
Not to be cited without Ne pas citer sans
permission of the authors ' auto risation des auteurs '

DFO Atlantic Fisheries MPO Pêches de l'Atlantique
Research Document 95/ 99 Document de recherche 95/ 9 9

Programs to Simulate Catch Rate Estimation in a
Roving Creel Survey of Angler s

by

Colin J . Greene, John M . Hoenig, Nicholas J . Barrowman
Science Branc h

Department of Fisheries and Oceans
P .O. Box 5667

St. John's NF Al C 5X 1

Kenneth H. Pollock
Department of Statistics, Box 820 3

North Carolina State University
Raleigh, NC 27695-8203, USA

'This series documents the scientific basis for
the evaluation of fisheries resources in Atlantic
Canada. As such, it addresses the issues of
the day in the time frames required and the
documents it contains are not intended as
definitive statements on the subjects addressed
but rather as progress reports on ongoing
investigations .

Research documents are produced in the
official language in which they are provided to
the secretariat.

'La présente série documente les bases
scientifiques des évaluations des ressources
halieutiques sur la côte atlantique du Canada .
Elle traite des problèmes courants selon les
échéanciers dictés . Les documents qu'elle
contient ne doivent pas être considérés comme
des énoncés définitifs sur les sujets traités,
mais plutôt comme des rapports d'étape sur les
études en cours .

Les Documents de recherche sont publiés dans
la langue officielle utilisée dans le manuscrit
envoyé au secrétariat .

2

ABSTRACT

This technical report describes two programs (i .e., functions) written in S-PLUS for
simulating a roving creel survey used for estimating catch rate and total catch . The
first program, makeanglers (), is used to create an angler population . The program
output gives, for each anger, the location around the shoreline of a lake, the fishing
start time and the trip length for one fishing day. Also given by this program is the
true effort during this day (i .e., the sum of all the anglers' trip lengths) . The second
program, Qettotalvaiues (), is used to simulate each angler's catch for that day,
and then sample the data on the basis of a clerk travelling through the fishery and
interviewing these anglers (i .e., a roving creel survey) . The outputs from this program
are the true total catch for the fishing day, along with the estimates of the total catch
from the creel survey using the ratio of means estimator and six mean of ratios
estimators (i .e., with interview times of less than 0, 1, 5, 15, 30 or 60 minutes
discarded) . With some minor changes to the gettotalvalues () program, several
different scenarios can be created, such as a scenario where the anglers become
smarter after they catch a fish (i .e., their catch rate improves) or a scenario where
different bag limits are imposed on the anglers . The code for these programs is given,
as well as the modifications needed for three different scenarios, along with an
example of the output from each of the two programs .

RÉSUMÉ

Le présent rapport technique décrit deux programmes (fonctions) S-PLUS de
simulation d'une enquête par interrogation des pêcheurs, servant à estimer le taux de
prises et les prises totales . Le premier programme, «makeanglers()», sert à créer
une population de pêcheurs sportifs . Son extrant fournit pour chaque pêcheur,
l'emplacement de celui-ci sur les rives d'un lac, l'heure de début de la pêche et la
durée de la sortie pour une journée de pêche . Il fournit également l'effort véritable .
durant cette journée (soit, la somme de la durée des sorties de tous les pêcheurs) .
Le second programme, «gettotalvalues(», permet de simuler les prises de chaque
pêcheur pour la journée considérée, puis d'échantillonner les données à la manière
dont le ferait un agent qui interviewerait les pêcheurs (comme dans une enquête
auprès des pêcheurs) . Les extrants de ce programme donnent les prises totales
réelles pour la journée de pêche considérée, ainsi que les estimations des prises
totales des pêcheurs interrogés, fondées sur le quotient de l'estimateur des
moyennes et six estimateurs de la moyenne des quotients (c .-à.-d. avec rejet des
périodes d'entrevues inférieures à 0, 1, 5, 15, 30 ou 60 minutes) . En apportant
certains changements mineurs au programme «gettotalvalues», on peut produire
différents scénarios, par exemple un scénario dans lequel les pêcheurs deviennent
plus efficaces après qu'ils capturent un poisson (c .-à.d. que leur taux de prises
augmente) ou un scénario dans lequel différentes limites de prises sont imposées
aux pêcheurs . On fournit le code de ces programmes, ainsi que les modifications à
apporter pour obtenir trois scénarios différents, et des exemples d'extrant pour
chacun des deux programmes .

