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Preface 

In the decade, 1970-79, approximately half a million people were killed by storm 
surges on the globe. I felt that a reference book summarizing the state of the art on the 
various aspects of storm surges would be of use to researchers as well as to people dealing 
with the practical aspects. Since, to my knowledge, no book is available on this topic, it 
will also serve as a guide to the storm surge literature. 

The relative coverage given to various topics is based to some extent on my own 
research interests, but to a major extent on the total available space, so that the printing 
costs could be kept within reasonable limits. I apologize for the relatively inadequate 
coverage given to South America, Africa, eastern Europe, and the USSR, as I had no easy 
access to their literature. 

I thank my colleagues Dr. R. F. Henry and Mr. F. G. Barber for their encouragement 
and help in various forms. This work was begun when I was working at the Marine 
Environmental Data Service in Ottawa. I thank Dr. N. J. Campbell, Dr. J. R. Wilson, Mr. 
G. L. Holland, and Dr. G. Godin for various courtesies. I express my gratitude to Dr. 
C. R. Mann, Director General of the Institute of Ocean Sciences, and to Dr. J. Garrett, 
Head of Ocean Physics, for enabling me to use the Institute's resources. I thank Dr. 
N. C. Kraus for reviewing the manuscript prior to publication, Mr. Peter Burke for 
editorial help, Ms Jill Anderson for typing, and Mrs. Coralie Wallace for drafting. 

I thank the following societies and associations for granting me permission to re-
produce material from their publications: Academic Press; Accademia Nazionale Dei 
Lincei; American Association for the Advancement of Science; American Geophysical 
Union; American Meteorological Society; American Society of Civil Engineers; American 
Society of Limnology and Oceanography; Amoy University, China; Archiv für Mete-
orologie Geophysik und Bioklimatologie; Arctic Institute of North America; Australian 
Academy of Sciences; Australian Bureau of Meteorology; Australian Government Pub-
lishing Service; Bangladesh Atomic Energy Commission; Bangladesh Meteorological 
Department; Blackwell Scientific Publications; Bollettino di Geofisica Teorica ed Appli-
cata; Colorado State University, USA; Crane, Russak Publishers; Deutsches Hydro-
graphisches Institut; Elsevier Publishing Company; Flinders University, Australia; Gordon 
and Breach Science Publishers; Holt, Rinehart and Winston Publishers; Hydraulics Re-
search Station, Wallingford, U.K.; India Meteorological Department; Institute of Civil 
Engineers, U.K.; Institute of Oceanographic Sciences, U.K.; International Association for 
Great Lakes Research; International Association for Hydraulics Research; International 
Hydrographic Bureau; Japan Meteorological Agency; MacMillan Press; Marine Tech-
nology Society, USA; McGill University; McGraw-Hill Publications; Massachusetts Insti-
tute of Technology; Museum National d'Histoire Naturelle, France; National Academy of 
Sciences, USA; National Bureau of Standards, USA; National Oceanic and Atmospheric 
Administration, USA; Netherlands Meteorological Department; New York Academy of 
Sciences; New York Sea Grant Institute; New Zealand Journal of Geology and Geo-
physics; Oceanographical Society of Japan; Pergamon Press; Plenum Publishing Corp.; 
Sears Foundation for Marine Research; Springer Verlag; Superintendant of Documents, 
USA; Tetra Tech Inc. , Pasadena, California; Texas A&M University; The Royal Astro-
nomical Society; The Royal Meteorological Society; The Royal Society; The Swedish 
Meteorological Society; University of Bonn; University of Buenos Aires; University of 
Chicago; University of Florida; University of Hamburg; University of Oslo; University of 
Louisiana Press; University of Quebec at Rimouski; UNESCO; U.S. Army Corps of 

vii 



Engineers; U.S. Geological Survey; Wiley-Interscience; World Meteorological 
Organization. 

The material is arranged as follows. In Chapter 1, general concepts about storm 
surges are introduced, and some oceanographic background as to where, when, and how 
storm surges occur is discussed. Also, the global weather systems, with particular empha-
sis on North America, are considered. In Chapter 2, the storm surge equations are 
formulated, and two-dimensional numerical methods for solving these equations are 
considered in detail. In Chapter 3, numerical solutions, other than two-dimensional, are 
considered. Chapter 4 deals with all other types of approaches to the storm surge problems, 
and a section on laboratory experiments and hydraulic models is included. Chapter 5 
discusses special hydrodynamic problems and Chapter 6 is devoted to a discussion of the 
meteorological problems. Chapter 7 includes case studies of storm surges in various water 
bodies on the globe. It also contains a considerable amount of information of practical 
interest. References are listed after Chapter 7. No list of mathematical symbols is pro-
vided, because it was found necessary to use the same symbol to represent different 
parameters at different times. However, the mathematical notation is adequately explained 
in the text. A subject index is not provided because it is felt that the table of contents 
includes sufficient details. 

SIDNEY, B.C. 	 T. S. MURTY 
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Abstract 

MURTY, T. S. 1984. Storm surges—meteorological ocean tides. Can. Bull. Fish. Aquat. Sci. 
212: 897 p. 

This bulletin is an attempt to synthesize current knowledge on storm surges. The bulletin 
is directed mainly to researchers and would-be researchers in this topic; nevertheless, suf-
ficient material of practical interest is included for those who have a general interest in this 
topic. The book deals with all the meteorological and oceanographical aspects of storm surges 
and makes extensive use of numerical finite-difference methods. In addition, analytical 
methods, empirical methods, graphical techniques, statistical techniques, finite-element 
methods, and laboratory and hydraulic models are discussed. Case studies of storm surges in 
various water bodies on the globe are treated in considerable detail. 

Résumé 

MURTY, T. S. 1984. Storm surges—meteorological ocean tides. Can. Bull. Fish. Aquat. Sei. 
212: 897 p. 

Le présent travail est une synthèse de l'état actuel de nos connaissances sur les ondes de 
tempêtes. Il s'adresse surtout aux chercheurs actuels ou potentiels oeuvrant dans ce domaine. 
Il contient néanmoins suffisamment de matériel pratique pour ceux que le sujet intéresse 
généralement. L'ouvrage traite de tous les aspects météorologiques et océanographiques des 
ondes de tempêtes et fait largement appel aux méthodes de différences finies. On y examine 
en outre les méthodes analytiques, empiriques, graphiques, statistiques, d'éléments finis, de 
même que des modèles de laboratoire et hydrauliques. Sont également analysés en détail les 
dossiers d'ondes de tempêtes dans diverses masses d'eau du globe. 
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Chapter 1 

Introduction and General Considerations 

1.1 Introduction to Oceanographical Aspects of Storm Surges 

Storm surges are oscillations of the water level in a coastal or inland water body in 
the period range of a few minutes to a few days, resulting from forcing from the atmo-
spheric weather systems. By this definition, the so-called wind-generated waves (often 
referred to as wind waves) and swell, which have periods of the order of a few to several 
seconds, are excluded. The term "storm surge" is commonly used in European literature, 
especially in the literature pertaining to the water level oscillations in the North Sea. In 
North American literature, the terms "wind tides" and "storm tides" are also used to refer 
to the same phenomenon. 

Unfortunately, the term "wind tides" has occasionally been used in aeronomy to refer 
to atmospheric tides (which have the same astronomical origin as oceanic tides). Hence, 
the term will not be used here. The term "storm tide" is used in North American literature 
in a confusing manner: at times it is used in the same sense as storm surge, and at other 
times it is used to denote the sum of the storm surge and the astronomical tide. Here, the 
term will be used only in the latter sense. As an alternative to the term "storm surges," 
the term "meteorological ocean tides" will be used. In some sense, storm surges are similar 
to astronomical tides: although storm surges are not periodic in the sense that tides are, 
they do exhibit certain periodicities, and since the forcing functions are due to mete-
orological causes, it is not inappropriate to call them meteorological ocean tides. Here, 
the word "ocean" is used to denote a water body of any scale, and not necessarily the 
oceans. In Russian literature (e.g. see Lappo and Rozhdestvenskiy 1979), the term 
"meteorological ocean tide" is commonly used. 

r--  Tides --1 

I 	 I 	 I 	 I 	 I 	 I 	 I 

10" 8 	10 6 	 10-4 	10" 2 	 1 	 102 	 104  ope  

FIG. 1.1. Frequencies of oceanic wave motion in cycles per second (cps). (Platzman 1971) 

The spectrum of ocean waves is shown schematically in Fig. 1.1, and it can be seen 
that storm surges are centered at about 10 -4  cycles per second (cps or Hz), which gives 
a period of about 3 h. However, depending mainly on the topography of the water body 
and secondarily on other parameters, such as the direction of movement of the storm, 
strength of the storm, stratification of the water body, presence or absence of ice cover, 
nature of tidal motion in the water body, etc., the periods in the water level oscillations 
may vary considerably. Even in the same water body, storm surge records at different 
locations can exhibit different periods. 

1 



I 

2.59 

• 2.43  

= 2.28 
És- 
et  2.13 

1.98 

1.82 

1.67 

huh  

1 1  ' 11 

2 .16 

2.13 

2.10 

2.07 

• 2.04 

• 2.01 

1 98 E 

1.95 

1.92 

1.88 

1.85 1 	I 	I 	I 	I 	I 	I 	I 	I 	1 	I 
15 	16 17 18 19 20 21 22 23 24 25 

September 1938 

FIG. 1.2 ,  

3.04 

2.89 — 

2.74 — 

Storm surge at Forest Hills, New York. (Paulsen et al. 1940) 
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FIG. 1.3. Storm surge at Rockaway Park, New York. (Paulsen et al. 1940) 
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FIG. 1.4. Observed storm surges at six locations on Lake Erie. Mean tides are shown on the left ordinate 
for Buffalo, Port Stanley, and Monroe and on the right ordinate for Port Colborne, Cleveland, and Toledo. 
Mean tides are metres above the Great Lakes Datum with reference to the mean tide at New York. 
(Hunt 1959) 
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Although storm surges belong to the same class known as long waves, as do astro-
nomical tides and tsunamis, there are at least two important differences. First, whereas 
tides and tsunamis occur on the oceanic scale, storm surges are simply a coastal phenom-
enon. Second, significant tsunamis and tides cannot occur in a completely closed small 
coastal or inland water body, but storm surges can occur even in completely enclosed 
lakes, or in canals and rivers. 

In Fig. 1.2-1.4, examples are shown of storm surge profiles with several different 
periods. For example, the profile at Forest Hills, NY, is shown in Fig. 1.2, and a period 
of about 2.5 d can be seen. The same storm generated a surge at Rockaway, NY, with 
periods of the order of 1 d or less (Fig. 1.3). Thus, even nearby locations can exhibit 
considerably differing periods. The surge profiles at six locations on Lake Erie due to an 
extratropical storm in November 1957 are shown in Fig. 1.4. It can be seen that surges 
with ranges of up to 8 ft (2.4 m) occurred at Buffalo, Port Colborne, and Toledo, whereas 
at Port Stanley the range of the surge was less than 2 ft (0.61 m). Also, whereas the period 
of the surge at Buffalo and Port Colborne was about 7-8 h, the period at Port Stanley was 
about 3 h. 

One may ask why large surges occur at Buffalo, Toledo, and Port Colborne and only 
small surges are recorded at Port Stanley. The answer is that the range of the surge depends 
on the topography in the region of the tide station and the location of the tide station 
relative to the storm track. It will be shown later in detail, mathematically, how topogra-
phy, position with reference to storm track, forcing from the weather systems, plus a host 
of secondary factors determine the range of the storm surge at a given location in a 
specified water body. But it can be stated that shallow water bodies generally experience 
surges with greater ranges. Lake Erie, being the shallowest (on the average) among the 
five Great Lakes of North America, experiences surges of maximum amplitude among the 
Great Lakes. Lake Okeechobee in Florida also gives rise to significant storm surges. The 
east coast and the Gulf of Mexico coast of the United States have been, not infrequently, 
subjected to destructive storm surges. Nineteen cases of hurricanes that killed more than 
50 people in the United States during the period 1900-72 are listed in Table 1.1. It is 
generally recognized that most of the deaths occurred as a result of the storm surge 
generated by the hurricane. 

Surges on the east and south coasts of the United States are generated by tropical 
storms referred to as "hurricanes." Similar tropical storms in the Pacific are referred to as 
"typhoons." (The Japanese refer to them also as "Reppus.") In Australia, they are called 
"willy-willies," in the Phillipines, "Baguios," and in Arabia, "Asifat." Tropical cyclones 
in the Indian Ocean, Bay of Bengal, and the Arabian Sea are popularly refened to as 
"depressions," although there is a strict classification based on maximum wind speed 
attained in the weather system. It may be of interest to note that the word "cyclone" comes 
from the Greek word "kyklon," which means "to whirl around." Most of the storm surges 
on the east coast of the United States are generated by hutTicanes; however, significant 
storm surges due to extratropical weather systems also occur. 

In Canada, storm surges are almost always due to extratropical weather systems. 
Storm surges with ranges up to a few metres occur in the St. Lawrence Estuary, in James 
Bay (southern extension of Hudson Bay), and in Frobisher Bay. Storm surges occur in the 
Canadian Arctic and in Alaska, but storm surge is a very rare phenomenon on the west 
coasts of Canada and the United States. On those coasts, water level variations are mainly 
caused by wind waves and swell. 

Another area on the globe where destructive surges occur is the North Sea. Consid-
erable literature exists on the surges along the east coast of the United Kingdom and the 
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TABLE 1.1. Some of the most disastrous hurricanes of the twentieth century affecting the United States. 

Date 

Sept. 8, 1900 

Sept. 20, 1909 
Sept. 29, 1915 
Sept. 14, 1919 

Sept. 20, 1926 

Sept. 16, 1928 
Sept. 1, 1935 

Sept. 21, 1938 
Aug. 7-11, 1940 

Sept. 14-15, 1944 
Sept. 19, 1947 
Aug. 31, 1954 
Oct. 13-17, 1954 
Aug. 16-20, 1955 
June 27, 1957 

Sept. 9-11, 1960 
Sept. 7-12, 1961 
Sept. 8, 1965 

Aug. 15-16, 1969 

Mid-June, 1972 

Late Aug.— 
early Sept. 1979 

Name of 
hurricane 

— 
Labor Day 

storm 
— 

—  
Carol 
Hazel 
Diane 
Audrey 

Donna 
Carla 
Betsy 

Camille 

Agnes 

David and 
Frederic 

Area affected 

Storm surge at Galveston 
greater than 6.5 m 

Louisiana coast (Grand Isle) 
Mississippi Delta (New Orleans) 
Florida Keys, Corpus 

Christi (Texas) 
Miami and Pensacola 

to Southern Alabama 
Palm Beach, Okeechobee 
Florida Keys (winds greater 

than 332 km •11 -1 ) 
New England and Long Island 
Southeastern United States 

(Georgia to Tennessee) 
Atlantic coast 
Florida, Louisiana, Mississippi 
North Carolina to New England 
South Carolina to New York 
Northeast United States 
Texas to Alabama (4-m surge 

inundated Louisiana 40 km 
inland) 

Florida, New York, New England 
Texas 
Florida, Louisiana, mid-Atlantic 

States, New England 
Louisiana, Mississippi, Virginia 

(7.4-m surge on Pass Christian, 
Mississippi) 

Florida, Virginia, Maryland, 
Pennsylvania, North Carolina 
to New York 

Alabama, Mississippi, Florida 

	

No. of 	Damage in 

	

people 	millions 

	

killed 	of dollars 

	

6000 	 30 

	

353 	_ 

284 

	

600-900 	20 

	

243 	— 

	

2000 	 25 

	

408 	 76 

	

600 	306 

	

50 	_ 

	

390 	— 

	

51 	_ 

	

60 	500 

	

95 	_ 

	

184 	1000 

	

390 	 150 

	

50 	387 

	

46 	408 

	

75 	1421 

	

>250 	1421 

	

122 	2100 

	

5 	2300 

coasts of the Netherlands and Federal Republic of Germany. Storm surges also occur in 
the Irish Sea. 

Japan is frequently affected by storm surges due to typhoons. The Bay of Bengal 
coasts of India and Bangladesh have been subjected to very severe storm surges not 
infrequently. It will be seen later that the peculiar topography (i.e. triangular or V-shaped 
basin), shallowness of the water body, together with a large tidal range make storm surges 
on the Bay of Bengal coast more dangerous than in any other region of the globe. 

It is recognized by now that the storm surge problem is an air—sea interaction 
problem; i.e. the atmosphere forces the water body, which responds by generating oscil-
lations of the water level with various frequencies and amplitudes. Our present interest is 
confined to that part of the oscillation between a few minutes and a few days. Study of 
the storm surge problem will begin with a consideration of the global weather systems. 
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1.2 Global Weather Systems 

To understand global weather systems, it is convenient to begin with the so-called 
"general circulation of the atmosphere," which refers to the motion of the atmosphere in 
an average sense, both in space and time. Before discussing the general circulation, it is 
appropriate to introduce certain nomenclature. There are two important characteristics of 
the atmosphere. The pressure decreases with height in a monotonic fashion, as can be seen 
from the ordinate on the right side of Fig. 1.5. The units of pressure are millibars. (Another 
internationally used unit is the kilopascal, 1 kPa = 10 mb.) On the average, the atmo-
spheric pressure at sea level is 1013.2 mb. The height scale (kilometres) is shown on the 
left side. For general interest, the maximum heights of three mountain peaks, namely, 
Mount Everest, Mont Blanc, and Ben Nevis, are included. The heights of different cloud 
types are also indicated. 

The second important characteristic is the change of temperature with height, indi-
cated by the curve in Fig. 1.5. The temperature reverses several times with increasing 
height, and this gives rise to three warm and two cold regions. The warm regions are near 
the earth's surface, at a height between 40 and 60 km, and above 150 km (i.e. more or 
less the top of the atmosphere). The first cold region extends from about 10 to 35 km and 
the second cold region from about 80 to 90 km. The exact distribution of temperature with 
height depends on latitude and, to a certain extent, on the season. 

It can be seen that the temperature decreases from the earth's surface as far as the 
tropopause. The atmosphere below the tropopause is called the troposphere, and the region 
immediately above the troposphere is referred to as the stratosphere. The electrical con-
ductivity of air above the 80-km level is much greater than that at lower levels, especially 
during sunlight hours. This region of the atmosphere, called the ionosphere, allows radio 
waves to propagate great distances. 

For weather and climate purposes, as well as for the atmospheric forcing of storm 
surges, interest here will be primarily in the troposphere and, to a lesser extent, in the 
lower part of the stratosphere. The ionosphere will be of no direct interest. Earlier, the 
term "general circulation of the atmosphere" was introduced. In practice, this term is used 
to describe the more or less permanent wind and pressure systems of the troposphere and 
the lower stratosphere. 

If the surface of the earth were perfectly smooth, i.e. lacking orographical features, 
and uniformly covered with water, then the long-term average pattern of winds, tem-
perature, and precipitation would not show any variation with longitude but would exhibit 
only zonal bands (i.e. variation with latitude only). A general examination of weather 
charts shows that although the influence of the distribution of land and water and such 
orographical features as mountains have a significant influence on the patterns of mete-
orological parameters, a zonal pattern (i.e. some uniformity in the east— west direction) is 
nevertheless evident. For a first approximation, the longitudinal variations will be ignored 
and only the patterns in the east— west direction will be considered. 

It has been known since the early days of meteorological measurements that the 
tropical areas of the globe receive more radiation from the sun than they radiate into space, 
whereas the higher latitudes receive less than they radiate. The observed average tem-
perature distributions are maintained through motion on various scales in the atmosphere. 
The rate of heat flow from lower latitudes towards the pole increases from the equator to 
about 35 0  latitude; it then decreases because the higher latitude regions retain some of this 
imported heat. 

If the earth were stationary (i.e. not rotating), this exchange of heat could be achieved 

6 



10 0001— 

i4iien Radiation Belts 
5000 

CD 

0 

-s 
(t) 

-lo 
10 mb 

200 

50 

1000 
Exosphere 	 Spray Region 

Sunlit Aurora 

Very Hot Region 

Thermosphere 

Aurora 

Mesosphere 

4.1  Warm Region 

Wave Height/--e.  
/e 	Mother of Pearl Cloud 

Stratosphere 

Tropopause 

Ionosphere 

10-8mb 

1,0:1nb 

-2 
10 mb 

Imb 

100 mb 

Ozone Region 

10 

5 

_Ljl 
-100 

Ilen Nevis 0  

I 	 1  

/if \le 11.•1 ■7 

-50 
Temperature (°C) 

\ 
mt. Everest 

y\ Troposphere 

Mt. Blanc ?‘ 
l 	o , 

er 
e, 

Cirrus Cloud 

+50 	+100 

o 	Siratus Cloud 

FIG. 1.5. Vertical structure of the atmosphere. (Dobson 1963) 

through a meridional circulation between the equator and the pole. This circulation can be 
visualized as consisting of a single cell with upward motion (up to the tropopause) over 
the equator, then south to north motion aloft from the equator to the pole (in the Northern 
Hemisphere), and sinking motion at the pole and north to south motion from the pole to 
the equator at ground level. However, with rctation of the earth, a simple circulation such 
as this is not possible because of the requirement of the conservation of angular momen-
tum. 
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FIG. 1.6. Schematic representation of observed zonal winds near the earth's surface. 

Angular momentum is proportional to the angular velocity and the square of the 
distance of the air parcel from the axis of rotation. For a uniformly rotating earth and 
atmosphere, the total angular momentum must remain constant. The angular momentum 
is greatest at the equator and decreases with increase of latitude, becoming zero at the pole. 
Suppose a large mass of air changes its position so that its distance from the axis of rotation 
also changes; then its angular velocity must change so that its angular momentum does not 
change. Barry and Chorley (1970) estimated that a mass of air traveling from 42 to 46° 
latitude should increase its speed relative to the earth's surface by 29 m  •s' to conserve 
angular momentum. However, in practice, this increase is opposed by other forces such 
as friction, but it is important to note that many of the observed features of the general 
circulation are due to the poleward transfer of angular momentum on a rotating earth. A 
simple meridional (i.e. north—south) circulation is not possible on a rotating earth because 
the northward-moving air mass would be deflected eastward and the southward-moving 
air westward, and thus zonal (i.e. east— west) motions would set in. Heat exchange 
between the equatorial and polar regions could be achieved through a system of vortices 
and/or waves. 

A generalized scheme for global pressure and wind distributions, taking into account 
heat budget and conservation of angular momentum, is shown in Fig. 1.6. Note that in 
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drawing this diagram, no attention was paid to the distribution of continents and oceans 
or to the great mountain chains. In this diagram, only the Western Hemisphere is shown. 
Near the ground, in the areas close to the equator, trade winds converge into the doldrums 
while at the same time being deflected westward. The descending air in the subtropics 
spreads horizontally and gains anticyclonic vorticity. Because of this, high-pressure belts 
are found in the subtropics. The circulation systems between the equator and 35° latitude 
(i.e. in the areas of the tropics and subtropics) are fairly steady and large. 

However, the middle and higher latitude regions have large baroclinicity ' as com-
pared with the tropics, and the temperature range is much greater than in the tropics. Here, 
great amounts of potential energy are converted into kinetic energy, thus creating the wind 
systems. Because of this, the extratropics have traveling weather systems known as 
cyclones and anticyclones that appear, respectively, as centers of low and high pressures 
on the surface weather charts. However, in upper air charts (e.g. a height of 3 km), one 
rarely sees centers of low and high pressures; one sees large waves usually moving from 
west to east superimposed on a strong zonal current. The core of this zonal current is called 
the jet stream. 

Next, the possible modification of the hypothetical wind systems due to the influence 
of the distribution of continents and oceans will be considered briefly. The insolation does 
not vary significantly over the year near the equator, but the variation increases with 
latitude. The conductive capacity of the land is very much smaller than that of the oceans, 
and for this reason, the annual range of temperature is greater over the continents than over 
the oceans. Thus, the temperature difference between oceans and continents varies little 
over the year near the equator and more in the higher latitude regions. 

This contrast in the heat capacity of land and water gives rise to the low and high 
pressure centers. In spring, the land is heated more rapidly than the oceans, and extensive 
low pressure areas develop over land and relatively high pressures persist over the oceans. 
In fall, the continents cool more rapidly than the oceans, and high pressure centers develop 
over the land areas. Since the temperature difference between continents and oceans is 
greater in winter, the low pressure centers over the continents in summer are less pro-
nounced than the high pressure areas over the continents in winter. 

Large mountain ranges can modify the distribution of these low and high pressure 
centers considerably.  . Petterssen (1969) mentioned that North America may be considered 
as a triangle with its base in the Arctic and its apex in the tropics. Thus, it is completely 
open to exchange of heat with the Atlantic Ocean, but the Rocky Mountains (hereafter 
referred to as the Rockies) obstruct the heat exchange with the Pacific. Because of this, 
the high pressure center in winter and the low pressure center in summer are located to the 
east of the mountain ranges. 

In Fig. 1.6, the global wind and pressure patterns are presented through the traditional 
method of zonal belts. It should be realized that these zonal belts do not actually exist over 
the globe in such a well-defined fashion except, possibly, in the Southern Hemisphere 
between 50 and 600  latitude. However, over certain areas of the earth, the sea level 
pressure field and surface winds have more or less persistent distribution over the year. 
There are seven regions of persistent high pressure and six regions of persistent low 
pressure (Rumney 1969). 

' When lines of equal pressure (isobars) and lines of equal density (isosteric lines) are parallel to 
each other, the atmosphere is said to be barotropic. When they are inclined to each other, the 
atmosphere is said to be baroclinic. The degree of inclination determines the baroclinicity. 
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FIG . 1.7. Global sea level pressure (millibars) distribution in July. 

FIG. 1.8. Global sea level pressure (millibars) distribution in January. 

The sea level pressure distribution for the months of July (representative of summer in 
the Northern Hemisphere) and January (representative of winter) is shown in Fig. 1.7 
and 1.8, respectively. The high pressure centers are over the eastern Atlantic and Pacific, 
north and south of the equator, South Indian Ocean, Arctic Ocean, and Antarctica. 
Occasionally, names are given to these centers. For example, the one over the eastern 
Pacific is called the "Hawaiian High" and the one over the eastern Atlantic is called 
the "Azores High." The low pressure centers are the "Icelandic Low" (over the North 
Atlantic), the "Aleutian Low" (over the North Pacific), one each in the Atlantic, Pacific, 
and Indian oceans in a shifting zone along the equator, and one in the Southern Ocean near 
Antarctica. 

With reference to Fig. 1.7 and 1.8, the following remarks may be made. Pressure is 
higher and the gradients are steeper in the winter hemisphere (i.e. the hemisphere that has 
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winter at that time), and the pressure centers shift northward in July and southward in 
January (Trewartha 1968). The pressure belts in the subtropics are more or less continuous 
in the winter hemisphere, whereas in the summer hemisphere, the continuity is broken by 
the heated continents. Between the subtropical high and the subpolar lows lies the main 
zone of traveling cyclones and anticyclones. The high and low pressure areas are called 
centers of action, because their strength over a given period (e.g. week, month, or season), 
as compared with long-term averages, is an indication of the departure of the weather from 
its average. 

1.3 Air Masses, Fronts, Cyclones, and Anticyclones 

An air mass is a large body of air with dimensions of the order of at least 1000 km, 
whose properties, especially temperature and relative humidity, do not change signifi-
cantly within the mass. The border region between two air masses usually has a width of 
about a few tens of kilometres and is called a frontal zone (referred to simply as a front). 
Since the frontal regions are typified by strong variations in temperature and moisture, they 
are also regions in which potential energy of the air masses becomes changed into the 
kinetic energy of the cyclonic systems. 

It has been shown that the major pressure and wind systems are located over either 
the oceans or the continents but not in the transition zones. Because of its large conducting 
capacity, the air that is associated with these systems will acquire the physical properties 
of the underlying surface. The sources that produce air masses are aptly termed "air mass 
sources." Air masses are not stationary, and once an air mass begins to move, its structure 
changes depending on the properties of the underlying surface. If the new surface is colder 
than the air mass, then the air mass loses heat and becomes more stable. On the other hand, 
if the surface is warmer, the air mass acquires heat and becomes less stable. 

The Norwegian School of Meteorologists developed the polar frontal theory of 
cyclones. The basic structure of a cyclone, which forms from the convergence of two air 
masses, is shown schematically in Fig. 1.9. The first air mass is relatively warm and moist 
and has as its source a subtropical region. The second one is colder and has a polar air mass 
source. In the initial stages of development of the cyclone, a tongue of warm air extends 
northward between these two air masses. The narrow region separating the air masses is 
the front and is referred to as the polar front, since it represents the southern edge of the 
polar air mass. 

A warm front is one along which cold air is displaced by warm air, and a cold front 
is one in which the reverse is true; a stationary front is one that does not move. 

In the frontal theory of cyclones, the initial stage is characterized by a quasi-stationary 
front separating a warm and a cold air mass. The next stage involves the development of 
wave motion on the front, with the subsequent development of a low pressure center. At 
this stage of cyclogenesis, the cyclone is referred to as nascent. In the next stage, the warm 
front is overtaken by the cold front, and this process is called occlusion. With the progress 
of the occlusion process, the warm air is lifted to higher levels and becomes replaced at 
the lower levels by colder and heavier air. Because of this, the center of gravity of the air 
mass is lowered, and large amounts of potential energy are released. This potential energy 
is converted into kinetic energy of the wind systems that surround the cyclone center. 

Petterssen (1969) stated that an extratropical cyclone is usually accompanied by three 
or four similar cyclones to form a series, or a family. The first member of this family is 
an occluded cyclone, the second member is partly occluded, and the trailing member is 
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FIG. 1.9. Cyclone model of the Norwegian Meteorological School. 

an incipient cyclone wave. While the leading cyclone dissipates slowly, new cyclones 
develop on the trailing front. Because of this, the group, as a whole, moves slower than 
an individual member. While the first cyclone is in the higher latitudes, the subsequent 
cyclones take more southerly paths, and in the rear of the frontal member, cold air moves 
southward into the substropics. This phenomenon is called a polar outbreak and will lead 
to the development of an arctic cyclone. At times, on the surface weather charts, it is 
difficult to recognize a coherent cyclone family. This is especially true in North America 
because of the influence of the Rockies. Coherent cyclone families, with three to six 
members, travel eastward over the northern oceans with a period of 3-8 d. 

Anticyclones, as the name implies, are opposite to cyclones, i.e. they are centers of 
high pressure. Their intensities are lower than those of cyclones, they exhibit a more 
irregular behavior than cyclones, and as a rule, they move slower. Petterssen (1969) gave 
the following classification for anticyclones. (1) Subtropical highs: vast, elongated, and 
deep (in height) anticyclones located in the subtropics. These are highly persistent, are 
either stationary or slowly moving, and can be seen on practically any weather chart. (2) 
Polar continental highs: anticyclones that develop predominantly over northern  continents 
during winter. In North America, they develop mainly in Alaska and western Canada (east 
of the Rockies) and move towards the Atlantic Ocean in a southeasterly to easterly 
direction. Once they enter the Atlantic Ocean, they cannot maintain their identity and get 
absorbed in the subtropical anticyclone. (3) Highs within the cyclone series: small anti-
cyclones that lie between individual members of a cyclone family. Sometimes, these are 
simply wedges of high pressure that travel at the edges of huge subtropical anticyclones. 
(4) Polar-outbreak highs: either the last member of a cyclone family or follow any intense 
cyclone family. 

Next, the geographical distribution of cyclones and anticyclones will be discussed. 
Cyclones occur preferentially in the higher middle latitudes. In the Northern Hemisphere, 
the maximum cyclone frequency occurs at approximately 60°N in summer and 50°N in 
winter. Note that the subtropical anticyclones and the equatorial convergence zone also 
have a similar 10 0  latitude seasonal shift. In the Southern Hemisphere, the belt of max-
imum cyclone frequency is more continuous and lies between 50 and 60° latitude. 

Petterssen (1969) presented diagrams of percentages of cyclone and anticyclone 
centers. Based on these diagrams, the following important points may be noted for cyclone 
activity in the Northern Hemisphere during winter. Over the Pacific Ocean, there is a wide 
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zone of cyclonic activity stretching from southeast Asia to the Gulf of Alaska. During 
winter, most of these cyclones travel in a northeastward direction and converge in the Gulf 
of Alaska. However, some of the storms, especially those that form on the mid-Pacific 
polar front, travel on a more southerly track and reach the California coast. Most of the 
Pacific cyclones cannot cross the Rockies; however, some of them redevelop on the 
eastern side of the Rockies. There are three areas where such a redevelopment occurs 
frequently. (1) The region east of Sierra Nevada: the cyclones generated here are usually 
weak. (2) East of the Rockies in Colorado: many of the cyclones originating here (usually 
referred to as Colorado cyclones) achieve great intensities and travel to the central and 
eastern parts of North America. They usually travel northeastward toward the Great Lakes. 
(3) East of the Canadian Rockies, in Alberta: these Alberta storms are also intense, and 
associated with their eastward travel, cold air moves southward over the Great Plains. 

