Not to be cited without
permission of the authors ${ }^{1}$
DFO Atlantic Fisheries
Research Document 96/68

Ne pas citer sans autorisation des auteurs ${ }^{1}$

MPO Document de recherche sur les pêches dans l'Atlantique 96/68

THE STATUS OF THE ATLANTIC SALMON STOCK ON HARRY'S RIVER/PINCHGUT BROOK, NEWFOUNDLAND, 1995
by
C.C. Mullins, D. Caines, D.F. Downer and S.L. Lowe Department of Fisheries and Oceans

Science Branch
P.O. Box 2009

Comer Brook, Newfoundland
A2H 4B4
${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.


#### Abstract

Harrys River is potentially the largest Atlantic salmon producing river in Bay St. George, SFA 13. However, the stock has been declining since the 1970s. A number of fisheries management measures have been put in place to stop the decline, including recreational quotas, complete closure of the commercial fishery in 1992 and inseason review of stock abundance. Thus far these measures do not appear to have resulted in significant improvements to the overall status of the stock on Harrys River. A maximum of $49 \%$ of the spawning target was achieved in 1992-1995. However, potential egg depositions increased in 1992-1995 on the Pinchgut Brook tributary system which is the main salmon spawning area of the Harrys River. The recreational fishery on Harrys River is currently controlled by an in-season review and a 350 fish river quota, but other factors such as severe poaching are believed to be contributing to the low spawning escapements.


#### Abstract

RÉSUMÉ

Bien que la rivière Harrys soit potentiellement le cours d'eau le plus producteur en saumon atlantique du bassin de la baie St-George (ZPS 13), le stock est à la baisse depuis les années 70 . Des mesures de gestion de la pêche ont été mises en oeuvre pour freiner ce déclin, dont des quotas de pêche récréative, la fermeture complėte de la pêche commerciale en 1992 et l'examen saisonnier de l'abondance du stock. Ces mesures ne semblent pas jusqu'à maintenant s'être traduites par une amélioration significative de l'état général du stock. Ainsi, $49 \%$ de la fraie cible au maximum a été atteint de 1992 à 1995. Toutefois, la ponte potentielle a augmenté pendant celte période dans le ruisseau Pinchgut, tributaire de la Harrys et principale frayère l'alimentant. Un examen saisonnier de l'abondance et un quota de 350 saumons servent présentement à contrôler la pêche récréative dans la rivière Harrys, mais l'on croit que d'autres facteurs, comme le braconnage répandu, sont responsables des échappées faibles.


## INTRODUCTION

Harrys River is one of 8 scheduled Atlantic salmon rivers flowing into Bay St. George, Salmon Fishing Area (SFA) 13 (Fig. 1), Four of these rivers, including Harrys River, are currently managed by an individual river quota.

Angling success on Harrys River peaked during 1953-1960 when the catch-per-unit-effort (CPUE) of small and large salmon ranged from 0.31 to 2.30 (Table 1). In the next 10 years (1961-1970), the mean angling effort on the river increased by $119 \%$, but catches of small and large salmon did not increase to the same degree, and as a result the mean CPUE decreased by $48 \%$ (Table 1). Peak catches were recorded on the river in 1964 when 2,673 small ( $<63 \mathrm{~cm}$ ) and 373 large ( $>=63 \mathrm{~cm}$ ) salmon were taken. This was the highest total catch ever recorded from any river in the Bay St. George area (Mullins et al. 1989) and represented about $30 \%$ of the Bay St. George catch in that year compared to $13 \%$ in 1995 (Table 2). From 1971-1977, angling effort continued to increase, but the mean catch of small salmon decreased by $24 \%$, and the mean catch of large salmon decreased by $75 \%$ compared to the previous 10 year mean (Table 1; Fig. 2). In 1978-1983, and again in 1984-1989, in an effort to conserve the stock, the season opening dates were delayed in the commercial and recreational fisheries, but this resulted in little improvement in salmon abundance (Claytor and Mullins, 1990). The mean catch in 1978-1983 was only 524 small and 35 large salmon, suggesting that the stock was continuing to decline. This decline, particularly of large salmon, was evident in all Newfoundland rivers, and in 1985 anglers were restricted to hook and release only of large salmon. In addition, individual river quotas were introduced on several SFA 13 rivers including a quota of 350 fish small salmon on Harrys River in 1987. Low juvenile densities recorded in electrofishing surveys on Harrys River in 1987 and 1988 suggested that upcoming recruitment would be low (Claytor and Mullins, 1989). The recreational fishery on Harrys River was open for the entire season in only two of nine years since 1986 (Table 1).

Fisheries management measures implemented to conserve salmon stocks in Harrys River and others in SFA 13 since 1992 include the following:

1. 1992 - the introduction of a five year commercial salmon moratorium and a recreational quota for SFA 13;
2. 1993 - reduction of the recreational daily bag limit from two to one fish per day;
3. 1994 - reduction of the recreational season bag limit from eight to six (three before 31 July and three after 31 July); daily limit increased from one to two per day; in-season review of stock status.
4. 1995 - recreational season bag limit of six (three before 31 July and three after 31 July); daily limit of two per day; in-season review of stock status.

In 1992, the SFA 13 recreational (zonal) quota of 5,000 small salmon was reached on 2 August and the fishery on Harrys River was closed, except for catch and release angling. In 1993, the quota was not reached but in anticipation that the quota for Harrys River would be reached, the river was closed to retention on 22 August. No zonal quota was in effect in 1994 and the river quota was not reached, but the river was closed on 8 August because of anticipated low returns indicated by low catch rates up to 24 July. The recreational catches of small salmon on Harrys River in 1993-1995 were among the lowest on record, however, the proportion of large salmon angled in 1993-1995 ( $0.13,0.17$, and 0.15 respectively) was the highest since 1967 (0.26) (Table 1; Fig. 2).

This document presents an updated summary of the results of the counting fence operation carried out on the Pinchgut Brook tributary of Harrys River in 1992-1995. A previous summary of the 1992-1994 results was presented by Mullins and Caines (MS 1995). The potential egg deposition on Pinchgut Brook in 1992-1995 is evaluated based on a spawning target which includes part of Georges Lake in the accessible rearing area for parr produced in Pinchgut Brook. The total returns to Harrys River in 1992-95 were estimated from counts at the Pinchgut Brook counting fence based a spawning survey and a trial markrecapture experiment conducted on Harrys River in 1995.

There are several factors that need to be considered in the analysis of returns of Atlantic salmon to Pinchgut Brook relative to Harrys River as a whole. Pinchgut Brook comprises only $6 \%$ of the total available fluvial rearing area and $5 \%$ of the total available spawning area on the Harrys River system (Table 3). However, the lower reaches of the main stem of Harrys River ( $\sim 3,944$ units; or $64 \%$ of the total) have been classed as largely unproductive in terms of spawning (Claytor and Mullins, 1989; Porter et al., 1974; Downer, 1968). Excluding the lower reaches of the main stem of Harrys River ( $0-18 \mathrm{~km}$ ), $84 \%$ of the accessible spawning habitat occurs in the tributaries but only $40 \%$ of the fluvial rearing area. In addition, approximately $56 \%$ of the lacustrine rearing area occurs in Georges Lake which is also on the main stem of the river (Porter et al. 1974). Pinchgut Brook, which is approximately 48 km upstream from the mouth of Harrys River as well as other tributaries, likely produces juvenile salmon which disperse and rear farther downstream in Georges Lake and the main stem, particularly in the summer months. Dispersal of 1 year old parr up to 2400 m downstream from the spawning site in summer has been documented by Beall et al. (1994). The potential for dispersal downstream makes it is difficult to derive a target spawning requirement for the Pinchgut Brook tributary alone. In the absence of an estimate of salmon returns for the whole river it cannot be assumed that the state of salmon stocks on Pinchgut Brook is indicative of Harrys River as a whole. Estimation of total returns to Harrys River in 1995 based on angling exploitation, was not possible because of the closure of the recreational fishery in mid-July as a result of the in-season review.

