Not to be cited without permission of the authors ${ }^{1}$

DFO Atlantic Fisheries
Research Document 95/116

Ne pas citer sans
autorisation des auteurs ${ }^{1}$
MPO Pêches de l'Atlantique
Document de recherche 95/116

# STATUS OF THE ATLANTIC SALMON STOCK ON FORTEAU RIVER, 1994 

by

S.L. Lowe and C.C. Mullins<br>Department of Fisheries and Oceans<br>Science Branch<br>P.O. Box 2009<br>Corner Brook, Newfoundland A2H 4B4

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.


#### Abstract

This is the first assessment of the status of Atlantic salmon stocks on the Forteau River which is the second largest of the three scheduled salmon rivers in southern Labrador, Salmon Fishing Area (SFA) 14(B). In 1994, a counting fence was installed on the Forteau River at the mouth of First Pond. Returns to the counting fence and catches in the recreational fishery indicated that Forteau River had a returning population of 535 large and small Atlantic salmon in 1994. Preliminary target spawning requirements were derived for Forteau River on the basis of the accessible rearing habitat described by Anderson (1985) from the tributaries which were visible on 1:250,000 scale topographic maps and the habitat accessible on additional tributaries which were visible on 1:50,000 scale topographic maps (SPANS GIS). The potential egg deposition by Atlantic salmon on the Forteau River in 1994 was $62-96 \%$ of the preliminary target spawning requirement. These values were above estimates for 1990-1992, but below the percentage of targets achieved in most years prior to 1990. Recreational and commercial catches of salmon in 1994 supports the conclusion of relatively low abundance compared to previous years. The recreational catch of small salmon on Forteau River in 1994 was above the 1992-1993 mean but below the 1978-1983 and 1984-1991 means. Recreational effort in 1994 was above the 1978-1983, 1984-1991 and 1992-1993 means but CPUE was below the 1978-1983, 1984-1991 and 1992-1993 means. The commercial salmon fishery in SFA 14(B) landed only 5.4 t of the 8.0 t quota in 1994.


## RÉSUMÉ

On trouvera ci-après la première évaluation des stocks de saumon de l'Atlantique pour la rivière Forteau, qui est, en importance, la deuxième des trois rivières réglementées de la zone de pêche du saumon (ZPS) 14(B), dans le sud du Labrador. En 1994, une barrière de dénombrement avait été installée dans cette rivière, à l'embouchure de l'étang First. Les montaisons jusqu'à cette barrière et les prises des pêcheurs sportifs révélaient que la population de grands et de petits saumons revenus dans la rivière en 1994 s'établissait à 535 . Les besoins-cibles de reproducteurs ont été établis de façon préliminaire en fonction de l'habitat d'élevage accessible décrit par Anderson (1985) d'après les tributaires visibles sur des cartes topographiques à l'échelle 1/250 000 et d'après les autres tributaires visibles sur des cartes topographiques à l'échelle $1 / 50000$ (SIG SPANS). La ponte potentielle des saumons de l'Atlantique dans la rivière Forteau en 1994 se chiffrait à 62-96 \% de la cible préliminaire. Ces pourcentages étaient supérieurs aux estimations de 1990-1992, mais inférieurs aux pourcentages obtenus dans la plupart des années antérieures à 1990 . Les prises sportives et commerciales de saumon de 1994 confirment que l'abondance est relativement faible par rapport aux années antérieures. Les prises sportives de petits saumons dans la Forteau en 1994 étaient supérieures à la moyenne de 1992-1993, mais inférieures à celles de 1978-1983 et de 1984-1991. L'effort des pêcheurs sportifs en 1994 a été supérieur aux moyennes de 1978-1983, 1984-1991 et 1992-1993, mais les PUE étaient inférieures au moyennes de ces trois périodes. Les pêcheurs commerciaux de saumon de la ZPS 14(B) n'ont débarqué que 5,4 t de saumon, sur un quota de 8 t , en 1994.

## INTRODUCTION

The Forteau River is one of the three schedule salmon rivers in the Salmon Fishing Area (SFA) 14(B) (Figure 1). The Forteau River flows into Forteau Bay (Figure 2), in the Strait of Belle Isle at latitude $59^{\circ} 29^{\prime} \mathrm{N}$ and longitude $56^{\circ} 58^{\prime} \mathrm{W}$. The Forteau River has a drainage area of $389 \mathrm{~km}^{2}$, it drains from a barren plateau with a basin relief of 336 m and has the total axial length (including tributaries) of 198 km (Anderson 1985).

The Forteau River has supported a recreational salmon fishery at least since 1954, when angling catch and effort statistics were first recorded (Table 1), and has supported guiding and outfitting operations since the 1960s. Currently, many anglers are attracted to southern Labrador rivers primarily for the opportunity to retain large salmon which has been prohibited on the island of Newfoundland since 1984. The angling effort on the Forteau River has shown an overall increase since 1954 (Figure 3). However, the catch, particularly of large salmon, has declined since 1970 (Figure 3). The low catch-per-unit-effort (CPUE) in recent years combined with the decline in the percentage of large salmon angled (Table 1) has resulted in a great deal of concern for the status of the Forteau River salmon stock among local anglers and interest groups.

Similar concern has been expressed over the status of salmon stocks in SFA 14(B) in general (Mullins and Jones 1992). Recreational catches of small and large salmon and CPUE on the Pinware River which produces about $68 \%$ of the small salmon and $90 \%$ of the large salmon recreational catches in SFA 14(B) (Table 2) have also declined compared to historical levels (Table 2).

A recreational fishery quota of 1,100 small and large salmon was imposed on southern Labrador rivers in 1992 to help conserve the stocks (Mullins and Jones 1993) (Table 3). The quota was increased to 1,400 fish in 1993, but the seasonal and daily bag limits were reduced (Mullins and Caines 1994). The quota was removed in 1994 but the seasonal bag limit was reduced from eight small and large salmon in 1992-1993 to six in 1994. The daily bag limit increased from one in 1993 to two salmon per day in 1994. The number of large salmon ( $>=63 \mathrm{~cm}$ ) allowed to be retained was reduced from four in 1993, to only two per license in 1994.

Several major management changes were also implemented in the Newfoundland and Labrador commercial salmon fisheries in recent years which appeared to result in some improvements in the status of SFA 14(B) stocks, particularly for large salmon (Mullins and Caines 1994; Mullins and Jones 1993). The number of licensed fishermen was reduced from 54 in 1992 to 13 in 1994, and the commercial salmon quota which was introduced in SFA 14 in 1990 (60t) was reduced to $15 t$ for SFA 14(B) in 1992 and then to 8 t in 1993 and 1994 (Table 3). The Northern Cod moratorium introduced in 1992 and the closure of the cod fishery in NAFO area 4 R in 1993 should also have helped reduce the fishing mortality on SFA 14(B) stocks by eliminating the by-catch of southern Labrador origin salmon in SFAs $1 \& 2$ and SFA 14(A).

This document represents the first assessment of the status of the Atlantic salmon stock on the Forteau River and is the first individual river assessment in southern Labrador, SFA 14(B). The status of the salmon stock on Forteau River in 1994 is assessed relative to the preliminary target spawning requirements developed for the river based on estimated available rearing habitat and in comparison to estimates of salmon abundance in 1975-1993.

## MATERIALS AND METHODS

## Recreational Fishery

Weekly salmon angling reports were completed by the Department of Fisheries and Oceans (DFO) river guardians and fishery officers for the entire angling season in 1994. The angling statistics in southern Labrador rivers, as in previous years, included the catches and effort of local angling camps. Water levels, observed and estimated rod-days of effort, and observed and estimated numbers of small and large salmon retained and released are recorded on a daily basis. One rod-day is the fishing effort expended by one angler during all or part of one day; two or more fishing periods by the same angler of the same day are counted as one rod-day. The observed data represent actual observations by the River Guardians or Fisheries Officers and those reported to them by others (mostly through conversations with anglers). Estimated data represent effort and catches for days when the river was not patrolled or while patrolling other areas. These estimates were based on the individual's knowledge of the migratory pattern of the salmon stock, local weather conditions, water levels, and patterns of local angling effort.

Salmon catches in the recreational fishery were categorized into small and large size groups. The criteria for small and large salmon designations are as follows:

Small (grilse) - < 63 cm fork length
Large $\quad->=63 \mathrm{~cm}$ fork length
The timing of the recreational catches of small and large salmon were based on summaries by standardized weeks (Table 4).

## Returns of Atlantic salmon to the Forteau River

A counting fence (Anderson and MacDonald 1978) and steel-frame-trap was installed on the Forteau River near the outflow of First Pond (Figure 2). The counting fence was installed and operated from 25 June until 3 October 1994. Due to the low attraction flow through the counting trap, on 7 July the fence and trap were relocated about 30 m downstream from the original location. On 23 July, a video counting system was installed next to the counting trap in order to improve the upward passage of fish. This system consisted of a stationary underwater camera
(enclosed in a waterproof casing), placed in a wooden channel at an opening in the counting fence. Salmon passing upstream through the channel were recorded on VHS tapes which were later reviewed for enumeration. The video counting system allowed for barrier-free upstream migration. The total returns to the river were determined based on enumerations at the counting fence and the number of salmon angled below the counting fence.

The counting fence was checked daily at $0800,1200,1600$, and 2000 hours. All species captured were identified, enumerated and released. Salmon were classed as small or large using a 63 cm fluorescent orange stick resting in the bottom of the counting trap. Salmon recorded by the camera system were not measured. Air and water temperatures (C) and water level (cm) were recorded during each trap check.

## Biological characteristics of the Forteau River Atlantic salmon

Biological characteristics of salmon on the Forteau River were obtained from fish landed in the recreational fishery in 1975-1994. These were sampled for fork length to the nearest 0.1 cm , whole weight to the nearest 0.1 kg and sex determination by internal examination. Scale samples were obtained for age determination from the left side of the salmon in an area above the lateral line and in line from the posterior edge of the dorsal fin to the anterior edge of the anal fin. Approximately 10-15 scales were collected. The river-age, sea-age and evidence of previous spawning were determined according to the method described by Anonymous (1984). Salmon that passed through the counting fence in 1994 were not sampled.

## Estimation of Angling Exploitation Rate

The distribution of recreational catches and effort on the Forteau River appeared to be influenced by the presence of the counting fence in 1994. However, it is assumed that the effect on the overall exploitation rate was not significant. The exploitation rate (ER) in 1994 was calculated based on the total retained catch of salmon above and below the counting fence and the total returns to the river.
$E R=\frac{(\text { total \# of salmon retained below and above the counting fence) }}{(\# \text { of salmon counted at the fence })+(\text { total \# of salmon retained below the counting fence })}$

## Estimation of Spawning Escapement and Potential Egg Depositions

The spawning escapement in 1994 was obtained by subtracting the recreational catch of small salmon retained above the counting fence from the total returns to the counting fence. Total returns and spawning escapements in 1975-1993 were estimated from angling catches based on the angling exploitation rate in 1994.

The potential egg depositions were calculated on the basis of the total spawning escapement, observed biological characteristics collected from salmon retained in the recreational fishery (mean whole weight of females, percent females) and mean fecundity of $1,783 \mathrm{eggs} / \mathrm{kg}$ of body weight (Chadwick et al. 1986). This fecundity value represents a maximum value because of the potential for egg loss due to atresia (O'Connell et al. 1991). (NOTE: Ovary samples were collected in 1994 from salmon retained in the recreational fishery. These samples will subsequently be used to verify the relative fecundity value for Atlantic salmon on the Forteau River used in this document).

