Not to be cited without permission of the authors¹

DFO Atlantic Fisheries Research Document 93/52 Ne pas citer sans autorisation des auteurs¹

MPO Document de recherche sur les pêches dans l'Atlantique 93/52

Results of the 1992 Aerial Survey of Capelin (Mallotus villosus) Schools Using the Compact Airborne Spectrographic Imager (CASI)

by

Brian S. Nakashima Science Branch Department of Fisheries and Oceans P. O. Box 5667 St. John's, Newfoundland A1C 5X1

'This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.

¹La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

2

Aerial surveys were conducted over Trinity Bay and Conception Bay from June 21 to July 14, 1992 using a digital imaging spectrometer (CASI). The survey ended during the peak of the spawning run in Conception Bay and after the main run in Trinity Bay. The school surface area index was 750,045 m² which was the highest in the series.

Résumé

On a procédé à des relevés aériens au-dessus des baies de Trinity et de Conception du 21 juin au 14 juillet 1992, en se servant d'un spectomètre numérique d'imagerie (CASI). Ces relevés ont pris fin au plus fort de la remontée de frai dans la baie de Conception et après la remontée principale dans la baie de Trinity. L'indice de superficie du banc de poissons était de 750,045 m², soit le plus élevé de la série.

Introduction

Areal estimates of capelin (<u>Mallotus villosus</u>) schools conducted since 1982 have been used as an index of inshore abundance of mature capelin in NAFO Div. 3L (Nakashima 1992). From 1982 to 1989 school areas were measured from aerial photographs (eg. Nakashima 1990). Since 1990 school areas have been estimated from digital data collected by the Compact Airborne Spectrographic Imager (CASI) (Nakashima 1992). The digital images collected by the CASI and processed by image classification techniques are superior to results from the photographic method (Nakashima et al. 1989, Borstad et al. 1990, Borstad et al. 1992).

The report presents the results of the 1992 CASI aerial survey and compares the school surface area index to other indices of relative abundance of mature capelin.

Material and Methods

Instrument Operation

The CASI (Fig. 1) is an imaging spectrometer which uses a two dimensional (612 x 288) charge couple device (CCD) and a diffraction grating to collect image and spectral data. The CASI operates in the range of 423-946 nm. A 512 pixel width spatial image is formed in "pushbroom" fashion by reading out the cross track information as the aircraft moves forward. The remaining elements are used to obtain dark and electronic offset reference values. Spectral data are collected across 288 elements in the along track dimension of the array. The spectral resolution of each element is 1.8 nm and the spatial resolution of each element is 1.8 nm and the spatial ambient light levels, aircraft speed, and band selections.

In spatial or imaging mode the CASI operates like other pushbroom imagers except that band widths, positions and number are programmable during the flight. High spatial resolution imagery is collected in several spectral bands which can be programmed as narrow as 1.8 nm or wider. Different spectral band widths were used for sunny days and for overcast days:

* /h.h.		Band widths				
condition	1	2	3	4		
Overcast Sunny	450-510 476-501	525-591 525-590	640-691 651-671	735-755 744-755		

Survey Method

Particulars of previous aerial surveys including aircraft type, camera and film used, survey time, and altitudes flown are listed in Table 1. CASI surveys in 1992 were flown at 1200 m to obtain a swath width comparable to aerial photographs taken at 457 m. Most of the images were obtained at altitudes close to 1200 m, however some flights were at lesser altitudes due to low ceilings (Table 1). The 1992 survey covered three transects as often as possible; the inside of Trinity Bay from Gooseberry Cove to Hopeall Head, the outside of Conception Bay from Bay de Verde to Harbour Grace Islands, and the inside of Conception Bay from Bryant's Cove to Portugal Cove (Fig. 2). The fourth transect covering the outside of Trinity Bay was considered unnecessary (Nakashima 1992) and dropped from the 1992 survey.

During each flight capelin schools were detected by experienced spotters prior to digital recording of the area. Flight tapes and survey records were examined following each flight or shortly thereafter to assess the quality of the imagery.

Analytical Methods

CASI image data were transferred to a PC-based image processor for classification and analysis. Data were calibrated, roll-corrected, and set up as PCI image files. An algorithm, tested in 1989 to estimate school areas from the digital survey data (Borstad et al. 1990), was used to analyze the 1992 data. For each transect flown, the mean and median surface areas of capelin schools, the total number of schools, and the total surface area of all schools observed along a transect were estimated.

The school surface area index for each year was estimated by summing the highest total school surface area observed on each of the three transects. I assumed that the peak in school surface area was indicative of inshore abundance for each transect for that year (Nakashima 1985). The trend in the index derived from 1982 to 1992 was compared to trends in catch rates from capelin traps and purse seines (Nakashima 1993) and to projections of mature biomass (Anon. 1992, Nakashima 1992). Mature biomass projections were unavailable for 1991 (Anon. 1990).

