Not to be cited without
permission of the authors ${ }^{1}$
DFO Atlantic Fisheries
Research Document 93/14

Ne pas citer sans
autorisation des auteurs ${ }^{1}$
MPO Document de recherche sur les pêches dans 1'Atlantique 93/14

ASSESSMENT OF ATLANTIC SALMON IN THE MARGAREE RIVER, NOVA SCOTLA, 1992

by
G. Chaput, R. Jones, L. Forsyth, and P. LeBlanc
Science Branch, Gulf Region
Department of Fisheries and Oceans
P.O. Box 5030
Moncton, New Brunswick
E1C 9B6

${ }^{1}$ This series documents the scientific basis for the evaluation of fisheries resources in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the secretariat.
${ }^{1}$ La présente série documente les bases scientifiques des évaluations des ressources halieutiques sur la côte atlantique du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés definitifs sur les sujets traites, mais plutôt comme des rapports d't́tape sur les études en cours.

Les Documents de recherche sont publies dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

The recreational catches of Atlantic salmon (Salmo salar) from the Margaree River between June 1 and Oct. 15, 1992, were estimated by creel survey to be at 7471 SW salmon ($<63 \mathrm{~cm}$ fork length) harvested and 609 MSW salmon released. The recreational fishery exploitation rate estimates, based on recaptures of salmon tagged and released at the estuary, were 0.25 for 1 SW salmon and 0.11 for MSW salmon. About 31%. of the 1 SW salmon tagged before Sept. 1 (summer-marked fish) were recaptured during the angling season, in contrast to 12% of the fall-marked fish. For MSW salmon, 8% of the summer-marked fish were recaptured in contrast to 7% of the fall-marked salmon. The estimated returns of Atlantic salmon to the Margaree River in 1992, based on angling catches, were 2562 (90% C.I. 1302 to 4803) 1SW salmon and 5182 (90% C.I. 3073 to 9001) MSW salmon, resulting in potential egg depositions by MSW salmon of 493% (90% C.I. 290% to 860%) of target requirements (502% of target by 1 SW and MSW salmon). A second estimate of returns, based on the recapture trap and independent of angling catch and exploitation rate estimated 1018 1SW salmon and 3941 MSW salmon returned to the river, resulting in egg depositions of 378% of target. Potential egg depositions have exceeded target requirements since 1985 (137% in 1985 to 1063% in 1990). The high densities of juvenile salmon (6.3 to 58.7 parr $/ 100 \mathrm{~m}^{2}$) in the Margaree River in 1992 are a reflection of the high spawning escapements achieved in recent years.

RESUME

Les captures de Saumon atlantique (Salmo salar) de la pêche récréative de la rivière Margaree, pour la période du 1° juin au 15 octobre, 1992 ont été estimées par enquête à 747 saumons unibermarins (1SW) (longueur à la fourche $<63 \mathrm{~cm}$) récoltés et 609 saumons pluribermarins (MSW) relâchés. Les taux d'exploitation de la pêche récréative, estimés par la méthode de marquages-captures des poissons marqués dans l'estuaire de la rivière, s'élevaient à 0,25 pour les 1 SW et 0,11 pour les MSW. Environ 31% des saumons 1 SW marqués avant le 1^{e} septembre (remontée estivale) ont été capturés dans la pêche récréative tandis que 12% de ceux marqués après le 1^{e} septembre ont été capturés par après. Pour les saumons MSW, seulement 8% de la remontée estivale et 7% de la remontée d'automne ont été capturés durant la saison de pêche récréative. La remontée de saumon en 1992 dans la rivière Margaree, estimée des captures de la pêche récréative et les taux d'exploitation de cette pêche, a été environ 2562 saumons 1 SW (intervalle de confiance (I.-C.) à $90 \%, 1302$ à 4803) et 5182 saumons MSW (I.-C. à $90 \%, 3073$ à 9001). Les survivants de cette remontée de saumons MSW auraient contribué un dépôt d'oeufs équivalent à 493% du niveau cible (I.-C. à $90 \%, 290 \%$ à 860%). Les saumons 1 SW ne contribuent que faiblement au dépôt d'oeufs; ensemble les saumons MSW et 1SW auraient contribué à 502% du niveau cible d'oeufs. Un deuxième estimé de la remontée a été possible en 1992 en se servant du rapport des saumons marqués et non-marqués dans les captures au deuxième filet dans l'estuaire. La remontée aurait atteint 3941 saumons MSW (I.-C. à 95\%, 2865 à 5639) et 1018 saumons 1SW (I.-C. à 95%, 740 à 1456), dont 378% du niveau cible d'oeufs. Les dépôts d'oeufs ont excédé au niveau cible depuis 1985 (137% en 1985 à 1067% en 1990). Les hautes densités des juvéniles dans la rivière en 1992 (6,3 à 58,7 tacons $/ 100 \mathrm{~m}^{2}$) sont dues aux niveaux élevés de géniteurs atteints récemment.

INTRODUCTION

This is the $9^{\text {th }}$ assessment of the Margaree River Atlantic salmon (Salmo salar) resource. Previous assessments have been presented for 1983, and 1985 to 1991. Gray and Chadwick MS 1984); Claytor and Chadwick MS 1985; Claytor and Léger MS 1986; Claytor et al. MS 1987; Claytor and Chaput MS 1988; Claytor and Jones MS 1990; (Chaput and Jones MS 1991a; Chaput et al. MS 1992.

The Margaree River is situated in Cape Breton Island, Inverness County, Nova Scotia (Statistical District 2, Salmon Fishing Area 18) (Fig. 1). The two principal branches, the Southwest Margaree and the Northeast Margaree, meet at Margaree Forks to form the Margaree River which flows into the Gulf of St. Lawrence. Most of the recreational fishery takes place in the Northeast Margaree and the Margaree River proper, although the Southwest Margaree is fished in the fall. The Margaree River salmon has traditionally been considered as having two run components, the summer run which for statistical purposes ends on August 31, and the fall run occurring from Sept. 1 onwards.

Since 1979, numerous regulatory restrictions have been imposed to increase the summer component of the salmon run (Chaput and Claytor 1988). Mandatory release of multi-sea-winter (MSW) salmon ($\geq 63 \mathrm{~cm}$ fork length) angled before Sept. 1 has been in place since 1979. Since 1985, all MSW salmon have been released regardless of date of capture. The angling season in 1992 was the same as in 1991; the angling season extended from June 1 to Oct. 31, rather than closing on Oct. 15, as was the case prior to 1990. The season retention limit for 1 SW salmon ($<63 \mathrm{~cm}$ fork length) per license was reduced from 10 to 8 in 1992, while the regulations requiring that all 1SW salmon kept be tagged, as well as mandatory hook and release regulations for all multi-sea-winter salmon (MSW) (fork length $>=63 \mathrm{~cm}$) were maintained. The commercial fishery of Salmon Fishing Area 18 remained closed, as it has been since 1985. Commercial landings prior to 1985 are summarized in Claytor and Jones (MS 1990).

This document summarizes the recreational catch for the Margaree River which, combined with a derived exploitation rate, is used to estimate the returns, spawning escapement and egg depositions of 1SW and MSW salmon in 1992. An independent population estimate of the returns of salmon, based on a recapture trap in the estuary is compared to the estimate obtained using angling catches. The contribution by hatchery-origin salmon to the total returns and to the angling catches are presented. Juvenile densities at five standard sites are compared to those from previous years.

MATERIALS AND METHODS

Estimates of harvests and catches

Recreational catch estimates were obtained from three sources.