## Estimation of Target Egg Deposition Requirements

The target egg deposition requirement for conservation of Atlantic salmon stocks on the Forteau River was estimated based on an optimum egg deposition rate of $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ (Elson 1975) of fluvial parr rearing habitat and 105 eggs/ha of lacustrine area (O'Connell et al. 1991). The total fluvial habitat available was previously estimated at $1,462 \mathrm{~m}^{2}$ rearing units (one unit $=$ $100 \mathrm{~m}^{2}$ ) from a $1: 250,000$ scale topographical map and a helicopter survey (Anderson 1985). However, the total axial length of accessible tributaries not included in this estimation of rearing units was approximately 61.4 km (Appendix 1), measured from a 1:50,000 scale topographical map with SPANS GIS (Figure 2). Rearing units for these additional streams were estimated based on mean stream widths of one and three metres to give a total for the river (Appendix 1). The actual width of these additional tributaries will be determined in 1995 and a single target will be derived. The total available lacustrine area ( 520 ha ) was measured from digitized 1:50,000 scale topographic maps (Figure 2, Appendix 1).

## RESULTS

## Recreational Fishery

Recreational effort on the Forteau River in 1994 was $30.4 \%$ above that in 1993, 62.7\% above the 1984-1991 mean, and $100.4 \%$ above the 1978-1983 mean, but the total catch of small and large salmon decreased by $35 \%$ compared to 1993, $16 \%$ compared to the 1984-1991 mean, and $30.8 \%$ compared to the 1978-1983 mean (Table 1). The catch of small salmon in 1994 was $2.3 \%$ above the 1992-1993 mean, but $18.5 \%$ below the 1984-1991 mean and $32.4 \%$ below the 1978-1983 mean. The catch of large salmon in 1994 was $85 \%$ below the 1992-1993 mean, $71 \%$ below the 1984-1991 mean and $81 \%$ below the 1978-1983 mean (Table 1).

The increase in angling effort in 1994 combined with decreased catches does not appear to follow the trend of effort and catch in previous years in which both the effort and catch increased or decreased together in the same year (Figure 3). This change in the established pattern based on historical catch statistics may have been caused by the presence of the counting fence on
the river which resulted in angler expectation that fish were being prevented from moving upstream and would be easier to catch. The catch of small salmon on the Forteau River in 1994 represented the highest proportion of the SFA 14(B) catch ( $44.6 \%$ ) since 1964 (Table 1).

Peak angling catches of small salmon below the counting fence on Forteau River in 1994 occurred in standardized (Table 4) week 29 (Figure 4), whereas, peak counts of small salmon at the fence occurred in week 30 (Figure 5) suggesting that the fence may have caused a slight delay in upstream migration. Catches of small salmon above the counting fence occurred in week 36 (Figure 6).

## Commercial Fishery.

Only $5.4 \mathrm{t}(68 \%)$ of the 8 t commercial salmon quota was caught in 1994 when the fishery closed on 5 October, whereas, the 8 t quota in 1993 was taken on 28 July suggesting lower abundance of fish in 1994.

Public consultations held with commercial salmon fishermen in the fall of 1994 indicated that much of the commercial catch in 1994 was composed of larger salmon than in previous years.

## Returns and Spawning Escapements to the Forteau River.

A total of 228 small salmon and 74 large salmon were enumerated at the counting fence on Forteau River in 1994 (Table 5). Eight small salmon were observed below the counting fence when it was removed, and were included in the total count. The highest daily count of small salmon was on 26 July and 18 July for large salmon (Figure 7). The period of peak counts coincided with the highest water temperatures and lowest water levels at the fence (Figure 8).

The total returns (including angling catches below the fence) to the Forteau River in 1994 were 458 small salmon and 77 large salmon or 535 fish in total (Table 6).

A total of 309 small and four large salmon were angled and retained above and below the counting fence, resulting in a spawning escapement of 149 small and 73 large salmon (Table 6).

## Estimation of Angling Exploitation Rate

A total of 233 small and large salmon were angled and retained immediately below the counting fence in 1994 (Table 6). This represented an angling exploitation rate of 0.4355 on the returning population. In comparison, only 80 of the 302 small and large salmon counted at the fence were retained above, representing an angling exploitation rate of only 0.2649 (Table 6). This difference in the exploitation rate above and below the counting fence was the result of a combination of a delay in peak counts at the fence compared to catches below the fence and the concentration of angling effort in this area compared to previous years according to local Fisheries Officers.

On the basis of total returns and angling catches of small and large salmon on the Forteau River in 1994, the angling exploitation rate on small salmon was 0.6747 (309/458) and 0.0519 (4/77) on large. The angling exploitation rate for small and large salmon combined was 0.5850 (313/535). The combined value was used to estimate returns of both small and large salmon in 1975-1993 because restrictions on the daily bag limit of large salmon would have affected the catch of large salmon in 1994 compared to previous years.

## Biological Characteristics

Large salmon angled on the Forteau River in 1994, had an average fork length of 68.7 cm $(\mathrm{n}=3)$ and small salmon had an average fork length of $55.1 \mathrm{~cm}(\mathrm{n}=110)$ which were similar to the fork length of large and small salmon angled in 1975-1993 (Table 7). The sex composition of large salmon on the Forteau River is $53.3 \%$ (16/30) female based on angling catches in 1979-1994 (Table 7). This is quite low compared to $78.5 \%$ (139/177) female angled on the Pinware River in 1980-1994. (Table 8). However, the sex composition of small salmon on the Forteau in 19751994 was $64.2 \%$ (39/59) female (Table 7) which is almost twice the 1974-1994 value of $36.1 \%$ for Pinware in 1974-1994 (Table 8). The mean whole weight of female salmon on Forteau River was $1.75 \mathrm{~kg}(\mathrm{n}=310)$ for small in 1975-1994 and $3.85 \mathrm{~kg}(\mathrm{n}=15)$ for large in 1979-1994 (Table 7). Egg depositions on the Forteau River in 1994 were calculated based on the percentage female and mean weight of females measured in 1994 if the sample size was greater than 30 , otherwise, the overall means were used (Table 7).

The smolt age of salmon on the Forteau River was similar for large and small salmon and averaged $4.1(\mathrm{n}=694)$ overall in 1975-1994 (Table 7). Smolt ages of large and small salmon ranged from two to six years with approximately $80 \%$ at age 4 (Table 9).

The sea age of $99.3 \%$ of the small salmon sampled in the recreational fishery on the Forteau River in 1975-1994 was one-sea-winter (1SW) (Table 10). The remaining $0.7 \%$ were consecutive spawning 1SW fish (Table 10). Large salmon on the Forteau River were $56.7 \%$ virgin multi-sea-winter with the remainder being repeat spawning 1 SWs ( $30 \%$ ) and MSWs
(13.3\%) (Table 10). Forteau River depends heavily on repeat spawners for egg deposition compared to Pinware River, the only other large river system in SFA 14(B) (Table 10). Large salmon on the Pinware were $93.6 \%$ MSW (Table 10).

## Estimation of Target Spawners and Potential Egg Deposition

Currently, two preliminary egg deposition targets have been derived for Forteau River: 544,200 eggs (target 1) and 838,920 eggs (target 2) (Table 11). Based on the biological characteristics of female salmon in 1975-1994, sufficient female to achieve these targets would come from spawning escapements of 260 ( 247 small and 14 large) and 402 ( 381 small and 21 large), respectively (Table 11).

The potential egg deposition for small and large salmon achieved in the Forteau River in 1994, was approximately 523,477 eggs or $96 \%$ of target 1 and $62 \%$ of target 2 (Table 12).

The percentage of the target eggs achieved on Forteau River in 1994 was slightly above the percentage achieved in 1990-1992 but below most years since 1975 (Table 13). The largest returns of small salmon on the Forteau River were in 1976 but returns have been on a downward trend in recent years (Figure 9).

Returns of small salmon to the Forteau River in 1994 were produced primarily by spawners in 1988 on the basis of an average smolt age of 4 years. Returns in 1994 were only $20 \%$ above the corresponding spawning escapement in 1988 (Table 13). On the basis of the relatively low spawning escapements (year i-6) which will contribute to returns in 1995-2000 (Figure 9), it is not anticipated that the current trend of low returns to the Forteau River will change in the next six years.

## DISCUSSION

The abundance of small and large salmon on the Forteau River in 1994 was low compared to previous years. This is reflected in both the low recreational and commercial fishery catches as well as in the total returns to the river relative to those for most previous years.

The recreational catches of both small and large salmon on the Forteau River in 1994 were below those in 1993 and below the 1978-1983 and 1984-1991 means. Catches would probably have been even lower if angling effort had not increased by $23 \%$. Catches of large salmon in 1994 were also much lower than the 1992-1993 mean, maybe as a result of the reduction in the seasonal bag limit from four large salmon in 1993 to 2 in 1994 (no seasonal bag limit was in place in 1992). However, because angling effort increased in 1994, compared to 1992 and 1993, the decrease in catches of large salmon may be more reflective of relatively low abundance. The
majority of angling catches in 1994 were removed from the pool located just below the counting fence. For 1995, this pool should be closed to angling, in order to prevent any increase in exploitation because of the counting fence. Given the current status of the stock compared to previous years, closure of this pool would benefit to the river by increasing the spawning escapement.

The method used to calculate the target spawning requirements for the Forteau River in 1994 have a number of limitations which are difficult to quantify. These include the effect of habitat preference of juvenile salmon; the atresia of eggs in the ovary; the dispersal of juveniles from the spawning grounds; and the interaction of anadromous and landlocked forms. These limitations are discussed in detail in O'Connell et al. (1991). However, the method is accepted as a reasonable standard for the evaluation of stock status. In addition, estimates of the accessible rearing habitat, which were taken from published reports, are based solely on aerial surveys. In order to firmly establish the conservation targets necessary to ensure a healthy salmon stock on the Forteau River, a stream survey should be completed in 1995 to verify the aerial survey estimates of the total area available to salmon.

Much has been learned from this initial assessment of the status of the salmon stock on the Forteau River and about stocks in SFA 14(B) in general. However, the returns of salmon to this river should continue to be monitored until conservation targets are established and until it can be determined whether or not the recent fishery management measures implemented in this area will result in improvements to the status of the stocks.

## ACKNOWLEDGEMENTS

This study was funded by a grant from the Canada/Newfoundland Agreement for Salmonid Enhancement and Conservation (CASEC) and sponsored by the Southern Labrador Development Association, Forteau, Labrador. The authors also gratefully acknowledge the assistance of P . Caines in installing the counting fence, A. Walsh for installing the camera system, and the Forteau Salmon Lodge for collecting scale samples and ovary samples from their salmon catches.

## REFERENCES

Anderson, T.C.. 1985. The Rivers of Labrador. Fisheries and Oceans Scientific Information and Publication Division. 389 pages.

Anderson, T.C. and B.P. MacDonald. 1978. A portable weir for counting migrating fishes in rivers. Can. Fish. Mar. Serv. Tech. Rep. 733.

