Not to be cited wthout perqiesion of the nuthore ${ }^{1}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFsAC Rezearch Document 92/13

> Ne pas citer sans sutorisation des auteursi

Comite scientifique consultatif des plahes canadiennes dans l'atlantique

CSCPCA Document de recherche 92/13

by

S.C. Courtenay, D. Moore, and R. Pickard Department of Fisheries \mathcal{E} Oceans Science Branch, Gulf Region P.O. Box 5030
Moncton, New Brunewick, E1C 986

1 This eeries documents the scientific basis for fisheries management advice in Atlantic Canada. As euch, it addresses the issuae of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progrese reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
${ }^{1}$ Cette série documente les bases ecientifiques des conselis de gestion des pliches sur la cote atlantique du Canada. Comme talla, elle couvre les problemes actuels selon les echeanciers voulus et les Documents de recherche qu'elle contient ne doivent pas etre considéres comme des anonces finals sur les sujets traites mais plutot comme des rapports d'etape eur les etudes en cours.

Les Documents de recherche sont publide dans la langue officielle utilisée par les auteurs dans le manuscrit envoye au secretariat.

MBETRACT

This document reports estimates of spawning requirements for Atlantic salmon, and available information on harvests between 1986 and 1990, for the Restigouche, Eel; Tabusintac, Miramichi, Richibucto, and Buctouche Rivers. Data sufficient for the determination of harvestable surpluses exist for only the Restigouche and Miramichi Rivers. Nean muxpluses (1986-1990) on the Restigouche River have been 858 multi-sea winter fieh (USW) and 9044 one-sea winter fish (isw). Surpluses on the Miramichi River have been 47 MSW and 75412 1sW fish. Average harvestw have exceeded these surpluses on both rivers for MSW, but not 1 sw $\mathbf{1 1} \mathrm{sh}$.

RESUSE

Le présent document donne une évaluation des besoins en matiere de frai du saumon de l'Atlantique. On y retrouve les données disponibles sur les taux de capture entre 1986 et 1990, pour les rivieres Restigouche, Eel, Tabusintac, Miramichi, Richibucto et Bouctouche. Ce n'est que pour les rivieres Restigouche et Miramichi que nous avons des données suffisantes pour déterminer les surplus exploitables, Les surplus moyens (de 1986 a 1990) dans la riviere Restigouche etait de 858 eatumons pluribermarins (PBM) et de 9044 saumons unibermarins (UBM). Les surplus dans la rivière Miramichi étaient de 47 saumons pBMet de 75412 saumons UBM. Les prises moyennes de sammon PBM dans les deux rivieres ont dépassé ces surplus mais non celles du saumon UBM.

INTRODUCTION

The purpose of this research document is to synthesize available information on salmon returns, harvests, and surpluses to spawning requirements for Gulf N.B. Rivers which have native bands living on them. These rivers and their associated native bands are: Miramichi River (Burnt Church Band, Redbank Band, Eel Ground Band), Restigouche River (Eel River Band, Restigouche Band), Eel River (Eel River Band), Richibucto River (Big Cove Band, Indian Island Band), Buctouche River (Buctouche Band), and Tabusintac River (Burnt Church Band). Data on the Nepisiquit River (Pabineau Band) and Morell River (Morell Band) are to be presented elsewhere (K. Davidson, personal communication).

Data are reported for the years 1986-1990. The spawning requirement is calculated assuming, (1) an egg requirement of 2.4 eggs per square meter of rearing habitat, and (2) that all eggs are provided by multi-sea-winter (MSW) salmon, with $1 S W$ salmon required only to balance the sex ratio.

METHODS

DFO - Gulf Region collects data on returns and harvests in the Miramichi River, and harvests in the Restigouche River. Data on sex ratios and fecundities are also available for salmon in these two rivers. Little information is available for the smaller N.B. Gulf rivers. Area of rearing habitat for each river was taken from Anon. (1978). MSW and 1SW spawning requirements for the smaller rivers were estimated assuming sex ratios and fecundities similar to the nearest big river (i.e., Restigouche River for the Eel River; Miramichi River for the Tabusintac, Richibucto, and Buctouche Rivers). This assumption is probably invalid for some stocks. The Eel River stock, for example, may well differ from the Restigouche stock in biological characteristics, as it does in run timing (late versus early for Restigouche stock).

The estimation of number of spawners needed was made as follows:

MSW required = egg requirement/\# eggs per MSW fish
where \# eggs per MSW fish $=5,593$ (Miramichi River) or
(These fecundities were derived as the egg requirements for
the Miramichi and Restigouche Rivers, divided by their
respective MSW requirement. These numbers are not average
female fecundities.)
index rivers are: Miramichi R., requirement $=22600$ 1SW/23600 MSW
Restigouche R., requirement $=2600$ 1SW $/ 12200 \mathrm{MSW}$
Information on harvests in the small rivers is also scarce. DFO Conservation and Protection (C\&P) officers provided information on presence/absence of angling and native harvests on each river between 1986 and 1990 and estimates of the angling harvest in the Tabusintac. River. Provincial angling statistics (FISHSYS) are collected for the Tabusintac and Buctouche Rivers, but not Eel or Richibucto Rivers. These data are considered unreliable for small rivers, but in the absence of better data, are reported here for the Buctouche River.

Run timing is reported as being early (fish moving through estuary before September) or late (September or later).

RESULTS AND DISCU8SION

Estimated spawning requirements, and harvests between 1986 and 1990, for each river are given in Tables 1-6. Calculated surpluses to spawning requirements for each river are as follows.

1. Restigouche River

In each of the last 5 years, spawning requirements for MSW and egg requirements have not been met, but requirements for $15 W$ have been exceeded (Table 1). Based on average returns in 1986-1990, surplus may be 9044 1SW salmon and 858 MSW salmon in the future.

2. Eel River

No data are available on number of fish spawning, eggs deposited, or available surplus in the Eel River between 1986 and 1990 (Table 2).

3. Tabusintac River

No data are available on number of fish spawning, eggs deposited, or available surplus in the Tabusintac River between 1986 and 1990 (Table 3).

4. Miramichi River

Between 1986 and 1990, spawning requirements were met twice for MSW salmon, and were exceeded in all years for 1SW (Table 4). Egg requirements were met in all years if eggs from $15 W$ fish are considered, but not based on MSW eggs alone. Average surplus to
requirements over the past 5 years has been 47 MSW salmon and 75412 1SW salmon.

Beginning in 1992, information required for the calculation of surpluses in each of the two main branches of the Miramichi River will be collected. Targets and harvests in each branch between 1986 and 1990 are provided in Tables 4 a and 4 b .

5. Richibucto River

No data are available on number of fish spawning, eggs deposited, or available surplus in the Richibucto River between 1986 and 1990 (Table 5).

6. Buctouche River

No data are available on number of fish spawning, eggs deposited, or available surplus in the Buctouche River between 1986 and 1990 (Table 6).

Literature Cited

Anonymous, 1978. Biological conservation subcommittee report. Prepared for the Atlantic Salmon Review Task Force.

Randall, R.G. 1984. Number of salmon required for spawning in the Restigouche River, N.B. CAFSAC Res. Doc. 84/16.

Randall, R.G. 1985. Spawning potential and spawning requirements of Atlantic salmon in the Miramichi River, New Brunswick. CAFSAC Res. Doc. 85/68.

Randall, R.G., G. Landry, A. Madden and R. Pickard. 1988. Status of Atlantic salmon in the Restigouche River, 1987. CAFSAC Res. DoC. 88/41.

TABLE 1 RESTIGOUCHE RIVER (EFA 15)
Target: 71.4×10^{6} eggs; $12,200 \mathrm{MSW}, 2,6001 \mathrm{SW}$ salmon(Randall 1984)

Year 1986	1987	1988	1989	1990	Mean
Angling Harvest					
Quebec (source PQ MLCP)					
MSW 1418	873	1007	1006	893	1039
1SW 498	591	692	450	549	556
New Brunswick (source: DFO C+P in "Redbook")					
MSW ${ }^{\text {a }}$	160	182	241	171	198
1SW 4915	4414	6084	2851	3559	4365
Total Angling Harvest					
MSW 1656	1033	1189	1247	1064	1238
1SW 5413	5005	6776	3301	4324	4964
Native Harvest					
Quebec-Restigouche Band (source: band)					
MSW 1145	986	921	1081	1135	1054
1SW 4	5	3	12	16	8
New Brunswick-Eel River Band (source: band)					
MSW 431	916	509	568	471	579
1SW 26	95	70	151	120	92
Total Native Harvest					
1SW 30	100	73	163	136	100
Poaching and Disease					
MSW 2355	1553	2116	1694	1423	1828
1SW 1762	1630	2206	1075	1408	1616
Charlo Hatchery Broodstock					
MSW 37	40	18	89	82	53
1SW 0	0	0	0	0	0
Total Returns					
MSW 16293	11607	14652	12237	10499	13058
1SW 12618	11740	15831	7840	10192	11644
Spawning Escapement					
MSW 10669	7079	9899	7558	6324	8306
1SW 5413	5005	6776	3301	4324	4964
\% of Egg Target Met					
89	59	83	63	53	70

mortalities associated with catch and release of MSW in N.B.

Run timing: Early.
Methodology: Returns are estimated from angling catches with an assumed exploitation rate of 0.5. poaching and disease is estimated as 16% of MSW and 14% of 1 SW salmon available to anglers (see Randall et al. 1988).

