Not to be cited without permission of the authors ${ }^{1}$
DFO Atlantic Fisheries Research Document 96/23

Ne pas citer sans autorisation des auteurs ${ }^{1}$

MPO Document de recherche sur les pèches dans l'Atlantique 96/23

Biological Update of Georges Bank Cod in Unit Areas 5Zj,m for 1978-95

by
J.J. Hunt and M-I. Buzeta
Gulf of Maine Section
Biological Station
St. Andrews
New Brunswick

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.

Abstract

${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la cote atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

Total landings of cod in Div.5Zj,m for 1995 are estimated to be $2,100 \mathrm{t}$, the lowest in the time series. The Canadian fishery was restricted to a bycatch only. The 1992 year class accounted for about 45% of the catch in numbers. Canadian and USA surveys indices have declined since 1990 but showed an increase in the last year. An ADAPT formulation using the three survey indices was used to estimate stock abundance. Biomass and numbers of fish remain near the lowest observed in the time series but increased slightly in 1995 and 1996. Exploitation rates were between 30 and 40%, peaked near 50% in 1991 and have since declined to about 12% in 1995. Recruitment since the 1990 year class was well below average but the 1995 year class shows some improvement Catch projection for 1996 at the $F_{0.1}$ reference level indicates a yield of about $3,500 \mathrm{t}$ with a slight increase in stock biomass for 1997. Exploitation at a level lower than $F_{0.1}$ is required in order to continue stock rebuilding. Risk analysis indicates an 80\% probability that biomass would increase in 1997 at yield of 3,000 t in 1996.

Résumé

Le total des débarquements de morue de la division 5Zjm pour 1995 est estimé à 2100 t , le plus bas de la série chronologique. La pêche canadienne était limitée aux prises accessoires seulement. La classe d'âge de 1992 représentait 45% des prises, en nombre. Les indices des relevés canadiens et américains ont diminué depuis 1990, mais affichent tout de même une augmentation au cours de la dernière année. La formulation ADAPT basée sur les trois indices des relevés a servi à évaluer l'abondance des stocks. La biomasse et le nombre de poissons sont demeurés très près du niveau le plus faible de la série chronologique, mais ont augmenté légèrement en 1995 et en 1996. Les taux d'exploitation se situaient entre 30% et 40%, atteignant un sommet à près de 50% en 1991, avant de diminuer par la suite jusqu'à 12% en 1995. Le recrutement depuis la classe d'âge de 1990 était bien inférieur à la moyenne, mais la classe de 1995 montre des signes d'amélioration. Les prévisions des prises pour 1996 au niveau de référence $F_{0,1}$ indiquent un rendement d'environ 3500 t , avec une légère augmentation de la biomasse du stock pour 1997. L'exploitation à un niveau inférieur à $F_{0,1}$ sera nécessaire pour permettre au stock de continuer à se rétablir. Les analyses de risque montrent une probabilité de 80% que la biomasse augmente en 1997, si le rendement est de 3000 t en 1996.

Introduction

This report incorporates commercial catch data and research survey results for the 1978-96 time period to estimate the stock status of cod in the two unit areas 5Zj and $5 \mathrm{Zm}(5 \mathrm{Zj}, \mathrm{m})$ (Fig. 1). Definition of this management unit was based on analysis of tagging results and commercial and survey catch distribution (Hunt, 1990). Hunt and Buzeta reported the status of the stock in 1995 (Hunt and Buzeta, 1995).

Cod are taken in 5Zj,m by both Canada and the USA and all data relating to USA catches and research vessel surveys were provided by the National Marine Fisheries Service (NMFS) at the Woods Hole, Mass., Laboratory.

The Fishery

Canadian landings of Georges Bank cod peaked at about 18,000 tin 1982 and have declined from about $14,000 \mathrm{t}$ in 1990 to $1,100 \mathrm{t}$ in 1995 reflectingthe TAC. USA landings reached $11,000 \mathrm{t}$ in 1984 , were stable at about $6,000 \mathrm{t}$ until 1993 when a closed area was implemented. Landings in 1994 (2,000t) and 1995 (1,000 t) are only estimates because of changes in reporting and collection of landing information. Almost 100 percent of U.S.A catches in 5Zj,m are taken by mobile gear.

The 1995 Canadian Georges Bank cod fishery was limited to a 1,000 t TAC (bycatch only) and remained closed until June 18, 1995. In addition, minimum IQ's of 2 t for cod and 8 t for haddock were required before license conditions were granted to individual vessels. Longline vessels were also required to have caught at least 25 t of mixed groundfish in any combination of three years since 1990 before being granted a license condition. The USA fishery was limited by a year-round closed area which restricted access to a large part of the USA zone in 5Zj,m (Fig. 1). Total reported 1995 landings for Canada were $1,100 \mathrm{t}$, consisting of 429 t by mobile gear, 545 t by longline gear and 126 t by gillnet gear (Table 1, Fig. 2). USA landings are expected to be about 1,000 t for a total 1995 combined catch of 2,100 t (Table 2, Fig. $3)$.

