Not to be cited without permission of the authors ${ }^{1}$

DFO Atlantic Fisheries Research Document 95/112

Ne pas citer sans autorisation des auteurs ${ }^{1}$

MPO Pêches de l'Atlantique Document de recherche $95 / 112$

Haddock in Division 4TVW in 1994

by

K. Zwanenburg, G.A.P. Black, and G. Young
Marine Fish Division
Bedford Institute of Oceanography
Dartmouth, N.S. B2Y 4A2

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

From reported historical annual landings of as high as $55,000 \mathrm{t}$ (1965) and up to $20,000 \mathrm{t}$ from 1979 to 1987, this fishery was essentially closed in 1994 with reported total landings of just over 100t . Most of these landings were from Divisions 4 VW by otter trawl and longline. The current size composition of this stock shows a relatively narrow range of length-classes and a concentration at a single mode probably representing the 1988 year-class.

Our analyses give estimates of exploitation whose patterns over time are consistent with recent events in the fishery. Exploitation of this resource increased steadily from 1979 to 1986 to approximately four times the target level. In 1986, landings of approximately $17,000 \mathrm{t}$ were reported resulting in a significant increase in exploitation over the previous year. In 1987, with the imposition of the Emerald / Western closed area, exploitation declined due to exclusion of the mobile gear fishery from these grounds. From 1987 through 1992, the expansion of fixed gear effort in the closed area, coupled with the significant by-catch fisheries operating outside the closed area, again resulted in an increase in exploiation. The removal of all fishing activity from the closed area in 1993 and a virtual closure of the fishery in 1994 exploitaion has fallen to the lowest observed since 1970.

Under the assumption that the maturity schedules have not shifted, the present spawning stock biomass may be as low as 12,000 t. There are indications that the 1993 and 1992 year-classes may be of above average abundance. These year-classes must be protected to promote stock rebuilding. The reduced exploitation which has been achieved over the past two years, if maintained in the near future, may initiate this rebuilding process. At present both the fishery and the reproductive potential of the resource appear to depend to a great extent on the 1988 yearclass.

Résumé

Cette pêche dont les débarquements déclarés ont déjà atteint 55000 t (1965) et qui ont été de l'ordre de 20000 t de 1979 à 1987 a pratiquement été fermée en 1994 lorsque la valeur totale des débarquements a tout juste été supérieure à 100 t . La plupart des captures étaient faites dans les divisions 4 VW par pêche au chalut ou à la palangre. La composition par tailles de la population présente une gamme relativement étroite de classes de longueurs et un même mode y prédomine, sans doute celui de la classe d'âge de 1988.

Nous avons estimé des taux d'exploitation dont l'allure chronologique correspond à la situation récente de cette pêche. L'exploitation s'est accrue de façon constante de 1979 à 1986 pour correspondre à quatre fois environ le niveau cible. Il a été signalé que les débarquements de 1986, de 17000 t environ, avaient donné lieu à une augmentation appréciable du taux d'exploitation par rapport à l'année précédente. En 1987, les fermetures aux pêcheries dans les zones fermées des bancs Emerald et Western se sont traduites par une baisse de l'exploitation suite à l'exclusion des engins mobiles de ces fonds. De 1987 à 1992, l'accroissement de l'effort de pêche aux engins fixes dans la zone fermée et les importantes prises accessoires de la pêche pratiquée à l'extérieur de la zone fermée a donné lieu à une hausse de l'exploitation. L'interdiction de toute pêche dans la zone fermée en 1993 et la fermeture virtuelle de la pêche en 1994 ont fait chuter le taux d'exploitation à la valeur la plus faible notée depuis 1970.

Si l'on suppose le maintien du régime de maturation, la biomasse actuelle du stock de géniteurs pourrait être aussi faible que 12000 t . Les classes d'âge de 1993 et 1992 pourraient, selon certains indices, être supérieures à la normale et ces classes doivent être protégées afin de favoriser le rétablissement du stock. Le maintien au cours des prochaines années du taux d'exploitation réduit des deux dernières années pourrait amorcer le rétablissement. Actuellement, tant la pêche que le potentiel reproductif de la ressource reposent en grande partie sur la classe d'âge de 1988.

Description of the Fishery to 1994

Landings averaged 26,500t per year from 1950 to $1969,5,000$ t from 1970 to 1979: since then landings have ranged between 8,000 and 20,000t until 1987. The nominal catches for 1987 through 1994, have been taken almost exclusively as by-catch in other groundfish fisheries operating in divisions 4T, 4V and 4W, and totalled just over 100t in 1994 (Table 1). The 1989 nominal catch has been left as provisional due to a large discrepancy between the haddock bycatches reported to NAFO by the former USSR and those reported by the International Observer Program (Zwanenburg et al 1994).

The year-round nursery ground closure (mainly Emerald and Western banks) imposed in 1987 still remains in effect. Throughout the 1987 to 1992 period fixed gear vessels were allowed to fish inside the closed area. In 1993 the closed area was closed to all fishing. Since 1987 the fishery has been regulated through a combination of by-catch restrictions and trip limits. In 1994, the fishery was severely restricted and limited to 10% by-catches in hake, cusk , and pollock fisheries, and to 200 lb trip limits in the restricted fixed gear 4 Vn cod fishery (Table 2).

Until 1984, most of the catch from this stock was taken from Division 4W by large otter tralwers (OTBs, TC4 and TC5) in the spring. In 1984, Division 4W was closed to trawlers from May to December to prevent the capture of the abundant early 1980s year-classes. This caused a shift in the fishery to 4Vs. From 1984 to 1986, favourable catch rates resulted in an increase in 4 V landings to the point where they represented $40-60 \%$ of total landings. Following the exclusion of mobile gear from much of Division 4W (as a result of the imposition of the closed area in 1987) landings in 4 Vs ranged from 1,500 to $2,500 \mathrm{t}$ annually, however landings in this area have declined to just 35 t in 1994. Since 1987, landings in 4W increased five-fold (from 991 to 5,261 t) due mainly to the development of the fixed gear fishery inside the closed area. In 1993, following the exclusion of all gears from the closed area, landings in 4W fell to just over 800 t and then to only 48t in 1994. Landings in Division 4T and Subdivision 4Vn have been negligible since 1989 (Tables 1 and 3).

Given the severely resticted nature of the fishery in 1994 it is dificult to compare this distribution of landings by gear type with previous years. From 1987 to 1992 the proportion of landings taken by trawlers has decreased from 60 to 37%. In 1994 trawler landings represent just under 50% of the total. Longline landings have ranged from 21 to 63% over the period 1987 to 1992 and in 1994 they accounted for about 45% of total landings. Seiner landings represented approximately 4% of the total landings in 1994 (Table 4). The most significant change in the distribution of landings from 1993 to 1994 is the sharp decline in overall landings mainly due to the severe restrictions on fishing activities during the last year. Most of the fishery occurred in the, second, and third quarters of 1994 (Table 5).

Consultation with inshore fishermen in 4W indicated that the inshore haddock landings have declined significantly in recent years. Although a steady decline in landings has been noted over the past 15 to 25 years, declines in the past 3-7 years have been relatively precipitous. In
addition to this decline in landings, many independent sources report a change in the 'migratory pattern' of the inshore haddock. In past years the haddock would 'come ashore' in waters westward of Country Harbour, Nova Socita. These fish would then 'migrate' westward throughout the remainder of the summer and fall until the fishermen in the area stopped fishing when the fishery reached Halifax Harbour and approaches. More recently it is reported that the haddock are coming onshore further westward each year, and that the numbers caught has declined substantially. All respondents indicated that these 'inshore haddock' are different from offshore haddock by virtue of colour, shape, taste, and general size composition (larger). We presently have no information by which to judge these observations, but it illustrates our general lack of understanding of inshore resources in general. Plans for cooperative work with the inshore industry to determine the relationship between inshore and offshore haddock are being developed.

The foregoing discussion was not based on recorded information but rather comes from the memories of the fishermen participants.

Sources of Uncertainty

The preceding estimates of landings do not incorporate estimates of misreporting by area, or non-reporting of catches as a result of dumping or discarding. Unquantified, anecdotal information suggests that such practises have been significant sources of error at a number of times in the past. Some of these reports indicate that the amount of dumping and discarding has represented a significant portion of the total reported landings. The effects of these potential errors on catch estimates for the assessment of the status of this resource cannot presently be evaluated.

Composition of the Catch

The age composition of the 1994 landings is not available. Serious concerns have been raised about the accuracy of the ages determined for haddock. A significant bias in the ageing of haddock appears to have been introduced in the early 1980s resulting in over-ageing of young fish in the early 1980s and a subsequent under-ageing of older fish in the late 1980s and early 1990s. The full extent of the bias has not yet been determined. Resolution of this problem will require age validation studies and the establishment and implementation of verified and consistent ageing criteria. It may also require the re-examination of historical otoliths to determine the extent of bias in previous estimates of catch at age. A comparative study of haddock ageing has been initiated. Haddock otoliths aged using a new set of ageing criteria were aged at the Marine Fish Division (MFD) by a number of trained agers and subsequently sent to a number of internationally recognized ageing facilities for re-ageing. The comparison of ages determined by MFD ages and the ages determined by the group of international experts will determine the robustness of the MFD ageing criteria. The landings at age for 1948-1991 as determined by previous ageing criteria are given in Table 6.

The sampling information available for the 1994 landings is given in Table 7. Landings at length for the haddock by-catch from the foreign small mesh gear fishery were estimated from International Observer Program (IOP) data. For landings prior to 1977 no IOP estimates of length-frequencies were available. In the absence of these data it was assumed that the length frequencies of these landings were similar to those observed in the July research surveys conducted in 4W in the same years (Zwanenburg et al 1994).

Estimates of landings at length for 1970-1994 are given in Table 8. Landings at length by the domestic fisheries were estimated using commercial groundfish samples stratified as for the estimation of landings at age outlined in previous documents (see Zwanenburg 1989). The length composition of domestic landings from 1970 to 1978 were estimated as outlined in Mahon et al. (1984). All keys were re-constructed with the length-weight parameters as outlined in Mahon et al. (1984).

The landings at length for 1994 shows modes at $24.5,30.5,46.5$ and 50.5 cm (Figure 1). The modes at 24.5 and 30.5 cm were the result of catches by the siver hake fishery and likely represent fish from the 1992 and 1993 year-classes (see below). Landings in all length classes were well below the long-term average (1970-1993).

Estimates of lengths at age for haddock from the 1970-1991 July RV surveys (Table 9) were used to determine a likely range of sizes at age as a template for a method of converting landings at length to landings at 'age'. We recognize the limitations of this procedure given the acknowledged problems associated with ageing 4TVW haddock.

Sources of Uncertainty

These estimates of length composition of domestic landings do not take into account any at-sea modification to the size composition. There have been reports of discarding and highgrading that cannot be quantified with presently available information. Dumping would tend to result in underestimation of total landings while selective discarding is likely to result in underestimation of removals at the smaller length classes. The overall effects of these potential sources of error cannot at present be quantified.

The estimation of lenghts at age and therefore the conversion of the landings at length to landings at age depend on the accuracy of the lengths at age used and the distribution of the sizes at any given age. The present estimates are taken from ageing data whose reliability is still being investigated

Commercial Catch Rates

The restrictive nature of this fishery since 1987 does not allow for a comparison of present catch rates to those of earlier years from directed fisheries. We do not consider that bycatch catch rates to be representative of the abundance of this stock.

Research Vessel Survey Results

The July research vessel (RV) catch rates at age for 1970 to 1991, as estimated by previous ageing criteria (see above) are presented in Table 10. Catch rates at length for the full July RV survey times series (1970-1994) are given in Table 11.

Summer Surveys

Survey catch rates for 1970-1994 (Figure 2) indicated that overall catch rates declined from 1983-1987 and has fluctuated since, while catch rates in the recruited size groups (36 cm and larger) have declined since 1984. Catch rates of the size-classes representing new prerecruits show peaks in the early 1980's and again from 1988 to 1991 with the incomng 1988 year-class. This resource is centred in Division 4W with catch rates in subdivisions 4 Vn and 4Vs presently negligible. Inputs to the population via recruitment are more or less restricted to Division 4W (Figure 3) which essentially defines the overall dynamics of this resource. Recruitment in Sub-Division 4Vs (Figure 4) has been confined to a single large pulse in 1982 and a lesser peak in 1990. These are likely the result of spill-overs from the recruitment pulses originating in Division 4W. Recruits at lengths up to 36 cm have rarely been seen in SubDivision 4Vn (Figure 5), the peaks in abundance observed here are likely the result of movement of older fish from both 4Vs and 4W from the recruitment pulse in the early 1980's.

