Not to be cited without permission of the authors¹

DFO Atlantic Fisheries
Research Document 96/121

Ne pas citer sans l'autorisation des auteurs¹

MPO Pêches de l'Atlantique Document de recherche 96/121

Herring spawn volume and progenitor biomass at Fisherman's Bank, Prince Edward Island, in 1995

by

David K. Cairns, Claude LeBlanc, and Colin MacDougall

Science Branch
Department of Fisheries and Oceans
Box 5030
Moncton
New Brunswick E1C 9B6

¹This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.

¹La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte Atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plotôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Table of Contents

Abstract	i
Resumé	i
Introduction	1
Study area and methods	1
Results	1
Discussion	2
Literature cited	1 1 2 2 3
Table 1. Length-frequencies, body weights,	3
ovary weights, and sex ratios of herring	
samples	
Table 2. Specific gravity of herring spawn	3
Table 3. Derivation of the relation between	4
progenitor biomass and volume of deposited	
herring spawn	
Table 4. Estimates of herring spawn volume at	5
Fisherman's Bank and the Ridge	_
Table 5. Egg volume and progenitor biomass	9
estimates for herring spawning on	
Fisherman's Bank and the Ridge	4.0
Fig. 1. Eastern Northumberland Strait	10
Fig. 2. Phase I and II surveys of herring	11
spawning beds at Fisherman's Bank	40
Fig. 3. Volume of deposited herring spawn and	12
progenitor biomass at Fisherman's Bank and	
the Ridge	

ABSTRACT

Thicknesses of herring egg beds deposited at Fisherman's Bank in eastern Northumberland Strait were measured by underwater video and egg volumes were estimated by geostatistic analysis. In 1995, herring deposited an estimated 1262 m³ of spawn on Fisherman's Bank, the smallest deposition in the time series (1985-1987, 1989-1995). Progenitor biomass responsible for this spawning was estimated as 7514 tons. The decreased egg deposition does not necessarily mean a population crash because fish may have shifted spawning to the nearby Ridge or elsewhere.

RESUMÉ

On a mesuré les épaisseurs des tapis d'oeufs d'hareng déposés au Fisherman's Bank dans l'est du Détroit de Northumberland à l'aide d'un appareil vidéo à distance. L'analyse géostatistique indique que les harengs ont déposé 1262 m³ d'oeufs sur Fisherman's Bank en 1995, la plus petite déposition de la série historique (1985-1987, 1989-1995). La biomasse des progéniteurs responsables pour ce frai étaient estimée comme 7514 tonnes. Le declin dans la déposition des oeufs n'indique pas nécessairement une chute dans la population car les poissons auraient pu changer leur site de frai au Ridge avoisinant, ou ailleurs.

INTRODUCTION

Populations of herring (Clupea harengus), like those of most pelagic fishes, are difficult to estimate. In the southern Gulf of St. Lawrence, herring stock assessments have traditionally relied on sequential population analysis (Claytor et al. 1995). This method has met with reasonable success in autumn-spawning herring of the southern Gulf, but its accuracy is affected by uncertainties in abundance trends and seasonal spawning affinities.

Since 1985, surveys of herring spawning beds have been conducted at Fisherman's Bank, a fall spawning ground off southeastern Prince Edward Island (Messieh 1986, 1987, 1988; Messieh et al. 1987; Lambert and Messieh 1989; Messieh and Rosenthal 1989; Cairns et al. 1993; Cairns 1995). These surveys are intended to provide an independent indicator of the size of the southeastern Gulf component of the 4T fall spawning stock.

This report presents estimates of egg deposition and progenitor biomass at Fisherman's Bank for 1995.

STUDY AREA AND METHODS

STUDY AREA

Fisherman's Bank (46°01'N, 62°16'W) is an underwater dome located 16 km east of the southeastern tip of PEI (Fig. 1). The bank measures 3.1 x 5.3 km within the 20 m contour, and rises to 9 m depth at its shallowest point. A broad shelf 25-30 m in depth lies between Fisherman's Bank and Prince Edward Island. Water depths to the east are about 45 m, but an elongated promontory known as the Ridge extends northeast from Fisherman's Bank (Fig. 1). Depths on the Ridge are about 24-32 m.