During winter, the Great Lakes region is also a region of high cyclone frequency, for 
several reasons. This region can originate storms because the water is warmer than the 
surrounding land. Secondly, this is a region where the storm-tracks from the Alberta and 
Colorado lows converge. Occasionally, storms that develop over the Gulf of Mexico travel 
northward towards the Great Lakes. 

Over the Atlantic Ocean, storms usually develop on the Atlantic polar front (Fig. 
1.10). One of the most favored regions is the coast of Virginia and to the area east of the 
southern Appalachians. These are referred to as the East Coast Storms or the Cape Hatteras 
Storms, and while moving along the Gulf Stream, they achieve great intensity, and finally 
they become stagnant near Iceland or between Greenland and Labrador. On the 
Atlantic—Arctic front, many cyclones either form or redevelop, and they generally move 
in the direction of the Barents Sea. 

During the summer period for the Northern Hemisphere, there are mainly two belts 
of high frequencies of storm occurrence. The northern belt surrounding the Arctic is 
irregular and consists of cyclones with fronts. The southerly belt is over the warm 
continents of the subtropics. The more or less permanent heat low over the continents 
accounts for the high frequency found over southern California, Nevada, Arizona, and 
northern Mexico. At the higher levels, there is an anticyclone with strong subsidence, and 
because of this, clouds and weather systems are absent in the second belt. 

Next, the geographical distribution of the anticyclones in the Northern Hemisphere 
will be briefly discussed. There is a belt over the oceans with a maximum occurrence 
frequency off the subtropical west coasts. In the eastern North Pacific, strong frequencies 
occur. The greatest frequency occurs over Nevada, Utah, and Idaho, and the frequency 
is generally high over the Rockies and also from Alaska to the Great Plains. These 
anticyclones are shallow and cold and are of the polar continental type. The frequency is 
high near the Atlantic coast but is low in the region of the Great Lakes. 

Regarding the distribution of the anticyclonic centres in the Northern Hemisphere 
during summer, note that the belt of subtropical anticyclones is now farther north than in 
winter. The occurrence frequency is again significant in the eastern Pacific but is low in 
the western Pacific because of the summer monsoon. There are two maxima over North 
America. The first one is over Nebraska and Kansas, which is a grouping of weak highs. 
The second one, over the Great Lakes, arises because anticyclones from the 
Kansas—Nebraska area travel eastward and become stagnant over the cold waters of the 
Great Lakes. 

Earlier, a front was defined as a sloping zone of transition between two air masses 
of different density. Although a front is several kilometres wide, it is narrow compared 
with the horizontal dimensions of the air masses. On weather charts, fronts appear as lines 
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FIG. 1.10 Major frontal zones in the Northern  Hemisphere during winter. (Barry and Chorley 
1970) 

of discontinuity in wind and temperature. At the front, there is a kink in the isobars (i.e. 
lines of equal pressure), directed from low to high pressures. 

Next, the principal frontal zones on the globe will be identified. Although fronts are 
not usually stationary, certain regions nevertheless consistently show high frequency of 
fronts, these regions being the areas of confluence between the main air mass sources 
discussed earlier. Figure 1.10 shows the major frontal zones in the Northern Hemisphere 
during winter. In the Atlantic Ocean region, one has the Atlantic polar front, which is the 
confluence region between the polar continental and the tropical maritime air mass 
sources, and the opposing currents indicated maintain the front. Quite often, the Atlantic 
polar front extends eastward over Europe. Its position varies quite drastically in the 
meridional direction; i.e. it can be anywhere from the West Indies to Portugal in the south 
to the Great Lakes and Iceland in the north (Petterssen 1969). This frontal zone is 
responsible for the cyclones that bring precipitation over a wide belt from the eastern part 
of the North American continent to northwest Europe. 

A second important frontal zone is formed by the Atlantic—Arctic fronts, which are 
in the confluence region between the arctic source region and the polar maritime air. The 
storms that form on this frontal zone usually travel from Iceland along the northern part 
of Norway to the Barents Sea. A third important frontal zone is the Mediterranean front, 
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FIG. 1.11 Major frontal zones in the Northern Hemisphere during summer. (Barry and Chorley 
1970) 

which forms at the confluence of the cold air from Europe and the mild air from North 
Africa and Mediterranean Sea area. The cyclones that develop here usually travel in a 
northeasterly direction to southern parts of the USSR. However, some travel eastward to 
northwest India. 

Over the North Pacific Ocean, there are usually two polar fronts, the one nearest the 
Arctic coast being the more pronounced. Most of the North Pacific storms form along this 
frontal zone and travel towards the Gulf of Alaska, but some of them take a southerly route 
to California and northern Mexico. The Pacific—Arctic front usually extends towards the 
Great Lakes, and many of the storms between the Great Lakes and the Rockies develop 
on this front. Cold air from the Arctic may reach as far south as Texas, or even northern 
Mexico, in the rear of these storms. It has already been mentioned that Pacific cyclones 
usually cannot cross the Rockies, but they redevelop to the east of these mountains in such 
preferred areas as Alberta, Colorado, and Oklahoma. 

The frontal zone distribution during the summer period for the Northern Hemisphere 
is shown in Fig. 1.11. Since, in summer, the differences in the properties of the various 
air masses are not as pronounced as in winter, one can find permanent frontal zones only 
in the Arctic region. The polar fronts over the western Atlantic and Pacific are usually 100  
farther north in summer as compared with their winter positions. There are new frontal 
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Flo. 1.12. Major depression tracks for the Northern Hemisphere in January. Tracks represented 
by broken lines are less certain than those represented by solid lines. (Klein 1957) 

zones over Eurasia and over the middle part of North America. These new zones are due 
to the prevailing meridional temperature gradient and the large scale orographical influ-
ences. The Arctic front, in summer, is formed along the Arctic coasts of Siberia and North 
America and is associated with the snow (and ice) boundaries of the higher latitudes. 

The principal tracks of the depressions in the Northern Hemisphere for the winter 
period are shown in Fig. 1.12. Note that these tracks basically reflect the influence of the 
major frontal zones. 

1.4 Regional Weather Systems 

In this section, the regional weather systems of North America, South America, 
Europe, Africa, Asia, Australia, and the oceanic regions will be briefly considered. The 
detailed meteorological problems associated with storm surges will be considered in 
Chapter 6. 

WEATHER SYSTEMS OF NORTH AMERICA 

During both winter and summer, the mean pressure field at the midtropospheric level 
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shows a prominent trough over the eastern part of North America. The origin of this can 
be traced to the influence of the Rockies on the upper westerlies, but in winter, the strongly 
baroclinic zone along the east coast of North America is also responsible. Over the 
midwestern states, cyclones generally move in a southeast direction, bringing continental 
polar air southward, whereas along the Atlantic coast the cyclones travel northeastward. 
If the upper air trough is far to the west of its average position, then depressions form ahead 
of it over the South Central States (Petterssen 1969) and move in a northeasterly direction 
towards the lower St. Lawrence. 

Considering January as a typical month for the winter period, the surface pressure 
chart shows an extension of the subtropical high over the southwest part of the United 
States (this high being referred to as the "Great Basin High") and a polar anticyclone over 
the Mackenzie River area. On both the Atlantic and Pacific coasts, the pressure is low 
because of the Icelandic and Aleutian lows. Because of heating over the land, the Icelandic 
low is split and a secondary low appears over the northeastern part of Canada. The cyclone 
frequency is maximum on the Pacific coast and in the Great Lakes area during winter, 
whereas in the Great Plains, the maximum frequency is in spring and early summer. On 
the average, in the month of December, the Gulf of Alaska has the maximum frequency 

FIG. 1.13. Cyclone tracks of North and Central America. Solid lines represen extra- 
tropical cyclones and broken lines represent tropical cyclones.(Haurwitz and Austin 1944) 
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of lows and the Great Basin region has the maximum frequency of highs, as compared with 
any other region in the Northern Hemisphere. 

In winter, there are three main depression tracks across North America. (1) Depres-
sions from the west move eastward between 45 and 50°N. (2) Some depressions first travel 
southeastward as far as the Central States and then travel northeastward towards New 
England and the Gulf of St. Lawrence. Depressions developing over the Pacific cross the 
western mountains as upper troughs and redevelop in the lee of the mountains in Alberta 
and Colorado. (3) Depressions form on the polar front off the east coast of the United 
States and move northeastward towards Newfoundland. 

In the summer period, the frequency of depressions originating in the east coast is 
less, and the tracks of depressions from the west are somewhat northward as compared 
with their winter positions. The tracks pass over Hudson Bay, Ungava Bay, Labrador, or 
the Gulf of St. Lawrence. The maritime frontal zone that gives rise to these depressions 
is not pronounced. 

In early April, the Aleutian low (which is located approximately at 55°N, 165°W 
during September to March) splits into two; one center is over the Gulf of Alaska and the 
other is over northem Manchuria. Cyclogenesis increases in Alberta and Colorado. By the 
end of June, the subtropical high pressure cells in the Northern Hemisphere are displaced 
northward, and because of this, the depression tracks also move northward. 

The essential features of the sea level circulation in the eastern and central parts of 
the United States and Canada can be determined from sea level pressure maps. However, 
due to the presence of mountains and rugged orographical features in the west, sea level 
pressure gradients do not accurately reflect the wind distribution. Because of the presence 
of high coastal mountains, the Aleutian low pressure system does not extend far inland. 
Haurwitz and Austin (1944) stated that because the inland pressures are reduced to sea 
level, they appear quite high compared with those over the surrounding ocean, and this 
sea level correction gives rise to steep fictitious pressure gradients in northern British 
Columbia and southern Alaska. Due to the presence of several fjords and the banking 
effect produced by the coastal mountains, the average surface winds do not agree with the 
mean isobaric pattern. 

WEATHER SYSTEMS OF CENTRAL AMERICA 

Central America, as defined here, is the region from Mexico to the equator. The main 
mountain range in Central America is the Sierra Madre in Mexico. This region generally 
lies between the subtropical belt of high pressure and the equatorial belt of low pressure. 
The prevailing winds are easterly and the migratory low pressure centers generally move 
from east to west. Thus, these secondary circulations are significantly different from those 
of middle and high latitudes. The strong cyclones that travel over Mexico and Central 
America are tropical hurricanes, the tracks of which are shown in Fig. 1.13 (Haurwitz and 
Austin 1944). The following is a summary of the average conditions associated with these 
tracks in Mexico. (a) The Antillean hurricanes recurve in the eastem part of the Gulf of 
Mexico, and the hurricane season is August to October. During August, the recurvature 
occurs farther north than during October. (b) A frequently observed track is over the 
Caribbean Sea, the Yucatan Peninsula, and then over the northeast coast of Mexico or 
along the coast of Texas. (c) Occasionally, the hurricanes, after crossing the Yucatan 
Peninsula, travel over Central Mexico and arrive at the Pacific coast and then travel 
northwestward. (d) Similar to c across Central America, and then the track is towards the 
northwest, parallel to the Pacific coast and passing over the Gulf of California. (e) These 
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storms develop over the southeast Pacific and travel towards the Gulf of Mexico. Some 
tropical cyclones also form south of the Revillagigedo Islands. 

Thus, two main classes of cyclones can be noted: (1) hurricanes that develop over the 
warm waters of the Caribbean Sea and the Atlantic Ocean and (2) storms that develop or 
rejuvenate over the eastern Pacific near the Central American coast. During summer (June 
to August), the West Indies storms generally travel inland or recurve farther west than 
during fall (September to November). This difference in behavior is due to the strong 
subtropical anticyclone in midsummer, which prevents the recurvature of a storm until it 
arrives at an area of southerly winds. In autumn, the Atlantic high is less permanent, and 
a hurricane can recurve northward into a trough of low pressure over the western Atlantic. 
In winter, due to the southward displacement of the westerlies, extratropical cyclones are 
found in relatively low latitudes. 

Alaka (1976) provided details about the Atlantic hurricanes. The locations at which 
Atlantic tropical storms reached hurricane intensity during the period 1901-63 are shown 
in Fig. 1.14 (Dunn and Miller 1960). The monthly distribution of Atlantic hurricanes 
during the period 1881-1972 is given in Fig. 1.15. 

Bryson and Hare (1974) stated that, on the average, 5-10 tropical storms and 
hurricanes affect North America and Caribbean regions per year; but there was only 1 in 
1914 and as many as 21 in 1933. During the peak hurricane season of August to October, 
the preferred regions of hurricane formation are the trade wind belt east of the Antilles 
(including the Canary Islands) and the southwestern parts of the Gulf of Mexico and 
Caribbean. 

WEATHER SYSTEMS OF SOUTH AMERICA 

The most important orographical feature of South America is the continuous chain of 
high mountains, known as the Andes, which extend from Venezuela to Cape Horn. 
Another topographical feature is that South America does not have prominent coastal 
indentations (such as Hudson Bay, Gulf of St. Lawrence, and Gulf of Mexico in North 
America) or large inland lakes. 

FIG. 1.14. Locations at which Atlantic tropical storms reached hurricane intensity during the period 1901-63. 
(Dunn and Miller 1960) 
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FIG. 1.15. Total number of Atlantic hurricanes during the period 1881-1972 distributed by month. 

A more or less persistent feature is the presence of two semipermanent anticyclones, 
one over the Atlantic and the other over the Pacific, near the east and west coasts, 
respectively. A circumpolar zone of low pressure extends to about 45°S, with the mean 
pressure trough located slightly east of South America (Haurwitz and Austin 1944). South 
of Cape Horn, there are deep semipermanent cyclones of the Weddel and Belgique seas. 
One main difference between the Northern and Southern hemispheres is that, whereas in 
the Northern Hemisphere the low pressure areas are deeper in winter (than in summer), 
the reverse situation occurs in the Southern Hemisphere. 
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Because of continental heating, a thermal low is located over Paraguay in January. 
However, during July, this area comes under the influence of a weak anticyclone. The 
southern edge of the Northern Hemisphere's Atlantic anticyclone stretches as far south as 
the north coast of South America. Throughout the year, a trough of low pressure lies near 
the equator. 

At frequent intervals, the circumpolar zone of low pressure is traversed by cyclones, 
which move from northwest to southeast. Cold anticyclones usually follow these cyclones 
and move from southwest to northeast. Generally, over northern Argentina, these anti-
cyclones are preceded by the deepening of a cyclone, which moves southeastward on to 
the Atlantic Ocean. 

TABLE 1.2. Cyclone frequency (% of the total annual occurrence) at 15°W lon-
gitude (Atlantic Ocean). (Haurwitz and Austin 1944) 

Latitude 	Winter 	Spring 	Summer 	Autumn 	Year 

	

30-35°N 	1.7 	2.0 	0.4 	2.0 	6.1 

	

35-40°N 	3.0 	3.9 	1.1 	3.8 	11.8 

	

40-45°N 	3.3 	4.2 	2.3 	3.1 	12.9 

	

45-50°N 	2.1 	3.0 	3.7 	2.7 	11.5 

	

50-55°N 	2.3 	3.7 	4.5 	2.4 	12.9 

	

55-60°N 	3.0 	4.5 	6.0 	4.1 	17.6 

	

60-65°N 	3.2 	5.1 	5.0 	5.4 	18.7 

	

65-70°N 	1.9 	2.1 	2.2 	2.3 	8.5 

30-70°N 	20.5 28.5 	25.2 25.8 	100.0 

/ 	 / 	 1 	-....1 
0 	 20 

Flo. 1.16. Cyclone tracks across Europe. (Haurwitz and Austin 1944) 
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WEATHER SYSTEMS OF EUROPE (EXCLUDING THE USSR) 

Orographically, Europe is quite different from South America. (a) In Europe, there 
is no extensive high mountain chain in a north—south direction. (b) There are several large 
indentations to the coastline, e.g. the Black Sea, the Aegean Sea, the Adriatic Sea, the 
North Sea, the Baltic Sea, the Gulf of Bothnia, the Gulf of Finland, and the Bay of Biscay. 
Haurwitz and Austin (1944) conveniently grouped the important mountain chains as 
follows: (1) the Scandinavian mountains, oriented in a general southwest—northeast direc-
tion, (2) the Pyrenees (separating France and Spain), which have peaks higher than 9000 
ft (2743 m), (3) the Alps, which are the highest mountain chain in Europe and extend in 
a general west—east direction from southern France to southeastern Austria, and (4) the 
Apennines, which extend almost the entire length of Italy. 

In winter, the cyclones that travel across North America, or those that develop on the 
Atlantic front, travel south of Iceland in a general northeasterly direction towards Norway. 
The latitudinal variation of cyclones that approach the west coast of Europe for the 
different seasons of the year is listed in Table 1.2. The cyclone tracks across Europe are 
shown in Fig. 1.16 (according to Haurwitz and Austin 1944). This difference in frequency 
is more pronounced in summer than in winter. 

Some of the cyclones that traverse Europe have traveled over the Atlantic Ocean. 
Others develop over Europe itself and the adjacent seas. For example, secondary cyclones 
develop south of the Scandinavian range, and these are referred to as the Skagerrak 
cyclones. Other regions where deepening of an old primary cyclone may occur are the 
Adriatic Sea and the Gulf of Genoa. The cyclones that traverse Southern Europe either 
originate over the Atlantic and deepen over the warm waters surrounding Italy or form in 
the Mediterranean Sea. According to Wallen (1970), the cyclones of Europe have a 
duration of usually 8 d but at times up to 17 d. Figure 1.17 shows the frequencies of 
cyclones in winter and summer for Europe. 

WEATHER SYSTEMS OF ASIA (INCLUDING THE USSR) 

Haurwitz and Austin (1944) recognized the following mountain chains as the im-
portant orographical features of Asia. (1) The Himalaya mountains extend from west to 
east in northern India; some of the highest peaks on the globe are in this mountain chain. 
For example, Mount Everest is over 29 000 ft (8839 m) in height. (2) Between the 
Himalayas and the Kunlun chain to the north lies the high plateau of Tibet, which contains 
a number of smaller mountain chains. (3) A more or less continuous series of mountains, 
oriented in the southwest—northeast direction, stretches from the Aiabian Sea to Mon-
golia. The most important ranges are the Hindu Kush and the Tien Shan. (4) Starting at 
the Tibetan plateau, the land slopes gradually down towards the Arctic Ocean. Several 
mountain ranges exist in Mongolia and Siberia. Important ones are the Altai and Yab-
lonova ranges. (5) In the southeast direction, a minor ridge extends towards the Gulf of 
Siam. 

In southweste rn  Asia, land with elevations in excess of 2000 ft (610 m) contains 
mountain ranges such as the Caucasus, extending from the Caspian Sea to the Black Sea. 
The Urals form a north—south mountain chain. There are also smaller mountain chains on 
the east coast of the USSR and in Japan, Indonesia, Southern India, and Arabia. The Asian 
continent has several large indentations, e.g. the Red Sea, the Persian Gulf, the Arabian 
Sea, the Bay of Bengal, the Gulf of Siam, the Gulf of Tonkin, the China Sea (Pohai Sea), 
the Sea of Japan, the Okhotsk Sea, the Kara Sea, etc. 
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FIG. 1.17. Average frequency of cyclones with central pressures less than 1000 mb during 
a winter season (top) and a summer season (bottom). (Haurwitz and Austin 1944) 
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FIG. 1.18. Extratropical cyclone tracks across Asia. Tracks represented by broken lines are 
less certain than those represented by solid lines. (Haurwitz and Austin 1944) 

FIG. 1.19. Tropical cyclone tracks across Asia. (Haurwitz and Austin 1944) 

The tracks of extratropical and tropical cyclones across Asia are shown in Fig. 1.18 
and 1.19, respectively. The approximate percentage distribution of tropical cyclones in the 
Arabian Sea and the Bay of Bengal is given in Table 1.3. Note that whereas in the Arabian 
Sea the maximum per,centage is during May to June, in the Bay of Bengal, it is in 
September to October. In Chapter 6 and section 7.4, the Arabian Sea and Bay of Bengal 
cyclones and the resulting storm surges will be discussed in more detail. Special attention 
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Average 
Month 	 No. 

Average 
Month 	 No. 

January 	 0.3 
February 	 0.1 
March 	 0.1 
April 	 0.3 
May 	 1.0 
June 	 1.5 
July 	 3.8 

August 	 4.4 
September 	 4.4 
October 	 3.0 
November 	 2.1 
December 	 0.9 

Year 	 21.9 

TABLE 1.3. Bimonthly distribution (approximate %) of tropical cyclones in the Arabian 
Sea and the Bay of Bengal. (Haurwitz and Austin 1944) 

Jan.— 	Mar. — 	May— 	July— 	Sept.— 	Nov. — 
Water body 	Feb. 	Apr. 	June 	Aug. 	Oct. 	Dec. 

Arabian Sea 	1 	Il 	50 	I 	11 	26 
Bay of Bengal 	1 	2 	17 	29 	34 	17 

TABLE 1.4. Average number of tropical cyclones per month within 
5-30°N and 105-150°E  (based on data for the period 1884-1953). Note 
that this area is in the northwestern Pacific Ocean east of the Philippines and 
southeast of Japan. (Watts 1969) 

will be given to the Bay of Bengal surges because these account for almost half of the lives 
lost globally. 

The weather systems of northern and eastern Asia will now be considered. The 
monthly distribution of tropical cyclones in the southwestern Pacific and China Sea is 
given in Table 1.4. This table is based on data for the period between 1884 and 1953, 
inclusive, and shows an average of about 22 tropical cyclones per year, most of them 
occurring between July and October (Arakawa 1969). During July to September, tropical 
cyclones frequently travel over the coasts of China and Korea; however, the southern parts 
of China experience these sometimes as early as May and as late as mid-November. 
Between mid-November and April, tropical cyclones rarely traverse the mainland of 
China. 

During the main cyclone season (i.e. July to September) for this area most of the 
cyclones form over the warm north equatorial current between Luzon and the Marianas, 
and they proceed west—northwest. About half of these persist in this direction until they 
reach the South China coast, but the other half recurve northward towards Korea and 
Japan. The number of tropical cyclones passing through each square of 2.5° latitude and 
longitude over the Northwest Pacific and China seas during the month of August for the 
period 1884-1953 is shown in Fig. 1.20, Broken lines show the areas of maximum 
activity. 

The number of typhoons traversing different coastal sections during the period 
1884-1955 is listed in Table 1.5. The most vulnerable area is the Fukien—Taiwan sector. 
As elsewhere on the globe, most of the deaths in China and surrounding areas due to 
typhoons occur as a result of the storm surge. For example, in 1881, about 300 000 people 
died at Haiphong. In 1922, about 60 000 people died at Swatow, and in September 1937, 
about 11 000 people died in Hong Kong. Usually, the surge at Hong Kong does not exceed 
2 m, but surges three times greater have occurred nearby (Arakawa 1969). 
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FIG. 1.20. Total number of tropical cyclones over a part of the Northwest Pacific Ocean and the Sea of China 
during the month of August for the period 1884-1953. Areas of maxima are represented by broken lines. 
(Arakawa 1969) 

TABLE 1.5. Number of typhoons crossing the Southeast 
Asian coast during 1884-1955. (Watts 1969) 

Coastal region 	 No. of typhoons 

Kora and further east 	 87 
Liaoning to Shantung Peninsula 	 39 
Shantung Peninsula to Shanghai 	 22 
Shanghai to Wenchow 	 34 
Wenchow to Foochow 	 30 
Foochow to Swatow 	 90 
Swatow to Canton 	 43 
Canton to Hainan 	 93 

Total 	 438 

Another area where tropical cyclones (and storm surges) cause great destruction and 
loss of life is in the Philippines. This country is situated in a region that has one of the 
greatest frequencies of tropical cyclones on the globe. The average number per year is 
about 22. Figure 1.21 shows the monthly distribution of these. It can be seen that the main 
cyclone season is July to November, with the maximum in October. Although the 
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Fin. 1.21. Mean monthly frequency of tropical cyclones affecting the 
Philippines. (Arakawa 1969) 

Philippine region has the highest number of tropical cyclones per year, the destruction and 
deaths due to storm surges are greatest in Bangladesh, which accounts for about 40% of 
the deaths over the whole globe. This will be discussed in greater detail in section 7.4. 

Considered next are the weather systems of the USSR. Lydolph (1977) mentioned 
that during winter, the strong dominance of a high pressure cell over Eurasia causes the 
majority of fronts and cyclone tracks to be located along the edges of the land mass. In 
winter, the polar front generally lies south of the USSR. This front has two branches: the 
western branch lies in the Mediterranean—Asia Minor—Middle East area, and an eastern 
segment lies off the coast of China and across Japan, stretching into the Aleutians. Many 
cyclones that affect the weather over the Soviet Union develop on the western segment. 
The cyclones forming in the eastern Mediterranean usually move northeastward across the 
Black Sea, the Caucasus, Ukraine, the lower Volga, and western Siberia. Cyclones 
developing in the Middle East travel into Soviet Central Asia. Cyclones forming along the 
eastern branch of the polar front in winter travel north of the Soviet Union. 

Thus, many of the cyclones affecting the USSR in winter either originate in the 
Icelandic low area or in the Mediterranean Sea. The Barents Sea also acts as a region of 
cyclogenesis and redevelopment. The Black Sea and the Caspian Sea also act as areas of 
cyclogenesis during winter. Other areas of cyclogenesis are western Siberia, the Baltic 
Sea, and southern Finland. In the Far East, cyclogenesis occurs over the northern part of 
the Okhotsk Sea (sea level pressures as low as 970 mb occur). However, in the Far East, 
most of the cyclogenesis occurs over Japan and the Sea of Japan. These cyclones affect 
southern portions of the Kamchatka Peninsula, Sakhalin Island, and Kuril Islands. 

In winter, one of the stormiest areas in the USSR is the Ob Estuary region where 
cyclones traveling from the west along the Arctic coast meet those from the southwest 
traveling along the Black and Caspian seas. During spring, the center of maximum cyclone 
frequency shifts eastward from the Barents Sea to the Ob Gulf. In summer, the location 
of maximum cyclone frequency shifts southeastward into central Siberia south of the 
Taymyr Peninsula. In summer, the frequency of cyclones over the Black and Caspian seas 
diminishes considerably. In the Far East, the Aleutian low becomes weak, and the Amur 
Valley becomes a region of strong cyclogenesis. 

Generally speaking, cyclones are more evenly distributed across the USSR land mass 
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FIG. 1.22. Total number of cyclones during a 20-yr period over the Soviet Union during the month of January. 
The principal tracks of cyclones are also shown. (Lydolph 1977) 

FIG. 1.23. Total number of cyclones during a 20-yr period over the Soviet Union during the month of July. 
The principal tracks of cyclones are also shown. (Lydolph 1977) 
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in summer. In winter, most of the cyclones affecting the USSR originate outside the 
country, whereas in summer, most of the cyclogenesis occurs in the USSR itself. In 
summer, areas of high cyclogenesis are the Amur Valley, the Urals, western Siberia, and 
northcentral Kazakhstan. 

Generally, the movement of cyclones and fronts over the USSR is slower than over 
the eastern part of North America. Also, there is frequent stagnation for a day or more. 
On the average, about 32 cyclones per year affect central Asia. The frequencies of 
cyclogenesis and the main routes of cyclones in January and July are shown in Fig. 1.22 
and 1.23, respectively. 

WEATHER SYSTEMS OF AFRICA 

The continent of Africa is devoid of high mountain chains and large indentations to 
its coastline. Haurwitz and Austin (1944) recognized the following mountain chains as 
having some influence on the weather patterns. In the northwest part of the continent, the 
Atlas Mountains and the Algerian Plateau separate the coast and the desert to the south. 
A few peaks in Morocco extend over 10 000 ft (3050 m) in height. The huge Sahara 
Desert varies in elevation considerably, with a few peaks over 8000 ft (2440 m), such as 
the Ahaggar and Tibesti. The main mountain ranges of this continent are somewhat 
irregularly situated between Zambia (formerly Northern Rhodesia) and the Red Sea. Near 
Lake Victoria, and in Ethiopia, some peaks are over 12 000 ft (3660 m). Smaller moun-
tain ranges (Drakensberg Mountains) exist in the southeast; the Auaz Mountains in the 
southwest, the Cameroon Mountains in Cameroon, and the Ankaratra Mountains in 
Madagascar (Malagasy Republic) are other examples. 

The only indentations along the coastline are the gulfs of Guinea, Gabès, Sidra, and 
Aden. The only lakes of any significant size are Rudolf, Victoria, and Nyasa. 

Because of its situation in low latitudes, Africa is not significantly influenced by 
disturbances originating in the polar front. The cyclones originating in the main frontal 
zones affect only a small portion of Africa. Those developing over the Atlantic Ocean 
frequently move in a northeast direction and, after entering the Mediterranean Sea, move 
eastward. The average track of the cyclones follows the Mediterranean coast. A few 
cyclones, however, traverse southern Morocco and southern Algeria. 

Only on rare occasions do tropical disturbances occur over the African coast. The 
region of intense tropical cyclonic activity in Africa is the region of Madagascar (Malagasy 
Republic) and the surrounding area in the southwest Indian Ocean. During January to 
April, cyclogenesis is intense and occurs usually east of the Seychelles at about 10°S. Most 
of these cyclones recurve about the latitude of Madagascar. The majority recurve to the 
east of this island. During March and April, some of these tropical cyclones follow a 
southward path along the east coast of Africa and become converted to extratropical lows. 
The monthly frequency of these cyclones is listed in Table 1.6. 

Griffiths (1972) provides the following information about the weather systems of 
Africa, with particular reference to those of Egypt. During winter, the Mediterranean Sea 
is a center of cyclogenesis. These Mediterranean depressions mainly affect northern parts 
of Egypt. During spring (March to May), the tracks of the Mediterranean depressions shift 
southward, and during this season, these are referred to as the "desert" or "Khamsin" 
depressions. The frequency of these varies from two to six per month. Also, these 
depressions, in spring, are smaller in size than the winter depressions. 

During summer, the depressions do not traverse Egypt. In fall (October to Novem-
ber), Khamsin-type depressions move across Egypt. Compared with the spring depres- 
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TABLE 1.6. Monthly distribution (totals) of cyclones in the Mozambique 
Channel area during the period 1848-1966. (Griffiths 1972) 
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FIG. 1.24. Most frequent trajectories of the Sudan—Sahara disturbances. (Griffiths 
1972) 

Fia.  1.25. Cyclone tracks across Australia and New Zealand. (Haurwitz and Austin 

1944) 
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sions, these are weaker and move more slowly towards the east. The most frequent 
trajectories of the so-called Sudan—Sahara disturbances are shown in Fig. 1.24. 

WEATHER SYSTEMS OF AUSTRALIA AND NEW ZEALAND 

The weather systems of this region will be discussed first generally (following 
Haurwitz and Austin 1944), followed by a consideration of certain details of the Australian 
weather systems (following Gentilli 1971). 

There are no high mountain chains in the mainland of Australia, and the only 
significant indentations to the coastline are the Great Australian Bight and the Gulf 
of Carpentaria. However, Tasmania is mountainous. New Zealand is also relatively 
mountainous. 

The tracks of cyclones across Australia and New Zealand are shown in Fig. 1.25. 
Cyclones developing along the polar front off South Africa usually move southeastward 
to the south of New Zealand. Also, stationary cold fronts over Queensland lead to cyclones 
that move in a general southeasterly direction, either to the north of New Zealand or across 
North Island of New Zealand. Cyclones developing over New South Wales travel across 
South Island of New Zealand. Sometimes, cyclones develop along the south coast of 
Australia. 

Tropical disturbances that develop north of Australia have parabolic trajectories and 
travel to the northwest coast of Australia. During summer, tropical cyclones developing 
over the western Pacific recurve and traverse New Zealand in the form of deep, extra-
tropical cyclones. Hurricanes recurving near Australia influence New Zealand, whereas 
those that recurve farther to the east do not. There is also a secondary family of summer 
cyclones that develops on the secondary front across southeastern Australia. 

Gentilli (1971) stated that, because of its shape, Australia is the only continent that 
has roughly the same frequency of tropical cyclones on both the east and west coasts. Data 
for the period 1870-1955 show that, on the average, Northern Territories and Queensland 
together experience about 3.3 tropical cyclones per year, whereas the west coast average 
is 2.1. As far as the monthly distribution is concerned, western Australia experiences thé 
highest frequency during December to April. 

Generally, in the Australian region, tropical cyclones originate in the belt of 4-20° 
latitude (north and south). One significant feature of tropical cyclones in the region of 
Australia is their relatively short tracks. Those originating in the Timor Sea travel in a 
southwest direction with a speed ranging from 8 to 24 km • s' . 

WEATHER SYSTEMS OF THE OCEANIC REGIONS 

Since tropical and extratropical cyclogenesis depends on the positions of the various 
frontal zones, the positions of these will be briefly summarized. The intertropical front lies 
in the low pressure belt between the large anticyclones of both hemispheres, whereas the 
polar fronts are mainly located off the east coasts of the continents, and the Arctic and 
Antarctic fronts lie in the troughs that extend from the high latitude deep cyclones 
(Haurwitz and Austin 1944). 