Results and Discussion

In 1992, the aerial survey provided frequent coverage of the three transects. Trinity Bay was surveyed five times (Table 2a), the outside transect of Conception Bay four times (Table 2b), and the inside of Conception Bay seven times (Table 2c). Twelve days (June 21-23, 26, 28 and July 1-4, 7, 11-12) were lost because of poor weather conditions. In Trinity Bay the highest school area estimate was on July 8 (Table 2a). In Conception Bay only a few schools were present in June and early July with the highest amounts on July 13 and 14 when the survey ended (Tables 2b, c). The total school surface area taken from the highest estimates in Conception and Trinity Bays was 750,045 m².

Unlike 1991 when the survey was over before the main run of capelin schools had been observed close to spawning beaches (Nakashima 1992), the survey in 1992 ended as the peak in spawning was occurring. This observation is confirmed by the presence of spawn on Conception Bay beaches sampled immediately after July 14 (Nakashima and Slaney 1993). Also evidence from a beach monitoring programme found that capelin spawned at Chapel Cove in Conception Bay on June 26 and July 14 and at Bellevue Beach in Trinity Bay on July 7, 13-14, 30-31, and August 5-8. The highest egg deposition was observed on July 14 on both beaches (Winters and Nakashima, unpub. data).

4

The 1992 school surface area index suggests that mature capelin biomass was almost double the mean estimate of $369,644 \text{ m}^2$ for 1982 to 1990 (Table 3). The school surface area in 1991 was an underestimate because the aerial survey ended before capelin schools were present along the coastline to spawn (Nakashima 1992). The school surface area index suggests that mature biomass was high in 1992 which contrasts with the trap index which indicates a dramatic decline in 1992. However, the trap catch rate in 1992 was not indicative of inshore relative abundance because the trap index was based on only five traps (Nakashima 1993). At the p = 0.05 significance level, the NAFO projections are highly correlated with the purse seine and trap catch rate indices (Table 4). The trap catch rate index is not significantly correlated with the aerial survey index (Table 4). However, if we ignore the 1992 trap catch rate estimate then the trap catch rate series and aerial survey index from 1982 to 1990 are significantly correlated (r = .7878, p = .0117, Nakashima 1992).

Acknowledgments

The CASI data were collected by Thorburn Aviation Ltd., Clarenville, Nfld. School counts and area measurements were completed by Borstad Associates Ltd., Sidney, B.C. I am especially grateful to D. Hill and R. Linehan for assistance during the flights. M. Hynes assisted in the preparation of the manuscript.

References

Anon. 1990. NAFO Scientific Council Reports. p. 145-146.

1992. NAFO Scientific Council Reports. p. 15-21.

- Borstad, G. A., D. A. Hill, R. C. Kerr, and L. R. Armstrong. 1990. Development of a digital survey technique for operational aerial surveys of spawning capelin. Contract No. XA988-00115-(021) for the Dept. Fisheries and Oceans. 46 p.
- Borstad, G. A., D. A. Hill, R. C. Kerr, and B. Nakashima. 1992. Direct digital remote sensing of herring schools. Int. J. Rem. Sensing 13: 2191-2198.
- Nakashima, B. S. 1985. The design and application of aerial surveys to estimate inshore distribution and relative abundance of capelin. NAFO SCR Doc. 85/84, Ser. No. N1058. 11 p.

1990. Capelin school surface area index for NAFO Div. 3L during the 1989 spawning season. NAFO SCR Doc. 90/59, Ser. No. N1780. 6 p.

1992. Results of aerial surveys of capelin (<u>Mallotus villosus</u>) schools using the Compact Airborne Spectrographic Imager (CASI). NAFO SCR Doc. 92/5, Ser. No. N2038. 12 p.

1993. The capelin fishery in NAFO Div. 3L in 1992. DFO Atl. Fish. Res. Doc. 93/6. 22 p.

- Nakashima, B. S., and R. W. Slaney. 1993. Capelin (<u>Mallotus villosus</u>) egg deposition on fifteen spawning beaches in Conception Bay, Newfoundland in 1992. DFO Atl. Fish. Res. Doc. 93/7. 11 p.
- Nakashima, B. S., G. A. Borstad, D. A. Hill, and R. C. Kerr. 1989. Remote sensing of fish schools: early results from a digital imaging spectrometer, p. 2044-2047. <u>In Proc. of IGARSS</u> '89, 12th. Canadian Symposium on Remote Sensing, Vancouver, B.C., July 10-14, 1989.