EGG ESTIMATES

Field surveys

Field surveys were conducted on 28 August - 1 September and 5-8, 11-12, and 19 September 1995. The survey platform was the MV Opilio, a 20 m fiberglass research vessel, on all days except 19 September, when a commercial lobster boat was used. The Ridge was not surveyed in 1995.

Volume estimates were derived from egg bed thickness measurements made by plunging a sharpened ruler into the eggs until it reached the substrate. A video camera was used to monitor the depth of penetration (to the nearest mm) of the ruler into the eggs. Mounting systems and camera operation are described by Cairns et al. (1993). The camera and its mount were lowered and raised by a power winch. At each camera station the vessel stopped at a pre-determined Loran TD where the camera was lowered to the bottom. The camera was hauled clear of the bottom for a few seconds and then dropped until five clear measurements were obtained.

Spawning bed surveys proceeded in three stages: exploratory surveys (Phase I), bed delineation (Phase II), and supplemental sampling (Phase III). Surveys were based on a 200 m grid with 46°00'N, 62°18'W as its base point. Twin arrays of Phase I stations were established, each of which used every second point of the 200 m grid. These arrays were diagonally offset from each other by

283 m. Each array could be completed within a day, given good weather and no equipment problems.

Phase I surveys alternated between the two offset arrays. When spawn was discovered in Phase I surveying, the boundaries of the bed were delineated in a Phase II survey which examined nearby stations on the 200 m grid. The survey proceeded by examining all stations that were immediate neighbours of a station where eggs were found. If any of these stations had eggs, additional stations were examined until all known egg sites were bounded by stations without eggs. Stations immediately northeast, southeast, southwest, and northwest of stations with eggs were also examined.

After completion of Phase II sampling, a sampling zone was established around the spawning bed. This sampling zone included a 220 m margin around all stations known to have eggs. The survey then proceeded to Phase III, where further sample points were then visited, usually in regular rows between the points already visited. Phase III stations were chosen from a 40 m grid.

Egg volume analysis

Volume of eggs deposited at each bed was estimated through geostatistical analysis of mean thickness measurements at stations within the bed's sampling zone. Data from all survey phases were used in estimates of mean and standard deviation of egg thickness.

Geostatistical analysis began by calculating variograms using the program GEOEAS (Englund and Sparks 1990). Nugget, sill, and range values were determined by applying a spherical model to these variograms (see Englund and Sparks 1990 for definitions and Armstrong et al. 1992 for discussion of models).

Block kriging was performed by COKRI, a program written in the Matlab language by Denis Marcotte of the École Polytechnique, Université de Montréal (Marcotte 1991). Block kriging was performed by COKRI on the sampling zone of each spawning bed. Because sampling zones were complex polygons, egg volume was estimated by dividing them into contiguous rectangles which were then block kriged. The search radius for block kriging was 6 km and the total data set was used.

Progenitor biomass estimates

Biomass of the progenitor stock was estimated from egg volume estimates by a conversion factor based on roe percent calculations (Table 1) and specific gravity measurements (Table 2). The ratio of produced:population biomass was calculated by summing the weights of full Stage 6 ovaries from females in a sampled population, and dividing this sum by the sample's biomass (Table 1; data from F. Mowbray, unpubl.). This calculation was based on weights of full ovaries only, and assumes that all females will reach Stage 6 and that all Stage 6 eggs will be deposited.

Specific gravities of spawn were measured in intact spawn samples collected on Fisherman's Bank on 6 September 1995. On the basis of egg staging, these eggs were deposited on the previous night. Rectangular cubes were cut from the egg mat and their lengths, widths, and

mean thicknesses measured. Wet weights were measured after excess moisture was drained onto paper towel, and dry weights were measured after desiccation in a drying oven at 50° for 24 h. Dry specific gravity was calculated as the ratio of dry egg mass in g:volume in cm³ occupied by these eggs.

The derivation of the progenitor biomass conversion is detailed in Table 3.

RESULTS

Two spawning beds were discovered on Fisherman's Bank in 1995 (Fig. 2). The first, deposited on the Western Shoal on 31 August, contained an estimated 323 m^3 of spawn (Table 4). The second was deposited on the Eastern Shoal on 5 September and contained an estimated 939 m^3 of spawn. Total estimated spawn deposition was 1262 m^3 .