Anonymous. 1984. Atlantic salmon scale reading. ICES Report of the Atlantic salmon scale reading workshop. Aberdeen, Scotland, 23-28 April, 1984.

Chadwick, E.M.P., R.G. Randall, and C. Léger. 1986. Ovarian development of Atlantic salmon (Salmo salar) smolts and age at first maturity. p.15-23. In D.J. Meerburg [ed.] Salmonid age at maturity. Can. Spec. Publ. Fish. Aquat. Sci. 89.

Elson, P.F. 1975. Atlantic salmon rivers, smolt production and optimal spawning; an overview of natural production. Int. Atl. Sal. Found. Spec. Publ. Ser. 6: 96-119.

Mullins, C.C., and D. Caines. 1994. The Status of Atlantic salmon stocks in Gulf of St. Lawrence, western Newfoundland and southern Labrador, 1993. DFO Atlantic Fish. Res. Doc. 94/83: 29p.

Mullins, C.C., and R.A. Jones. 1993. The status of Atlantic salmon stocks in Gulf of St. Lawrence, western Newfoundland and southern Labrador, 1992. CAFSAC Research Document 93/33: 57p.

Mullins, C.C., and R.A. Jones. 1992. The status of Atlantic salmon stocks in Gulf Region, western Newfoundland and southern Labrador, 1991. CAFSAC Research Document 92/78: 64p.

O'Connell, M.F., J.B. Dempson, and R.J. Gibson. 1991. Atlantic salmon (Salmo salar L.) smolt production parameter values for fluvial and lacustrine habitats in insular Newfoundland. CAFSAC Res. Doc. $91 / 19,11$ p.

Table 1. Recreational effort and catch (retained and released) of Atlantic salmon on the Forteau River, 1954-1994 and percent of SFA 14(b).

| Year | Effort |  | Small salmon |  | Large salmon |  | Total Catch | $\begin{array}{r} \text { \% } \\ \text { Large* } \end{array}$ | CPUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rod-days | SFA | Ret. | Rel. \%SFA | Ret. | Rel. \%SFA |  |  |  |
| 1954 | 67 |  | 126 |  | 128 | - | 254 |  | 3.79 |
| 1955 | 394 | 86.4 | 139 | - 89.7 | 242 | - 99.2 | 381 | 65.8 | 0.97 |
| 1956 | 306 | 86.4 | 157 |  | 197 | - | 354 | 58.6 | 1.16 |
| 1957 | 324 | 94.2 | 184 | . 80.7 | 287 | - 99.7 | 471 | 64.6 | 1.45 |
| 1958 | 254 | 92.4 | 502 | - 95.4 | 50 | . 100.0 | 552 | 21.4 | 2.17 |
| 1959 | 261 |  | 497 | . . | 95 | . . | 592 | 15.9 | 2.27 |
| 1960 | 244 |  | 385 | - ${ }^{\circ}$ | 52 | - 98 | 437 | 9.5 | 1.79 |
| 1961 | 430 | 91.3 | 455 | - 97.4 | 110 | - 98.2 | 565 | 22.2 | 1.31 |
| 1962 | 301 | 89.6 | 401 | - 82.5 | 63 | - 96.9 | 464 | 12.2 | 1.54 |
| 1963 | 327 | 53.7 | 271 | - 64.4 | 64 | - 46.0 | 335 | 13.8 | 1.02 |
| 1964 | 534 | 44.3 | 391 | - 46.9 | 129 | - 38.5 | 520 | 32.3 | 0.97 |
| 1965 | 737 | 46.2 | 336 | - 41.9 | 84 | - 21.5 | 420 | 17.7 | 0.57 |
| 1966 | 1065 | 45.5 | 466 | - 34.9 | 137 | - 39.8 | 603 | 29.0 | 0.57 |
| 1967 | 937 | 49.3 | 459 | . 40.9 | 153 | - 38.8 | 612 | 24.7 | 0.65 |
| 1968 | 898 | 40.2 | 568 | - 34.5 | 118 | - 33.1 | 686 | 20.5 | 0.76 |
| 1969 | 873 | 43.1 | 525 | . 41.5 | 83 | - 30.4 | 608 | 12.7 | 0.70 |
| 1970 | 1351 | 52.8 | 629 | . 40.2 | 13 | 4.0 | 642 | 2.4 | 0.48 |
| 1971 | 703 | 27.5 | 342 | - 36.9 | 24 | 9.7 | 366 | 3.7 | 0.52 |
| 1972 | 886 | 37.6 | 178 | - 42.1 | 5 | 6.3 | 183 | 1.4 | 0.21 |
| 1973 | 1151 | 39.8 | 472 | 33.0 | 20 | 4.6 | 492 | 10.1 | 0.43 |
| 1974 | 785 | 28.9 | 258 | - 34.9 | 14 | 4.8 | 272 | 2.9 | 0.35 |
| 1975 | 748 | 34.3 | 284 | - 26.6 | 7 | 4.5 | 291 | 2.6 | 0.39 |
| 1976 | 1482 | 38.0 | 818 | - 32.7 | 19 | 6.1 | 837 | 6.3 | 0.56 |
| 1977 | 1367 | 34.9 | 612 | - 36.8 | 32 | 5.4 | 644 | 3.8 | 0.47 |
| 1978 | 925 | 38.3 | 164 | - 28.6 | 19 | - 10.4 | 183 | 3.0 | 0.20 |
| 1979 | 996 | 46.3 | 394 | - 43.7 | 27 | - 22.7 | 421 | 14.1 | 0.42 |
| 1980 | 799 | 32.3 | 339 | - 36.1 | 31 | 9.2 | 370 | 7.3 | 0.46 |
| 1981 | 1159 | 34.6 | 540 | 31.8 | 23 | 10.5 | 563 | 6.4 | 0.49 |
| 1982 | 1259 | 38.4 | 557 | 43.8 | 14 | 17.5 | 571 | 2.5 | 0.45 |
| 1983 | 1529 | 43.3 | 748 | 37.4 | 14 | 10.8 | 762 | 2.5 | 0.50 |
| 1984 | 1336 | 33.4 | 402 | - 40.7 | 18 | 9.7 | 420 | 2.3 | 0.31 |
| 1985 | 1114 | 30.4 | 317 | - 29.0 | 7 | 7.0 14.7 | 324 | 1.7 | 0.29 |
| 1986 | 1458 | 31.4 | 356 | 33.2 | 27 | 14.7 98 | 383 558 | 7.8 5.6 | 0.2 |
| 1987 | 1368 | 27.4 | 537 | 28.5 | 21 | 9.8 | 558 | 5.6 | 0.4 |
| 1988 | 1765 | 30.9 | 538 | 33.8 | 24 | 9.6 | 562 | 4.3 | 0.32 |
| 1989 | 1478 | 30.2 | 355 | 30.3 | 6 | 11.3 | 361 | 1.1 | 0.2 |
| 1990 | 1261 | 24.8 | 324 | 30.4 | 7 | 7.1 | 331 | 1.9 | 0.2 |
| 1991 | 1161 | 28.9 | 205 | 17.8 | 3 | - 6.1 | 208 | 0.9 | 0.1 |
| 1992 | 1271 | 27.5 | 219 | $23 \quad 25.6$ | 9 | $0 \quad 3.8$ | 251 | 4.2 | 0.2 |
| 1993 | 1707 | 32.2 | 385 | $78 \quad 36.8$ | 43 | $4 \quad 17.8$ | 510 | 16.4 | 0.3 |
| 1994 | 2226 | 38.3 | 309 | $18 \quad 44.6$ | 4 | $0 \quad 4.0$ | 331 | 1.0 | 0.1 |

MEANS, $95 \%$ CONFIDENCE LIMITS AND N'S PRECEDING 1992:

| Mean(78-83) | 1111 | 38.9 | 457 |  | 36.9 | 21 |  | 13.5 | 478 | 6.0 | 0.42 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95\% $\mathrm{CL}=+/-$ | 836 | 33.4 | 244 |  | 30.5 | 14 |  | 7.8 | 269 | 1.2 | 0.30 |
| N | 6 | 6 | 6 |  | 6 | 6 |  | 6 | 6 | 6 | 6 |
| Mean(84-91) | 1368 | 29.7 | 379 |  | 30.5 | 14 |  | 9.4 | 393 | 3.2 | 0.29 |
| 95\%CL $=+/-$ | 1195 | 27.5 | 285 |  | 25.1 | 6 |  | 7.1 | 293 | 1.2 | 0.23 |
| N . | 8 | 8 | 8 |  | 8 | 8 |  | 8 | 8 | 8 | 8 |
| Mean(92-93) | 1489 | 29.9 | 302 | 51 | 31.2 | 26 | 2 | 10.8 | 381 | 10.3 | 0.25 |
| 95\% $\mathrm{CL}=+/-$ | 1281 | 0 | 753 | 299 | 40 | 190 | 23 | 78 | 1265 | 67 | 0 |
| N | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |

[^0]Table 2. Recreational effort and catch (retained and released) of Atlantic salmon on the Pinware River, 1964-1994, and percent of SFA 14(b).