1. Fisheries officers from the Dept. of Fisheries and Oceans (DFO) at Margaree Forks, Nova Scotia, have provided estimates of angling catch for the period 1947 to 1992. MSW salmon hook and release estimates were not provided in 1992.
2. Recreational catches, since 1984, have been estimated from license stub returns (LIC) (O'Neil et al. 1985, 1986, 1987, 1989, 1991). Catch estimates for 1989 to 1991, and preliminary estimates for 1992 were obtained from S. O'Neil, DFO Halifax, Nova Scotia. The estimation procedures for the LIC data are outlined in O'Neil et al. (1991). Anglers are only required to report the number of MSW hooked and released from a given river for the entire season, therefore, seasonal breakdowns are not possible.
3. Angling catch was estimated by creel survey for 1987 to 1992. The creel survey method used in 1992 was identical to the one used in 1990 and 1991; a "bus route" access point survey (Robson and Jones 1989) combined with lattice sampling (Chaput and Jones MS 1991a). The 10 index pools were surveyed for the period June 1 to Oct. 15. The recent two week season extension, Oct. 16 to Oct. 31, was not surveyed. A total of 4 strata, each of 23 days duration, were used for the time period between June 1 and Aug. 31, 1992. Five strata, each of nine days duration, were constructed for the fall period, Sept. 1 to Oct. 15. The sampling intensity in the strata was $12 / 23$ days for the June 1-23 stratum and 16/23 days for the remaining three strata. Fall sampling intensity was $6 / 9$ days in each stratum. The sampling day was divided into AM and PM periods. Each sampling period lasted 7.5 hours with the AM period commencing at 600 or sunrise depending on season and the PM period finishing at 2100 or sunset depending on season. Both the AM and PM periods were sampled on the same day, twice in each stratum for the summer and once in each stratum for the fall. The Horvitz-Thompson unweighted matrices were used to estimate total catch and effort by stratum (Robson 1990). Variance estimates of effort (hours) and angling catch by size group (1SW and MSW salmon) for the summer (June 1 to Aug. 30) and fall (Aug. 31 to Oct. 15) were obtained using the Yates-Grundy variance estimator (Robson 1990). The 95% confidence intervals for the estimates were calculated using ± 2 standard deviations as in the previous assessment. The creel survey field methods for Margaree River are described in Appendix A.

The estimates of total river catch were obtained using logbook reports. Creel catch at index pools was expanded to total river catch using the proportion of the logbook catch originating at index pools. The distributions of the river catch estimates for 1SW and MSW salmon by season were generated using 5000 replications and bootstrap estimates of individual parameter uncertainty (Chaput MS 1992).

Volunteer angler logbook reports which detailed the daily catch by size, release method, effort (hours) and pools fished were received and processed as in previous assessments (Claytor and Jones MS 1990). Logbook data were used to expand creel catch estimates to total river catch and to provide estimates of reporting rates of tagged fish recaptured in the recreational fishery.

Salmon Check-In Program (SCIP)

A volunteer catch declaration program, initiated in 1991, was continued in 1992. Anglers were asked to report the 1 SW salmon catches to one of 5 stations where the angled fish could be sampled for biological characteristics, date of capture, location captured, etc. The declaration stations included four local business establishments and the Margaree Fish Culture Station (DFO). The program was a cooperative initiative between DFO and the Margaree Salmon Association.

Estimation of Exploitation Rate (ER)

The exploitation rate (ER) was estimated using mark/recapture methods, similar to those used since 1988, and the following formula:

$$
\text { ER = Tags Recaptured } / \text { Tags Available. }
$$

Two trapnets, identical in construction and installation to those of the previous assessments (Claytor and Chaput 1988), were fished within tidal waters between June 14 and Oct. 20, 1992. Each trap was not fished for the same time period and these fishing periods are summarized below:
Trap
Marking Trap (Lower Trap)
Recapture Trap (Upper Trap)

Start Date	Finish Date
September 1	October 20
June 15	October 14

All salmon captured in the trapnets were marked using blue, individually numbered Carlin tags secured with a double stainless steel wire attachment directly under the dorsal fin. In 1992, small lengths of fluorescent flagging tape were twisted into the stainless steel wire to make the tags more visible during snorkel and streamside censuses. Different colours were used for June, July, August and Sept./Oct. tagging periods. Tag recaptures in the angling fishery were reported in logbooks, at SCIP stations and by mail.

Estimation of Tags Available

Losses of tagged fish due to emigration and mortality were considered minimal and were not considered further. Losses due to tag shedding by marked fish were estimated by marking, with Carlin tags prior to confinement in the holding tanks at the Margaree Fish Culture Station, a total of 32 1SW and MSW salmon collected for broodstock from Hatchery Pool on Aug. 25. The tagging method was similar to that used at the estuarine trapnets. Fish were examined for tags when spawned in late October, early November. The tag shedding rate (tags lost per day) was calculated as the ratio of the number of tags lost to the number of tags initially placed divided by the number of days since tagging (taken as 65 days in 1992). The number of tags available to anglers was estimated from the number of marked fish released multiplied by the proportion of tags retained,
where the proportion retained equalled (1-tag shedding rate times median days to recapture in the angling fishery) (Table 1).

Estimation of Tags Recaptured

The tags returned voluntarily were adjusted to account for the reporting rate. The reporting rate of tag recaptures from the angling fishery was estimated for 1 SW and MSW separately. The proportion of logbook tag recaptures to logbook catch was assumed to represent 100% reporting. The proportion of tags recaptured at index pools to estimated catch at index pools represented the partial reports. The ratio of creel catch proportions to logbook catch proportions equalled the reporting rate.

Estimation of Returns

Method 1:

The estimate of returns based on angling catch in 1992 was obtained using the formula:
Returns $=$ Angling Catch $/$ ER (see Table 1).
The confidence around the returns estimate was quantified using simulation techniques. The returns equation was solved a total of 5000 times with the angling catch and exploitation rate allowed to vary for each replication. Variation in angling catch and exploitation rate was simulated using bootstrap techniques as described in Table 1.

Method 2:

This method is based on catches at the recapture trap (upper trap) and a derived catch efficiency. The following three statistical methods were used to estimate the fall population.

1. Adjusted Peterson Estimate.

This population estimate is described in Ricker (1975).

$$
N=\frac{(M+1)(C+1)}{(R+1)}
$$

$\mathrm{M}=$ Salmon tagged at Lower Trap.
C = Total Catch at Upper Trap.
R = Tagged Salmon at Upper Trap.

2. Bayesian Population Estimate.

An estimate of the population was obtained using a bayesian estimator as described by Gazey and Staley (1986). The most probable population size given R recaptures out of M marks placed in a sampled catch of C was calculated over a range of possible population sizes. The probabilities were calculated assuming that the sampling for marks was performed with replacement for one recapture interval.

$$
P\left(N_{1} \mid R_{1}, R_{2} \ldots R_{\tau}\right)=\frac{\prod_{t=1}^{\tau} P\left(R_{t} \mid N_{i}\right)}{\sum_{i=1}^{K} \prod_{t=1}^{\tau} P\left(R_{t} \mid N_{i}\right)}
$$

3. Schaefer Method for Stratified Populations.

Similar to the Peterson estimate but where the time of marking and time of recovery are divided into periods (Ricker 1975). The marking and recapture periods were the following:

1. September 1 - September 15
2. September 16 - September 30
3. October 1 - October 14

$$
N=\sum N_{i j}=\sum\left(R_{i j} \times \frac{M_{i}}{R_{i}} \times \frac{C_{j}}{R_{j}}\right)
$$

The total returns of 1SW and MSW were estimated using the proportion of 1SW salmon and MSW salmon from the upper trap catch.

Estimation of Spawning Requirements and Spawning Escapements

The conservation spawning requirements based on $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ of spawning and rearing area for the Margaree River were calculated using the formula and biological characteristics summarized in Table 2. The MSW salmon spawner requirement is 1,036 fish.

Estimates of spawning requirements were also derived from a stock-recruit relationship for MSW salmon. The MSW spawner requirement for maximum surplus production was estimated at 1,352 fish and 1,974 MSW salmon spawners are required for generating maximum recruitment back to the river (Chaput and Jones MS 199 2).