3

Introduction

The two programs (makeanglers () and gettotalvalues ()), written in S-PLUS
(1993) version 3.2, are used to simulate a creel survey . The use of S-PLUS has
simplified the program through certain predefined commands, as will be explained in
the program summary . The simulation is conducted in two steps . First, the function
make anglers (), found in Appendix 1, is run in order to create an angler population .
This program returns the:

• location of each angler, evenly spaced around the shoreline of a lake with a
perimeter of one unit ,

• start time of each angler, all of which are currently set to one hour into an eight
hour day, and

• trip length of each angler, currently alternating between 3 and 6 hours .

All of the above settings can be changed relatively easily, but because of the outlay
of makeanglers(), they are more easily changed within the program, as oppossed to
being passed as arguments . Also returned by this function is the true effort for this
fishing day, which is simply the sum of the trip lengths of all the anglers .

The second function getttotalvalues(), found in Appendix 2, performs the
following tasks :

L Generate a catch history for each angler .

2. Sum the catches over all the anglers to get the true total catch .

3 . Simulate a clerk travelling through the fishery and interviewing the anglers,
where the data to be recorded will only include information about the angler's
catch before the individual's time of interview .

4. Estimate the cate rate and total catch from the data collected by the clerk using
the ratio of means estimator .

5. Estimate the cate rate and total catch from the data collected by the clerk using
six mean of ratios estimators (i .e ., with interview times of less than 0, 1, 5, 15,
30 and 60 minutes removed) .

4

Note that the only information returned by this function will be the true total catch
and the seven estimates of the total catch . A more theoretical explanation of the
equations to be used for the estimators can be found in Hoenig et al . (in review) .

These programs were generally used to simulate 10000 replicate days with 50
anglers, which appeared to be sufficient . The makeanglers() function need only be
run once to define the number of anglers, and then the gettotalvalues() function
can be repeated as many times as needed, once for each simulationed day . This
repeatition can be carried out in several ways, but the gettotalvalues() function,
and it's input, will not have to change for each run .

Program Summary

Anyone familiar with S-PLUS may wish to simply read the commented programs

makeanglers() and gettotalvalues() in Appendix 1 and Appendix 2 respectively,

but for those that are unfamiliar with the language, here is a step-by-step explanation .

makeanglers()

The only argument needed for this function is the number of anglers, given by the
variable nanglers . The values computed for the anglers will be stored in a list called
anglers, which is an S-PLUS object that has the following components :

loc vector containing the anglers' locations ,

starttime vector containing the anglers' start times, and

triplength vector containing the anglers' trip lengths .

These are written as anglers$loc, anglers$starttime, and anglers$triplength .

The location of each angler is calculated by evenly spacing the anglers around the

shoreline of a lake with a perimeter of one unit . This is done by :

startpos <- 0 .004

spacing <- 1/nanglers

anglers$loc <- c(seq(from=startpos, by=spacing, length=n anglers))

Here 1/nanglers gives the distance between the anglers . The location of each angler
is then determined by the vector containing the sequence starting at postion 0 .004,
and being incremented by the given spacing, until each angler has a location assigned
(i .e ., the length of the vector is equal to the number of anglers) .

5

The next step is to assign each angler a start time. This is done by repeating the
value 1 .0 until a vector of length equal to the number of anglers is produced .

anglers$starttime <- c(rep(1 .0, nanglers))

The next step is to assign a trip length to each angler . This is done by repeating

the values 3 and 6, nanglers/2 times . If the number of anglers is odd, more care will

have to be taken in how this vector is created .

anglers$triplength <- c(rep(c(3,6), nanglers/2))

Finally, the true effort is calculated by summing up all of the angler trip lengths
for the day.

trueeffort <- sum(anglers$triplength)

These values are returned as permanent S-PLUS objects so that they can be
accessed for use in the simulations of the gettotalvalues() function .

gettotalvalues()

The arguments for this function will be obtained from the permanent objects created
by the makeanglers() function. That is, the `list' ang will be given by the pemanent
object anglers, the value teffort will be given by the permanent object trueffort
and the value nanglers will be given by the length of anglers$loc (which would be
equivalent to getting the length of anglers$starttime o r
anglers$triplength) .