The long-term average length composition (1990-1993) of Subdivision 4Vn shows modes at $20.5,32.5$, and 50.5 cm (Figure 6). Subdivision 4 Vn also has the largest mean modal length of the three areas comprising the stock area. It is likely that the 20.5 cm mode represents age 1 fish although we cannot rule out a significantly different growth rate for the haddock in 4 Vn relative to other parts of the stock area. If growth rates are similar throughout the stock areas, the interpretation of these fish being age 1 would be consistent with the age structured analysis presented in previous assessments. This indicated that the 4 Vn population is composed mainly of fish aged $4+$ and that age 0 fish have never been observed in the survey of this area. There are anecdotal reports of haddock spawning in inshore areas of 4 Vn in years past, however, we have no observations with which to judge these reports. There is no evidence of the large 1988 year-class in 4 Vn . The overall catch rates at length in 4 Vn in 1994 remain well below the long-term mean.

The long-term mean (1970-1993) catch at length in 4Vs shows modes at 16.5, 28.5 and 42.5 cm (Figure 7). These modes are smaller in all cases than those observed in 4Vn. The modes at 16.5 and 28.5 cm probably represent fish aged 1 and 2 , respectively. Overall catch rates at age were well below the long-term average in 1994, however, there is some evidence of above average abundance at modal lengths of 10.5 cm and 24.5 cm . An above averge catch rate at 10.5 cm was also noted in the 1993 survey of this area. The above average mode at 24.5 cm differs significantly from the historical average and probably represent the fish observed at 10.5 cm in 1993, likely the 1993 year-class

Division 4W has traditionally been the centre of distribution of this resource as evidenced by the significantly higher catch rates observed there. Analysis of the long-term catch at length for 4 W shows clear modes at $8.5,20.5$, and 32.5 cm (Figure 8). It is likely that the modal length of 40 cm in 1994 represents the modal length of the survivors of the 1988 year-class at age 6. The 1994 catch rate at length also shows slightly above average modes at 24.5 cm and at 30.5 cm . These would likely represent the 1993 and 1992 year-classes. Again we note a shift in the modal length of these cohorts. At 24.5 cm , the 1993 cohort would be growing significantly faster than the average while at 30.5 , the 1992 cohort would be growing rather slower than average.

The overall distribution of catch rates at length are given on Figure 9. The large peak at 40.5 cm in 1994 represents mainly the 1988 year-class at age 6 . This was confirmed by ageing a number of fish at lenths of $37-39 \mathrm{~cm}$ form the July 1993 survey, since the mode of the population was at 38.5 cm in 1993. The results of 3 independent agers agreed that the majority of these fish were 5 years old. These results suggest that these fish belong to the abundant 1988 year-class. It should be noted that these ages were determined using a different ageing technique than that employed in the ageing of the historical survey data. Although this technique is felt to be more reliable because it is consistent with that used in other laboratories that age haddock, the accuracy of the mrthods remains to be verified.

	Age						
		$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Length	$\mathbf{3 7}$		1	6			
(cm)	$\mathbf{3 8}$		1	8	1		
	$\mathbf{3 9}$			4	3		1
	40	1					

Figure 10 shows the modal length of the 1988 year-class relative to the long-term mean length composition in the survey series. The modal length of this year-class is determined both by growth and exploitation. Comparison of the modal length of this cohort with the mean lenghts at age (as determined by historical ageing conventions) shown on Figure 11 and Table 9 shows that it is well below the $48-58 \mathrm{~cm}$ range of fish at age 6 . As was noted in previous assessments this could be the result of either reduced growth rate, high exploitation of fish reaching fishable sizes $(36 \mathrm{~cm}+$) or a combination of the two acting in concert. Final resolution of this question awaits the completion of reliable ageing criteria.

Distribution of Haddock from Summer Surveys

Figure 12a shows the long-term distribution of haddock and bottom temperature over the entire Scotian Shelf as estimated for July survey data. It shows that haddock are more abundant in the warmer shallower areas of the shelf than in either deeper or colder waters. Also presetned in Figure 12a are catch per tow values relative to bottom temperature, depth, and time of day. These indicate that the relationship between haddock catch and bottom temperature is positive, negative with depth, and that there may be some tendency for higher catches during daylight
hours. The equivalent information for the July 1994 survey indicates that haddock continue to occupy essentially the same areas with the exception that there were very few haddock on Banquereau Bank.

Spring Surveys

Spring surveys have been conducted on the Eastern Scotian Shelf during March of each year since 1979 (except for 1985) (Table 12). Catch rates in 4VW peaked in 1981 and declined until 1992, since 1992 total numbers per tow have fluctuated (Figure 13a). New pre-recruits entered this area in 1981-82, and again in 1989. There is evidence of some increase in new recruits since 1992. Survey catch rates in Subdivision 4V declined abruptly from the mid 80's and have been relatively low since (figure 13b). In Division 4W survey catch rates peaked in 1981 and declined to 1992, the pattern observed since then is nearly identical to that of 4 VW as a whole (Figure 13c) The maximum in both the 4 W and 4 V catch rates is likely due to the presence of the large early 1980s year-classes. The abrupt decline in 4 V in the post-1987 period is probably, in part, related to the cooling trend in the bottom water shown to have occurred from 1984 through 1992, with the lowest temperatures being measured in 1989-1992 (Smith and Page 1994).

The long-term spring survey catch rate at length in Division 4VW, and in Division 4W show modes at 14.5 and 26.5 cm (Figure 14a,b) It is probable that the mode at 14.5 cm represents age 1 fish since the July survey catches age 0 fish at 8.5 cm in the previous year. The fish caught at 26.5 cm probably represent early age 2 fish which are caught later in the year by the July survey at a modal length of 32.5 cm . The 1995 results shows the 1988 year-class at a modal length of 40.5 cm , these fish had a modal length of 40.5 cm in the July survey indicating either no appreciable growth over the year or high mortality for those fish growing fast enough to reach fishable sizes. The 1995 survey show a slightly above average catch at 16.5 cm ., however above average catch rates at these small size classes since 1993 have not translated into above average catch rates at larger size classes in the following year.

The long-term mean catch at length for 4 Vs shows prominent modes at 14.5 and 32.5 cm (Figure 15). The 1995 results show catches at all lengths well below the mean.

These results do not support the above average abundance of what are assumed to be the 1992 and 1993 year-classes observed at 30.5 and 24.5 cm respectively in the July 1994 survey.

Estimation of Stock Parameters

Fishing Mortality and Stock Abundance

The uncertainties in the landings information and especially in estimating the age structure of this stock, make it problematic to apply the standard population assessment models which assume exact knowledge of both these inputs. However we wished to explore the results of such models knowing the shortcomings in our input data with the aim of evaluating their
impact on the model's ability to detect changes in the exploitation pattern of the stock consistent with large-scale well documented events in the fishery.

The results of both the summer and spring surveys indicate that haddock are at low abundance relative to the long-term mean and in particular, larger (presumably older fish) are relatively rare at present. The bulk of the stock is concentrated in Division 4W.

An examination of the commercial catch at length for 1994 shows that significant numbers of fish were caught at sizes less than 42 cm ; however with the virtual closure of the fishery in 1994, these landings were well below the long-term average (Figure 1). A comparison of the length composition of removals to the overall length composition of the population estimated from the July 1994 survey (Figure 16) shows that the fishery is exploiting the incoming year-classes at modal lenghts of 24 and 30 cm (almost exclusively in the foreign small-mesh otter trawl fishery) and that the domestic fishery is exploiting the least abundant size-classes in the population (particularly those above 44 cm).

Landings at length (Table 8) were converted to estimates of catch at age using a method developed by Mohn (1991) using the mean lengths at age from all those haddock caught by the July RV surveys from 1970-1991 (Table 9). The method assigns fish in length classes to age classes whose mean lengths are provided. All fish at the mean length and all fish in length bins halfway to the next lower and higher limit are included in the age. The mean lengths at age for 1990 and 1991 at age 0 were considered unreliable and were not used in the analyses. The lengths at age for 1992 at all ages was also considered unreliable. The lengths at age for 1992 were replaced by the average lengths at age determined for 1989 through 1991. Lengths at age for 1993 and 1994 were also set to this mean value. Since lengths at age vary significantly between years (Figure 11) and there is some question as to the validity of the ageing criteria we chose to reduce inter-annual variability in size at age by using a three year running mean of length at each age With the wide range of lengths observed at age $7(58-68 \mathrm{~cm})$ we also implemented a rule which limited the upper bounds of the age 7 size bin to include only those at lengths no greater than a length half-way between the age 7 and the age 8 bins. This rule was implemented to prevent 'overloading' the age 7 bin.

The catch and survey estimates at age resulting from the slicing procedure described by Mohn (1991) was used as input to Qmodel (a modified version of adapt which estimates q's algebraically rather than iteratively)

Parameters

Terminal F estimates $\mathrm{F}_{\mathrm{i}}, 1994, \mathrm{i}=4-6$
Calibration coefficients $\mathrm{K}_{\mathrm{l} . \mathrm{i}}=\mathrm{i}=2-6$ for July RV survey

Structure Imposed

Error in catch unquantified

Partial selection fixed for ages 1, 2, 3 and 7 in 1993
F for oldest age (7) set as average of "ages" 4-6
No intercept was fitted
$\mathrm{M}=0.2$ for all ages
Input
$\mathrm{C}_{\mathrm{i}, \mathrm{t}}(\mathrm{i}=1, \ldots, 7 ; \mathrm{t}=1977, \ldots, 1994)=$ full catch at age
$\mathrm{J}_{\mathrm{i}, \mathrm{t}}(\mathrm{i}=4 \ldots, 6 ; \mathrm{t}=1977$ to 1994$)=$ July RV index

Objective Function

Minimize $\Sigma\left(\ln \mathrm{J}_{\mathrm{i}, \mathrm{t}}-\mathrm{K}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}}\right)^{2}$ overall i, t

Summary

Number of observations $=75$ for July RV (3 ages by 25 years)
Number of parameters $=5 \mathrm{q}$'s and 3 K 's

Results

The estimates of landings at age and survey catch at age derived from the length slicing methods are given in Tables 13, note that in both the commercial catch at age and the RV catch at age, the totals are conserved. The final estimates of catch at age and RV numbers at age are given in Table 14. The 'sliced' values are used as the intial input to the analytical model while the final values are those determined to provide the best best fit using the population age structure resulting from cohort analysis to adjust iteratively the sliced age structure.

The analysis was initiated by adjusting the selection vector (partial recruitment) for the last year (1994) until the best 'by-eye' fit between F at ages $3,4,5,6$ and population numbers at ages $2+$ estimated from the present analysis, and converged estimates of these same parameters from the most recent age based assessment of this resource, were obtained. This selection vector was used to intiate Qmodel

Age 1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
0.000179	0.010971	0.0454075	0.111242	0.271362	0.670547	1

The metrics used to determine the intial 'best fit' are given in Figure 17. In determining the initial best fit we tried to minimize the difference between the historical estimates of F and population size. The results shown on Figure were used as our initial best fit to intiate Qmodel.

The final results of Qmodel are shown on Figures 17 and 18 and represent a significant improvement in overall fit of the model to the results obtained in the previous assessment of this resource (Zwanenburg et al 1994).

The overal fit of the model (VPA) population to the observed (q adjusted) RV numbers for ages 2-6 over the period 1970-1994 is shown in Figure 19. The residuals from these analyses are shown in Table 15 and Figure 20. These indicate that the VPA is overestimating the population abundance at ages 2-6 relative to the survey from 1970-1981, and underestimating the population in the period 1987-1993.

Estimates of F and population numbers resulting from this analysis are presented on Table 16. These analyses produce esitmates of exploitation whose patterns are consistent with recent events in the fishery. Just prior to the imposition of the closed area in 1986, landings of approximately $17,000 \mathrm{t}$ were reported from this resource resulting in a significant increase in exploitation. In 1987, with the imposition of the closed area, F declined at all ages but most significantly at young ages since these were now protected (at least from mobile gear fisheries). From 1987 through 1992, the expansion of fixed gear effort in the closed area, coupled with the significant by-catch fisheries operating outside the closed area again resulted in an increase in F . The removal of all fishing activity from the closed area in 1993 and a virtual closure of the fishery in 1994 has resulted in exploitation falling to the lowest observed.