| Year | Effort |  | Small salmon |  | Large salmon |  | $\begin{gathered} \text { Total } \begin{array}{c} \% \\ \text { Catch Large* } \end{array} \end{gathered}$ |  | CPUE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rod-days | \%SFA | Ret. | Rel. \%SFA | Ret. | Rel. \%SFA |  |  |  |
| 1964 | 672 | 55.7 | 443 | 53.1 | 206 | 61.5 | 649 |  | 0.97 |
| 1965 | 859 | 53.8 | 465 | 58.1 | 307 | - 78.5 | 772 | 40.9 | 0.90 |
| 1966 | 1274 | 54.5 | 871 | 65.1 | 207 | - 60.2 | 1078 | 30.8 | 0.85 |
| 1967 | 964 | 50.7 | 662 | 59.1 | 241 | . 61.2 | 903 | 21.7 | 0.94 |
| 1968 | 1335 | 59.8 | 1077 | 65.5 | 238 | . 66.9 | 1315 | 26.4 | 0.99 |
| 1969 | 1154 | 56.9 | 740 | 58.5 | 190 | - 69.6 | 930 | 15.0 | 0.81 |
| 1970 | 1207 | 47.2 | 937 | 59.8 | 308 | - 96.0 | 1245 | 29.4 | 1.03 |
| 1971 | 1556 | 68.9 | 585 | - 63.1 | 223 | - 90.3 | 808 | 19.2 | 0.52 |
| 1972 | 1471 | 62.4 | 245 | 57.9 | 75 | - 93.8 | 320 | 11.4 | 0.22 |
| 1973 | 1738 | 57.1 | 957 | 66.9 | 412 | - 95.4 | 1369 | 62.7 | 0.79 |
| 1974 | 1928 | 71.1 | 482 | 65.1 | 277 | - 95.2 | 759 | 22.4 | 0.39 |
| 1975 | 1432 | 65.7 | 785 | 73.4 | 147 | - 95.5 | 932 | 23.4 | 0.65 |
| 1976 | 2414 | 62.0 | 1680 | 67.3 | 291 | - 93.9 | 1971 | 27.0 | 0.82 |
| 1977 | 2551 | 65.1 | 1050 | 63.2 | 561 | - 94.6 | 1611 | 25.0 | 0.63 |
| 1978 | 1488 | 61.7 | 409 | 71.4 | 164 | - 89.6 | 573 | 13.5 | 0.39 |
| 1979 | 1153 | 53.7 | 507 | 56.3 | 92 | - 77.3 | 599 | 18.4 | 0.52 |
| 1980 | 1677 | 67.7 | 599 | 63.9 | 306 | - 90.8 | 905 | 37.6 | 0.54 |
| 1981 | 2194 | 65.4 | 1158 | 68.2 | 197 | - 89.5 | 1355 | 24.7 | 0.62 |
| 1982 | 2020 | 61.6 | 714 | 56.2 | 66 | - 82.5 | 780 | 5.4 | 0.39 |
| 1983 | 2000 | 56.7 | 1252 | 62.6 | 116 | - 89.2 | 1368 | 14.0 | 0.68 |
| 1984 | 2661 | 66.6 | 585 | - 59.3 | 167 | - 90.3 | 752 | 11.8 | 0.28 |
| 1985 | 1977 | 54.0 | 661 | . 60.5 | 88 | . 88.0 | 749 | 13.1 | 0.38 |
| 1986 | 2335 | 50.3 | 680 | 63.5 | 156 | - 84.8 | 836 | 19.1 | 0.36 |
| 1987 | 2774 | 55.6 | 1148 | 60.8 | 193 | . 89.8 | 1341 | 22.1 | 0.48 |
| 1988 | 2961 | 51.9 | 824 | 51.8 | 225 | - 89.6 | 1049 | 16.4 | 0.35 |
| 1989 | 2640 | 53.9 | 682 | 58.1 | 46 | . 86.8 | 728 | 5.3 | 0.28 |
| 1990 | 3099 | 61.1 | 654 | 61.4 | 91 | - 92.9 | 745 | 11.8 | 0.24 |
| 1991 | 2252 | 56.1 | 829 | 72.0 | 45 | . 91.8 | 874 | 6.4 | 0.39 |
| 1992 | 2868 | 61.9 | 628 | 3873.4 | 229 | $0 \quad 96.2$ | 875 | 21.6 | 0.31 |
| 1993 | 3158 | 59.6 | 654 | $336 \quad 62.5$ | 199 | $26 \quad 82.2$ | 853 | 24.1 | 0.27 |
| 1994 | 3075 | 52.9 | 373 | $68 \quad 53.8$ | 97 | 1096.0 | 470 | 12.9 | 0.15 |

MEANS, $95 \%$ CONFIDENCE LIMITS AND N'S PRECEDING 1992:

| Mean (78-83) | 1755 | 61.1 | 773 | . | 63.1 | 157 | . | 86.5 | 930 | 18.9 | 0.52 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $95 \% \mathrm{CL}=+/-$ | 1345 | 55.6 | 405 | . | 56.6 | 65 | . | 80.8 | 557 | 7.2 | 0.40 |
| $\mathbf{N}$ | 6 | 6 | 6 | . | 6 | 6 | . | 6 | 6 | 6 | 6 |
| Mean(84-91) | 2587 | 56.2 | 758 | . | 60.9 | 126 | . | 89.2 | 884 | 13.2 | 0.35 |
| $95 \% \mathrm{CL}=+/-$ | 2272 | 51.7 | 608 | . | 56.2 | 69 | . | 87.0 | 706 | 8.4 | 0.28 |
| N | 8 | 8 | 8 | . | 8 | 8 | . | 8 | 8 | 8 | 8 |
| Mean(92-93) | 3013 | 60.8 | 641 | 187 | 67.9 | 214 | 13 | 89.2 | 864 | 22.9 | 0.29 |
| $95 \% \mathrm{CL}=+/-$ | 1171 | 46 | 476 | 1706 | 1 | 23 | 152 | 0 | 724 | 7 | 0 |
| $\mathbf{N}$ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |

* Calculated by year of smolt migration.

Table 3. Commercial and recreational salmon fishery management measures implemented in Salmon Fishing Area (SFA) 14(b) in 1989-1994.

| 1989 | 1990 | 1991 | 1992 | 1993 | 1994 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Commercial | Commercial | Commercial | Commercial | Commercial | Commercial |
|  | - quota of 50t(10t)(SFA 14) | - quota of 15t | - quota of 13t | - quota of 8t | - quota of 8 t |
| - caught 38t (Oct. 15) | - caught 19 t of 50 t quota(Aug .) <br> -caught 4 t of 10 t quota | - caught 17t (Oct. 15) | - caught 13t (Jul. 6) | - caught 8t (Jul. 28) | - caught 5.4t(Oct. 5) |
| -number of licenses: 61 | - number of licenses: 59 | - number of licenses: 58 | - number of licenses: 54 | -number of licenses: 17 | -number of licenses 13 |
| Recreational | Recreational | Recreational | Recreational | Recreational | Recreational |
| - no quota <br> - caught 1226 salmon <br> - seasonal limit 15 salmon <br> - daily limit 2 | - no quota | - no quota | - quota of 1100 salmon | - quota of 1400 salmon | - no quota |
|  | - caught 1164 salmon | - caught 1201 salmon | - caught 1094 salmon | - caught 1289 salmon | - caught 794 |
|  | - seasonal limit 15 | - seasonal limit 10 salmon | - seasonal limit 8 salmon | - seasonal limit 8 salmon | - seasonal limit 6 salmon |
|  | - daily limit 2 | - daity limit of 2 salmon | - daily limit of 2 salmon | - daily limit of 1 salmon <br> - only 4 large salmon per license | - daily limit of 2 salmon <br> - only 2 large salmon per license |

Notes:
Commercial quotas from 1989-1991 are for SFA 14.
Commercial quota for 1990 of 50 for SFA 14; supplementary quota of 10 t for SFA 14(b) given after 50 t quota caught. SFA 14(b) caught total of 23 t .
Commercial quota in 1992-1993 for SFA 14(b)
Recreational quota in 1992-1993 for SFA 14(b) only.

Table 4. Standardized weeks used for analysis of Atlantic salmon run-timing.

| Week | Time period |
| :--- | :--- | :--- |
| 25 | June 18 to 24 |
| 26 | June 25 to July 1 |
| 27 | July 2 to 8 |
| 28 | July 9 to 15 |
| 29 | July 16 to 22 |
| 30 | July 23 to 29 |
| 31 | July 30 to August 5 |
| 32 | August 6 to 12 |
| 33 | August 13 to 19 |
| 34 | August 20 to 26 |
| 35 | August 27 to Sept. 2 |
| 36 | Sept. 3 to 9 |
| 37 | Sept. 10 to 17 |
| 38 | Sept. 24 to 33 |
| 39 | Oct. 1 to 7 |
| 40 |  |

Table 5. Daily counts of Atlantic salmon and trout and mean daily water level, water and air temperatures at the counting fence on the Forteau River, 1994.

| Atlantic salmon |  |  | Brook Trout | Water Level (cm) | Water Temp. (C) | Temp. <br> (C) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | $\begin{array}{r} \begin{array}{c} \text { Small } \\ (<63 \mathrm{~cm}) \end{array} \end{array}$ | $\begin{array}{r} \text { Large } \\ (=63 \mathrm{~cm}) \end{array}$ |  |  |  |  |
| 25-Jun | 0 | 0 | 0 | . | 10.0 | 17.0 |
| 26-Jun | 0 | 0 | 0 |  |  |  |
| 27-Jun | 0 | 0 | 0 | . | 10.0 | 12.0 |
| 28-Jun | 0 | 0 | 0 |  | 11.0 | 14.0 |
| 29-Jun | 0 | 0 | 0 | 76.0 | 12.0 | 13.0 |
| 30-Jun | 0 | 0 | 0 | 83.5 | 11.5 | 17.5 |
| 01-Jul | 0 | 0 | 0 | 84.5 | 13.0 | 21.0 |
| 02-Jul | 0 | 0 | 0 | 80.8 | 11.0 | 8.0 |
| 03-Jul | 1 | 0 | 0 | 77.5 | 11.0 | 11.0 |
| 04-Jul | 0 | 0 | 0 | 75.3 | 11.3 | 13.3 |
| 05-Jul | 0 | 0 | 0 | 70.3 | 13.7 | 16.0 |
| 06-Jul | 2 | 0 | 1 | 70.3 | 12.0 | 14.2 |
| 07-Jul | 0 | 0 | 0 |  |  |  |
| 08-Jul | 2 | 1 | 1 | 75.3 | 14.5 | 14.5 |
| 09-Jul | 0 | 0 | 0 | 72.0 | 16.0 | 19.3 |
| 10-Jul | 0 | 0 | 3 | 67.7 | 14.0 | 12.7 |
| 11-Jul | 0 | 1 | 8 | 65.4 | 13.5 | 18.5 |
| 12-Jul | 5 | 1 | 0 | 64.1 | 15.3 | 18.0 |
| 13-Jul | 1 | 1 | 2 | 61.4 | 14.5 | 14.3 |
| 14-Jul | 3 | 0 | 0 | 61.1 | 13.5 | 16.8 |
| 15-Jul | 3 | 3 | 0 | 60.4 | 14.3 | 17.8 |
| 16-Jul | 0 | 2 | 1 | 59.9 | 15.3 | 15.1 |
| 17-Jul | 5 | 2 | 1 | 58.8 | 14.1 | 16.3 |
| 18-Jul | 10 | 11 | 0 | 56.1 | 17.0 | 21.8 |
| 19-Jul | 6 | 4 | 0 | 53.5 | 16.3 | 17.5 |
| 20-Jul | 3 | 0 | 0 | 51.7 | 15.8 | 14.3 |
| 21 -Jul | 11 | 6 | 1 | 48.5 | 15.6 | 15.4 |
| 22-Jul | 7 | 5 | 0 | 47.3 | 14.6 | 12.3 |
| 23-Jul | 2 | 1 | 0 | 47.0 | 15.0 | 13.0 |
| 24-Jul | 8 | 3 | 0 | 45.8 | 14.3 | 10.8 |
| 25-Jul | 17 | 1 | 1 | 43.6 | 12.0 | 13.8 |
| 26-Jul | 18 | 5 | 0 | 43.0 | 16.3 | 18.0 |
| 27-Jul | 14 | 4 | 0 | 42.3 | 16.0 | 15.0 |
| 28-Jul | 7 | 2 | 0 | 43.0 | 15.3 | 18.3 |
| 29-Jul | 4 | 1 | 0 | 44.3 | 16.3 | 16.2 |
| 30-Jul | 4 | 1 | 0 | 44.1 | 17.5 | 19.0 |
| 31-Jul | 1 | 0 | 0 | 47.1 | 17.5 | 19.0 |
| 01-Aug | 13 | 1 | 0 | 47.1 | 17.8 | 16.5 |
| 02-Aug | 1 | 0 | 0 | 47.0 | 18.0 | 17.0 |
| 03-Aug | 3 | 0 | 0 | 47.5 | 17.8 | 17.0 |
| 04-Aug | 3 | 2 | 1 | 47.4 | 18.8 | 16.8 |
| 05-Aug | 8 | 3 | 4 | 46.6 | 18.3 | 19.8 |
| 06-Aug | 8 | 0 | 0 | 49.5 | 17.3 | 12.5 |
| 07-Aug | 4 | 2 | 2 | 51.9 | 17.3 | 16.0 |
| 08-Aug | 6 | 2 | 2 | 50.9 | 18.0 | 17.0 |
| 09-Aug | 0 | 0 | 0 | 50.3 | 17.5 | 16.3 |
| 10-Aug | 1 | 2 | 0 | 50.0 | 17.5 | 15.5 |
| 11-Aug | 11 | 1 | 0 | 48.4 | 18.0 | 14.8 |
| 12-Aug | 3 | 0 | 0 | 47.0 | 16.5 | 13.5 |
| 13-Aug | 1 | 0 | 0 | 45.0 | 16.8 | 15.8 |
| 14-Aug | 3 | 0 | 0 | 43.3 | 17.4 | 17.3 |