Generate Catch History

To begin with, generate a catch rate parameter for each angler . Assume that the catch
of each angler follows a Poisson process, therefore it will be required to generate the
Poisson success parameter A for each angler . Let A follow a gamma distribution : A
G(1,2) . This is done with the following command :

lambda <- rgamma(nanglers,l)*2

6

This creates a vector of length equal to the number of anglers containing a lambda
value that corresponds to each angler . The mean of a gamma distribution with
parameters a and /j is a x Q, so the average of the values in the vector should be
close to 1 x 2 = 2. Also, the variance of the values is a xp2 = 1 x 4 = 4 .

For each individual angler a catch history must now be created, which is accom-
plished by chronologically storing, in a vector, the times that each fish is caught .
Therefore, the number of fish caught would be given by the length of the vector . All
of these vectors were stored in a`list' catch, and could be accessed by a command
such as catch[[il], refering to the catch vector for angler i . The following code is
used :

for(i in 1 :nanglers){

time <- ang$starttime[i]

time <- time + rexp(1, rate=lambda[i])
while(time <= ang$starttime[i] + ang$triplength[i]){

catch[[i]] <- c(catch[[i]],time)

time <- time + rexp(1, rate=lambda[i])

}

}

At the begining of each step through the for loop, the variable time becomes initial-
ized to the the corresponding angler's start time . Then time is incremented by the
random exponential number calculated by rexp () with one of its parameters being
the individual angler's lambda value. This will give the time when the first fish is
supposed to be caught . However, if the time value is greater than the angler's start
time plus the trip length (i .e., the time of day when the angler leaves), then the time
is not recorded and the loop moves on to the next angler (i .e., no fish were caught) .
If the time value is less than or equal to the angler's start time plus trip length then
the while loop is entered and this first time is recorded in the catch vector . Now the
time value is incremented by a second random exponential number with the same
parameters as before . If this value is less than or equal to the angler's start time
plus trip length this time will be recorded as the time when the second fish is caught,
otherwise the second value is not recorded and the loop moves on to the next angler .
This process is continued until the time value is greater than the angler's start time
plus trip length, which gives a complete catch history for all the anglers .

True Total Catch

This step is simply summing up all the catches over all the anglers . S-PLUS (1993)
supplies a function sapply() which applies a function to each element of a list . The

7

list is the first argument of sapply() and another function is the second argument . In
this case, the second argument is the length () function which returns each angler's
total catch . So the sum of the sapply() results is the total catch for the fishing day.

totalcatch <- sum(sapply(catch,length))

Simulate Interview s

To begin, a starting postion for the survey agent must be chosen . This is done with
a random uniform number between 0 and 1 .

startloc <- runif(1)

The speed of the agent will be a constant of .125 units (circuits) per hour, such
that the agent travels a full circuit in 8 hours (i .e ., once around the lake) .

agentspeed <- .125

A time switch is nesseccary for the simulation of the circular lake, with a perimeter
of 1 .0, where the positions 0 .0 and 1 .0 are equivalent on the lake representation. At
this point a "jump" must be made, which is accomplished by the time-switch :

timeswitch <- (1-startloc)/agentspeed

The use of this time switch will be explained below .
The above information is used to calculate for each angler the length of the fishing

trip at the time of the interview, the number of fish caught at the time of this interview
and the catch rate for that individual angler . These three calculations are done in a
for loop over all the anglers as follows .

To calculate the time of day when the survey agent reaches the location of angler
i, the following code is used :

if((startloc < ang$loc[i]) & (ang$loc[i] < 1)){

timeint <- (ang$loc[i] - startloc) * 8 }

else if((0 < ang$loc[i]) (ang$loc[i] < startloc)){

timeint <- ang$loc[i] * 8 + timesvitch

}

8

Note that position 0 .0 is equivalent to position 1 .0 ; see Figure 1 below .

.5
+

.75+ + .25

A=0.0 A=0.0 .25 .75 A=1 .0=0 . 0

Figure 1 . The circular and straight line representation of the perimeter lake .