The relative selection at age resulting from these analyses show some distinct patterns over time (Figure 21) especially at younger ages. Selection for ages 1-3 declined from high values prior to 1977 to lower values through the late 70 's and mid 80 's. The peak in selection in 1989 is the result of the large catch of small fish in the foreign small-meshed otter trawl fishery. The relative selection at age 5 has remained relatively constant over the entire time period.

Two types of retrospective analyses were carried out. The first accepts the age structure generated by the most recent combination of age-slicing and Qmodel, drops off years sequentially and runs Qmodel for each truncated data series. The results of this retrospective analysis (Figure 22) and indicate that F in the current year is generally significantly underestimated relative to the retrospective view. Biomass is therefore significantly overestimated in the current year. The second type of retrospetive analysis, re-estimates the RV catch at age and the commercial landings at age for each of the truncated data sets. The results of this analysis show essentially the same results as the previous one with underestimation of current year F, and overestimation of current year biomass (Figure 23).

Mean lengths of fish captured by the summer RV survey (Figure 24) appear to indicate a gradual decline over the entire 25 year time series. The large declines in 1981 and 1989 are due to recruitment pulses entering the population. The change in the mean weight of a fish caught by the survey shows a similar decline (Figure 25). It could be argued that Figure 24 indicates two distinct time periods rather than a monotonic decline. This would mean that fish through the 1970 were larger than they are now. Again the declines in 1981 and 1989 are the resulting of
incoming recruitment. The declines in 1993 and 1994 are likely due to the incoming 1992 and 1993 year classes (see description of the summer surveys above).

The size and age ranges of both the landings and the surveys have narrowed since 1970 (Figure 26) indicating a smaller range of sizes (ages) in the population in recent years relative to the documented history of this resource.

In spite of uncertainties in the input data used in the length based analysis, the resulting pattern of exploitation over time appears to be consistent with known events in the fishery as outlined above. This could indicate that the model is relatively robust to errors in the input data, at least in terms of detecting the relative trends in exploitation. It does not however, allow one to judge whether the precise level of exploitation estimated by the procedure is consistent with reality in any given year. It is imperative that the age structure of the population be reliably estimated before the latter can be evaluated.

Spawning Stock Biomass

Earlier assessments of this resource indicated that the probability of producing a large year-class is related to the general level of spawning stock biomass (Mahon et al 1985.). At a spawning stock biomass below 16,000 t the probability of producing an above average year-class is considered low. At present, female spawning stock biomass estimated from surveys is on the order of $2,000-6000 \mathrm{t}$. This estimate was derived from survey catch rates at length converted to weight and assumed knife-edged maturity at $42.5-46.5 \mathrm{~cm}$ (Figure 27). If the maturity schedule of this stock has shifted to maturing at younger ages, these would obviously be understimates of overall SSB

Recruitment

The relationship between recruitment and SSB in the previous year, from the present VPA analysis (Figure 28) indicates the relative abundance of the early 1980's year-classes, but shows the 1988 year-class to be of below average abundance. The large early 80 's year-classes and the large 1988 year-class are evident from the survey data.

The 1994 summer survey caught average or above average numbers of fish at 8.5 cm , 24.5 , and 30.5 cm . The peaks at 24.5 and 30.5 may indicate relatively abundant 1992 and 1993 year-classes respectively. The spring survey revealed above average catch rates at 16.5 cm which are likely the 1994 year class observed at 8.5 cm in July 1994, however, the peaks at 24.5 and 30.5 do not appear above average in the spring survey at 26.5 or 32.5 cm .

Prognosis

The overall abundance of this resource remains below the long-term average as indicated by the results of survey data.

Literature Cited

Mahon, R., P. Simpson, and D.E. Waldron. 1984. Analysis of Eastern Scotian Shelf Haddock. CAFSAC Res. Doc. 84/81.

Mohn, R. 1991. Length-Based Virtual Population Analysis: A Review and Swordfish Examples. SCRS 91/36.

Sinclair, A., K. Zwanenburg, and P. Hurley. 1993. Estimating Trends in F from LengthFrequency Data. DFO Atlantic Fish. Res. Doc. 93/66.

Smith, S.J., and F.H. Page. 1994. Implications of Temperature and Haddock Associations on Survey Abundance Trends. DFO Atlantic Fisheries Research Document 94/21: 34 p .

Zwanenburg, K.C.T. 1989. Assessment of 4TVW Haddock with Catch Projections to 1990. CAFSAC. Res. Doc. 89/64.
 Bulletin).

	4 T					$4 \mathrm{Vn}^{+}$					4Vs					4W					Total	TAC
Year	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other		
1954	5918	1044			40	5549	405		1058	24						12323	1956		17		28334	
1955	3101	31				3339	450		1183	13						12777	1217				22111	
1956	2861					4899	147		1350	12						18273	1661		354		29557	
1957	1740	1				5869	120		747	9						19960	1533		132		30111	
1958	2599			151		3166	71		1343	6						17572	427		1593		26928	
1959	2996	1		64		1594	159		69		3456	111		2870		21156	4804		640		37920	
1960	2041					1317	6		97		1187	18		3926	1	20093	127		1024		29837	
1961	1297			273	2	1055	1		47	1	846			1526	7	22277	23	151	1441	16	28963	
1962	1132			10		1097	1		5	2	1235			1076		15566	51	2567	3224		25966	
1963	1019			46		1213	1	6	64		1061	1		2828	195	11002	60	3295	4915	866	26572	
1964	461			1		958			59	52	677	11		2057	2	9810	42	4391	2884	1889	23294	
1965	432			3	3	402			53	84	1201			1806	47	7007	8	42876	1500	96	55518	
1966	149			1		311		516	30		1494			940	9	8259	19	9985	1885	51	23649	
1967	112			9		203		95	26	31	898			839	9	7180	5	459	1046		10912	
1968	144				4	127			70	6	1128		59	1702	23	8392		195	1458	10	13318	
1969	167				3	245				112	726			631	66	8270		235	864	1	11320	
1970	160					395	2		75	1	620		34	830	16	4754	574	636	1332		9429	
1971	151					466			215	1	1133		11	1114		7940	497	464	1477		13469	
1972	60					362	3		136	19	421		3	599	37	2096	70	103	737	102	4748	
1973	21				2	286			76	164	233			431	9	2830	173	76	95	18	4414	
1974	17				14	161			3	1	147		30	174	196	907	6	102	521	78	2357	0
1975	35				2	67			15	4	107	1		48	3	1393	20	52	63	59	1868	0
1976	12					40				1	52	1	9		1	1198	31	15			1360	2000
1977	8					189				8	144				1	2845	1	14		38	3248	2000
1978	18					119				3	441		3		38	4949	82	139		109	5901	2000
1979	59					194				11	650				2	2339		104		73	3433	2000

Table 1. (Continued)

	4 T					$4 \mathrm{Vn}^{+}$					4Vs					4W					Total	TAC
Year	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other	Can.	USA	USSR	Spain	Other		
1980	81					188				42	1841					12448		209		31	14840	15000
1981	177					119				25	1796					17684		187		21	20009	23000
1982	47					183				23	2373					12498		53		49	15226	23000
1983	30					206				17	1542					7302		149		166	9412	15000
1984	120					299				11	3195		2		1	3992		168		233	8021	15000
1985	498					598				59	7291				2	2862		275		79	11664	15000
1986	531					904				17	8798				4	6277		312		78	16921	17000
1987	438					484				13	1587					994		207		154	3877	0
1988	369					507					2057					1176		332		99	4540	0
1989	80					425				2	3108					3582		1754		177	9128	6700
1990	33					108					2429					4077		265		97	7009	6000
*1991	18					51					978					3740		575		59	5421	0
*1992	9					27					781					5118		63		115	6113	
*1993	4					9					434					730		27		55	1259	
*1994	0					9					35					48				12	104	

$+=$ Between 1954 and 1958 catches for 4 Vn and 4 Vs were combined as 4 V .

* = Provisional data.

Table 2.

	Gear Category	Dato	Reported Catch.	Titp Limits
Fixed Gear < 45' - Scotia-Fundy				
4 Vn (Dec)	FG < 65 ${ }^{\circ}$	May 1	Lic. Cond.	200 lbs or 10\% bycatch, whichever is greater; 10\% haddock bycatch only
4 VsW - Halibut, Hake, Cusk	FG <65'	Feb 16	Lic. Cond.	10% bycatch each of cod and haddock; 14 circle hook or larger for halibut; 12 circle hook or larger for hake and cusk
	FG 45'65'	Jan 1	Lic. Cond.	14 circle hook or larger; 10\% combine cod, haddock bycatch
	FG < 65^{\prime}	Apr 15	Lic. Cond.	Cod - 10% or 225 kg whichever is greater; 10% haddock bycatch only
Mabile Gear < 65° - Scotia-Fundy				
4VsW Pollock	all MG < 65°	Jan 1	Lic. Cond.	130 mm square mesh; 10% daily bycatch level of cod and haddock combined
Vessels Greater than 65'				
4VsW Pollock	All vessels $>65^{\circ}$	Jan 1	Lic. Cond.	155 mm diamond mesh or 100 mm square mesh; 10% daily bycatch level of cod and haddock combined
4Vs Pollock	Vessels $>100^{\circ}$ Etos \& Ttoy	Apr 16	Lic. Cond.	1994-035 bycatch closure

Table 3. 4TVW haddock landings (t) by division and subdivision (Canadian catches only from inter-regional data).

Area	1986	1987	1988	1989	1990	1991	1992	1993
4 T	553	453	383	79	30	12	9	4
4 Vn	899	491	506	421	108	52	0	27
4 Vs	8719	1547	2041	3114	2427	975	776	435
4 W	6170	991	1150	3580	4078	3999	5261	824
TOTAL	16341	3481	4080	7194	6643	5038	6074	1275

Table 4. 4TVW haddock landings by quarter and major gear type 1986-1989 (Canadian landings only).

Gear	1986					1987				
	Q1	Q2	Q3	Q4	TOTAL	Q1	Q2	Q3	Q4	TOTAL
OTB	3072	4158	3661	3060	13952	356	680	608	433	2077
LL	86	203	535	281	1105	34	135	377	190	736
SNU	121	483	349	226	1179	5	370	175	34	585
Other	1	14	65	26	106	0	19	40	24	83
TOTAL	3280	4858	4611	3592	16341	396	1203	1200	682	3481

Gear	1988					1989				
	Q1	Q2	Q3	Q4	TOTAL	Q1	Q2	Q3	Q4	TOTAL
OTB	266	852	777	447	2341	763	2022	1062	487	4332
LL	33	177	721	204	1134	285	522	858	657	2322
SNU	11	199	197	17	424	14	283	150	28	475
Other	7	63	53	57	180	0	16	34	14	64
TOTAL	317	1291	1747	725	4080	1062	2842	2104	1186	7194

Table 4. (Continued)

Gear	1990					1991				
	Q1	Q2	Q3	Q4	TOTAL	Q1	Q2	Q3	Q4	TOTAL
OTB	1092	957	664	258	2971	338	569	396	410	1713
LL	838	474	1341	497	3149	439	668	1413	651	3171
SNU	15	168	223	11	417	3	78	16	6	104
Other	0	7	64	35	106	1	17	34	4	55
TOTAL	1945	1606	2292	800	6643	782	1332	1859	1071	5043

Gear	1992					1993				
	Q1	Q2	Q3	Q4	TOTAL	Q1	Q2	Q3	Q4	TOTAL
OTB	1323	514	217	218	2272	95	140	121	18	375
LL	615	660	1400	855	3530	27	171	597	45	840
SNU	1	123	85	37	246	0	27	20	7	53
Other	0	1	14	12	26	0	0	6	1	7
TOTAL	1940	1298	1716	1122	6074	122	338	753	72	1285

Table 4 . (Continued)

	1994				
Gear	Q1	Q2	Q3	Q4	TOTAL
OTB	15	6	18	6	45
LL	2	8	25	4	39
SNU	0	2	2	0	4
Other	0	4	2	0	4
TOTAL	17	20	46	10	92

Table 5. 4TVW haddock landings by area, quarter and gear type (Canadian landings only).