## METHODS

## Estimation of Returns and Spawning Escapements

a) Returns and Spawning Escapements to Pinchgut Brook

Total adult salmon returns to the Pinchgut Brook were determined from a counting fence installed on the tributary in 1992-1995. The spawning escapement was determined by subtracting the retained angling catch above the fence. The counting fence was located at the mouth of the Pinchgut Brook where it empties into Georges Lake, and was operated for the following periods:

| Year | Date of Operation |
| :--- | :--- |
| 1992 | 4 July to 23 September |
| 1993 | 17 June to 18 October |
| 1994 | 22 June to 18 October |
| 1995 | 19 June to 17 October |

b) Returns and Spawning Escapements to Harrys River

Two methods were used to estimate total returns and spawning escapements on Harrys River in 1992-1995.

## i) Spawning Survey Method

The total spawning escapements to Harrys River in 1992-1995 were estimated based on spawning escapements on Pinchgut Brook which were adjusted by the proportion of spawning that occurred on the Pinchgut Brook system. The estimated spawning escapement on Harrys River was apportioned into small and large spawners based on the proportions of small and large salmon counted at the Pinchgut Brook fence.

The proportion of the spawning that occurred in the Pinchgut Brook system was determined from a spawning survey conducted over $68 \%$ of the Harrys River system in 1995. The survey was carried out by five crews of two people each counting redds by walking the river on 13-17 November 1995. Consistency of redd counts among crews was verified before the start of the survey by having each crew survey the same section of the Pinchgut Brook and Big Gull Pond Brook tributaries (Appendix 1). The number of redds counted during the survey was adjusted upwards based on the proportion of the total tributary length that was surveyed.
ii) Mark-Recapture Method

A tagging trap was operated on a trial basis at the mouth of Harrys River on 7-16 July 1995. Small and large salmon were carlin tagged and released. Tagged salmon were subsequently recaptured in the recreational fishery in the Lower section (Fig. 1) of the river and at the counting fence on Pinchgut Brook.

The total returns of small salmon to Harrys River in 1995 (RS) was estimated according to the following formula:

$$
\mathbf{R S}=\frac{\mathbf{A C} / \mathbf{E R}}{\mathbf{R S}_{\text {prop. }}}
$$

where:
$\mathrm{ER}=\mathrm{TA} / \mathrm{TR}$
and:
$\mathrm{AC} \quad=$ retained and released angling catch of small salmon
TA = number of tagged small salmon available to angling
TR $\quad=$ tag returns adjusted for voluntary tag reporting rate ( 0.6087 )
$\mathrm{RS}_{\text {prop. }} \quad=$ proportion of the small salmon return that was available to angling
The voluntary tag reporting rate of 0.6087 from the Humber River in 1995 (Mullins and Reddin, MS 1996) was used to estimate the total number of tags recaptured by angling.

The proportion of the small salmon returns available to angling was estimated based on the proportion of the total catch taken during this period and the traditional run-timing based on the results of the counting fence operation in 1967 (Downer, 1968). It is assumed that salmon entering the river before the start of tagging were available to angling in the Lower section of Harrys River as no catches were reported from areas further upstream.

Other assumptions associated with the application of this formula are:

1. Tagged salmon have the same mortality as untagged salmon.
2. Random mixing of tagged and untagged fish
3. Tags are not lost during the period of study
4. Tagged and untagged fish are equally vulnerable to angling
5. Not all recaptured tags are recognized and reported

## Estimation of Target Spawning Requirements

The target egg deposition requirement for the accessible fluvial (Porter et al., 1974) and lacustrine parr rearing area on Harrys River was based on an optimum egg deposition rates of 240 eggs per fluvial unit ( 100 sq. m) (Elson, 1975) and 368 eggs per ha of lacustrine area ( $\mathrm{O}^{\prime}$ Connell et al., 1991). For the Pinchgut Brook system, the area of Georges Lake and other lakes ( $>10 \mathrm{ha}$ ) used by juvenile salmon produced by spawners on Pinchgut Brook, was measured directly from a digitized 1:50,000 scale topographic maps (Appendix 2). A portion of the total area of Georges Lake, equivalent to the percentage of the stream lengths flowing into it from the Pinchgut Brook system ( $45 \%$ or 684 ha), was added to the available lacustrine rearing area for Pinchgut Brook salmon.

## Estimation of Potential Egg Depositions

Potential egg depositions from spawning escapements of small salmon on Harrys River were estimated based on the sex composition (internal and external), and the mean weight of females determined from sampling conducted in the recreational fishery and at the Pinchgut counting fence in 1992-1995. Because sample sizes of small salmon were low ( $<30$ ) in 1995 the 1992-1994 mean values of sex composition and weight of females were used to calculate egg depositions in 1995. For large salmon, mean biological characteristic values ( $86.8 \%$ female and 5.06 kg per female) were based on samples collected on other Bay St. George rivers in 1953-1994 (Reddin et al., MS 1996).

The percentage of the egg deposition target achieved was calculated according to the following formula:

| \% Target Achieved | $=\frac{\text { Potential Egg Deposition (small and Large) }}{\text { Target Egg Deposition }}$ |
| ---: | :--- |
|  | $=\frac{(\# \text { small*Gfemale*mean wt.*1540) }+(\text { (flarge*\%female*mean wt.*1540) }}{\text { (fluvial units*240) }+ \text { (lacustrine area*368) }}$ |

The estimated mean fecundity of $1540 \mathrm{eggs} / \mathrm{kg}$ of body weight is from Anon. (1978).

## RESULTS

## Recreational Fishery

The recreational fishery on Harrys River was closed to retention on 16 July based on the in-season review which indicated that the target spawning requirements would not be achieved in 1995.

## Estimation of Total Returns and Spawning Escapements

## a) Returns and Spawning Escapements to Pinchgut Brook

The total count of small salmon at the Pinchgut Brook counting fence in 1995 was $34 \%$ above the count in 1994 and $66 \%$ above the 1992-1994 mean (Table 4). However, the count of large was $40 \%$ less than in 1994 and $13 \%$ below the 1992-1994 mean. The percentage of large salmon was the second lowest since 1992.
b) Returns and Spawning Escapements to Harrys River
i) Spawning Survey Method

Of the total length of streams flowing into the Pinchgut Brook tributary, $97 \%$ was surveyed and of the remaining area, $61 \%$ was surveyed in 1995 (Table 5). The distribution of spawning redds in 1995 was similar to that in 1967 particularly for tributaries flowing into Georges Lake, but the highest percentage of the spawning had shifted from tributaries flowing into the main stem to the Pinchgut Brook system (Table 5). The total redd count on Pinchgut Brook was 293 after adjustment for the percentage of the area surveyed and 421 on the remainder of the system or 714 in total. $41.0 \%$ of all redds counted in 1995 were on Pinchgut Brook system compared to $34.6 \%$ in 1967. Because the three tributaries not surveyed in 1995 (Browmoore Brook, Furries Brook, and Ahwachenjeech Brook) were unproductive in terms of spawning during the 1967 survey (Table 5), it is assumed that these were also unproductive in 1995.