The first part of the if statement says that if the angler's location is between the
surveyor's location and the position of 1 .0 on the lake, then use the equation ,

time of interview = distance surveyor has travelled so far x 8 hour s

recalling that it takes 8 hours for the surveyor to travel one full circuit . Otherwise
(else if), the angler's location is between the position of 0 .0 on the lake and the
surveyor's location . This means the surveyor has travelled past the position of 1 .0 (-
0.0) and therefore the equation to use is now

time of interview = (distance surveyor travels past position 0 .0 x 8 hours) +

time travelled before position 1 . 0

where time travelled before position 1 .0 is given by the time switch .
The actual fishing effort for the interview (i .e ., length of trip up to time of inter-

view) will be stored as either zero or the time of interview minus the angler's start
time. A zero will be stored if the interview time happens before the angler was set to
arrive during the day, or if it occurs after the angler is set to leave the fishery . This
is done with :

inteffort [i] <- 0

if((ang$starttime[i] < timeint) &
(timeint < ang$starttime[i] + ang$triplength[i])){

inteffort[i] <- timeint - ang$starttime[i]
}

9

Therefore, inteffort [i] gives the interview effort for angler i .
Secondly, the catch at the time of the interview is calculated with the code :

intcatch[i] <- 0

if(length(catch[[i]]) > 0){

for(k in 1 :length(catch[[i]])){

if((catch[[i]][k] < timeint) &

(timeint < ang$starttime[i]+ang$triplength[i])){

intcatch[i] <- intcatch[i] + 1

}

}

}

This sets the interview catch to zero unless the full catch for the angler is greater than
zero, with at least one of the catch times being less than the interview time (and the
interview time being less than the time when the angler leaves the fishery) . The for
loop runs through all the catch for the day, incrementing the intcatch by one only if
the time the fish was caught was before the time of interview. Hence, intcatch [i]
gives the number of fish caught by angler i at the time of the interview .

Each angler now has the number of fish caught and the fishing effort at the time
of the interview recorded, such that the catch rate can be calculated for each of these
anglers as follows :

if(inteffort [i] > 0) cr [i] <- intcatch [i] / inteffort [i]

else cr[i] <- NA

This calculates,

catch rate -
interview catch

interview effort *

However, it assigns the NA (i .e., Not Available) value to the catch rate if no interview
took place (i .e ., the interview effort is equal to zero) .

Estimate Total Catch by Ratio of Mean s

An explanation of the usefulness (or lack of it) of the estimators given in this and the
next section can be found in Hoenig et al . (in review), while the calculations used
are as follows :

crrom <- sum(intcatch) / sum(inteffort)

totalcrom <- crrom * teffort

10

This gives the catch rate estimated by the ratio of means estimator as ,

all az,glers interview catch

ail anglers interview effort

To find the estimate of the total catch by the ratio of means estimator, simply multiply
the catch rate estimate by the true effort, which was given by the makeanglers ()
function .

Estimate Total Catch by Mean of Ratios

The mean of ratios estimator is given as ,

Eau anglers individual 's catch rate

number of anglers

Here we are interested in the individual catch rates recorded with interview efforts
greater than 0, 1, 5, 15, 30, and 60 minutes respectively. To accomplish this the
following code was used :

cr0 <- mean(cr[inteffort > 0])

totalcO <- cr0 * teffort

cri <- mean(cr[inteffort > (1/60)])

totalci <- cri * teffort

cr5 <- mean(cr[inteffort > (5/60)])

totalc5 <- cr5 * teffort

cr15 <- mean(cr[inteffort > (15/60)])

totalcl5 <- cr15 * teffort

cr30 <- mean(cr[inteffort > (30/60)])

totalc30 <- cr30 * teffort

cr60 <- mean(cr[inteffort > 1])

totalc60 <- cr60 * teffort

For example, the catch rate for the mean of ratios estimator calculated with interview
efforts greater than 5 minutes is given by ,

Eall anglers with inteffort > 5 minutes individual's catch rate

number of anglers with interview effort > 5 minutes

1 1

For all of these, multipling the catch rate estimate by the true effort gives the corre-
sponding total catch estimates .

The final step is to return the true total catch along with the seven estimates of
total catch . Note that for the mean of ratios estimator, any number of time ranges
can be excluded if more information is needed from the function .

Modification for Three Scenarios

Three additional scenarios that we ran included an effort dependant model, a learner

model and a bag limit model . Along with these, the trip durations were altered in

the makeanglers () function .

Effort Dependant Model

The effort dependant model involved doubling the lambda value for anglers with larger
trip lengths (i .e., in the case of the trip lengths alternating between 3 and 6 hours,
the anglers with an effort of 6 hours had their lambda doubled) . This was achieved
by :

1ambda[ang1ers$trip1ength==6] <- 2*lambda[anglers$triplength==6]

This statement can be placed directly after the calculation of the original lambda
values .