The spawning escapement to the Margaree River was calculated using the following formula (Claytor and Jones MS 1990):

```
    Sport Catch X (1 - ER)
Spawners = ---------------------
    ER
```

For the years 1947 to 1986, DFO estimates of catch were used. For 1987 to 1992, creel survey estimates of sport catch were used. Prior to 1987, the exploitation rate for both 1SW and MSW salmon was assumed to be uniformly distributed between 0.206 and 0.379 for both summer and fall angled fish (Claytor and Chaput MS 1987). The returns for 1987 to 1989 were estimated using an assumed exploitation rate for the summer (uniform distribution between 0.206 and 0.379) and derived exploitation rates for the fall varying from 0.11 to 0.35 for 1 SW salmon and 0.09 to 0.26 for MSW salmon (Chaput and Jones MS 1991b). The returns and escapements in 1991 and 1992 were determined using the simulation and bootstrapping techniques. Since 1979 , summer MSW sport catch and since 1985, all MSW sport catch regardless of date of capture was added back to the spawners formula, less 5% for hook and release mortality. The estimate of the percent of egg target met by MSW spawners excludes eggs collected by the DFO hatchery.

Hatchery Releases and Returns

Releases of hatchery reared fish, by life stage, to the Margaree River were updated for 1992. The proportions of hatchery and wild salmon returning to the Margaree River were determined from angler logbooks, creel survey, SCIP reports, broodstock collections, trapnet catches, and counting fence data at Lake O'Law Brook.

Electrofishing Surveys

A total of five electrofishing stations were sampled in July 1992. The methods were similar to those described by Chaput and Claytor (1989). Estimates of wild Atlantic salmon juvenile population numbers, densities, and mean size by size group were obtained for each station. Population estimates were calculated using the Zippin method (Zippin 1956). The percent habitat saturation index (PHS) was calculated according to the method proposed by Grant and Kramer (1990):

$$
\begin{aligned}
& \text { PHS }=100 \times \sum \sum_{\text {where }} \mathrm{D}_{\mathrm{i}} \times \mathrm{T}_{\mathrm{i}} \times 1.19 \\
& \mathrm{D}_{\mathrm{i}} \text { is the density (per } \mathrm{m}^{2} \text {) of size class }{ }_{i} \\
& \mathrm{~T}_{\mathrm{i}} \text { is the territory size }\left(\mathrm{m}^{2}\right) \text { for size class }{ }_{i} \text { predicted from the territory } \\
& \text { size-body size regression (Grant and Kramer 1990). }
\end{aligned}
$$

The index was calculated for the 1992 stations and compared to values for previous years.

RESULTS

Recreational Catches and Catch Rates

The DFO estimated catch of 1SW salmon from the Margaree River between June 1 and Oct. 31,1992 was 236 fish, 83% of the previous 5 year mean value (Table 3). MSW salmon catch estimates were not obtained by field personnel in 1992.

Preliminary license stub estimates of catch from the Margaree River for 1992 were 693 1SW salmon and 1973 MSW salmon (Table 4). The previous 5 year mean license stub catch from the Margaree River was 764 1SW salmon and 1725 MSW salmon. The angling catch and effort for the Margaree River represented 55% of the 1 SW salmon catch, 60% of the MSW salmon catch and 77% of declared effort (rod-days) for SFA 18 in 1992 (Locke et al. MS 1993).

Creel catch estimates of MSW salmon from the index pools in 1992 were almost identical to the 1991 catches for both the summer and fall periods. The MSW salmon catch in 1992, up to Oct. 15, was 88% of the 1991 catch. The 1992 1SW salmon catch estimate up to Oct. 15 was 149% of the 1991 catch estimate (Table 5). The effort estimate (hours of fishing effort) was 107% of the 1991 effort value and identical to the 1990 effort value.

The 1SW and MSW salmon catch proportions from the index pools, estimated using logbook catches versus tag recapture distributions, were different for both the 1SW and MSW salmon but the confidence intervals of the proportions obtained by bootstrapping were completely overlapping (Table 6), except for summer MSW salmon. Logbook proportions were used for expanding the index pool catches to total river catch in 1992.

The 1992 estimated catch of 1SW salmon, up to Oct. 15, from the Margaree River was 747, 191% of the 1991 estimated catch and 202% of the previous 5 year mean (Table 7). The MSW salmon catch up to Oct. 15, 1992 was 609 fish, similar to the 1991 value and 77% of the previous 5 year mean (Table 7).

The logbook reports for 1992 (Table 8), show that angler success rate was higher during the fall fishing period compared to the summer. Summer angling success peaked during the month of July, while the greatest fall catch rate occurred in the final two weeks of October.

Distribution of Tagging Effort and Recaptures

A total of 224 1SW salmon and 845 MSW salmon were marked and released from the estuarine trapnets between June 14 and Oct. 20, 1992 (Table 9). The largest portion of the catch occurred in the first two weeks of October for both 1SW and MSW salmon (Fig. 2). The modal length of 1SW salmon was 56 cm whereas MSW salmon had a modal length of 76 cm (Fig. 2).

About 21% of the 1 SW salmon tags and 10% of the MSW salmon tags were returned by anglers (Table 9). Of the 21 1SW salmon marked and released during the broodstock seining on

Aug. 25, 1992, 29% were recaptured by anglers whereas none of the 10 MSW salmon marked and released were subsequently recaptured (Table 9).

The median days to recapture for salmon marked in the fall was comparable to that of salmon marked in the summer and recaptured in the summer:

Days to Recapture
Median Min. Max.

1SW Marked before Sept. 1

Recaptured before Sept. $1 \quad 16437$
Recaptured before Oct. $31 \quad 27 \quad 4 \quad 117$
1SW Marked after Aug. 31
Recaptured before Oct. 31
MSW Marked before Sept. 1
Recaptured before Sept. $1 \quad 10 \quad 5 \quad 52$
Recaptured before Oct. $31 \quad 45 \quad 5 \quad 107$
MSW Marked after Aug. 31
Recaptured before Oct. $31 \quad 9 \quad 1 \quad 38$

Summer marked fish were recaptured throughout the fall in decreasing proportion as the fall season progressed. Of the tags reported captured during September, 50% of the 1 SW salmon recaptures were of summer origin ($4 / 5$ of these summer recaptures were August marks), while the proportion fell to 16% in the first half of October and no summer tags were reported in the second half of October (Table 10). The fall catch of MSW salmon was composed primarily of fall marked salmon; the September recaptures were 31% summer origin ($2 / 4$ of the these summer-tagged recaptures were August marks), while the proportion of summer tags in the October recaptures was about 3% (Table 10).

Exploitation of June and July marked salmon was very high compared to the other groups, especially for 1 SW salmon. The exploitation on the salmon marked during the last two weeks of Sept. was also high relative to the other tagging groups; 37% of 1 SW salmon marks and 16% of MSW salmon marks placed were returned by anglers.

Summer fish, defined as salmon which were present at least in the estuary by the end of August are harvested as intensively in the fall season as in the summer. The proportions of fish marked before Sept. 1 and subsequently recaptured and reported before Sept. 1 were 0.15 for 1SW salmon and 0.04 for MSW salmon (Table 11). The proportions of these marked fish which were subsequently recaptured and reported over the entire angling season were more than double these values; 0.31 for 1 SW and 0.09 for MSW salmon. Similar results were obtained during the 1991 tagging program; exploitation rates for 1SW passed from 0.08 to 0.15 whereas MSW exploitation passed from 0.03 to 0.12 (Table 11).

Fall exploitation rates, using only fish marked and released after August 31 were as high as those on summer fish recaptured during the summer period (Table 11). The MSW salmon rate, up to Oct. 15 , was 0.07 which is almost identical to the values obtained during the 1988 to 1990 tagging programs (Table 11). The 1SW rates have been more variable, fluctuating between 0.07 and 0.12 . The integrated rate for the entire season of marking and recapture was estimated at 0.10 for MSW salmon and 0.21 for 1 SW salmon (Table 11). The exploitation rate derived for the entire season was less than that derived using only summer marked fish but the difference in 1992 was minor for MSW salmon. The difference was much greater for 1 SW salmon (33% less than summer derived rate) (Table 11).