The ratio of progenitor biomass (tons):spawn deposition (m³) was calculated as 5.954:1 (Table 3). This conversion factor yields an estimate of 7514 progenitor tons on Fisherman's Bank in 1995 (Table 5, Fig. 3).

DISCUSSION

Field surveys were not conducted on 2-4 and 13-18 September. However, it is unlikely that any significant egg depositions on Fisherman's Bank were missed because egg mats are visible on the bottom for at least 7 days (usually much longer), and because gaps in field work were immediately followed by full surveys of the Bank.

The estimated volume of herring spawn deposited on Fisherman's Bank in 1995 is the lowest in the 10 years for which data are available (Table 5, Fig. 3). In one previous year (1991), deposition was also markedly below the mean. Thus deposition estimates appear to fall in two categories: eight "normal" years, in which estimates ranged from 8241 to 17189 m³, and two "low" years, with estimates of 1262 and 1661 m³.

The previous "low" year (1991) was followed by a "normal" year. Thus a sharp decline in egg deposition does not necessarily mean a population crash. In 1991, some fish which normally spawned on Fisherman's Bank appear to have spawned on the Ridge, where egg deposition was the highest of the four years of that site's time series (Fig. 3). It is not known if a similar shift might have occurred in 1995 because the Ridge was not surveyed in that year. It is also possible that Fisherman's Bank herring might spawn in some years at alternate sites, notably the Pictou grounds, some 30 km distant from the Bank.

LITERATURE CITED

- Armstrong, M., D. Renard, J. Rivoirard, and P. Petitgas. 1992. Geostatistics for fish survey data. Centre de Géostatistique, École des mines, Fontainebleau, France.
- Caims, D.K. 1995. Herring spawn volume at Fisherman's Bank, Prince Edward Island, in 1994. DFO Atlantic Fisheries Research Document 95/121.
- Caims, D.K., S.N. Messieh, E. Wade, P.A. MacPherson, and G.C.J. Bourque. 1993. Timing, location, and

- volume of herring spawn deposition at Fisherman's Bank, Prince Edward Island, 1987-1990. Can. Tech. Rep. Fish. Aquat. Sci. No. 1928.
- Claytor, R., H. Dupuis, F. Mowbray, G. Nielsen, C. LeBlanc, and L. Paulin. 1995. Assessment of the NAFO Division 4T southern Gulf of St. Lawrence herring stock, 1994. DFO Atlantic fisheries research document; 95/69;
- Englund, E., and A. Sparks. 1990. GEO-EAS (Geostatistical environmental assessment software) user's guide. U.S. Environmental Protection Agency, Las Vegas, Nevada.
- Hay, D.E. 1984. Weight loss and change of condition factor during fixation of Pacific herring, *Clupea harengus pallasi*, eggs and larvae. J. Fish. Biol. 25:421-433.
- Lambert, T.C., and S.N. Messieh. 1989. Spawning dynamics of Gulf of St. Lawrence herring. Can. J. Fish. Aquat. Sci. 46:2085-2094.
- Marcotte, D. 1991. Cokriging with Matlab. Computers and Geosciences 17:1265-1280.
- Messieh, S.N. 1976. Fecundity studies on Atlantic herring from the southern Gulf of St. Lawrence and along the Nova Scotia coast. Trans. Am. Fish. Soc. 105:384-394.
- Messieh, S.N. 1986. Herring spawning bed survey in Fisherman's Bank, P.E.I., in fall 1985. CAFSAC Res. Doc. 86/78.
- Messieh, S.N. 1987. Some characteristics of Atlantic herring (*Clupea harengus*) spawning in the southern Gulf of St. Lawrence. N. Atl. Fish. Org. Sci. Council Stud. 11:53-61.
- Messieh, S.N. 1988. Spawning of Atlantic herring in the Gulf of St. Lawrence. Am. Fish. Soc. Symp. 5:31-48.
- Messieh, S.N., P.A. MacPherson, and C. Bourque. 1987. Herring spawning bed survey in Fishermans Bank, P.E.I., fall 1986. CAFSAC Res. Doc. 87/41.
- Messieh, S.N., and H. Rosenthal. 1989. Mass mortality of herring eggs on spawning beds on and near Fisherman's Bank, Gulf of St. Lawrence, Canada. Aquat. Living Resour. 2:1-8.