Learner Model

The learner model involved the doubling of each angler's lambda after the angler
caught the first fish (i .e, after an angler catches a fish, he or she should have learned
where the fish are and the catch rate should improve) . This is a simple modification
because of the way the program generates a catch history for each angler . As can be
seen below, changing the rate in the calculation of the random exponential within
the while loop solves the problem . This loop is only entered after the first fish is
caught, and the doubled lambda is used for any calculations after the first fish .

for(i in 1 :nanglers){

time <- ang$starttime[i]

time <- time + rexp(1, rate=lambda[i])
while(time <= ang$starttime[i] + ang$triplength[i]){

12

catch[[i]] <- c(catch[[i]],time)
time <- time + reap(1, rate=2*lambda[i])

}
}

Bag Limit Model

For the bag limit model, several modifications must be made . First, a bag limit (in
this case, a limit of three) must be set using :

baglimit <- 3

and this can be placed before the first for loop . The true total catch should now be
calculated within the first for loop using :

if(length(catch[[i]]) >= baglimit){

totalcatch <- totalcatch + baglimit }

else if(length(catch[[i]]) > 0) {

totalcatch <- totalcatch + length(catch[[i]]) }

This method increments the true total catch by the value of the bag limit if the number
of fish the angler would have caught without a bag limit is greater than or equal to
the bag limit itself . However, if the number of fish the angler would have caught
without a bag limit is less than the bag limit then the total catch is incremented by
the number of fish caught .

The other modifications should be made within the second for 1oop . For each of
the i anglers, the time that the last fish was caught needs to be calculated using :

numcaught <- min(length(catch[[i]]),baglimit)

if(numcaught==baglimit) {

timelastcaught <- catch[[i]][baglimit] }
else timelastcaught <- ang$starttime[i] + ang$triplength[i]

Here, the variable numcaught will be the value of the original number of fish caught
if this value is less than the bag limit, otherwise the value of numcaught will be given
the value of the bag limit . Then the if statement records the time the last fish
was caught in the variable timelastcaught . This variable is then used in attaining
the interview effort and the interview catch, where the if statements used to obtain
these values must be changed to include (timeint < timelastcaught) as can be
seen below .

13

if((ang$starttime[i] < timeint) &
(timeint < ang$starttime[i] + ang$triplength[i]) &

(timeint < timelastcaught))

if((catch[[i]] Ck] < timeint) &
(timeint < ang$starttime[i]+ang$triplength[i]) &

(timeint < timelastcaught))

These modifications achieve the effect of a bag limit where one should note that,
if the bag limit is three, then the third fish should never be recorded by the surveyor,
because the angler should leave as soon as his bag limit is reached .

Reference

Hoenig, J .M., K.H . Pollock, C .M . Jones, D .S . Robson, C .J. Greene (in review) . Catch
Rate Estimation for Roving and Access Point Surveys of Anglers . Available from
J . Hoenig, Department of Fisheries and Oceans, P.O . Box 5667, St. John's, NF,
A1C 5X1, Canada .

Statistical Sciences, S-PLUS User's Manual, Version 3.2, Seattle: StatSci, a division
of MathSoft, Inc ., 1993 .

14

Appendix 1

An example of this program's output is given at the end of this appendix .

Code for makeanglers ()

makeanglers <- function(nanglers=50) {

This function sets up an angler population by giving each angler a

location, a starting time, and a fishing trip length . The number of

anglers is given by nanglers, which is defaulted to 50 .

anglers <- list() # The anglers location, start-time and triplength are

stored in a list, as three separate vectors, each o f

length equal to the number of anglers (nanglers) .

###################################>>>>>>>>>>>>>>>

Position the anglers around a lake with perimeter of length = 1 at

evenly spaced intervals .

###################################>>>>>>>>>>>>>> >

startpos <- 0 .004

spacing <- 1/nanglers

This will give an even spacing for the nangler s

anglers$loc <- c(seq(from=startpos, by=spacing, length=nanglers))

###################################>>>>>>>>>>>>>>>

Give all the anglers a start time representing 1 .0 hour

into the fishing day .