Estimation of Returns Equation Parameters

The angling catch data used in the estimation of returns for 1947 to 1992 are summarized in Table 7. The parameters which made up the returns equation in 1992 are presented in Tables 1 and 12.

In 1992, salmon were marked and released during the entire period of June 14 to Oct. 20. For comparison, exploitation rates were derived using the 1991 assessment method which used only tags released up to August 31 as well as exploitation rates derived using the marks placed for the entire season (Table 12). Prior to 1991, the summer ER was assumed to be between 0.206 and 0.379 and ER's had been derived for fall marked fish for the years 1988 to 1990.

The returns in 1992, based on angling catches up to Oct. 15, are presented using both exploitation rate values; summer tagged exploitation rate and overall summer and fall exploitation rate (Table 12). Using the overall exploitation rates for 1SW and MSW salmon, the returns in 1992 were estimated at $5,182 \mathrm{MSW}$ (90% C.I. 3,073 to 9,001) and $2,5621 \mathrm{SW}$ salmon (90% C.I. 1,302 to 4,803) (Table 12; Fig. 3). Using the exploitation rates derived for summer marked fish only provided estimated returns of $3,638 \mathrm{MSW}$ and $1,4841 \mathrm{SW}$ salmon (Table 12), a value for the MSW salmon return estimate identical to the 1991 MSW return estimate (Table 12). The integrated exploitation rate value is the more appropriate value to use.

The escapements in 1992 were estimated at 1,832 1SW salmon (90% C.I. 720 to 3,596) and 5,151 MSW salmon (90% C.I. 3,053 to 8,953) (Table 13). These escapements resulted in an estimated egg deposition by MSW salmon equal to 493% of the conservation target (90% C.I. 290% to 860%) or 502% by both 1 SW and MSW salmon (Table 13). Potential egg depositions by MSW salmon have exceeded the conservation target egg depositions since 1985, even at the lower confidence limit (Table 13). The estimated MSW escapements exceeded the target MSW spawners for maximum surplus production $(1,352)$ by a factor of 3.8 and the target for maximum recruitment ($1,974 \mathrm{MSW}$) by a factor of 2.6 . The maximum surplus target has been exceeded every year since 1985 and the maximum recruitment target has been exceeded in 6 of the eight years since 1985 (Table 13).

Independent Trapnet Estimates of Returns

Catches at the trapnet are summarized in Fig. 2. Out of a total of 46 1SW and 164 MSW salmon marked and released from the lower trapnet between Sept. 1 and Oct. 13, 1992, 29 MSW and 5 1SW salmon were recaptured at the upper trapnet. The range of recapture times for lower to upper was 1 to 31 days with a median lag time of 1 day. Population estimates derived using the Peterson, Schaefer and Bayesian methods were identical and the most probable population size for salmon in the fall of 1992 was 3848 fish (95% C.I. 2798 to 5507) (Fig. 3). This provides a trap efficiency value of 16% (22% to 11%; 95% C.I.) from which the returns of 1 SW and MSW salmon were estimated at 1018 and 3941 respectively (Table 14). These estimates are about 25% lower than the MSW estimate derived using the angling catches and 60% lower for 1 SW salmon.

Electrofishing Surveys

The densities of fry in 1992 at the five sites were on average similar to 1991, and ranged from 20 to 336 fry per $100 \mathrm{~m}^{2}$ (Table 15). Parr densities were slightly lower in 1992, and ranged from 6 parr per $100 \mathrm{~m}^{2}$ at the Trout Brook site (Lake Ainslie tributary) to 59 parr per $100 \mathrm{~m}^{2}$ at three of the other sites (Table 15). The 1992 PHS index values for the Margaree River ranged from 4% to 45%, lower than the 1991 values but above values recorded in the 1970's (Table 15) (Chaput et al MS 1992).

Hatchery Contributions

Releases of hatchery progeny to the Margaree River by life stage are summarized in Table 16. The proportions of hatchery and wild 1 SW and MSW salmon by collection method are summarized in Table 17. The trapnets provide the best indication of the proportion of wild salmon in the runs because of the larger sample size and the estuarine location from which samples were obtained. Prior to Aug. 31, the 1SW salmon run was 57% wild origin and the MSW salmon run was 88% wild origin (Table 17). Using the trapnet catches and the estimated efficiency, the hatchery contributions to the summer run in 1992 were 99 MSW fish and 142 1SW fish. These proportions are higher than the 1991 proportions of 9% for MSW and 19% for 1 SW but the absolute numbers in 1991 are just slightly higher than in 1992; 117 MSW salmon and 197 1SW fish (assuming a catch efficiency similar to the 1992 estimate). Fall returns of hatchery fish in 1992 were estimated to have been 160 MSW and 160 ISW fish, representing 4% and 15% of the fall returns, respectively (Table 17). Overall contributions of hatchery origin salmon to total returns in 1992 were 5% for MSW and 21% for 1 SW salmon.

Marine Exploitation of the Margaree River Atlantic Salmon

The Margaree River Atlantic salmon kelts, as well as returning previous spawners, are regularly intercepted in the Newfoundland and Quebec north shore commercial fisheries (Table 18). Three salmon from the 1991 spawning migration, were recaptured in the 1992 commercial fishery, two in Labrador and the other from the Quebec northshore.

DISCUSSION

The initiatives undertaken in 1992 have addressed two particular gaps in the assessment of the returns of Atlantic salmon to the Margaree River: 1) conducting a tagging study which covered the entire season to provide an estimate of the relative proportions of summer and fall run fish in the summer and fall angling catches and 2) obtain an estimate of population size, independent of angling recaptures.

The returns of MSW salmon to the Margaree River in 1992 were estimated using two methods: 1) on the basis of angling catches weighted by derived exploitation rates as in recent assessments for the Margaree and 2) using catches at a recovery trapnet in the lower section of the river for which the catch efficiency was derived. The returns estimates using both methods indicated that the returns in 1992 of MSW salmon were greater than 3500 fish although the estimate obtained using the angling catch method was 25% higher than the recovery trap estimate. The distributions of the returns estimates (Bayesian vs angling) for MSW salmon had a large overlap and the difference in the two estimates is not considered serious given the large uncertainty in the derivation of the exploitation rates in the angling fishery. In 1991 and 1992, the reporting rate of marked fish captured in the angling fishery was estimated to have been 100% using the method described in the text. The reporting rate is undoubtedly less than that since anglers mentioned that they had caught tagged MSW salmon but had not removed the tag because they did not want to stress the fish further or they were not aware that they should remove the tags. A reporting rate of 50% would be required to generate an estimate of returns using the angling data which is similar to the estimate obtained using the recovery trap. Such a low reporting rate value has been estimated from the Miramichi River angling fishery (Randall et a. 1991), but the present method of estimating the reporting rate does not support such a low value. Previously, estimates of returns based on angling catches and independently using trapnets were different. In 1988, the estimates based on angling catches were 13% higher for MSW and 25% higher for 1SW than those based on trapnet recaptures whereas, in 1989, the estimates based on angling catches were 35% less for MSW salmon and 46% less for 1SW salmon than the trapnet estimated returns (Claytor and Jones MS 1990). Trapnet estimates should preferentially be used over angling data because fewer of the variables have error: recaptures are reported without error, catch is reported without error. The only variable common to both which has uncertainty is the number of tags available.

Reliable angling statistics are difficult to obtain. Based on the population estimate from the trapnet and the exploitation rate on 1SW and MSW salmon derived with the mark-recapture data, the recreational catch on the Margaree River in 1992 was estimated at 255 1SW and 434 MSW salmon, values which are significantly lower than the estimates of angling catch from creel and from license stubs.

The exploitation rate on 1SW salmon in 1992 was the highest value derived since 1988 and for fish tagged prior to Sept. 1, the exploitation rate was estimated at 0.46 ; nearly half the 1 SW salmon released from the trapnet in the summer period were subsequently harvested by the end of October. The exploitation rate on summer MSW salmon was significantly lower, but nearly 17% of these salmon were subsequently recaptured by the end of October.