The cyclones of the middle and high latitudes generally develop as wave disturbances 
on the polar front. Since the position of the front varies considerably, the positions of 
cyclogenesis also vary with the season. In the Northern Hemisphere, most of these 
cyclones move in a northeasterly direction towards the Aleutian and Icelandic lows, 
whereas in the Southern Hemisphere, they move southeastward toward the circumpolar 

31 



low. The seasonal variation is more pronounced in the Northern Hemisphere. In summer, 
cyclogenesis usually occurs farther north; the cyclones move slower and they are shallower 
than the winter cyclones. 

Tropical cyclones develop in the intertropical front beyond 5 0  latitude in the summer 
hemisphere. Tropical cyclones are a rare phenomenon in the South Atlantic and eastern 
part of the South Pacific. Their frequency in the North Indian Ocean is quite different from 
elsewhere. In the Arabian Sea and the Bay of Bengal, they occur mainly in the periods 
between the southwest and the northeast monsoon seasons. Other water bodies where 
tropical cyclones occur are the waters surrounding the Philippines, the China Sea, the 
Solomon Islands, New Hebrides and the Society Islands, the areas off the west coasts of 
North 'America and Central America, the Caribbean Sea, the waters surrounding the 
Malagasy Republic (Madagascar), and the area off the northwest coast of Australia 
(Haurwitz and Austin 1944). These tropical cyclones move westward in low latitudes and 
then towards the northeast in the Northern Hemisphere (and towards the southeast in the 
Southern Hemisphere), in the higher latitudes. Rather irregular trajectories can occur in 
many areas, especially in the Arabian Sea and the Bay of Bengal. 
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Chapter 2 

The Mathematical Problem and Finite-Difference 
Solutions for Two-Dimensional Numerical Models 

2.1 Formulation of the Storm Surge Equations 

In numerical models for storm surges, the equations most frequently used are linear-
ized versions of the Navier—Stokes equations in vertically integrated form. These equa-
tions will be derived making use of an approach given by Fofonoff (1962). Although at 
times a spherical polar coordinate system will be used, in the initial development, only 
Cartesian coordinates will be used, making use of a right-handed rectangular coordinate 
system with the origin located at the undisturbed level of the free surface. 

The coordinate system is such that the x-axis points towards east, the y-axis points 
towards north, and the z-axis points upwards. The components of velocity along these 
three axes will be respectively denoted by u, y, and w. For convenience and brevity, we 
will also use a tensor summation notation, in which the axes are denoted by x l , x2 , and x3 

 and the velocity components by  u 1 , u2 , and u3 . In this notation, an index appearing twice 
in a term implies summation over all three index values. 

The equation expressing the conservation of momentum can be written as 

au, 	au, 	 a P 	ao-,, 
(2.1) 	p 	+ pu — + 2peuk  u, = — — — pg83, + — at 	ax 	 ax, 	ax 

where p is the density of water, t is time, P is the pressure field, S2, is the component of 
the earth's rotation, and cr u  are the components of stress due to molecular viscosity. Also 
note that euk  = + 1 if i, j, k are in cyclic order, e uk  = — 1 if i, j, k are in anticyclic order, 
and Eiik = 0 if any pair or all three indices have the same value; 831  = 1 for i -= 3 ara 83; 

 -= 0 for otherwise. 
If p, is the molecular viscosity, then the stress tensor, cr u , can be expressed in terms 

of the rate of deformation of a fluid element by the motion 

	

/ au, 	au  
(2.2) 	cru  =Wi   

The conservation of mass can be expressed through the continuity equation 

ap 	apu, 
(2.3) 	—

a t 

+ 	 0 
0 Xi 

For any other property of the fluid (e.g. temperature, salinity, etc.), the general form of 
the conservation equation is 

a 	a 	a F. 
(2.4) 	œat (e) u ( P(41)  

Here, F", are the components of flux of the property 4) due to internal forces or pressures 
and q is the total internal source of the property it, . Note that eq. 2.1 and 2.3 are special 
forms of eq. 2.4. 
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and 

(2.10) 

SEPARATION OF THE EQUATIONS INTO STEADY AND TIME-DEPENDENT FORMS 

The above equations cannot be solved exactly, except in a few simple cases. To make 
the equations tractable, several simplifying assumptions have to be made. The first is to 
separate the equations into two sets: one set expressing the mean motion and the other 
describing the time-dependent motion (i.e. departure from the mean). Because of the 
nonlinear nature of the above equations, this separation cannot be achieved as two inde-
pendent equations, and one has to contend with two sets, in each of which terms express-
ing interactions between mean and time-dependent motions appear. 

Multiplying eq. 2.3 by u, and adding to eq. 2.1 and using eq. 2.2 after ignoring 
compressibility of the water in the frictional terms gives 

a 	a 	 aP (2.5) 	— (pu,) + — (puiu,) + 2peuk  fl,ii /  = — — — pg8 3, + at 	av 	 ax, 	 ax ax. ' 	 1 

Basically, eq. 2.4 and 2.5 are similar. To achieve the abovementioned separation, eq. 2.3 
and 2.5 are averaged with respect to time. To do this, the averaging process is denoted 
by a bar: 

(2.6) 
T 

  (I)dt) 2T _T  

The averaging process of eq. 2.5 and 2.3 gives 

apu1 u a  p 	 a2—ui 
(2.7)   + 2€,,k 	puk 	pg83, + 	 ax 	 ax, 	 ay ax ' J 

and 

apu, 
(2.8) 	—" = 0 ax;  

Noting that the time-dependent motion lias zero mean by definition, the time-
dependent equations are obtained by subtracting eq. 2.7 from eq. 2.5 and eq. 2.8 from 
eq. 2.3. 

) apu, 	a(pii,u;  — pui ui ) 	 (P —  
(2.9) 	at + 	ax 	  + 2E., nicpu, 	

—a
Puk) 

a2(u 1  — 71) 
— (I)  — f5) 	axiax; 

ap 	a(pdi  — pdi ) 
= 0 at 	ax;  

The next step is to express the velocity, pressure, and density fields as steady and 
time-dependent components: u, = + u;. Conventionally, however, U, is used for 74 
Thus, 

= U1 + II: 

P = 9 + P' 

P = P P' 

(2.11) 
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where 17'„ 	and 15' are zero. The term pu,u, in eq. 2.9 becomes 

pu,u, = pu,u, + 0 1124; + vu.; u, +  pu,' U  + 

In water bodies, generally speaking, variations in the density field are very small in 
proportion to the mean density, whereas the fluctuations in the velocity field can be of the 
same order as the mean velocity. Thus, the terms containing correlations between fluctu-
ations of density and velocity are small compared with the terms containing correlations 
between velocity components. Thus, we will ignore the density fluctuations in the accel-
eration terms. However, the correlation between density and velocity fluctuations can be 
significant in the other equations where velocity correlations do not appear. Especially in 
the continuity equation, the correlations between density and velocity fluctuations may be 
important. 

Reynolds stress tensor is defined as 

	

(2.12) 	R u 	— 

Rb is defined as 

	

(2.13) 	Rb—  — f5(u;u1 — u;u1) 

Then, eq. 2.7 and 2.8 can be written as 

au, aR, 	 a P 

	

(2.14) 	p u; 	— ax, + 2E,,kni p Uk = 	p g  53i  + 
ax,  

and 

ax;  

These are the equations for the mean flow. The equations for the time-dependent motion 
are 

au; 	au;au, 	aRt•  
(2.16) 	p 	+ -p 	+ -p /4.;  °xi 	a „ + 2EJk OJ u ox,  

—aP' 	 a2u; 
0 Qs • + ax, 	 aXiaXi 

and 

ap' 	apul 
(2.17) 0 at 	ax, 

One can see from eq. 2.14 that the influence of the time-dependent flow upon the 
mean motion is expressed completely by Reynolds stress tensor, R b . However, in the 
time-dependent equations, the interactions are contained in many terms and are of three 
different types: (a) convection of fluctuating momentum by the steady flow, (b) convection 
of the steady-state momentum by the fluctuating flow, and (c) divergence of momentum-
flux variations of the purely time-dependent flow. 

The time-dependent equations 2.16 and 2.17 permit motions with all frequencies. In 
principle, one can carry out a second averaging process making use of an averaging time 
that is small compared with the period of the motion under consideration. Thus, one can 
separate the slow motion from the high-frequency turbulence. If this averaging is carried 
out on eq. 2.16 and 2.17, all the terms except R, can be simply replaced by their averages, 

a2 ui  
a Xi a Xi 

(2.15) 
au;  = 0  
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because they are linear. The finite average of R,, (i.e. average with reference to a finite time 
step) is the difference between the finite and the steady-state average of -fin:Li:. Con-
tributions to both of these from the perturbations with periods shorter than the finite 
averaging time step will be roughly the same, and when the difference is taken, they will 
cancel each other. 

If the Reynolds stresses in the steady-state equations 2.14 are interpreted as a dissi-
pating mechanism, then one has to consider the divergence of the finite average of R as 
a source of momentum, and longer period motions principally contribute to this source. 
This means that the time-dependent motion of a prescribed time scale can receive momen-
tum mainly from longer time scales and lose momentum to shorter time scales. 

Turbulence plays an important role in the dissipative process in water bodies. How-
ever, it cannot be easily incorporated into the momentum equations. Usually, the dissi-
pative action due to turbulence is taken into account by asusming that the Reynolds stresses 
are proportional to the strain rate of the mean flow. In analogy to molecular viscosity, this 
proportionality constant is referred to as eddy viscosity. Considering the fact that the 
horizontal dimensions of a water body are usually much larger than its vertical dimensions, 
eddy viscosities of widely differing values might be necessary for the horizontal and 
vertical directions. Sometimes, in the horizontal plane, different eddy viscosity values 
might have to be used in the x  and)' direction (e.g. narrow water bodies). Equation 2.12 
can be written as 

au, 	au, 
(2.18) 	R u 	— 15 tr;u1 = 	7 j) 	-7 + 	i ) 

cIAJ 

Here,  p(i) =  PH  for  i,j e 3 and p,( j) = fly  for i,j =  3. 

The parameters plw and tiv  are referred to as horizontal and vertical eddy viscosities, 
respectively. 

NONDIMENSIONALIZATION 

To nondimensionalize the time-dependent equations 2.16 and 2.17, the following 
parameters are introduced: a horizontal scale L, a characteristic depth H for the vertical 
scale, and similar scale parameters U0  for the mean velocity in the horizontal direction, 
no  for the perturbation current in the horizontal direction, Wo  for the mean cuiTent in the 
vertical direction, and wo  for the fluctuating current in the vertical direction. Because of 
the continuity equations 2.15 and 2.17, one can write 

uo  I-1 
(2.19) 1470  	 and wo  —

L 

Let s denote a characteristic value of the surface slope of the water body. Then, a 
typical value of the pressure gradient is po gs. The balance between the pressure gradient 
and Coriolis forces can be expressed by choosing I/0  so that 

(2.20) fo lio  = gs 

where fo  is a typical value of the Coriolis parameter and is equal to 2123 . Also, the 
following nondimensional parameters are defined: 
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(2.21) Reynolds number = R e  

Froude number = Fr  = 

Uo  
Rossby number = R" = — 

 foL 
po  UoL 

U 20  
gH 

Note that 

1 	Po 
(2.22)  

where a' is the specific volume. 

Further, 
Rd 

(2.23) 	4 = 	2 
pollo 

ApogH 

With the understanding that the time-dependent variables are denoted by a double 
prime, the two horizontal equations of motion (expressed in tensor notation), the vertical 
equation of motion, and the continuity equation take the following forms: 

1  au'; 	au'I 	au; 	uo  ar" aP"  
(2.25) — — +  R 0  --  + u''— — (—)— ] + Euk n; 0, = Œ' 

foTo at' 	i axi 	Uo ax' 	 ax: 1 	 1 

R„ 
+ —[V 2 u'i' + ("

f 
 =")

2 a2u1 
i =  1,2 

R e 	H ax ,3 2  ' 

(2.26) 	F ' (110) 
(H 2 

 L) [( 	 .1 

1 	au' 	au1 	au; 	uo  ail 	po  uo  fo  llo 

UolL)T at'  + U 
 i  ax' + u'l  r 	 axi 	( (Jo) axl + 3■ P0g .1 

aP" F'. uo  H 2 	 f 2 a2 /4 
X Euk 04 tl 'i = — --- p" + — (—) H [V2 0 + (—) 	

] Ox '3 	R e  Uo  L 	H ax 2  

APo 	1 	a P" 	a P i  u i; 

where 
n 2 

V2

ax 	aX 22 

Next, the significance of the three nondimensional parameters, namely, the Rossby 
number, the Reynolds number, and the Froude number (defined by eq. 2.21 and 2.22), 
will be considered. The Rossby number is the ratio of the nonlinear acceleration terms to 
the Coriolis terms. In most storm surge studies, the Rossby number is assumed to be small 

where a prime denotes a dimensionless variable. Finally, a characteristic time scale, T o , 
and a characteristic density difference, Ap o , will be introduced and internal Froude 
number, Fr', defined: 

U 0  po  
(2.24) 	F  =- 

(2.27) 	 J_ 	— 
I 	 J  = 

Po (uo/L)T o  ati 	axj 
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compared with unity, and thus the nonlinear acceleration terms are ignored; however, it 
will be shown in later sections that, in some special cases, these terms are important and 
have to be retained. 

The importance of these nondimensional parameters for the steady state will be 
briefly discussed before discussing their relevance for the time-dependent flow (for the 
nondimensional forms of the steady-state equations, see Fofonoff 1962,  P.  330, eq. 
17-19). If the magnitude of the perturbation in the velocity field is greater than the mean 
flow (i.e. u0/U0  > 1), then the Reynolds stresses become important. The other instance 
in which they are important is when their variation is great over distances small compared 
with the characteristic length of the steady-state flow (i.e. when alvax, > 1). 

The other parameters, namely, the Reynolds number, R,, and the Froude number, Pr, 
will have values or order unity for very small horizontal and vertical scales of motion. 
Thus, in the steady state, molecular viscosity and vertical accelerations can be justifiably 
neglected. Hence, the balance of forces in the vertical direction can be represented fairly 
accurately by the hydrostatic equation, which in nondimensional form is 

a P (2.28) a' — + 1 = 0 
ax; 

In the equations of motion, it is convenient to use eddy viscosity coefficients instead 
of Reynolds stresses. The magnitudes of the eddy viscosity coefficients can be related to 
the Reynolds stresses through the following (nondimensional) equation: 

a r 
(2.29) 	

uo 2 	I [v2 u , 	p,v L2 a2 u:  

	

) 	 i  
ax ; 	[ 	I-4 H 2  aX '3 2 ] 

where 

po  U0 L 
(2.30) R = 	 

In analogy to molecular viscosity, R, can be treated as the Reynolds number for eddy 
viscosity. If the frictional forces are comparable with the acceleration terms, then R, must 
be of order unity, i.e. 

U0  

	

Po UoL 	po 	
) 

L- 
, 

Since L is a characteristic horizontal scale of the flow, Uo/L represents the strain rate of 
the mean flow. Similarly, friction due to vertical shear is important if 

/H\ 2 	/UID\ 
1-14/ 	— Po 	H2iJ) 

The eddy viscosity terms are more important than the acceleration terms if R, is less than 
the Rossby number, R„. This happens when il l!  > pofo L2 . 

Next, the time-dependent eq. 2.25-2.27 will be considered. In eq. 2.25, the local 
acceleration term (time-derivative term) is of order unity provided that the time scale of 
the perturbation is of the order of half-pendulum day or less.' 

When fo  To  < 1, the Coriolis terms are insignificant compared with the acceleration 
terms, and balance is achieved between pressure gradient forces and acceleration ternis. 

2 Half-pendulum day is equal to 27r/fo . At the equator, it is Go and at the poles is equal to 7r/S2, 
where n is the angular velocity of the earth's rotation. 
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Hence, short-period fluctuations (i.e,  To  < 27r/f0) are referred to as inertiogravitational 
oscillations. For long periods (i.e.  T0 >  27r/f0), the balance is mainly between the pressure 
gradient terms and the Coriolis terms. As in the case of steady-state motion, in time-
dependent motion molecular friction can be neglected. The variations in the pressure field 
are mostly due to variations of density and slope of the water surface, and the hydrostatic 
equations satisfactorily represent this (the cases in which the hydrostatic equations may not 
be satisfactory will be considered later). 

TRADITIONAL LINEAR STORM SURGE EQUATIONS AND BOUNDARY CONDITIONS 

We will develop the linear storm surge equations most commonly used, following 
Welander (1961). It is convenient to switch from the tensor notation, used above, to a 
scalar notation. Assume that the water is homogenous and incompressible, and that 
friction due to vertical shear is much more important than horizontal friction. At this stage, 
the hydrostatic approximation has not been made, nor any assumption concerning Rossby 
number. Then, the equations of motion in a right-handed Cartesian coordinate system can 
be written as 

, 	a u 	au , 	au , 	au 	1 aP 	1 aTr 
(2.31) — u— + v— w— — fv = 	-r — at 

, 	
ay 

+ 	az aX 	 Po OX 	Po OZ 

av 
 (2.34 	, 	av 	aV , 	aV 	 1 a P j_ 1 aT1 

— 	 — — - — at 	ax 	ay 	a 	 Po aY 	Po az 

, 	aw , aw 	aw , 	aw 	aP 
(2.33) — u — , v — -r — = 	 g az at 	ax 	ay 	po  oz 

The continuity equation is 

(2.34,  ) — -r — — ax ay 	az 

where u, v, and w are the velocity fields in the x, y, and z directions, f is the Coriolis 
parameter, g is gravity, po  is the uniform density of water, P is the pressure, and Tx  and 
T.  are the x and y components of the frictional stress. 

With reference to the origin of the coordinate system located at the undisturbed level 
of the free surface (z = 0), the free surface can be denoted by z = h (x, y, t) and the bottom 
by z = — D (x, y). Let Ts ,  and Ts, denote the tangential wind stress components and let P, 
be the atmospheric pressure on the water surface. Then, the following boundary conditions 
must be satisfied. At the free surface z = h: 

(2.35) 

and 

(2.36) 

Tx = TS,, Ty = TS,. 

p = Pa 

Since the free surface has to follow the fluid, we have an additional condition given by 

ah 
(2.37) —at + u.Lh + v—ah = w at z = h ax 	ay 
At the bottom, all the velocity components have to vanish. Thus, 

(2.38) u=v=w=Oatz= —D 

39 



a — u ax 

0 - uv ay 

(2.43) 

The traditional storm surge equations are derived by performing the two operations 
of vertical integration and linearization. To perform the vertical integration, we define the 
x and y components of the horizontal transport as follows: 

riz

(2.39) 	M  
i= 	

udz and N 
-D 

 vdz 
z -D 

 

Integrating the horizontal equations of motion 2.31 and 2.32 and the continuity equation 
2.34 with respect to z from z = -D to h and using the boundary conditions defined by 
eq. 2.35-2.38 gives 

	

„, 	am , a 	a 	 1 	aP , , 1 , 

	

(2.4o) 	--- -r -1j-- //  -r 	/iv — f/V = - — 	 az -r — Vrs, — TB ) at 	ax 	ay 	 := -D aX 	Po 

(2.41) 	aN 	a 
+ 7:x [1';  + 	fM  = 	fh 	aP ay   

	

130  z -D aY 	po 	- 

(2.42)  at 	ax 	ay 

where TB , and TB ,  are the x and y components of the bottom stress TB. In eq. 2.40 and 2.41, 
the following notation was used: 

riz 

—a 	t-51 -  dz a X _D  

a  fh 
uvdz 

aY  i -D 

Next, the hydrostatic approximation will be made ignoring the nonlinear acceleration 
terms. To justify this, two assumptions are made: (a) the amplitude of the surge is small 
compared with the water depth and (b) and horizontal scale of the surge is large compared 
with the water depth. Following Charnock and Crease (1957), the following scale analysis 
can be performed to ascertain the relative importance of the various terms. Let L and H 
represent the characteristic horizontal scale and depth, respectively. The vertical velocity 
varies from zero at the bottom to about Z/T at the surface where Z is a characteristic 
amplitude of the surge and T is a characteristic period. The horizontal velocity is of the 
order of L/H • Z/T. 

From eq. 2.31 and 2.33, the pressure field is eliminated to obtain the following 
equation: 

a2 
(2.44) 

Otaz 	âxaz 

„ 

	

" +  a 2   u 2 + ayaa2  z  UV + a—a: 	av 
2 11w — f 

..  

Z 	z 	z 
ii 	Ti 	Ti 

a2,„ 	8 2 	 a 2 	 a2 	2  
W 	VW + 	 

a taZ 	8x 2 	aX ay 	axaz 

	

(HY Z f/4 2  Z (H\ 2 	Z (14 2  
H -17) 	HL) 	H U.) 

1 sff 
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In eq. 2.44, the order of magnitude of each term relative to the first term is indicated under 
the term. If (H/L) 2  is small, all the terms on the right side of eq. 2.44 can be neglected. 
This means that the amplitude of the surge is, at most, equal to the water depth. Ignoring 
these terms amounts to the hydrostatic approximation. If Z/H .  is small, one can ignore the 
three nonlinear terms on the left side of eq. 2.44. 

The pressure terms can be evaluated as follows: 

, 	
ax 

 

O P 	ah , aPa (2.45) — gpo — -r — 
ax 	ax 

On vertical integration 

„ 

	

OP , 	„ ah 	013. 
(2.46) 	.f

-D  h 
	a 

aX
z g po ly -- -r - 
 0X 	ax 

Note that, here, h relative to D is ignored, which is consistent with the above approxi-
mations. Under the above simplifications, eq. 2.40 and 2.42 finally reduce to the so-called 
linear storm surge prediction equations: 

am 	ah D aPo 1 (2.47) —
at 

— fN = —gD — — --+— (T s  — TB ) 
OX 	po OX 	po  

	

, ON 	ah  D 00 	1 (2.48) —
a t 

, 	, = 	— — — 	+ — (Ts  — TB,) a), 	Po a.), 	Po 

(2.49 ,  ) 

	

at 	ax 	ay 
For convenience, hereafter, the subscript on the density field will be omitted. 

In these linear storm surge prediction equations, the dependent variables are the 
transport components M and N and the water level h. The forcing functions are the 
atmospheric pressure gradients given by aP„/ax and aPjay and the wind stress com-
ponents Ts ,  and Ts,. The retarding force is the bottom stress. At this stage, there are more 
unknowns than the available equations. To get a closed system of equations, the bottom 
stress must be expressed in terms of the known parameters, such as the volume transports. 

BOTTOM STRESS 

Here, parameterization of the bottom stress, based on Simons (1973), will be dis-
cussed; in Chapter 6, the bottom stress problem in conjunction with the surface stress 
problem will be discussed. Let VB  denote the velocity vector near the bottom. Then, the 
bottom stress TB can be expressed as 

(2.50) 	TB -= pk IVn V 

where k is a nondimensional coefficient referred to as skin friction; the value of k is about 
2.5 x 10 -3 . If one assumes a uniform velocity distribution in the vertical, and noting that 
the horizontal transport vector M is given by 

h 

(2.51) M (M,N) = J 	VB  dz =(u, v) dz 
-D 	 -D 
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one obtains 

TB 	 kiMI  
(2.52) — = BM where B 

(D + h)2  

In most storm surge studies, either for obtaining analytical solutions or for economiz-
ing on computer time in numerical models, the bottotTi stress relation 2.50 is linearized by 
assuming typical values either for the average velocities or the transport components. For 
a model of Lake Ontario, Simons (1973) assumed average velocities of the order of 
10 cm • s' in the shallow waters and about 1 cm • s' in the deep waters of the lake. Thus, 
B varies from 0.0025/D to 0.025/D in C.G.S. units. Rao and Murty (1970) used a value 
of 0.01/D for B in their model for Lake Ontario. 

Instead of the average velocity field, one can examine the mass transport, which 
varies more smoothly. For Lake Ontario, Simons (1973) gave a value of 2 x 10 4  to 4 x 
104 cm2. s- I  in shallow as well as deep water, and this leads to B = 50/D 2  to 100/D 2  in 
C.G.S. units. Another approach to prescribing the bottom stress is to specify the vertical 
turbulent diffusion of momentum by a constant eddy viscosity v. Platzman (1963) deduced 
a bottom friction coefficient as a function of the Ekman number, D Vf/2y, in such a way 
that B —> 0 for great depths and B = 2.5vID 2  for shallow water. For Lake Erie, Platzman 
took y = 40 cm 2 s, which gives g = 100/D 2  in C.G.S. units. 

Thus, the alternatives for the bottom friction can be summarized: 

linear form B = —a 
D a — 0.01 cm • s' 

(2.53) quasilinear form B = —b b — 100 cm 2 • 

kIVj  

D 2  

nonlinear form B = 	k 0.0025 D 2 

In most early storm surge studies, the linear form has been used. Fischer (1959) used the 
quasilinear form, whereas Hansen (1956) and Ueno (1964) used the nonlinear forms. 

Simons (1973) suggested that the procedure of using the Ekman solution implies a 
reduction of the pressure gradient force by a factor 5/6 and an increase in the wind stress 
by a factor of 1.25 for the shallow part of the water body. In addition, a slight rotation 
of the pressure gradient force and bottom stress are involved. Jelesnianski (1970) devel-
oped an integral operator for the bottom stress which incorporates the time history of the 
forcing in the form of a convolution integral, which implies a time lag between wind stress 
or slope of the free surface and bottom stress. 

Welander (1957) showed that the local velocity profile and hence the bottom stress 
can be expressed as certain integrals over the time history of the local surface slope and 
local forcing functions, and from these one can derive a single integrodifferential equation 
for the free surface elevation. Since this equation is difficult to solve, one has to resort to 
other approaches. 

Welander (1961) distinguished among the following three types of surges: (1) the 
transient surge, (2) the quasisteady surge with vertical circulation, and (3) the quasisteady 
surge with horizontal circulation. Note that the bottom stress is defined as the force acting 
from the water on the bottom. For type 1 surge, there is a partially developed frictional 
layer at the bottom, and the bottom stress is in the sanie direction as the flow and its 
magnitude is inversely proportional to the period of the surge (Lamb 1953). 

Type 2 surge corresponds to a one-dimensional surge in a channel. Since the water 
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circulates in a vertical cell and the bottom stress is in a direction opposite to the surface 
flow (i.e. opposite to the wind stress, generally speaking), it can be seen from Ekman's 
(1905, 1923) theory that the magnitude of the bottom stress is half that of the wind stress 
for a constant value of the friction coefficient. Type 3 surge occurs in steady state, and 
the flow direction is essentially the same at all depths at a given horizontal position, and 
the water circulates horizontally. For small depths, the bottom stress is in the direction of 
the flow. For depths comparable with or greater than the Ekman depth, DE, defined by 

(2.54) DE 	.\1_2y 

where y is the vertical eddy viscosity and f is the Coriolis parameter, the influence of the 
earth's rotation is important and there is a component of the stress perpendicular to the 
direction of the transport and directed to its left in the Northern Hemisphere. Note that the 
Ekman depth, DE, is of the order of 100 m (in the oceans) at higher latitudes and increases 
towards the equator because of the decrease of the Coriolis parameter, f. 

The bottom stress for these three types of surges can be expressed sufficiently 
accurately by a linear bottom stress law of the type 

(2.55) 	1  (TB  , TB) = R(M, N) 
p r 

where R is a prescribed friction coefficient, which generally depends on the water depth. 
Harris (1967) critically examined the bottom stress problem as a part of a general evalu-
ation of the importance of several terms in the storm surge equations (e.g. wave setup). 
His analysis, as well as other considerations of bottom stress, will be discussed later. 
Kabbaj and LeProvost (1980) used a perturbation approach to include quadratic bottom 
friction. 

FORCING TERMS AND LATERAL BOUNDARY CONDITIONS 

In eq. 2.47 and 2.48, the forcing terms are the gradients of the atmospheric pressure, 
aPa/ax and aPa/ay, and the components of the wind stress, Ts, and Ts,. In Chapter 6, the 
meteorological problems will be considered in detail; here, the forcing terms will be 
discussed briefly. In principle, the atmospheric pressure gradients can be prescribed either 
from observations or from the prognosis of numerical weather prediction models. How-
ever, the wind stress is not routinely measured and must be deduced from wind obser-
vations or predicted winds. The wind stress is usually expressed as 

	

(2.56) 	Ts  = p„kiVa lVa  

where p„ is the density of air (1.2 x 10 -3  gm • cm') and Va  is the wind velocity at the 
anemometer level. The parameter k is the drag coefficient (nondimensional) and is usually 
given a value of about 3 x 10 -3  (Platzman 1958a; Ueno 1964). However, Simons (1973) 
suggested thàt for the Great Lakes, a more appropriate value for k is about 1.2 x 10. 

Next follows a brief consideration of the lateral boundary conditions to be specified 
so that the system of equations described by eq. 2.47 and 2.49 is complete (details of the 
lateral boundary conditions will be discussed later). The main lateral boundary condition 
is that the transport normal to the coastline is zero, i.e. 

	

(2.57) 	M cos cl) + N sin 4) = 0 
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gD ah 	D aP„ aN  (2.59) 	_ — ( T , 

po a 	p 	
T„

o 

where d) is the angle between the x-axis and the normal to the coastline. If it is assumed 
that the depth of the water is zero at the shoreline, then the tangential component of the 
volume transport vector must also be zero. The boundary condition in the open part of the 
water body is more difficult to prescribe. Since the contribution to the storm surges comes 
mainly from the shallow water region, a generally followed procedure is to locate the outer 
boundary in the deep water and assume that the water level perturbation there is zero. 
However, this may not be satisfactory in certain situations, as will be shown later. 

STORM SURGE EQUATIONS IN SPHERICAL POLAR COORDINATES 

When storm surge calculations are made for large expanses on the globe, it is more 
appropriate to use spherical polar coordinates than the traditional Cartesian coordinates. 
Proudman (1954c) wrote the following linear equations for tides and storm surges in a 
spherical polar coordinate system. 

(2.58) —
am  = fN 	gD a h 	D 	a Pa 1 

( T 	TII at 	a cos cl) a x 	po a cos (I) ax + po 

(2.60) —
ah 

a COS 
+ 	 

[
OX 
am 	a + —„ (N cos .1))]= 0 at 	(121  	lor(1)  

Here, a is the radius of the earth, x is the east longitude, and (I) is the latitude. 

MAP SCALE FACTOR 

In numerical models of storm surges, ordinarily a Cartesian grid is used on a Mercator 
projection. Let the origin of a coordinate system be at latitude (1) 0  with the x-axis pointing 
northward and the y-axis pointing westward. Let cl) and x represent the north latitude and 
the west longitude, respectively. Let M and N be the transport components towards north 
and west, and let a be the radius of the earth, SI the angular velocity of earth's rotation, 
D the water depth, p the water density, P„ the atmospheric pressure, h the deviation of the 
water level from its equilibrium position, Ts and T54.  the wind stress components, and T(ix  

and `1.5«1,  the bottom stress components. We have the following relationships: 

Tr 	4) x = a cos cl) c, In tan (71  + 

y =  a cos Itto  xIS 

where S is the map scale at latitude (lb. The traditional storm surge equations can be written 
as 

—am = 2 SI sin (1) • N g (D  h)  ah (D + h)  ap„ 
at a 	a(1). 	pa 	a (1, 	—p erSe, 	TB, ) 

(aN 	 g D + h)  ah (D + h)  ap„ 1 
— 2 n sin cj) • M 

a cos (I) ax 	pa cos cl) ax 	(Tsx 	TB) 

ah 	1 	[a (m cos (p) + —01] 
at 	a cos cl) acl) 	 a X 
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One can account for S in the evaluation of Ax and Ay. When S = 1, these equations assume 
the following forms in the x and y coordinates. 

—am = 2 a  sin (1) • N 
g(D + h) 	, ah cos goo  — at 	 cos 4) 	ax 

(D + h) cos (Po  aP„ 
	 + (Ts  — TB ) 

	

p 	cos cl) ax 	p 	• 

cos '14  ah —aN = — 2 SI sin 4)• M — g(D + h) at 	 cos 4, ay 
(D + h) cos 4)0  aP„ 

	

(T, 	TB ) 

	

p 	cos 41 ay + 	—
p • • 

ah 	cos 41) 0  [am 	M tan .1) 
—at =  	+ 	+ 	 cos 4) L ax 	ay 	a 

The factor cos ci) o/cos c!) associated with each spatial gradient term corrects for the 
latitudinal scale change. Without this correction, gradients will be underestimated at points 
north of ct)0  and overestimated at locations south of 01)0 . The term M tan cl)la is a correction 
term to the horizontal divergence due to the convergence of the meridians on the globe. 