###################################>>>>>>>>>>>>>> >

anglers$starttime <- c(rep(1 .0, nanglers))

###################################>>>>>>>>>>>>>>>

Assign each angler a triplength, where the duration of the trip will

alternate between 3 and 6 hours as the anglers alternate .

###################################>>>>>>>>>>>>>>>

1 5

anglers$triplength <- c(rep(c(3,6), nanglers/2))

NOTE : nanglers/2 = 25 . If the value of nanglers is an odd number, the

number of repetions given by rep() would be one number short . For our

purposes only even numbers were used .

###################################>>>>>>>>>>>>>>>
Add up the amount of fishing to get the true effort .

###################################>>>>>>>>>>>>>> >

trueeffort <- sum(anglers$triplength)

permanent <- function(name, value){

assign(name, value, where = 1)

cat("Creating permanent S-PLUS data object :", name, "\n")

return(invisible(NULL)) }

permanent("anglers", anglers) # Make these values permanent for use

permanent("trueeffort",trueeffort) # in the simulations .

}

1 6

Output for makeanglers()

anglers$loc :

[1] 0 .004 0 .024 0 .044 0 .064 0 .084 0 .104 0 .124 0 .144 0 .164 0 .184 0 .204 0 .224

[13] 0 .244 0 .264 0 .284 0 .304 0 .324 0 .344 0 .364 0 .384 0 .404 0 .424 0 .444 0 .464

[25] 0 .484 0 .504 0 .524 0 .544 0 .564 0 .584 0 .604 0 .624 0 .644 0 .664 0 .684 0 .704

[37] 0 .724 0 .744 0 .764 0 .784 0 .804 0 .824 0 .844 0 .864 0 .884 0 .904 0 .924 0 .944

[49] 0 .964 0 .984

anglers$starttime :

[1] 1

[39] 1 1 1 1 1 1 1 1 1 1 1 1

anglers$triplength :

[1] 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6

[39] 36363636363 6

trueeffort

[1] 225

1 7

Appendix 2

An example of this program's output is given at the end of this appendix .

Code for gettotalvalues()

gettotalvalues <- function(ang=anglers,teffort=trueeffort,

nanglers=length(anglers$loc)){

Simulate a creel survey and compute estimates of total catc h

####################################>>>>>>>>>>>>>>>

Generate a catch history for each angler .

####################################>>>>>>>>>>>>>> >

Start by obtaining a random catch rate parameter for each angler following

a Poisson proces s

###################################>>>>>>>>>>>>>> >

lambda <- rgamma(nanglers,0*2

###################################>>>>>>>>>>>>>>>

Note : departure time = start time + trip length

Simulate each angler's fishing day by first calculating the time at which an

initial fish is to be caught . If this time is less then the anglers departure

time, save the time value in a vector, and calculate the next time when a

fish is to be caught . If this second time is less then the anglers departure

time, save the time value in the vector, and calculate a third time when a

fish is to be caught . Continue on in this manner until the calculated time

of a fish being caught is greater then the angler's departure time . In this

way we have all the times that an angler catches a fish, and the function

length() gives a convenient way of obtaining the number of fish caught .

###################################>>>>>>>>>>>>>>>

catch <- vector("list",nanglers)

for(i in 1 :nanglers){ # Do this for each angler .

Time of day when the angler arrives .

1 8

time <- ang$starttime[i]

If the time calculated below falls within the trip duration, this time

will be recorded as the instant when the first fish was caught .

time <- time + rexp(1, rate=lambda[i])

At the beginning of each loop through the while statement, check to see if

the current fish capture time falls within the duration of the trip .

while(time <= ang$starttime[i] + ang$triplength[i]) {

NOTE : the number of fish caught is given by length(catch[[i]]) .
catch[[i]] <- c(catch[[i]],time)

Calculate the time when the next fish is to be caught .

time <- time + rexp(1, rate=lambda[i])

} # end of while loop

}# end of i for loop

###################################>>>>>>>>>>>>>>>

Sum up all the catches over the anglers .

###################################>>>>>>>>>>>>>>>

totalcatch <- sum(sapply(catch,length))

###################################>>>>>>>>>>>>>>>

Obtain a starting postion for the survey agent .