The estimated exploitation rate on fall marked MSW salmon has been very constant and low (<0.10) over the last five years. Summer exploitation rate values for MSW also appear fairly constant over the two years collected so far. The exploitation rate on 1SW salmon is much more variable. The integrated ER calculated in 1991 overestimated the overall exploitation rate resulting in an underestimate of the total returns because a similar calculation applied to the 1992 summer tagged fish resulted in estimates of MSW salmon returns which were slightly less than the recovery trap estimates.

Estimating the returns of salmon during the summer versus the fall, using the angling catch values for each season, is complicated by the mixture of both summer and fall entrants in the fall angling catch. The proportion of fall catch which is summer salmon is not very high, about 8% for MSW salmon and 21% for 1 SW salmon. In previous assessments, the angling catches from the summer and fall were treated as two distinct components representing the respective sizes of the runs. The mark/recapture data from 1991 and 1992 have shown this to be incorrect. Since some of the fall recreational catch consisted of fish which had been marked and released in the summer, the fall returns of MSW salmon are slightly inflated but the summer returns have been seriously underestimated, especially when using assumed exploitation rates of 0.202 to 0.379 as in the previous assessments (Chaput et al. MS 1992). The true exploitation rate which should be used for the summer catch has been more in the order of 0.04% in 1991 and 1992. The exploitation rates derived in 1988 to 1990 for fall angled fish actually correspond to exploitation rates for fish entering and angled in the fall. This overestimated the fall returns while underestimating the summer returns but the bias for the fall returns is not large because the fall catch, at least in 1992, was composed primarily of fall fish (92% for MSW, 79% for 1SW salmon).

The return of MSW Atlantic salmon to the Margaree River in 1992 was similar to the 1991 value. The spawning escapement in 1992 was four times the conservation target spawning requirement, and two times the maximum recruitment target. The increased returns to the Margaree River since 1985 have resulted in high densities of Atlantic salmon juveniles at the sampled sites in the Margaree River.

The Atlantic salmon resource of the Margaree River has increased in abundance since 1985 to the point where surpluses of fish to presently designated spawning requirements are occurring every year. A forecast for 1993 can be obtained from the stock-recruit function which has been derived for the Margaree River (Chaput and Jones 1992). Given the estimated spawning escapement of 1,670 MSW salmon achieved in 1988, the expected recruitment of MSW salmon in 1993 is 4,491 (90% C.I. 3833 to 5079) (Fig. 4).

REFERENCES

Chaput, G. MS 1992. Estimating and incorporating parameter uncertainty when returns of Atlantic salmon are derived from angling catches. CAFSAC Res. Doc. 92/1.

Chaput, G.J. and R.R. Claytor. 1988. Sport catch of Atlantic salmon from Margaree River, Nova Scotia, 1947 to 1987. Can. Data Rep. Fish. Aquat. Sci. No. 678. iv+50p.

Chaput, G.J. and R.R. Claytor. 1989. Electrofishing surveys for Atlantic salmon from Margaree Rịver, Nova Scotia, 1957 to 1987. Can. Data Rep. Fish. Aquat. Sci. No. 736. iv+76p.

Chaput, G. and R. Jones. MS 1991a. Assessment of Atlantic salmon (Salmo salar) in the Margaree River, Nova Scotia 1990. CAFSAC Res. Doc. 91/3. 31p.

Chaput, G. and R. Jones. MS 1991b. Evaluating spawning requirements, returns, escapements and surpluses to conservation levels of Atlantic salmon for selected Gulf Nova Scotia rivers. CAFSAC Res. Doc. 91/73. 23p.

Chaput, G.J. and R. Jones. MS 199 ¿. A stock-recruit relationship for MSW salmon from the Margaree River. CAFSAC Res. Doc. 92/124. 17p.

Chaput, G., R. Jones, and L. Forsythe. MS 1992. Assessment of Atlantic salmon in the Margaree River, Nova Scotia 1991. CAFSAC Res. Doc. 92/26. 40p.

Claytor, R.R. and E.M.P. Chadwick, MS 1985. Assessment of Atlantic salmon (Salmo salar), in the Margaree River, Nova Scotia, 1985. CAFSAC Res. Doc. 85/103. 25p.

Claytor, R.R. and G.J. Chaput. MS 1988. Assessment of Atlantic salmon (Salmo salar), in the Margaree River, 1988. CAFSAC Res. Doc. 88/75. 43p.

Claytor, R.R., G.J. Chaput, and T.G. Lutzac. MS 1987. Assessment of Atlantic salmon (Salmo salar), in the Margaree River, 1987. CAFSAC Res. Doc. 87/105. 36p.

Claytor, R.R. and R. Jones. MS 1990. Assessment of Atlantic salmon (Salmo salar), in the Margaree River, 1989. CAFSAC Res. Doc. 90/27. 22p.

Claytor, R.R. and C. Léger. MS 1986. Assessment of Atlantic salmon, Salmo salar, in the Margaree River, Nova Scotia, 1986. CAFSAC Res. Doc. 86/93. 21p.

Elson, P.F. 1975. Atlantic salmon rivers. Smolt production and optimal spawning - an overview of natural production. Int. Atlantic Sal. Found. Spec. Public. Ser. 6:96-119.

Gazey, W.J. and M.J. Staley. 1986. Population estimation from mark-recapture experiments using a sequential bayes algorithm. Ecology 67:941-951.

Grant, J.W.A. and D.L. Kramer. 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Can. J. Fish. Aquat. Sci. 47:1724-1737.

Gray, R.W. and E.M.P. Chadwick. MS 1984. Assessment of Margaree River salmon stocks in 1983. CAFSAC Res. Doc. 84/36. 11p.

Locke, A., R. Jones, G. Atkinson, R. Pickard and K. Davidson. MS 1993. Status of Atlantic salmon stocks in SFA 15, 16, 17 and 18. In Press.

Marshall, T.L. 1982. Background and management alternatives for salmon of the Margaree River: a working document for the selection of stock enhancement strategies. Fisheries and Oceans, Halifax, NS. Mimeo. 117pp.

O'Neil, S.F., M. Bernard, P. Gallop, and R. Pickard. 1987. 1986 Atlantic salmon sport catch statistics, Maritime provinces. Can. Data Rep. Fish. Aquat. Sci. No. 663. v+69p.

O'Neil, S.F., M. Bernard, and J. Singer. 1985. 1984 Atlantic salmon sport catch statistics, Maritime provinces (Redbook). Can. Data Rep. Fish. Aquat. Sci. No. 530. v+71p.

O’Neil, S.F., M. Bernard, and J. Singer. 1986. 1985 Atlantic salmon sport catch statistics, Maritime provinces (Redbook). Can. Data Rep. Fish. Aquat. Sci. No. 600. v+71p.

O'Neil, S.F., K. Newbould, and R. Pickard. 1989. 1987 Atlantic salmon sport catch statistics, Maritime Provinces. Can. Data Rep. Fish. Aquat. Sci. No. 770. 73p.

O'Neil, S.F., D.A. Stewart, K.A. Newbould, and R. Pickard. 1991. 1988 Atlantic salmon sport catch statistics, Maritime provinces. Can. Data Rep. Fish. Aquat. Sci. No. 852. 79p.

Randall, R.G., J.A. Wright and P.R. Pickard. 1991. Effect of run timing on the exploitation by anglers of Atlantic salmon in the Miramichi River. Can. Tech. Rep. Fish. Aquat. Sci. No. 1790: viii +46 p .

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. fish. Res. Board Can. No. 191. 382p.

Robson, D. 1990. Handout on multi-dimensional lattice sampling in creel surveys. Manuscript 8p. (Available from D. Robson 150 McLaren, Ph 6, Ottawa, Ontario K2P 0L2, Canada).

Robson, D. and C.M. Jones. 1989. The theoretical basis of an access site angler survey design. Biometrics 45:83-98.

Zippin, C. 1956. An evaluation of the removal method of estimating animal populations. Biometrics 12:163-189.