If the Cartesian grid is inclined to the meridians at an angle 11), the above equations 
remain unchanged, except that M tan cl)/a must be replaced by M„ tan 11)1a, where M„ is 
the northward component of the velocity (i.e. M cos cl) — N sin (b) 

Shuman and Stackpole (1968) discussed appropriate finite-difference forms including 
a map scale factor and showed that the computational stability of the calculations is very 
much dependent on the manner in which the map scale factor is introduced and the form 
in which the dynamic terms of the equations are written. 

Taylor (1975) discussed various map projections that are suitable for oceanographic 
applications and also listed a computer program to print any coastline on the globe on 
several different projections on any desired scale. 

2.2 Two-Dimensional Models 

In this section, numerical finite-difference solutions for two-dimensional models for 
storm surges and tides will be discussed. Since two-dimensional models are the ones most 
commonly used, these models will be studied before proceeding to three-dimensional and 
one-dimensional models. Since the storm surge problem involves propagation of long 
gravity waves, this section will begin with a general discussion of propagation problems, 
followed by consideration of numerical models for solving the partial differential equa-
tions of the type encountered in storm surge models. In the following discussion, argu-
ments developed by Crandall (1956) will be made use of. 

Propagation problems in continuous systems arise not only in fluid dynamics but also 
in other fields of science. For example, Crandall (1956) discussed the following problems, 
all of which fall into the category of propagation problems: (a) cooling of a rod, (b) 
boundary-layer wake, (c) unsteady transverse motion of a beam, (d) transverse motion of 
a taut string, and (e) expansion of a gas behind a piston. The five problems were posed 
such that there are two independent variables, and the solution domains have the open 
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Solution domain 

• (a) 	 (b) 
Initial conditions 

Fin.  2.1. (a) Propagation problem is solved in an open domain; (b) equilibrium 
problem is solved in a closed domain. (Crandall 1956) 

shape shown in Fig. 2.1a in contrast with the closed domain shown in Fig. 2.1b, this latter 
domain being characteristic of equilibrium problems. 

Initial conditions must be specified throughout the domain, and boundary conditions 
must be specified at the open boundary at all times. (Generally speaking, boundary 
conditions must also be specified at the closed boundary at all times.) It will be shown 
below that the governing equations for propagation problems are either hyperbolic or 
parabolic whereas for the equilibrium problems, they are elliptic. Crandall (1956, p. 352) 
formulated the general propagation problem in the following manner: 

The problem is to march out the solution of a governing system of partial differential 
equations of hyperbolic or parabolic type from prescribed conditions on an open boundary. 

The following is a pair of simultaneous first-order differential equations: 

au 	au 	a v (2.61) A I  — + B I — + C I  + D I  — = 0 ax 	ay 	ax 	ay 

au 	au 	v (2.62) A 2  — + 	C2 
 a 
a + — + D 2 

a —y 0 ax 	- ay 	X 	ay 
Here, u and y are the dependent variables, x and y are the independent variables, and the 
coefficients A 1 , A7, B 1 , B2, C I ,  C2 , D I , and D2 are functions of u and I, but not of x and 
y. Usually, the system of eq. 2.61 and 2.62 is nonlinear, but since the coefficients are not 
functions of x and y, one can make it linear by treating u and y as the independent variables 
and x and y as the dependent variables. Hence, the system of eq. 2.61 and 2.62 is referred 
to as a "reducible system." 

Assume that the system of eq. 2.61 and 2.62 is being solved in the domain shown 
in Fig. 2.1a and that the solution up to curve CPC is known. At P, the continuously 
differentiable values of u and y along CPC are known, as well as all of their derivatives 
in the directions pointing towards the interior of the curve. The following question is 
asked: is the behavior of the solution above P completely determined by the solution below 
CPC, or is additional information at the boundaries of C required? To answer this, 
consider the following argument. 

46 



Let S be a direction in which the distance is measured; then one can write 

2.63 , 	au 	au ax ,-r  au ay 
( ) — — — — — a s ax as ay as 

(2.64) —
ay ay ax av ay 
as = ax ay as 

The above question can be reformulated: for a solution of eq. 2.61 and 2.62, do the 
values of u and y along CPC uniquely determine the derivatives? 
Here, S measures the distance along CPC. Define 

, 	au a 	att 	a aS 

dv —
av 

 dS aS 

dx ax  dS as 

dy 	dS aS 

The set of equations 2.61-2.64 written at P can be expressed in the following compact 
form: 

	

[A l  B 1  CI  D i l [aulax 	[0 1 

A2 B2 C2 D2 	aulay 	0 
(2.66) 

dx dy 0 0 	av/ax 	du 

0 0 dx dy 	avlay 	dv 

Since u and y are known at P, the coefficients A I , A2,  D 1 , and D2 are also known. If the 
curve CPC is specified (i.e. its direction), then dx and dy are known. When u and y are 
known along CPC, then du and dv are also known. The system (eq. 2.66) constitutes a 
set of four simultaneous linear algebraic equations for the four unknowns, au/ax, au/ay, 
av/ax, and av/ay. Two possibilities exist. If the determinant of matrix 2.66 = 0, there 
is an indefinite set of solutions; there may be discontinuities in the solutions on either side 
of CPC. If the determinant 0, there is a unique solution. 

To find out under what conditions the determinant of this matrix can be zero, it is 
expanded to give 

(2.67) (A, C2 — A 2 C 1 ) (dy) 2  — (A 1 D2  — A 2 D 1  + B 1 C2 — B 2 C 1 )dxdy 

+ (B 1 D2  — B 2 D 1 ) (dx) 2  = 0 

One can consider this as a quadratic equation for the slope dyldx. If the direction of CPC 
at P is such that it has a slope satisfying eq. 2.67, then the derivatives of u and y are not 
uniquely determined by the values of u and y along CPC. Such a direction is called a 
characteristic direction. 

Let the discriminant (A 1 D2  — A 2 D 1  + B C2 — B2C1) 2  — 4 (A, C2 — A2C1) (B D2 — 
B2D I ) be denoted by D; then the following is true. If D is positive, eq. 2.67 gives two real 
slopes; the system of eq. 2.61 and 2.62 is hyperbolic (there are two real characteristic 

(2.65) 
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directions at P). If D = 0, eq. 2.67 gives one real slope; the system of eq. 2.61 and 2.62 
is parabolic (there is only a single characteristic direction at P). If D is negative, eq. 2.67 
gives a pair of complex slopes; the system of eq. 2.61 and 2.62 is elliptic (there are no 
real characteristic directions at P). 

Similar analysis can be made for the following single second-order quasilinear equa- 
tion: 

a 2,1, 	a2,4 	a24, 

(2.68) a — + b 	+ c —33,2 f 0.1.2 	a.x ay 
in which a, b, c, and f are functions of x, y, iji, alVax, and Way. The characteristic 
directions are determined from the following quadratic equation: 

(2.69) 	a(dy) 2  — bda-dy + c(A) 2  = 0 

Thus, if b 2  — 4ac is positive, eq. 2.68 is hyperbolic; if b2  — 4ac = 0, eq. 2.68 is 
parabolic; if G2  — 4ac is negative, eq. 2.68 is elliptic. 

A technique referred to as the method of characteristics, which will be dealt with in 
more detail in later sections, will be briefly outlined. Assume that the system given by eq. 
2.61 and 2.62 is hyperbolic in the domain under consideration. Thus, at every point there 
are two roots, (dyldx),„ and (dy/dx)p, to the quadratic eq. 2.67. A curve having a slope 
(dyldx)„ at each of its points is an a-characteristic and a curve with a slope (dy/dx) ii  is 
a p-characteristic. There are thus two families of characteristics filling the domain as 
shown in Fig. 2.2. 

..\, .4 family 

---"<"---e 
\e'(\  

\ 
/ 
/3 family 

FIG. 2.2. a and p characteristics in a given domain. 
The slopes of the characteristics are (dy/dx)„ and 
(dy/dx) p , respectively. (Crandall 1956) 

It has been shown that the characteristics are loci of possible discontinuities in the 
derivatives of a solution. In eq. 2.66, if a characteristic direction is considered such that 
the determinant is zero, then, when the right-hand column is substituted for any column 
on the left-hand side, the resulting determinant must also be zero. Thus, replacing the 
fourth column on the left with the column on the right and equating the determinant to zero 
results in the following: 

(2.70) 	(A 1 B, — A7B 1 )clu + [(A I C, — A,C 1 ) dylclx — (B 1  C2 - B2C1)] dv = 0 
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From eq. 2.67, one can obtain (dyldx) as a root, and when this is substituted into eq. 2.70, 
the latter becomes an ordinary differential equation for u and y along the a-characteristic. 
A similar equation can be obtained along the I3-characteristic. Thus, for solving hyperbolic 
systems, one can first locate the characteristic curves and then integrate the ordinary 
differential eq. 2.70 along these characteristics. This technique is referred to as the method 
of characteristics. 

Before closing this section, reference is made to a paper by Richardson (1925) in 
which he respectively refers to the propagation and equilibrium problems as "marching 
problems" and "jury problems." Crandall (1956, p. 351) stated: 

In propagation problems, the solution marches out from initial conditions guided in transit 
by side boundary conditions. In equilibrium problems, the entire solution is judged by a 
jury demanding simultaneous satisfaction of all the boundary conditions and all the 
internal requirements. 

2.3 Finite-Difference Techniques for Marching Problems, 
Computational Stability 

Beginning in the late 1940's, several finite-difference techniques were developed by 
people working in the field of meteorology with the aim of predicting the weather through 
numerical solutions of the governing partial differential equations. Thus, in this section, 
the discussion will have some meteorological connotations and will be based on the 
discussion by Phillips (1960). 

In the partial differential equations governing storm surges (see section 2.1), there are 
three independent variables, namely, the two horizontal coordinates, x and y, and time t. 
In the finite-difference technique, these are replaced with the following relationships: 

X  -=- x0  + j àx 

(2.71) 	y =- yo  + kày 

t = to  + n At 

where j, k, and n are integers,  ix and ày are grid spaces in the x and y directions, and 
At is the time increment (time step). In the original partial differential equations, the partial 
derivatives are replaced by partial differences. Let S = S(x, y, t) represent any dependent 
variable (in the storm surge equations this will be any of the two components, M or N, or 
the water level deviation, h). 

For example, one can use a centered difference for the time derivative and write 

aS(x,y,t) 	S(x,y,t + àt) — S(x,y,t — At) 	(S,, k,„, — 
(2.72)   — 	  a t 	 2à t 	 2àt 

Thus, one can replace all the partial derivatives (space and time) with partial differences 
and determine the dependent variables at time step (n + 1), knowing the values of the 
variables at previous time steps. 

Let Z„ be a multidimensional vector whose components are the grid point values of 
all the unknowns at time step n. Then, one can write, symbolically, 

(2.73) 	Z„ +1  = L(Z„,  Z,_ 1 )  
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where L is an operator (could be nonlinear). 
This is the finite-difference analog of a "marching problem" in which the dependent 
variable at a given time step can be determined knowing its values at previous time steps 
(Richardson 1922). Instead of the centered difference scheme used in eq. 2.72, one can 
use an uncentered scheme (forward-difference) such as 

as(x,y,r) 	(sm .„+, — 
(2 .74) a r 	 àr 

In the discussions that follow, it will be seen that many different finite-difference schemes 
are possible and that the accuracy of the computation (numerical integration) depends on 
the grid increments,  Lx and ày, the time step, àt, and the finite-difference scheme used. 

Lax and Richtmeyer (1956) and Richtmeyer (1957) discussed the convergence of a 
finite-difference solution of a linear initial value problem to the true solution of the 
differential equation and stated the following theorem (usually referred to as the Lax 
theorem): 

Given a properly posed initial value problem (linear) and a finite difference approximation 
to it that satisfies the consistency condition, stability of the difference equations is the 
necessary and sufficient condition for convergence. 

For details of "properly posed problem" and "consistency condition," see Lax and Richt-
meyer (1956) and Richtmeyer (1957). 

By convergence, it is meant that the finite-difference solution for t = T converges to 
the true solution for t = T as the space and time increments tend to zero. If the finite-
difference scheme is unstable, then solutions with unlimited amplitude may be generated. 
The contributions of Lax and Richtmeyer are very useful because the more difficult 
problem of proving convergence is reduced to the simpler problem of stability and 
consistency. The weakness of their theorem is that it applies only to linear equations. It 
is worthwhile to note that all stability criteria developed to date for the storm surge models 
are for the linear problem only. 

Next, the phenomenon of computational instability in marching problems will be 
explained. For this purpose, although not directly relevant to the storm surge problem, we 
will make use of the so-called one-dimensional advection equation (Phillips 1960): 

a u (2.75)  

Here, x and t are the independent variables, u = u(x, t), and c is a constant. The true 
solution of eq. 2.75 is (Phillips 1960) 

(2.76) 	u(x, t) = u(x — ct, 0) 

A centered finite-difference scheme for eq. 2.75 is 

+ 	 - 	 - 

à t 
C 

and j and n, respectively, are the indices for x and t. 
For the initial time step, n = 0 to 1, one has to use an uncentered step such as 

1-t (2.79) 	uf,, = uf , 0  — — (u ' • +10  — 	_ 1 , 0) 2 	• 

(2.77) 

where 

(2.78) 
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We assume that the initial state is periodfc in x, with a wavelength L. Then, 

2-ri. ix) (2.80) 	u(x, 0) = exp L  

Then, eq. 2.76 becomes 

21-r i u(x, t) =- exp 	(x — ct) 

The solution of the difference equations (2.77-2.79) is 
u  = em, ro  +  cos a) 

 e 	
(1 — cos 

2 cos a ) 
( - 1)n en] 

[ 2 cos a  

27rAx 
m = 

and a is defined such that 

At . (27rAx)  (2.84) 	sin a = pi sin m = c 	sin 	L  
Lx 

From eq. 2.82 one can see that the finite-difference solution consists of two types of 
waves. The amplitude of the first wave is given by 

1 + cos a  
2 cos a 

and it moves with a phase speed c' given by 

C 	sin m) 
(2.85) c' = — 

1.tm 	tim 

where a is real. The difference between a/(i.i.m) and unity is a measure of the truncation 
error of eq. 2.77. For details on the truncation error, see Ôkland (1958) and Gates (1959). 
The second type of wave has an amplitude given by 

1 — cos a  
2 cos a 

and it moves in the opposite (i.e. wrong) direction, and it changes sign at each time step. 
Platzman (1958b) referred to this second type of wave as a "computational wave" and he 
suggested that this wave exists due to the fact that eq. 2.77 is a second-order equation 
whereas eq. 2.85 is first order. 

From eq. 2.84 one can write 

(2.86) a = —2 + i cos' 	sin m) 

provided 

ti  sin m>  I 

Then it can be seen that eq. 2.82 contains a factor that increases with n (i.e. in time) 
without limit and thus the stability condition required for convergence is violated. Indeed, 

(2.81) 

(2.82) 

where 

(2.83) 
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it can be seen from eq 2.77-2.79 that stability is possible provided 

(2.87) 	WI = c t < 1 
àx 

where the two vertical bars denote absolute value of the quantity contained in between. 
For the two-dimensional case (horizontal coordinates x and y), the stability criterion is 

	

(2.88) 	(ICI + IVI) —àt < 1 àx 
where C and V are the maximum velocity components in the x  and)' directions. 

It can be seen from eq. 2.77 that, except for the initial time step given by eq. 2.78, 
values of uj,„ where j + n is odd do not require values of itj,„ at those points where 
j + n is even. Thus, eq. 2.77 involves two almost independent computations and hence 
is not an efficient scheme. Indeed, Platzman (1958b) showed tht the two independent sets 
of uj,„ each satisfy the following difference equation: 

	

(2.89) 	uj , „ 2 + 2 „ 	„ _ 7 = 2  ( + 7, „ — 2 uj, „ + u; _,,„) 

which is somewhat analogous to the wave equation 
32i, 	a2u (2.90) —= U 2  — 3 t2 	a X 2  

Thus, the first-order eq. 2.75 is artificially raised to second order during the central 
finite-differencing, and this can cause computational instability in nonlinear cases (i.e. 
when U in eq. 2.90 is not a constant but makes eq. 2.90 nonlinear) even when the (linear) 
stability criterion (eq. 2.87) is satisfied (Phillips 1959). Miyakoda (1962) showed that 
similar computational instability could occur even for linear equations with variable 
coefficients. Phillips (1959) showed that wavelengths shorter than four grid intervals can 
grow exponentially with n. Thus, energy can accumulate in short wavelengths; to suppress 
this, smoothing must be used. 

Obukhov (1957) showed that smoothing is equivalent to adding a diffusion term 
a2 u/ax2  to the right side of eq. 2.75. An alternative to the centered difference scheme of 
eq. 2.77 is the following uncentered scheme: 

uj,„ 	„ — p..(uj,„ — uj  _ 1 , „) for p, > 0 

(2.91) 
.4. 1  = uj,„ — p (it;  1 ,„ — iij,„) for II < 0 

The solution of this first-order difference scheme with the same initial condition (eq. 
2.80) is 

(2.92) 	uj,„ = e"1  [1 — 2p,(1 — 	 (1 — cos men e - " for p., > 0 

where 

[1 — p.(1 — cos  m)1} 

If one lets in  take all possible values, then the stability criterion is simply 0 5 p, 5_ 1. The 
phase speed, c", of the wave is 

c13 	c tan - ' [ 1 — 	11(1 — cos  in)]  cil _ 
hill 	 pbni 

(2.93) 	13 =  tan -1  { 
p, sin in p, sin in 

sin in sin in 

(2.94) 
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au 	ah 
Ti = — g -v + f`' + 

O ( au) — u-
az' az' 

(2.95) 

ay 	ah 
—a—i = — g ,—  fu+  

_a_ (v  L_11 
az' 	az' l 

(2.96) 

For 1/2 < p, < 1, we have c" > c, whereas from eq. 2.85, it can be seen that c" < c for 
all possible 11 values that are permitted. Hence, by combining eq. 2.77 and 2.91, one can 
reduce the truncation errors. Note that this treatment of the computational error did not 
take into account the influence of the lateral boundaries. 

2.4 Formulation of the Storm Surge Equations Using the Concept of 
Ekman Number and Proudman Number 

Following Platzman (1963), the so-called Ekman (1905, 1923) equations in a rotating 
frame of reference are 

3h_  am _ ON 
(Ti — — ax ay 

where 
h 

(2.98) 	(M, N) = f (u, v) dz' 

Here, x and y are the horizontal Cartesian coordinates with origin at the undisturbed level 
of the free surface, z' is the vertical coordinate (positive upward), z' = —D (x, y) is the 
bottom depth, z' = h(x, y, t) is the deviation of the free surface from its equilibrium 
position, u and y are the horizontal velocity components in the x and y directions, M and 
N are the horizontal volume transports through a section of unit width between the bottom 
and the free surface, g is gravity,  f is the Coriolis parameter, and y is the kinematic eddy 
viscosity. 

For convenience, Platzman (1963) defined the following complex notation: 

U -= (u + iv)D 

M = M + iN 

ah 	. ah 
ax 	ay 

P = —gDVh 

where V h is the slope vector and P is the horizontal pressure gradient force on a unit 
column. Note that, although U and M have the same dimensions, M is independent of z', 
whereas U depends on z'. One can define a dimensionless vertical coordinate z as 

(2.100) z =. *I:- 
D 

Then 
o 

(2.101) M= r/-= f Udz 
-1 

(2.97) 

-D 

(2.99) 
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where the bar means an integral over the complete range of z. In eq. 2.101, a slight 
approximation is involved in that the upper limit in the integral should be, strictly speak-
ing, h' ID rather than zero. 

Assuming v to be independent of z and multiplying eq. 2.95 and 2.96 by D and eq. 
2.97 by — gD V gives 

au 	a2u 
(2.102) —

at 
P — ifU + n„ —2  az  

aP 
(2.103) —

a t 
gD div M 

where div = divergence and 

(2.104) 
D 2  

Note that n„ has the dimensions of frequency and may be considered as a typical decay rate 
associated with viscosity in boundary layer flow. Also note that the Coriolis parameter, 
f, is a typical frequency associated with rotation and is referred to as the gyroscopic 
frequency-. Equations 2.102 and 2.103 not only contain the gyroscopic frequency, f, but 
also contain a gravitational frequency defined by 

(2.105) II,  = kVgD 

where k is a wave number corresponding to a horizontal wavelength. 
Platzman (1963) defined an Ekman number E and a Proudman number a as follows: 

1/2 	f)1/2 

(2.106) E 	f///,) 	= D (
2
-7-15 2 	' 

2 	
V

2 

(2.107) a 	(—) = 
k 2 gD s  

The Ekman number may be considered as a dimensionless representation of the depth of 
the water body, whereas the square root of the Proudman number may be regarded as a 
dimensionless representation of the basin length. 

Boundary layer thicknesses Df and D, associated with the effects of rotation and 
gravity are defined as follows: 

131 

(2.108) 

Then one can write 

(2.109) E = D  

D ,) 4  
(2.110) a = eb! 

D1  
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Another interpretation for the Ekman and Proudman numbers can be given as follows: the 
ratio of the Coriolis forces to viscous forces is 2e2  (i.e. the ratio of the second term to the 
third term on the right side of eq. 2.102) and the ratio of the gravitational aspect of the 
inertial forces to viscous forces (i.e. ratio of au/at to the third term on the right of eq. 
2.102). Let 

(2.111) R .=.• R + iS 

be the ratio of the tangential wind stress at the surface to the water density p. Then, the 
condition of the continuity of stress at the air—water interface can be written as 

au  (2.112) —
az 

= z1  R(x, y, t) at z = 0 

The condition of no slip at the bottom can be written as 

(2.113) U = 0 at z = — 1 

However, the no-slip boundary condition can be replaced by a more general condition: 

au (2.114) U= —s —az 

which simply states that velocity and stress are parallel at the bottom. This means that near 
the bottom there is a transition from the Ekman boundary layer to the logarithmic boundary 
layer (i.e. the eddy viscosity must approach zero): 

s = 0 (for no slip at the bottom) 

s --> 00 (stress approaches zero at the bottom) 

Although, in principle, use of the general condition (eq. 2.114) is no more difficult 
than the no-slip condition (eq. 2.113), it requires the specification of an additional 
parameter s. For this reason, Platzman used only the no-slip condition and pointed out that 
for calculation of the free surface fluctuations, since only the vertically integrated flow is 
of interest, details of the vertical variation of the eddy viscosity are not important. 

Next, after Platzman, the following is defined: 

(2.116) o-2  =-- 2i e2 + -1 -a 
n, at 

Then, eq. 2.102 becomes 
0.2u 	 P 

(2.117) --a z2 — cr2U = —  

The solution of eq. 2.117 is 

(2.118) U = Up + UR 

where 

(2.119) Up = 1  Qp(z,  Œ)P  
n, 

and 

(2.120) UR = r+ Qa(z, cr)R 

(2.115) 
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(2.122) QR(z, cr) = 	o-  cosh a.  
sinh [o- (z + I)] 

ci tanh ci 
(2.130) G(œ) 

(1 — 	tanh cr) 
cr 

Here, 

cosh (o-  z) -1 
(2.121) Qp(z, cr.) =. --,I  [I 

a- 	cosh cr ] 

Here, one can regard Up as a slope current and UR as a wind current. 
The volume transport M can be expressed as 

(2.123) M Mp + MR = 

Noting that a bar denotes vertical integration from z = —1 to z = 0, the following is 
written: 

(2.124) 

where 

OP ( 0-) 	 -1; (1 - 	tanh o-) 
cr- 	0-  

(2.125) 

OR (0-) = -L.; (1 - sech  ci) 
0' 

If the steady-state value of o-2  is denoted by ail, then 

(2.126) cr02 = 2i €2  = 

When o-  is replaced by cro , Op and OR in eq. 2.125 assume constant values. Then, from 
eq. 2.125, the expressions for steady-state transport and wind transport, originally given 
by Ekman (1905), are derived. 

To deal with the transient state, the following is written: 

(2.127) o-2  = cro2  + X 

where 

a 	D 2  a 
(2.128)  

Then, from eq. 2.124 and 2.125 

(2.129) n,,M = Op(u)P + -0R(cr)R 

Define 

1 
MP = 	(OP 

1 
MR = 	-OR (cr)R tz„ 
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(2.136) 
sech u 

and 

tanh u — sech u) cr 

(1 — 	tanh o-) cr 

Then, from eq. 2.124, 2.125, and 2.129 

(2.132) n, [u2  + G (cr)] M = P + [I + H (o-)]1? 

Note that the operators,  G (o-) and 11(u),  are more convenient than Op(cr) and 
The G and H functions can be expanded in terms of X as follows: 

G(u) = E G„(cro) 
„.=0 

(2.133) 

fi (u) = E H„(cro) k" 
=o 

where 

(2.131)  11(u)  = 

QR(Œ). 

G„(cro) :=• 1  R 	d  ) 1'  G (u)] 
n! 	du 	 = Cro 

H„(cro) = 1 [( d YH n! 	dcr2  

Note that G„(cro) and H,,(cro) are functions only of the Ekman number, E, through the 
relation 

(2.135) uo  = (1 + i)E 

It can be shown that the X expansions converge rapidly. 
To deal with an arbitrary Ekman number, define 

1 
—0. tanh u 

(2.134) (2.134) 

Then, 

G(u) = 
(1 — 

(2.137) 
— 1)  

H(u) = 
(1 — 

Then the first two coefficients in the X expansion of  G (u) and 11(u)  are 

u00  
Go (cro) = 	_ 

(2.138) 

	

1 + 	—(2 + cro2)to2  
G I  (uo) 

2 (1 — (;,) 2  
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(1 - 

( 1  — 	cr20 2(i) 	[ 	cr.à 	"rki 
H 1  (Œo) — 

2o-20 (1 — 0) 2  

H0(Œ0)= 
(t) 	'go) 

(2.139) 

Platzman (1963) assumed that the characteristic time scale of the wind stress field is not 
small in comparison with the characteristic decay time (which is of the order of Iç 1 ) due 
to eddies. Then, the norm of X in eq. 2.126 is of order one or less, and one can reasonably 
hope that eq. 2.137 can be approximated by ignoring all  ternis  with powers of X higher 
than one in the expansions for G(cr) and H(Œ).  This approximate equation is 

am 	 a\ R (2.140) 	-- BP — ifAM + 	+ 

where 

(1 + 
(2.141) A = 	

cro  
(1 + G I ) 

(2.142)  B= 	1  
(1 + G I ) 

1 + Ho  
(2.143) C = 	 

(1 + G I ) 

cro2 H 1  
(2.144)  J= 	 

(1 + G I ) 

The coefficients A, B, C, and J are dependent on the depth, D, through 

cro  = (1 + i)e 

and can be computed once and for all (there is no difficulty due to the complex nature of 
these coefficients). Note that the real part of A contains the rotation effects and the 
imaginary part of A includes friction. Equation 2.140 is a first-order (in time) differential 
equation in M. 

Take the real and imaginary parts of eq. 2.140 and let subscripts r and i denote real 
and imaginary quantities, respectively. Then 

	

am 	ah 	ah 

	

(2.145) —
a t 	

— gD (13 r — — B i —) + f (A rN + A iM) + (C,R Ci S) a, 	ay 

aN  
(2.146) —at = — gD ( 

ah 
 Br — + B, 

ah — f (A rM — A i N) + (CrS + C,R) ay 	ax 

and 

ah 	am aN 
(2.147) —— — — — at 	ax 	ay 
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In writing these equations, the water level, h, is reintroduced through the following 
definition: 

(2.148) P = — gDVh 

and the term involving J, being small, is omitted. 
Equations 2.145-2.147 form a set of prediction equations for the three variables M, 

N, and h. Note that these equations are linear with variable coefficients (the coefficients 
depend on the depth, D, which is space dependent). We assume that R and S (i.e. the x 
and y components of the wind stress divided by the water density p) are prescribed in space 
and time. Although by elimination one can obtain prediction equations individually for the 
transports and the water level, this is not necessarily convenient in the numerical integra-
tion. 

2.5 Numerical Integration Using Conjugate Richardson Lattices 

The finite-difference forms for eq. 2.145-2.147 make use of two interlocking lattices 
(Platzman 1958b), as shown in Fig. 2.3. The grid points are located at 

1 x = —2 jAs, j = 0, 1, 2, . . . 

1 
(2.149) y = —2 kAs, k = 0, 1, 2, . . . 

3 

2 

s*-1 

j 	0 I 2 3 4 5 6 

R 1  - LATTICE 

1 t 	n =  0, 1, 2, . . . 

efeme me« 
wevie 
rsièomg el ci ci  

0 I 2 3 4 5 

1; 1 - LATTICE 

-17-11--03A--GrA  <>TA.  IS1 	f‘i 

S 

1.1. .b. t 5.4 

n 	0 I 2 3 4 5 6 0 I 2 3 4 5 6 --e- n 

FIG. 2.3. Conjugate Richardson lattices. (Platzman 1963) 
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To explain the grid arrangement, in eq. 2.145 and 2.146 we omit certain terms tempo-
rarily: the A,. terms involving the Coriolis force, the C terms involving the inhomogeneous 
parameters, and the B, terms. Then the reduced forms of eq. 2.145-2.147 are 

am 	ah (2.150) —
a t 

— gD13,— + fA,M 
ax 

	

aN 	ah 

	

(2.151) —at 	
gDB, —

ay 

+ fA,N 

	

,„ ah 	dM aN (2.154 — = — — — — 

	

at 	ax 	ay 
If the dependent variables M, N,  and h are arranged as shown on the left side of Fig. 

2.3, for the terms in eq. 2.150-2.152 no space interpolation will be needed provided 
central differences are used in space. Richardson (1922) called this scheme "a lattice 
reproducing process." Note that in this arrangement (shown on the left side of Fig. 2.3) 
j + k is odd for the h field and even for the M and N field. 

It is shown in the lower left part of Fig. 2.3 that the M and N fields are defined only 
for odd values of n, whereas the h field is defined only for even values of n. Then, if one 
uses central differences for the time derivative, time interpolation is not needed in evalu-
ating any term. This scheme is referred to by Richardson as "step-over" differencing, 
because in reproducing itself at t + At/2 from the known values at t — At/2 using eq. 
2.152, the h field steps over the M and N fields which are known at time t. It can be seen 
from eq. 2.150 and 2.151 that the M and N fields step over the h field. 

It can be shown that the step-over procedure is computationally unstable for the 
dissipation terms (i.e. those involving A,) and computationally neutral for the pressure 
gradient terms. Platzman (1963) pointed out that this difference is due to the fact that 
whereas the dissipation terms are governed by a first-order (in time) equation representing 
decay, the pressure gradient terms (along with the divergent terms in the continuity 
equation) are governed by a second-order equation which characterizes wave motion. As 
a consequence of this, in computing the M and N fields at time step t + At/2, the 
dissipation terms in eq. 2.150 and 2.151 are evaluated from the values at t — At/2. 
Platzman refers to this as a "step-on procedure." 

The Richardson lattice shown on the left side of Fig. 2.3 may be called an "odd 
lattice" because (j + k + n) is odd for all grid points. As can be seen from Table 2.1, 
indeed there are eight distinct Richardson lattices (four having odd parity and four with 
even parity). The reason there are eight such lattices is the following. 

On the left side of Fig. 2.3 for the h field, f is  even, k is odd, and n is even. An 
equiparity submesh is one in which all j values have the same parity, all k values have the 
same parity, and all n values have the same parity. It can be seen that each of the same 
independent variables, M, N, and h, of a Richardson lattice lies on an equiparity submesh. 
One can generate eight equiparity submeshes by giving each of the three indices, j, k, and 
n, either even or odd parity. These eight equiparity submeshes listed in Table 2.1 are 
arranged in four conjugate pairs (two equiparity submeshes are referred to as "conjugate" 
if their respective j values have opposite parity, k values have opposite parity, and n values 
have opposite parity). 

By locating the M, N, and h fields on suitable combinations of the eight equiparity 
submeshes, eight Richardson lattices may be formed, as shown in Table 2.2, in which they 
are arranged in four conjugate pairs (two Richardson lattices are said to be conjugate if 
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TABLE 2.2. The four pairs of conjugate 
Richardson lattices, in terms of the sub-
meshes defined in Table 2.1. (Platzman 
1963) 

TABLE 2.1. The four pairs of conjugate submeshes 
(0, odd; E, even). (Platzman 1963) 

Identity 	j 	k 	n 	j + k + n 	 Identity 	M 	N 	h 

0 1 	0 	E 	E 	0 	 R I 	04 	03 	02  
El 	E 	0 	0 	E 	 R I 	E, 	E3 	E2 

02 	 E 	0 	E 	0 	 R2 	03 	04 	0 1  

E2 	0 	E 	0 	E 	 1-:".2 	 E3 	E, 	E l  

03 	E 	E 	0 	0 	 R3 	 02 	 0 i 	04 

E3 	 0 	0 	E 	E 	 113 	 E2 	E, 	E4 

04 	0 	0 	0 	0 	 124 	0, 	02 	03  
E4 	 E 	E 	E 	E 	 R4 	 E l 	E2 	 E3  

their respective M, N, and h fields are located on conjugate equiparity submeshes). In Fig. 
2.3, the left side is the mesh  R 1  and the right side is the mesh  R  (see Table 2.2), and 
together they form a pair of conjugate Richardson lattices. 