Year	4 T					
	Gear	Q1	Q2	Q3	Q4	Total
1986		9 0 0 0	$\begin{array}{r} 71 \\ 2 \\ 261 \\ \hline \end{array}$	$\begin{array}{r} 85 \\ 6 \\ 83 \\ 10 \\ \hline \end{array}$	4 5 16 1	$\begin{array}{r} 169 \\ 12 \\ 359 \\ 13 \\ \hline \end{array}$
	TOTAL	9	336	184	25	554
1987		4 0 0 0	$\begin{array}{r} 78 \\ 2 \\ 208 \\ 11 \\ \hline \end{array}$	$\begin{array}{r} 43 \\ 6 \\ 75 \\ 6 \\ \hline \end{array}$	9 4 5 0	134 13 289 17
	TOTAL	4	300	130	19	453
1988		1 0 0 0	18 1 57 9	$\begin{array}{r} 199 \\ 29 \\ 69 \\ \hline \end{array}$	5 4 7 2	$\begin{array}{r} 224 \\ 132 \\ 20 \\ \hline \end{array}$
	TOTAL	1	85	279	18	383
1989	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	0 0 0 0	9 0 39 4	2 1 20 1	0 2 1 0	11 60 6
	TOTAL	0	52	24	3	79
1990	OTB LL SNU Other	1 0 0 0	2 0 19 1	0 1 3 1	1 0 0 0	5 1 22 2
	TOTAL	1	22	5	2	30
1991	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	0 0 0 0	3 0 10 0	0 0 2 1	0 1 0 0	3 2 12 1
	TOTAL	0	14	3	2	18
1992	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	0 0 0 0	0 0 5 0	0 0 1 0	0 2 0 0	1 2 6 0
	TOTAL	0	6	1	2	9
1993	OTB LL SNU Other	0 0 0 0	0 0 1 0	0 0 0 0	0 1 0 1	0 2 1 1
	Total	0	1	1	3	4
1994	OTB LL SNU Other	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
	Total	0	0	0	0	0

Table 5. (Continued)

Year	4 Vn					
	Gear	Q1	Q2	Q3	Q4	Total
1986	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	67 0 0 0	139 27 190 1	$\begin{array}{r}180 \\ 87 \\ 134 \\ \hline\end{array}$	18 47 4 1	405 161 328 6
	TOTAL	67	356	405	71	899
1987	OTB LL SNU Other	$\begin{array}{r} 28 \\ 7 \\ 0 \\ 0 \\ \hline \end{array}$	84 28 142 1	32 54 47 2	$\begin{array}{r} 20 \\ 26 \\ 18 \\ 3 \\ \hline \end{array}$	164 115 207 5
	TOTAL	35	254	135	66	491
1988	OTB LL SNU Other	26 0 0 0	$\begin{array}{r}113 \\ 21 \\ 102 \\ \hline\end{array}$	14 113 48 2	11 52 3 0	164 186 153 2
	TOTAL	26	236	177	66	506
1989	OTB LL SNU Other	24 0 0 0	$\begin{array}{r} 178 \\ 13 \\ 96 \\ \hline \end{array}$	$\begin{array}{r}46 \\ 32 \\ 17 \\ 2 \\ \hline\end{array}$	1 8 1 1	249 53 114 4
	TOTAL	25	287	97	12	421
1990	OTB LL SNU Other	17 0 0 0	32 6 15 0	12 14 5 0	6 1 0 0	67 21 20 1
	TOTAL	17	53	31	7	108
1991	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	8 0 0 0	8 2 5 0	4 14 2 3	2 3 0 0	21 19 7 3
	TOTAL	8	14	23	5	50
1992	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	8 0 0 0	2 0 1 0	1 10 0 0	$\frac{1}{3}$ 0 0	12 13 2 0
	TOTAL	8	4	12	4	27
1993	OTB LL SNU Other	1 0 0 0	2 2 0 0	0 5 0 0	0 1 0 0	3 8 0 0
	TOTAL	1	4	5	1	11
1994	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	0 1 0 0	0 0 1 3	4 0 0 0	1 0 0 0	5 1 1 0
	TOTAL	1	3	4	1	6

Table 5. (Continued)

Year	4Vs					
	Gear	Q1	Q2	Q3	Q4	Total
1986	OTB LL SNU Other	$\begin{array}{r} 810 \\ 4 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 3666 \\ 93 \\ 17 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 3093 \\ 115 \\ 3 \\ 2 \end{array}$		8485 212 19 2
	TOTAL	814	3775	3212	917	8719
1987	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 252 \\ 2 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 398 \\ 58 \\ 11 \\ \hline \end{array}$	$\begin{array}{r} 412 \\ 98 \\ 7 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 291 \\ 16 \\ 1 \\ \hline \end{array}$	1353 174 19 0
	TOTAL	254	468	517	308	1547
1988	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	188 14 0 7	$\begin{array}{r} 596 \\ 67 \\ 24 \\ 45 \\ \hline \end{array}$	448 211 16 11	$\begin{array}{r} 385 \\ 27 \\ 0 \\ 2 \\ \hline \end{array}$	1617 319 40 65
	TOTAL	209	732	685	414	2041
1989	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 592 \\ 11 \\ 5 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 1255 \\ 100 \\ 76 \\ 3 \end{array}$	538 193 34 0	$\begin{array}{r} 209 \\ 95 \\ 2 \\ \hline \end{array}$	2594 399 118 4
	TOTAL	608	1434	765	307	3114
1990	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 830 \\ 132 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 639 \\ 84 \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 370 \\ 54 \\ 62 \\ 0 \end{array}$	$\begin{array}{r} 184 \\ 6 \\ 0 \\ 0 \end{array}$	$\begin{array}{r} 2023 \\ 276 \\ 126 \\ 3 \end{array}$
	TOTAL	961	789	486	190	2427
1991	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 185 \\ 3 \\ 1 \\ 0 \\ \hline \end{array}$	257 120 28 0	$\begin{array}{r}104 \\ 133 \\ 2 \\ 0 \\ \hline\end{array}$	$\begin{array}{r}129 \\ 10 \\ 1 \\ 0 \\ \hline\end{array}$	675 267 31 0
	TOTAL	189	405	239	140	973
1992	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 204 \\ 1 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 195 \\ 67 \\ 79 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 60 \\ 64 \\ 2 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 97 \\ 5 \\ 2 \\ 0 \\ \hline \end{array}$	555 137 84 4
	TOTAL	204	342	127	104	776
1993	OTB LL SNU Other	$\begin{array}{r} 81 \\ 8 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{r} 126 \\ 57 \\ 25 \\ 0 \\ \hline \end{array}$	32 84 10 0	5 0 7 0	244 150 42 0
	TOTAL	90	208	126	12	435
1994	OTB LL SNU Other	6 1 0 0	6 3 1 0	7 5 2 0	3 1 0 0	22 10 3 0
	TOTAL	7	9	15	4	35

Table 5. (Continued)

Year	4W					
	Gear	Q1	Q2	Q3	Q4	Total
1986		$\begin{array}{r} 2186 \\ 82 \\ 121 \\ \hline \end{array}$	$\begin{array}{r} 282 \\ 81 \\ 16 \\ 12 \\ \hline \end{array}$	302 328 130 50	$\begin{array}{r} 2122 \\ 229 \\ 206 \\ 23 \end{array}$	$\begin{array}{r} 4893 \\ 719 \\ 472 \\ 86 \end{array}$
	TOTAL	2391	391	810	2579	6170
1987		72 26 5 0	$\begin{array}{r} 120 \\ 45 \\ 8 \\ 7 \\ \hline \end{array}$	$\begin{array}{r} 121 \\ 219 \\ 47 \\ 32 \end{array}$	113 144 10 21	427 434 70 60
	TOTAL	103	181	419	288	991
1988	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	51 19 11 0	$\begin{array}{r} 125 \\ 88 \\ 16 \\ \hline \end{array}$	$\begin{array}{r} 116 \\ 394 \\ 64 \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 121 \\ 88 \\ 53 \\ \hline \end{array}$	336 622 99 93
	TOTAL	81	238	605	226	1150
1989	OTB LL SNU Other	146 274 9 0	581 409 72 8	$\begin{array}{r} 476 \\ 633 \\ 79 \\ 31 \\ \hline \end{array}$	$\begin{array}{r} 276 \\ 551 \\ 24 \\ 12 \\ \hline \end{array}$	1479 1867 184 51
	TOTAL	429	1070	1218	863	3580
1990	OTB LL SNU Other	245 706 15 0	284 384 70 3	282 1272 153 62	$\begin{array}{r} 66 \\ 489 \\ 11 \\ 34 \\ \hline \end{array}$	877 2851 249 100
	TOTAL	966	742	1769	601	4078
1991	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	145 436 3 1	$\begin{array}{r}301 \\ 546 \\ 36 \\ 16 \\ \hline\end{array}$	288 1266 11 30	280 636 5 4	$\begin{array}{r}1064 \\ 2883 \\ 54 \\ 50 \\ \hline\end{array}$
	TOTAL	584	900	1594	923	4001
1992	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	$\begin{array}{r} 1112 \\ 615 \\ 0 \\ 0 \end{array}$	$\begin{array}{r}317 \\ 593 \\ 37 \\ 1 \\ \hline\end{array}$	$\begin{array}{r} 155 \\ 1326 \\ 82 \\ 14 \\ \hline \end{array}$	120 845 35 12	$\begin{array}{r}1704 \\ 3378 \\ 154 \\ 26 \\ \hline\end{array}$
	TOTAL	1727	947	1576	1011	5261
1993	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	13 19 0 0	12 112 1 0	89 509 10 5	13 42 0 0	127 682 10 5
	TOTAL	32	125	612	55	824
1994	$\begin{aligned} & \text { OTB } \\ & \text { LL } \\ & \text { SNU } \\ & \text { Other } \end{aligned}$	9 0 0 0	0 5 0 1	$\begin{array}{r}7 \\ 20 \\ 0 \\ 0 \\ \hline\end{array}$	2 3 0 0	18 28 0 1
	TOTAL	10	7	27	5	48

Table 6.

Table 7. Samples available for the ??????? of catch at length for 1994.

	Trawlers 4TVW		
	1st Half	2nd Half	
	4	7	33
Tons Catch	21	24	12
No. Measures	676	889	5567