Table 1. Formulation for the estimation of the returns of Atlantic salmon to the Margaree River, 1992. Italics indicate parameters which changed value for every repetition.

Table 1 (cont'd).

SUMMARY EQUATION

Solve RETURNS a large number of times to generate the distribution from which the Confidence Limits can be determined.

Table 2. Estimation of spawner requirements for the Margaree River.

Table 3. Salmon angling catch on Margaree River (1947-1992) as compiled by Department of Fisheries and Oceans fisheries officers (DFO statistics).

Year	MSW					
	1SW	Retained	Released	Total	Unsized	Total
1947	36	363			1	400
1948	106	704			.	810
1949	41	332			9	382
1950	111	320			8	439
1951	21	424			25	470
1952	83	204			4	291
1953	49	291			8	348
1954	68	298			10	376
1955	53	258			.	311
1956	28	90			1	119
1957	36	136			.	172
1958 *	N/A	N/A			-	334
1959 *	N/A	N/A			.	235
1960 *	N/A	N/A			.	140
1961	29	49			11	89
1962	46	410			.	456
1963	87	212			-	299
1964	120	289			-	409
1965	86	254			.	340
1966	92	165			-	257
1967	9.9	265			8	371
1968	64	198			6	268
1969	214	139			6	359
1970	85	215			3	303
1971	21	94			.	115
1972	42	105			-	147
1973	166	117			.	283
1974	60	107			.	167
1975	36	64			.	100
1976	96	82			.	178
1977	69	140			1	210
1978	25	158			.	183
1979	597	62	19	81	8	686
1980	167	138	2	140	11	318
1981	899	105	34	139	11	1049
1982	691	103	76	179	1	871
1983	68	107	42	149	4	221
1984	148	12	109	121	.	269
1985	223	0	312	312	1	536
1986	295	0	754	754	.	1049
1987	353	0	408	408	-	761
1988	435	0	580	580	-	1015
1989	179	0	244	244	-	423
1990 @	208	0	314	314	.	522
1991	246	0	-	-	.	246
1992	236	0	-	-	.	236

* Information regarding 1SW and MSW salmon for 1958-1960 are not available.
(Note: Season was extended from October 15 to October 31.

Table 4. Annual summaries of catch and effort for the Margaree river from 1984-92 using license stub returns. $+/-$ Mean $=(1992$-Mean $) /$ Mean.

Year	River	No. Angler	1SW		MSW		Unk. Obs.	Total		Rods		cPuE	\% MSW
			Obs.	Est.	Obs.	Est.		Obs.	Est.	Obs.	Est.		
Margaree													
1984		678	233	242	293	305	4	530	551	5952	6665	0.089	55.7
1985		793	473	509	1130	1215	3	1606	1724	7324	7824	0.219	70.5
1986		1131	748	782	2522	2636	2	3272	3420	9724	10232	0.336	77.1
1987		1441	925	977	1757	1857	0	2682	2834	12165	12887	0.220	65.5
1988		1455	749	879	1647	1932	0	2396	2810	11582	14042	0.207	68.7
1989		1486	464	561	1298	1570	0	1762	2132	10594	13234	0.166	73.7
1990		1382	514	649	1193	1507	0	1707	2156	10789	14072	0.158	69.9
1991		1236	586	752	1370	1757	0	1956	2509	10142	13432	0.193	70.0
1992		1315	512	693	1458	1973	0	1970	2666	10746	15018	0.183	74.0
	Mean(87-91)	1400	648	764	1453	1725	0	2101	2488	11054	13533	0.189	69.6
	+/- Mean	-6\%	-218	-98	0%	148	-	-6\%	7\%	-38	11\%	-38	68

Table 5. Estimation of angling catch and effort (hours) from the index pools on the Margaree River, June 1 to oct. 15, 1992.

		Estimate of Total	Std. Dev.	$\begin{aligned} & \text { C.I. } 95 \% \\ & \text { Lower } \end{aligned}$	Upper	$\begin{aligned} & \text { Inaccuracy } \\ & +/-8 \end{aligned}$
Summer (June 1 to Aug. 31)	1SW	128	50.8	26	230	79.48
	MSW	67	25.2	17	117	75.38
	EFFORT	11465	519.9	10425	12505	9.18
Fall (Aug. 31 to Oct. 15)	1sw	110	39.4	31	189	71.68
	MSW	150	41.7	67	233	55.68
	EFFORT	11190	616.7	9957	12423	11.08
TOTAL	1SW	238	64.3	109	367	54.08
	MSW	217	48.8	119	315	45.08
	EFFORT	22655	806.6	21042	24268	7.16

Table 6. Proportion of catch at index pools based on logbook data and tag recapture data, 1992.

	Catch	Logbooks			Taq Recaptures		
		Median	Percentiles		Median	Percentiles	
			5%	958		5%	958
Summer	1SW	0.27	0.15	0.40	0.38	0.13	0.63
(June 1 to Aug. 28)	MSW	0.43	0.29	0.58	0.20	0.00	0.60
Fall	1SW	0.38	0.23	0.57	0.45	0.31	0.59
(Aug. 29 to Oct. 15)	MSW	0.35	0.20	0.52	0.47	0.35	0.59

Table 7. Angling catches used for estimating returns and escapements to the Margaree River, 1947-1992. Catches by season for 1SW and MSW salmon are adjusted for the unsized catches in Table 3.

Year		1SW Salmon				MSW Salmon			
		$\begin{array}{r} \text { June } 1 \\ \text { to Aug. } 31 \end{array}$	$\begin{array}{r} \text { Sept. } 1 \\ \text { to Oct. } 15 \end{array}$	$\begin{array}{rrr} \text { Oct. } & 16 \\ \text { to Oct. } & 31 \end{array}$	Total*	$\begin{array}{r} \text { June } 1 \\ \text { to Aug. } 31 \end{array}$	$\begin{array}{r} \text { Sept. } 1 \\ \text { to Oct. } 15 \end{array}$	$\begin{array}{rr} \text { Oct. } & 16 \\ \text { to Oct. } & 31 \end{array}$	Total*
1947		16	20		36	156	208		364
1948		64	42		106	276	428		704
1949		26	16		42	77	263		340
1950		49	64		113	79	247		326
1951		14	8		22	187	261		448
1952		37	47		84	86	121		207
1953		28	22		50	124	174		298
1954		38	32		70	170	137		306
1955		30	23		53	100	158		258
1956		16	12		28	67	24		91
1957		15	21		36	38	98		136
1958									0
1959									0
1960									0
1961		20	13		33	35	21		56
1962		25	21		46	273	137		410
1963		23	64		87	49	163		212
1964		77	43		120	135	154		289
1965		43	43		86	89	165		254
1966		48	44		92	22	143		165
1967		48	52		100	117	154		271
1968		30	35		65	54	148		203
1969		108	110		218	77	64		141
1970		48	38		86	55	163		217
1971		13	8		21	40	54		94
1972		22	20		42	53	52		105
1973		97	69		166	69	48		117
1974		34	26		60	30	77		107
1975		14	22		36	4	60		64
1976		43	53		96	9	73		82
1977		37	32		69	53	87		141
1978		9	16		25	20	138		158
1979		538	66	.	604	21	62		83
1980		104	69		173	2	143		145
1981		737	172		909	29	11		140
1982		603	89		692	65	114		179
1983		38	31		69	46	106		152
1984		81	67		148	27	94		121
1985		116	107		223	144	168		313
1986		196	99		295	297	457		754
1987		306	97		403	242	561		803
1988		367	222		589	190	178		368
1989	-	151	57		208	152	311		463
1990	Median	203	51		256	359	1307		1699
	Perc. 5	78	0		120	156	630		959
	Perc. 95	383	114		449	705	2369		2821
1991	Median	221	148	0	391	78	514	292	596
	Perc. 5	44	0	-	146	6	262	91	331
	Perc. 95	611	407	-	842	161	830	1089	917
1992	Median	479	256	-	747	171	423	-	609
	Perc. 5	153	99	-	365	59	205	-	346
	Perc. 95	1056	474	-	1365	353	842	-	1060

* Totals up to and including October 15.