###################################>>>>>>>>>>>>>> >

startloc <- runif(1) # Start postion of surveyo r

agentspeed <- .125 # Speed of the surveyor in circuits per hour . It will

take the surveyor 8 hours to make a full circui t

(once around the lake) at this speed .

timeswitch <- (1-startloc)/agentspeed

19

This time switch is nesseccary for the simulation of the circular

lake, with a perimeter of 1 .0, where the positions 0 .0 and 1 . 0

are equivalent on the lake representation . At this point a

#"jump" must be made, which is accomplished by our timeswitch .

inteffort <- intcatch <- cr <- vector("numeric",length=length(catch))

For each ofto sample the angler s

for(i in 1 :nanglers) {

Calculate the time of each intervie w

if((startloc < ang$loc [i]) & (ang$loc[i] < 1)) {
timeint <- (ang$loc[i] - startloc) * 8 }

else if((0 < ang$loc [i]) & (ang$loc [i] < startloc)) {

timeint <- ang$loc[i] * 8 + timeswitch

J.

Calculate the fishing effort at the time of each intervie w

inteffort[i] <- 0
if((ang$starttime[i] < timeint) &

(timeint < ang$starttime[i] + ang$triplength[i])){
inteffort[i] <- timeint - ang$starttime[i]

}# else if no interview took place leave inteffort at default 0

Determine the number caught by the time of the intervie w

intcatch[i] <- 0

if(length(catch[[i]]) > 0){

for(k in 1 :length(catch[[i]])){

if((catch[[i]] [k] < timeint) &

(timeint < ang$starttime[i]+ang$triplength[i])){
intcatch[i] <- intcatch[i] + 1

}

}

}# else if no fish were caught leave intcatch at default 0

20

Calculate catch rat e

if(inteffort[i] > 0) cr [i] <- intcatch [i] / inteffort[i]

else cr [i] <- N A

}# end of i for loo p

###################################>>>>>>>>>>>>>>>
Catch rate and total catch estimated using ratio of means (or totals)

###################################>>>>>>>>>>>>>> >

crrom <- sum(intcatch) / sum(inteffort)

totalcrom <- crrom * teffort

###################################>>>>>>>>>>>>>>>

Catch rate and total catch estimated using mean of ratios

###################################>>>>>>>>>>>>>> >

cr0 <- mean(cr[inteffort > 0])
totalcO <- cr0 * teffort

cri <- mean(cr[inteffort > (1/60)])

totalcl <- cri * teffort

cr5 <- mean(cr [inteffort > (5/60)])

totalc5 <- cr5 * teffort

cr15 <- mean(cr[inteffort > (15/60)])

totalc15 <- cr15 * teffor t

cr30 <- mean(cr[inteffort > (30/60)])

totalc30 <- cr30 * teffor t

cr60 <- mean(cr[inteffort > 1])

totalc60 <- cr60 * teffort

return(c(totalcatch,totalcrom,totalc0,totalcl,

totalc5,tota1c15,tota1c30,totalc60)) }

2 1

Output for gettotalvalues()

The vectors returned for ten executions of this function are :

[1] 463 .0000 507 .3501 489 .8762 489 .8762 489 .8762 445 .3025 480 .9267 505 .6241

[1] 509 .0000 382 .7631 549 .4431 549 .4431 446 .8467 463 .3966 481 .2195 498 .3395

[1] 427 .0000 444 .4938 408 .0655 408 .0655 408 .0655 423 .1791 457 .0334 462 .3741

[1] 502 .0000 537 .2506 587 .7818 587 .7818 587 .7818 562 .9954 585 .5152 523 .0208

[1] 603 .0000 683 .4448 561 .3052 561 .3052 561 .3052 604 .4826 628 .6619 565 .1250

[1] 500 .0000 518 .8297 530 .8509 530 .8509 530 .8509 496 .8322 450 .0611 460 .7152

[1] 431 .0000 344 .4543 321 .5798 321 .5798 321 .5798 333 .4902 360 .1694 398 .2353

[1] 414 .0000 491 .0840 434 .0926 434 .0926 434 .0926 450 .1701 486 .1837 439 .3496

[1] 510 .0000 557 .2905 459 .9650 459 .9650 477 .0008 453 .8516 472 .0057 500 .2122

[1] 580 .0000 665 .4135 569 .2529 569 .2529 589 .5834 611 .4198 634 .9359 645 .4074

These vectors contain the value given for the true total catch, the value given for
the estimate of the total catch by ratio of means, and the six estimates of total catch
by mean of ratios with 0, 1, 5, 15, 30 and 60 minutes discarded respectively for the
last six vector values .