Note: Counting trap was moved on July 7.
(continued next page)

Table 5 (continued).

| Date | Atlantic salmon |  | Brook Trout | Water Level (cm) | Water Temp. (C) | Temp. <br> (C) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \begin{array}{c} \text { Small } \\ (<63 \mathrm{~cm}) \end{array} \end{gathered}$ | $\begin{array}{r} \text { Large } \\ (=>63 \mathrm{~cm}) \end{array}$ |  |  |  |  |
| 15-Aug | 1 | 0 | 1 | 44.8 | 16.8 | 14.5 |
| 16-Aug | 5 | 0 | 0 | 41.0 | 14.0 | 15.0 |
| 17-Aug | 0 | 0 | 0 | 40.5 | 15.8 | 14.8 |
| 18-Aug | 0 | 1 | 1 | 44.3 | 16.3 | 16.7 |
| 19-Aug | 0 | 0 | 5 | 43.0 | 17.5 | 17.5 |
| 20-Aug | 0 | 1 | 0 | 42.3 | 16.8 | 16.5 |
| 21-Aug | 0 | 0 | 0 | 41.0 | 15.3 | 15.0 |
| 22-Aug | 1 | 2 | 1 | 44.5 | 16.5 | 16.8 |
| 23-Aug | 0 | 0 | 0 | 45.0 | 16.5 | 16.0 |
| 24-Aug | 0 | 0 | 3 | 45.0 | 14.3 | 12.8 |
| 25-Aug | 0 | 0 | 0 | 43.0 | 14.7 | 14.0 |
| 26-Aug | 1 | 0 | 0 | 42.0 | 14.8 | 15.3 |
| 27-Aug | 0 | 0 | 0 | 45.0 | 14.0 | 11.8 |
| 28-Aug |  | 0 | 1 | 47.0 | 16.5 | 14.5 |
| 29-Aug | 1 | 0 | 0 | 46.8 | 14.8 | 12.5 |
| 30-Aug | 5 | 1 | 1 | 55.8 | 14.3 | 14.3 |
| 31-Aug | 0 | 0 | 0 | 64.0 | 13.7 | 14.3 |
| 01-Sep | 0 | 1 | 0 | 64.0 | 14.3 | 14.7 |
| 02-Sep | 0 | 0 | 0 | 62.0 | 14.7 | 15.0 |
| 03-Sep | 0 | 0 | 0 | 58.0 | 12.3 | 11.3 |
| 04-Sep | 2 | 0 | 3 | 57.0 | 13.0 | 12.3 |
| 05-Sep | 0 | 0 | 0 | 53.5 | 14.0 | 20.0 |
| 06-Sep | 1 | 0 | 4 | 50.1 | 14.0 | 14.8 |
| 07-Sep | 0 | 0 | 0 | 48.1 | 13.0 | 11.8 |
| 08-Sep | 0 | 0 | 1 | 49.8 | 13.5 | 15.3 |
| 09-Sep | 0 | 0 | 0 | 49.1 | 14.5 | 12.8 |
| 10-Sep | 0 | 0 | 0 | 49.1 | 14.5 | 11.5 |
| 11-Sep | 0 | 0 | 2 | 48.0 | 12.0 | 8.0 |
| 12-Sep | 1 | 0 | 2 | 52.8 | 11.3 | 7.0 |
| 13-Sep | 0 | 0 | 0 | 65.6 | 10.0 | 10.8 |
| 14-Sep | 1 | 0 | 2 | 73.0 | 11.0 | 11.3 |
| 15-Sep | 0 | 0 | 0 | 76.2 | 9.3 | 9.0 |
| 16-Sep | 0 | 0 | 1 | 74.8 | 9.0 | 8.7 |
| 17-Sep | 0 | 0 | 1 | 71.2 | 9.7 | 11.3 |
| 18-Sep | 0 | 0 | 1 | 71.2 | 11.7 | 9.7 |
| 19-Sep | 0 | 0 | 1 | 69.3 | 10.5 | 8.3 |
| 20-Sep | 0 | 0 | 1 | 68.8 | 10.3 | 9.8 |
| 21-Sep | 0 | 0 | 1 | 65.9 | 10.8 | 8.0 |
| 22-Sep | 0 | 0 | 1 | 63.3 | 10.3 | 6.7 |
| 23-Sep | 0 | 0 | 3 | 60.3 | 11.0 | 11.7 |
| 24-Sep | 0 | 0 | 0 | 57.5 | 10.7 | 14.0 |
| 25-Sep | 0 | 0 | 10 | 54.7 | 10.7 | 12.3 |
| 26-Sep | 0 | 0 | 9 | 51.8 | 11.8 | 13.3 |
| 27-Sep | 0 | 0 | 3 | 49.9 | 11.0 | 10.3 |
| 28-Sep | 1 | 0 | 1 | 47.0 | 10.0 | 5.8 |
| 29-Sep | 0 | 0 | 10 | 45.0 | 9.3 | 8.0 |
| 30-Sep | 0 | 0 | 1 | 42.8 | 9.3 | 7.8 |
| 01-Oct | 0 | 0 | 0 | 41.3 | 9.3 | 8.0 |
| 02-Oct | 0 | 0 | 0 | 43.0 | 8.7 | 8.0 |
| 03-Oct | 8 | 0 | 0 | 51.5 | 7.0 | 7.0 |
| Total | 228 | 74 | 99 |  |  |  |

Table 6. Total returns of small and large Atlantic salmon, spawning escapement, retained catch and effort, catch - per - unit-effort (CPUE), and angling exploitation rate (ER) above and below the counting fence on the Forteau River, 1994.

|  | Small <br> $(<63 \mathrm{~cm})$ | Large <br> $(>=63 \mathrm{~cm})$ | Angling <br> Effort <br> (rod days) | CPUE | ER |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. at fence | 228 | 74 | 302 |  |  |  |
| No. angled <br> Below Fence | 230 | 3 | 233 | 1803 | 0.13 | $0.4355(233 / 535)$ |
| Total returns | 458 | 77 | 535 |  |  |  |
| No. angled <br> Above Fence | 79 | 1 | 80 | 423 | 0.19 | $0.2649(80 / 302)$ |
| Spawning |  |  |  |  |  |  |
| Escapement | 149 | 73 | 222 |  |  |  |

Table 7. Biological Characteristics of small ( $<63 \mathrm{~cm}$ ) and large ( $>=63 \mathrm{~cm}$ ) virgin and repeat spawners Atlantic salmon of the Forteau River, 1975-1994. Information was collected from the recreational fishery.