6

Year	Aircräft	Camera	Lens (mm)	Filter	Film	Radar altimeter	Survey period	Altitude (m)	Survey flight time (hrs)
1982	Piper Aztec	RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	No	Jun 18- Jul 5	152-160	
1983	Aero-Commander	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 19- Jul 9	457	21.8
1984	Cessna 310	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 17- Jul 7	457	38.5
1985	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 18- Jul 3	290-610	28.6
1986	Aero-Commander 500 B	Wild RC 10	152	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 19- Jul 5	381-579	13.4
1987	Piper Aztec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 16- Jul 3	457	37.0
1988	Piper Navajo Piper Aztec	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 15- Jul 5	305-488	33.0
1989	Piper Navajo	Zeiss RMK	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 16-27 Jun 30- Jul 4	434-732	26.0
1990	Piper Aztec	Zeiss RMK CASI	153	Anti-vignetting	Aerocolour Neg. 2445	Yes	Jun 17- Jul 6	570-1260	27.0
1991	Piper Navajo	CASI				Yes	Jun 21-25 Jul 3-17	1200	27.3
1992	Cessna 185	CASI					Jun 21- Jul 14	275-1280	34.6

.

-

Table 1. Summary of aerial surveys conducted from 1982 to 1992.

•

.

 \mathbb{N}^{+}_{+}

	No. of	Total surface		School	size (m ²)
Date	schools	area (m ⁻)	Mean	SD	Median
June 19, 1982	31	12724	411	712	149
June 26, 1982	29	35607	1228	2755	299
June 29, 1982	11	62397	5672	8378	592
July 2, 1982	8	31365	3921	9281	705
July 3, 1982	2	1920	960	17	960
June 23, 1983	11	69583	6326	6299	4241
June 24, 1983	26	39004	1500	1880	700
June 25, 1983	30	1/448/	2010	11170	701
June 29, 1983	35	100777	4339	4027	701
June 30, 1983	40	1993/3	7580	10701	2288
JULY 1, 1985	25	109497	7500	(7/7)	2200
June 19, 1984	13	15624	1202	1770	335
June 23, 1984	9	8314	924	888	502
June 25, 1984	96	31526	328	505	117
June 26, 1984	96	40510	422	679	223
June 29, 1984	47	12053	256	314	167
July 3, 1984	57	23827	418	814	167
July 7, 1984	77	43245	562	1124	223
June 21, 1985	13	7041	542	706	270
June 25, 1985	35	22459	642	1144	211
June 26, 1985	30	16540	551	721	214
July 1, 1985	125	60245	482	963	181
July 2, 1985	130	195659	1503	6046	179
June 28, 1986	59	95898	1625	4502	340
June 17, 1987	45	167567	3724	17727	223
June 19, 1987	91	399026	4385	31197	167
June 27-28, 1987	37	59315	1603	5612	446
July 3, 1987	5	1786	357	322	279
June 16, 1988	27	18749	694	902	391
June 19, 1988	50	104179	2084	4546	502
June 22, 1988	67	112863	1685	5749	391
June 25, 1988	20	87103	4338	15287	474
July 5, 1988	23	32252	1402	3199	223
June 17, 1989	60	84349	1389	5040 ^a	191
July 3, 1989	0				
June 24, 1990	4	69498	17375	11184	21483
June 27, 1990	30	58174	1831	3717	701
June 29, 1990	38	141122	3714	5486	1503
June 23, 1991	0				
June 24, 1991	0			400	
July 5, 1991	139	170681	1228	1827	535
July 14, 1991	54	64598	1196	1894	567
July 16, 1991	33	93680	2839	5562	800
June 25, 1992	29	40836	1408	1591	1078
June 29, 1992	71	97424	1372	1510	6/9
July 6, 1992	70	97565	1394	4275	267
July 8, 1992	124	175219	1597	2002	370
JULY 15, 1992	50	0/009	9201	4000	203

Table 2a. Schooling data for the inside part of Trinity Bay from Gooseberry Cove to Hopeall, 1982-92.

、 **.** .

`

.

.

Table 2b. Schooling data for the outside of Conception Bay from Bay de Verde to Harbour Grace Islands, 1982-92.