Platzman (1963) pointed out that for any one of the eight Richardson lattices of Table 
2.2, any finite-difference scheme that used the "step-over" process for the pressure 
gradient terms in eq. 2.150 and 2.151 and the divergence terms in eq. 2.152 and "step-on" 
process for the dissipation terms in eq. 2.150 and 2.151 provides a lattice-reproducing 
process. 

Next, the complete equations, eq. 2.145-2.147, are compared with the reduced 
equations, eq. 2.150-2.152. The Coriolis terms and the A. and 13 ;  terms that involved the 
pressure gradients must be considered. Since the Coriolis terms represent wave motion, 
these will be treated by a step-over process. Also, to evaluate the Coriolis terms, M values 
are needed at the grid points where N is defined and vice versa. Thus, for evaluation of 
the Coriolis terms, the conjugate Richardson lattice shown on the right side of Fig. 2.3 is 
required. 

In other words, let R 1  be the lattice on which the dependent variables M, N, and h 
are to be predicted. For evaluating the Coriolis terms, the M and N fields on the lattice 
must be known (these will be designated as Ai and g). Platzman treated the M and KT fields 
as additional prognostic fields and predicted  M, Kr, and h on lattice k i  simultaneously, with 
the prediction of M, N, and h on the R I  lattice. (Note that because of the conjugate 
relationship, for the evaluation of the Coriolis terms on the fi l  lattice, one must know the 
M and N fields on the R i  lattice.) 

Thus, the finite-difference scheme described here gives rise to a lattice-reproducing 
process with respect to any pair of conjugate Richardson lattices of Table 2.2. This scheme 
in fact couples the two lattices through the Coriolis terms. Hansen (1956) and Fischer 
(1959), in their studies on the tides and surges in the North Sea, treated the Coriolis terms 
using a step-on process rather than a step-over process. This means that they also used two 
Richardson lattices but they are not conjugate (they used lattices R I  and R2 of Table 2.2). 
It can be shown that their scheme is computationally unstable when Coriolis forces are 
included.' In shallow water, one may suppress the instability through dissipation terms, 
and in deep water through smoothing. However, when conjugate lattices are used, the 
scheme is computationally neutral, even when Coriolis terms are present. 

3  Fischer (1965b) modified his original scheme to suppress the instability. 
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To include the B, terms, for consistency one requires another pair of conjugate 
Richardson lattices, R2 and R7.  However, this considerably extra effort is not justified for 
the B i  terms, which are not significant generally. Hence, Platzman treated the B, terms as 
step-on terms because one can obtain the required h values from the R 1  lattice. This also 
provides another (weak) coupling between the two lattices, R I  and 17 1 , in addition to the 
coupling provided by the Coriolis terms. 

The next step is to incorporate the boundary conditions. A typical arrangement of h 
points on the R I  lattice is shown in Fig. 2.4. The heavy solid line separates interior 
elements from boundary elements, and the polygonal line is referred to as the inner mesh 
boundary. The broken line encloses all mesh elements and is called the outer mesh 
boundary. 

Platzman (1958a) used the inner (or the outer) mesh boundary as a vertical coastline 
because the boundary conditions then become rather simple: M = 0 if the segment is 
parallel to the y-axis and N = 0 if the segment is parallel to the x-axis. These boundary 
conditions do not require any changes in the finite-difference forms. However, the disad-
vantage of this scheme is that the truncation errors are maximal at the coastline where, in 
principle, one would like to have minimum errors because observational data are available 
mostly at the coastline. 

In a later paper, Platzman (1963) used a somewhat different procedure. One can 
integrate the continuity equation over an h element (whether interior or not) and, thus, 
express the right side as a line integral of the volume transport across the boundary of the 
element. Then, if one assumes no transport across the coastline, one gets 

a h (2.153) —a t a = —M I 	— N2 3■ S7 + M3 t1S3  + N4LS4 

where h is the average value over the element. The subscripts identify the four sides in the 
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scheme at the upper left and upper right in Fig. 2.4. For an interior element: 

a = (AS) 2  
(2.154) 

AS 1  àS2  = As, = 3■ 54 = LIS 

Then, eq. 2.153 reduces to the central-difference scheme. For a boundary element, since 
the sum of the length of sides is less than AS, a < (AS ) 2 . Central-differencing was used 
for a/at, and eq. 2.153 was used as the finite-difference form for the continuity equation. 
The area and side lengths of each boundary element were determined to provide as input. 

For evaluating eq. 2.153, prediction of M or N on truncated sides of boundary h 
elements is required. However, this is not convenient with the momentum equations. 
Hence, Platzman obtained a prediction equation for the component of volume transport 
parallel to the coastline in each boundary h element. One can compute M or N from this 
tangential component through multiplication by the cosine or sine of the angle between the 
x-axis and the segment of coastline interior to the boundary element. This angle could be 
determined for each boundary h element as part of the input data. 

Platzman (1963) performed stability analysis under various conditions. His results 
will be summarized, omitting the details. The computational stability limit imposed upon 
At by boundary layer decay in the absence of gravitational and rotational effects is 

(2.155) PAt 	1 

where 
5 (2.156) P 	n, = —5---v 

4D 2  
Define 

1 	4 D 2  
(2.157) (At), = —P = —5 —v 

Then, the stability criterion is given by 

(2.158) At < (At), 

The condition given by eq. 2.155 is necessary for viscogravitational as well as for viscous 
modes but sufficient only for the latter. 

Define 

5 vàt 
(2.159) 13 = PAt = 172  

5 	At 2  
(2.160) -y ••• —

3 
gD (—

AS) 
 S 

where 

(2.161) S I (sin' 1  kAS + sin' I LAS) 
2 	2 	2 

where k and I are such that, for viscogravitational modes, the typical solution is 

M = Mo  e"  sin (kx) cos (ly) 

(2.162) N =  No  e"  cos (kx) sin (ly) 

h = ho  e"  cos (kx) cos (ly) 
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Fia. 2.5. Lattice dispersion for a 10-d period of a storm surge calculation 
for Lake Erie. (a) First 5 d; (b) second 5 d. Note that the ordinate scales 
for Fig. 2.5a and 2.5b differ by a factor of 5. (Platzman 1963) 

For viscogravitational modes, the sufficient condition for stability is 

(2.163) (3 + 	1 

This is more stringent than the necessary condition 

(2.164) 13 < 1 	because 	y >0 

This stability analysis did not take into account the boundary conditions and the variable 
coefficients. 

Next, the question of lattice dispersion, which is a measure of the truncation error, 
will be briefly considered. On the grid R 1  for each point of the h field, a corresponding 
value of the fi field on lattice k, is obtained by taking the arithmetic mean of the immediate 
four neighbours to h (let h' denote this arithmetic mean). Note that since h and h are not 
known at the same time steps, one has to allow a lag of 3,t/2 between h and h'.  Platzman 
(1963) defined lattice dispersion as the root mean square value of (h' — h) over all points 
of the h field. 

The lattice dispersion for one particular storm surge calculation in Lake Erie, per-
formed by Platzman (1963), is shown in Fig. 2.5a for the first 5 d and in Fig. 2.5b for 
the next 5 d. (Note that the ordinate scales in Fig. 2.5a and 2.5b differ by a factor of 5.) 
As can be seen, during the first 4 d the lattice dispersion is insignificant (about 0.06 m). 
On the 5th d, the dispersion began to exhibit an oscillation with continuously increasing 
amplitude. Thus, the truncation errors make the computation unstable. Platzman (1963) 
suggested that the somewhat irregular treatment of the momentum equations at the bound-
aries is the source of this instability. 

2.6 Staggered and Nonstaggered Grid Schemes 

The Richardson lattice, described above, is a "staggered grid" because the variables 
are staggered in space on the grid. The leapfrog scheme for integration in time is also a 
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FIG. 2.6. Various staggered (in space and time) grids for the central-difference scheme. (a) Basic scheme; (b) 
space supplement of Fig. 2.6a; (c) time supplement of Fig. 2.6a; (d) space—time supplement of Fig. 2.6a. 
Subscript n denotes time step. 

staggered scheme (in time). Nonstaggered grids in space and time integration were used 
in storm surge calculations until the early 1960's. Discussion will begin with the simplest 
staggered grid schemes associated with central finite-difference. 

Away from the boundaries, central-differencing is the most convenient manner of 
space discretization. However, near (and at) the boundaries, special attention is required; 
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one can place fictitious points outside the boundary or use one-sided difference schemes. 
One of the simplest central difference schemes is shown in Fig. 2.6a. However, this 
scheme is not convenient for the evaluation of advective terms and the Coriolis terms. For 
convenient evaluation of these ternis, multiple-lattice grids have been used. Simons (1980) 
suggested coupling the grid in Fig. 2.6a with its space supplement shown in Fig. 2.6b or 
its time supplement shown in Fig. 2.6c or its space—time supplement shown in Fig. 2.6d. 
Note that scheme in Fig. 2.6d corresponds to the conjugate lattice developed by Platzman 
(1963). 

In double-lattice grids, both the transport variables are defined at the same location, 
which leads to a combination of the conuugate lattices in Fig. 2.6a and 2.6d as originally 
proposed by Eliassen (1956). Lilly (1961) used a time interpolation for the Coriolis terms 
for the space-supplemental lattices in Fig. 2.6a and 2.6d. 

Single-lattice grids are useful in situations in which Coriolis terms and nonlinear 
advective terms are not important. However, for larger bodies of water in which the earth's 
rotational effects have to be considered, the truncation errors due to the spatial averaging 
(that will be required to compute the Coriolis terms) on a single lattice deserve attention. 

One could form double-lattice grids by combining the space-supplemental lattices in 
Fig. 2.6a and 2.6b or the conjugate lattices in Fig. 2.6a and 2.6d (Simons 1980). The 
spatial representation of either of these is the same and is shown in Fig. 2.7a. The chief 
advantage of a double-lattice grid over a single-lattice grid is that no spatial averaging will 
be required for most of the terms in the equations of motion and continuity. The main 
drawback of a double-lattice grid is that the surface gravity waves travel independently in 
each lattice and the lattices tend to become decoupled progressively with time, especially 
for water bodies with irregular boundaries (practically all natural water bodies have 
irregular boundaries). The Coriolis terms and the nonlinear advective terms will tend to 
keep the two lattices coupled; however, as was shown by Platzman (1958b), some spurious 
results may be obtained in addition to computational instability. 

The phenomenon of grid dispersion can become quite a serious hindrance in calcu-
lations with double-lattice grids, and various smoothing (in space) operators were devel-
oped. Later, some of these operators used by Shuman (1957), Harris and Jelesnianski 
(1964), and others will be discussed. An alternative to space-smoothing is the introduction 
of an artificial viscosity (also refen -ed to as pseudo or virtual viscosity) which, in effect, 
works in a similar manner to a horizontal eddy diffusion of momentum (Obukhov 1957). 
Rotation of the basic coordinate system to give a new system, xr  and y, , and then evaluating 
the Laplacian operator for diffusion along the rotated coordinates has also been used in an 
attempt to couple the two lattices (e.g. Simons 1980). 

Another approach to keep the two lattices coupled was made by Janjic (1974). Janjic 
added an artificial diffusion term, not to the momentum equations as is traditionally done, 
but to the continuity equation. This term was made proportional to the difference between 
the two Laplacians of the free surface height field. The first Laplacian is calculated on the 
x and y coordinates and, hence, involves only one lattice, and the second Laplacian is 
evaluated along the rotated coordinates, x, and y„ and thus involves both lattices. In 
principle, if there are no truncation errors, both Laplacians should be identical. However, 
in practice, this will not be so, and the artificial diffusion term will be nonzero; this will 
smooth the surface height field and tend to keep the lattices coupled. 

Several authors (e.g. Lauwerier 1962; Leith 1965; Heaps 1969) have used rotated 
coordinates and evaluated all the derivatives in the relevant equations along these coordi-
nates. However, it should be pointed out (Lauwerier 1962; Simons 1973) that any im-
provements in the elimination of grid dispersion is not only due to the evaluation of all the 
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FIG. 2.7. (a) Double-lattice grid. A, locations where the transport com-
ponents, M and N, are defined;  X, surface height field belonging to one 
lattice; D, surface height field belonging to a second lattice. (b) Rotated 
coordinates. 

derivatives along the rotated coordinates but also to the orientation of the grid relative to 
the boundaries of the water body. 

One of the examples of a computation involving multiple lattices is that of Harris and 
Jelesnianski (1964) in which the two transport components and the surface height field 
were defined at all the grid points at every time step (this is a combination of eight lattices). 

2.7 Numerical Dispersion, Parasitic Waves, Filtering, and Aliasing 

Earlier, the linear advective equation 2.75 was considered, which has a solution in 
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the form of a single harmonic component (Mesinger and Arakawa 1976): 

(2.165) 	(x, t) = Re [U (t) 

provided 

dU 
(2.166) —

dt 
+ ikcU = 0 

where Re denotes the real part. Equation 2.166 is referred to as the oscillation equation 
and 

(2.167) 
k 

is the phase speed of the waves, k is the wave number, and vis the wave frequency. There 
is no dispersion because u(x, t) is advected without change of shape along the x-axis with 
a constant speed c (all wavelengths propagate with the same phase speed). 

Suppose in eq. 2.75 the space derivative is represented by a central finite-difference, 
leading to the following differential-difference equation: 

au; 	(up., — 
(2.168) —" + c 	 -= 0 a t 	2Ax 

This has a solution in the form of a single harmonic component 

(2.169) Mt) -= Re [U (t) 

provided 

du 	c sin (kAx)] 
U = 0 (2.170) —

dt 
 + 

[ 
kAx 

In this case, waves propagate with the phase speed 

sin (kàx)  
(2.171) c*  = c kLx  

which is a function of the wave number, k. Thus, the spatial finite-differencing created a 
dispersion of the waves, which will be referred to as numerical dispersion. 

It can be seen that, as k 3,x increases (starting from zero), the phase speed c*  decreases 
monotonically from c, and c*  becomes zero for the shortest resolvable wavelength 23,x 
( a is the grid interval) when kàx = IT . Thus, the propagation speed for all waves is less 
than the true phase speed, c, and the departure of c *  from c increases as the wavelength 
decreases. 

For the linear advection equation 2.75, the group velocity is given by 

(2.172) c, 	(lc  (kc) =- 0 

Hence, the group velocity, cg , is equal to the phase velocity, c, and is constant. However, 
for the differential-difference equation 2.168, the group velocity is given by (Mesinger and 
Arakawa 1976): 

(2.173) c;,!' = 	(kc *) = c cos (kàx) 
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Hence, as kàx increases from zero, the group velocity, c.,*, decreases monotonically from 
cg ,  and c *  is equal to —c at the shortest resolvable wavelength, 2Ax. 

To summarize, central-differencing of the space derivative term in the linear ad-
vection equation causes both the phase and group velocities to decrease as the wave 
number increases. Waves having lengths less than 4àx have negative group velocity 
(which means that wave packets travel in a direction opposite to that of individual waves). 
Since this wave-packet motion is inconsistent with the expected behavior of the advection 
equation, such waves are referred to as parasitic waves. 

One can think of various uncentered space-difference schemes to remove parasitic 
waves. The following scheme can be written for the linear advection equation: 

u 	(u — u _ 1 ) 
+ c 	

[ix*/ 
	-- 0 for c > 0 

t 

(2.174) 
au. 	— u;) 

C 	 =  Lx 	0 for c 0 a t  
This scheme is called an upstream-difference scheme because the differences are calcu-
lated on the side from which the advection velocity arrives at the point under consid-
eration. A scheme that involves evaluation from the opposite side will be referred to as 
a downstream-difference scheme. When an upstream-difference scheme is used, no per-
turbation can propagate in a direction opposite to that of advection. Hence, no parasitic 
waves can form. 

One may ask the question whether there is anything to be gained by retaining the 
central finite-difference scheme but using a higher order difference form. Using a Taylor 
expansion, one can approximate the term a u/ax by 

(u,, 1  — ui _ 1 ) 	a u 	1 a 3 u  
2àx 	 = 	+ 	ax3  (àx) 2  + 0(/x) 4  

ax 	3!  

One can replace àx with 2àx in eq. 2.175 and write 

(u., +2  — u,-2) 	au 	4 a3 u 
(2.176) 	 = 	

+ 3! 
— — (àx) 2  + O(x)4  

4Ax 	ax 	ax3  

A fourth-order accurate scheme, which is formed by a linear combination of eq. 2.175 and 
2.176 and in which the truncation errors due to eq. 2.175 cancel those due to eq. 2.176, 
is the following: 

4 (
,1.1+1  —  14,-.1) 	1 (11J +2 — ii,--2) 

 = —
au 

 + 0(àx)4  (2.177) 3 	2àx 	3 	4àx 	ax 

Using eq. 2.177 for the linear advection equation 2.175 gives 

au• 	4 (u +1  — u 	 i i 	./ -1) 	I (u +2  - U-2)  
(2.178) —i  + c. [ ' i 	 I — — 0 at 	3 	2àx 	3 	4àx 

Proceeding as above, the phase speed can be written as 

(2.179) c** = c  [4 sin (kàx) 	1 sin (2kàx)i 

	

L3 kAx 	3 2kàx j 

Small values of k, from eq. 2.171 and 2.179, give 

(2.175) 
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1 
c * = c [ 1 — 	(kàx)2  + .1 

(2.180) 
4 c **  = 	— 	(kàx) 4  + . .1 

It can be seen that for large and medium wavelengths, the fourth-order scheme is 
more accurate. However, for short wavelengths, even though the advection speed is better 
represented by the fourth-order scheme, the numerical dispersion is greater. The main 
drawback of higher order differencing schemes is the requirement of additional grid rows, 
which leads to computation modes in space similar to computational modes in time, and 
makes the prescription of boundary conditions rather difficult. Also, the computational 
effort increases considerably. 

Some of the space-differencing schemes have been referred to as the filter factor 
forms in the literature (Schuman 1957; Harris and Jelesnianski 1964). For a dependent 
variable, F (x), the standard central-difference form is 

dF (x) F (x +  àx) — F (x — àx) 
(2.181) 	 + €2 dx 	 Mx 

where 

dx' 3 ! 

A three-point forward-difference form is 

dF 	1  (2.183) — = 	[-3F (x) + 4F (x + àx) — F (x + 23,x)] + E3 dx 

where 

4 d3  F 	2 (2.184) E3 	
-dX 3  (" 

For a function F = F (x, y): 

(2.185) —
aF 

 = 	
1  {a[F (x + àx, y + Ay) — F (x — zx,  y + Ay) 

ax àS(4a + 2b) 

+ F (x + àx, y — ày) — F (x — àx, y — ày)] 

+ b[F (x + àx, y) — F (x — àx, y)]} 

where àx = ày =  LIS. 
In a simplified form, eq. 2.185 can be written as 

[—a 0 a 
(2.186) —

aF 	1  b 0 b F (x, y) ax AS (4a + 2b) —a 0 a 

Note that if a = 0 and b = 1, eq. 2.186 reduces to the central-difference form, eq. 2.181. 
Shuman used a = 1 and b = 2 and called it the filter factor form for the following reason. 

F (ix)2  
(2.182) €2  = 
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Computational instability, when it occurs, usually appears as an unlimited growth of 
energy in the water body. (The criteria for avoiding or suppressing computational in-
stability will be considered later.) Truncation errors and round-off errors are greatest for 
the higher order harmonics. Hence, instability might be suppressed by eliminating or 
dampening the higher harmonics. This process is referred to as smoothing or filtering. 
Shuman (1957) and Holloway (1958) suggested that the following numerical filter 

(2.187) i" (x) = –1 [F (x – àx) + 2F (x) + F (x + Ax)] 
4 

will eliminate the harmonic with a wavelength of 2Ax (which is the most troublesome) 
without causing significant phase shifts. The two-dimensional version of eq. 2.187, which 
can be obtained by setting a = 1 and b = 2 in eq. 2.186, is referred to as the filter factor 
form. Lauwerier (1962) used a = 1 and b = 0 and showed that this form has many superior 
qualities not possessed by the central difference form. 

The advection equation will again be used to introduce the problems associated with 
aliasing. However, rather than the linear form, the nonlinear form will be used: 

(2.188)  t 	ax 

This equation is referred to as the shock equation by Shuman (1974). Platzman (1964) 
wrote the general solutions as 

(2.189) u = f(x – ut) 

where f is an arbitrary function. It will be shown that the finite-difference form of eq. 2.188 
will give rise to errors due to the inability of a discrete scheme to resolve wavelengths 
shorter than 2Ax (or wave numbers greater than krna, -= 7r/1x). 

With reference to Fig. 2.8, consider a function u (x) given by 

(2.190) u = sin (kx) 

for k < kmax . From eq. 2.190: 

1. 
(2.191) u —au = k sin (kx) cos (kx) = –2 k sin (2kx) 

x 

For wave numbers in the range 1/2 kna,  <k  kmax , the nonlinear term u (a u/ax) will give 
rise to a wave number that lies in a range that cannot be resolved by the grid. 

The situation for k > kmax  (Mesinger and Arakawa 1976) is examined. With reference 
to Fig. 2.8, let L = 4/3 àx (the solid line shows this wave). If the values of the function 
at the two grid points shown by black dots are known, one cannot distinguish this wave 
from the wave shown by the broken line. Thus, all wavelengths that cannot be resolved 
by the grid will be misrepresented (or aliased) as longer wavelengths. 

Next, the results are generalized to the case when u consists of a number of harmonic 
components: 

(2.192) u =- E u„ 

The term u (a u/ax) will contain products of harmonics of different wavelengths, such as 
sin (k 1  x) sin (k2x). The following trigonometric identity can be easily obtained: 

(2.193) sin (k i x) sin (k2x) = –
1 [cos (k 1  – k2)x – cos (k 1  + k2).x] 
2 
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(b) 

	

i 	 ...1 	 'k  

	

0 	k* 
kmax k 	2k niax  

FIG. 2.8. (a) Wave of length 4à,v/3 misrepresented by the finite-difference grid as 
a wave of length 4Lr; (b) misrepresentation of a wave number k > k„,.. (Mesinger and 
Arakawa 1976) 

Hence, even if initially all wave numbers, k, are less than or equal to k„,„„, through 
nonlinear interaction, waves with k > Lax  will develop, and aliasing will occur. One can 
also write 

(2.194) sin (kx) =  sin [24. 	(2kmax 	k)] 

It can be seen from Fig. 2.8b that a wave number k will be misrepresented as a wave 
number  2 k 11 ,.  — k. 

Next, visualization of the consequences of aliasing is attempted. To do this, it can 
be assumed that the dependent variables of concern here are made up of a series of 
harmonic components. The energy spectrum of these various components determines the 
relative contributions of different scales to the dependent variable. Aliasing errors will 
create a spurious inflow of energy at wave numbers that are not much less than lc,. and, 
with the progress of time, the energy of these components grows in a rapid manner. 
Phillips (1959) referred to this as nonlinear instability. Miyakoda (1962) showed that 
similar instability could occur even for linear equations with variable coefficients. 

Next, possible schemes for prevention or suppression of nonlinear instability are 
considered. Orszag (1971) showed that aliasing en-ors could be eliminated by filtering out 
wave numbers k >  2/3 k 11 .  Another approach for the suppression of the shortest waves 
is the Lax and Wendroff (1960) scheme, and this approach was suggested by Richtmeyer 
(1963). Kasahara (1969) suggested that it is sufficient to use the Lax —Wendroff scheme 
intermittently after long intervals of time integration using other simpler schemes. A third 
approach for eliminating nonlinear instability is to use a Lagrangian formulation (Leith 
1965; Krishnamurti et al. 1973). Although nonlinear instability might be suppressed, there 
are several highly undesirable features with Lagrangian schemes (the worst one being the 
drastic distortion of the basic grid after a few time steps of integration); these schemes will 
therefore not be considered. 

The most sophisticated methods are the conservation schemes developed by Arakawa 
(1966, 1972) and Arakawa and Lamb (1981). These schemes, by retaining the conser-
vation (in the finite-difference forms) of some integral properties of the original differ- 
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ential equations, eliminate nonlinear instability, as well as the spurious inflow of energy 
to the short waves, rather than artificially suppressing their amplitudes. In these conser-
vation schemes the average values of enstrophy (half the vorticity squared) and the kinetic 
energy do not change, nor does the average wave number. 

For a review of the finite-difference schemes and their conservation properties, see 
Grammelvedt (1969). 

2.8 Finite-Differencing of the Time Derivative 

The time-derivative terms in the storm surge equations are the time derivatives of the 
horizontal transport components M and N in the momentum equations and the time 
derivative of the free surface height h in the continuity equation. Since the terms amiat, 
aeat, and ahlat all have the same form, discussion will be based on a general re-
lationship of the following form: 

au (2.195) —

a t 

— F(U, t), 	U = U(t) 

The reason a total time derivative d/dt is used rather than a partial derivative ala t  is that, 
here, U = U(t) only and its space dependence is not considered, since, earlier, the 
problem of space-differencing was already considered. In this section, liberal use will be 
made of the works of Mesinger and Arawaka (1976) and Simons (1980). 

Several time-differencing schemes are available: two-level schemes without iteration, 
two-level schemes with iteration, three-level schemes, etc. Discussion will begin with 
two-level schemes without iteration. In this, three different schemes are well known: the 
Euler (or forward), backward, and trapezoidal schemes. 

In the Euler or forward scheme, the time derivative is approximated as 

U„,, — U„ + àt • F„ 
(2.196) 

F„ = F(U„) 

This is a first-order accurate scheme with a truncation error of 0(t), and it is an 
uncentered scheme because F is not centered in time. 

In the backward scheme 

Un +1= U„ + At • F„+1 
(2.197) 

Fn+1= F (Un+ i) 

This scheme, as written here, is implicit, because F depends on U„,,, which must be 
determined. In the case of partial differential equations, this will require iteration because 
a set of simultaneous equations (one for each grid point) must be solved. The truncation 
error of this scheme is also of 0 (At). 

In the trapezoidal scheme 

(2.198) U„,, -= U„ + 1. A t (F„ + F„,1 ) 

As can be seen, this is also an implicit scheme, but its truncation error is of 0 (LI t)2 . Next, 
two iterative schemes will be discussed, but still involving two time levels only. 

In the Matsuno or Euler backward scheme, the first step is the regular Euler scheme 
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(2.199) U( „., 1). = U„ + àt • F„ 

This value of U,„,. us is used to determine 	through 

(2.200) F( „., ]). = F (U( „, 

This value of F( „ +1). is used in a backward step to compute U„, 1 : 

(2.201) U„ 1  = U„ + àt • F( „ ÷I). 

As can be seen, this is a first-order accurate scheme and is explicit. 
The Heun scheme is a development from the trapezoidal scheme and can be expressed 

as 

= U„ + àt • F„ 
(2.202) 

U„ = U„ + àt12 (F„ + F( „, D.) 

This is also an explicit scheme, but is of second-order accuracy. 
All the time-differencing schemes introduced thus far can be used for the first time 

step, as well as all the subsequent time steps in the numerical integration. However, the 
three-level schemes cannot be used for the first time step. The most common of the 
three-level schemes has already been introduced, namely, the leapfrog scheme (also called 
the midpoint rule or step-over rule). In this scheme: 

(2.203) U„,, = U„_, + Mt • F„ 

with a truncation error of 0 0,0'. 
The Adams-Bashforth scheme 

(2.204) U„, 1  = U„ + àt (-3 F„ - -1 
F„ 2 	2 - 

is second-order accurate. Another scheme, referred to as the Milne-Simpson scheme, 
involves fitting a parabola to the values of F„_,, F„, and F„,, which will lead to an implicit 
scheme. Young (1968) discussed 13 different time-differencing schemes. For a discussion 
on the conservation of the energy of low-frequency waves in iterative time integration 
schemes see Kondo et al. (1982). It is also possible to construct complicated schemes in 
which space- and time-differencing are treated in a manner that cannot be described 
separately. 

Next, the stability properties of some of these schemes will be discussed. This can 
be done only when the form of the function F (U, t) is known. The oscillation equation 
2.166 will be considered assuming 

(2.205) F = hal 

where i = "\/ f and co is the frequency. In this notation, the oscillation equation becomes 

(2.206) —dU 
= icoU, U = U(t) 

dt 

Note that U could be complex, but co is real. 
The general solution of eq. 2.206 is 

(2.207) U(t) = U(0) e't 

In the finite-difference form, taking t = tiàt 
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U(nAt) = U(0) em"' 

If the solution is considered in a complex plane, the argument rotates by wilt in each time 
step, At, but the amplitude does not change. 

The stability of the various schemes can be ascertained using the Von Neumann 
method in which we define a variable X through 

(2.208) U„ +1  = k 

Let 

(2.209) X = IXI e 1°  

Then, the solution to eq. 2.207 becomes 

(2.210) U„ = IXI"  U 10  e in°  

Here, 0 is the phase change in each time step. Since the amplitude of the correct solution 
does not change, the condition for stability is 'XI 1. Hence, for the following values of 
X: 

> 1, unstable 
{ (2.211) X 	= 1, neutral 

< 1, damping or dissipative 

Thus, we can refer to X as the amplifcation factor. One can also compare the phase change, 
0, with that for the correct solution, i.e. w At. The relative phase change of the numerical 

solution is given by 0/(wàt): 

> 1, accelerating 

The computational mode introduced earlier violates these conditions. For these modes, the 
numerical solution does not approach the true solution as àS (i.e. grid size) —> 0 and à t 
0. 

The Euler (or forward) scheme, the backward scheme, and the trapezoidal scheme 
can be represented by the following equation: 

(2.214) U„ +1  = U„ + à t (a F„ + f3 F„ +1) 

A consistency condition will be 

(2.215)  a+13 = 
and the following is true for each scheme: 

Euler scheme a = 1, 	p = o 

(2.216) Backward scheme a = 0, 	P = 1  
1 

Trapezoidal scheme a 13  = —2 

f 
(2.212) eot 	= 1, no effect on phase speed 

< 1, decelerating 

For accuracy in the computation, it is desirable to have 

0 (2.213) X — 1 and —wàt — 1 
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From eq. 2.206 and 2.214 

(2.217) /1„,, = U„ + iwAt(aU„ + 13U„,1 ) 

This equation must be solved for U„ + , to evaluate X. Following Mesinger and Arakawa 
(1976), define 

(2.218) P•=• co,àt 

Then, from eq. 2.217 and 2.218: 

1 + iaP  (2.219) X = 
(1 + 

1[3
2P

2
) 

(1 	ŒPP 2 	iP) = _ 

Using eq. 2.216 and 2.219, the following is true for each scheme: 

(2.220) Euler scheme X = 1 + iP 

(2.221) Backward scheme X = 	1 	(1 + iP) 
(1 + P2 ) 

1 (2.222) Trapezoidal scheme X = 	1 	(1 - 
4
- P-  + iP 

(1 + 1132) 
4 

From eq. 2.219, the following is true for each scheme: 

(2.223) Euler scheme 1k1 -= (1 + P 2 ) 1 / 2  

(2.224) Backward scheme 1X1 = (1 + P 2) -I /2 

 (2.225) Trapezoidal scheme 1X1 = 1 

From eq. 2.223-2.225, it can be seen that the Euler scheme is unstable and the backward 
scheme is stable for any àt. The trapezoidal scheme is neutral. 

Next, two-level iterative schemes will be considered, namely, the Matsuno and the 
Heun schemes. The finite-difference forms for these schemes can be written as 

U„,, = U„ + àt  [a F,,  + pF,„ + „.] 

(2.226) U1„, = U„ + At F„ 

• a + 	1 

The following is true for each scheme: 

Matsuno scheme a = 0, 	R 1 
(2.227) 

Heun scheme a = -1 
2 ' 

Applying this to the oscillation equation and proceeding as above gives 

(2.228) X = 1 -  3 p2 + iP 

From eq. 2.227 and 2.228 the following is true for each scheme: 

R 
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Matsuno scheme X = 1 — P 2  + iP 
(2.229) 

1 
Heun scheme X = 1 — —2 P 2  + iP 

Evaluating IXI gives the following for each scheme: 

Matsuno scheme I Xi = 
 (1  _ p2 	p4)I/2 

(2.230) 
1 Heun scheme IX' 	(1 +  P")  

kol 
It can be seen that the Heun scheme is always unstable, similar to the Euler scheme. In 
practice, both these schemes can be used, provided At is not large. 

Next, three-level schemes will be considered. The leapfrog scheme, when applied to 
the oscillation equation, gives 

(2.232) U„ 	U„_ + i2o.)3a • U„ 

Since this is a three-level scheme, we must specify a computational initial condition U' 
in addition to the physical initial condition U ° . This value of U' must be obtained from 
some two-level scheme. 