|  | FORK LENGTH (cm) |  |  |  |  | fork length females em) |  |  |  |  | WHOLE WEIGHT (kg) |  |  |  |  | whole weight females (cm) |  |  |  |  | SEX- | FEMALE |  | Rivage |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | MEAN | MIN | MAX | STD | N | MEAN | min | MAX | STD | N | MEAN | MIN | MAX | STD | N | MEAN | MIN | MAX | STD |  | N | * | N | mean |
| $\begin{array}{ll} \text { SIZE } & \text { YY } \\ \text { Large } & 79 \end{array}$ | 2 | 75.0 | 75.0 | 75.0 | 0.0 | 0 |  |  |  |  | 2 | 4.10 | 4.10 | 4.10 | 0.00 | 0 |  |  |  |  | 2 | 0 |  |  | 4.0 |
|  | 10 | 72.9 | 67.0 | 78.0 | 3.8 | 7 | 72.6 | 67.0 | 78.0 | 4.2 | 10 | 4.07 | 3.00 | 4.50 | 0.49 | 7 | 3.99 | 3.00 | 4.50 | 0.56 | 10 | 7 | 70.0 | 10 | 3.8 |
| 81 |  | 69.9 | 63.0 | 79.5 | 7.2 | 2 | 71.0 | 68.0 | 74.0 | 4.2 | 7 | 3.80 | 3.00 | 4.80 | 0.63 | 2 | 4.65 | 4.50 | 4.80 | 0.21 | 7 | 2 | 28.6 | 7 | 3.6 |
| 90 | 3 | 70.0 | 65.0 | 78.0 | 7.0 | 1 | 67.0 | 67.0 | 67.0 |  | 3 | 3.37 | 2.20 | 5.00 | 1.46 | 1 | 2.90 | 2.90 | 2.90 |  | 3 | 1 | 33.3 | 3 | 4.0 |
| 91 | 1 | 69.2 | 69.2 | 69.2 |  | 1 | 69.2 | 69.2 | 69.2 |  | 1 | 3.00 | 3.00 | 3.00 |  | 1 | 3.00 | 3.00 | 3.00 |  | 1 | 1 | 100.0 | 1 | 4.0 |
| 93 | 6 | 72.5 | 63.0 | 77.0 | 5.5 | 3 | 76.7 | 76.0 | 77.0 | 0.6 |  | 3.68 | 2.30 | 4.70 | 0.86 | 3 | 4.27 | 3.70 | 4.70 | 0.51 | 5 | 3 | 60.0 | 6 | 4.2 |
| 94 | 3 | 68.7 | 63.0 | 79.0 | 9.0 | 2 | 71.5 | 64.0 | 79.0 | 10.6 | 1 | 1.86 | 1.86 | 1.86 |  |  | 1.86 | 1.86 | 1.86 |  | 2 | 2 | 100.0 | 3 | 4.3 |
| 79-93 | 29 | 71.8 | 63.0 | 79.5 |  | 14 | 72.8 | 67.0 | 78.0 |  | 29 | 3.82 | 2.20 | 5.00 |  | 14 | 3.99 | 2.90 | 4.80 |  | 28 | 14 | 50.0 | 29 | 3.9 |
| 79-94 | 32 | 71.5 | 63.0 | 79.5 | 5.5 | 16 | 72.5 | 64.0 | 79.0 | 4.7 | 30 | 3.75 | 1.86 | 5.00 | 0.80 | 15 | 3.85 | 1.86 | 4.80 | 0.84 | 30 | 16 | 53.3 | 32 | 3.9 |
| $\begin{array}{ll}\text { Small } & \\ & \mathrm{YY} \\ & 75\end{array}$ |  |  |  |  |  | 0 |  |  |  |  | - |  |  |  |  | - |  |  |  |  | 69 | 60 | 87.0 | 69 | 4.3 |
| 79 | 59 | 54.2 | 51.0 | 60.0 | 2.0 | 25 | 53.9 | 51.0 | 56.0 | 1.8 | 58 | 1.76 | 1.40 | 2.20 | 0.18 | 25 | 1.75 | 1.40 | 2.10 | 0.16 | 59 | 25 | 42.4 | 56 | 4.0 |
| 80 | 68 | 55.0 | 47.0 | 62.0 | 3.1 | 52 | 54.6 | 47.0 | 62.0 | 3.3 | 68 | 1.89 | 1.00 | 2.80 | 0.40 | 52 | 1.87 | 1.00 | 2.80 | 0.40 | 68 | 52 | 76.5 | 68 | 4.3 |
| 81 | 174 | 54.3 | 43.0 | 62.0 | 2.9 | 103 | 54.0 | 43.0 | 62.0 | 2.8 | 174 | 1.89 | 1.00 | 2.80 | 0.35 | 103 | 1.83 | 1.00 | 2.80 | 0.33 | 173 | 103 | 59.5 | 174 | 4.0 |
| 82 | 56 | 53.3 | 47.0 | 59.0 | 2.6 | 31 | 53.0 | 47.0 | 58.0 | 2.4 | 56 | 1.72 | 1.00 | 3.30 | 0.36 | 31 | 1.71 | 1.00 | 3.30 | 0.39 | 55 | 31 | 56.4 | 56 | 4.0 |
| 89 | 13 | 55.0 | 51.0 | 58.0 | 2.2 | , | 54.2 | 51.0 | 58.0 | 2.3 | 14 | 1.70 | 1.00 | 2.10 | 0.29 | 8 | 1.65 | 1.40 | 2.00 | 0.19 | 11 | ${ }^{8}$ | 72.7 | 38 | 4.1 |
| 90 | 34 | 56.2 | 52.0 | 60.0 | 2.1 | 18 | 56.8 | 55.0 | 60.0 | 1.2 | 34 | 1.70 | 1.30 | 2.10 | 0.18 | 19 | 1.73 | 1.50 | 2.10 | 0.18 | 33 | 19 | 57.6 | 32 | 4.2 |
| 91 | 11 | 55.1 | 47.0 | 59.7 | 3.7 | 7 | 54.7 | 47.0 | 59.7 | 4.2 | 11 | 1.61 | 1.00 | 2.00 | 0.30 | 7 | 1.56 | 1.00 | 2.00 | 0.33 |  |  | 100.0 | 0 |  |
| 93 | 60 | 55.4 | 51.0 | 61.5 | 2.8 | 35 | 54.7 | 51.0 | 61.5 | 2.6 | 57 | 1.68 | 1.00 | 2.50 | 0.32 | 34 | 1.67 | 1.00 | 2.30 | 0.31 | 56 | 35 | 62.5 | 59 | 3.9 |
| 94 | 110 | 55.1 | 47.5 | 61.0 | 2.7 | 39 | 54.8 | 47.5 | 60.5 | 2.6 | 46 | 1.44 | 0.94 | 2.00 | 0.25 | 31 | 1.46 | 0.94 | 2.00 | 0.26 | 59 | 39 | 66.1 | 110 | 4.0 |
| 75-93 | 475 | 54.6 | 43.0 | 62.0 |  | 279 | 54.3 | 43.0 | 62.0 |  | 472 | 1.68 | 1.00 | 3.30 |  | 279 | 1.78 | 1.00 | 3.30 |  | 531 | 340 | 64.0 | 552 | 3.7 |
| 75-94 | 585 | 54.7 | 43.0 | 62.0 | 2.8 | 318 | 54.4 | 43.0 | 62.0 | 2.8 | 518 | 1.77 | 0.94 | 3.30 | 0.35 | 310 | 1.75 | 0.94 | 3.30 | 0.34 | 590 | 379 | 64.2 | 662 | 4.1 |
|  |  |  |  |  |  | 0 |  |  |  |  | 0 |  |  |  |  | 0 |  |  |  |  | 69 | 60 | 87.0 | 69 | 4.3 |
| Large 79 | 61 | 54.9 | 51.0 | 75.0 | 4.2 | 25 | 53.9 | 51.0 | 56.0 | 1.8 | 60 | 1.83 | 1.40 | 4.10 | 0.46 | 25 | 1.76 | 1.40 | 2.10 | 0.16 | 61 | 25 | 41.0 | 58 | 4.0 |
| 80 | 78 | 57.3 | 47.0 | 78.0 | 6.8 | 59 | 56.7 | 47.0 | 78.0 | 6.8 | 78 | 2.17 | 1.00 | 4.50 | 0.84 | 59 | 2.12 | 1.00 | 4.50 | 0.81 | 78 | 59 | 75.6 | 78 | 4.2 |
| 81 | 181 | 54.9 | 43.0 | 79.5 | 4.4 | 105 | 54.4 | 43.0 | 74.0 | 3.6 | 181 | 1.96 | 1.00 | 4.80 | 0.52 | 105 | 1.89 | 1.00 | 4.80 | 0.51 | 180 | 105 | 58.3 | 181 | 4.0 |
| 82 | 56 | 53.3 | 47.0 | 59.0 | 2.6 | 31 | 53.0 | 47.0 | 58.0 | 2.4 | 56 | 1.72 | 1.00 | 3.30 | 0.36 | 31 | 1.71 | 1.00 | 3.30 | 0.39 | 55 | 31 | 56.4 | 56 | 4.0 |
| 89 | 13 | 55.0 | 51.0 | 58.0 | 2.2 | 8 | 54.2 | 51.0 | 58.0 | 2.3 | 14 | 1.70 | 1.00 | 2.10 | 0.29 | ${ }^{8}$ | 1.65 | 1.40 | 2.00 | 0.19 | 11 |  | 72.7 | 38 | 4.1 |
| 90 | 37 | 57.3 | 52.0 | 78.0 | 4.6 | 19 | 57.3 | 55.0 | 67.0 | 2.6 | 37 | 1.84 | 1.30 | 5.00 | 0.60 | 20 | 1.79 | 1.50 | 2.90 | 0.32 | 36 | 20 | 55.6 | 35 | 4.2 |
| 91 | 12 | 56.3 | 47.0 | 69.2 | 5.4 |  | 56.5 | 47.0 | 69.2 | 6.4 | 12 | 1.73 | 1.00 | 3.00 | 0.49 | 8 | 1.74 | 1.00 | 3.00 | 0.59 | ${ }^{8}$ | 8 | 100.0 | 1 | 4.0 |
| 93 | 66 | 57.0 | 51.0 | 77.0 | 5.8 | 38 | 56.4 | 51.0 | 77.0 | 6.5 | 63 | 1.87 | 1.00 | 4.70 | 0.71 | 37 | 1.88 | 1.00 | 4.70 | 0.79 | 61 | 38 | 62.3 | 65 | 3.9 |
| 94 | 113 | 55.5 | 47.5 | 79.0 | 3.7 | 41 | 55.7 | 47.5 | 79.0 | 4.7 | 47 | 1.45 | 0.94 | 2.00 | 0.26 | 32 | 1.47 | 0.94 | 2.00 | 0.27 | 61 | 41 | 67.2 | 113 | 4.0 |
| 75-93 | 504 | 55.6 | 43.0 | 79.5 |  | 293 | 55.2 | 43.0 | 78.0 |  | 501 | 1.92 | 1.00 | 5.00 |  | 293 | 1.89 | 1.00 | $4.80$ |  | 559 | 354 395 | 63.3 | 581 |  |
| 75-94 | 617 | 55.6 | 43.0 | 79.5 | 4.8 | 334 | 55.2 | 43.0 | 79.0 | 4.8 | 548 | 1.88 | 0.94 | 5.00 | 0.59 | 325 | 1.85 | 0.94 | 4.80 | 0.58 | 620 | 395 | 63.7 | 694 | 4.1 |

Table 8. Biological characteristics of small ( $<63 \mathrm{~cm}$ ) and large ( $>=63 \mathrm{~cm}$ ) virgin and repeat spawners Atlantic salmon of the Pinware River, 1974-1994. Information was collected from the recreational fishery.