Samples of landings and catches (Commercial samples and Observer program) were used to estimate catch at length and age composition. A summary of the number of length and age samples used to estimate catch at age is shown in Table 3. About 12,000 length observations and 550 age determinations were available to construct the catch at age for 1995 (Table 4). In some cases keys from adjacent quarters were required to partition length frequencies. Landings by miscellaneous gears (scallop, etc) were added to mobile gear landings. Comparison of 1995 Observer samples with on-shore samples shows little evidence of discarding (Fig. 4).

Comparisons of age determinations between and within age readers were completed and results indicate good agreement. While the secondary age reader's results were not used in construction of the catch at age, they compared favorably with ages produced by the primary age reader. Otolith exchanges between the Canadian and USA labs were made from the 1995 Spring USA survey and the Canadian
commercial fishery. Canadian age comparisons were made with otoliths from the 1995 commercial fishery. Results for all comparisons are summarized in Table 5.

Calculated percent catch at age is given in Table 6. The Canadian mobile gear catch at age was prorated with the estimated USA landings in 1994 and 1995 since sampling and ages were not available for USA landings. Overall, the 1992 year class accounted for about 53% of the catch in numbers and about 43% of the catch biomass in 1995. The 1992 year class contributed a somewhat higher proportion (45 vs. 30%) and the 1990 year class ($20 \mathrm{vs} .30 \%$) lower than projections made in the 1995 (Fig. 5). Catch at length and the contribution by agegroups for 1995 is shown in Figure 6.

Total removals at age, average weight at age and average beginning-of-year weight are given in Table 7. Mean weights at age 3 (1978-95) are shown in Figure 7. Weights in 1995 were above both the short (1990-95) and longterm (1978-95) average but lower sample size in 1995 and a slight shift to later in the season are probably contributing factors. Weight at age appears to have been variable over the 1978-95 time period and without evidence of trend.

Indices of Abundance

Research Surveys

Hunt et al (1991) describe the approach used to estimate mean catch per tow specific to the 5Zj,m area for Canadian and USA surveys. Only sets within the 5Zj,m area were used with strata area adjusted to conform to the 5Zj,m boundary. Vessel and gear conversion factors, reported by Serchuk et al 1994 were used to adjust results of the USA surveys to RV Albatross IV equivalents (see results of vessel conversion factor analysis in Assessment Results section).

The Canadian survey was initiated in 1986 while the USA surveys started prior to 1978. Results of analysis for each of the surveys are given in Table 8.

The 1982 USA spring survey is influenced by one tow of 1,000 fish and the resultant high catch rate has a high standard error. This tow has been excluded by USA researchers in their analyses (Anon, 1992). Examination of tows in the 1982 survey indicates above average catches in several sets and strata and therefore all tows were included in the present study.

The fall survey is assumed to be a post-fishery index and spring surveys are assumed to be a pre-fishery index. Therefore, the fall survey is lagged by one year for comparison of indices (ie. fall 1977 age one vs spring 1978 age two).

The Canadian surveys show a marked decline between 1990 and 1995 with a substantial increase in 1996. The 1994 USA fall survey catch per tow has a slight increase from 1993, decreased in 1995 and remains at a low level. The 1994 USA spring was the lowest observed but increased in 1995 to the recent average level. The three surveys for ages $3+$ in number per tow, adjusted by the estimated catchability (Q's)
from recent ADAPT formulations, excluding the USA spring 1982 survey, are shown in Figure 8. In general, all three surveys appear to track year class strength and provide a consistent index.

Estimates of recruitment at age one from the surveys are shown in Figure 9 as population numbers derived from catch per tow adjusted by catchability factors. Both the 1995 USA fall and 1996 Canadian spring survey indicate an increase in recruitment for the 1995 year class over the 1993-95 year classes. However, estimates for the 1995 year class are less than 25% of the large 1990 and 1985 year classes and similar to the average 1987 year class.

Catch in numbers and weight for the 1996 Canadian survey are shown in Figure 10. Highest catch rates were in the Canadian zone with relatively small catches west of the International Maritime Boundary. The 1996 distribution pattern is similar to that seen in recent years.

Longline Research Survey

A survey of the Georges Bank area was completed by five longliners in 1995 using a box design with one set in each selected box. Gear was standardized between vessels (number of hooks, hook size, bait, etc) to minimize between vessel variance and boxes were assigned to vessels to achieve a mix of high and low expected catch rates.

Twenty-two sets were completed and catches were sampled to determine length frequency and weight caught for cod and haddock. Standardized (1,500 hooks) catches of cod ranged from 0 to about 800 and from 0 to about $1,500 \mathrm{~kg}$ with an overall mean of 170 fish and 420 kg per 1,500 hooks set. Catch rates were similar to those observed in the commercial fishery.

Further interpretation of this index will require additional years of data before trends or changes in stock abundance can be evaluated.

Commercial Fishery Catch Rates

The mobile catch rate was used as an index of abundance in the 1995 evaluation of stock status. However, the reduced TAC and bycatch limitations imposed for the 1995 fishery preclude use of catch rates. Effort information for the longline fleet was not collected in 1994 and therefore catch rates for this fleet sector are not available.