A total of 1,895 small and large were estimated to have spawned in Harrys River in 1995. Based on the proportion of small and large salmon at the counting fence this translates to 1,827 small and 68 large salmon spawners on Harrys River in 1995.
ii) Mark-Recapture Method

A total of 39 small and 5 large salmon were tagged and released at the mouth of Harrys River from 7-17 July 1995 (Table 6). Three tags were returned voluntarily by anglers (whether or not these were from retained or released small salmon could not be determined) fishing in the Lower section of the river after 1-3 days at large. Two small salmon were also recaptured at the Pinchgut fence after 67-69 days at large. Assuming that the voluntary tag reporting rate by anglers on Harrys River in 1995 was the same as that on the Humber River ( 0.6087 ) and no adjustment was required to account for tag loss because of the short period of time at large, five $(3 / 0.6087)$ of the tagged small salmon were estimated to have been recaptured (TR) by angling on Harrys River in 1995. The relatively short period of time at large before recapture (1-3 days) suggests that tagged salmon recovered relatively quickly from the tagging experience and were available to angling almost immediately after being tagged. Assuming the effects of tagging were negligible (with the exception of one mortality), 38 tagged small salmon were available (TA) to the recreational fishery in Harrys River. Therefore, the angling exploitation rate (ER) during the period of tagging was 0.1316 (5/38).

There was little angling activity after the retention fishery was closed on 16 July but tagged salmon would have been available to catch and release angling for at least three days after the last day of tagging on 17 July. A total of 145 small salmon (AC) were retained and released in the recreational fishery on Harrys River from 10 June to 20 July. Seventy percent of these were angled during the period of tagging. If the angling exploitation rate of 0.1316 is assumed to represent angling exploitation up to 20 July , it is estimated that 1,102 small salmon were available to the recreational fishery.

Harrys River is considered to be a late-run river (Reddin et al., MS 1996) and based on the timing of the returns of small salmon to the counting fence operated on the river in 1967 (Downer, 1968), $50 \%$ ( $\mathrm{RS}_{\mathrm{P} \text { rop }}$ ) of the returning salmon enter after mid-July (Fig. 3). Therefore, it is estimated that a total of 2,203 small salmon would have returned to Harrys River in 1995. Based on the ratio of large to small salmon at the Pinchgut fence in 1995 (0.0372), 82 large salmon also entered the river in 1995. This estimate of small salmon returns is within $10 \%$ of estimated returns based on the spawning survey and the estimate of large salmon returns is $31 \%$ above the estimate based on the spawning survey.

## Biological Characteristics

The mean smolt-age of Harrys River small and large salmon in 1995 was three years, similar to previous years (Table 7). The sea-age composition of small salmon was $90 \%$ virgin 1SW and $10 \%$ consecutive spawning 1SW salmon (Table 8). Large salmon were predominantly virgin or repeat spawning MSWs (Table 8). Mean biological characteristics in 1992-1994 used to estimate egg deposition for small salmon in 1995 are given in Table 9.

## Estimation of Target Spawning Requirements

The estimated target egg deposition requirement for Pinchgut Brook is approximately 1.0 million eggs compared to approximately 7.6 million eggs for Harrys River (Table 10).

## Estimation of Potential Egg Depositions

Egg depositions from small and large salmon spawners on Pinchgut Brook after angling removals in 1995, was the highest in the four years of the counting fence operation (Table 11; Fig. 4). This increased spawning escapement in 1995 can be attributed, at least in part, to the low angling removals of small salmon on Harrys River as a result of the early closure of the retention fishery.

On the basis that $41 \%$ of the spawning in Harrys River occurs in the Pinchgut Brook tributary system, estimated egg depositions on Harrys River in 1995 were the highest since 1992 but only $49 \%$ of the target spawning requirement was achieved which is similar to the 1994 value but $30 \%$ above 1993 for (Table 12; Fig. 4).

## DISCUSSION

The Pinchgut Brook tributary system is the uppermost headwater of Harrys River and based on the 1995 spawning survey, is the primary spawning area for the system. Pinchgut Brook contains the largest proportion of the spawning habitat and the largest spawning escapement of any of the other thirteen major tributaries. Therefore, it is not surprising that egg depositions in this part of the river would be high in comparison to Harrys River as a whole, particularly on the main stem which appears to be less preferred for spawning. Angling catches on the Pinchgut Brook system and other tributaries flowing into Georges Lake represented only $7.2 \%$ of the Harrys River catch in 1984-1989. Considering that the stock is still at an extremely low level, it would be to the long term benefit of the salmon stock and to the fishery if this area were closed completely in 1996 to angling in order to preserve it as a spawning area.

Spawning escapements and egg deposition appear to have increased on both Harrys River and Pinchgut Brook in the last four years. However, spawning on Harrys River as a whole has been at most $49 \%$ of the target requirement based on this assessment. This is consistent with estimates of the stock status based on angling exploitation rates derived during the in-season review in 1994 and 1995. It is also consistent with the view of anglers expressed during public consultations in 1995 that Bay St. George rivers, with the exception of Grand Codroy and Little Codroy, have generally experienced poor returns in recent years. Severe poaching has also been identified as a long standing problem on Harrys River by both anglers and DFO guardians. It was suggested that mortalities within the river could be as high as $50 \%$ of the run. If this is true, the target spawning requirements could be achieved by addressing this problem alone.

## ACKNOWLEDGEMENTS

We gratefully acknowledge the support of SPAWN, CEIC, the Native River Monitor Program, Scouts Canada, and DFO Conservation and Protection staff in the monitoring of the counting fence and tagging trap in 1995; CASEC for funding the spawning survey and the volunteers who carried it out.

## REFERENCES

Beall, E., J. Dumas, D. Claireaux, L. Barriere and C. Marty. 1994. Dispersal patterns and survival of Atlantic salmon (Salmo salar L.) Juveniles in a nursery stream. ICES J. Mar. Sci. 51:1-9.

Claytor, R.R., and C.C. Mullins. 1989. Status of Atlantic salmon stocks, Gulf Region, Newfoundland, 1988. CAFSAC Res. Doc. 89/2 55 p.

Claytor, R.R., and C.C. Mullins. 1990. Status of Atlantic salmon stocks, Area K, Gulf Region, Newfoundland, 1989. CAFSAC Res. Doc. 90/16 24 p.

Downer, D.F., 1968. Preliminary investigations of the Harrys River system, MS report, Fisheries Service, St. John's, Newfoundland.

Elson, P.F., 1975. Atlantic salmon rivers, smolt production and optimal spawning; an overview of natural production. Int. Atl. Sal. Found. Spec. Publ. Ser. 6: 96-119.

Mullins, C.C., J.A. Wright, and R.R. Claytor. 1989. Recreational Atlantic salmon catch, 1986, and anmual summaries, 1953-1986 for West Newfoundland and South Labrador, Gulf Region. Can. Data Rep. Fish. Aquat. Sci. No. $715 . v+124 \mathrm{p}$.

Mullins, C.C. ad D. Reddin. MS 1996. The status of the Atlantic salmon stock on the Humber River, Newfoundland, 1995. DFO Atl. Fish. Res. Doc. 96/xx, xx p.

Reddin, D. And C.C. Mullins. MS 1996. Status of Atlantic salmon stocks in selected rivers of Bay St. George, Newfoundland. DFO Atl. Fish. Res. Doc. 96/xx, xx p.

O' Connell, M.F., J.B. Dempson, and R.J. Gibson. 1991. Atlantic salmon (Salmon salar L.) smolt production parameter values for fluvial and lacustrine habitats in insular Newfoundland. CAFSAC Res. Doc. 91/19. 11 p.

Porter, T.R., and E.M.P. Chadwick. 1983. Assessment of Atlantic salmon stocks in Statistical Areas K and L, Western Newfoundland, 1982. CAFSAC Res. Doc. 83/87. 84 p.

Porter, T.R., R.B. Moores, and G.R. Traverse. 1974. River Investigations on the Southwest Coast of Insular Newfoundland. Department of the Environment, Fisheries and Marine Service, Resource Development Branch Internal Report Series No. NEW/I-74-2 pp. 110-122.

Table 1. Recreational catch of small and large Atlantic salmon on Harry's River, 1953-1995. Means are for years with similar management plans.