•

a calculation excludes capelin in traps

School size (m²) No. of Total sugface Median Mean • SD Date schools area (m⁻) 571 - 907⁸ June 26, 1982 AM June 26, 1982 PM 1826 = 1914 3134 = 6015^a June 27, 1982 June 29, 1982 1121 • 1707 7 July 4, 1982 4347 • 4951 732 • 582 July 5, 1982 1787 = 2754^a 1819 = 2965^a June 23, 1983 June 24, 1983 2677 • 3725^a June 25, 1983 June 30, 1983 1156 • 1181 July 1, 1983 June 18, 1984 2085 • 2556^a 879 • 1789^a June 23, 1984 June 25, 1984 703 = 1708^a 508 = 467^a June 26, 1984 June 30, 1984 329 = 254^a July 3, 1984 July 5, 1984 June 20, 1985 June 24, 1985 June 26, 1985 June 27, 1985 800 = 834 596 • 1145 214 • 426 274 • 938^a June 28, 1985 July 1, 1985 July 2, 1985 2702 = 5140 676 • 1872^a 786 • 1105^a June 19, 1986 698 • 769^a 343 • 616^a June 20, 1986 June 22, 1986 July 2, 1986 502 • 600 June 17, 1987 June 19, 1987 263 • 350^a 556 • 1482^a 393 • 699^a June 21, 1987 681 • 2389^a June 27, 1987 June 28, 1987 June 30, 1987 1036 • 2402^a 1226 • 2892^a July 3, 1987 742 • 1400 335 • 599 June 19, 1988 240 • 256^a June 20, 1988 682 • 1091^a June 24-25, 1988 July 4, 1988 1295 • 4242a 991 • 2032^a June 16, 1989 686 • 1422^a June 18, 1989 June 30, 1989 July 1, 1989 587 • 512^a July 4, 1989 446 • 651

Table 2c. Schooling data for the inside of Conception Bay from Harbour Grace Islands to Portugal Cove, 1982-92.

ς.

ι.

Table 2c. Continued ...

<u>``</u>.

	T		School size (m ²)		
NO. OT schools	Total surface area (m ⁻)	Mean	SD	Median	
0 112	128743	1092	2960 ^a	360	
32	88310	2591	4544 ^a	742	
J 96	102615	1069	1993 ^a	489	
3					
1 0					
l Few	schools observed	l - no CAS	I data		
1					
1 8	8453	1057	531	875	
2 8	4772	597	328	468	
2 7	11726	1675	3478	133	
2 12	24263	2708	2880	2143	
2 23	10775	468	620	272	
2 30	45748	1525	1865	792	
2 63	148629	2359	3294	981	
2 143	350988	2454	6098	751	
	No. of schools 0 112 0 32 0 96 0 1 0 1 Few 1 8 2 8 2 7 2 12 2 23 2 30 2 63 2 143	No. of schools Total surface area (m ²) 0 112 128743 0 32 88310 0 96 102615 0 1 Few schools observed 1 8 8453 2 8 4772 1 8 8453 2 8 4772 2 7 11726 2 12 24263 2 30 45748 2 63 148629 2 143 350988	No. of schoolsTotal areasurface mean0112128743109203288310259109610261510690961026151069101Few schools observed - no CAS188453105728477259727117261675212242632708230457481525263148629235921433509882454	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

.

a calculation excludes capelin in traps

	Catch (t)/	day	Noturo	School surface area (m ²)		
Year	Purse seine	Тгар	biomass (t)			
1982	16.4	3.1	<u>></u> 346,000	220,188		
1983	18.8	3.4	648,000	348,806		
1984	14.3	2.9	384,000	173,092		
1985	16.4	4.6	596,000	308,053		
1986	19.0	4.6	1,300,000	259,927		
1987	18.1	8.8	2,830,000	717,532		
1988	20.7	6.2	900,000	402,039		
1989	24.3	6.7	3,345,000	538,538		
1990	21.4	8.6	3,500,000	358,624		
1991	16.2	7.3		185,508		
1992	16.2	1.3	1,005,000	750,045		

Table 3. Comparison of three indices for estimating trends in relative spawning biomass. The catch/day index was based on capelin trap and purse seine data from logbook surveys (Nakashima 1993), the mature biomass index from NAFO Scientific Council Reports (Anon. 1982-89, 1992), and the school surface area index (this report).

• •

.

Table 4. Pearson product moment correlation coefficients for purse seine catch rate index (1982-92), capelin trap catch rate index (1982-92), aerial survey index (1982-90, 1992), and NAFO projections of mature biomass (1982-90, 1992). The upper right triangle presents the correlation coefficients and the lower left triangle are the probabilities. Number of comparisons are in parentheses.

	•				
	Purse seine	Trap	Aerial	NAFO	
Purse seine	*	.4898 (11)	.2234 (10)	.7364 (10)	
Trap	.1262	*	.2208 (10)	.8155 (10)	
Aerial	. 5349	.5399	*	.4642 (10)	
NAFO	.0152	.0040	.1765	*	

Fig. 1. Schematic of Compact Airborne Spectrographic Imager (CASI) from Borstad et al. (1990).

4

Fig. 2. Aerial survey transect for Trinity Bay and Conception Bay.