A summany of landings, effort and catch per day for the mobile, longline and gillnet fleets for 1990-95 is given in Table 9. Estimated total effort (number of fishing days) is calculated from the catch per day and reported landings to account for missing effort data for some trips. For example, only 30% of longline vessels reported effort in 1990 representing 825 fishing days with an average catch of 1.91 t per day. This catch per day was divided into the total reported landings to estimate total fishing days (5202/1.91 = 2724 days). The number of active vessels and total effort in 1995 were less than 50% of the 1990-94 average for all three fleet sectors.

ESTIMATION OF STOCK PARAMETERS

The adaptive framework (Gavaris 1988) was used to calibrate the sequential population analysis with the research survey indices of abundance. The integrated formulation used the following data:

$$
\begin{aligned}
& C_{a, y}=\text { catch } \\
& a=1 \text { to } 8, y=1978 \text { to } 1995 \\
& I_{\text {ta, }}=\text { USA spring survey } \\
& a=1 \text { to } 8, y=1978 \text { to } 1995 \\
& I_{2, a y}=\text { USA fall survey } \\
& a=0 \text { to } 4 y=1977 \text { to } 1995 \\
& I_{3, a y}=\text { Canadian spring survey } \\
& a=1 \text { to } 8, y=1986 \text { to } 1996
\end{aligned}
$$

The spring survey results were compared to beginning of year population abundance. The fall survey for ages 0-4was also compared to beginning of year population abundance in year $\mathrm{t}+1$ (ie fall 1977 ages 0-4 compared to 1978 population ages 1-5). Natural mortality was assumed constant and equal to 0.2 . The fishing mortality rate on age 8 was calculated as the unweighed average for ages 4 to 6 in the same year. Errors in the catch at age were assumed negligible relative to those for the abundance index. The errors for the log transformed abundance index were assumed independent and identically distributed.

A model formulation using in population abundance at the end of the terminal year (beginning of year $y=t+1$) as parameters was used. Natural log population abundance was used because this parameterization displayed a more "close to linear" behaviour improving performance of the search algorithm.

ADAPT was used to solve for the parameters using the techniques described by Gavaris (1993) and Hunt and Buzeta (1994).

Additional ADAPT formulations were examined to evaluate the influence of each of the indices. The three formulations, using only the Canadian spring, the USA spring and the USA fall index were compared for differences in estimated exploitation rate and population biomass. Results are shown in Addendum Figure 1. The USA fall index results provide the most pessimistic outlook for stock status followed by the USA spring survey and the Canadian survey is the most optimistic. All three indices show the same general trend and differ only in the magnitude of the change seen since 1990. However, precision of the estimates derived using only a single index is low.

Seasonal differences in catchability for the three indices is shown in Addendum Figure 2. The Canadian spring has the highest Q followed by the USA spring and the USA fall has the lowest catchability.

The impact of USA vessel conversion factors was evaluated by estimation of catchability for each of the vessels from ADAPT formulations using a) only Albatross and b) only Delaware unadjusted indices. The Q's for the vessel-specific USA spring index were examined and regression analysis indicated a slope of 0.74 with an intercept of 1.68 for the Albatross to Delaware relationship. Results are shown below and are consistent with the reported conversion factor of 0.79 for Delaware to Albatross equivalents.

Vessel-specific Q's at age for USA spring surveys								
Age	1	2	3	4	5	6	7	8
Albatross	6.76	6.63	7.42	7.35	7.28	7.55	8.20	9.35
Delaware	6.84	7.12	7.26	7.37	7.92	8.03	8.54	10.36

Assessment Results

Population estimates derived from the above ADAPT formulation are given in Tables 10a-d. Parameter estimates and bias adjustment are given in Table 11. Population parameter estimates have a relative error of 32 to 62% for ages 1 to 8 , similar to those seen in other ADAPT-based analytical assessments. In general, catchabilities for survey indices show a flat top PR at ages 4 and older. Catchabilities were highest for the Canadian spring survey, followed by the USA survey and the USA fall survey (Addendum Fig. 3).

Considerable differences in the stock abundance for 1994 and 1995 exist between the present evaluation and the 1995 results (Hunt and Buzeta, 1995). For example, adult biomass for 1994 and 1995 was 15,300t and 12,800t, respectively, in last years assessment compared to 17,100 t and 18,100t from the current analysis. Most of this apparent increase is a result of the improved survey indices seen for 1995 and 1996 with associated lower exploitation in 1995 and higher population size for 1996. The impact of population size in 1996 influences cohort estimates for earlier years.

As has been noted in the past, there appear to be strong year effects in the residuals for survey indices. The 1982 USA spring survey has relatively large positive residuals, and negative residuals predominate in the last several years. The USA fall survey and the Canadian spring survey appear to overestimate population size (positive residuals) (Fig. t1). However, residuals by age for all three surveys appear to be reasonably well balanced and without trend within cohorts. The relatively high number of positive residuals for USA surveys prior to 1985 may be a function of trawl door conversion factors and should be investigated further. Residuals for the three indices are shown in Figures 12, 13 and 14.