From Eq. 2.208 write 

u,,  = 

u„ = X2  u„ - 

From eq. 2.232 and 2.233, X2  - i2Pk — 1 = 0, which is a quadratic equation. The two 
values of k are given by 

X I  = V1 — P 2  + iP 

X2  = — V1 — P 2  + iP 

Note that as P —> 0, X I 	1 and X, —> —1. Hence, solutions associated with X I  are the 
physical modes, and those associated with X2 are the computational modes. Thus, although 
the leapfrog scheme is a convenient scheme with second-order accuracy and is neutral 
within the stability range of icoAti 5-  1,  its main drawback is the occurrence of a neutral 
computational mode. This computational mode exhibits a tendency to amplify slowly in 
the case of nonlinear equations. Lilly (1965) suggested that an occasional use of a 
two-level scheme, interspersed with a three-level scheme, eliminates the trouble with the 
computational mode. 

The Adams—Bashforth scheme applied to the oscillation equation gives 

(2.235) U„,, = U„ + icoàt (-3 U — —
1 U 

2 " 	2 " 
From eq. 2.233 

(i i P) X +  P  = 
2 	2 

The solutions are 

Thus, the Matsuno scheme is stable if IPI 	1. Hence, one must use a small àt so that 

(2.231) At —1 

(2.233) 

(2.234) 

- I) 
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x, 	(i + 2  P + \11 — -9- 	+ iP 
2 \ 	2 	4 

(2.236) 

X, = —1  (1 + i —23  P — 	— 	+ iP 2 	 4 

As P --> 0, X 1 —> 1 and X2 -> 0. Thus, the solution associated with the computational mode 
is damped (as opposed to neutral for the leapfrog scheme) and, hence, there is no trouble 
from this mode. 

It can be shown that the physical mode of the Adams—Bashforth scheme is always 
unstable. However, fortunately, as in the Heun scheme, the amplification is only a 
fourth-order term (i.e. 0 (àt)4) and, hence, the scheme can be used with small values of 
àt. The reader is referred to Lilly (1965), Kurihara (1965), and Young (1968) for the 
evaluation of some other schemes. 

2.9 The Courant—Friedrichs —Lewy (C—F—L) Stability Criterion 

The Courant—Friedrichs —Lewy (C—F—L) stability criterion for integration in time 
can be formally derived as follows: assuming a constant advecting velocity c the equations 
of motion and continuity for the one-dimensional case are 

au , 	au , 	ah — c g — = ar 	ax 	ax 
(2.237) 

where D is the uniform water depth and h is the free surface height. 
Multiply the second part of eq. 2.237 by an arbitrary parameter X, and add the result 

to the first equation to give 

a 	 a h (2.238) —a t (u + Xh) + (c + XD) — + (g + Xc)— = 0 ax 	 ax 

Following Mesinger and Arakawa (1976), choose X so that 

g + Xc 
(2.239) 	 = X 

c + XD 

The solutions of eq. 2.239 are 

(2.240) X = -± 

Substitution of eq. 2.240 into eq 2.238 gives 

+ (c + VFD el [11 + 	h] = 0 

ba-t- + (c — Vibe] — =gbh] = 0 

Thus, eq. 2.237 is equivalent to a system  of  two advection equations given by eq. 2.241. 
This means that the parameter (u + VgID h) is advected with a velocity of c + VF) 

ah 	ah 	au  
+ 	+ D = 0ax 

(2.241) 
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and the parameter (u — \/g /D h) is advected with a velocity c — VgD , both in the 
positive x direction. 

Using a leapfrog scheme for eq. 2.241 and proceeding as above for the advection 
equation, we get the following stability criterion: 

	 At (2.242) (c + 	1 

which is referred to as the C—F—L condition. Since, usually (in the atmosphere), c is an 
order of magnitude less than the phase speed of external gravity waves, one often neglects 
c and writes 

	 àt (2.243) v gD—Ax < 1 

In the two-dimensional case, it can be shown that the stability condition is 

	  At (2.244) V2gDi.  < 1 

Here, we assume that ày -= àx. The parameter (V2gD 	3,x) is referred to as the 
Courant number. 

SOME EFFICIENT GRID SCHEMES 

In the literature on numerical weather prediction, the five different grids shown in 
Fig. 2.9 have been used frequently. Mesinger and Arakawa (1976) gave a detailed 
discussion of the properties of these grids. The simplified two-dimensional system for 
surface gravity waves, assuming the water depth, D, to be constant, can be written as (in 
the primitive equation form before vertical integration) 

(2.245) 

au 	ah —at 	—g- ax 

av 	ah 
f u=  

ah 	lau 	avl 
7 + 13-07x. 	= ° 

Use of centered space-differencing with lattice E of Fig. 2.9 and the leapfrog scheme for 
the time-differencing is one way of constructing an efficient scheme. 

A space—time combination grid is shown in Fig. 2.10. If all the variables were 
computed at each time level, as explained above, there would be two independent solu-
tions (i.e. the solutions with the variables shown in Fig. 2.10 will be independent of the 
solutions involving the variables not shown on the space—time grid). However, one can 
obtain the second grid by a translation of the first grid along the line y = x. Hence, one 
can conclude that the space—time lattice obtained by using the lattice shown in Fig. 2.9e 
at every time step is really a superposition of two basic lattices of the type of Fig. 2.10. 
Eliassen (1956) suggested that if system 2.245 is solved on only one of the basic lattices, 
then there will be no computational mode and, hence, considerable saving in computer 
time, since the computational effort is reduced to half. 
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Fin. 2.9. Five different types of grids used in numerical weather prediction models. (Mesinger and Arakawa 
1976) 

However, Platzman (1963) suggested that the basic Eliassen grid of Fig. 2.10 is really 
a combination of two Richardson lattices introduced earlier (i.e. height field calculated at 
one time level and velocity component calculated at the next time level). It is easy to verify 
that a single Richardson grid is a time-staggered version of the lattice shown in Fig. 2.9c, 
and this can be used for system 2.245. However, on an Eliassen grid (i.e. Fig. 2.10), there 
are two independent solutions for system 2.245 and the only coupling between these 
solutions is through the Coriolis terms. 

Next, two computationally efficient explicit schemes will be compared: (1) the 
forward-backward scheme and (2) leapfrog time-differencing by the Eliassen grid. In 
both these schemes, computational effort is reduced by using different integration pro-
cedures for the height gradient terms in the momentum equations and the divergence term 
in the continuity equation. Mesinger and Arakawa (1976) referred to these terms as the 
gravity wave terms. 

Economy of computation is achieved in the forward-backward scheme by first 
integrating the gravity wave terms of either the equations of motion or of continuity 
forward and the terms of the other equation backward in time. It can be shown that this 
scheme is stable and allows (from the C-F-L criterion point of view) twice the size of 
a time step permitted by the leapfrog scheme. 

The second method has already been discussed. Both methods halve the com-
putational effort (as compared with a standard leapfrog method) by avoiding the calcu-
lation of the computational mode. Between these two methods, the forward- backward 
method is superior because all the variables are defined at all grid points at every time step, 
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HOE 2.10. A grid staggered in space and time for use with the leapfrog scheme 
associated with centered space differencing. (Mesinger and Arakawa 1976) 

which makes the programming easy. It could also be modified so that the two-grid interval 
noise (to be defined later) is eliminated. 

For the storm surge problems, the forward—backward scheme has been used by 
Fischer (1959) and Sielecki (1968), Lauwerier (1962), and Heaps (1969). Welander 
(1961) referred to this as the half-implicit scheme. Fischer (1959) showed that the forward 
time-differencing applied to the Coriolis terms makes this scheme unstable. Later, Fischer 
(1965b) showed how to make this scheme stable. 

Another computationally economic explicit scheme was that of Shuman et al. (1975), 
referred to as the SBC scheme. In this scheme, the surface height field is evaluated at time 
level n + 1, using the leapfrog scheme, and then the momentum equations are integrated 
using this height field averaged over the time interval 2à t through the trapezoidal rule: 

1 —h + —1 h" 
+ —1 h 

This scheme is similar to the forward—backward scheme as far as the stability criterion 
and the physical solution are concerned. Because of the averaging of the height field, one 
can use time staggering, even though this is a three-level scheme. 

Even though the computationally economic schemes described here permit twice the 
time step that is required by the C—F—L criterion, the time step is still quite small. For 
this reason, implicit schemes have been considered as an alternative to the explicit schemes 
because these schemes are stable for any size of the time step. In the simplest implicit 
scheme (the trapezoidal rule), the finite-difference form for system 2.245 with the Coriolis 
terms omitted could be written as 
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1 =  Un  — g At (8,11„ + 

(2.246) v„, 1  = v„ — g 3,4(8, h„ + 8, h„+1 ) 

1 = h„ — D àt -2 [(8'u + 	+ (8., 14  +  6, v),, +1 ] 

where the notation 8, is defined by 

(2.247) 8,h = M  [h(x + Ax, y) — h(x — 3,x, y)] x 

with similar formulae for other variables. It can be shown that this scheme is uncon-
ditionally stable and neutral. 

Although one can use a larger time step in implicit schemes than in explicit schemes, 
the main disadvantage of the implicit schemes lies in the necessity of solving a set of 
simultaneous solutions. For example, in system 2.246, one can apply the operators 6, and 

respectively, to the first two equations of system 2.246 and substitute these results in 
the third. equation to obtain an equation for the height field. This equation must be solved 
simultaneously (unlike in the explicit schemes) over the computational region, for in-
stance, by relaxation methods (Crandall 1956). 

An alternative is the "alternating direction implicit (ADI)" schemes. In these 
schemes, basically in each time step, one first evaluates the derivatives along one horizon-
tal coordinate and then along the second coordinate. This splitting will permit the solution 
of simultaneous equations for a single row or column, which makes the computation 
economical. For the gravity wave problems, this has been used by Leendertse (1967) and 
Abbott et al. (1973). 

Several other schemes are available for efficiently inverting large matrices. For 
example, Noye (1977) described a scheme in which a sparse matrix can be converted into 
a dense matrix, thereby achieving economy in the computational effort. 

Usually, Coriolis terms, advection terms, and other terms are omitted more often in 
implicit schemes than in explicit schemes due to inherent difficulties in the implicit 
methods. Kwizak and Robert (1971) used a semi-implicit scheme in which these terms are 
computed explicitly, whereas the rest of the integration proceeds through an implicit 
scheme. 

Although the semi-implicit scheme is one way of making an implicit scheme more 
efficient, there are better methods available, which are referred to as the "splitting 
methods." Splitting methods are preferable to semi-implicit methods in that, with the 
latter, even though the explicit and the implicit parts may be individually stable, there is 
no assurance that the total scheme will be stable. 

To explain the splitting scheme, consider the following simple one-dimensional 
system: 

(2.248) 

au 	au 	ah 
gFv =  ° 

ah 	ah 	au at  + 	+ 	= 0 

Here, the advection terms are made linear by replacing u with a constant c. 
Within a given time step, one could first solve the system of advection equations: 
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(2.249) 

au 	au — + C— o at 	ax 

ah 	ah — + c — = 0 at 	ax 

Let these provisional values (or intermediate values) be represented by u* and h*.  These 
values then can be used to solve for the system 

au* 	ah* + 	= 
at 	a ax 

(2.250) 
ah* 4_ au* 	n  
at ' 	ax 

This procedure can be repeated in every time step. The main advantage of the splitting 
method is that one can use a larger time step for the slower process, such as advection, 
and a smaller time step for other processes. Its main disadvantage is a greater truncation 
error than in other schemes. Brown and Pandolfo (1978) devised a scheme to merge two 
finite-difference schemes with unequal time steps. Basically, this is done by introducing 
an additional time level and at the expense of increasing the storage requirements. 

TWO-GRID INTERVAL NOISE 

Mesinger and Arakawa (1976) have drawn attention to the important problem of 
"two-grid interval noise," which is the phenomenon of false stationary waves appearing 
as neutral solutions of the difference equations. Only with the lattice of Fig. 2.9c will this 
not occur. When the earth's rotation effects are included, the two-grid interval waves 
appear with incorrect low frequencies as inertial waves (on the lattice of Fig. 2.9d, they 
will appear stationary). Usually, by using dissipative schemes with a maximum dissipation 
for the two-grid interval noise and through additional horizontal diffusion, this is con-
trolled. Arakawa (1972) suggested intermittent use of uncentered space-differencing for 
the gravity wave terms (defined earlier) alternately on opposite sides of the central point. 
Mesinger (1973) developed a scheme to suppress two-grid interval noise, which is suitable 
for centered differencing schemes. 

Lilly (1965) showed that two-grid interval noise can also occur in time for the 
leapfrog scheme (i.e. for three time-level schemes). One scheme that was used in numer-
ical weather prediction to suppress two-grid interval noise in time is the intermittent use 
of a two-level time-differencing scheme. However, this has the disadvantage that the 
solution that is eliminated is done arbitrarily. An alternative approach is the use of a time 
filter (Robert 1966). 

PROPAGATION FACTORS 

Leendertse (1967) defined "propagation factor" as the ratio of the numerical and 
analytical solutions for long-wave propagation problems. Usually, the propagation factor 
is a complex number and thus characterizes the wave deformation in amplitude as well as 
in phase. Sobey (1970) used the propagation factor in a dimensionless form to compare 
the following four different finite-difference schemes that have been used in two-
dimensional models of long-wave propagation. 

Of these four schemes, two are explicit schemes and were originally proposed by 
Heaps (1969) and Reid and Bodine (1968). The remaining two are implicit schemes and 

83 



ip 	0 	io- I gD 
0 	ii3 io-2gD 

icr2  
(2.254) =0 v * 

 h*  

were proposed by Leendertse (1967) and Abbott (1969). Sobey's (1970) comparison of 
these four schemes is based on the application of these schemes to the simple system of 
equations representing two-dimensional propagation of long gravity waves given by sys-
tem 2.245 and neglecting the earth's rotation. Here, u and y are the vertically averaged 
values of the velocity components in the x and y directions and D is the uniform depth of 
the water body. The analytical solution of this system was referred to as the real or physical 
wave by Sobey (1970). A solution of this system in the form of a Fourier series is 

(2.251) rj E 

where Ci = (u, y, M T  is the analytic solution, U„,' = (e„, v,*„, le„)T  is the amplitude of 
the mth component, p„, is the real wave frequency for the mth component, o-„, is the wave 
number of the mit  component, and S is the coordinate dimension of the direction of wave 
propagation. The superscript T denotes a transpose vector. 

It will be assumed that the direction of wave propagation is oriented at angle .-y„, to 
the positive x-axis. Then, the components of the wave number can be defined as 

o, 	'y,„ 

= 	sin 

Since this is a linear system, all one has to consider is only one component of the Fourier 
series (i.e. from eq. 2.251): 

(2.253) ri = 

Substituting eq. 2.253 into system 2.245 (with f = 0) gives the following three 
equations, written for convenience in the matrix notation: 

(2.252) 

The determinant of the coeff cient matrix, equated to zero, gives the cubic equation 

(43) 3  + o-2 ,gDij3 = 0 

The solutions are 

13 2,3 = J:0- Vi7/5 
Let 0i, „ represent the finite-difference solution at j àx, kày, and n àt. The grid used 

by Heaps (1969) is shown in Fig. 2.11, whereas the grid used by the others considered 
in this study is shown in Fig. 2.12. Actually, Heaps (1969) used a spherical polar 
coordinate system, and what is shown here is the equivalent Cartesian coordinate grid. 

The finite-difference forms for the Heaps (1969) scheme are 

(1-1j,k,n+ I — 	k,n) 	(hi+ 1,  k+ I , n 	hj– I,k+ I,n 	hi+1, k– I  n   (2.256) 	 + g 	
4 àS 	 = 0 àt  

	

vi,k, n) 	 1, k+ I, n 	111+1, k– I , n 	hi-i, k+ I ,n 	h j– I , k– I , n)  2.257) 	 + g 	
4àS 	 = ( 

	

	 0 à t  

f3  = 0 
(2.255) 
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FIG. 2.11. Finite-difference grid used by Heaps (1969). 

( 11j, k, n+ I 	hj,k,n) 
 + D 

(Ui+1,k+1,11+1 	tej-1,k+1,11+1 	Uj+1,k—I,n+1 	Uj-1,k—l.n+1) 
(2.258)  

At 	 4AS 

+ D 	
+ 	

= 0 4àS 

In this case, all the eigenvalues of the amplification matrix are within the unit circle on 
the imaginary plane, provided 

àt 
(2.259) gD( ) 2E, (sin2 

 o- I  àS cos2  cr2 àS + cos 2  cr i àS sin2  o-2 àS)  <4 

The stability condition becomes 

àt 2  
(2.260) gD ( ) -à--s- < 4 

For the Reid and Bodine (1968) scheme, the finite-difference forms are 

	

(i4j ,k, n + 1 — 	k, ti) 	(hi+ I , k, — hi— I k,  n)  
(2.261) 	At 	

+ g 	
2àS 	

= 0 

k,y,v 
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FIG. 2.12. Finite-difference grid used by Reid and Bodine (1968), Leendertse (1967), 
and Abbott (1969). 

(Vi,k,n+1 	Vj,k.n) 	(hi, k+  I  ,  — hi,  k— I , n)  
(2.262) 	 + g 	2àS 	

= 0 
At  

(hJ k+  I — hi, k, n 	[( 11:1+1,k,n+1 	 , (V,i,k+1,n+1 	Vj,k-1,114-11  
(2.263) 	 +D 	 -t- 	 — 0 At 	 2AS 	 2àS 

In this case, all the eigenvalues of the amplification matrix lie on the unit circle in the 
imaginary plane, provided 

tït y . gD 	(sin2  o- I àS + sin2  cr2 àS) 	4 

The stability condition becomes 

à t  (2.264) gD ( y-à7§ < 2 

Leendertse (1967) used a leap-frog scheme, and the finite-difference forms are 

k l y,v 
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(lij,k,n+112 	(hj+1,k.n+112 	hj-1,k,n+112) 
= 0 (2.265) 	 + g  MS 

n  (vi,k,+1/2 — vi,k,n) 	(hi,k+1,n — 11J,k-I.n)  

	

(2.266) 	i A a 	
+ g 	 = 0 

i t MS  

(2.267) 
(hi.k.n+1/2 —  11;

•
k

'
n) 

 + D
ruf-Fi.k.n+112  — iti-i.k.n+112) + (vj.k+i,n  — Vj,k-1,n)]  

=0  
1St 	 MS 	 2àS 

(ui,k.n+1 —  ui.k.n+1/2)  + g (111+1.k.u+1,2 — hi-i.k.n+1/2)  = 0 (2.268)  
làt 	 2àS 

(vi,k,n+I — vi,k,n 	
+ g +1/2) 	(hi,k+I.n+i —  hi.k-I.,,+i)  

	

(2.269) 	 =0  
lAt- 	 2àS 

	

(2.270) 	
(iri,k,n+I — hi.k,n+1/2)  

+ D
[(ui+1,k,n+112 — iii-i,k,n+112) 

13,t 	 2àS 

All the eigenvalues of the amplification  matrix lie on the unit circle and the scheme, being 
implicit, is unconditionally stable. 

Abbot (1969) also used the leapfrog scheme, and his finite-difference equations 
become 

(ttnk,n+1 — U) k,,) 	(41+1,k,n+II2 — hj—l.k,n+II2) = (2.271) 	 + g 	 0 
àt 	 2àS 

(2.272) (h,,k,n+1/2  — ht.k.n  + ) 	D [( 14,+1,k,n+i  —  

lAt 	 2 	 2àS 

+ 
(i4J +1,k,n  — Uj--1,k,n) + 2(Vj.k+1,n  — Vj,k—I,n 	,_. ) 	0  

MS 	 2àS 

(2.273) 
(vi,k,n+1 —  vi,k,„) 	g 

+ 	
rh,,k+1.„-H  - h,,k-i.„+1) 	(hi,k+1,„  - hi,k-i,„)]  

àt  2 	2àS 	 MS 	= 0 

(2.274) 	
(hi,k,n+1  — hi.k.n 	

+ 
+1/2) 	D [(iiii-1,k,n+i  — Iii-i,k,n+i)  

lAt 	 2 	MS 

	

(I/J+1,k,n — 111-1,k.n) + 2(Vj,k+1.11+1  — V j.k—I,n+1) 
  

MS 	 MS 	
=

0 
In this case, all the eigenvalues of the amplification matrix lie on or within the unit circle 
in the imaginary plane. Again, being an implicit scheme, this is unconditionally stable. 

The numerical solutions will be referred to as the computed wave. For the four 
schemes described above, a Fourier series solution is assumed: 

(2.275) ri = 

where [3' is a complex number of dimension of time' and is such that Re (w) is the 
frequency of the computed wave and Im (13') is a measure of the amplitude deformation. 
Also, let 

(2.276) 4) —_ e ig'àr 

Leendertse (1967) defined a complex propagation factor T as the ratio of the corn- 

(Vj,k+1,n+1 	Vj,k-1,11+1)]  
= 0 2S  

e i([3'nàt+criJàS+cr2kL1S) 
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But 

and 

puted wave to the real wave after an interval of time in which the real wave propagates 
over its wavelength L. Thus, 

e np.i+Œs) 

T= 
e mr3H-Œs) 

t = 27t/B 

S = 2Tr/cr 

Hence, 

(2.277) T = e'21 [(13' 113) — 1] 

The system of equations represented by 2.245 (withf = 0) has three waves. The first 
wave represents the steady-state flow for the whole field. It can be shown that, for this 
wave, for the four schemes considered: 

13 ; = 0  

Hence, 

(2.278) T1  = 1 

The second and third waves represent, respectively, the positive and negative character-
istics of the system. When a finite-difference scheme is stable: 

(2.279) T2 = T3 =  T 

Concern will be with this value of T. The modulus of T represents the amplitude error of 
the propagated wave, and the phase error of the wave is given by the argument of T. 

It can be shown that 

(2.280) I TI =  l e  In' (1"1" 

where v is the number of time steps necessary to propagate the real wave over one 
wavelength. Hence, 

period 	217. = 
2IT  I 	D v 	— At 	Pa crAS 	g  

Hence, 

7  [Re (Wilt) 
(2.281) Arg T = 

21. 	
1 

Equation 2.281 can be evaluated for the four schemes discussed above. 
For convenience of comparing the four schemes, the following dimensionless param-

eters are defined: 

Dimensionless celerity At = v gD 

21T Dimensionless grid size = —AS = —
crAS 
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where crAS is a dimensionless wave number. 
The results could be summarized as follows. The explicit scheme of Reid and Bodine 

(1968), when stable, offers slight advantages over the other schemes. However, if the 
stability criteria are not met, this scheme exhibits extreme amplitude distortions. The 
explicit difference scheme of Heaps (1969) exhibits a slow, creeping instability and the 
wave deformation becomes serious with increase of the dimensionless celerity. Both 
implicit schemes exhibited satisfactory wave deformation. 

Until now, grids with square elements (i.e. Ax = A y = AS) have been considered. 
Bennett (1977) used a numerical model in which Ax = A y, and he referred to this as a 
rectangular element model. 

2.10 Energy Calculation as a Test of Computational Stability 

Earlier, we have seen that the criteria for computational stability can be established 
rigorously only for linear equations with constant coefficients. Harris and Jelesnianski 
(1964) used the criterion of finite energy in the system as a measure of computational 
stability. 

After ignoring bottom friction and the meteorological forcing terms, the energy, E, 
in the system is given by 

(2.282) E = —2 f [g 
	

h2 	+ 
(m 2 + N 2 )]  

D 	 dA 
A 

where A is the surface area of the water, pis the water density, h is the free surface height, 
and M and N are the x and y components of the volume transport, respectively. 

The energy, E, is determined in the numerical model through 

E*  p(AS)2  

	

L-1 W- I 	 W-1 

	

(2.284) E*  = E E 	j)2, [(m.,)2, (N1.,) 2 ]/D1,  + 	E 
6 

{ , [(ho,i) 2 + (h,,,) 2 ]  

	

(= 1  j= I 	 2 j=i   

[( 1110,J) 2 	(N0,j) 21/1)0,j 	[(ML.j) 2 	(NL,j) 2 ]/DL,j} 
L-I E  _ 	{guh1,0) 2 	(hi,w)2 ]  + [( ,40)2 4_ (N1.0) 2 ]/D1.0  

2 

(hL,0) 2  + (hL,w)2 } [(M,,,,) 2  + 	w} 	{(40) 2  + (1/0.1 )
2  + 

Here, the grid points in the x direction range from 0 to L, the grid points in the y direction 
range from 0 to W, àx = Ay AS, and D 1 ,1  is the water depth at  1 ,1.  

Sielecki (1968) introduced a finite-difference scheme involving forward time differ-
ences and examined the energetics of this scheme. She pointed out that in uncentered 
time-difference schemes even on a nonstaggered space grid measures have to be taken to 
calculate the energy at any given time correctly. 

Sielecki (1968) used the linearized storm surge equations, retained the Coriolis terms 
and the atmospheric pressure gradient terms, but ignored the wind stress terms and the 
bottom friction terms. Then, for the set 

(2.283) E = 
2 

where the finite-difference form for E*  is 
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ah _ am  aN 
at 	ax 	ay 
am 	ah D aPa (2.285) 	f N — gD — —p  

n ah D aPo 

the following finite-difference forms were used: 

k, n+1 = hi, k,,t 	211:s 	k, — M j— I , k, It + Nj, k+ I ,  

(2.286) M j, k, I = A 1 „ 	f àtNi, k ,„ 
2àS 

DJ k (hj+ I, k,n+ I 	hi-t, k, + I) 

àt — — D 

g A t 
Nt.k.n+1 = Nj, k, 	f 	— — D. k( h • k+ I 11+1 	hj, k— 1,et +I) 

gàt —  

a P„) 
ax /J,k,„+I 

p "-"\ ay ii,k,„+! 

Her grid is such that M and N are defined at the same grid points. At the intermediate points 
in both x and y directions, h is evaluated. Although system 2.286 looks like a combination 
of explicit and implicit schemes, when evaluated in the order indicated, it is an explicit 
scheme. This scheme is also quite economical in storage, because the dependent variables 
have to be stored only at two time levels (and not three), and the scheme is economical 
in computer time because M and N are evaluated only at even j + k and h only at odd j 
+ k. 

The stability condition is given by 

At ) 2  < 4  f(At) 2  
gpinnx às  — 2 — f At 

= 2 + f At 

For practical purposes, this condition reduces to 

(2287) At 	V  2  . 	37s, 5 gpin,  

The energy relation for system 2.285 is 

(2.288) .à--t'a  Ifs  [ 	(M2  + N2) 	 d + 	2 	dv 	P 2D 	2 11 	+ p s  " 	dx dvat 
Po 

(gh + —)Mn dl = 0 

Here, S is the surface area of the water body and C is its contour. For a closed basin, the 
third term involving the normal transport components becomes zero. Let the length (in the 
x direction) and width (in the y direction) of the water body be (R — l) AS and (T 
Then, the first part of the first term in eq. 2.288 becomes 
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Ad 2 	Ad 2 

(2.289) 	2 	ff m 2  dx dy 	( 11/1 	1 ' 1  + 
M I,T 	ir  R,I 	R,T 

(3■ S)212 	s 2D 	 D1,T 	DT,1 	DR,T 
2 	 (R-3)/2 (M22i+ 	NI 2j+  I, T) 

	

(T-3)/2 (M 21  2k+ 	/ 11 R, 2k+I 	2  E 	 + 

	

D2 j+ I, I 	D2j+ I, T 
+ 2 E 	 

DR,2k+I Di,2k+1 k=1 

(R-3)/2 (T- 3)/2 	Ad2 	 (R - 1)12 (T-I1/2 	Ad 2 
+ 4 E 	E  (— 2j+ I , 2k+ I  ) 	4 E 	E  (.2,,2k)  

k-I 	D2j+1,2k+I 	 k=I 	D2,2k 

The finite-difference forms for the other terms can be written similarly. 
However, there is difficulty associated with the time-derivative terms. In the finite-

difference scheme 2.286, certain terms were evaluated at step n and others at step n+ 1, 
and the scheme is different for the different dependent variables. Hence, to obtain a 
finite-difference scheme consistent with eq. 2.288, define 

(2.290) (EN)„ = 
[3(EKIN), + (EK1N ),,] 	 [(E[(E01),,_ 3(EpoTM  

4 	 4 

where 

(2.291) 
EKIN = 1  E E (m-;' +  4' )  (As)2  n 

j 	k 

Epur = 

2.11 Treatment of Open Boundaries 

At times, storm surge calculations might have to be performed in a limited region of 
a large water body. This problem could be tackled in at least two different ways. In one 
approach, one can perform the calculations in the large water body of which the smaller 
water body is a part and then use the results for the area of interest. However, this approach 
is not economical and may not even be possible for certain water bodies. Also, there may 
be a problem with the resolution, since one has to model a larger water body. In the second 
approach, artificial open boundaries can be introduced around the area of interest and the 
calculations can be performed in the limited region of interest. However, along these 
artificial open boundaries, certain conditions have to be introduced, and without proper 
considerations, these conditions might make the results in the interior region inaccurate. 

The commonly used practice of putting zero surface elevation at the sea boundary is 
not at all satisfactory, because this amounts to perfect reflection at the sea boundary. A 
better approximation (Heaps 1974; Henry and Heaps 1976) is to assume that all outward 
traveling waves are normal to the boundary and to calculate the volume transports M (or 
N) from the water level h at the nearest interior grid point; i.e. M = [g(D + h)]h112 . This 
is the so-called radiation condition. 

Reid (1975) corrected a misconception commonly held (e.g. Forristall 1974) in 
applying open boundary conditions. Forristall (1974, p. 2722) stated "At shallow water 
(lateral) boundary points, the derivative of velocity perpendicular to the boundary is set 
equal to zero so that the transport across the boundary may be calculated from the adjacent 
flow. This condition is designed to let long waves pass unimpeded through the artificial 
boundary." 
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Reid showed that, although such a condition will permit flow of fluid to or from the 
system, it will produce total reflection of long waves and not zero reflection as Forristall 
stated. 

To show this, following Reid (1975), assume a simple harmonic wave of frequency 
w incident at an angle 0 relative to the x-axis. Owing to this, the transport for x 	0 is 

M, = A i  cos [cot + k(x cos 0 + y sin 0)] 

where A i  is the local incident amplitude for transport and k is a local wave number which 
is determined by the frequency, the local water depth, D, and the Coriolis parameter, f. 
In case of reflection, the transport for x 0 will be in the form 

Mr  = A, cos [cot + k(— x cos 0 + y sin 8) + 431)] 

where A, is the reflected amplitude for transport and I) is a relative phase angle. 
The boundary condition under consideration is 

am 0 at x = 0 ax 
where M is the total transport in the x direction, i.e. (M, + Mr ) on the positive (interior) 
side of the open boundary. It can be seen that for a nontrivial A ;  and 0 	101 < I r/2: 

A, =  A, and (1) = 0 

Hence, the above boundary condition leads to total reflection with no phase change for the 
reflected M field. 

Reid (1975) suggested that to permit wave transmission through the open boundary, 
one has to force the normal component of transport to be in phase with the water level 
deviation. The outward flux of energy J through a unit length of vertical boundary, from 
the bottom to the surface, is J = p(gh + 1/2q 2 )Q„ where Q„ is the volume transport 
through a unit width of boundary taken positive outwards, h is the surface elevation, p is 
the water density, and q is the speed of the fluid. For the radiation of energy it is required 
that the average value of J over one wave cycle be positive. If h q2 /2g, then the 
necessary condition is that hQ„ be positive at the boundary. Hence, a boundary condition 
of the type (used by Reid and Bodine 1968) Q„ = ch, where c is a positive coefficient 
(having dimensions of velocity), permits proper radiation of energy through the open 
boundary. 

Wurtele et al. (1971) developed boundary conditions that will allow disturbances to 
travel out of the computational region with negligible reflection at the open boundaries. 
In developing these boundary conditions the concept of Riemann invariants has been used. 
These conditions in one and two space dimensions have been used to study the flow around 
a sea mound, island arc, and on a shelf, and comparison was made with the Sommerfeld's 
(1949) radiation condition as described by Vastano and Reid (1967). 