Table 8. Summary of monthly effort, catch and CPUE from logbook anglers on Margaree River in 1992.

Season	Month	Rods	Effort Hours	Kept		$\begin{gathered} \text { 1SW Salmon } \\ \text { Rel'd } \\ \hline \end{gathered}$	Total	$\begin{aligned} & \text { MSW } \\ & \text { Rel'd } \end{aligned}$	Total Fish	Catch/Unit Rods	$\begin{aligned} & \text { Effort } \\ & \text { Hours } \end{aligned}$
Summer	June	96	396		4	0	4	3	7	0.073	0.018
	July	166	805		18	5	23	39	62	0.373	0.077
	Aug.	125	754		8	1	9	16	25	0.200	0.033
Sub-Total		387	1955		30	6	36	58	94	0.243	0.048
Fall	Sept.	148	889		11	1	12	20	32	0.216	0.036
	Oct. 1-15	107	656		6	4	10	23	33	0.308	0.050
	Oct. 16-31	103	587		5	3	8	57	65	0.631	0.111
	Oct. 1-31	210	1243		11	7	18	80	98	0.467	0.079
Sub-Total		358	2132		22	8	30	100	130	0.363	0.061
Total Season		745	4087		52	14	66	158	224	0,301	0.055

Table 9. Distribution of recaptures at index pools vs other pools in the angling fishery for 1992 .

Gear	Month	Tagged	Index Pools	Other Pools	Total:	Prop. Recap
	1SW SALMON					
Trap	June	10	3	3	6	0.60
	July	24	1	5	6	0.25
	August	18	3	1	4	0.22
	Sept. 1-15	29	3	2	5	0.17
	Sept. 16-30	27	2	8	10	0.37
	Oct. 1-15	113	5	10	15	0.13
	Oct. 16-31	3	0	1	1	0.33
	Sub-total:	224	17	30	47	0.21
Seine	August 25	21	5	1	6	0.29
	Total:	245	22	31	53	0.22
	MSW SALMON					
Trap	June *		1	2	3	0.18
	July *	55	2	5	7	0.13
	August	56	1	1	2	0.04
	Sept. 1-15	109	3	7	10	0.09
	Sept. 16-30	102	5	11	16	0.16
	Oct. 1-15	492	19	23	42	0.09
	Oct. 16-31	14	0	1	1	0.07
	Sub-total:	845	31	50	81	0.10
Seine	August 25	10	0	0	0	0.00
	Total:	855	31	50	81	0.09

* - 2 salmon were caught and kept for broodstock on August 25.

Table 10. Distribution of recaptures in the angling fishery for 1SW and MSW for 1992.

Gear	Month	No. Tagged	June	July	Aug.	Sept. $1-15$	$\begin{aligned} & \text { Sept. } \\ & 16-30 \end{aligned}$	$\begin{aligned} & \text { Oct. } \\ & 1-15 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { oct. } \\ 16-31 \end{array}$	Unk	Total	Prop.
	1SW SALMON											
Trap	June	10	-	4	1	-	-	1	-	-	6	0.60
	July	24	-	3	-	1	-	2	-	-	6	0.25
	August	18	-	.	-	2	2	-	-	-	4	0.22
	Sept. 1-15	29	-	-	-	.	3	2	-	-	5	0.17
	Sept. 16-30	27	-	-	-	-	2	4	4	-	10	0.37
	Oct. 1-15	113	-	-	-	-	.	10	5	-	15	0.13
	Oct. 16-31	3	-	-	-	-	-	.	1	-	1	0.33
	Sub-total:	224	0	7	1	3	7	19	10	0	47	0.21
Seine	August 25	22	-	-	1	3	1	1	-	-	6	0.27
	Total:	246	0	7	2	6	8	20	10	0	53	0.22
	MSW SALMON											
Trap	June *	17	-	2	1	-	-	-	-	*	3	0.18
	July *	55	.	2	.	1	1	1	1	1	7	0.13
	August	56	-	.	.	.	2	-	.	.	2	0.04
	Sept. 1-15	109	-	.	.	.	4	4	2	-	10	0.09
	Sept. 16-30	102	5	10	1	-	16	0.16
	Oct. 1-15	492	.	.	-	.	.	23	18	1	42	0.09
	Oct. 16-31	14	-	.	.	-	.	.	1	.	1	0.07
	Sub-total:	845	0	4	1	1	12	38	23	2	81	0.10
Seine	August 25	11	-	-	-	-	-	-	-	-	0	0.00
	Total:	856	0	4	1	1	12	38	23	2	81	0.09

* - 2 salmon were caught and kept for broodstock on August 25.

Table 11. Exploitation rates, by tagging group, of salmon recaptured during various angling intervals. \#/*\# represents the number of tags returned relative to the number of tags available.

Life Stage	Year	Fish Marked up to Aug. 31 and recaptured			Fish Marked after Sept. 1 and recaptured		Total Fish Marked and recaptured	
		$\begin{gathered} \text { pre } \\ \text { sept. } 1 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { oct. } 15 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { oct. } 31 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { oct. } 15 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { oct. } 31 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { Oct. } 15 \end{gathered}$	$\begin{gathered} \text { pre } \\ \text { oct. } 31 \end{gathered}$
1sw	1992	8/52	16/52	16/52	21/169	30/169	37/221	46/221
		0.154	0.308	0.308	0.124	0.178	0.167	0.208
	1991	13/164	25/164	25/164				
		0.079	0.152	0.152				
	1990				13/153	13/153		
					0.085	0.085		
	1989				6/87			
					0.069			
	1988				21/173			
					0.121			
MSW	1992	5/128	10/128	12/128	46/703	68/703	56/831	80/831
		0.039	0.078	0.094	0.065	0.097	0.067	0.096
	1991	7/203	22/203	24/203				
		0.034	0.108	0.118				
	1990				18/282	18/282		
					0.064	0.064		
	1989				19/347			
	1988	-			9/155			
					0.058			

* - Using only marks placed up to August 31.
@ - Using all marks placed up to October 15.
 Table 1.

	${ }_{\infty}^{\infty}{ }^{\infty}$ 	
	蔏	
		¢
	$\underset{\sim}{\sim}$	
$\stackrel{H}{\sim}$	 	

Table 14. Independent population estimates derived using the Peterson, Bayesian and Schaefer methods.

Description:	Peterson Estimate	Bayesian Estimate	Schaefer Estimate
M $=$ Salmon tagged e lower trap	210	210	210
$\mathrm{c}=$ Potal Catch 8 upper trap	624	624	624
$\mathrm{R}=$ Tagged Salmon ${ }^{\text {e }}$ upper trap	34	34	34
$\mathrm{N}=$ Estimate	3767	3848	4059
5\%	2718	2798	-
95\%	5382	5507	-
UPPER TRAP Efficiency	16.56\%	16.22\%	15.37\%
5\%	22.96\%	22.30\%	-
95\%	11.59\%	11.33\%	-
UPPER TRAP 1SW Salmon Catch	165	165	165
UPPER TRAP MSW Salmon Catch	639	639	639
1sw Salmon Estimate	996	1018	1073
5\%	719	740	-
95\%	1423	1456	-
MSW Salmon Estimate	3858	3941	4157
5\%	2783	2865	-
95\%	5511	5639	-
TOTAL RETURNS:	4854	4959	5230

Table 15. Results of electrofishing surveys at barrier net sites in the Margaree River, July, 1992 .

Table 16. Numbers of salmon smolt and parr released to Margaree River since 1976 by parent stock origin (MAR $=$ Margaree River, RB = Rocky Brook or Miramichi River). Rearing locations are: Mar, Margaree; COB, Cobequid; mer, Mersey.

* Reared in the Lake o'Law cages.
e MSW hatchery return broodstock collected from Margaree River and crossed with wild Margaree River salmon. The hatchery return broodstock would have been 2 SW fish originating from Rocky Brook $2+$ smolts released in 1981 .
? Millbank broodstock.