The decline in adult biomass between 1990 and 1995 is substantial and was the lowest observed in 1994 with an indication of marginal increase in 1995 and 1996 (Fig. 15). Fishing mortality (Table 10c) increased rapidly between 1989 and 1991 and was over
three times the $F_{0.1}=0.2$ reference level in 1991-93. The decline seen in 1994, due to reduced effort, still results in a fishing mortality of over twice the $F_{0.1}$ In 1995, fishing mortality was further reduced to less than the $F_{0.1}$. The rate of exploitation for the stock has been over 30% for most of the time series, above 40% in 1991-93 and about 32% in 1994 and less than 10\% in 1995 (Fig. 15).

Spawning stock biomass (40% age $2,75 \%$ age 3 and 100% age 4, Hunt, 1995) also declined between 1990 and 1995 and is near the lowest observed level. Recruitment since the 1990 year class has been well below average and the 1994 year class will contribute very little to the stock. Preliminary estimates for the 1995 year class indicate some improvement to about the long term average recruitment. (Fig. 16 and Table 10d).

Prognosis

Catch projections were completed using the bias-adjusted beginning of year population abundance for 1995 derived from ADAPT. Partial recruitment was derived from the 199095 fishing mortality matrix, to reflect-possible changes in PR associated with both gear and season. Mean weights at age were the 1978-95 average. Recruitment for 1996 age one was set to 6.5 million, the 1978-95 geometric mean. Input for the catch projection is shown below:

Age Group	Population Numbers in 1996	Mean Weight at age	$-1990-95$ Mean Partial Recruitment
1	5996	0.844	0.01
2	811	1.423	0.31
3	1194	2.278	0.75
4	1877	3.472	0.82
5	970	4.807	1.00
6	1067	6.250	1.00
7	185	8.004	1.00
8	67	9.365	1.00
$9+$	23	10.698	1.00

The combined Canada and USA $F_{0.1}$ catch in 1996 is estimated to be about $3,500 t$ and details of the projection are given in Table 12. There is about a 20% relative error associated with the projected catch. However, even fishing at the $F_{0.1}$ reference level will not result in any substantial increase stock biomass between 1996 and 1997. The 1990 at age 6 and the 1992 at age 4 year classes are expected to account for about 30% and 25% of the catch biomass in 1996, respectively. Yield and biomass projections at a range of exploitation rates are shown in Figure 17. Only a small increase above the $F_{0.1}$ reference yield will result in zero biomass increase in 1997 and even with zero yield in 1996 the 1997 biomass would increase by about only 4,000t Given the very low spawning stock biomass in 1996 (20,000 t compared to the longterm average of 32,000 t) and low levels of recruitment since 1990, a stock rebuilding strategy should be considered. (Addendum Fig. 4).

Uncertainty associated with the yield projection indicates that even at $F_{0.1}$ there is a 45% probability that the adult biomass will decrease in 1997. A yield of about 3,000t in 1996 reduces this probability to about 20%. It is also important to note that even small increases in yield above the $F_{0.1}$ level substantially increases the chances that biomass in 1997 will decline. Results are shown in Figure 18.

Acknowledgements

We thank the numerous individuals who contributed to the analysis and in particular the many fishermen who provided valuable insights on the Georges Bank fishery.

References

Anon. 1992. Report of the thirteenth Northeast Regional stock assessment workshop (13th SAW), fall 1991. NOAANortheast Fisheries Science Center Ref. Doc. 92-02.

Hanke, A.R. 1993. Commercial fishery based estimate of cod and haddock abundance on Georges Bank. CAFSAC Res.Doc. 93/45, 8p

Serchuk, F.M., R.K. Mayo and L. O'Brien 1994. Assessment of the Georges Bank cod stock. Report of the 19th SAW. NEFSC Lab. Ref. Doc. 94-25

Hunt, J.J. 1990. Status of the Atlantic cod stock on Georges Bank in Unit Areas 5Zj and 5Zm, 1978-89. CAFSAC Res. Doc. 90/80, 37p

Hunt, J.J. 1993. Length and maturity composition of Georges Bank cod landings. Unpublished working paper, March 1993 GSC meeting.

Hunt, J.J. 1995. Rates of sexual maturity for atlantic cod in NAFO Division 5Ze and catches of juveniles. J. Northw. Atl. Fish. Sci. (in press)

Hunt, J.J., M-I. Buzeta and J.D. Neilson. 1991. Status of the Atlantic cod stock on Georges Bank in Unit Areas 5Zj and 5Zm, 1978-90. CAFSAC Res. Doc. 91/41, 21p

Hunt, J.J. and M-I. Buzeta. 1992. Status of the Atlantic cod stock on Georges Bank in Unit Areas 5Zj and 5Zm, 1978-91. CAFSAC Res. Doc. 92/48, 22p

Hunt, J.J. and M-I. Buzeta. 1995. Biological update of Georges Bank cod in Unit Areas 5Zj,m for 1978-94. DFO Atl. Fish. Res. Doc. 95/5, 37p

Serchuk, F.M and P.W. Wood. 1981. Assessment and status of the Georges Bank and Gulf of Maine Atlantic cod stocks 1978-81. NMFS. Lab. Ref. Doc. No. 81-06.

Table 2.Summary of total catches (t) by Canada and the USA in unit areas 5Zjm for 1978-1995. USA catches for 1994 and 1995 were estimated.