Wurtele et al. (1971) coupled the meteorological forcing terms into the single term 
(F„ Fy ) and began with the simple system 

(2.292) 

ah 	(am 
at 	_\ ax 	ay 
am 	n ah 
at 	— g —  ax 	' 

ÔN 	ah 
at = 	.9y 
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Let à denote a forward-difference operator, 8 specify a central-difference operator, and 
indices j, k, and n are such that 

x, y, t = (jAx, kAy, nAt) 

Also let Lx  = ày = àS. Then the finite-difference forms of system 2.292 are 

(2.293) 

Llt 	A , 
 "n 	

\ 

11 j. k,n = 	23.s 	r 
j_ 

 uki
AT 

 k.n) 

n  àt 
341- lk j , k,n = 	 23,s  ujnj,k,n+ I 

	„ 
Ll n i\IL" = 	ukni ' "+1  

For the case of uniform depth and zero external forces, Garabedian (1964) gave the 
following analytic solution for the water level h: 

(2.294) h(x, y, t) = -c —at —2.7r 
1 a 1 if Gi(x + 	Y  

VC 2 t 2  e-  2  d 1  d 2  

4_ 1 ff G2(x + 	Y + 2) 	
c42 2'rrc J J Vc 2 t 2  — 	

_ 2 d1 

ah where e, + 	< c 2 t2 , c = VgD , G I  = h(x, y, 0), and G2 =
at

(x, y, 0). 

Equation 2.294 gives the solution at any point and time as an area integral over the 
circular domain of dependence cut from the initial data plane by the characteristic cone 

(x - X0) 2  + 

and (xo , yo , to ) denotes the initial state. In the one-dimensional case, eq. 2.294 reduces to 
the d'Alembert solution 

q 
(2.295) h = -

1
[G 	+ ct) + GI (x - ct)] + -2 	G2(x + 2 	

f 

-et 

It can be seen that (in the two-dimensional case) once the disturbance arrives at any point 
in the computational region, irrespective of how concentrated it might be originally, it will 
not simply vanish at this point. If this location under consideration is an open boundary, 
the disturbance outside that boundary will influence the solution in the region interior to 
the boundary. Thus, the interior solution is quite dependent on the condition applied at the 
open boundary. Similar results hold for the one-dimensional case. These results are for the 
case G I  0, G2 0. However, if G2 = 0, a concentrated disturbance progresses without 
change of shape and an arbitrary point returns to its original state after the passage of the 
disturbance. 

For the one-dimensional case, system 2.292 reduces to 

am ah 
(2.296) —a t = c2 —

ax 

a h 	am 
(2.297) —a t = --ax 

Equation 2.297 x c ± eq. 2.296 gives 

(y - y 0 ) 2  - c(t - t0 )2  = 0 
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a- uti + ch) + c—a 	+ ch) = 0 at 	 ax 
(2.298) 

a —at (m — ch) —  c--(M  — ch) = 0 ax 

Equation 2.298 states that the linear Riemann invariants M ± ch are respectively con-
served along the directions 

ax 
at  - = 

The characteristics x ± ct could be drawn to intersect the open boundaries at x = 0 and 
L. The boundary conditions are 

M + ch = 0 at x = 0 

M — ch = 0 at x = L 
These conditions represent the influence of the outer region on the interior region. If h is 
determined at each boundary (x =  0 and L) by a one-sided space-difference, then M may 
be determined from system 2.299. In the two-dimensional case, the condition becomes 

(2.300) (M 2 4_ N2) 	ch 	0  

at all the boundaries. 

2.12 Treatment of the Nonlinear Advective Terms 

Until now, only the linearized versions of the storm surge equations have been 
considered. In shallow-water areas and in the computation of the horizontal motion, at 
times the nonlinear advective terms might have to be included. Charnock and Crease 
(1957) showed through dimensional analysis that the nonlinear advective terms become 
important when the free surface height is of the same order of magnitude as the water 
depth. 

Flather and Heaps (1975) developed a model for Morecambe Bay allowing for the 
inclusion of the nonlinear advective terms. In the depth-averaged form, the equations of 
motion and continuity are 

au 	au 	au 	ku(u2 	,2)1,2 , 	ah (2.301) —

at 

+ u— + v—ay — fv + 	
H 	+ g— = V ax 	 ax 

kv(11 2 	v2)"2 	ah (2.302) —a v + —a v + v —a v + f u + 	 + g — = 0 at 	ax 	ay 	 H 	ay 
ah 	a 	a (2.303) — + -

ax— (Hu) + —ay (Hv)= 0 ar  

Total water depth =H=D+ h and D = undisturbed water depth. 
The depth mean currents are defined as 

1
f 	 1 	h  = — . 11' dz, v H— f v i  dz H -D 

where  u'  and v' are horizontal current components at depth z below the sea surface. To 
write the depth-averaged forms for the advective terms, we assume that the currents do not 

(2.299) 
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fh 

vary significantly in the vertical direction, i.e. 

u'' dz = Hu', I 
rh 

v' 2  dz = Hy' 

u'v' dz = Huv 

Initially 

(2.304) u=v—Oandh=Oatt= 0 

The grid is similar to that shown in Fig. 2.12. 
The scheme for the nonlinear advective terms used by Flather and Heaps (1975) is 

somewhat different from the schemes used by other authors, e.g. Lax and Wendroff 
(1960), Crowley (1970), and Sielecki and Wurtele (1970). The scheme to be described 
below is based on the angled derivative approach suggested by Roberts and Weiss (1966). 
To explain this approach, following Flather and Heaps (1975), the simple nonlinear 
one-dimensional advection equation will be considered: 

(2.305)  ar 	ax 
The finite-difference form of this can be written as 

[ui(t  + At) — u1 (0] 
(2.306) 	 + 	—2 [u,(t + At) + u,,,(t)] 

At 

1 — [u,_ 1 (t + At) + u,(t)]}/2AS = 0 

where 

=-1 (u - 1  • + 2u1  + u1, 1 ) ' 	4 	1   

Here, 2AS is the distance between successive u values (or successive y or successive h 
values). Here, it is assumed that before computing uf (t + At),  u(t) for 1 	j 	m and 
u,(t + At) for 1 j 	— 1 are already known. The finite-difference approximation for 
u/ax is called the angled derivative and is correctly centered in space and time. 

In the next step, the direction of integration is reversed so that integration is per-
formed in the direction of decreasing i. Then, the finite-difference approximation is 

[ui (t + A t) — ui (t)] 	Ii (2.307) 	 + —Mt) —2 [u1 (t) + 	i (t + T)] 
à t 

— —1 [u1 _ 1 (t) + u,(t + At)]}/2S = 0 
2 

provided  u1 (t) for 1 j m and uf  (t + At) for i + 1 j m are known. Equations 
2.306 and 2.307 can be rearranged to give explicit forms for ut (t + At). 

Flather and Heaps (1975) described two different ways of extending the angled 
derivative approach to include all the nonlinear advective terms. In the first method, the 
variations in the components of the depth-averaged current over one time step due to 
advection alone are calculated, and these are added to the variations caused by other terms. 

Before writing the finite-difference forms, for convenience, define 
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1 = 2  (Hi  + Hin ) 

9i  = max (di , H0 ) 

1 e i  = —2 (11;  + Hi ,„,) 

Ei  = max (ei , Ho) 

+ + 	 ) 4 	 . . + 	. 

— 1 =—(v. + v. 	+ v. + 4 	 1-11 	 • . 

Ho  is a prescribed minimum depth for the denominator in the frictional terms which could 
otherwise lead to a singularity at H = 0. Since 9, is the maximum value of di  or Ho , it 
cannot be smaller than 1/0 . Similar arguments hold for E.  The reason for prescribing a 
minimum depth is (besides avoiding possible division by zero) to cut off frictional 
damping before it becomes too great (due to very small water depth) and the boundary 
layer considerations on which the quadratic bottom friction is formulated are no longer 
applicable. Let there be  I  rows and m columns in the grid. 

The finite-difference forms for the tentative values of u and y are denoted by an 
asterisk. Then, 

[0(t  +  At) — iii(t)] 	 [u ? (1. ) 	i,7 2 (t)r2 

	

(2.308) 	 = f  i;7(t) — 	+ At) 	  At 	 D•(t) 

	

+ At) — 	+ At)]  
2AS 

[v"(t + At) — vi(t)] 	—* 	
[ ii-72 (t)  

	

(2.309) 	 = f u ;  (t + At) 	Icv(t + At) 	  At 	 E(t) 

g[hi (t +  At) — h i ,„,(t +  At)]  
2AS 

For odd time steps with increasing i, the following are final forms for 14;  and y,: 

Pti (t  + At)  — 0(t + At)] 	1 

	

(2.310) 	 7 
At 	

*(t +  At)  [u +  + At) — 0(t + At) 4AS ' 
1 

+ ui(t + At) — u i _ 1 (t + At)] — —8AS 
{[v ,,,(t + At) + 	+ At)] 

X 	+ At) — it i (t + At)] + [v(t + At) + v 1 (t + At)] 

X Pil;(t + At) — u„,(t + At)]} 
and 

	

[vi (t + At) — 	+ At)] 	1 	* 
(2.311) 	At 8AS

{[u 1 (t + At) + 	+ At)] 

[v;e+1 (t + At) — v"(t + At)] + PC_ 1 (t + At) + e„ 1 (t + At)] 
1  _* 

	

x [vi (t + At) — vi_ 1 (t +  At)]} 	Lus v f  (t 	At)[v i_„,(t + At) 

— v i (t + At) + v"(t + At) — vL i (t + At)] 
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The term for has been defined. Define 

(2.312)171  = 	+  2v1  + vi+m) 

Equations similar to 2.310 and 2.311 are true for even time steps with decreasing i. The 
finite-difference form for the continuity equation is 

[121 (t + At) — Mt)] 
(2.313) 	 — 	[d1 (t)u1 (t) — d,_ 1 (t)u 1_ 1 (t) 

At 

+ e,_„,(t)v,_„,(t) — e1 (t)v 1 (t)]12àS 

In the second method, Flather and Heaps (1975) included the advection terms directly 
and gave the following finite-difference forms: 

(2.314) [ui (t+àt) — u,(t)]/At = 	4s 17,(t)[u1, 1 (t) — u1 (t) + u,(t+àt) 

—  u1_ 1  (t+  At)] 8 13,s {[v 1 _„,(t) + 	 + àt) — u,(t  +t)]  

+ [v,(t) + v1, 1 (t)][u1 (t) — u,,,„(t)]} + f (t) — ku,(t + àt) 

X 
 [11 . (t) +  i); 2 (t)]"2  

9(t) 	
g [ 1 (t + At) — hi (t + t)]/2S  

i   

and 

1  (2.315) [yr ( t + à t) — yi ( OVA t = 
8àS 

{[u
1
(0 + u,„,(t)]  [v11  (t) — y,(t)] 

+ [u1_ 1 (t) + u,,1 _ 1 (t)][y1 (t + T) — y1_ 1 (t +  At)]} 

1 _ + A t) — yi ( t + A t) + v 1 (t) — 

[ 	+ y (t)]1/2 
— f  u (t + àt) — kv i (t + At) 

Ei (t) 

— g[h i (t + àt) — 	+ A t)]/2S 

Equations 2.314 and 2.315 are for the odd time steps for increasing i and with u calculated 
before v. For even time steps, for decreasing i, y will be calculated before u. 

One word of caution: since not all the values of the variables required to compute 
from the above equations are defined adjacent to open boundaries, one has to ignore the 
advective terms within a distance of 2AS from these boundaries. For a calculation for 
Morecambe Bay, Flather and Heaps found some instability (in the form of grid scale 
oscillations) originating from the corner of the open boundary. This instability was re-
moved by omitting the nonlinear advective terms within a distance of 6àS from the open 
boundaries. Leendertse (1967) excluded the nonlinear advective terms in a distance of 2à S 
from land boundaries to suppress instability. 

Henry (1982) encountered a similar instability in a calculation of the circulation in 
Bridport Inlet and suppressed the instability by using a procedure similar to that of Flather 
and Heaps (1975). 

Crean (1978) modified the scheme of Flather and Heaps (1975) in three ways by (a) 
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using the vertically integrated forms of the equations (i.e. transport components) rather 
than the depth-averaged forms, (b) using the flux forms for the nonlinear advective terms, 
and (c) including the horizontal frictional terms. Crean (personal communication) found 
it necessary to include horizontal friction to control the slight instability due to the 
inclusion of the nonlinear advective terms (he called this instability noodling). He defined 
noodling as small grid scale fluctuations in the direction of velocity vectors occurring in 
the areas where nonlinear advective terms are important. The question of computation of 
the second derivatives near the boundary (to evaluate the horizontal frictional terms) is 
avoided by setting the horizontal friction coefficient, y 11 ,  to zero near the boundaries. This 
means that in the shallow areas near the coast, bottom stress is dominant over lateral stress. 

The forms of the equations of motion used by Crean (1978) are as follows: 

am a (m 2 ) a (mN (2.316) — + — — + 	— f N + v H (- '9±4  + a2m) 2  — at 	ax H 	ay H 	 ax 	ay' 
ah KmVm 2  + N2  

+ gH + 	 = 0 ax 	H 2 

aN a (MAI 	a (N 2 ) + fm 	(a2N + a2N) 
(2.317) 

	\ax2 	ay 2 I 
ah 	

H 2 

 KNVm2 + N2  
+ gH

a  + 
	 = 0 

y  

(2.318) 	+ 	+ —
aN 

 =0 at 	ax 	ay 

where H --= D + h is the total water depth, D is the undisturbed water depth, K is a bottom 
friction coefficient, and vii  is the horizontal eddy viscosity. The grid is similar to that used 
by Flather and Heaps (1975) and Hansen (1962). The finite-difference form for the 
x-momentum equation is 

(111i,n+1 	gH 	 KMJ,„(114;2,„
/2 

(2.319) 	 = /v. n 	(h .+ +1 	hjn ,+ I 1 

	

j ' 	AS j  '" 	 (14)2 
r  — x 2 	 , 

VIIi 

	
+ 	+ 	Mj+i,n 	41vIi, n) 

(AS) 2   

The finite-difference form for the y-momentum equation is 

(2.320)  	f 	i" is  (11;.„4-1 — hj—m.n+1) A t 

KN.t.n(Ain 	/\/,„)1/2/(17;+„,)2 
	(M.» en, nNj, n 

—. ■• 
1 	[ 	 (Kr; , „)2 	(N') 2 1 	 )  

àS 	1- 1( 1.7); 	17)1+„,) 	WI; + 	il;+2„,)-13' S  

	(N —„, „ + N, „ +N._, ,,
1," 

+ N 	— 4Ni4N,,)
(AS) 2 	 j  

1 n ) 	 j— I • n )- 	I 

+ H—Jx+i) 	+ 1:1;)i àS 	
Ki;  — n 	 1 n)  

17i  171. 	àS 
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where 

1 —
2 (M + M 

1 
= (M; + 

(2.321) R.;  = (11;  +  H1 , + 1-4--m+1 + 14-1) 

=1 (M. + M-+ + M.+m  _1 + 4 	m  

A7= 	(A/ 4. i1/41 	4_ m  
• •J 	71. 	• — m • 	j— m + + 

The finite-difference form for the continuity equation is 

(h, +1 	hi, n) 	 (
11  j. n 	M j—  I . 	N j— m n 	N,,)

(2.322) 	' 	=- àt 	 àS 

V2gHmax 
Falconer (1980) introduced a conditionally stable three time level implicit scheme 

including the nonlinear advective terms. This scheme is especially suitable for narrow-
entrance harbors and estuaries where the nonlinear instability problems associated with 
rapidly changing velocity fields might be very important. 

The equations of motion and continuity in the depth-averaged form are as follows: 

The stability criterion is 

à At 	S 

(2.323) 
 au + a (-a--  u2  auv 	fV + g ah + at 	ax 	ay 	ax  

gu (u 2 	v 2 ) 112 	p ,,yww  

(D + h)C2 	(D + h) 

_ v  (a2 u a2 u) = 0  

	

H 	2 aX 	aY 2  
all 07( U2  + V2 ) "2  av 	(avu  all') f U + g ay  + (D h)C2 (2.324) 	4-  a  ax 	ay 

p'y WW 	
( VH 

a2v + a2v) 
(D +  h) 	'a  x 2 	ay 2  

a h 	a 	a 
(2.325) — + —[(D + h)U] + Ty 

RD + h)V] = 0 at 	ax 
where a is a correction factor for the nonuniformity of the vertical velocity profile, C is 
a Chezy roughness coefficient, p' is the ratio of the density of air to that of water, 'y is a 
wind resistance coefficient, and W, Wx , and W. are the absolute wind velocity and its x and 
y components, respectively. Note that in eq." 2.323 and 2.324 the fifth and sixth terms 
represent the bottom stress and the wind stress, respectively. 

Assume that the velocity profile in the vertical plane can be represented by the 
logarithmic velocity distribution: 

(2.326) u = —u* ln (D + z) + constant 
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where U* is the shear velocity and k is the Von Karman constant. Then, 

= 1 + 	 
C 2 k 2  

and define 

(2.327) I = k(D +  z) [i 
(D + z)1 1 12 

 (D + 

where 1 is the mixing length and z is the vertical coordinate, positive upward. The 
depth-averaged horizontal eddy viscosity, vH , is given by 

r3Vi (D + h )(U 2  +  V2 ) 112  
= 

where 
(3 = k/6 

The finite-difference equations are expressed in the alternate direction implicit (ADI) 
form with two successive operations in time during each time step. For the first part from 
nit  to (n + 1/2) àt, the terms involving U and h of the continuity and the x-momentum 
equation are expressed implicitly whereas the terms involving V are expressed explicitly. 
For the second part, i.e. during (n + 1/2)t to (n +1)àt, the terms involving V and h 
of the continuity equation and the y-momentum equation are expressed implicitly whereas 
the previous implicit values of U are now represented explicitly. The grid used is similar 
to that in Fig. 2.12. 

In this scheme (to be described below) the only terms requiring special attention are 
the convective acceleration terms. These are represented in such a manner that their 
locations depend on the direction of the velocity component perpendicular to the axis 
direction under consideration (see Fig. 2.12). This scheme allows momentum pU and p V 
to be evaluated comely at the position where the momentum originates and this momen-
tum is conserved in the finite-difference equations. Define 
(2.328) hJ k,, = h(jàx, kày, nàt) 

1 
(2.329) iti k  = 	+ 

(2.330) h., = hi +,112. k  

1 f 
(2331) rtm = 71. Y1J-1/2,1,-1/2  + hi-I/2,k+ In + hi+ IP,k-1/2 +  

For the first part of a given time step, the finite-difference equations are 

(2.332) hn+1/2=  hn 	
àt  a 

2 S 	[(5).  + Ti')u1 + ,„ - 	—a [(5' + 	at j, k à ax 	 2àS ay 

amt[a (u2) 	+ -3-(uv)x,„,,,]+ 2Atf I7„ (2.333) 	Un+112 = 14-312 	AS ax 	I- 	a Y 

2àt (ah) lUn _1121 + 1 17.1  1 _ à f  g(u„.,112+ Un 
n+ /2 

-3/2 [ (by + TeX C-X)2 àS g  ax 1  

ww 2àtp' 

	

'Y - 		
+ 

vH 2àt r a 2 	 0 2 

- 	_ 
(D 3  + 	(AS) 2  LaX 2  U" -I/2  

ay - 

- 	Un  112 	Un -312)] at j + 	k 
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where 
a  
—(uv) =  Uj+ 1/2, k+ 112+p, n-1/2 ( 17x )j+ 1/2, k+ 1/2, n 
ay 

U.i+ 1/2, k-112+q,11-112(f 7x ) j+ 112,k-112,n 

where 

and 

with p and q having half-integer values such that 

p  = (-V 
\ 21 VI 1,+ 1/2, k+ 1/2 

(-- y =  
21V1 )j+ 1/2, k-1/2 

For the second part of the time step, 

	

At a — 	, 	-x 	àt a —, 
(2.334) h„,, = h " -"2 	Fr[(1)' 	

h+ )U1-112 - 7-;[(D + h )V1+1 at j, k 

a2àt  r a , (U—, 	 2 	 ahl 
(2.335) V„ + , 	1/„_, 	3,s  [ ax 	. V)„ 	a + 	V„1 - 2A/f D„+1/2 	3 g 

J 11+1 

2Atp')/WW,, 
- ,At g (V„ + , + V„_,)[

iu 	+ lvn li + 	- 

	

(Dx + hY)(CY) 2 	(D' + 
2àt 	F 7 a2 v 	( 321 

2(v„, +  Va ,)]  j, k + 1/2 

	

+ v
H ( iàS) 21- a X 2  ) 	aY n 

a 
— \ u- ,„ 	Cj:+1/2,k+1/2, n+ 1/2 Vj+ 1/ 2+p, k+112, n 	UX.  — 1/2, 	 k+1/2, n+ 1/2 V a X 	

j—  112+q, k+112,n 

p= ( 	
 

\21Ull i+1/2, k+ 1/2 

U) 

	

\ 21 Ul 	k+1/2 

The above equations can be solved by the Gauss elimination method. 
Davies (1976) included nonlinear advective terms in the equations of motion and 

continuity written in the spherical polar coordinate form: 

au 	U  au 	V 	a (2.336) a t + R cos 4.  ax +R  cos (i)  aci) (u cos 1)) — f V 

	

Ku(u 2  + v2 )'1 2 	g 	 a 
H 	

h + 	 + 	— 0 R cos (I) ax 

av 	u 	av v av u 2  tan d) 	KV(U2 4_ v2)112 
g 
_ 

d 

_ 

(2337)  at + R cos 	+ R +JeU  + 	H 	+ 	h  

(2.338) —ah 	1 	[ a 	a 
at + R cos cl) L ax  (HU) + i(-1) (HV cos 4))1= 0 

where x and 1:1) are the east longitude and north latitude, respectively, R is the radius of 
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the earth, H  =  D + h is the total water depth, and K is the bottom friction coefficient. 
The depth mean currents, U and V, are given as 

fh 
U = u(z)dz 

D + h -D 

1 	f "  V = 	v(z)dz D + h _D  

The angled derivative approach of Flather and Heaps (1975) was used by Davies (1976) 
in solving these equations. 

Book et al. (1975) developed "flux-corrected" transport schemes for the proper 
inclusion of the nonlinear advective terms. In this scheme, any artificial diffusion added 
to the advection term in the first step is subtracted in the subsequent step. Lam (1977) 
compared various schemes of this type and showed that a central-difference scheme 
produces oscillations of great amplitude, whereas a one-sided upstream-differencing 
scheme shows a large false diffusion. However, the one-sided upstream-differencing 
scheme combined with a flux-corrected transport scheme gave reliable results. 

2.13 Moving Boundary Models and Inclusion of Tidal Flats 

Moving boundary models have been developed to allow for the climbing of the surge 
on the coastline as well as to include tidal flats, which become submerged during flood 
and dry during ebb. 

Omitting the nonlinear advective and Coriolis terms, Reid and Bodine (1968) devel-
oped a technique for the inclusion of tidal flats. The coastal boundary that follows the grid 
lines can advance or retreat in discrete steps as the water level rises or falls. To allow for 
flooding of dry land and to simulate submerged barrim, empirical formulae based on the 
concept of flow over weirs were used, and application was made to storm surges in 
Galveston Bay, TX. 

Leendertse (1970) and Leendertse and Gritton (1971) developed an alternating direc-
tion implicit technique of allowing for tidal flats, with application to Jamaica Bay, NY. 
In this model also, the boundary moves along grid lines in discrete steps. However, the 
condition for dry area is more stringent than a simple zero local water depth (the stringent 
condition was used to suppress most of the computational noise due to the movements of 
the boundary). The programming effort is quite cumbersome, especially due to the implicit 
scheme used. Other works that dealt with this problem are those of Ramming (1972), 
Abbott et al. (1973), Backhaus (1976), Runchal (1975), and Wanstrath (1977a, 1977b). 

The model of Flather and Heaps (1975) has already been introduced in the section on 
nonlinear terms. For the calculations in which tidal flats are to be included, they omitted 
the advective terms and used a simple explicit scheme. The conditions they used depended 
on an examination of the local water depth and the slope of the water level. Use of the 
condition on the water level slope especially suppresses the unrealistic movements of the 
boundary. As in the models of Reid and Bodine (1968) and Leendertse and Gritton (1971), 
the water—land boundary follows grid lines in discrete time steps. 

Before the calculation of currents u and y in the x and)' directions at each time step, 
each grid point was tested to see if it was wet (i.e. positive water depth) or dry (zero water 
depth). If the point was dry, then the cuiTent was prescribed as zero. For wet points, u and 
y were computed from the relevant equations. 
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Yeh and Yeh (1976) developed a moving boundary model; i.e. the boundary between 
dry land and the water can move with time using an ADI technique. Since the technique 
was found to be numerically inefficient, Yeh and Chou (1979) developed an explicit 
technique. They showed that the moving boundary (MB) model gives storm surge ampli-
tudes that could be 30% smaller than those given by a fixed boundary (FB) model, and 
observations are in better agreement with the results of the MB model. In other words, FB 
models that assume a fixed vertical wall at the water— land  boundary could overestimate 
the surge by about 30%. 

Yeh and Chou (1979) used the following forms of the equations: 

a u au , 	au 	 ah 	aPa , 
at -, 	 ( T  s,—  TB,)  (2.33) — - u— v— — gu — fv = —g— — — --- r ax 	ay 	 ax p ax 	p(D + h) 

avav 	av 	 ah 	I  ap„ 	(Ts, — TB,) 

	

(2.340) — u— , v—ay — qv f u  - 	 g at 
, 

ax 	 ay P aY 	p(D + h) 

a h 	a 	 a (2.341) — + —[u(D + h )] + —ay [v(D + h)] = 0 at 	ax 

where u and y are the velocities in the x and y directions and q is the discharge per unit 
volume (other symbols as previously' defined). 

At the seaward open boundary water level h is taken as the sum of the tide plus the 
inverse barometer effect. The land—water boundary advances or retreats according to the 
rise or recession of the surge level, i.e. 

(2.342)  V 	= 0 at S[x, y, h(t)] = 0 

where V is the velocity vector, it is the unit vector normal to the curve S, and S[x, y, h(t)] 
is the water—land interface which is determined by the solution. Note that at the 
water—land boundary the normal velocity is taken as zero; however, this boundary is not 
fixed but is allowed to move freely depending on the surge elevation. This is done by 
varying the boundary lines on units of the grid (thus making discrete changes). However, 
this may give rise to computational instability problems. Hence, in very shallow areas, the 
bottom friction was increased (which is physically justified). Yeh and Yeh (1976) stated 
that the criteria upon which the location of water—land interfaces are based are relatively 
simple (see the original paper for details). 

The first set of numerical experiments were for the Gulf of Mexico. The surge as 
calculated by the MB and FB models at Eugene Island is shown in Fig. 2.13. Three 
differences exist between the results for both models. With the MB model (a) the max-
imum amplitude is about 30% lower, (b) the curve is flatter, and (c) the peak surge occurs 
later. The observed surge (not shown here) is in better agreement (mainly at the peak) with 
the MB model results. 

A second set of experiments was performed for the Hurricane Carla storm surge of 
September 1961. A third set of experiments was performed for the south coast of Maine. 
The surge from a northeaster on February 3, 1972, was simulated. A maximum surge at 
1.13 m was observed at Portland, ME. In this case, both models gave almost identical 
surges because of the steep slope in the inland areas and the small amplitude of the surge. 
Lynch (1980) suggested that these models should be referred to as "sequence of fixed 
boundaiy simulations." Yeh and Chou (1981) preferred the term "discrete moving 
boundary." 

Tetra Tech Inc. (1978) developed coastal flooding storm surge models which 
included the nonlinear advective terms, Coriolis terms, wind stress, atmospheric pressure 
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FIG. 2.13. Computed storm surge at Eugene Island, U.S.A. , using fixed boundary (FB) and moving boundary 
(MB) models. (Yeh and Chou 1979) 

gradients, and bottom stress. Certain aspects of this model and the main results will be 
covered in section 7.2. Here, discussion will be confined to the treatment of the 
land—water boundary. Usually, the landslope onshore is much greater than the slope of 
the ocean floor. In such situations, the coastal surge is assumed to propagate overland to 
its corresponding contour level (when the distance to that contour line is much less than 
one grid interval). However, there are certain regions, such as western Florida, where the 
onshore slope is very small and the limiting contour interval may be several kilometres 
inland. For such cases, a one-dimensional run-up model is used at various traverses. Johns 
et al. (1981) used a moving boundary model for the Bay of Bengal. 

Sielecki and Wurtele (1970) developed a moving boundary scheme in which the 
lateral boundary of the fluid is determined as a part of the solution. They tested the validity 
of their scheme by comparing the results of some simple numerical experiments with the 
results from analytical solutions. Actually, their scheme consists of three different meth-
ods: (a) Lax —Wendroff scheme (Lax and Wendroff 1960) as modified by Richtmeyer 
(Richtmeyer 1963); (b) using the principle of energy conservation as formulated by 
Arakawa (1966); (c) using the quasi implicit character of the difference equations. 
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N1,  k, I! +  I  = 	1, k. n 

2 
 (Nn 	 j, k, n) 

111, k, „ 	

)

H. + GA.k(11,,k,n) 2  (2.350) 

Sielecki and Wurtele (1970) wrote the equation of continuity and the equations of 
motion in a form that is somewhat different from the traditional forms: 

afi am aN (2.343) 
—ar ax ay °  
am a  (2.344) 	 a — + — (Mu + GH2 ) + —

ay 
(Nu) — f N = gH —aD 

ar 	ax 	 ax 
aN a (2.345) — + — (Mv) + —a (Nv + GH 2 ) + fM gH —aD 
ar 	ax 	ay 	 ay 

where D(x, y) is the undisturbed water depth, h(x, y, t) is the free surface (H = D + h), 
u and v are the velocity components in the x and y directions, M and N are the transport 
components (M = Hu, N = Hv), and G = g/2. 

For use with the modified Lax—Wendroff scheme, a nonstaggered grid was used. For 
any dependent variable let 

	

311).1, k. n = (I)j+ I, k, 	n 	(I)j- 1 k. n 

(2.346) 	à k (fri, k.„= 41],k+1,,,  

1 

	

I , k,n 	(1)1- 1, k, n 	(1)  j k+ I. n 	(I)  j. k- I .n) 

and 

Let 

àx = Ay  = AS 

àt  (2.347) E = 2àS 

The time integration of scheme 1 consists of two parts, in a given time step. In the 
first part: 

(2.348) h j, k, n+ 1 = j,k, n 	E (AiMi.k + AkNj. k) 

M j k ny 
(2.349) Mj, k, n+1 = 11711, k,n 	E [ 	, 	G (11 k,n) 

	 

f iàtN k, n 	E 	k, „-I jp j, k 

— f AtM i, n  E glii, 	AkD k 

In the second part: 

(2.351) H j, k, n+2 = H j, k, n 	2€(3'j I j, k, 11+1 4-  àkH j, k, n+ I) 
d 2 

k + I 	 2 (2.352) Mt.k.n+2 = j, k, n — 2e [àf  ( 	' n 	+ 	 à  (M.i.k.n+iNt,k,n+1)]  

j, k. n+ I 	 k 	['Lk, 11+1 

+ 2f AtNj, k , „+  -I-  2E gili , k, n àjD j, k 
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(2.353) N j,k,n+2 = N j,k,,, 	
Mk  n+ IN  k 11+1 	

N, n+ 1 
2E[à] 	 Ak  	G Ak(H,2,  „ A. )] 

k 

— 2f3aMJ, k ,„+ , + 2egH ,  k,„AkD 

Scheme II is formulated using Arakawa's (1966) approach. The staggered grid for 
this scheme is shown in Fig. 10 of Sielecki and Wurtele (1970). Also, define 

(1)j, k, =  4)  j+ 1/2, k, n  

àk (1),j , k, n = 	, k + 1/2, n 	(1)j , k- I/2,n 

1 
j (1)j, k, n = 	((Pj+ 	k, n + (1)j- 1/2, k, n) 

1 
■,k 1:1)  j,k, n = 	, k+ 1/2, n + 	1/2. n) 

(2.354) M j, k+ 1/2 = (bjH j, k+ 112) 8k( 11j, k+ 10) 

N j+ 1/2, k = ( ■kH j+ 1/2, k)( 8) vj+ 1/2, k) 

I Q 
Ui+ In, k = 	(M+  j+ 1/2, k+ 1/2 + BkM». 1/2, k- 1/2 ) 

1 s m  
V 	 112 = 	( 
	

j-112,k+112 + bkiVi+1/2,k+1/2) 

1 is m  

	

j,k = Wj"j,k+ 	+ jH j,k-11.2) 

As with scheme I, this scheme has two parts in each time step. In the first part: 

(2.355) 	k+ II2,n+ I = Hi+ 112, k+ 112, n 	2E à j M j+ 112, k+ 112, n + àkN,j+ 1/2.k+ 1/2,n 

(2.356) 	17j, k, 	H j, 	k,n 	2Etàj[U j, k, 11:1 11j, k,n + G 8k 	k,,+ l)]  

	

,àk(V k . „8kIlj,k,,,)} 	 ( f 	Vi, „ 	2E g 	k) 

(2.357) fii,k,n+i 	= 	 2E 13..j(t œ  j, k, n + 

+ 3(k[lij,k,n 8kl'j,k,n + G 8;(Hj, k, 11+1)]} 

In the second part: 

	

(2.358) - -j,kn+ 1 11j,kn+ I = 171  j, k, n k, 11 	2E[1 jU j, k, n8j j, k, n + I + G 8k(Hj2.,k,n+ I) 

	

 

+ LIk(V 	k, n+ I)] + j, k,n+ f 3". 	2egAiDi,k) 

and 

(2 .359) Ti.o.,,,+1v.I .k.,,+1 = 	 2 €Ai{( 17j.h,n+18j 	n+ I) 

+ ■k[V n 8,( 1.;  j, 1.,n+ I + GS j(H 	1)]). 	HJ,k,,,4 .1( f 	Ili, k,,,+1 	2E,g àkDi,k) 

where the symbol — over a variable denotes a temporary value. Note that in this scheme, 
the water level is calculated in the first half-step itself, whereas the final values of the 
currents are computed in the second half-step. 