Target: 1.1×10^{6} eggs ($173 \mathrm{MSW}, 37$ 1SW salmon)

Year	1986	1987	1988	1989	1990	Mean
Angling Harvest						
MSW - - - ISW - - - - - - Native Harvest MSW - - - ISW - - -			-	-		

Run timing: late.
Methodology: Rearing area surveys not conducted but estimated from drainage area and proportion of rearing area to drainage area for surveyed rivers in the same geographic area (Anon. 1978). Biological characteristics assumed were based on samples from Restigouche stocks. There has not been any reported angling in the Eel River in recent years. The Eel River Native Band fishes 2 trap nets and a number of gillnets in the mouth of the Eel River, 5 km south of Dalhousie, at the mouth of the Restigouche River, during May, June, and July. Salmon caught are assumed to be Restigouche stock because of the early run timing of salmon in the Restigouche River and consequently these harvests are included in the Restigouche assessments.

TABLE 3 TABUSINTAC RIVER (BFA 16)

Target: 1.9×10^{6} eggs (334 MSW, 320 1SW salmon)

Year 1986	1987	1988	1989	1990	Mean
Angling Harvest					
MSW ${ }^{1}$	-	-	-	-	-
$1 \mathrm{WW}^{2} 221$	156	354	700	314	349
Native Harvest					
MSW	-	-	-	-	-
1SW	-	-	-	-	-

1 MSW angling catch is hook and release
2 1SW angling catch includes kept and released fish
Run timing: late August through October.
Methodology: Rearing area surveys have been conducted (Anon. 1978). Biological characteristics based on characteristics of Miramichi River stock. There was a native gillnet fishery in the river in 1991, but not during 1986-90.

TABLE 4 MIRAMICHI RIVER (SFA 16)

[^0]Run timing: Salmon return to the Miramichi between May and November with peaks in May-August, and September-November. Both the native fishery and angling fishery target the early run. The early run alone has not met the spawning requirements for MSW in any of the last 5 years. However, the early runs have met the spawning requirements for $15 W$ salmon in each of the last 5 years.

Methodology: Returns to the Miramichi are estimated from catches in an estuarial salmon trap operated by DFO. Tag-recapture estimates of returns made annually to verify that the trap efficiency has not changed significantly since calibration. On average between 1986 and 1990, 91 MSW salmon have been used for enhancement purposes.

TABLE 4a NORTHWEST MIRAMICHI (8FA 16)

Target: 41.0×10^{6} eggs; 7,316 MSW, 7,006 1SW salmon

1 3\% assumed hook-and-release mortality.

TABLE 4b SOUTHWEST MIRAMICHI (SFA 16)

Target: 88.0×10^{6} eggs ($15,730 \mathrm{MSW}, 15,063$ 1SW salmon)

Year	1986	1987	1988	1989	1990	Mean

Native Harvest

MSW	0	0	0	0	0	0
15W	0	0	0	0	0	0
Angling Harvest (source: DNRE "Fishsys")						
MSW ${ }^{1}$	313	295	210	274	211	261
1SW	16626	670	20786	16858	14555	16499

3\% assumed hook-and-release mortality.

TABLE 5 RICHIBUCTO RIVER (NB) (EFA 16)

Target: 2.9×10^{6} eggs ($526 \mathrm{MSW}, 504$ 1SW salmon)

Year	1986	1987	1988	1989	1990	Mean
Angling Harvest						
MSW	-	-	-	-	-	-
$1 S W$	-	-	-	-		
Native Harvest	-	-	-	-	-	-
MSW	-	-	-	-		
$1 S W$	-					

Run timing: late.

Methodology: Rearing area surveys not conducted but estimated from drainage area and proportion of rearing area to drainage area for surveyed rivers in the same geographic area (Anon. 1978). Biological characteristics assumed were based on samples from Miramichi stocks. There have been both angling catches and native harvests during the $1986-1990$ period, the size of which have not been recorded (pers. comm. DFO C.\& P.).

TABLE 6 BUCTOUCHE RIVER (NB) (BFA 16)
Target: 1.1×10^{6} eggs (191 MSW, 183 1SW salmon)

Year	1986	1987	1988	1989	1990	Mean
Angling Catch						
MSW	1	0	0	2	1	1
ISW	60	0	0	0	16	15
Native Harvest	-	-	-	-	-	-
MSW	-	-	-	-	-	-

13% assumed hook-and-release mortality.
Run timing: late.
Methodology: Rearing area surveys conducted (Anon. 1978). Biological characteristics assumed were based on samples from Miramichi stocks. There has not been a native harvest from the Buctouche River during the period 1986-1990.

[^0]: 1 assuming 3\% hook-and-release mortality

 - from all sea ages