Table 1
Length-frequencies, body weights, ovary weights, and sex ratios of herring samples from the commercial fishery at Fisherman's Bank, 1991. Ovary weights are derived from Stage 6 fish with full ovaries. Data from F. Mowbray (unpubl.).

Length	Number	Mean	Mean	Percent	Total	Ovary
(cm)	measured	body	ovary	females	weight	weight
		weight	weight		at	at
		(g)	(g)		length	length
					(g)	(g)
28	46	171.6	32.2	25	7894	370
29	462	206.6	37.0	39	95449	6726
30	1669	224.7	36.9	41	375024	24979
31	1812	245.0	47.5	50	443940	43035
32	836	265.6	58.1	40	222042	19540
33	715	292.5	69.0	44	209138	21707
34	1274	336.6	82.7	31	428828	32370
35	1911	364.6	96.2	38	696751	70471
36	1300	390.0	99.3	51	507000	65429
37	613	423.7	107.1	59	259728	38735
38	162	445.5	111.9	47	72171	8439
-39	26	472.4	132.0	75	12282	2574
N	10826	2531	484	1158		
Mean		319.9	75.8	45.0		
Sum					3330247	334375
Roe percent						10.04

Table 2
Specific gravity of herring spawn deposited on Fisherman's Bank on the night of 5-6 September 1995, and collected on 6 September.

Sample	Mean	Volume	Mass	(g)	Dry weight	Specific :	gravity	
number	thickness of	of sample	Wet	Dry	as a % of wet	(mass (g) per cm³ of spawn)		
	sample (cm)	(cm³)			weight	Wet	Dry	
1	1.0	13.7	9.8	1.3	12.9	0.720	0.093	
2	1.4	21.9	14.7	1.9	12.7	0.668	0.085	
3	1.7	16.4	10.7	1.4	13.1	0.653	0.086	
4	1.2	19.6	13.1	1.6	12.6	0.667	0.084	
5	1.7	14.3	7.6	1.0	12.8	0.530	0.068	
6	0.8	6.3	3.6	0.5	12.9	0.579	0.075	
7	0.8	8.7	5.7	0.7	12.8	0.657	0.084	
8	0.6	9.2	6.6	0.9	13.1	0.719	0.094	
9	0.7	9.5	6.1	0.8	13.2	0.641	0.085	
10	1.8	65.7	38.7	5.0	13.0	0.589	0.077	
11	0.5	4.2	3.3	0.4	12.8	0.799	0.102	
12	0.4	4.5	4.5	0.6	12.3	0.995	0.122	
13	0.8	9.6	6.2	0.8	12.8	0.649	0.083	
14	0.7	9.1	5.8	0.7	12.9	0.634	0.082	
15	0.3	4.0	3.6	0.5	13.1	0.910	0.119	
16	1.2	12.1	8.6	1.1	12.7	0.714	0.091	
17	1.1	12.7	7.1	0.9	12.6	0.561	0.071	
18	0.4	4.5	3.5	0.5	13.1	0.779	0.102	
Mean	0.9	13.7	8.8	1.1	12.9	0.692	0.089	
SD	0.5	14.0	8.1	1.1	0.2	0.118	0.015	

Table 3
Derivation of the relation between progenitor biomass and volume of deposited herring spawn, based on an initial progenitor biomass of 1 metric ton (1,000,000 g).

progenitor biomass of 1 metric ton (1,000,000 g).			
Assumed progenitor biomass (wet weight)		1,000,000	g
Mass of full Stage 6 ovaries as a proportion of total bioma	ss (Table 1)	0.1003	•
Wet weight of roe produced by progenitor biomass, assun	•		
reach Stage 6 and all eggs are deposited	1,000,000 x 0.1003	100,300	g
Egg dry weight as a proportion of wet ovary weight (Messi	eh 1976)	0.1605	
Egg dry weight produced by progenitor biomass	100,300 x 0.1605	16,098	g
Age of eggs sampled for specific gravity measurements		1	day
Incubation period at Fisherman's Bank		7	days
Egg dry weight at hatching as a proportion of egg dry weight	pht at beginning of		
incubation (Hay 1984)		0.50	
Dry weight of eggs on sampling date. Decrease in dry we	ight is linear		
(Hay 1984)	16,098-(16,098 x (1/7 x 0.5))	14,948	
Dry specific gravity of deposited spawn (Table 2)		0.089	g dry weight per cm ³ spawn volume
Volume of deposited spawn	14,948/0.089	167,958	
Metric tons of progenitor biomass required to produce 1 m	3 of spawn		
	1,000,000/167,958		metric tons
Cubic metres of spawn produced by 1 metric ton of			
progenitors	167,958/1,000,000	0.168	m³

Table 4
Estimates of herring spawn volume at Fisherman's Bank and the Ridge, 1985-1995. Means and standard deviations are arithmetic for 1985-1987 and kriged for 1988-1995.

Year Bed		Location	Estimated	Number		ickness (r		Survey	Egg
		(Bank	spawn	of	Mean	SD	CV	area	volume (m³)
		or	date	stations				(km²)	
		Ridge)							
1985	1	В	31 Aug	7	6.710			0.2860	1,920
	2	В	31 Aug	13	0.620			0.4888	304
	3	В	4 Sep	6	0.010			0.2390	3
	4	В	16 Sep	26	20.590			0.2470	5,085
	5	В	16 Sep	6	7.340			0.5595	4,105
	Total	В		58				1.8203	11,417
1986	1	В	3 Sep	29	9.850			1.1000	10,837
1987	1	В	23 Aug	5	6.170			0.1864	1,150
	2	В	26 Aug	22	5.130			0.7955	4,083
	3	В	1 Sep	14	5.960			0.4827	2,878
	4	В	9 Sep	16	6.010			0.6155	3,702
	Total	В		57				2.0800	11,814
1988	1	В	5 Sep	86	1.130	0.550	0.490	0.8447	950
	2	В	6 Sep	N/A					
	3	В	8 Sep	N/A					
	4	В	12 Sep	N/A					
1989	1	В	28 Aug						
	2	В	29 Aug	106	4.370	0.940	0.220	1.2778	5,589
	3	В	3 Sep	96	6.630	1.380	0.210	1.2231	8,103
	4	В	9 Sep	45	9.110	1.560	0.170	0.2583	2,352
	5	В	12 Sep	75	2.290	0.520	0.230	0.5002	1,145
	Total	В		322				3.2594	17,189
1990	1	В	20 Aug						
	2	В	28 Aug	74	2.510	0.730	0.290	1.0816	2,711
	3	В	2 Sep						
	4	В	3 Sep	50	0.880	0.350	0.400	0.4096	360
	5	В	11 Sep	60	4.190	1.150	0.280	0.5376	2,251
	6	В	13 Sep	106	6.080	0.740	0.120	1.2896	7,839
	7	В	16 Sep	20	1.780	0.460	0.260	0.1936	344
	Total	В		310				3.512	13,504
1991	1	В	21 Aug	38	0.301	0.102	0.339	0.4576	138
	2A		_		0.470	0.246	0.524	0.8520	400
	2B				2.778	0.308	0.111	0.2480	689
	2C				0.429	0.443	1.032	0.0968	42
	2D				0.108	0.581	5.360	0.0924	10
	2E				1.328	0.433	0.326	0.0924	123
	2F				0.209	0.441	2.109	0.1408	29
	2G				0.029	0.674	22.973	0.0968	3
	2	В	25 Aug	110				1.6192	1,296
	3A		-		0.136	0.033	0.244	0.5084	69