Table 2. Recreational catch and effort of Atlantic salmon in Bay St. George (Statistical Area K), and percentage from Harry's River, 1953-1995. Means are for years with similar management plans.

|  | ( rod da |  | Small salmon |  | Large salmon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | BSG | \% Harry's | BSG | \% Harry's | BSG | \% Harry's |
| 1953 | 8040 | 43.0 | 3118 | 30.0 | 1066 | 13.7 |
| 1954 | 3994 | 20.0 | 1578 | 15.5 | 670 | 2.7 |
| 1955 | 5696 | 25.7 | 2126 | 23.5 | 617 | 9.9 |
| 1956 | 8213 | 26.9 | 3187 | 21.0 | 1166 | 17.7 |
| 1957 | 8720 | 19.4 | 4580 | 31.0 | 1621 | 30.4 |
| 1958 | 7699 | 7.0 | 3172 | 31.0 | 1551 | 14.1 |
| 1959 | 8824 | 16.6 | 2664 | 22.7 | 928 | 10.2 |
| 1960 | 8054 | 3.7 | 3935 | 15.3 | 603 | 15.1 |
| 1961 | 10244 | 16.4 | 3930 | 18.7 | 967 | 12.3 |
| 1962 | 12834 | 25.8 | 6485 | 22.9 | 1133 | 19.9 |
| 1963 | 15743 | 27.7 | 8420 | 29.3 | 2240 | 20.4 |
| 1964 | 16849 | 23.3 | 8956 | 29.8 | 1878 | 19.9 |
| 1965 | 14721 | 22.7 | 6127 | 19.2 | 1544 | 17.0 |
| 1966 | 11977 | 17.6 | 3648 | 17.0 | 1450 | 21.8 |
| 1967 | 15534 | 16.9 | 5608 | 12.6 | 1577 | 15.7 |
| 1968 | 15114 | 17.5 | 5615 | 15.4 | 987 | 8.6 |
| 1969 | 16025 | 21.0 | 6987 | 21.3 | 1082 | 16.7 |
| 1970 | 19612 | 27.0 | 6153 | 27.0 | 1049 | 19.7 |
| 1971 | 18103 | 28.4 | 5339 | 26.9 | 660 | 7.1 |
| 1972 | 15803 | 23.0 | 4218 | 18.5 | 871 | 3.7 |
| 1973 | 19017 | 25.0 | 6430 | 24.6 | 1020 | 19.2 |
| 1974 | 18946 | 22.3 | 4322 | 21.8 | 744 | 4.6 |
| 1975 | 21678 | 10.1 | 5771 | 12.2 | 756 | 2.1 |
| 1976 | 20964 | 13.8 | 5121 | 17.6 | 554 | 7.2 |
| 1977 | 17209 | 22.4 | 4355 | 23.1 | 994 | 6.8 |
| 1978 | 11084 | 28.3 | 2327 | 30.6 | 597 | 10.9 |
| 1979 | 7751 | 9.7 | 2572 | 5.8 | 84 | 1.2 |
| 1980 | 12316 | 13.0 | 4213 | 12.3 | 673 | 9.7 |
| 1981 | 14311 | 14.5 | 4911 | 13.4 | 500 | 3.6 |
| 1982 | 15417 | 13.9 | 5045 | 11.3 | 469 | 6.6 |
| 1983 | 16480 | 14.8 | 3075 | 17.3 | 554 | 5.4 |
| 1984 | 14783 | 17.2 | 4847 | 14.9 | 262 | 4.2 |
| 1985 | 12779 | 13.2 | 2871 | 6.0 | 246 | 0.0 |
| 1986 | 16588 | 15.8 | 3819 | 10.0 | 430 | 1.9 |
| 1987 | 12346 | 13.3 | 2807 | 13.5 | 216 | 3.7 |
| 1988 | 14393 | 14.4 | 3834 | 11.3 | 230 | 4.8 |
| 1989 | 10366 | 18.9 | 1717 | 18.9 | 103 | 2.9 |
| 1990 | 13062 | 16.7 | 3357 | 21.0 | 248 | 8.9 |
| 1991 | 12985 | 11.2 | 3465 | 10.7 | 147 | 2.7 |
| 1992 | 13149 | 15.9 | 3159 | 11.0 | 672 | 4.2 |
| 1993 | 13169 | 14.2 | 2471 | 13.8 | 524 | 9.5 |
| 1994 | 11800 | 12.9 | 1848 | 12.8 | 647 | 7.7 |
| 1995 | 8973 | 14.0 | 1599 | 13.1 | 516 | 8.5 |
| Mean(92-94) | 12706 | 14.3 | 2493 | 12.5 | 614 | 7.1 |
| Mean(84-89) | 13543 | 15.5 | 3316 | 12.4 | 248 | 2.9 |
| Mean(78-83) | 12893 | 15.7 | 3691 | 15.1 | 480 | 6.2 |
| Mean(71-77) | 18817 | 20.7 | 5079 | 20.7 | 800 | 7.3 |
| Mean(61-70) | 14865 | 21.6 | 6193 | 21.3 | 1391 | 17.2 |
| Mean(53-60) | 7405 | 20.3 | 3045 | 23.7 | 1028 | 14.2 |
| \% Change in 1995 from: |  |  |  |  |  |  |
| Mean(92-94) | -29.4 | -2.6 | -35.9 | 4.2 | -16.0 | 19.3 |
| Mean(84-89) | -33.7 | -9.9 | -51.8 | 5.2 | 108.2 | 193.1 |

Table 3. Fluvial rearing and spawning area available to Atlantic salmon on Harry's River.
From Porter et al, (1974)

|  | Fluvial <br> Rearing Area ( 100 sq. m) |  | Total <br> Spawning Area ( 100 sq. m)* |  | Spawning Area ( 100 sq. m) (excluding lower reaches) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Units | \% | Units | \% | Units | \% |
| Main Stem | 15,822 | 59.9 | 4,296 | 70.1 | 352 | 16.1 |
| Other 13 Trib's | 8,920 | 33.8 | 1,548 | 25.2 | 1,548 | 70.8 |
| Pinchgut Brook | 1,655 | 6.3 | 287 | 4.7 | 287 | 13.1 |
| Total | 26,397 | 100.0 | 6,131 | 100.0 | 2,187 | 100.0 |

* spawning area in lower reaches ( $\sim 64 \%$ of total; 3944 units) largely unproductive.

Table 4.Counts of small and large salmon at Pinchgut counting fence in 1992-1995.

|  | Total Returns |  |  |  | Percentage |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | Small | Large | Total |  | Small | Large |
| 1992 | 222 | 5 | 227 |  |  |  |
| 1993 | 576 | 43 | 619 | 97.8 | 2.2 |  |
| 1994 | 563 | 47 | 610 | 93.1 | 6.9 |  |
| 1995 | 752 | 28 | 780 | 92.3 | 7.7 |  |
|  |  |  |  | 96.4 | 3.6 |  |
| Mean (92-94) | 454 | 32 | 485 | 94.4 | 5.6 |  |

Table 5. Comparison of redd counts on Harry's River in 1967 and 1995.

| Location | Total Tributary Length (km) | 1967 |  |  | 1995 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Length Surveyed |  | Redd Count | Length |  | Adjusted |  |
|  |  |  |  | Surveyed |  | Redd | Redd |
|  |  | (km) | \% |  | (km) | \% | Count | Count |
| I. Pinchgut Brook System: |  |  |  |  |  |  |  |  |
| Big Gull Pond BK T14-1 | 5.0 | 0.0 |  |  |  | 5.0 | 100 | 70 | 70 |
| Pinchgut BK T14-2 | 7.5 | 7.5 | 100 | 164 | 7.5 | 100 | 58 | 58 |
| Stag Hill BK N. T15-2A | 9.0 | 9.0 | 100 ı | 0 | 9.0 | 100 | 36 | 36 |
| Stag Hill BK S. T15-2B | 7.0 | 7.0 | 100 ı | 0 | 7.0 | 100 | 1 | 1 |
| Meadows BK T15-1 | 6.5 | 0.0 |  |  | 5.9 | 90 | 46 | 51 |
| Camp Eleven BK T15-3 | 3.5 | 0.0 |  |  | 3.2 | 90 | 69 | 77 |
| Sub-Total | 38.5 | 23.5 | 61.0 | 164 | 37.5 | 97.4 | 280 | 293 |
| Percent of Total |  |  |  | 34.6\% |  |  |  | 41.0\% |
| II. George's Lake System: |  |  |  |  |  |  |  |  |
| Stag LK BK/L Grg's BK T13-1 | 3.0 | 1.1 | 36 | 0 | 3.0 | 100 | 123 | 123 |
| Stag LK Trib. N. T13-2-1 | 4.5 | 0.0 |  |  |  | 100 | 0 | 0 |
| Stag LK Trib. S. T13-2-2 | 7.0 | 0.0 |  |  |  | 100 | 15 | 15 |
| Beaver Brook T12 | 5.0 | 5.0 | 100 ı | 0 | 3.0 | 593 | 38 | 64 |
| Spruce Brook T11 | 25.0 | 25.0 | 1004 | 0 | 25.0 | 100 | 1 | 1 |
| Muskrat Brook T10 | 3.0 | 0.0 |  |  |  | 100 | 2 | 2 |
| Sub-Total | 47.5 | 31.1 | 65.4 | 0 | 31.0 | 65.2 | 179 | 205 |
| Percent of Total |  |  |  | 0.0\% |  |  |  | 28.8\% |


| III. Main River System: |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| North BK T9/ T9-1 | 19.3 | 19.3 | 100 , | 10 | 19.3 | 100 s | 0 | 0 |
| Jack Burke's BK T9A | 1.4 | 1.4 | 100 | 0 | 1.4 | 100 | 6 | 6 |
| Robert's (Crooced) BK T5 | 19.8 | 8.9 | 45 | 0 | 11.9 | 60 | 0 | 0 |
| Black Duck BKs T3 | 4.5 | 4.5 | 100 | 153 | 4.5 | 100 | 19 | 19 |
| Long Gull pond BK T2 | 4.7 | 4.7 | 100 | 152 | 4.7 | 100 | 61 | 61 |
| Browmoore BK T1 | 9.7 | 9.7 | 1001 | 0 | 0.0 |  |  |  |
| Trout Brook T4 | 23.2 | 23.2 | 1003 | 35 | 2.3 | 106 | 13 | 130 |
| Furries Brook T6 | 10.5 | 10.5 | 100 | 0 | 0.0 |  |  |  |
| Ahwachenjeech BK T8 | 7.4 | 7.4 | 1002 | 20 | 0.0 |  |  |  |
| Sub-Total | 100.5 | 89.6 | 89.2 | 310 | 44.1 | 43.9 | 99 | 216 |
| Percent of Total |  |  |  | 65.4\% |  |  |  | 30.2\% |
| Total | 186.5 | 144.2 |  | 474 | 112.6 |  | 558 | 714 |

Footnotes:

1. examined only from the air
2. $45 \%$ of total length examined by helicopter
3. $50 \%$ of total length examined by helicopter
4. $60 \%$ of total length examined by helicopter
$5.70 \%$ of total length examined by helicopter
5. very high water; bottom difficult to see

Table 6. Tagged Atlantic salmon released and recaptured on Harrys River, 1995.

| Tag No. | Fork |  |  |  |  |  |  |  | Recapture |  |  | No. Days at Large |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Date Tagged |  | Length (cm) | Age |  |  |  |  | Date |  |  |  |
|  | Day | Month |  | FA | SA | $+$ | SM | $+$ | Day | Month | Location |  |
| Small Salmon |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 7 | 7 | 45.7 | 3 | 1 | 1 |  |  |  |  |  |  |
| 2 | 8 | 7 | 51.6 | 3 | 1 | 1 |  |  |  |  |  |  |
| 3 | 8 | 7 | 58.7 | 3 | 1 |  | 7 | 1 |  |  |  |  |
| 4 | 9 | 7 | 50.2 | 3 | 1 | 1 |  |  | 16 | 9 | Pinchgut Fence | 69 |
| 5 | 10 | 7 | 52.7 | 3 | 1 | 1 |  |  |  |  |  |  |
| 6 | 10 | 7 | 51.2 | 3 | 1 | 1 |  |  |  |  |  |  |
| 7 | 10 | 7 | 52.6 | 3 | 1 | 1 |  |  |  |  |  |  |
| 8 | 11 | 7 | 55.1 | 4 | 1 | 1 |  |  | 12 | 7 | Tagging Trap | 1 |
| 9 | 11 | 7 | 48.8 | 4 | 1 | 1 |  |  |  |  |  |  |
| 10 | 11 | 7 | 49.6 | 3 | 1 | 1 |  |  | 13 | 7 | Tagging Trap* | 2 |
| 11 | 11 | 7 | 50.4 | 3 | 1 | 1 |  |  |  |  |  |  |
| 12 | 11 | 7 | 48.2 | 4 | 1 | 1 |  |  |  |  |  |  |
| 13 | 12 | 7 | 52.8 | 2 | 1 | 1 |  |  |  |  |  |  |
| 14 | 12 | 7 | 49.5 | 4 | 1 | 1 |  |  |  |  |  |  |
| 15 | 13 | 7 | 51.7 | 4 | 1 | 1 |  |  |  |  |  |  |
| 16 | 13 | 7 | 46.9 | 4 | 1 | 1 |  |  | 16 | 7 | Angled | 3 |
| 17 | 14 | 7 | 53.0 | 3 | 1 | 1 |  |  |  |  |  |  |
| 18 | 14 | 7 | 50.3 | 3 | 1 | 1 |  |  |  |  |  |  |
| 19 | 14 | 7 | 52.7 | 2 | 1 | 1 |  |  | 16 | 7 | Angled | 2 |
| 20 | 14 | 7 | 50.0 | 3 | 1 | 1 |  |  |  |  |  |  |
| 21 | 14 | 7 | 52.8 | 3 | 1 | 1 |  |  |  |  |  |  |
| 22 | 14 | 7 | 54.4 | 3 | 1 | 1 |  |  |  |  |  |  |
| 23 | 14 | 7 | 49.5 | 3 | 1 | 1 |  |  | 19 | 9 | Pinchgut Fence | 67 |
| 24 | 14 | 7 | 53.4 | 4 | 1 | 1 |  |  |  |  |  |  |
| 25 | 14 | 7 | 53.4 | 3 | 1 | 1 |  |  |  |  |  |  |
| 26 | 14 | 7 | 48.1 | 3 | 1 | 1 |  |  |  |  |  |  |
| 27 | 14 | 7 | 54.2 | 3 | 1 | 1 |  |  |  |  |  |  |
| 28 | 14 | 7 | 53.4 | 3 | 1 | 1 |  |  |  |  |  |  |
| 29 | 15 | 7 | 53.0 | 3 | 1 | 1 |  |  |  |  |  |  |
| 30 | 15 | 7 | 50.8 | 4 | 1 | 1 |  |  |  |  |  |  |
| 31 | 15 | 7 | 57.0 | 4 | 1 | 1 |  |  | 16 | 7 | Angled | 1 |
| 32 | 15 | 7 | 51.0 | 4 | 1 | 1 |  |  |  |  |  |  |
| 33 | 16 | 7 | 57.0 | 3 | 1 | 1 |  |  |  |  |  |  |
| 34 | 16 | 7 | 46.5 | 3 | 1 | 1 |  |  |  |  |  |  |
| 35 | 17 | 7 | 51.3 | 3 | 1 | 1 |  |  |  |  |  |  |
| 36 | 17 | 7 | 54.8 | 3 | 1 |  | 7 | 1 |  |  |  |  |
| 37 | 17 | 7 | 54.3 | 3 | 1 | 1 |  |  |  |  |  |  |
| 38 | 17 | 7 | 52.5 | 3 | 1 | 1 |  |  |  |  |  |  |
| 39 | 17 | 7 | 53.0 | 3 | 1 | 1 |  |  |  |  |  |  |
| Large Salmon |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 10 | 7 | 81.5 | 3 | 2 |  | 7 | 1 |  |  |  |  |
| 2 | 12 | 7 | 74.3 | 3 | 2 | 1 |  |  |  |  |  |  |
| 3 | 14 | 7 | 75.1 | 4 | 2 | 1 |  |  |  |  |  |  |
| 4 | 14 | 7 | 78.5 | 3 | 2 |  | 7 | 1 |  |  |  |  |
| 5 | 15 | 7 | 76.0 | 3 | 2 | 1 |  |  |  |  |  |  |