Length (cm)	1970.00	1971.00	1972.00	1973.00	1974.00	1975.00	1976.00	1977.00	1978.00	1979.00	1980.00	1981.00	1982.00	1983.00	1984.00
0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6.50	2.89	8.45	0.00	0.00	0.00	5.11	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.00
8.50	8.67	2.82	0.00	0.00	0.00	1.70	27.77	1.57	0.00	0.00	6.33	0.02	0.00	0.00	0.00
10.50	0.00	0.00	0.00	0.00	12.73	1.70	9.26	0.78	0.00	0.00	4.84	2.33	0.02	0.00	0.00
12.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.22	0.16	0.95	0.51	0.00
14.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.28	0.00	0.78	3.71	62.54	10.25	0.00
16.50	2.89	5.64	8.61	0.00	0.00	0.00	11.57	0.39	27.99	0.12	163.26	44.74	239.55	88.44	0.00
18.50	37.57	14.09	55.99	21.60	0.00	5.11	25.46	1.96	141.77	0.19	286.10	219.37	340.05	498.55	0.00
20.50	127.17	53.54	189.52	75.61	0.00	17.03	164.33	9.03	249.31	0.80	168.19	452.83	204.01	352.55	17.97
22.50	222.54	70.45	167.98	216.04	15.27	37.47	143.50	16.48	157.60	1.75	130.96	286.12	69.26	233.97	796.30
24.50	72.25	39.45	43.07	162.03	10.18	98.80	50.92	14.52	63.03	3.60	97.01	85.82	19.69	141.05	161.14
26.50	34.68	25.36	21.54	86.41	10.18	85.17	20.83	9.03	20.06	13.62	36.54	12.32	61.24	98.28	137.55
28.50	14.45	47.90	21.54	140.42	5.09	28.96	30.09	10.56	45.32	18.43	4.74	14.98	35.28	51.54	62.00
30.50	66.47	159.76	54.87	195.56	17.82	5.11	44.01	12.92	80.41	28.74	2.88	15.69	14.83	17.48	29.96
32.50	76.38	185.79	47.65	413.51	43.27	3.41	148.37	12.56	131.63	35.73	7.34	17.74	19.94	31.06	39.48
34.50	98.85	129.70	64.81	264.85	129.91	6.24	256.56	13.95	126.61	24.75	35.39	25.10	96.56	109.25	160.89
36.50	262.38	173.18	101.08	235.32	157.99	50.23	147.42	33.09	107.65	23.28	153.80	77.12	206.26	189.96	526.78
38.50	322.64	268.91	100.10	287.79	325.44	53.82	40.74	56.72	171.12	63.85	400.55	287.16	452.70	349.67	1101.85
40.50	473.07	431.08	175.97	277.51	225.14	105.36	16.35	113.88	273.33	100.52	751.09	802.64	511.47	742.28	1296.59
42.50	479.32	668.11	210.00	297.49	138.00	123.56	29.63	245.70	387.72	163.33	1227.49	1248.79	639.18	964.17	1169.66
44.50	610.96	732.11	248.97	383.84	84.70	161.71	20.70	283.65	502.38	215.20	1440.72	1690.66	990.02	862.88	951.70
46.50	629.71	920.49	310.39	469.03	132.03	161.16	62.22	324.75	598.71	257.27	1470.65	2130.75	1313.02	842.35	714.08
48.50	669.66	983.74	326.94	351.91	100.70	217.38	108.16	308.11	547.97	321.59	1565.11	2128.57	1629.10	890.70	661.93
50.50	709.20	931.33	332.04	355.23	125.87	170.54	112.31	227.37	470.37	341.81	1266.23	1822.71	1485.96	866.12	421.46
52.50	710.34	950.26	387.75	342.78	158.49	185.31	111.73	186.52	379.23	323.90	1070.79	1533.81	1142.35	653.20	312.00
54.50	480.73	783.43	299.87	313.36	169.91	164.97	133.79	164.61	288.49	181.35	818.33	1143.45	838.48	484.16	275.96
56.50	420.21	724.90	299.01	242.54	127.59	105.60	99.36	151.18	246.95	151.67	578.21	844.11	637.02	317.54	189.73
58.50	343.90	552.90	225.39	268.59	128.18	100.06	84.69	115.57	198.84	98.35	378.13	637.03	459.54	206.24	120.73
60.50	219.43	401.08	178.41	219.25	94.39	68.78	86.19	92.55	169.39	78.82	263.07	376.17	356.00	131.20	81.00
62.50	241.66	381.14	153.45	173.57	85.81	73.06	71.10	55.42	101.40	48.00	167.01	262.69	216.00	93.08	46.00
64.50	132.78	230.20	101.21	87.01	57.11	28.49	46.11	32.13	73.58	31.00	106.00	125.15	124.00	42.28	29.00
66.50	94.76	158.62	55.83	72.57	28.61	24.37	31.66	28.81	33.34	13.01	67.00	93.15	100.00	27.00	19.23
68.50	59.04	85.70	43.83	23.83	25.27	8.53	6.81	16.66	28.94	11.00	19.00	43.05	45.00	11.08	11.00
70.50	26.56	51.59	8.24	20.69	11.67	5.28	4.11	15.93	5.26	3.00	28.00	26.04	44.00	14.16	10.00
72.50	22.88	19.53	13.23	20.42	3.33	5.17	6.42	3.92	3.11	3.00	6.00	10.01	20.00	5.00	3.00
74.50	20.80	14.43	2.45	14.86	2.59	0.00	0.48	2.19	2.17	1.00	4.00	8.01	5.00	5.00	2.00
76.50	7.84	18.66	1.68	1.49	0.74	0.00	0.34	1.52	3.23	1.00	1.00	2.00	5.00	1.00	0.00
78.50	4.19	1.98	2.92	1.13	0.00	0.94	0.00	0.39	0.17	0.00	1.00	2.00	1.00	1.00	0.00
80.50	0.00	0.48	2.92	0.00	0.00	0.00	0.00	1.60	0.00	0.00	0.00	1.00	2.00	0.00	0.00
82.50	3.90	1.72	0.00	1.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
84.50	0.53	0.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sum	7711.32	10228.99	4257.23	6037.55	2428.01	2110.12	2152.97	2566.42	5637.38	2559.68	12729.00	16477.00	12387.00	9333.00	9349.00

1985.00	1986.00	1987.00	1988.00	1989.00	1990.00	1991.00	1992.00	1993.00	1994.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.56	0.00	0.00	0.00	0.01	0.00
0.34	0.01	0.00	0.00	8.73	0.40	0.01	0.00	0.01	0.00
51.47	0.01	0.20	0.18	119.51	0.62	0.01	0.03	0.01	0.00
175.71	0.35	2.96	3.96	467.26	4.82	0.08	0.26	0.20	0.132
354.29	2.90	16.21	33.37	584.73	17.85	0.63	0.53	1.18	1.948
229.68	5.05	25.02	45.84	297.17	36.94	2.24	0.67	1.82	6.341
66.46	5.47	16.53	20.78	74.61	61.80	5.69	0.74	2.44	7.372
20.94	4.65	11.39	9.08	101.31	148.22	16.14	0.84	1.66	3.148
3.50	7.35	20.37	17.33	233.49	189.54	39.15	1.25	4.16	2.856
15.34	22.81	41.94	25.53	277.77	118.31	68.84	2.37	6.75	5.272
2.38	47.45	47.06	22.72	164.42	58.34	118.04	6.69	6.35	4.217
30.30	99.85	40.38	16.56	60.22	70.71	149.47	43.11	7.16	2.264
207.45	271.03	32.99	14.70	52.69	67.77	151.13	169.64	22.03	1.866
783.47	1060.93	51.27	48.36	122.69	47.46	257.29	448.88	58.31	1.539
1748.80	2605.06	124.52	147.23	283.98	129.41	416.70	650.51	125.24	2.309
2230.47	3858.84	253.29	384.91	644.38	239.89	504.55	721.56	171.34	3.864
1982.97	3983.36	382.48	723.51	939.35	528.63	676.64	772.23	159.07	4.252
1567.21	2821.27	610.41	870.84	1175.58	824.68	727.82	757.68	152.26	4.526
1049.08	1511.18	611.55	654.15	1105.70	930.06	596.93	693.09	125.40	4.234
597.13	848.62	458.28	440.97	799.54	907.78	473.58	478.59	95.82	4.621
421.00	460.22	297.29	263.33	539.76	650.55	318.21	314.56	81.46	3.846
277.00	258.27	161.02	149.99	321.25	476.16	219.77	209.14	54.57	2.939
216.00	144.61	96.50	75.34	195.06	241.19	148.07	156.45	38.34	2.125
136.00	90.43	46.15	40.67	104.92	136.54	85.18	101.35	29.93	1.69
87.00	67.92	33.08	26.90	66.45	70.01	65.53	69.85	27.53	1.113
54.00	32.82	16.62	17.43	27.64	33.68	31.41	45.62	14.68	0.592
41.00	24.21	8.36	12.41	18.61	25.32	20.13	31.06	10.98	0.287
24.00	13.23	2.15	5.23	9.00	15.16	7.05	20.50	5.08	0.207
13.00	2.03	0.01	4.15	7.00	11.10	4.05	5.32	1.61	0.068
10.00	4.03	1.03	2.02	3.00	8.01	2.02	1.82	1.26	0.035
4.00	1.02	1.05	1.06	0.00	3.00	1.00	6.61	0.14	0.052
4.00	1.03	0.00	0.02	1.00	0.00	0.00	0.29	0.04	0.015
1.00	0.00	1.00	0.00	0.00	0.01	1.00	0.34	0.03	0.00
0.00	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.16	0.00
1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00
12406.00	18256.00	3411.12	4078.59	8807.36	6055.04	5108.35	5711.62	1207.01	73.73

Table 9.

AGE IN YEARS								7	8
LENGTH	0	1	2	3	4	5	6		
1970	7.80	22.01	32.04	39.76	45.25	50.94	54.45	58.08	62.74
1971	7.30	22.59	31.73	40.05	45.43	50.55	54.05	56.98	62.85
1972		21.07	29.39	36.50	45.11	49.30	56.01	59.61	57.13
1973		23.18	32.18	40.44	47.84	51.36	57.42	58.06	63.71
1974	9.25	23.48	34.59	41.64	47.14	53.50	58.42	57.91	60.52
1975	8.57	25.13	28.22	43.23	48.31	54.71	58.98	60.72	63.36
1976	8.80	21.36	32.20	38.40	47.88	52.44	56.13	61.20	63.22
1977	9.18	23.46	32.94	41.98	47.23	53.53	55.48	60.89	65.11
1978		20.54	33.02	39.83	46.69	52.13	56.78	63.26	56.50
1979	7.51	20.82	32.19	39.10	45.50	50.19	54.75	60.05	64.45
1980	7.48	21.07	28.28	39.58	45.80	49.68	54.93	60.30	64.92
1981	8.43	19.71	30.95	37.03	44.77	49.15	54.27	59.26	60.91
1982	7.57	17.80	28.78	39.56	44.05	48.24	53.81	57.35	62.58
1983	6.60	18.99	25.83	35.82	42.00	48.15	51.47	55.23	59.13
1984		21.35	29.26	35.43	40.52	46.28	51.62	56.56	61.66
1985		22.11	26.30	35.98	41.95	48.93	53.40	61.42	64.09
1986	7.76	21.90	29.68	36.57	41.16	46.29	54.66	57.03	58.93
1987	8.18	20.40	26.24	36.53	42.45	46.78	54.02	58.81	
1988	8.95	22.72	32.64	37.00	42.08	47.43	52.18	61.84	64.50
1989	9.37	19.95	31.91	38.46	44.29	49.60	57.19	63.61	
1990	17.04	22.79	29.79	37.96	44.76	49.43	57.33	62.82	72.50
1991	6.50	24.16	32.39	36.57	44.03	48.71	54.40	68.50	
1992	36.50	33.94	32.01	36.13	39.77	42.71	48.06	48.88	59.94
	9	9	11	12	13	14	15	UNKNOWN	
1970	65.00	67.21	74.04	74.50		78.50		0.00	
1971	60.50							0.00	
1972	58.83	68.50						6.50	
1973	72.50	72.12						0.00	
1974	59.07	67.20	66.05					66.50	
1975	62.20	67.39	0.00	72.50				0.00	
1976	64.50	54.50	64.50	72.50				7.31	
1977		68.50	78.50	0.00	78.50			29.79	
1978			68.50					0.00	
1979						66.50		0.00	
1980	60.50							4.50	
1981	63.19	66.22						0.00	
1982	72.02	64.50	0.00				74.50	0.00	
1983	64.56	60.61	0.00	66.50		72.50		0.00	
1984	64.19	66.50	74.50		80.50			0.00	
1985		80.50						26.55	
1986								68.50	
1987	56.28							7.24	
1988								0.00	
1989								0.00	
1990								0.00	
1991								0.00	
1992	65.83							18.50	

Table 10.

	1970	1971	1972	1973	1974	1975	1976	1977	1978
1	0.105	0.062	0	0	0.228	0.074	0.295	0.197	0
2	2.736	1.724	1.319	0.531	0.373	5.073	2.76	6.075	9.899
3	1.004	3.63	0.886	1.733	2.146	0.721	3.13	11.379	11.071
4	1.839	1.197	1.295	0.537	2.903	1.938	0.478	8.969	14.806
5	2.044	1.576	0.585	0.472	0.526	1.734	0.95	1.217	8.32
6	0.993	0.627	0.488	0.169	0.541	0.461	0.931	1.94	0.513
7	0.621	0.355	0.367	0.349	0.27	0.833	0.206	0.722	0.488
8	0.695	0.163	0.15	0.074	0.201	0.22	0.23	0.204	0.124
9	0.348	0.255	0.071	0.096	0.08	0.088	0.052	0.108	0.015
10	0.139	0.012	0.043	0.023	0.045	0.047	0.016	0	0
11	0.044	0	0.019	0.046	0.033	0.054	0.015	0.05	0.011
12	0.038	0	0	0	0.039	0	0.016	0.009	0.014
13	0.033	0	0	0	0	0.018	0.06	0	0
14	0	0	0	0	0	0	0	0.021	0
15	0.009	0	0	0	0	0	0	0	0
15+	0	0	0	0	0	0	0	0	0
	1979	1980	1981	1982	1983	1984	1985	1986	1987
1	1.488	1.441	22.353	0.774	0.146	0.276	0	0.137	0.083
2	0.088	3.512	15.615	18.189	21.8	0.302	4.223	0.604	1.929
3	9.133	0.276	9.378	15.752	14.486	10.836	1.04	2.251	1.733
4	9.937	14.882	0.991	14.215	30.222	16.893	11.084	7.777	4.671
5	10.33	13.921	7.375	2.048	11.631	29.115	21.685	26.058	15.57
6	2.895	8.65	4.679	7.212	3.078	5.247	4.731	11.879	6.174
7	0.372	2.09	2.015	3.053	2.742	2.572	1.263	1.299	0.552
8	0.289	0.333	0.308	0.965	0.946	1.361	0.305	0.401	0.092
9	0.098	0.119	0.088	0.227	0.238	0.303	0.062	0.067	0
10	0	0.019	0.095	0.02	0.07	0.108	0	0	0.053
11	0.038	0	0.028	0.016	0.059	0.025	0.002	0	0
12	0.018	0	0	0	0	0.006	0	0	0
13	0	0	0	0	0.045	0	0	0	0
14	0	0	0	0	0	0.003	0	0	0
15	0.007	0	0	0	0.024	0	0	0	0
15+	0	0	0	0.021	0	0	0	0	0
	1988	1989	1990	1991					
1	1.043	0.1	0.054	0.022					
2	4.695	13.863	1.019	0.253					
3	13.432	7.067	16.835	6.449					
4	10.201	3.207	11.515	39.982					
5	16.163	10.79	7.874	12.517					
6	9.257	6.006	4.757	3.63					
7	1.129	0.46	0.332	0.144					
8	0.106	0.03	0.032	0.016					
9	0.032	0	0.005	0					
10	0	0	0	0					
11.	0	0	0	0					
12	0	0	0	0					
13	0	0	0	0					
14	0	0	0	0					
15	0	0	0	0					
$15+$	0	0	0	0					

Table 11. July RV Catch Rates at Length.