YEAR	CANADA	USA	TOTAL
1978	8778	5502	14280
1979	5978	6408	12386
1980	8063	6418	14481
1981	8499	8094	16593
1982	17824	8565	26389
1983	12130	8572	20702
1984	5763	10551	16314
1985	10443	6641	17084
1986	8411	5696	14107
1987	11845	4792	16637
1988	12932	7645	20577
1989	8001	6182	14183
1990	14310	6378	20688
1991	13455	6777	20232
1992	11712	5080	16792
1993	8519	4019	12538
1994	5277	2000	7277
1995	1100	1000	2100

Table 3. Canadian and USA commercial landings samples for 1978-95. Canadian 1994 and 1995 lengths include IOP samples. Sampling data for USA in 1994 and 1995 are not yet available.

	USA			Canada		
	Samples	Lengths	Ages	Samples	Lengths	Ages
1978	29	2047	385	29	7684	1308
79	21	1833	402	13	3991	656
1980	16	1258	286	10	2784	536
81	21	1615	456	17	4147	842
82	45	4111	778	17	4756	858
83	40	3775	903	15	3822	604
84	44	3891	1130	7	1889	385
85	23	2076	597	18	7644	1062
86	27	2145	644	19	5745	888
87	23	1865	525	33	9477	1288
88	37	3229	797	43	11709	1984
89	19	1572	251	32	8716	1561
1990	28	1989	287	40	9901	2012
91	23	1894	397	45	10873	1782
92	25	2048	445	48	10878	1906
93	29	2215	440	51	12158	2146
94	-	-	-	104	25845	1268
95	-	-	-	41	11598	548

Table 4. Summary of commercial and IOP samples used to estimate catch at age.

GEAR	MONTH	TONS by Month	\#LEN	\#AGES	TONS by Quarter
OTB+Misc					
	Jan	1.638	132		
	Feb	3.74			
	Mar	4.326	232		9.704
	Apr	4.592			
	May	4.389			
	Jun	104.808	1355	75	113.789
	Jul	69.862	333		
	Aug	59.854	1151	154	
	Sep	82.883	236	46	212.599
	Oct	25.4	230	46	
	Nov	41.165	1157	77	
	Dec	26.652			93.217
Total Canadian		429.309	4826	398	
Total USA		1000			
Total		1429.309			
Longline	Jan				
	Feb				
	Mar				0
	Apr				
	May				
	Jun	116.298	765		116.298
	Jul	161.306	266		
	Aug	122.465	4574		
	Sep	97.585	254	42	381.356
	Oct	19.899			
	Nov	20.279	354	53	
	Dec	6.737			46.915
Total		544.569	6213	95	
Gillnet	Jan				
	Feb				
	Mar				0
	Apr				
	May				
	Jun	17.285	155		17.285
	Jul	39.385	161		
	Aug				
	Sep	69.705	243	55	109.09
	Oct				
	Nov				
	Dec				0
Total		126.375	559	55	
Age Keys	Q1		364	0	9.704
	Q2		2275	75	247.372
	Q3		7218	297	703.045
	Q4		1741	176	140.132
TOTAL CANADIANTOTAL.		1100.253	11598	548	
		2100.253			

Table 5. Comparison matrices for age assignments by the USA and Canadian age readers.

Spring exchange: USA survey AL9503

CANADIAN AGE												
	\%	1	2	3	4	5	6	7	8	9	-	tor
U	1											0
S	2		418									1
A	3			117								17
	4				12	1						13
A	5				1	34	1					16
G	6					1	5					6
E	7							4	1			5
	8								$\frac{3}{3}$			0
	9									31		1
	-			1							$\$$	1
	TOT	0	1	18	13	16	6	4	1	1	0	60

92\% AGREEMENT

Primary ager: Canadian commercial samples

79\% AGREEMENT

Fall Exchange: Canadian commercial samples.

CANADIAN AGE													
	\$	1	2	3	4	5	6	7	8	9	10	-	тот
U	1												0
S	2		7										7
A	3		4	17	1								22
	4			2	54								9
A	5			1	2	38	1						22
G	6						12					1	3
E	7						2	22					4
	8							1	4				5
	9								1	$\sqrt{38}$		1	5
	10									1			1
	тот	0	11	20	10	18	5	3	5	4	0	2	76

79\% AGREEMENT

Comparison tests between both Canadian agers.

PRIMARY AGER											
	飶	1	2	3	4	5	6	7	8	9	TOT
	1	483									0
2 r	2		17								7
	3		4	16	1						21
A	4			3	88						11
G	5			1	1	188	2				22
E	6					1	¢				2
R	7						1	2			3
	8						1	1	4		6
	9								1	2	3
	10									2	2
	тот	0	11	20	10	19	5	3	5	4	77