Year	Bed			Number	Egg tr	ickness (m	Survey	Egg	
		(Bank	spawn	of	Mean	SD	CV	area	volume
		or	date	stations				(km²)	(m³)
		Ridge)	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		:-				
	3B				0.024	0.059	2.491	0.0968	
	3C	_		4.4	0.067	0.056	0.836	0.0968	
	3	В	2 Sep	41	0.040	0.074	0.007	0.7020	78
	4A				0.313	0.074	0.237	0.2400	75
	4B				0.124	0.089	0.719	0.1408	17
	4C				0.240	0.089	0.372	0.1408	34
	4D				0.000	0.400	0.000	0.0484	(
	4E	-	5.00-	0.4	0.471	0.138	0.293	0.0484	23 149
	4	В	5 Sep	24	2.612	0.561	0.215	0.6184 1.4640	3,824
	5A				0.442	1.156	2.613	0.1848	3,024
	5B 5C				0.442	1.156	2.013	0.1408	109
	5D				1.821	0.715	0.393	0.1408	417
	อบ 5	R	13 Sep	126	1.021	0.715	0.383	2.0184	4,431
	Total	В	13 Sep	213				3.3972	1,661
	Total	R		126				2.0184	4,431
	Total	B&R		339				5.4156	6,092
	Total	Dar		339				3.4130	0,092
1992	1A				0.695	0.100	0.144	1.4400	1,000
	1B				0.442	0.219	0.496	0.1848	82
	1C				0.168	0.284	1.689	0.0968	16
	1D				0.160	0.227	1.421	0.1848	30
	1	В	25 Aug	71				1.9064	1,128
	2A	_			4.565	0.478	0.105	1.2400	5,660
	2B				1.526	1.572	1.030	0.0968	148
	2C				1.089	0.799	0.734	0.2688	293
	2	В	29 Aug	71				1.6056	6,101
	3	В	6 Sep	35	6.433	1.545	0.240	0.8736	5,620
	4A		•		0.726	0.207	0.285	1.2648	918
	4B				0.428	0.391	0.914	0.0968	41
	4	R	10 Sep	38				1.3616	959
	Total	В	•	177				4.3856	12,849
	Total	R		38				1.3616	959
	Total	B&R		215				5.7472	13,808
1993	1A				0.322	0.103	0.321	0.3360	108
	1B				0.281	0.117	0.415	0.1848	52
	1	В	22 Aug	27				0.5208	160
	2A				0.467	0.257	0.550	0.0968	45
	2B				0.536	0.145	0.270	0.6200	332
	2C				0.384	0.221	0.575	0.1364	52
	2	В	25 Aug	43				0.8532	430
	3A				2.137	0.455	0.213	1.1984	2,559
	3B				0.555	1.220	2.198	0.0736	41
	3	В	4 Sep	60		-		1.2720	2,60°
	4A	_	- F		1.429	0.761	0.532	0.0968	138
	4B				3.638	0.270	0.074	1.1480	4,176
	4C				1.017	0.609	0.599	0.1600	163
	. –				0.806	0.380	0.472	0.5084	410

Year	Bed	Location	Estimated	Number	Egg tl	nickness (m	nm)	Survey	Egg	
		(Bank	spawn	of _	Mean	SD	CV	area	volume	
		or	date	stations				(km²)	(m³)	
		Ridge)								
	4E				0.769	0.665	0.864	0.1364	105	
	4F				0.600	0.778	1.298	0.0968	58	
	4	В	5 Sep	121				2.1464	5,051	
	5A				0.693	0.222	0.321	0.1848	128	
	5B				1.152	0.126	0.109	0.8400	968	
	5C				0.681	0.379	0.556	0.0484	33	
	5D				0.535	0.298	0.557	0.0968	52	
	5E				0.806	0.254	0.315	0.1410	114	
	5	R	20 Sep	77				1.3110	1,294	
	Total	В		251				4.7924	8,241	
	Total	R		77				1.3110	1,294	
	Total	B&R		328				6.1034	9,535	
1994	1A				0.170	0.221	1.296	0.0968	16	
	1B				0.337	0.077	0.228	0.2688	91	
	1	В	21 Aug	23				0.3656	107	
	2A		_		0.464	0.654	1.407	0.1764	82	
	2B				0.246	0.947	3.852	0.0968	24	
	2C				1.913	0.302	0.158	0.9600	1,836	
	2D				1.612	0.782	0.485	0.1408	227	
	2E				0.284	0.578	2.033	0.2520	72	
	2F				0.239	0.677	2.835	0.1364	33	
	2G				2.213	0.345	0.156	1.0400	2,301	
	2H				0.139	0.593	4.274	0.1848	26	
	2	В	28 Aug	83				2.9872	4,600	
	3	В	5 Sep	21	1.887	0.738	0.391	0.1936	365	
	4A				0.638	0.617	0.966	0.0968	62	
	4B				1.707	0.293	0.172	0.6120	1,045	
	4C				1.000	0.283	0.282	1.2896	1,290	
	4D				0.589	0.620	1.053	0.0968	57	
	4	В	8 Sep	54				2.0952	2,454	
	5A				3.352	0.461	0.138	0.6560	2,199	
	5B				1.134	1.040	0.917	0.0968	110	
	5C				0.576	1.020	1.771	0.1364	79	
	5D				1.173	0.755	0.643	0.2480	291	
	5E				0.406	0.796	1.959	0.1848	75	
	5F				0.759	1.062	1.400	0.0924	70	
	5	В	11 Sep	75				1.4144	2,823	
	6A				2.109	0.638	0.302	0.3444	726	
	6B				2.099	1.910	0.910	0.0484	102	
	6C				3.140	0.878	0.280	0.1408	442	
	6	В	11 Sep	31				0.5336	1,270	
	Total	В		287				7.5896	11,619	
	Total	R		0				0.0000	0	
	Total	B&R		287				7.5896	11,619	
1995	1A				0.391	0.081	0.285	0.1764	69	
	1B				0.468	0.104	0.322	0.0924	43	
	1C				0.556	0.062	0.249	0.3444	192	

Year	Bed	Location	Estimated	Number	Egg th	nickness (m	nm)	Survey	Egg
		(Bank or	spawn date		Mean	SD	CV	area (km²)	volume (m³)
		Ridge)						` ,	` ,
	1D				0.388	0.139	0.373	0.0484	19
	1	В	31 Aug	40				0.6616	323
	2A				1.748	0.311	0.558	0.0968	169
	2B				1.497	0.156	0.394	0.0968	623
	2C				1.048	0.281	0.530	0.416	148
	2	В	5 Sep	48				0.6096	939
	Total	В	•	88				1.2712	1,262

Table 5 Egg volume and progenitor biomass estimates for herring spawning on Fisherman's Bank and the Ridge, 1985-1995.

Year _	Fisherman's Bank				T	he Ridge	Both areas			
	Volume (m³)	Weighted mean of CVs*	Progen. mass** (tons)	Volume (m³)		Weighted mean of CVs	Progen. mass (tons)	Volume (m³)	Weighted mean of CVs	Progen. mass (tons)
1985	11,417		67,977	No data						
1986	10,837		64,523	No data						
1987	11,814		70,341	No data						
1988	No data			No data						
1989	17,189	0.21	102,343	No data						
1990	13,504	0.19	80,403	No data						
1991	1,661	0.41	9,887	4,431		0.32	26,383	6,092	0.34	36,270
1992	12,849	0.20	76,500	959	***	0.31	5,710	13,808	0.21	82,210
1993	8,241	0.20	49,069	1,294		0.18	7,705	9,535	0.20	56,773
1994	11,619	0.31	69,180	0			0	11,619		69,180
1995	1,262	0.40	7,514	No data						
Mean	9,127		59,774				9,949	10,263		61,108

^{*} Σ(CV of block estimate x block estimate)

Total estimate

^{**} Based on 5.954 tons of progenitor biomass required to produce 1 m³ of spawn (Table 3)
*** Minimum estimate; some eggs had hatched by sampling time