Scheme III also consists of two half-steps. In the first half-step: 

fli.k,,,+  I  (— f 1t17j, „+ 1+ 2Eg 
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(2.360) 	= 	 E{Ai [(Dj.k + hi.k.n)Uj.k.n] + L‘k[(Dj.k + hi,k,n) 11j.k.n]l 

	

(2.361) 	= 	( 1  — E 3■Jui.k.n) 	l'i.k.n(f 	ekUj,k.n) 

(2.362) J.k.n+ = 1/j.k.,;( 1 	€3■kl'j,k.n) + Uj.k,n+I( —  f 	 gEàkki.k.n+i 

In the second half-step, only the final values of the velocity components are com-
puted: 

(2.363) LI - 1.k.n+1 = Uj.k,I; ( 1  — 	f.k.n+1) 	EVJ,k,nàkûj,k.n+I + f Ati5j.k.n+I 	gEàjhj.k,n+1 
and 

(2.364) 	Vj,k,n+1 = Vj  k,,  (1 — Eilk151i . k .n +1) 	E - 17  j.k.n+1 31j7j.k,n+1 	f àtUi,k,„+1 

— g€3,khij,n+i 

In eq. 2.360-2.364 the symbols used for the finite-differencing follow eq. 2.346 and 
2.347. 

Sielecki and Wurtele (1970) faced no difficulty in the calculation for the case when 
water level is falling at the shore. On the other hand, when the water level is rising, a new 
underground point may have to be included. To determine the position of the new 
shoreline, one has to know the slope of' the free surface at the present shoreline. To 
eliminate computational noise, the slope of the free surface at the shoreline was estimated 
from the last two underwater points to the first underground point (for details, see the 
original paper). 

Reid and Whitaker (1976) and Reid et al. (1977b) allowed for vast stretches of 
vegetation and marsh grass (such as in Lake Okeechobee in Florida) in storm surge 
models. They showed that when the marsh grass extends above the water surface, a single 
canopy flow regime results, whereas when the vegetation does not extend above the water 
surface, a two-layer regime exists. Flooded marsh areas are treated as an ensemble of 
subgrid scale obstacles. 

For submerged vegetation the model is similar to a two-layer system. The interfacial 
stress is formulated in terms of a coupling coefficient and the flow differential. The friction 
due to individual canopies is parameterized through a drag coefficient and the dimensions 
of the elements. When the canopy elements are not submerged, a sheltering factor is 
introduced. 

Reid and Whitaker (1976) assumed that the obstacles are rigid elements of width w 
and height b and are oriented normal to the flow. It was also assumed that they are 
distributed evenly over the bottom. For water depth D > b, the vertically integrated 
equation of motion for the lower layer is 

aQI 
(2.365) —

a t 

+ gbVh = Tc — TB FC 

For the area above the obstacles: 

a Q2 
(2.366) —

a t 

+ g(D — b)V h = 'Ts — TC 

where subscripts 1 and 2 refer, respectively, to the lower and upper layers. Here, h is the 
total water depth, Tc is the interfacial stress, TB is the bottom stress, and Fc  is any external 
force. Q i  and Q2 respectively denote the transports in the lower and upper layers. 

Let 

(2.367) Q = Q1 + Q2 
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From eq. 2.365-2.367: 

a Q 
(2.368) —

at 
+ gDV h = Ts  — TB Fc 

For the total water column, the continuity equation is 

(2.369) —

ah + VQ = 0 at 
Let u l  and u2  be the depth-averaged velocities for the two layers; then, the stresses (in 
quadratic form) are 

(2.370) TB  = J.1 111 1 111, 

(2.371) Tc = f21112 	( 112 — ul) 

Note that coefficients J ., and f2  are nondimensional. 
Let N be the number of obstacles per unit horizontal area and CD  be a dimensionless 

drag coefficient. The resistance per unit horizontal area to the flow in the lower layer is 

(2.372) Fc  = CpwbNiu l lu i  

If D 5_ b, then the interfacial stress Tc vanishes, and in eq. 2.372 one has to replace b with 
D. 

When D < b, one has to introduce a sheltering coefficient S to model the modification 
of the wind stress due to the canopy. Reid and Whitaker (1976) wrote 

(2.373) S = 

where 

1 
(

1 + 
CDNwH(C)  

K 	) 

H(C) = b — D if D  <b  
(2.374) 

H(C) =  0 if D b 

and K is a wind stress coefficient. The assumption here is that the wind stress is continuous 
at elevation b and that a quadratic form holds for the resistance to the wind provided by 
the individual elements. Note that eq. 2.373 for the dimensional coefficient S is valid for 
D <b  and S —> 1 as NwH(C)—> 0. 

The scheme for the numerical integration of these equations is similar to that of 
Platzman (1963) and Reid and Bodine (1968). This model was applied to calculate the 
storm surge in Lake Okeechobee, FL, due to the 1950 October storm. Earlier, Whitaker 
et al. (1973) showed that the dense marsh in the southwest quadrant of the lake has 
significant influence on the circulation. Their attempts to modify the bottom friction factor 
for the vegetation area proved to be useless. The water level computed with the inclusion 
of the canopy agreed well with observed values. 

Walton and Christensen (1980) developed a model for storm surges propagating onto 
a shore and applied this study to a hurricane storm surge on the west coast of Florida. Their 
theory includes a friction factor which varies spatially and depends not only on the local 
depth but also on the roughness elements and their spacings. The bottom stress corn- 
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ponents TB, and TB , are expressed as follows: 

FPIQIM 
TB 

8D 2  
(2.375) 

FPIQIN 
TB, = 

8D 2  

where D(x,y) is the undisturbed water depth, p is the density of water, F is a 
Darcy — Weisbach friction factor, M and N are the transports in the x and y directions, and 
Q  = (M2 N2)I/2 .  

The friction factor, F, can be determined for the offshore regions knowing the sand 
roughness of the bed, the Reynolds number, the Froude number, and the Strouhal number. 
However, for the shore region, F cannot be easily determined. The Darcy — Weisbach 
formula for the energy loss, AE, in a water column of depth D iS 

F V 2  L 
(2.376) àE = —

2g 4—D 

where V,, is the spatially averaged velocity and L is the length over which the energy loss 
is determined. The commonly used expression for the shear (or friction) velocity V. is 

Vm 
(2.377) —V, = —F  

For the travel of the storm surge over land, the following logarithmic distribution is 
assumed: 

V 	 Y (2.378) —
v. 

= 8.48 + 2.5 ln (—K + 0.0338) 

where V is the local velocity, y is the distance from the bed to the location where local 
velocity is under consideration, and K is the Nikuradse's equivalent sand roughness. The 
mean velocity, Vrn , theoretically occurs at y = 0.368D from the bed; then, from eq. 2.377 
and 2.378: 

(2.379) F = 	1.28  

	

[ in  (10.94D 	\] 2  
+ 1 

Equation 2.379 for F can be used for the overland travel of the storm surge. However, 
if vegetation and (man-made) structures are present, additional considerations are 
necessary. 

Consider the travel of a storm surge over a vegetated area; let the density of distribu-
tion of the trees per unit area be m and let 8 be the average diameter of these trees. The 
energy loss, àE, can be written as 

FV 2  L 	 V,2„ 
(2.380)  LE = —2g —4D (1 — E) m8D CD -

2g 

where E is the fraction of the land occupied by the obstructions and CD is a drag coefficient. 
An equivalent friction factor Fe  can be introduced as follows: 

(2.381) Fe  =  F(1 — E) 4mBDC 0  

and one can write 
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(2.382) E = 82m 4 

1.28 (1 — tn 282 ) 4  
(2.383) F, = 	 + 4ntbDCD  

[ In  (10.94D 	
)12 + 

K 

For larger values of the Reynolds number (i.e. greater than 5 x 105 ), CD - 0.4. Let S be 
the average spacing between the trees (obstacles). Then 

(2.384) in = —1 
S 2  

Walton and Christensen (1980) wrote for a regular hexagonal pattern: 

(2.385) tn = 
2.31  

S 2  

Averaging eq. 2.384 and 2.385 gives 

(2.386)  in  =  
S 2  

Equation 2.383 then becomes 

1.28[1 — 1 3 M 2 ] S  
(2.387)  Fe = 	 + 2.65 	(1,1) 

[ In  (10.94D  + I 

Here, the first term represents the roughness and the second term denotes the effect of the 
vegetation and structures. As mentioned earlier, this study was applied to a hurricane-
generated surge on the west coast of Florida. As expected, inclusion of the friction fac-
tor reduced the peak surge and delayed it. The calculated results compare well with 
observations. 

2.14 Nested Grids and Multiple Grids 

In this section, the use of multiple grids, such as combinations of coarse and fine 
grids, to model storm surges in a water body will be considered. The philosophy behind 
using multiple grids is to be able to reduce the total computational effort by placing a 
coarse grid in the deep (and offshore) region and couple this with a finer grid in the shallow 
coastal area. 

In connection with storm surge studies in the Beaufort Sea, Henry (1975) and Henry 
and Heaps (1976) used a combination of coarse and fine grids but the grids were not 
coupled dynamically. Examples of studies in which the grids are dynamically coupled are 
those of Abbott et al. (1973), Ramming (1976), Simons (1978), and Johns and Ali (1980). 

Greenberg (1975, 1976, 1977, 1979) used a combination of grids in his numerical 
model for tides in the Bay of Fundy. Following Greenberg, a technique will be considered 
merging different mesh sizes for the simplified case of a rectangular basin of uniform depth 
D using the linearized version of the relevant equations. Rather than the traditional manner 
of using volume transports, Greenberg used depth-mean currents U and V in the x and y 
directions, defined as 
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(2.394) 
1  

k,n+1 = 	kAt) 
2D 

— f 	L k,,,+1 
kàt 

D 	
1 

D 

(2.388) U —
1 

f u(z) dz, 	V = —
D 	

v(z) dz D 

Then, the equation of continuity is 

ah 	a 	a 
(2.389) 	+ 	(DU) + -ài, (Dv) = 0 

The equations of motion are 

a U kU 	 ah 	Ts, 
(2.390)  

0V kV 	 ah Ts 
(2.391)  ay pD 

where h(x, y, t) is the water level deviation from the equilibrium position and 'r5  and  Ts, 
are the wind stress components in the x and y directions, respectively. 

Noting that indices j, k, and n refer to x, y, and t, the finite-difference forms of eq. 
2.388, 2.389, and 2.390 are as follows: 

—3, Uj—I,k,n) 	 Vj,k,n)] 
(2.392) hi,k,n+i = 	àtri' k ' n  ày 

[ k  " ( 1  _ k2ADt) u  
(2.393) U/,k,„+1 =  	 f àtV i. k „, 

1  Làt 

( 1  

g àt 	 Lit  
— 	(hi+1,k,n+i — hi,k, n ) +  

g àt , 	àt 
— 	 — hi,k+1,,,+1) 	n TS. 

LlY 	 ' 

where 

1 
(2.395) 	Ui, k, 	-4-. ( (-if- 1,k, 	U j,k.n 	Uj—l.k+1.n 	Uj,k+1.n) 

1 
(2.396) 	f7,,k,n( -1.11 	V+1,k-1,n 	Vj,k,n 	V+1,k. 11) 

Initially, U, V, and h were prescribed to be zero. The boundary conditions are U -= 
V = 0 on all the boundaries. In addition to the usual C—F—L stability criterion, Greenberg 
(1977) gave another condition, namely 

(2.397) At < —2 

where f is the Coriolis parameter, which is satisfied easily. 
The scheme for coupling grids is shown in Fig. 2.14. The fine-grid calculations of 

the mixed grid commence at row (q + 1) of the coarse grid and row r of the fine grid. 
To be able to calculate h and U on the rth row, one must know  Von the (r — 1)th row. 
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(2.398) 
1 

= 	+ 

+ + 0 
-1 

+ 0 + -m = 2 -+ 0 

-M.2-  

X 	 X -7 
+ 0 + 0 + 

2-  +0+0t0+0+0+0+0+0+Of 
j = 2- 	 x xx xxx 

0 + 0 

0 + 0 

-I- 0 + - m q - + 0 + 0 + 0 

x 	 X 	 CC 	 xxx xx X X X X 

+0+0+0 4- 0+0+0+0+0+0+ 
X x X X X x X X X 	 X X x X >XX X X 

+ 0+0+ 0+0 +0+0+0+ 0+ 0+ - 1 r -+0+0+0+0+0+0+0-I-0+0+ 
xxxxxxxx  X  -) 	CC CC 	xx 

+0+0+0+0+0+0+0+0+0+ 	 +0+0+0+0+0+0+0+0+0+ 
xxxxxxxxx 

+ 0 + 0 + 0 +-m =18 
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52-+0+0+0+0+0+0+0+0+0+ 
= 52 - Lx-x-x-x-x-x-x-x-xJ 

FINE GRID 

FIG. 2.14. Scheme for coupling grids in a multiple-grid computation. (Greenberg 1977) 

However, eq. 2.394 does not give these values directly. Hence, one must interpolate 
(linearly) the qth row of the coarse grid and the rth row of the fine grid for the V values. 
Thus, for example, 

V2, ,--1 = — 2 [ V2'  + V2." + — ( V2." — 
V3." )] 3  

L 	x-I 	=18 

Similarly, for the computations of V in the qth row of the coarse part of the mixed grid, 
one must know U and h on the rth row of the fine grid. Thus: 

1 
(2.399) ê,,,, = ( ui_1,, + ut,, + u,_2., + 

1 (2.400) h i,, = 	(h ,,_ 1 , + h 	+ h j+ 1, r) 

The coarse-grid computations are done for the first q rows and the fine-grid calcu-
lations commence along the (q +1)th row of the coarse grid (this row is referred to as the 
rth row of the fine grid). Greenberg (1977) gave the following sequence for the calculation 
of h,  U,  and V at step (n+ 1)At knowing the values at step iz 
1) Interior  h,,,,,  of the coarse grid area are determined for ni = 2(1)q using eq. 2.392. 
2) Interior h , k of the fine grid are calculated for k = r 	= 52 in Fig. 2.14) using 

eq. 2.392. 
3) Interior U,,„, are determined for in = 2(1)q using eq. 2.393. 
4) Interior Uh k are calculated for k = in (1) kn. using eq. 2.393. 
5) Interior V,,„, are computed for ni = 2(1)q — 1 using eq. 2.394. 
6) Interior V1 ,„ are calculated using eq. 2.394 and 2.399. 
7) Interior Vm  are determined for k = r(l)k„,„, — 1 from eq. 2.394. 
8) are interpolated using eq. 2.398. 
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66° W 82°W 

FIG. 2.15. (a) Basins of lakes Michigan and Huron joined at the Straits of Mackinac. (b) Curvilinear mesh for 
the basins of lakes Michigan and Huron. Note that the North Channel has been excluded. Points A, B, C, and 
D are special locations where observations were available for comparison with theory. (Birchfield and Murty 
1974) 

Greenberg made further calculations with the inclusion of the nonlinear terms because 
these terms might be important in understanding the interaction between tide and storm 
surge. He found that when the nonlinear terms are present, the damping due to frictional 
terms is less. For details on the computational scheme when nonlinear (advective) terms 
and quadratic bottom friction terms are included, see Greenberg (1977). This report also 
includes details of the finite-difference forms, for the calculation of energy, and the 
stability criterion. 

2.15 Stretched Coordinates and Transformed Grid Systems 

Birchfield and Murty (1974) used a stretched coordinate system to study wind-
generated circulation in the combined system of Lake Michigan, Straits of Mackinac, and 
Lake Huron. Although this study did not examine storm surges, the technique is applicable 
to simulation of storm surges in two water bodies connected by narrow straits. The system 
studied here is shown in Fig. 2.15a and the curvilinear grid used is shown in Fig. 2.15b. 
The curvilinear grid is mapped onto a plane in which the irregular basin is transformed into 
a series of connected rectangles (Fig. 2.16). An equispaced grid was used in the connected 
rectangle system, and all the calculations are performed conveniently in this system; 
however, for easy interpretation the results of the output are printed in the geographical 
format. 

Birchfield and Murty (1974) began with the formulation of Platzman (1963) de-
scribed earlier. The main difference is that, whereas Platzman used a no-slip condition at 
the bottom, these authors permitted slip. Their model has certain similarities to the model 
of Jelesnianski (1967). 

Equations 2.145 — 2.147 could be integrated in time under the following boundary 
conditions: 

v a V 
(2.401)— — = T at z = 0 

D 2  8z 

and 

113 



17 

604- 

GEORGIAN BAY 

55 

50 

45 

40 

35 

30 

25 

20 

15 

10 G
R

EE
N

  
B

A
 

L
A

K
E

 M
IC

H
IG

A
N

  

MACKINAC STRAITS 

LAKE HURON 

3 

cr) 

I 	1 1 	1 	1 	1 	1 	, 	».à e 
0 	5 	10 	15 	20 	25 30 
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plane. 

a V (2.402) y—az =  Vat  z = — 1 

where V = D(u + iv) , I) is the vertical eddy viscosity, T =  (T y  + iTy )/p, and y is a 
constant slip parameter. 

The nonorthogonal curvilinear grid shown in Fig. 2.15b is constructed freehand using 
hydrographic charts of the water bodies. The advantage of such a grid is that the boundary 
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of the water body always falls on a coordinate line and the grid points are closely spaced 
in narrow and shallow areas. A rectangular area is designated for each major part of the 
basin (Fig. 2.16) such that a one-to-one correspondence exists between each point on the 
curvilinear grid and a point on a square grid covering the rectangle. The length to width 
ratio of the rectangle is then determined by the number of rows of points to the number 
of columns required to resolve the subregions and the entrances to the other regions. The 
finite-difference scheme used by Birchfield and Murty (1974) necessitates that the number 
of rows and columns in the rectangle be odd. When this procedure is used for all the major 
regions of the basin, the total basin consists of a series of interconnected rectangles. 

Then, one can develop a table consisting of the cartesian coordinates (x, y) of the 
curvilinear grid on the hydrographic chart and each corresponding coordinate (,T1) on the 
rectangle. Thus, in essence, one has developed an empirical, nonconformal mapping of 
the (x, y) plane onto the (E, 1) plane. For a one-to-one mapping one can write the 
following: 

= fi(x,y) 
f2(x, Y) 

Then, eq.  2.145-2.147  can be written a's follows, after defining some new coefficients 
(see Birchfield and Murty 1974 for details): 

aM al; 	ah 	af2 	8f2 ah  
(2.403) —a t gD (A 2 —ay — A 1 —ax ) — + gD (A2 —

ay 
A2 ax  — —al  

- CIA/ 	C2N B I TS., 	B2TS>. 

aNaf, 	afi)ah _ 	af2 	af)ah 
(2.404) 	= gD (A2 	+ A I  n 	 gD (A 2 7x- + A I  w 

- c2m - CN + B iTs, B2TS., 

ah — 	am  8 f2 am af aN af2 aN 
(2.405) —— — — — — — — — — — — — at 	ax  a 	ax a-g 	ay  a 	ay a lq 

Note that these equations are no more difficult than the original equations. Whereas 
in the original equations the coefficients depend only on the depth D, in these equations 
they depend also on the derivatives of the mapping function. Since the curvilinear coordi-
nates are not orthogonal, there is no particular advantage in resolving the motion into 
components along the local -q) axis. Also note that, here, the map scale variations have 
not been taken into consideration. 

For purposes of numerical integration, it is convenient to rotate the 	-q) axis by 45 0 • 
Making use of two Richardson lattices, central space-differences, and forward-time differ-
ences, the equations are integrated in time. 

Reid et al. (1977) developed a transformed stretched coordinate system to calculate 
storm surges on a continental shelf. The principle underlying this scheme is to find a 
transformation involving mapping relations to keep the orthogonality and to make sure that 
the new independent variables, t and are continuous monotonic functions of the original 
independent variables, x and y. Further, the transformation must map the coastline and 
seaward boundaries as isolines of the curvilinear coordinate, -q. 

A point (x, y) on the z-plane will be transformed to 	-q) in a rectangular region on 
the -plane and will satisfy the above conditions provided the mapping relation is 
conformal: 
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(2.406) 	= t + i-q = F (x + iy) 

or conversely, 

(2.407) z  =x + iy = Ga + i1) 

where F and G are single-valued real functions. The function G() may be represented by 
a truncated Fourier series as 

N 

(2.408) G () = Po  + Qo  + E [F,„ cos (nO + Q„ sin (nt)] 
n=1 

Here, the coefficients P„ and Q. are complex constants. 
The real and imaginary parts of eq. 2.408 give x and y in terms of t and 1, 

respectively. The coefficients are determind in such a way that for constant 1 = [3, the 
corresponding x and y as a function of t will map the coastline under consideration. 
Another constraint will be the representation of the seaward boundary (for example, the 
200-m depth contour) as 1 = —P. 

The coefficients P„ and Q.  can be evaluated by iteration using a least-square principle 
(Reid and Vastano 1966): 

P„= A„ + iB„ 
(2.409) 

Q„= C„ + iD„ 

where A„, B„, C„, and D„ with n = 1, 2, ... , N are real constants. Then eq. 2.408 gives 
N 

(2.410) x — A o  + Co  — D01 + E [A„ cosh (1n) — D„ sinh (in)] cos (11) 
n=1 

N 

+ E [B„ sinh (in) + C„ cosh (1n)] sin (1 t) 
n=1 

and 
N 

(2.411) y = B o  + C01  + Do t + E [B„ cosh (1,1) + C„ sinh (in)] cos (nO 
n=1 

N 

+ E [D„ cosh  (in)  — A„ sinh  (in)]  sin (nO 
n=1 

Here, the range of t is  — 'a.  to  + 'r.  
The curves can be represented in the following parametric manner. 
Seaward: 

X  — xs(, — 13) 

Y = Ys(, —43) 
(2.412) 

Coastline: 

(2.413) 

where 
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N 

(2.414) xs(, — P) = Ao + Cot + D0 (3 + E [C„ cosh (43) — B„ sinh (43)] sin (n0 
n=i 
N 

+ E [A„ cosh (n(3) + D„ sinh (nr3)] cos (nt) 
n=i 

N 

(2.415) ys(t, — P) = Bo — CoP + Dot + E [B„ cosh (n(3) — C„ sinh (nP)] cos (n0 
n=i 
N 

+ E [A„ sinh (np) + D„ cosh (43)] sin (nt) 
n=i 
N 

(2.416) xc(, R) = A0 + cc, — D0 f3 + E [B„ sinh (nI3) + C„ cosh (nr3)] sin (n )  
n=t 

N 

+ E [A„ cosh (n[3) — D„ sinh (nr3)] cos (nt) 
n=1 
N 

(2.417) yc (t, [3) -=- Bo  + co p + Do t + E [B„ cosh (n(3) + C„ sinh (n(3)] cos (nt) 
n=i 

N 

+ E [D„ cosh (n(3) —  A.  sinh (n(3)] sin (nt) 
n=i 

Note that x.s(> —B) and xc(t, + p) represent a periodic range of  27r and this 
corresponds to the distance 2X in Fig. 2.17. This implies that Co  = 7r/X. and A„ = D„ — 
0; n = 0, 1, 2, ... , N, and Bo  is determined as the mean distance between the coast and 
seaward boundary curves. Note that f3 must be determined along with the coefficients in 
eq. 2.414-2.417 using a curve-fitting scheme. However, the range of t and the scale 
factor Co  are free parameters. 

e=r-41 
e•-e 
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The coefficients and 13 must be determined for a given N such that eq. 2.414-2.417 
give an accurate approximation to the curves Xs , Ys , Xc , and Yc  in a least-squares sense. 
Note that these curves represent the coastline and seaward boundary as a function of the 
arc length. One must begin with an initial approximation of arc length in terms of for 
each curve and use an iteration technique to minimize the error function, E: 

(2.418) E = — 	[(Ys Ys) 2  + (Xs — 4) 2  + (Yc )'c)2  + (Xc XC) 2] 
1 

27r 

For economy of computation, one would like to have more grid points in regions of 
specific interest and fewer grid points elsewhere. To be able to do this, one can stretch the 
orthogonal curvilinear grid system in both the shoreward and longshore directions. A 
curvilinear grid in the (x, y) space, which follows from the transformation, is shown in 
Fig. 2.18a. The corresponding grid in the 1) space is shown in Fig. 2.18b. From this 
grid, we would like to transform to another grid with uniform grid increments. To be able 
to do this, a transformation is made to an (s*, T * ) space in two steps. 

The relation 

(2.419) s* = e[s„()] 
is used to generate a uniform 3.S *  spacing. Here, S, is the arc length distance along the 
transform-generated coast. The relation in eq. 2.419 is generated by a choice of 3,S *  that 
gives the necessary longshore resolution. In the shoreward direction, the travel time, T*, 
for a long wave to cover the distance between the seaward to shoreward boundary along 
a line can be divided into a desired (from the point of view of resolution) number of 
increments. This can be written as 

(2.420) T *  = T* [S,(71)] 

where  L,,  is the distance along the line and 

(2.421) T *  = f dSIVgD 
s„(l ) 

Here, D is the local water depth. Thus, choices of 3,S *  and à T *  generate the (S*,  T * ) 
grid shown in Fig. 2.18c. The shoreline and seaward boundaries are defined by constant 
values of T*,  whereas constant values of s* identify the lateral boundaries. 

Let Q be the volume transport per unit width, T the wind stress, Cr the bottom stress, 
h the perturbation of the water level relative to its undisturbed position, and hn  the 
hydrostatic elevation corresponding to atmospheric pressure anomaly. Let F be a scale 
factor of the curvilinear coordinate system given by 

(2.422) F = [(al 	at) 
ax\  2 	(ay \ 211/2 4_   

Let 11 and y be scale factors representing the transformation to the (S*,  T * ) system: 

at as,,  

aT  as„ = — — as, aT* 

Then, the vertically integrated equations in the (s*, T * ) system are 

(2.423) 
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a Qs* 	gD a 

	

(2.424) 	— f QT* 	—as* (h - 	- us* 

KIT*  

	

(2.425) 	at + fQs* + F 
gD

v 	Ta
a

*  (h hB ) = TT* — œr* 

a h 	1 [ 1 a 	 a 

	

(2.426) 	+ 	(F Q5 * ) 	
.' 

	

) + — 	(F QT*)] =-- 0 
at 	F 	1-1,  as 	v ()T 
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where  Pa  and p,, are air and water densities, respectively, and CD is a nondimensional drag 
coefficient such that 

The wind stress, T, is determined from 

Pa CDW 210 
(2.427) T 

where K 1  = 1.1 x 10 -6  and K2 = 2.5 x 10 -6  and W10  is the wind speed at a height of 
10 m above the ground. The bottom stress terms are written as 

KoQQs*  

D 2  

KoQ QT*  
OET* =D2 

where K0  is a dimensionless drag coefficient and is taken as 2.5 x 10'. The surface stress 
(wind stress) components are written as 

T s  -= TA  COS 0 + Ty  sin 0 
(2.430) 

TT* 	T, sin 0 + T, cos  0 

where 

(2.431) 0 = tan" 	 
\ax/aV 

The wind stress components T, and T, are assumed to be known. 
At the lateral boundaries, the gradient of the volume transport in the S *  direction must 

vanish: 

a  Q 
 = as* 

On the seaward boundary, the water level is taken as the hydrostatic equivalent of the 
atmospheric pressure anomaly: 

(2.433) h = 143  

Note that Jelesnianski (1965) used the same condition. At the shoreline boundary the 
assumption is that (infinitely high wall) there is no transport in the shoreward direction: 

(2.434) QT* = 0 

For the numerical integration of eq. 2.424-2.426, an explicit, central-difference, 
leapfrog scheme (Alvarez 1973) was used. In this scheme, Qs * and QT* are specified at the 
same location (and time) but h is staggered in space and time from these. This scheme was 
tested by Reid et al. (1977) by simulating the surge on the coast of the Gulf of Mexico 
due to Hurricane Carla. 

Jelesnianski (1976) used a sheared coordinate system for application to gently curved 

(2.429) 
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u =  
(2.441) 

v =  

coastlines. This method is applicable for coastlines without bays, inlets, capes, etc. He 
stated: 

... a mildly curved coastline is shifted or sheared onto a straight base line. A surface 
plane, truncated from the ocean shelf and containing the curved coast as a boundary, is 
fitted with a curved, nonorthogonal grid. The plane with curved boundaries is then 
transformed via a sheared coordinate system onto an image rectangle. In the transformed 
system, the computational grid is cartesian, orthogonal, equally spaced and the coast lies 
exactly on and not across a grid line. 
Butler (1979) used a stretched coordinate system for studying hurricane surges in 

Galveston Bay. The scheme is somewhat similar to that of Wanstrath (1976). Hamilton 
(1978), in his study of storm surges in the Thames Estuary, used a somewhat different 
approach; i.e. he wrote the equations in conformal coordinates. 

The equations of motion in conformal coordinates for long waves (nondispersive) are 

(2.435) —at - f v +  (-1 u 2 + -1 v 2 ) + Ju —au + Jv u 
—

a + g—ah =  au 
aE 2 	2 	a 	a 	aE 

ay 
+ fu +— -u + -v) + Ju— + Jv— + g —ah  (2.436) — ar 	

a.1(1 2 	1  2 	 ay 	ay 
n 2 	2 	aE 	g 	g= 

 

(2.437) —

ah + J— (D + h)u + J—(D + h)v -= S(g, , t) a 	 a 
ar 	aE 	g 

where an arbitrary conformal mapping, 

(2.438) E+ g= w( ) + hi)) 

will produce the coordinates and and the metric 

(2.439) J(, ) = d d dA = R 2  sech 2 p [(
ail 

)
2 
 + (

2

—) ]
-1 

 aE 	a 
Here, R is the radius of the earth, (I) is the east longitude, 0 is the north latitude, and pi, 
is the Mercator coordinate given by 

(2.440) tanh p:, = sin 0 

and J is the ratio of an elemental area (4 (.4 to the actual area dA. Note that 

1 at 
J  Ot  

I a 
.1 -à7 

and h is the free surface height, D is the water depth, 1-( ° and 'r are the stress components, 
and S is a source term. The velocities u and v in the (t, ) system are related to the actual 
velocities U and V through 

u  = uj -1,2 
(2.442) vi --1/2 
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Chapter 3 

Other Numerical Solutions 

In Chapter 2, exclusively two-dimensional (vertically integrated) numerical finite-
difference models were considered. In this chapter, other numerical models will be 
discussed beginning with three-dimensional finite-difference models (with and without 
stratification) and then the so-called two-and-a-half-dimensional models (which are basic-
ally similar to vertically integrated two-dimensional models, as considered in Chapter 2, 
but include an additional computation to determine the vertical distribution of the horizon-
tal velocity components). The two-and-a-half-dimensional models were developed for a 
better treatment of the bottom stress. 

Next, the so-called one-and-a-half-dimensional models will be briefly discussed in 
which the y variations (in the transverse direction) are ignored and the computations are 
performed in the x—z plane. Then, the logical step would be a discussion of the one-
dimensional models, which are basically similar to the vertically integrated forms of the 
two-dimensional models, except that the transverse velocity and the variations in the 
transverse direction are ignored (noie that in the one-and-a-half-dimensional models, there 
is no vertical integration). Next will follow a consideration of combinations of two-
dimensional and one-dimensional models such as done for the North Sea, the Strait of 
Georgia, and the Bay of Bengal in which a two-dimensional model for the sea or bay is 
coupled with a one-dimensional model for a river or estuary. The chapter will conclude 
with a discussion of the finite-element methods and irregular-grid finite-difference 
methods. 

It should be noted that there are still several other forms of solutions for the storm 
surge problem. In Chapters 2 and 3, attention is paid exclusively to numerical solutions. 
In Chapter 4, these other forms will be considered: analytical, empirical, graphical, 
statistical, hydraulic, laboratory experiments, hybrid (i.e. combination of hydraulic and 
numerical) methods, and electric analog techniques. 

3.1 Three-Dimensional Models 

In this section, three-dimensional models with and without stratification will be 
considered. For the vertical motion associated with storm surges, influence of stratification 
is not important, but for an accurate determination of the horizontal motion, inclusion of 
stratification is useful. There is considerable literature on three-dimensional models under 
the rigid lid approximation for the free surface. