,000			
		"	"	"		NM	15,000			
		"	"	"	Above DFO Camp Moose Landing	NM	10,000	-	-	
		"	"	"	Moose Landing Smith Forks		15,000			
		"	"	"	Smith Forks Tuadook Stream	NM	10,000			
		"	"	"	Upper LSW,Bridge	NM	15.000			
		"	"	"	L.North Pole Bk		10,000			
		"	"	"	Trib. to L.N.PoleBk	NM	10,000			-
		"	"	"	Parks Brook	NM	15,000			
		"	"	"	Shore Camp Bk	NM	10,000			
		"	"	"		NM	5,000	-		\cdots
		06/12/95	SEV	Sevogle -	Narrows-	NM	10,000	\cdots	-	
		06/12/95	SEV	S. Br. Sevogle	Mouth Clearwater Travis Brook	NM	10,000			
		"	"	"		NM	10,000			
		"	"	"	Johnson Brook	NM	10,000			
		"	"	"	Chestermine Bridge	NM	10,000	\cdots		
		"	"	"	Old Bridge	NM	10,000			
		"	"	"	Bridge Repap Camp	NM	$5,000$			
		"	"	"	Slacks Lake Road	NM	10,000	-	240,000	\cdots
	Satellite	09/27/95	-	N. W.	Gillman Brook	AC	9,420			
	distribution	10/09/95	-	N. W.	Camp Adam	AC	2,300			
		10/14/95	-	S. Sevogle	Barracks Brook	AC	9,423	-	21.143	
Southwest	2^{+}smolts	05/01/95	DUN	Dungarvon	$1 / 2 \operatorname{Inn}$	AC	4,888			
		05/02/95				AC	12,696			
		05/03/95	"	"	"	AC	2,303	-		\cdots
		05/01/95	"	S. Br. Renous	Red Rock	$\begin{aligned} & \mathrm{AC} \\ & \mathrm{AC} \end{aligned}$	3,481	-		
		05/02/95	"	"،			3,755		27,123	
	2^{+}parr		DUN	Dungarvon	$1 / 2 \operatorname{Inn}$	AC	899			
		05/02/95				AC	1,627			
		05/03/95	"	"	"	AC	485			
		05/01/95	"	S. Br. Renous "	Red Rock	AC	767			
		05/02/95	"			AC	532			
		05/03/95	"	Renous	Below B.Duffy Cam	AC	1,583	二	5,893	
	0^{+}parr	11/10/95	CLR	Clearwater	Upper Clearwater	AC	15,575		15,575	
	Non-feeding fry	$06 / 11 / 95$	DUN6	Dungarvon	Iron Bridge Russell \& Swim Brd	NM NM	20,000			-
							$20,000$		40,000	
	Satellite distribution	09/05/95	-	Main S.W.66	Salmon Bk, Hayesvi	AC	4,500			
		09/27/95	-		Buttermilk	AC		-		
		"	-	"	Deadman Brook Salmon Bk, Blackvil	AC	4,720	-	\cdots	-
		"	-	"		AC				
		"	-	"	Salmon Bk, Blackvil L.Bk. Camp Thomas	AC	4,780			
		"	-	"	L.Bk. Camp Thomas Duffy Brook	AC	900	-		
		10/10/95	-	"	Harris Brook		4,458			
		10\%../95	-	"	Clearwater	AC	11,278			
		09/27/95	-	Clearwater	Clearwater	AC	4,652			
		"	-	Rocky Brook	Rocky Brook	AC	10,190			
		"	-	Hurd Brook	Rocky Brook	AC	4,915			
		"	-	Sisters	Sisters	AC	4,780			
		10/11/95	-	Cains	Abv. Island Pool	AC	4,345			
		09/27/95	-	Black Brook	Black Brook	AC	5,500			
		10/../95	-	Renous	Mouth Duffy Brook	NM	150	-	65,168	

[^0]: 'Maximum of 2 trapnels
 ${ }^{2}$ Maximum of 10 gill nets of maximum length 125 feet each, and to be removed after capture of the 100 salmon
 ${ }^{3}$ Native recreational fishing gear
 ${ }^{4}$ Maximum of 1 trapnet
 ${ }^{3}$ Maximum of 25 gill nets; 15 nets of maximum length 300 feet each and 10 nets of maximum 150 feet each
 ${ }^{6}$ Communal tishing licence only