[^0]Table 7. Smolt-age distribution of small and large Atlantic salmon on Harry's River, 1975-1995
Smolt ages were determined from scale samples collected from fish landed in the
recreational fishery and at the Pinchgut Brook counting fence.

| Year |  |  | Smolt Age \% |  | Mean Smolt age |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | 2 | 3 | 4 |  |
| Large salmon$(>=63 \mathrm{~cm})$ |  |  |  |  |  |
| 1977 | 1 |  |  | 100 | 4.0 |
| 1993 | 55 | 5 | 20 | 80 | 2.8 |
| 1995 | 8 |  | 88 | 13 | 3.1 |
| $\begin{aligned} & \text { Small salmon } \\ & (<63 \mathrm{~cm}) \end{aligned}$ |  |  |  |  |  |
| 1975 | 27 |  | 81 | 19 | 3.2 |
| 1977 | 18 |  | 61 | 39 | 3.4 |
| 1979 | 16 | 6 | 63 | 31 | 3.2 |
| 1989 | 3 |  | 100 |  | 3.0 |
| 1990 | 11 |  | 91 | 9 | 3.1 |
| 1991 | 2 |  | 100 |  | 3.0 |
| 1992 | 62 | 3 | 94 | 3 | 3.0 |
| 1993 | 50 |  | 82 | 16 | 3.2 |
| 1994 | 43 |  | 70 | 30 | 3.3 |
| 1995 | 129 | 2 | 91 | 36 | 3.3 |
| Mean(75-91) |  | 6.0 | 82.7 | 24.5 | 3.2 |
| Mean(92-94) |  | 3.0 | 82.0 | 16.3 | 3.2 |

Table 8. Sea-age composition of small and large Atlantic salmon on Harry's River, 1975-1995. CS " refers to consecutive spawners and "AS" refers to alternate spawners.

|  |  |  | \% | \% | \% | \% | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | \% | CS | AS | V. | CS | AS |
| Year | N | 1SW | 1SW | 1SW | MSW | MSW | MSW |
| Large Salmon |  |  |  |  |  |  |  |
| (> $>63 \mathrm{~cm}$ ) |  |  |  |  |  |  |  |
| 1977 | 1 |  |  |  | 100 |  |  |
| 1993 | 5 |  |  | 80 |  | 20 |  |
| 1995 | 8 |  | 13 |  | 62 | 25 |  |
| Small salmon ( $<63 \mathrm{~cm}$ ) |  |  |  |  |  |  |  |
| 1975 | 27 | 100 |  |  |  |  |  |
| 1977 | 18 | 94 | 6 |  |  |  |  |
| 1979 | 16 | 100 |  |  |  |  |  |
| 1989 | 3 | 67 |  | 33 |  |  |  |
| 1990 | 11 | 100 |  |  |  |  |  |
| 1991 | 2 | 50 | 50 |  |  |  |  |
| 1992 | 63 | 71 | 29 |  |  |  |  |
| 1993 | 52 | 83 | 17 |  |  |  |  |
| 1994 | 45 | 91 | 9 |  |  |  |  |
| 1995 | 129 | 90 | 10 |  |  |  |  |
| Mean(75-91) |  | 85.2 | 28.0 | 33.0 |  |  |  |
| Mean(92-94) |  | 81.7 | 18.3 |  |  |  |  |

Table 9. Biological characteristics of small and large virgin and repeat spawners Atlantic salmon of Harrys River, 1975-1995. Samples collected from the recreational fishery and Pinchgut Brook counting fence. Sex is internal \& external.

| Year | Fork Length Females (cm) |  |  |  |  | Whole Weight Females (kg) |  |  |  |  | No. FEMALE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N MEAN MIN |  |  | MAX | STD | N | MEAN | MIN | MAX | STD | Sexed N |  | \% |
| $\begin{aligned} & \text { Large salmon } \\ & (>=63 \mathrm{~cm}) \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1977 | 0 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1993 | 5 | 70.7 | 67.5 | 73.0 | 2.10 | 2 | 3.70 | 3.40 | 4.00 | 0.42 | 5 | 5 | 100.0 |
| 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1995 | 1 | 72.1 | 72.1 | 72.1 |  | 1 | 4.30 | 4.30 | 4.30 |  | 1 | 1 | 100.0 |
| Small salmon ( 663 cm ) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1975 | 0 |  |  |  |  | 18 | 1.32 | 0.91 | 1.82 | 0.23 | 26 | 18 | 69.2 |
| 1977 | 0 |  |  |  |  | 7 | 1.30 | 1.10 | 2.10 | 0.35 | 18 | 7 | 38.9 |
| 1979 | 8 | 48.6 | 45.7 | 50.8 | 2.00 | 2 | 1.36 | 1.36 | 1.36 | 0.00 | 16 | 8 | 50.0 |
| 1989 | 0 |  |  |  |  | 0 |  |  |  |  | 0 | 0 |  |
| 1990 | 0 |  |  |  |  | 0 |  |  |  |  | 0 | 0 |  |
| 1991 | 0 |  |  |  |  | 0 |  |  |  |  | 0 | 0 |  |
| 1992 | 39 | 50.7 | 42.5 | 57.2 | 3.50 | 0 |  |  |  |  | 61 | 39 | 63.9 |
| 1993 | 38 | 50.4 | 43.2 | 60.5 | 3.50 | 35 | 1.43 | 0.80 | 2.20 | 0.33 | 50 | 38 | 76.0 |
| 1994 | 38 | 51.4 | 46.5 | 58.5 | 2.70 | 37 | 1.81 | 1.00 | 2.50 | 0.35 | 49 | 38 | 77.6 |
| 1995 | 9 | 50.9 | 47.6 | 56.1 | 2.70 | 9 | 1.50 | 1.00 | 2.20 | 0.40 | 15 | 9 | 60.0 |
| Mean(75-91) | 8 | 48.6 | 45.7 | 50.8 | 2.00 | 27 | 1.32 | 0.99 | 1.86 | 0.24 | 60 | 33 | 55.0 |
| Mean(92-94) | 115 | 50.8 | 44.1 | 58.7 | 3.24 | 72 | 1.63 | 0.90 | 2.35 | 0.34 | 160 | 115 | 71.9 |

Table 10. Estimation of Atlantic salmon target egg deposition and spawner requirements for Harry's River and Pinchgut Brook.