	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4.5	0	0	0.0108	0	0	0	0.006	0	0	0.0516	0.0432	0.0132	0.075	0.015
6.5	0.03	0.0372	0.0264	0	0	0.024	0.3192	0.06	0	0.516	0.8856	4.4976	0.319	0.1
8.5	0.0744	0.0252	0.0108	0	0.1416	0.0228	0.2508	0.1296	0	0.8664	0.42	14.3148	0.28	0.031
10.5	0	0	0	0	0.0864	0.0264	0.0444	0.0672	0	0.0528	0.1248	3.3396	0.1	0
12.5	0	0	0	0	0	0	0	0	0	0	0.012	0.1884	0.03	0.016
14.5	0	0	0	0	0	0	0	0.024	0.036	0	0.0216	0.312	1.361	0.286
16.5	0.0264	0.018	0.036	0	0	0.0348	0.096	0.024	0.5256	0	0.036	2.31	7.78	4.163
18.5	0.2292	0.15	0.2172	0.0132	0.0276	0.096	0.1404	0.0852	2.9172	0.024	0.5928	5.238	5.809	9.825
20.5	0.792	0.3204	0.5376	0.0792	0.024	0.2196	1.2636	0.8328	4.0608	0.0348	1.476	4.7808	2.548	8.22
22.5	1.2288	0.6696	0.4932	0.2076	0.1392	0.3816	1.014	2.2416	1.7112	0.0228	1.1064	2.0916	0.745	3.071
24.5	0.3408	0.4776	0.1368	0.1848	0.1008	1.9296	0.39	2.2164	0.9084	0.1788	0.3936	1.0956	1.547	2.256
26.5	0.15	0.3396	0.198	0.1548	0.0804	2.3844	0.4452	1.1016	0.4872	0.5112	0.03	0.5868	3.612	2.65
28.5	0.042	0.3204	0.1512	0.2592	0.0384	0.5028	0.3516	1.116	0.3192	1.6212	0.0648	1.7688	4.593	4.014
30.5	0.366	0.9528	0.372	0.2448	0.1308	0.1224	0.2556	2.0184	1.5552	2.3904	0.018	2.724	3.806	4.201
32.5	0.3936	1.1928	0.36	0.5592	0.4584	0.0252	0.546	3.1224	3.4404	2.9352	0.1044	2.5908	2.329	5.154
34.5	0.1932	0.8316	0.264	0.3732	0.9096	0.0432	0.7008	2.9544	4.2552	2.538	0.7716	1.656	0.962	5.174
36.5	0.4212	0.39	0.2376	0.2232	0.7524	0.0888	0.69	2.0832	3.456	1.4832	1.8828	0.5604	1.919	7.836
38.5	0.4704	0.2148	0.222	0.2052	0.6456	0.1056	0.2964	1.3608	3.2088	2.0712	4.3992	0.3144	3.427	9.099
40.5	0.7044	0.372	0.2868	0.1656	0.504	0.4476	0.0816	1.6692	4.7424	3.3876	5.214	0.6972	3.8	5.085
42.5	0.6756	0.6288	0.2004	0.0636	0.6888	0.4848	0.1848	2.4528	3.7956	3.6348	4.4376	1.8192	2.891	3.309
44.5	0.7872	0.5484	0.1524	0.1728	0.642	0.9324	0.1164	2.1756	2.9484	3.4656	5.5668	2.3952	3.269	2.615
46.5	0.5328	0.4164	0.2508	0.15	0.4788	0.5496	0.2568	1.4028	2.274	3.0252	4.8	2.4732	2.37	2.152
48.5	0.4524	0.378	0.1344	0.0468	0.2304	0.4476	0.4008	0.534	2.0508	2.2212	4.698	2.4288	2.196	1.809
50.5	0.5868	0.378	0.3384	0.1632	0.1428	0.438	0.3696	0.6984	1.2696	1.5228	3.6984	1.77	2.039	1.348
52.5	0.498	0.252	0.144	0.1692	0.2412	0.2544	0.3132	0.7128	0.5184	0.828	1.7424	1.0428	1.65	1.177
54.5	0.2112	0.1596	0.1332	0.1524	0.2724	0.4644	0.3204	0.492	0.1632	0.6252	1.3368	0.5952	1.173	0.836
56.5	0.3324	0.1776	0.0864	0.0324	0.2136	0.2508	0.2076	0.4368	0.1656	0.1728	0.432	0.5424	0.645	0.323
58.5	0.2448	0.0864	0.0552	0.15	0.1704	0.2964	0.0708	0.312	0.1152	0.0924	0.3468	0.288	0.476	0.258
60.5	0.1068	0.0564	0.0672	0.048	0.0648	0.2496	0.0252	0.3228	0.1116	0.1548	0.2376	0.2448	0.185	0.091
62.5	0.1692	0.048	0.0912	0.0936	0.0684	0.132	0.1008	0.1128	0.1068	0.096	0.186	0.09	0.287	0.121
64.5	0.2436	0.0204	0.036	0	0.0888	0.1272	0.0792	0.084	0.0744	0.0516	0.1056	0.1332	0.175	0.083
66.5	0.1956	0.1032	0	0.0588	0.0096	0.0792	0.0444	0.0168	0	0.0612	0.0492	0.0324	0.076	0.099
68.5	0.0312	0.0084	0.0468	0	0.0216	0.03	0.0216	0.0624	0.0312	0.036	0.0528	0.0324	0	0.042
70.5	0.0444	0.0252	0	0	0.0048	0.0468	0	0	0.03	0.0192	0	0	0.018	0.002
72.5	0.0432	0	0	0.0228	0.0156	0.036	0.06	0.0324	0.0108	0	0	0	0	0.024
74.5	0.0084	0	0	0.0348	0	0	0.0036	0	0	0	0	0	0.022	0
76.5	0.0084	0	0	0	0	0	0	0	0	0	0	0	0	0
78.5	0.0084	0	0	0	0	0	0	0.03	0	0	0	0	0	0
80.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
82.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
84.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUM	10.6428	9.5988	5.2968	4.0284	7.3932	11.274	9.4668	30.9852	45.2892	34.692	45.2868	62.9676	62.514	85.485

- Table 11. (Contrinued)

1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.026	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0.012	0
0.018	0	0.086	0.017	0.063	0	0	0.022	0	0.282	0.31
0.258	0.011	0.051	0.061	0.692	0.057	0	0	0	1.13	0.69
0	0	0	0.004	0.28	0.043	0	0	0	1.006	0.35
0	0	0	0	0.008	0	0	0	0	0.063	0.01
0.005	0	0	0	0	0	0.018	0	0	0	0
0	0.023	0	0.174	0	0.741	0.014	0	0.02	0.007	0
0.04	0.155	0.061	0.487	0.075	5.296	0.049	0.017	0.008	0.053	0.06
0.258	1.286	0.179	0.941	1.043	5.627	0.249	0.061	0.323	0.34	0.75
0.339	2.346	0.45	0.871	2.081	1.632	0.387	0.091	0.299	1.06	2.48
0.951	0.677	0.483	0.31	1.306	0.574	0.424	0.035	0.137	0.925	3.24
1.839	0.226	0.178	0.131	0.27	0.217	1.652	0.068	0.049	0.422	1.01
3.119	0.307	0.187	0.211	0.356	0.512	5.874	0.564	0.16	0.217	1.7
5.183	0.834	0.912	0.5	2.704	1.735	7.123	1.969	0.435	0.705	1.94
4.54	1.803	1.567	0.874	8.208	3.2	2.976	7.544	1.248	0.618	0.94
4.238	3.366	2.026	0.888	6.178	1.718	2.035	11.525	4.519	0.981	0.75
7.143	4.235	4.271	1.542	2.738	0.943	3.184	10.256	6.059	2.949	1.32
9.916	4.598	7.598	2.535	3.639	1.053	3.369	8.137	4.78	5.136	2.95
10.563	6.282	9.06	4.557	4.268	1.567	2.489	6.279	3.746	4.535	3.94
6.792	6.288	7.812	5.432	5.336	2.945	2.12	5.037	2.364	3.28	2.79
3.945	4.122	5.611	4.808	6.121	3.965	2.99	3.945	1.478	1.763	1.52
2.184	2.748	3.655	2.913	4.7	3.694	2.72	3.408	1.111	1.045	0.65
1.686	1.595	2.239	1.83	3.012	2.706	1.974	2.487	0.775	0.448	0.37
1.039	1.335	1.559	0.769	1.451	1.504	1.438	0.865	0.528	0.432	0.16
1.066	0.83	0.76	0.515	0.726	0.827	0.597	0.467	0.306	0.167	0.07
0.545	0.425	0.652	0.188	0.318	0.441	0.298	0.095	0.099	0.07	0.03
0.464	0.373	0.498	0.167	0.193	0.275	0.254	0.072	0.107	0.03	0.02
0.302	0.242	0.305	0.07	0.115	0.07	0.065	0.034	0.011	0.023	0
0.238	0.093	0.155	0.032	0.13	0.102	0.093	0.007	0.015	0.008	0.01
0.126	0.073	0.066	0.002	0.056	0.043	0.016	0	0.015	0	0
0.102	0.031	0.038	0.013	0.067	0.019	0.005	0.009	0	0.002	0
0.066	0.093	0.02	0.01	0.016	0.008	0.007	0	0.007	0	0
0.066	0.028	0.007	0.002	0	0.008	0	0.016	0.007	0	0
0	0.024	0.007	0	0	0	0	0	0	0	0
0.014	0.004	0	0	0	0	0.005	0	0	0	0.01
0.006	0	0	0	0	0	0	0	0	0	0
0.026	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0.003	0.002	0	0.008	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
67.08	44.455	50.493	30.888	56.15	41.522	42.425	63.01	28.606	27.709	28.07

length	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995
2.5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
4.5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
6.5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
8.5	0	0	0.02	0	0	0		0	0	0	0	0	0	0	0	0	0
10.5	0	0	1.88	0.5	0.25	0		0	0.02	0	0.02	0	0	0	0	0	0
12.5	0	0.69	9.16	9.28	2.49	0.64		0.07	0.05	0.08	1.46	0.03	0.02	0.02	0	0.07	0.1
14.5	0.01	3.1	10.33	14.92	6.53	0.97		0.15	1.11	1.5	11.22	0.07	0.01	0.6	0.12	0.17	2.12
16.5	0	1.69	4.83	6.95	4.73	0.1		0.29	1.55	4.13	6.93	0.08	0.1	0.36	0.92	1.44	2.47
18.5	0.02	0.45	1.38	2.2	1.84	0.3		0.99	0.79	2.27	1.06	0.21	0.04	0.01	1.54	1.51	0.56
20.5	0.07	0.17	0.07	2.31	2.62	2.3		0.41	0.11	0.64	0.21	0.09	0	0	0.61	0.68	0.15
22.5	0.23	0.02	0.57	4.76	4.33	3.33		0.09	0.05	0.15	0.08	0.77	0.13	0	0	0.1	0.06
24.5	0.64	0.03	3.67	9.2	5.52	3.72		0.13	0.29	0.88	1.2	3.39	0.18	0.06	0	0.1	0.95
26.5	0.86	0.05	4.45	10	3.49	3.63		0.69	0.7	2.58	4.46	4.77	0.65	0.06	0.04	0.68	1.75
28.5	0.61	0.17	2.64	4.94	2.63	4.65		0.68	0.76	3.09	8.03	2.96	0.97	0.02	0	0.81	1.61
30.5	0.22	0.54	1.38	2.21	4.65	9.27		0.75	0.69	1.28	4.76	0.59	2.4	0.08	0.06	0.56	1.02
32.5	0.43	1.67	0.5	1.46	10.61	15.56		1.45	1.38	0.49	2.18	2.03	3.69	0.32	0.43	0.46	1.38
34.5	0.53	2.52	0.12	2.6	13.01	16.26		3.76	2.56	0.94	3.39	3.11	2.4	0.67	1.06	1.44	1.16
36.5	1.74	3.23	3.14	3.68	8.23	11.27		7.89	3.96	1.5	3.4	2.58	1.85	1.1	3.56	4.18	0.84
38.5	1.29	2.41	11.4	2.57	6.24	10.49		11.51	5.46	2.11	3.06	1.55	1.7	0.79	3.43	9.25	0.56
40.5	1.89	1.44	22.09	2.43	7.68	7.28		11.99	8.86	3.5	3.95	2.9	1.28	1.05	2.57	6.75	0.95
42.5	2.14	0.94	27.89	1.48	6.41	4.14		11.42	9.16	5.85	4.69	3.75	0.99	0.95	1.24	4.4	0.46
44.5	1.97	0.93	21.77	2.62	5.15	4.63		9.35	8.94	5.43	6.07	5.58	0.56	0.78	0.88	2.42	0.47
46.5	1.86	1.04	18.37	3.63	3.82	3.28		5.9	7.7	4.88	3.49	5.08	0.9	0.7	0.42	1.43	0.36
48.5	1.48	0.7	12.95	2.61	3.36	2.49		3.45	4.71	2.87	2.89	4.52	0.83	0.48	0.24	0.76	0.15
50.5	0.85	0.73	9.94	2.59	3.33	2.48		2.27	2.59	1.86	1.76	3.14	0.81	0.48	0.06	0.53	0.11
52.5	0.99	0.72	8.28	1.74	2.51	1.58		1.17	1.61	1.24	0.95	1.61	0.46	0.28	0.07	0.26	0.06
54.5	0.5	0.3	6.22	1.41	2.07	1.36		1.1	0.76	0.7	1.04	0.71	0.31	0.34	0.04	0.15	0.02
56.5	0.51	0.33	3.13	1.29	1.46	0.91		0.52	0.56	0.34	0.58	0.67	0.26	0.11	0.02	0.15	0.02
58.5	0.44	0.39	2.87	0.79	0.7	0.61		0.31	0.35	0.23	0.31	0.32	0.11	0.03	0.07	0.16	0
60.5	0.35	0.3	2.37	0.73	0.48	0.31		0.25	0.18	0.27	0.31	0.15	0.13	0.11	0.01	0.08	0.02
62.5	0.2	0.18	1.12	0.64	0.27	0.36		0.08	0.07	0.09	0.08	0.14	0.03	0.05	0.01	0.06	0
64.5	0.07	0.06	0.37	0.36	0.12	0.22		0.1	0.02	0.1	0.02	0	0.04	0.03	0.01	0.04	0
66.5	0.2	0.11	0.37	0.11	0.14	0.11		0.03	0	0.03	0.04	0.05	0	0	0	0	0.02
68.5	0.04	0.05	0.08	0.1	0.04	0.04		0.03	0	0	0	0	0	0	0	0	0
70.5	0.02	0.02	0	0.06	0.06	0.13		0.02	0.05	0	0	0	0	0	0	0	0
72.5	0.05	0	0	0.03	0.01	0.02		0	0	0.01	0	0	0.02	0	0	0.02	0
74.5	0	0.01	0.02	0.02	0	0.01		0	0	0	0	0	0	0	0	0	0
76.5	0.01	0	0	0	0.01	0.02		0	0	0	0	0	0	0	0	0	0
78.5	0	0	0	0.02	0	0.01		0	0	0.01	0	0	0	0	0	0.	0
80.5	0.01	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
82.5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
84.5	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
sum	20.23	24.99	193.38	100.24	114.79	112.48	0	76.85	65.04	49.05	77.64	50.85	20.87	9.48	17.41	38.66	17.37

Table 13. Catch and RV numbers from siicing.

Sliced Catch N													
	70	71	72	73	74	75	76	77	78	79	80	81	82
1	480	189	473	532	35	222	408	48	652	6	822	1025	905
2	268	472	172	1016	254	75	499	60	420	113	85	128	152
3	1184	949	467	994	822	358	227	402	793	257	1318	1111	903
4	1631	2207	754	1168	315	562	224	955	1552	628	3797	4031	2043
5	1594	2285	832	919	401	439	267	451	1030	784	3273	4779	3533
6	999	1665	624	492	188	175	190	337	625	500	2167	3244	2514
7	929	1487	550	499	185	197	204	240	416	208	1023	1581	1418
sum	7085	9253	3871	5621	2200	2029	2020	2493	5488	2497	12484	15902	11469
	83	84	85	86	87	88	89	90	91	92	93	94	
1	1145	804	848	10	58	100	1575	184	18	3	6	17	
2	354	393	70	38	103	76	764	471	255	22	20	15	
3	597	1075	475	1006	128	92	325	233	722	980	149	6	
4	2159	3532	4714	8121	466	1043	1917	1164	1688	2120	454	11	
5	2187	2016	4471	7421	1586	1992	2976	2583	1613	1747	344	13	
6	1634	873	1206	1319	885	663	1065	1274	704	682	182	9	
7	925	536	469	263	155	87	157	122	100	145	49	2	
sum	9002	9229	12254	18178	3381	4054	8778	6031	5100	5697	1204	74	
Sliced RV Num													
70	71	72	73	74	75	76	77	78	79	80	81	82	
1	2.69	1.72	1.49	0.59	0.36	4.45	3.18	6.11	10.44	0.26	3.53	15.16	18.15
2	1.06	3.1	1.15	1.45	1.82	1.31	2.08	10.03	10.65	9.15	0.52	8.55	14.84
3	1.78	1.43	0.93	0.67	2.57	1.31	1.23	6.75	13.16	9.15	11.97	3.13	8.5
4	1.85	1.54	0.57	0.38	1.14	1.87	0.87	4.52	7.63	9.13	13.74	5.46	9.01
5	1.19	0.87	0.54	0.38	0.59	0.94	0.75	1.52	2.55	3.82	9.7	5.21	5.36
6	0.58	0.39	0.24	0.16	0.3	0.45	0.37	0.98	0.41	1.2	3.21	2.1	3.55
7	0.64	0.27	0.16	0.2	0.19	0.55	0.16	0.68	0.3	0.33	0.93	0.9	1.57
sum	9.79	9.33	5.07	3.82	6.96	10.88	8.64	30.59	45.14	33.04	43.59	40.51	60.98
	83	84	85	86	87	88	89	90	91	92	93	94	
1	25.07	0.64	4.18	0.8	2.72	4.27	13.94	1.81	0.24	0.81	2.56	6.95	
2	14.78	9.63	1.85	1.6	1.39	10.94	6.13	17.46	11.77	3.03	2.04	5.36	
3	24.13	20.44	10.6	12.12	4.46	13.68	3.77	9.33	31.05	16.1	11.11	6.82	
4	11.52	25.48	16.18	21.94	11.76	13.72	8.38	7.43	13.76	6.14	7.7	6.52	
5	5.37	6.54	8.21	10.37	8.76	10.3	7.49	5.27	5.6	2.09	1.57	0.95	
6	2.73	2.39	2.41	2.58	1.42	1.81	1.5	1.01	0.54	0.41	0.23	0.1	
7	1.27	1.29	0.75	0.82	0.23	0.31	0.19	0.09	0.01	0.03	0.01	0.01	
sum	84.88	66.4	44.19	50.22	30.74	55.02	41.41	42.4	62.97	28.6	25.22	26.7	

Table 14. ModelKey Catch and RV Numbers.

Model\|Key Catch Numbers													
	70	71	72	73	74	75	76	77	78	79	80	81	82
1	480	189	473	532	35	222	408	48	652	6	822	1025	905
2	268	472	172	1016	254	75	499	60	420	113	85	128	152
3	1184	949	467	994	822	358	227	402	793	257	1318	1111	903
4	1631	2207	754	1168	315	562	224	955	1552	628	3797	4031	2043
5	1594	2285	832	919	401	439	267	451	1030	784	3273	4779	3533
6	999	1665	624	492	188	175	190	337	625	500	2167	3244	2514
7	929	1487	550	499	185	197	204	240	416	208	1023	1581	1418
sum	7085	9253	3871	5621	2200	2029	2020	2493	5488	2497	12484	15902	11469
	83	84	85	86	87	88	89	90	91	92	93	94	
1	1145	804	848	10	58	100	1575	184	18	3	6	17	
2	354	393	70	38	103	76	764	471	255	22	20	15	
3	597	1075	475	1006	128	92	325	233	722	980	149	6	
4	2159	3532	4714	8121	466	1043	1917	1164	1688	2120	454	11	
5	2187	2016	4471	7421	1586	1992	2976	2583	1613	1747	344	13	
6	1634	873	1206	1319	885	663	1065	1274	704	682	182	9	
7	925	536	469	263	155	87	157	122	100	145	49	2	
sum	9002	9229	12254	18178	3381	4054	8778	6031	5100	5697	1204	74	
ModelKey RV Numbers													
	70	71	72	73	74	75	76	77	78	79	80	81	82
1	2.69	1.72	1.49	0.59	0.36	4.45	3.18	6.11	10.44	0.26	3.53	15.16	18.15
2	1.06	3.1	1.15	1.45	1.82	1.31	2.08	10.03	10.65	9.15	0.52	8.55	14.84
3	1.78	1.43	0.93	0.67	2.57	1.31	1.23	6.75	13.16	9.15	11.97	3.13	8.5
4	1.85	1.54	0.57	0.38	1.14	1.87	0.87	4.52	7.63	9.13	13.74	5.46	9.01
5	1.19	0.87	0.54	0.38	0.59	0.94	0.75	1.52	2.55	3.82	9.7	5.21	5.36
6	0.58	0.39	0.24	0.16	0.3	0.45	0.37	0.98	0.41	1.2	3.21	2.1	3.55
7	0.64	0.27	0.16	0.2	0.19	0.55	0.16	0.68	0.3	0.33	0.93	0.9	1.57
sum	9.79	9.33	5.07	3.82	6.96	10.88	8.64	30.59	45.14	33.04	43.59	40.51	60.98
	83	84	85	86	87	88	89	90	91	92	93	94	
1	25.07	0.64	4.18	0.8	2.72	4.27	13.94	1.81	0.24	0.81	2.56	6.95	
2	14.78	9.63	1.85	1.6	1.39	10.94	6.13	17.46	11.77	3.03	2.04	5.36	
3	24.13	20.44	10.6	12.12	4.46	13.68	3.77	9.33	31.05	16.1	11.11	6.82	
4	11.52	25.48	16.18	21.94	11.76	13.72	8.38	7.43	13.76	6.14	7.7	6.52	
5	5.37	6.54	8.21	10.37	8.76	10.3	7.49	5.27	5.6	2.09	1.57	0.95	
6	2.73	2.39	2.41	2.58	1.42	1.81	1.5	1.01	0.54	0.41	0.23	0.1	
7	1.27	1.29	0.75	0.82	0.23	0.31	0.19	0.09	0.01	0.03	0.01	0.01	
sum	84.88	66.4	44.19	50.22	30.74	55.02	41.41	42.4	62.97	28.6	25.22	26.7	

Table 15. ModelKey residuals.