75\% AGREEMENT

Table 6. Percent catch at age for the combined $5 z j, m$ cod fishery

Year	1	2	3	4	5	6	7	8

a) numbers

78	0.0	2.3	$\mathbf{6 7 . 6}$	20.3	5.8	2.1	1.6	0.4
79	0.3	21.7	10.6	$\mathbf{4 7 . 2}$	14.5	4.0	0.6	1.2
80	0.0	23.9	$\mathbf{3 6 . 1}$	6.4	22.1	8.3	2.6	0.5
81	0.4	14.0	$\mathbf{3 3 . 6}$	29.1	3.6	13.8	3.9	1.5
82	0.1	$\mathbf{3 5 . 5}$	22.3	18.9	14.1	2.5	4.6	2.1
83	0.6	18.6	$\mathbf{4 8 . 1}$	20.8	6.6	4.0	0.4	1.0
84	0.3	7.5	25.3	$\mathbf{3 7 . 4}$	14.2	8.1	6.4	0.9
85	0.2	$\mathbf{4 6 . 4}$	20.3	10.5	15.6	3.7	1.6	1.7
86	0.7	8.5	$\mathbf{5 6 . 7}$	13.3	7.9	10.4	1.5	1.0
87	0.2	$\mathbf{6 0 . 0}$	14.2	18.0	2.4	2.0	2.7	0.6
88	0.2	5.4	$\mathbf{6 2 . 1}$	11.0	14.6	2.4	1.7	2.4
89	0.0	19.4	17.1	$\mathbf{4 8 . 1}$	5.1	8.2	1.5	0.7
90	0.1	10.8	50.8	15.3	19.0	1.8	1.9	0.2
91	0.2	11.9	14.9	$\mathbf{3 6 . 9}$	18.1	15.0	1.8	1.1
92	1.6	$\mathbf{4 2 . 5}$	22.6	7.8	16.4	4.5	4.2	0.5
93	0.1	10.5	$\mathbf{4 9 . 9}$	20.5	5.5	8.4	2.8	2.4
94	0.1	11.6	26.7	$\mathbf{4 1 . 3}$	13.8	2.1	2.9	1.3
95	0.1	14.5	52.6	16.9	12.8	2.3	0.4	0.3

b) biomass

78	0.0	1.0	$\mathbf{5 7 . 0}$	24.1	8.6	4.1	4.0	1.2
79	0.1	8.7	6.1	$\mathbf{5 3 . 5}$	19.1	7.7	1.4	3.3
80	0.0	9.8	25.1	6.6	$\mathbf{3 5 . 2}$	15.7	6.2	1.2
81	0.1	5.7	21.6	27.0	5.1	$\mathbf{2 7 . 2}$	9.2	4.1
82	0.0	14.8	17.6	21.5	$\mathbf{2 2 . 4}$	4.8	12.7	6.1
83	0.2	9.9	$\mathbf{4 0 . 7}$	$24 . .5$	10.8	9.1	1.2	3.7
84	0.1	3.0	15.5	33.8	18.0	13.2	14.2	2.2
85	0.1	23.3	15.0	14.4	$\mathbf{2 8 . 2}$	8.5	4.6	6.0
86	0.2	3.6	$\mathbf{4 0 . 5}$	14.2	12.9	21.8	3.9	2.9
87	0.1	$\mathbf{3 4 . 3}$	13.6	29.1	5.3	5.9	9.4	2.3
88	0.0	2.5	$\mathbf{4 4 . 6}$	11.7	24.1	5.0	4.6	7.4
89	0.0	8.9	11.0	$\mathbf{5 1 . 4}$	7.7	15.6	3.4	2.0
90	0.0	5.3	39.3	16.9	29.2	3.7	5.1	0.5
91	0.1	5.1	9.9	$\mathbf{3 2 . 9}$	22.6	23.1	3.4	2.9
92	0.6	22.3	18.9	10.2	$\mathbf{2 6 . 2}$	9.5	10.7	1.5
93	0.0	5.3	$\mathbf{3 7 . 3}$	20.5	8.0	15.6	6.4	6.8
94	0.0	4.8	18.1	$\mathbf{4 4 . 4}$	18.7	4.3	6.5	3.3
95	0.0	7.1	$\mathbf{4 3 . 1}$	20.5	21.8	5.0	1.6	1.0

Table 7. Sumnary of commercial fishery data for 5Zj,m cod

b) Average weight at age in the commercial fishery

	1	2	3	4	5	6	7	8
78	0.71	1.31	2.46	3.47	4.34	5.79	7.37	8.49
79	0.89	1.49	2.15	4.21	4.89	7.18	9.18	10.31
80	0.84	1.46	2.47	3.67	5.65	6.68	8.39	9.09
81	0.88	1.50	2.36	3.42	5.21	7.22	8.57	9.89
82	0.77	1.40	2.66	3.83	5.35	6.51	9.36	9.90
83	0.97	1.49	2.38	3.31	4.64	6.39	7.96	10.29
84	1.05	1.64	2.45	3.62	5.08	6.58	8.91	10.10
85	0.91	1.42	2.09	3.89	5.09	6.41	8.10	10.24
86	0.93	1.48	2.45	3.66	5.60	7.19	8.91	9.96
87	0.73	1.48	2.50	4.19	5.81	7.73	8.95	10.01
88	0.79	1.52	2.36	3.51	5.40	6.65	8.78	9.99
89	0.81	1. 62	2.27	3.77	5.40	6.69	8.22	10.72
90	0.83	1.56	2.46	3.52	4.89	6.33	8.46	10.65
91	1.11	1.63	2.55	3.42	4.77	5.89	7.41	10.52
92	1.15	1.54	2.46	3.84	4.70	6.16	7.51	9.85
93	0.88	1.57	2.31	3.08	4.50	5.73	7.08	8.88
94	0.91	1.46	2.41	3.83	4.80	7.09	7.86	8.93
95	0.90	1.49	2.51	3.72	5.22	6.52	11.06	10.12
1990-95	0.96	1.54	2.45	3.56	4.81	6.29	8.23	9.83
1978-95	0.84	1.42	2.28	3.47	4.81	6.25	8.00	9.37