|  |  | FORK LENGTH (cm) |  |  |  | FORK LENGTH Females (cm) |  |  |  |  | WHOLE WEIGHT ( kg ) |  |  |  |  | whole weight females (cm) |  |  |  |  | $\begin{array}{\|c\|} \mathrm{NO} .= \\ \hline \mathrm{SEX}-1 \\ \mathrm{ED} \end{array}$ | Female |  | RIVAge |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | MEAN | MIN | max | STD | N | MEAN | MIN | MAX | STD | N | MEAN | MIN | MAX | STD | N | MEAN | MIN | MAX | STD |  | N | $t$ | N | MEAN |
| SIZE YY | 33 | 73.9 | 63.0 | 94.0 | 5.6 | 24 | 73.6 | 64.0 | 91.0 | 4.4 | 33 | 4.67 | 2.20 | a. 50 | 1.11 | 24 | 4.71 | 3.50 | 6.80 | 0.87 | 29 | 24 | 82.8 | 33 | 3.9 |
| 81 | 92 | 75.4 | 63.0 | 86.0 | 3.6 | 70 | 75.3 | 63.0 | 82.0 | 3.5 | 92 | 4.67 | 3.00 | 7.00 | 0.70 | 70 | 4.68 | 3.00 | 7.00 | 0.73 | 90 | 70 | 77.8 | 92 | 3.9 |
| 82 | 29 | 73.5 | 68.0 | 87.5 | 3.8 | 20 | 73.6 | 69.0 | 87.5 | 4.2 | 29 | 4.36 | 3.00 | 7.90 | 0.92 | 20 | 4.51 | 3.10 | 7.90 | 0.99 | 26 | 20 | 76.9 | 29 | 4.2 |
| 85 | , | 67.4 | 63.0 | 71.0 | 3.3 | 4 | 67.4 | 63.0 | 71.0 | 3.3 | 4 | 3.30 | 2.90 | 3.50 | 0.27 | 4 | 3.30 | 2.90 | 3.50 | 0.27 | 4 | 4 | 100.0 | 4 | 4.7 |
| 88 | 11 | 80.2 | 76.2 | 85.1 | 2.8 | 10 | 79.8 | 76.2 | 83.8 | 2.4 | 11 | 5.20 | 4.10 | 5.90 | 0.51 | 10 | 5.13 | 4.10 | 5.70 | 0.48 | 1 | 10 | 90.9 | 1 | 4.0 |
| 90 | 2 | 77.2 | 72.9 | 81.5 | 6.1 | 2 | 77.2 | 72.9 | 81.5 | 6.1 | 2 | 5.15 | 4.00 | 6.30 | 1.63 | 2 | 5.15 | 4.00 | 6.30 | 1.63 | 2 | 2 | 100.0 | 2 | 3.5 |
| 91 | 3 | 76.0 | 72.0 | 78.0 | 3.5 | 2 | 75.0 | 72.0 | 78.0 | 4.2 | 3 | 4.67 | 4.00 | 5.30 | 0.65 | 2 | 4.65 | 4.00 | 5.30 | 0.92 | 2 | 2 | 100.0 | 3 | 4.3 |
| 92 | 2 | 76.5 | 76.0 | 77.0 | 0.7 | 1 | 77.0 | 77.0 | 77.0 |  | 2 | 4.30 | 4.30 | 4.30 | 0.00 | 1 | 4.30 | 4.30 | 4.30 |  | 2 | 1 | 50.0 | 2 | 3.0 |
| 93 | 11 | 77.5 | 63.0 | 86.0 | 6.2 | 6 | 73.9 | 63.0 | 79.5 | 5.7 | 9 | 4.83 | 2.30 | 6.50 | 1.23 | 4 | 4.28 | 2.30 | 5.70 | 1.42 | 12 | 6 | 54.5 | 11 | 3.5 |
| 94 | ${ }^{6}$ | 78.7 | 69.9 | 86.0 | 6.3 | 0 |  |  |  |  | 0 |  |  |  |  | 7 |  |  |  |  | ${ }^{\circ}$ |  |  | ${ }^{6}$ | 4.2 |
| 80-93 | 187 | 75.1 | 63.0 | 94.0 |  | 139 | 74.9 | 63.0 | 87.5 | 4.3 | 185 | 4.63 | 2.20 | 8.50 | 0.87 | 137 | 4.65 | 2.30 | 7.90 | 0.84 | 177 | 139 | 78.5 | 187 | 3.9 |
| 80-94 | 193 | 75.2 | 63.0 | 94.0 | 4.7 | 139 | 74.9 | 63.0 | 87.5 | 4.3 | 185 | 4.63 | 2.20 | 8.50 | 0.87 | 137 | 4.65 | 2.30 | 7.90 | 0.84 | 177 | 139 | 78.5 | 193 | 4.0 |
| Small YY |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 99 | 54.7 | 40.0 | 62.0 | 4.0 | 34 | 54.2 | 40.0 | 62.0 | 4.0 | $10{ }^{0}$ | 2.02 | 1.00 | 8.00 | 0.83 | 34 | 1.93 | 1.20 | 4.10 | 0.55 | 187 71 | 67 34 | 35.8 47.9 | 188 | 4.6 4.0 |
| 81 | 388 | 52.6 | 43.0 | 61.0 | 2.6 | 133 | 52.7 | 44.0 | 61.0 | 2.9 | 388 | 1.77 | 1.00 | 3.00 | 0.32 | 133 | 1.77 | 1.00 | 3.00 | 0.38 | 376 | 133 | 35.4 | 387 | 4.4 |
| 82 | 261 | 53.6 | 37.5 | 62.0 | 3.5 | 70 | 53.6 | 47.5 | 59.4 | 2.6 | 260 | 1.70 | 1.20 | 2.80 | 0.25 | 70 | 1.65 | 1.20 | 2.40 | 0.21 | 203 | 70 | 34.5 | 261 | 4.2 |
| 85 | 26 | 53.9 | 50.0 | 57.5 | 2.5 | 5 | 55.2 | 50.0 | 57.5 | 3.1 | 25 | 1.66 | 1.10 | 2.30 | 0.26 | 5 | 1.90 | 1.40 | 2.30 | 0.32 | 26 | 5 | 19.2 | 26 | 4.5 |
| 88 | 3 | 53.1 | 52.7 | 53.3 | 0.3 | 1 | 53.3 | 53.3 | 53.3 |  |  | 1.50 | 1.40 | 1.60 | 0.10 | 1 | 1.50 | 1.50 | 1.50 |  | 2 | 1 | 50.0 | 3 | 5.0 |
| 89 | 15 | 54.8 | 45.0 | 60.0 | 3.2 | 4 | 54.5 | 52.0 | 55.5 | 1.6 | 0 |  |  |  |  | 0 |  |  |  |  | 14 | 4 | 28.6 | 16 | 4.0 |
| 90 | 15 | 56.2 | 49.9 | 60.4 | 2.5 | 9 | 56.0 | 49.9 | 58.5 | 2.7 | 14 | 1.98 | 1.50 | 2.40 | 0.20 | 9 | 1.98 | 1.50 | 2.40 | 0.24 | 15 | 9 | 60.0 | 15 | 4.3 |
| 91 | 4 | 54.5 | 53.0 | 58.0 | 2.4 | 2 | 56.0 | 54.0 | 58.0 | 2.8 | 4 | 1.85 | 1.70 | 2.20 | 0.24 | 2 | 1.95 | 1.70 | 2.20 | 0.35 | 4 | 2 | 50.0 | 4 | 4.0 |
| 92 | 2 | 55.0 | 54.0 | 56.0 | 1.4 | 0 |  |  |  |  | 2 | 1.85 | 1.70 | 2.00 | 0.21 | 0 |  |  |  |  | 2 | ${ }^{0}$ |  | 1 | 4.0 |
| 93 | 36 | 55.0 | 47.7 | 60.0 | 2.8 | 12 | 54.3 | 47.7 | 59.5 | 3.5 | 35 | 1.71 | 1.00 | 2.30 | 0.28 | 11 | 1.65 | 1.00 | 2.20 | 0.35 | 33 | 12 | 36.4 | 36 | 4.0 |
| 94 | 35 | 55.0 | 48.5 | 59.0 | 2.5 | 1 | 57.0 | 57.0 | 57.0 |  | ${ }^{8}$ | 1.95 | 1.50 | 2.40 | 0.30 |  | 2.10 | 2.10 | 2.10 |  | 2 |  | 50.0 | 33 | 4.2 |
| 74-93 | 849 | 53.4 | 37.5 | 62.0 |  | 270 | 53.4 | 40.0 | 62.0 |  | 834 | 1.78 | 1.00 | 8.00 |  | 265 | 1.76 | 1.00 | 4.10 |  | 933 | 337 | 36.1 | 1040 | 4.3 |
| 74-94 | 884 | 53.5 | 37.5 | 62.0 | 3.2 | 271 | 53.4 | 40.0 | 62.0 | 3.1 | 842 | 1.78 | 1.00 | 8.00 | 0.41 | 266 | 1.76 | 1.00 | 4.10 | 0.37 | 935 | 338 | 36.1 | 1073 | 4.3 |
| $\begin{array}{cc}\text { Small } \\ 6{ }_{6} & 74 \\ 74\end{array}$ |  |  |  |  |  | 0 |  |  |  |  |  |  |  |  |  | 0 |  |  |  |  | 187 | 67 | 35.8 | 188 | 4.6 |
| Large 80 | 132 | 59.5 | 40.0 | 94.0 | 9.4 | 58 | 62.2 | 40.0 | 81.0 | 10.5 | 136 | 2.66 | 1.00 | 8.50 | 1.45 | 58 | 3.08 | 1.20 | 6.80 | 1.55 | 100 | 58 | 58.0 | 136 | 4.0 |
| 81 | 480 | 57.0 | 43.0 | 86.0 | 9.4 | 203 | 60.5 | 44.0 | 82.0 | 11.2 | 480 | 2.32 | 1.00 | 7.00 | 1.22 | 203 | 2.77 | 1.00 | 7.00 | 1.48 | 466 | 203 | 43.6 | 479 | 4.3 |
| 82 | 290 | 55.6 | 37.5 | 87.5 | 6.9 | 90 | 58.0 | 47.5 | 87.5 | 8.9 | 289 | 1.96 | 1.20 | 7.90 | 0.88 | 90 | 2.29 | 1.20 | 7.90 | 1.29 | 229 | 0 | 39.3 | 290 | 4.2 |
| 85 | 30 | 55.7 | 50.0 | 71.0 | 5.3 | 9 | 60.6 | 50.0 | 71.0 | 7.1 | 29 | 1.89 | 1.10 | 3.50 | 0.63 | 9 | 2.52 | 1.40 | 3.50 | 0.79 | 30 | 9 | 30.0 | 30 | 4.6 |
| 88 | 14 | 74.4 | 52.7 | 85.1 | 11.8 | 11 | 77.4 | 53.3 | 83.8 | 8.3 | 14 | 4.41 | 1.40 | 5.90 | 1.64 | 11 | 4.80 | 1.50 | 5.70 | 1.18 | 13 | 11 | 84.6 | 14 | 4.2 |
| 89 | 15 | 54.8 | 45.0 | 60.0 | 3.2 | 4 | 54.5 | 52.0 | 55.5 | 1.6 | , |  |  |  |  | 0 |  |  |  |  | 14 |  | 28.6 | 16 | 4.0 |
| 90 | 17 | 58.7 | 49.9 | 81.5 | 7.5 | 11 | 59.8 | 49.9 | 81.5 | 9.1 | 16 | 2.37 | 1.50 | 6.30 | 1.18 | 11 | 2.55 | 1.50 | 6.30 | 1.40 | 17 | 11 | 64.7 | 17 | 4.2 |
| 91 | 7 | 63.7 | 53.0 | 78.0 | 11.8 | 4 | 65.5 | 54.0 | 78.0 | 11.4 | 7 | 3.06 | 1.70 | 5.30 | 1.56 | 4 | 3.30 | 1.70 | 5.30 | 1.66 | 6 | 4 | 66.7 |  | 4.1 |
| 92 | 4 | 65.7 | 54.0 | 77.0 | 12.4 | 1 | 77.0 | 77.0 | 77.0 |  | 4 | 3.07 | 1.70 | 4.30 | 1.42 | 1 | 4.30 | 4.30 | 4.30 |  | 4 | 1 | 25.0 | 3 | 3.3 |
| 93 | 47 | 60.2 | 47.7 | 86.0 | 10.4 | 18 | 60.8 | 47.7 | 79.5 | 10.4 | 44 | 2.35 | 1.00 | 6.50 | 1.40 | 15 | 2.35 | 1.00 | 5.70 | 1.40 | 44 | 18 | 40.9 | 47 | 3.9 |
| 94 | 41 | 58.4 | 48.5 | 86.0 | 9.1 | 1 | 57.0 | 57.0 | 57.0 |  | 8 | 1.95 | 1.50 | 2.40 | 0.30 | 1 | 2.10 | 2.10 | 2.10 |  | 2 | 1 | 50.0 | 39 | 4.2 |
| 74-93 | 1036 | 57.3 | 37.5 | 94.0 |  | 409 | 60.7 | 40.0 | 87.5 |  | 1019 | 2.29 | 1.00 | 8.50 |  | 402 | 2.74 | 1.00 | 7.90 |  | 1110 | 476 | 42.9 | 1227 | 4.3 |
| 74-94 | 1077 | 57.4 | 37.5 | 94.0 | 9.0 | 410 | 60.7 | 40.0 | 87.5 | 10.7 | 27 | 2. | 1.00 | 8.50 | 1.22 | 403 | 2.74 | 1.00 | 7.90 | 1.48 | 12 | 477 | 42.9 | 66 | 4.3 |

Table 9. Smolt age distribution of small and large Atlantic salmon on the Forteau River, 1979-1994. Smolt age was determined from scale samples collected from fish landed in the recreational fishery.

| Year | Smolt Age \% |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | 2 | 3 | 4 | 5 | 6 |

Large salmon
( $>=63 \mathrm{~cm}$ )

| 1979 | 2 |  |  | 100.0 |  |  |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: |
| 1980 | 10 |  | 20.0 | 80.0 | 14.3 |  |
| 1981 | 7 | 14.3 | 28.6 | 42.9 |  |  |
| 1982 | 3 |  |  | 100.0 |  |  |
| 1990 | 1 |  |  | 100.0 |  |  |
| 1993 | 6 |  |  | 83.3 | 16.7 |  |
| 1994 | 3 |  |  | 66.7 | 33.3 |  |
|  |  | 14.3 | 24.3 | 84.4 | 15.5 | 0 |
| $-93)$ |  | 14.3 | 24.3 | 81.8 | 21.4 | 0 |

Mean(79-94)
$14.3 \quad 24.3$
81.8
21.4

0
$\underset{(<63 \mathrm{~cm})}{\substack{\text { Small salmon }}}$

| 1979 | 56 |  | 10.7 | 75.0 | 14.3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1980 | 68 |  | 2.9 | 69.1 | 25.0 | 2.9 |
| 1981 | 174 |  | 17.2 | 63.8 | 18.4 | 0.6 |
| 1982 | 56 |  | 12.5 | 76.8 | 8.9 | 1.8 |
| 1989 | 11 |  | 9.1 | 72.7 | 18.2 |  |
| 1990 | 31 |  | 9.7 | 61.3 | 25.8 | 3.2 |
| 1993 | 59 |  | 11.9 | 84.7 | 3.4 |  |
| 1994 | 109 |  | 10.1 | 76.4 | 12.8 |  |
| Mean(79-93) |  | 0 | 10.6 | 83.9 | 16.3 | 2.1 |
| Mean(79-94) |  | 0.0 | 10.5 | 72.5 | 15.9 | 2.1 |

Table 10. Sea-age composition of small and large Atlantic salmon on Forteau River and Pinware River, 1974-1994. Information was obtained from scale samples collected in the recreational fishery. "CS" refers to consecutive spawners and AS ${ }^{\text {n }}$ refers to alternate spawners.


Table 11. Estimation of target egg deposition and spawner requirements for the Forteau River.
Target 1 based on mean width of 1 m and Target 2 based on mean width of 3 m for additional tributaries.

## Estimation of Target Egg Deposition Requirement:

|  | Target 1 | Target 2 |  |
| :--- | ---: | ---: | ---: |
| Rearing Units (100 sq. m) | 2040 | 3268 | (this document) |
| Lacustrine Area (ha) | 520 | 520 | (this document) |

Minimum Egg Deposition Requirement based on:
240 eggs per Fluvial Rearing Unit (Elson, 1975)
105 eggs per ha of Lacustrine Area (O'Connell et al., 1991)

$$
\begin{array}{lcc}
= & (2040 \times 240)+\frac{\text { Target 1 }}{(520 \times 105)} & \frac{\text { Target 2 }}{(3268 \times 240)}+(520 \times 105) \\
= & 544,200 & 838,920
\end{array}
$$

## Biological Characteristics:

| Fecundity |  | $1,783 \mathrm{eggs} / \mathrm{kg}$ (Chadwick et al.,1986) |
| :--- | :--- | :---: |
| Small - | \% overall |  |
| $(<63 \mathrm{~cm})$ | \% female | $94.8(\mathrm{n}=617)$ (recreational, 1975-94) |
|  | mean wt. females | $64.2(\mathrm{n}=590)$ (recreational, 1975-94) |
|  |  | $1.75 \mathrm{~kg}(\mathrm{n}=310$ (recreational, 1975-94) |
| Large - | \% overall |  |
| $(>=63 \mathrm{~cm})$ | \% female | $5.2(\mathrm{n}=617)$ (recreational, 1975-94) |
|  | mean wt. females | $53.3(\mathrm{n}=30)$ (recreational, 1975-94) |
|  |  | $3.85 \mathrm{~kg}(\mathrm{n}=15)$ (recreational, 1975-94) |

## Estimation of Eggs per Spawner:

| Small | $=$ | $\left(\%\right.$ small ${ }^{*} \%$ female ${ }^{*}$ mean wt. ${ }^{*}$ fecundity $)$ |
| ---: | :--- | :---: |
|  | $=$ | $\left(.948^{*} .642^{*} 1.75^{*} 1783\right)$ |
|  | $=1899$ |  |
| Large | $=\left(\%\right.$ large $* \%$ female ${ }^{*}$ mean wt. ${ }^{*}$ fecundity $)$ |  |
|  | $=$ | $\left(.052^{*} .533^{*} 3.85^{*} 1783\right)$ |
|  | $=$ | 190 |

Estimation of Target Spawner Requirement for Sufficient Females: $=\quad$ egg requirements / eggs per spawner

$=260 \quad 402$ (small and large) (small and large)

Table 12. Estimation of Atlantic salmon potential egg deposition and percentage of preliminary targets achieved on the Forteau River in 1994.

Biological Characteristics, 1994:

| Fe |  | 1,783 eggs / kg | (Chadwick et al, 1986) |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Small - } \\ & (<63 \mathrm{~cm}) \end{aligned}$ | \% overall | 75.5 | (counting fence, 1994) |
|  | \% female | 66.1 ( $\mathrm{n}=59$ ) | (recreational, 1994) |
|  | mean wt. female | $1.46 \mathrm{~kg}(\mathrm{n}=32)$ | (recreational, 1994) |
| $\begin{aligned} & \text { Large - } \\ & (>=63 \mathrm{~cm}) \end{aligned}$ | \% overall | 24.5 | (counting fence, 1994) |
|  | \% female | 53.3 ( $\mathrm{n}=7$ ) | (recreational, 1975-94) |
|  | mean wt. female | $3.85 \mathrm{~kg}(\mathrm{n}=6)$ | (recreational, 1975-94) |

Estimation of Percent of Target Eggs Achieved, 1994:
$=$ potential egg depositions / target egg deposition requirement $\mathrm{x} \quad 100$

$$
\begin{aligned}
&=(\text { small spawners * \%female * mean wt * fecundity })+(\text { large spawners * \%female * mean wt * fecundity }) \\
&= \text { Target Egg Deposition Requirement } \\
&=\left(149 * .661^{*} 1.46 * 1,783\right)+(73 * .533 * 3.85 * 1,783) \\
& \text { Target Egg Deposition Requirement }
\end{aligned}
$$

Target 1

$$
\begin{aligned}
& =--\frac{523,477}{544,-200} \times 100 \\
& =\quad 96 \%
\end{aligned}
$$

Target 2
523,477
_------- x 100
838,920
$62 \%$

Table 13. Atlantic salmon assessment results for 1994 and retrospective analysis for 1975-1993 based on angling catches and angling exploitation rate derived for for the Forteau River, 1994. Target 1 and Target 2 refer to the preliminary egg deposition targets.



Figure 1. Map of Labrador indicating the location of the rivers in Salmon Fishing Area (SFA) 14(b): 1) Forteau River, 2) L'Anse au Loup River, and 3) Pinware River.


Figure 2. Map of the Forteau River system from mouth to Inside Pond (L4). The counting fence was installed at the mouth of First Pond (L1). The axial length (m) of tributaries (T) and lacustrine habitat (ha; L) digitized from a 1:50,000 topographical map (SPANS GIS) are given in Appendix 1.


Figure 3. Recreational catch and effort on the Forteau River, 1954-1994. Refer to Table 1 for actual values.


Figure 4. Recreational catch of small salmon below the counting fence on the Forteau River, 1994.

Forteau River, 1994


Figure 5. Weekly counts of small and large salmon at the counting fence on Forteau River, 1994.

Catch Above Fence - Forteau River, 1994


Figure 6. Recreational catch of small salmon above the counting fence on the Forteau River, 1994.

Forteau River, 1994


Figure 7. Daily Counts of small and large salmon at the counting fence on Forteau River, 1994.


Figure 8. The water temperature $(\mathrm{C})$ and water level (cm), recorded at the counting fence on the Forteau River, 1994.

Forteau River


Figure 9. Estimated returns in year i and spawners in year i-6 of small salmonon the Forteau River, 1975-1994.
Refer to retrospective analysis in Table 12 for actual values.

Appendix 1. The total axial length(m) of accessible tributaries and lacustine habitat(ha) in the Forteau River, as measured by SPANS GIS, from a 1:50,000 scale topographical map. Estimations of rearing habitat for target 1 and target 2 rearing units are based on widths of 1 metre and 3 metre respectively, and include those measured by Anderson (1985).

| Tributary No.* | Lake Area (ha) | Axial Length (m)** | Included in 1985 survey | Axial Target 1 |  |  | Target 2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Length $(\mathrm{m})^{* * *}$ | $\begin{aligned} & \text { Area } \\ & (\mathrm{m} 2)^{* * *} \end{aligned}$ | $\begin{array}{r} \text { Units } \\ (100 \mathrm{~m} 2) \end{array}$ | $\begin{array}{r} \text { Area } \\ (\mathrm{m} 2)^{* * * *} \end{array}$ | $\begin{aligned} & \text { Units } \\ & (100 \mathrm{~m} 2) \end{aligned}$ |
| L-1 | 100 |  |  |  |  |  |  |  |
| L-2 | 350 |  |  |  |  |  |  |  |
| L-3 | 10 |  |  |  |  |  |  |  |
| L-4 | 60 |  |  |  |  |  |  |  |
| T-1 |  | 3,700 |  | 3,700 | 3,700 | 37 | 11,100 | 111 |
| T-2 |  | 5,100 |  | 5,100 | 5,100 | 51 | 15,300 | 153 |
| T-3 |  | 3,600 |  | 3,600 | 3,600 | 36 | 10,800 | 108 |
| T-4 |  | 600 |  | 600 | 600 | 6 | 1,800 | 18 |
| T-5 |  | 900 |  | 900 | 900 | 9 | 2,700 | 27 |
| T-6 |  | 9,400 |  | 9,400 | 9,400 | 94 | 28,200 | 282 |
| T-7 |  | 1,900 |  | 1,900 | 1,900 | 19 | 5,700 | 57 |
| T-8 |  | 1,500 |  | 1,500 | 1,500 | 15 | 4,500 | 45 |
| T-9 |  | 3,800 |  | 3,800 | 3,800 | 38 | 11,400 | 114 |
| T-10 |  | 1,700 |  | 1,700 | 1,700 | 17 | 5,100 | 51 |
| T-11 |  | 13,700 | 6,100 | 7,600 | 7,600 | 76 | 22,800 | 228 |
| T-12 |  | 5,300 | 3,300 | 2,000 | 2,000 | 20 | 6,000 | 60 |
| T-13 |  | 1,500 |  | 1,500 | 1,500 | 15 | 4,500 | 45 |
| T-14 |  | 1,200 |  | 1,200 | 1,200 | 12 | 3,600 | 36 |
| T-15 |  | 2,000 | 1,000 | 1,000 | 1,000 | 10 | 3,000 | 30 |
| T-16 |  | 2,800 |  | 2,800 | 2,800 | 28 | 8,400 | 84 |
| T-17 |  | 1,800 |  | 1,800 | 1,800 | 18 | 5,400 | 54 |
| T-18 |  | 14,400 | 3,100 | 11,300 | 11,300 | 113 | 33,900 | 339 |
| Total | 520 | 74,900 | 13,500 | 61,400 | 61,400 | 614 | 184,200 | 1,842 |
| Anderson |  |  |  |  |  | 1,426 |  | 1,426 |
| Total rea |  |  |  |  |  | 2,040 |  | 3,268 |

* Tributary number corresponds to numbers on Figure 2 in this document.
** Total axial length of accessible tributaries in the Forteau River, measured by SPANS GIS.
*** Total axial length of accessible tributaries in the Forteau River, measured by SPANS GIS,
excluding the area survey by Anderson (1985).
${ }^{* * * *}$ Area 1 based on total axial length (SPANS GIS) and estimated average widths of 1 m ; for
Area 2 estimated average width of 3 m .


[^0]:    * Calculated by year of smolt migration.