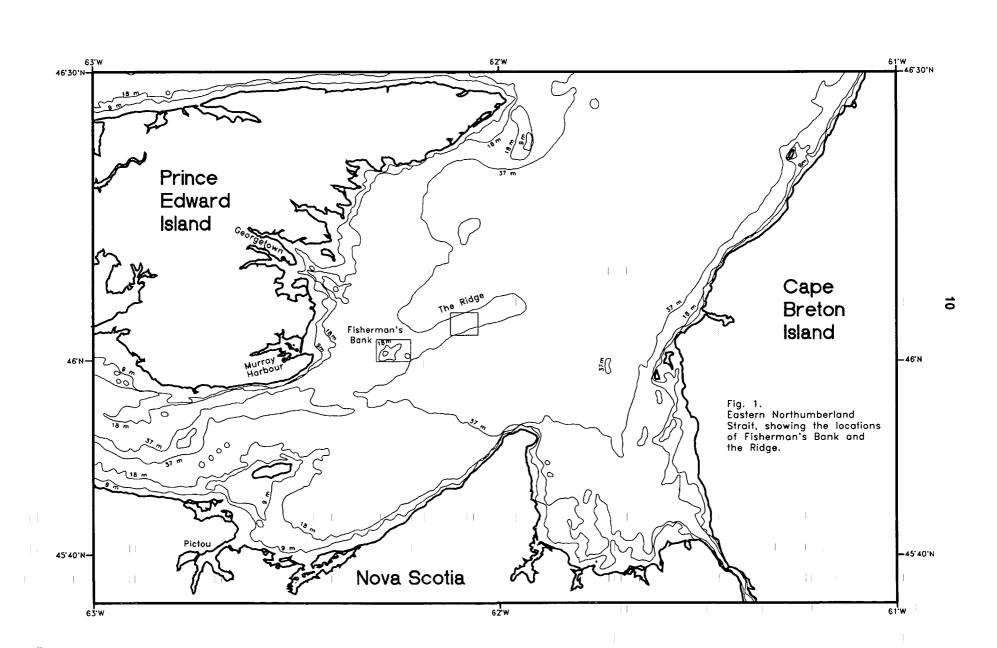
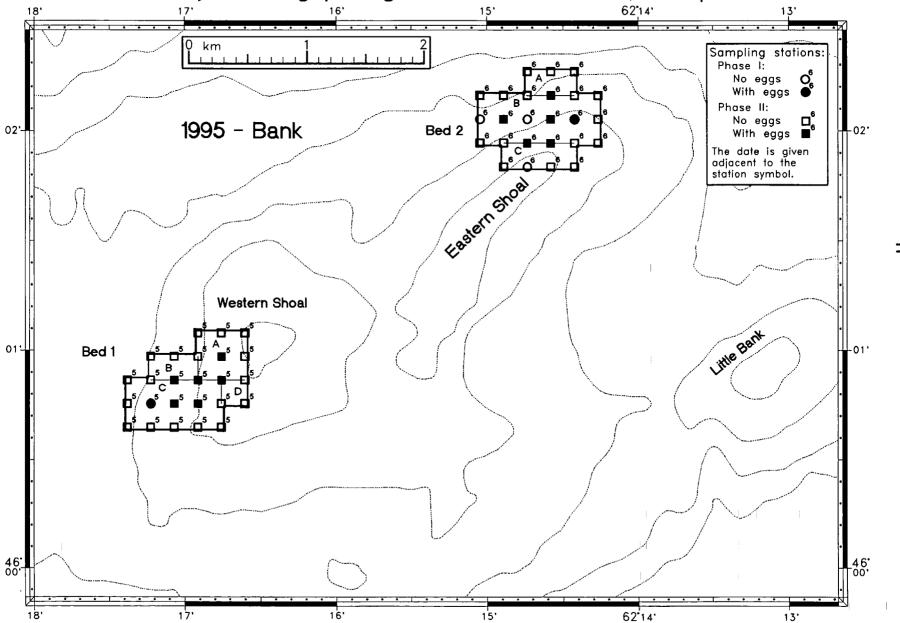



Fig. 2 Phase I and II surveys of herring spawning beds at Fisherman's Bank, 5-6 September 1995.

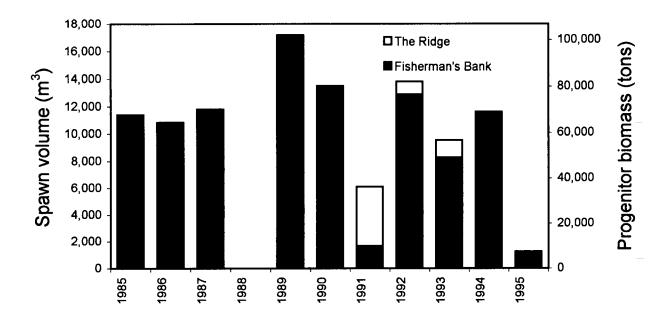


Fig. 3 Volume of deposited herring spawn and progenitor biomass at Fisherman's Bank, 1985-1987 and 1989-1995, and the Ridge, 1991-1994.