Residuals													
	70	71	72	73	74	75	76	7	78	79	80	81	82
2	-0.64	0.52	-0.31	-0.28	0.04	-0.87	-0.92	0.33	0.21	0.23	-2.13	0.7	0.82
3	-0.97	-0.71	-1.11	-1.17	-0.03	-0.74	-1.45	-0.25	0.09	-0.47	0.02	-0.79	0.22
4	-1.16	-0.79	-1.5	-1.79	-0.53	-0.25	-1.21	-0.17	-0.15	-0.37	-0.03	-0.64	0.38
5	-1.34	-1.19	-1.15	-1.21	-0.84	-0.34	-0.87	-0.4	-0.39	-0.6	0.04	-0.39	0.06
6	-1.52	-1.39	-1.46	-1.39	-0.62	-0.53	-0.67	-0.05	-0.98	-0.59	-0.05	-0.47	0.45
4-6	-0.93	-0.33	-0.97	-1.08	-0.17	-0.62	-1.2	-0.03	0.05	-0.2	-0.72	-0.24	0.47
	83	84	85	86	87	88	89	90	91	92	93	94	
2	0.49	0.38	-0.51	-0.87	-0.95	1.46	0.87	2.09	1.08	-0.29	-0.16	-1.27	
3	0.79	0.32	-0.03	0.93	-0.37	0.81	-0.1	0.82	2.26	0.94	0.49	0.51	
4	0.64	0.94	0.17	1.3	0.88	0.71	0.38	0.64	1.38	1.22	0.15	-0.19	
5	0.55	0.74	0.76	1.1	1.52	1.36	0.84	0.86	1.16	0.86	0.71	-1.84	
6	0.67	0.88	1.25	1.59	1.47	1.48	1.3	0.94	0.33	0.6	0.34	-1.59	
4-6	0.64	0.54	-0.12	0.45	-0.15	0.99	0.38	1.19	1.58	0.63	0.16	-0.31	

Table 16. Fishing mortality and population numbers from ModelKey.

Fishing Mortality													
	70	71	72	73	74	75	76	7	78	79	80	81	82
1	0.07	0.04	0.06	0.09	0	0.01	0.02	0	0.03	0	0.06	0.05	0.03
2	0.05	0.09	0.04	0.19	0.05	0.01	0.04	0	0.02	0.01	0.01	0.01	0.01
3	0.19	0.25	0.13	0.35	0.24	0.1	0.03	0.04	0.05	0.01	0.09	0.12	0.1
4	0.3	0.67	0.32	0.54	0.18	0.25	0.08	0.19	0.19	0.05	0.29	0.41	0.35
5	0.42	0.89	0.58	0.82	0.36	0.4	0.18	0.24	0.33	0.14	0.42	0.72	0.8
6	0.42	1.08	0.65	0.82	0.38	0.26	0.3	0.37	0.62	0.26	0.7	1	1.12
7	1.08	2.51	1.47	2.07	0.87	0.87	0.54	0.77	1.09	0.43	1.33	2.02	2.15
3-6	0.33	0.72	0.42	0.63	0.29	0.25	0.15	0.21	0.3	0.12	0.37	0.56	0.59
	83	84	85	86	87\|	88	89	90	91	92	93	94	
1	0.05	0.08	0.07	0	0.01	0.01	0.19	0.01	0	0	0	0	
2	0.01	0.02	0.01	0	0.01	0.01	0.11	0.08	0.02	0	0	0	
3	0.04	0.06	0.03	0.16	0.02	0.01	0.06	0.04	0.17	0.12	0.02	0	
4	0.38	0.38	0.37	1.26	0.1	0.17	0.36	0.32	0.51	1.12	0.08	0	
5	0.8	0.74	1.23	1.96	0.93	0.85	1.01	1.23	1.01	1.85	0.52	0	
6	1.16	0.92	1.6	2.07	2.18	1.5	2.13	2.43	1.65	2.34	1.13	0.02	
7	2.23	1.94	3.04	5.02	3.05	2.4	3.32	3.78	3.01	5.04	1.64	0.03	
3-6	0.6	0.52	0.81	1.36	0.81	0.63	0.89	1.01	0.84	1.36	0.44	0.01	
ModelKey Popul	mbers												
	70	71	72	73	74	75	76	77	78	79	80	81	82
1	7579	5991	8310	7120	11451	19617	26591	31669	26992	15799	16414	24966	33995
2	6139	5771	4734	6376	5348	9344	15860	21401	25884	21510	12929	12695	19513
3	7422	4784	4298	3720	4301	4148	7583	12533	17468	20813	17508	10509	10277
4	7029	5006	3058	3096	2147	2777	3072	6002	9898	13583	16807	13142	7598
5	5157	4279	2102	1821	1478	1473	1765	2312	4050	6699	10553	10325	7112
6	3205	2780	1436	968	660	847	808	1204	1485	2384	4775	5678	4129
7	1525	1720	770	611	348	370	535	490	681	651	1500	1949	1713
sum	38056	30330	24707	23712	25731	38576	56214	75612	86458	81439	80487	79264	84338
	83	84	85	86	87	88	89	90	91	92	93	94	
1	25396	12111	14817	13133	9281	10027	9907	14780	14608	8652	68912	0	
2	27014	19756	9189	11364	10743	7547	8118	6686	11935	11944	7081	56415	
3	15838	21797	15819	7460	9270	8703	6110	5956	5048	9541	9759	5779	
4	7597	12427	16873	12522	5197	7474	7042	4709	4665	3480	6925	7855	
5	4373	4266	6979	9549	2904	3834	5176	4031	2802	2292	931	5259	
6	2625	1601	1669	1668	1103	942	1336	1545	963	834	296	451	
7	1106	671	520	275	172	102	171	131	112	151	66	78	
sum	83949	72629	65866	55970	38671	38628	37861	37837	40132	36894	93970	75838	

Figure 1. Mean length composition of commercial landings for 1994 and for the period 1990-1993 for comparison.

Figure 2. Summer (July) Research Vessel catch rates of haddock in Divisions 4VW. The thin solid line shows results for all length classes while the dotted line show catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits) and the thick solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

$$
\cdots \text { len0-36 } \rightarrow \text { len36-62 }
$$

Figure 3. Summer (July) Research Vessel catch rates of haddock in Division 4W. The thin solid line shows results for all length classes while the dotted line show catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thick solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

$$
\text { - len0-36 } \rightarrow \text { len36-62 }
$$

Figure 4. Summer (July) Research Vessel catch rates of haddock in Sub-Division 4Vs. The thin solid line shows results for all length classes while the dotted line show catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thick solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

70717273747576777879808182838485868788899091929394

- Ien0-36 - len36-62

Figure 5. Summer (July) Research Vessel catch rates of haddock in Sub-Division 4Vn. The thin solid line shows results for all length classes while the dotted line show catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thick solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

Figure 6. Catch rates by haddock length group observed during the summer (July) research vessel surveys conducted in Sub-Division 4Vn. The bars represent the mean catch rates at length for the period 1970-1993, while the line represents catch rates at length observed in 1994.

Figure 7. Catch rates by haddock length group observed during the summer (July) research vessel surveys conducted in Sub-Division 4Vs. The bars represent the mean catch rates at length for the period 1970-1993, while the line represents catch rates at length observed in 1994.

Figure 8. Catch rates by haddock length group observed during the summer (July) research vessel surveys conducted in Division 4W. The bars represent the mean catch rates at length for the period 1970-1993, while the line represents catch rates at length observed in 1994.

Figure 9. Catch rates by haddock length group observed during the summer (July) research vessel surveys conducted in Divisions 4VW. The bars represent the mean catch rates at length for the period 1970-1993, while the line represents catch rates at length observed in 1994.

Figure 10. Modal length of the assumed 1988 year-class relative to the long-term mean length composition of the stock.

Figure 11. Mean lengths at age (as determined by historical ageing conventions) of haddock caught during the summer (July) surveys of Divisions 4 VW .

Haddock - \# caught/Std tow: 1970-1994

Figure 12a. Long-term geographic distribution of haddock on the Scotian Shelf during the summer (June-August) months. The distribution is overlayed on the mean bottom temperature of estimated at the time and location of the survey. Both haddock abundance and bottom temperature were averaged within 10 minute squares. Also shown on the inset panels are the overall mean catch rates per year for each year of the survey, the mean catch per survey tow versus time of day, the mean catch per survey tow versus (\ln) depth, and mean (\ln) catch per survey tow versus bottom temperature.

Haddock - \# caught/Std tow: 1994

Figure 12b. Geographic distribution of haddock on the Scotian Shelf during the summer of 1994 The distribution is overlayed on the mean bottom temperature of estimated at the time and location of the survey. Also shown on the inset panels are the overall mean catch rates per year for each year of the survey, and for 1994, the mean catch per survey tow versus time of day, the mean catch per survey tow versus (ln) depth, and mean (ln) catch per survey tow versus bottom temperature.

Figure 13a. Spring (March) Research Vessel catch rates of haddock in Divisions 4VW. The thick solid line shows results for all length classes while the dotted line shows catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thin solid line shows results for fish with lengths from 36-62 cm , this being the recruited portion of the population.

Figure 13b. Spring (March) Research Vessel catch rates of haddock in Sub-Division 4Vs. The thick solid line shows results for all length classes while the dotted line shows catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thin solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

Figure 13c. Spring (March) Research Vessel catch rates of haddock in Division 4W. The thick solid line shows results for all length classes while the dotted line shows catch rates for fish with lengths from $0-36 \mathrm{~cm}$ (pre-recruits), and the thin solid line shows results for fish with lengths from $36-62 \mathrm{~cm}$, this being the recruited portion of the population.

Figure 14a. Catch rates by haddock length group observed during the spring (March) research vessel surveys conducted in Divisions 4 VW . The bars represent the mean catch rates at length for the period 1979-1994, while the line represents catch rates at length observed in 1995.

Figure 14b. Catch rates by haddock length group observed during the spring (March) research vessel surveys conducted in Division 4W. The bars represent the mean catch rates at length for the period 1979-1994, while the line represents catch rates at length observed in 1995.

Figure 15. Catch rates by haddock length group observed during the spring (March) research vessel surveys conducted in Division 4 V . The bars represent the mean catch rates at length for the period 1979-1994, while the line represents catch rates at length observed in 1995.

Figure 16. Length composition of haddock landings estimated for 1994 (thin line) versus the length composition of the entire 4VW haddock stock as determined from the summer (July) survey.

4VW Haddock 7 ages, $10-70 \mathrm{~cm}$. Catch
4VW Haddock 7 ages, $10-70 \mathrm{~cm}$. Pop 2+

Figure 17. Tuning plots from the initial length based analysis. Points are the estimates derived from the most recent VPA based assessment of this stock, and the lines are the results of the best three iterations of the model. The results are shown for F at 'ages' $3-6, \mathrm{~F}$ at 'ages' 5 and 6 , catch (as a check on data integrity), population numbers.

Figure 18. "Age by age" results of Qmodel. Points are the estimates derived from the most recent VPA based assessment of this stock. Results are shown for F at 'ages' 2 through 7.

Figure 19. Overall fit of the Qmodel population esumates to q-adjusted $R V$ numbers for ages 2-6. The top panel shows the converged results, the middle panel, the first iteration of model, and the bottom panel, results of slicing only, with no adjustment to 'age' bin boundaries.

0	
$1-$	
2	(\%) (\%) (\%) + + + + + + + + + + + + + + + + +
3	
4.	
5	
6	1 l
0	

4VW Haddock Iter 1

4VW Haddock Slicing

1	(20) + \% + + + + + + + + + \% + + + + + + 0 0
2	(2) (20 + + + + + + + + + + + + + + + + + +
3	(20) (2) (2)
4	
5	\%(\%) (2) (2)
6	
	2

Figure 20. Residuals from the analysis shown in Figure 19. The size of the symbol indicates its relative magnitude.

Figure 21. Mean selection at 'age' for 4VW haddock from 1970 to 1994. The solid line indicates the selection of 'age' 2 fish while the heavy dashed line shows the selection of age 3 fish. The thin dotted line shows the selection for 'age' 5 fish.

SM Retrospective Analysis 4VW Haddock 7 ages, $10-70 \mathrm{~cm}$. Ave F, ages 23456

SM Retrospective Analysis 4VW Haddock 7 ages, $10-70 \mathrm{~cm}$. Tot. Biomass, ages 23456

Figure 22. Retrospective analysis using 'age' structure generated by the most recent Qmodel / slicing results.

Figure 23. Retrospective analysis using 'age' structure updated for each of the truncated data sets generated for the retrospective analysis.

Figure 24. Mean length of haddock caught during the summer (July) surveys conducted between 1970 and 1994. The solid line are the results from the survey measurements, while the dotted line are those lengths derived from the aging of haddock caught in the survey.

4VW HADDOCK

Figure 25. Mean weight of haddock caught in the summer (July) surveys.

4VW Haddock

Figure 26. Mean and ranges of lengths and ages of haddock in the catch and in the summer (July) surveys.

Figure 27. Estimates of Spawning Stock Biomass derived from survey estimates of population abundance, and assuming knife-edged maturity schedules.

Figure 28. Stock and recruitment relationships as derived from VPA and from survey data for 4VW haddock.