## TARGET EGG DEPOSITION REQUIREMENTS:

## Harrys River:

Fluvial Rearing Units (100 sq. m)
Lacustrine Area (ha)

26,394 (Porter and Chadwick, 1983)
3,546 (this document)

240 eggs per Rearing Unit
368 eggs per ha of Lacustrine Area

```
= (26,394*240)+(3,546*368)
= 7,639,635 eggs
```


## Pinchgut Brook:

Fluvial Rearing Units (100 sq. m) * 1,655 (Porter et al., 1974)
Lacustrine Area (ha) 1,036 (Pinchgut tributary - this document)
684 ( $45 \%$ of Georges Lake (1520 ha))

Minimum Egg Deposition for Conservation: 240 eggs per Rearing Unit
368 eggs per ha of Lacustrine Area
$=(1655 * 240)+((1036+684) * 368)$
$=1,030,160$ eggs

Table 11. Total returns, spawning escapement, and potential egg deposition of Atlantic salmon on Pinchgut Brook, 1992-1995.
Pinchgut Brook, 1992-1995.

| Year | Total Returns to Pinchgut Fence |  |  | Retained Above Fence |  | Spawning Escapement Small | Large | Total | PotentialEgg Deposition$\left(\times 10^{\wedge} 6\right)$ |  |  | Percent <br> Target <br> Achieved |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Small | Large | Prop. Small | Small | Large |  |  |  | Small | Large | Total |  |
| 1992 | 222 | 5 | 0.978 | 10 | 0 | 212 | 5 | 217 | 0.34 | 0.03 | 0.37 | 36 |
| 1993 | 576 | 43 | 0.931 | 28 | 0 | 548 | 43 | 591 | 0.92 | 0.29 | 1.21 | 117 |
| 1994 | 563 | 47 | 0.923 | 18 | 0 | 545 | 47 | 592 | 1.18 | 0.32 | 1.50 | 145 |
| 1995 | 752 | 28 | 0.964 | 3 | 0 | 749 | 28 | 777 | 1.35 | 0.19 | 1.54 | 150 |
| Mean (92-94) | 454 | 32 | 0.944 | 19 | 0 | 435 | 32 | 467 | 0.81 | 0.21 | 1.03 | 100 |

Table 12. Estimated spawning escapement, and percent of egg target achieved on Harrys River, 1992-1995.

Harrys River, 1992-1995

| Harrys River, 1992-1995 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Spawning Escapement |  |  |  | PotentialEgg Deposition$\left(x 0^{\wedge} 6\right)$ |  |  | Percent <br> Target <br> Achieved |
|  | Pinchgut | Harrys |  |  |  |  |  |  |
|  | Total | Small | Large | Total | Small | Large | Total |  |
| 1992 | 217 | 518 | 12 | 529 | 0.83 | 0.08 | 0.91 | 12 |
| 1993 | 591 | 1342 | 99 | 1441 | 2.25 | 0.67 | 2.92 | 38 |
| 1994 | 592 | 1333 | 111 | 1444 | 2.88 | 0.75 | 3.64 | 48 |
| 1995 | 777 | 1827 | 68 | 1895 | 3.30 | 0.46 | 3.76 | 49 |
| Mean (92-94) | 467 | 1064 | 74 | 1138 | 1.99 | 0.50 | 2.49 | 33 |



Figure 1. Location map of the Harrys River system.

Recreational Catch - Harrys River, 1953-1995


Figure 2. Recreational catch and effort of small and large salmon on Harrys River, 1953-1995. Catches include retained and released fish. The fishery has been managed by a river quota of 350 small salmon since 1987 and an in-season review of abundance in 1994-1995.

Harry's River, 1967


Figure 3. Counts of small and large salmon observed at the counting fence operated on Harrys River in 1967.

Pinchgut Brook
Spawning Escapements


Harrys River
Spawning Escapements


Figure 4. Spawning escapements of Atlantic salmon on Pinchgut Brook and Harrys, 1992-1995 The horizontal line refers to the target spawners requirements.

Appendix 1. Comparison of counts of salmon redds on BigGull Pond and Pinchgut Brook, (Harrys River) by survey crews, 13 November 1995.


Big Gull Pond Brook

| DC/AS | 13-Nov | 1 | 0 | 15.0 | 15 | 50 | 25 |  | 10 |  |  |  | 50 | 5 | 5 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 19 | 15.0 |  | 10 |  | 30 | 40 | 20 |  |  | 10 |  | 10 | 80 |
|  |  | 3 | 17 | 15.0 | 10 | 40 | 30 | 10 | 10 |  |  |  | 50 |  |  | 50 |
|  |  | 4 | 26 | 27.0 | 10 | 20 | 30 | 10 | 20 | 10 |  |  | 10 | 5 | 5 | 80 |
| Total |  |  | 62 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DI/SL | 13-Nov | 1 |  | 7.7 |  | 20 |  | 60 | 15 | 5 |  |  | 10 |  | 5 | 30 |
|  |  | 2 |  | 7.7 | 3 | 40 | 2 | 45 | 10 |  |  |  | 15 | 5 | 5 | 30 |
|  |  | 3 |  | 10.7 |  | 40 | 30 | 20 | 10 |  |  |  | 15 | 10 | 10 | 30 |
|  |  | 4 | 28 | 10.3 | 10 | 20 |  | 32 | 30 | 8 |  |  | 75 | 5 | 1 | 50 |
|  |  | 5 |  | 8.0 |  | 70 | 15 | 15 |  |  |  |  | 3 | 2 |  | 30 |
|  |  | 6 | 22 | 8.0 |  | 15 | 5 | 40 | 20 | 15 |  | 5 | 2 | 3 |  | 20 |
| Total |  |  | 50 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| HJ/KP | 13-Nov | 1 | 20 | 21.7 |  | 15 |  | 75 |  | 20 |  |  | 15 | 10 | 10 | 75 |
|  |  | 1 | 20 | 10.3 |  | 5 |  | 25 | 30 |  | 40 |  | 10 |  |  | 4 |
|  |  | 2 | 10 |  |  | 10 |  | 35 | 10 |  | 45 |  |  | 20 |  | 20 |
|  |  | 3 | 27 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total |  |  | 77 |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Pinchgut Brook |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DD/GL 13-Nov | 1 | 4 | 33.3 | 35 |  | 30 |  | 20 | 15 |  | 20 | 20 |  | 10 |
|  | 2 | 0 | 30.0 |  | 50 | 25 | 25 |  |  |  | 37 | 15 |  | 15 |
|  | 3 | 2 | 32.0 |  |  |  |  |  |  |  | 30 | 50 |  | 10 |
|  | 4 | 0 | 23.0 |  |  |  |  |  |  |  | 40 | 50 |  | 20 |
|  | 5 | 0 | 23.0 |  | 50 |  |  | 20 | 30 |  | 20 | 30 |  | 10 |
|  | 6 | 8 | 30.0 |  | 40 | 10 |  | 50 |  |  |  |  |  |  |
|  | 7 | 0 | 20.0 |  | 45 | 15 | 20 | 20 |  |  | 30 | 60 |  | 10 |
|  | 8 | 0 | 21.0 |  | 70 |  | 25 | 5 |  |  |  |  |  |  |
|  | 9 | 4 | 29.0 |  |  |  |  |  |  |  | 40 | 60 |  | 15 |
|  | 10 | 1 | 30.0 | 30 | 40 |  |  | 30 |  |  | 30 | 50 |  | 20 |
|  | 11 | 1 | 35.0 | 10 |  | 10 | 10 | 70 |  |  | 30 | 10 |  | 15 |
|  | 12 | 0 | 33.0 | 20 | 20 |  |  | 50 | 10 |  | 20 | 15 |  | 10 |
| Total |  | 20 |  |  |  |  |  |  |  |  |  |  |  |  |
| CM/JF | 1 | 12 | 33.3 | 60 | 5 | 15 | 15 | 5 |  |  | 10 | 10 |  | 10 |
|  | 2 | 4 | 26.6 | 60 | 5 | 15 | 15 | 5 |  |  | 15 | 15 |  | 5 |
|  | 3 | 0 |  | 75 | 10 | 5 | 10 |  |  |  | 60 | 50 |  | 5 |
|  | 4 | 8 | 15.7 | 60 | 10 | 5 | 20 | 5 |  |  | 5 |  | 60 | 5 |
|  | 5 | 10 | 13.0 | 40 | 5 | 15 | 25 | 15 |  |  | 60 | 5 |  | 20 |
|  | 6 | 1 | 12.0 | 60 | 20 | 5 | 10 | 5 |  |  | 40 | 20 |  | 10 |
|  | 7 | 0 | 11.0 |  |  | 20 | 60 | 20 |  |  | 50 | 5 |  | 50 |
|  | 8 | 1 | 10.7 | 40 | 5 | 10 | 40 | 5 |  |  | 40 | 5 |  | 5 |
|  | 9 | 0 |  | 10 |  | 15 | 50 | 15 |  | 10 | 70 | 5 |  | 30 |
|  | 10 | 0 | 12.0 | 25 |  | 25 | 25 | 25 |  |  | 65 |  |  | 10 |
| Total |  | 36 |  |  |  |  |  |  |  |  |  |  |  |  |


| Substrate Type Codes: |  |
| ---: | :--- |
| bdr | $=$ bedrock |
| smbld | $=$ small boulders |
| lrbld | $=$ large boulders |
| cobb | $=$ cobble |
| rubb | $=$ nubble |
| grav | $=$ gravel |
| sand | $=$ sane |
| pebb | $=$ pebble |
| mud | $=$ mud |


| Vegetation Type Codes: |  |
| :--- | :--- |
| ovhng | $=$ overhanging |
| instream | $=$ in-stream |
| aqveg | $=$ aquatic vegetation |
| can | $=$ canopy |

Appendix 2. Area of lakes and ponds on Pinchgut Brook and other lakes on Harry's River with a surface area greater than 10 ha.

| Lake Number Lake Name | $\begin{gathered} \text { Area } \\ \text { (ha) } \end{gathered}$ | Lake Number Lake Name | Area (ha) | Lake Number Lake Name | Area <br> (ha) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Small Pond off Trib. | 1.6 | 40 Small Pond | 1.6 | 78 George's Lake | 1520.0 |
| 2 Fox Pond | 53.6 | 41 Norman's Pond | 3.2 | 79 Beaver Pond | 19.2 |
| 3 Small Pond | 1.6 | 42 Whale Back Pond | 6.4 | 80 Old Mans Pond | 26.4 |
| 4 Small Ponds on Trib. | 2.4 | 43 Small Pond | 1.6 | 81 Little Georges Lake | 33.6 |
| 5 Small Ponds on Trib. | 2.4 | 44 Cain Pond | 5.6 | 82 Stag Lake | 68.8 |
| 6 Small Ponds on Trib. | 1.6 | 45 Abil Pond | 2.4 | 83 Blue Pond | 17.6 |
| 7 Small Ponds on Trib. | 0.8 | 46 Muskrat Pond | 5.6 | 84 Rocky Pond | 18.4 |
| 8 Gull Pond Steady | 28.0 | 47 Ladies Slipper Bk. Ponds | 1.6 | 85 Noname (near Rocky P.) | 12.0 |
| 9 Small Pond nearby | 1.6 | 48 Ladies Slipper Bk. Ponds | 0.8 | 86 Noname (near Rocky P.) | 6.8 |
| 10 Third Pond (Camp Eleven Bk.) | 8.0 | 49 Stag Hill Bk. Ponds | 2.4 | 87 Spruce Brook | 8.0 |
| 11 nearby ponds: | 0.8 | 50 Stag Hill Bk. Ponds | 1.6 | 88 Spruce Brook | 8.0 |
| 12 nearby ponds: | 0.8 | 51 Stag Hill Bk. Ponds | 4.0 | 89 Spruce Brook | 22.0 |
| 13 nearby ponds: | 0.8 | 52 Stag Hill Bk. Ponds | 1.6 | 90 Lond Gull Pond | 256.8 |
| 14 Gullet Pond | 1.6 | 53 Stag Hill Bk. Ponds | 1.6 | 91 Lond Gull Pond | 8.8 |
| 15 Pinchgut Lake | 70.4 | 54 Stag Hill Bk. Ponds | 4.0 | 92 Lond Gull Pond | 11.2 |
| 16 Pinchgut Lake | 280.0 | 55 Stag Hill Bk. Ponds | 2.4 | 93 Rushy Brook | 15.2 |
| 17 Cove Pond | 9.6 | 56 Stag Hill Bk. Ponds | 1.6 | 94 Black Duck Pond | 40.8 |
| 18 nearby ponds: | 1.6 | 57 Stag Hill Bk. Ponds | 1.6 | 95 Mistaken Pond | 18.4 |
| 19 nearby ponds: | 0.8 | 58 Stag Hill Bk. Ponds | 1.6 | 96 Roberts Brook | 19.6 |
| 20 Rocky Pond | 3.2 | 59 Camp Eleven Bk. Ponds: |  | 97 Landouwns Pond | 78.4 |
| 21 nearby ponds: | 0.8 | 60 Angle Pond | 12.8 | 98 Crooked Lake | 24.0 |
| 22 nearby ponds: | 1.6 | 61 First Pond | 3.2 | 99 Bras Mort Brook | 52.0 |
| 23 nearby ponds: | 1.6 | 62 Annette Pond | 2.4 | 100 Trout Brook | 24.0 |
| 24 nearby ponds: | 1.6 | 63 Yvonne Pond | 4.0 | 101 Trout Brook | 10.8 |
| 25 nearby ponds: | 1.6 | 64 Cecile Pond | 0.8 | 102 Trout Brook | 13.6 |
| 26 nearby ponds: | 2.4 | 65 Millie Pond | 0.8 | 103 Trout Brook | 23.2 |
| 27 nearby ponds: | 3.2 | 66 Big Gull Pond | 135.2 | 104 Jacke's Burke Pond | 16.0 |
| 28 Middle Pond | 16.8 | 67 Big Gull Pond | 142.4 | 105 Middle Pond | 36.0 |
| 29 Oxbow Pond | 4.0 | 68 Big Gull Pond | 6.4 | 106 Eastern Pond | 8.8 |
| 30 Muddy Pond | 4.0 | 69 Big Gull Pond | 4.8 | 107 Eastern Pond | 8.0 |
| 31 Eel Pond | 3.2 | 70 Big Gull Pond | 4.8 | 108 Ahwachenjeech Brook | 8.0 |
| 32 Diamond Pond | 9.6 | 71 Big Gull Pond | 1.6 | 109 Ahwachenjeech Brook | 13.2 |
| 33 Round Pond | 4.0 | 72 Big Gull Pond | 3.0 | 110 Ahwachenjeech Brook | 7.2 |
| 34 Island Pond | 56.8 | 73 Big Gull Pond | 2.8 | 111 Muskrat Pond | 12.8 |
| 35 Howe Pond | 26.4 | 74 Big Gull Pond | 0.8 | 112 Gull Pond | 9.8 |
| 36 Ladies Slipper Pond | 4.0 | 75 Big Gull Pond | 8.0 | 113 Lond Pond | 16.4 |
| 37 Small Pond | 4.8 | 76 Big Gull Pond | 2.4 | 114 Bond Pond | 8.4 |
| 38 Meadows Pond | $22.4$ | 77 Big Gull Pond | 2.4 | 115 East North Brook | 8.0 |
| 39 Small Pond | 6.4 |  |  |  |  |
|  |  |  |  | TOTAL LAKE AREA | 3546.4 |
|  |  |  |  | Pinchgut Total: | 1036.2 |
|  |  |  |  | Big Gull Pond Bk. Total: | 314.6 |
|  |  |  |  | Other Lakes | 371.2 |


[^0]:    * mortality