Table 8. Research survey standardized catch per tow in numbers by year and agegroup for $5 \mathrm{Zj}, \mathrm{m}$ cod.
a) Canada spring

		1	2	3	4	5	6	7
86	1.78	8.19	7.41	0.77	1.60	1.03	0.51	0.08
87	0.12	4.31	1.55	1.81	0.39	0.21	0.44	0.21
88	0.36	1.08	12.85	1.36	2.02	0.23	0.19	0.43
89	0.84	5.22	1.84	4.11	0.62	0.80	0.10	0.20
90	0.25	1.91	8.36	4.70	10.60	1.29	2.63	0.35
91	2.83	2.43	3.40	3.93	2.06	2.87	0.36	0.60
92	0.11	4.93	2.94	0.99	1.55	1.09	0.72	0.22
93	0.07	0.85	4.15	1.50	0.89	1.82	0.66	0.64
94	0.03	1.51	1.66	3.10	1.15	0.44	0.88	0.20
95	0.08	0.45	2.99	1.82	1.25	0.45	0.11	0.16
96	0.22	0.49	4.20	10.44	3.45	2.49	1.07	0.26

b) USA spring
78
79
79
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
c) USA fall

78	0.10		3	4	5
79	0.21	2.64	6.31	1.26	0.35
80	0.32	2.96	2.93	5.10	0.73
81	0.60	1.43	0.76	1.21	2.71
82	0.60	4.24	2.19	1.69	0.05
83		1.05	1.29	0.08	0.48
84	1.47	0.12	0.42	0.89	0.05
85	0.06	2.84	0.14	1.03	1.68
86	2.24	0.39	1.80	0.30	0.03
87	0.22	5.20	0.11	0.35	
88	0.29	0.24	1.53	0.23	0.19
89	0.18	1.02	0.33	2.13	0.25
90	0.41	0.72	1.68	0.28	0.77
91	0.36	0.72	0.79	1.49	0.21
92		0.36	0.13	0.16	0.02
93		0.37	1.31	0.28	
94	0.02	0.14	0.19	0.28	0.03
95	0.14	0.54	0.39	0.28	
96	0.40	0.05	0.22	0.54	0.12

Table 9.. Summary of landings and effort data by gear sector for Georges Bank cod (value in brackets for effort is the calculated value of total landings divided by landings per day)

Mobile	Gillnet	Longline
7854	910	5202
7285	534	1579
176	14	103
92.7	58.7	30.4
$3837(4133)$	$215(367)$	$825(2724)$
1.90	2.48	1.91

1990
Total
Total with effort
Boats
Percent with effort
Effort (fish_days)
Landings per day

6698	1688	4706
6395	1084	1581
188	26	118
95.5	64.2	33.6
$3769(3940)$	$308(480)$	$849(2530)$
1.70	3.52	1.86

1992			-
Total	5638	1217	4474
Total with effort	5583	684	1893
Boats	138	19	130
Percent with effort	99.0	56.2	42.3
Effort (fish_days)	$2051(2073)$	$389(691)$	$1076(2542)$
Landings per day	2.72	1.76	1.76

1993			
Total	4890	1175	2387
Total with effort	4877	943	1179
Boats	125	20	135
Percent with effort	99.7	80.3	49.4
Effort (fish_days)	$2377(2385)$	$635(789)$	$1377(2776)$
Landings per day	2.05	1.49	0.86
1994	1893	1031	2287
Total	1886	79	73
Total with effort	95	21	78
Boats	99.6	7.7	3.2
Percent with effort	$1926(1932)$	-	-
Effort (fish_days)	0.98	-	-
Landings per day			
1995	313	123	505
Total	313	116	494
Total with effort	64	11	49
Boats	99.9	94.3	97.8
Percent with effort	$506(506)$	$202(216)$	$522(532)$
Effort (fish_days)	0.62	0.57	0.95
Landings per day			

Table 10. Population estimates derived from ADAPT.
a) Beginning of Year Population Numbers (000's)

Beginning of Year Population	Numbers	$\left(000^{\prime} s\right)$			
78.00	11292	2208	10307	3533	1071
78.00	9275	9243	1699	5223	1927
79.00	9085	7585	6834	1032	2686
80.00	75151	7437	5321	4251	607
81.00	17151				
82.00	6259	14025	5545	3060	2359
83.00	4508	5119	9070	3027	1230
84.00	13403	3654	3006	4367	1163
85.00	4505	10964	2749	1644	2368
86.00	21325	3677	6469	1160	781
87.00	7195	17434	2717	3335	491
88.00	13578	5878	10977	1448	1745
89.00	3982	11108	4524	5712	609
90.00	5847	3259	8427	3116	3029
91.00	11189	4781	2058	4038	1688
92.00	3941	9151	3350	984	1576
93.00	4340	3149	5374	1623	420
94.00	1919	3550	2205	2638	607
95.00	991	1568	2691	1313	1400
96.00	5996	811	1194	1877	970

6	7	8	9
247	280	60	0
602	104	155	30
1089	359	65	86
1378	582	196	36
358	596	325	102
979	124	182	126
590	548	74	85
496	224	243	33
1096	206	98	109
367	539	116	45
273	192	292	62
660	95	66	111
325	260	28	32
1410	162	104	14
535	452	50	36
483	215	162	19
152	102	78	50
244	85	30	39
1067	185	67	23

b) Beginning of Year Population Biomass (t)

78.00	5492	2125	18506	10323	4154
79.00	6434	9499	2851	16814	7935
80.00	5680	8641	13123	2897	13098
81.00	11998	8314	9873	12341	2654
82.00	3431	15596	11066	9201	10085
83.00	3373	5465	16558	8987	5186
84.00	12162	4604	5745	12808	4770
85.00	3204	13397	5077	5074	10160
86.00	15690	4253	12050	3205	3645
87.00	3610	20449	5212	10675	2264
88.00	7441	6175	20518	4286	8298
89.00	2320	12523	8402	17039	2651
90.00	3472	3661	16814	8809	13012
91.00	10594	5559	4103	11717	6918
92.00	3868	11994	6707	3079	6321
93.00	2983	4229	10138	4470	1746
94.00	1356	4027	4290	7843	2335
95.00	700	1821	5143	3932	6262
96.00	4199	984	2286	5457	4034

1237
3358
6221
8800
2086
5727
3259
2832
6629
2415
1697
3968
1900
7569
2899
2507
858
1366
5846
1829
758
2786
4401
4901
893
4136
1635
1557
4324
1581
702
1956
1110
3006
1419
685
753
1367

475	0
1352	273
594	1049
1785	326
2992	1095
1786	1340
664	916
2321	376
880	1196
1096	497
2760	658
640	1171
262	379
981	170
427	422
1323	216
620	483
268	392
559	238

Table 11. Parameter estimates derived from ADAPT.

Table 12.Summary of Catch Projection Results

Pop' n Number	1	2	3	4	5	6	7	8	$9+$	Total
96	5996	811	1194	1877	970	1067	185	67	23	12190
97	6500	4899	624	841	1304	650	715	124	45	15702
Pop' n Biomass										
97	4485	5639	1181	2490	5597	3730	5315	1114	480	30031
$\begin{aligned} & \text { Fin } \\ & 1996 \end{aligned}$	0.002	0.062	0.150	0.164	0.200	0.200	0.200	0.200	0.200	0.200
Catch Number	11	44	151	258	160	176	30	11		841
Catch Biomass	9	63	344	896	769	1099	244	103		3527

Figure 1. Canadian fisheries statistical unit areas in NAFO Division 5Ze.

Figure 2. Canadian landings of $5 \mathrm{Z}, \mathrm{m}$ cod by gear sector

Figure 3. Landings of 5Zj,m cod by Canada and

Fig 4. Comparison of 1995 OTB $5 Z$ cod length frequencies for Observer and on-shore June-August samples

Figure 5. Proportional catch at age

Figure 6. Total catch at length and agegroup for $1995 \operatorname{cod}$

Figure 7. Commercial fishery mean weight at age 3

Figure 8. Estimated 3+population number for Canadian and USA survey indices adjusted by catchability

Figure 9. Estimated recruitment at age 1 for Canadian and USA survey indices adjusted by catchability

Figure 10. February 1996 Canadian survey: Cod weight per tow

February 1996 Canadian survey: Cod numbers per tow

Figure 11 Residuals at ages 1-4 by year and index

Figure 12. Age by age plots of A) the observed and predicted \ln abundance index versus in population numbers, and B) residuals plotted against year for the Canadian spring survey for cod in unit areas 5 Zj and 5 Zm .

Figure 13. Age by age plots of A) the observed and predicted In abundance index versus In population numbers, and B) residuals plotted against year for the USA spring survey for cod in unit areas 5 Zj and 5 Zm .

Figure 14. Age by age plots of A) the observed and predicted in abundance index versus in population numbers, and B) residuals plotted against year for the USA fall survey for cod in unit areas $5 Z \mathrm{j}$ and 5 Zm .

Fig 15. Percent exploitation rate for cod in 5Zj,m

Figure 16. Recruitment at age one and associated adult biomass.

Figure 17. Projected 1996 yield and associated exploitation rates and net change in biomass between 1996 and 1997

Figure 18. Comparison of probability that exploitation rate will exceed $\mathrm{F}_{0.1}$ and that biomass will decline in 1997 from 1996 for a range of 1996 yields.

Probability

ADDENDUM
Figure 1. Comparison of exploitation rates derived from USA spring, USA fall and Canadian indices.

Figure 2. Comparison of population 3+ biomass USA spring, USA fall and Canadian spring indices

Figure 3. Comparison of slopes for RV indices

Figure 4. Spawning stock biomass for Georges Bank COd