Table 17. Mumbers of wild and hatchery salmon from sumer and fall sampling on Margaree River in 1992.

	1SW Salmon		MSW Salmon				Percent	Salmon
Season	Wild	Hatchery	\%	Wild	Wild	Hatchery	\% Wild	

Summer
(June 1 - Aug. 31)

Logbook	22	18	55.0	39	9	81.3	54.5
Trapnets	31	23	57.4	117	16	88.0	71.1
ScIP/Creel	29	34	46.0	0	1	0.0	1.6
Broodstock	12	25	32.4	45	32	58.4	67.5
Sub-Total	94	100	48.5	201	58	77.6	57.2

Fall

(sept. 1 - oct. 31)

Logbook	29	6	82.9	110	10	91.7	77.4
Trapnets	148	26	85.1	724	26	96.5	81.2
SCIP/Creel	27	15	64.3	3	1	75.0	8.7
Lake O'Law	14	1	93.3	48	10	82.8	79.5
Sub-Total	218	48	82.0	885	47	95.0	77.8
Total Season	312	148	67.8	1086	105	91.2	72.1

Table 18. Summary of tag recaptures from smolt and adult releases in the Margaree River 1986 to 1992.

Release Year	Stock	Stage	No. Tag Applied	Tag Type	Series	Greenland						Newfoundland							Quebec89	Total Returns
						1A	1B	1 C	1D	1 E	1 F	1	2	3	4	8	13	14		
1986	Rocky Brook	2+ smolt	7311	CWT	$550 / 0$		2		2	3	1	1			2					11
1986	Rocky Brook	2+ smolt	3376	CWT	62 2/23															0
1986	Rocky Brook	2+ smolt	1992	CWT	62 2/25		1		1											2
1987	Lake O'Law	1+ smolt	995	CWT	55 16/7															0
1987	Lake O'Law	1+ smolt	1107	CWT	$5516 / 8$															0
1987	Margaree River	2+ smolt	10000	CWT	$5516 / 16$	a									1					1
1987	Margaree River	1+ smolt	8599	CWT	55 16/16	a														0
1987	Lake O'Law	1+ smolt	3080	CWT	55 16/17	a									2					2
1987	Margaree River	$2+$ smolt	933	Carlin	P22200-P22299															
					P22500-P23199	1	1	1												3
					P23300-P23499															0
1987	Margaree River	1SW/MSW	138	Carlin	zz23000-2z23137								1					1	2	4
1988	Margaree River	2+ smolt	4116	CWT	$5516 / 12$								2		2				1	5
		1SW/MSW	340	Carlin	z223138-zz23299															
					zz23401-zz23581															
1989	Margaree River	1SW/MSW	425	Carlin	zz23583-zz23999	b				1			1	3		1				6
					zz23300-zz23309															
1990	Margaree River	1SW/MSW	576	Carlin	zz23310-zz23399	c								1			1	1	2	5
					zz24000-zz24489															
1991	Margaree River	1SW/MSW	494	Carlin	zz24490-zz24799	d							2						1	3
					zz24900-zz24999															
					zz35000-zz35087															.
1992	Margaree River	1SW/MSW	1175	Carlin	zz35088-zz35991	e														
					zz36000-zz36280															

[^0]

Figure 1. Margaree River, NS, showing index pool locations for 1992 creel survey, trapnet location, and electrofishing stations (*---).

Figure 2. Length frequency distribution and timing of catches of Atlantic salmon at the trapnets on the Margaree River, 1992.

Figure 3. Probability distribution of the returns estimates of 1SW and MSW salmon returns to the Margaree River in 1992, based on angling catch as compared to recapture trapnet methods.

Predicted Recruitment (\# of fish) of MSW Salmon for 1993

Figure 4. Frequency distribution of the predicted recruitment of MSW salmon to the Margaree River in 1993 based on "bootstrap" estimates of the parameters of a stock-recruit function.

APPENDIX A. Instructions for conducting the creel survey of the Margaree River Atlantic salmon recreational fishery, 1992.

The creel survey is designed as a bus route where the clerk travels along a predetermined route with prescribed stops of fixed duration at several points on the route. The direction of travel for Margaree River is in an upstream direction. There are ten (10) designated stops of fixed duration along the route:

Lower Thompkins Pool (LTHOM)	-60 minutes
Seal POOl (SEAL)	-60
Forks POOl (FORKS)	-120
Doyles Bridge POOl (DOYLES)	-60
Little MCDaniel Pool (LMCD)	-60
Cranton Bridge Pool (CRAN)	-60
Hart POol (HART)	-60
Hatchery Pool (HATC)	-60
Ross Bridge Pool (ROSS)	-60
Tent Pool (TENT)	-60

After Tent Pool, Lower Thompkins Pool should be sampled, etc.
The day is divided into two sampling periods (AM and PM) starting at 600 and 1330 hours and lasting 7.5 hours each. The actual start time may vary somewhat on the schedule and these start times should be respected. The clerk starts at the pool selected for that day, and stays at that pool for the indicated period of time. The actual observation of angling activity should begin at the pool exactly at the time indicated, not get out of vehicle at that time. After the required observation time for the first pool is completed, the clerk walks back to the vehicle and moves to the next pool in the sequence, in an upstream direction. The actual creel period begins when the clerk arrives at the pool where angling can be directly observed. The creel period for that pool corresponds to the creel durations indicated above.

The clerk moves through the sequence of pools until the sampling period is completed (up to 1330 for AM creels and 2100 for PM creels). The last pool sampled may only be for 15 minutes but even this period of observation should be completed.

Data to be collected at each pool:
On arrival, the clerk counts the number of anglers actually fishing and records this number with the start time on the form. As changes occur in the number of anglers, the clerk records with the corresponding change (for example, +1 or -2 designating one more angler or 2 less anglers fishing) and the time the change occurred. At the same time, fish which are hooked, lost, kept, released, etc. are recorded. The following designations should be used:

LOST - fish is hooked but unsuccessfully landed. This category includes fish which are on for 5 seconds and fish which are on for 15 minutes if the intent of the angler was to land the fish but fish broke away. This type may have a size category, 1SW or MSW salmon but more often does not.

1SW SALMON - KEPT - 1SW Salmon which is landed and kept by the angler. Attempts should be made to look at the fish to determine if it is a wild or adipose clipped fish, if it has an external tag or if a tagging mark is present, to get length and a scale sample if possible.

1SW SALMON - REMOVED HOOK - 1SW Salmon which is released from the hand by the angler. Should note if it is wild or adipose clipped, if external tag is present or if tagging mark is present. APPENDIX A (Cont'd).

1SW SALMON - CUT LINE - ISW Salmon which is released by snapping the line, not handled on shore. Wild or probably be unknown. Tag or untagged may also be unknown.

MSW - REMOVED HOOK - Large salmon which is released by hand. Attempts should be made to determine if the fish is wild or hatchery origin, if it has an external tag or if tagging mark is present. No scales should be collected.

MSW - CUT LINE - Large salmon which is intentionally released by cutting or snapping the line. Wild or hatchery origin may not be evident. Presence of tag may also be unknown.

All the above activities should be noted if they occur.

APPENDIX A (cont'd).
At the end of the creel period for the pool, the number of active anglers and the time the observation period ends are recorded.

Anglers which leave the pool while the clerk is on site should be interviewed if possible. The following data should be obtained for each angler:

- time started fishing at given pool
- time finished fishing at given pool
- numbers of fish by size category lost, hooked and released, kept.
- fish which are kept should be sampled for length, scales and sex if fish is or was cleaned. Look for external tags, adipose fin clips, tagging scars below the dorsal fin, etc.
- for sampled fish, obtain angler name and address if the individual would like information of the kept fish and angling success in general on the river, to be sent at the end of the year.

[^0]: a - May also be Nepisiguit River origin as same series used for those released.
 b - Excluding tags 23950 and 23951.
 d - Excluding tags $24510,24713,24719$, and 24763.

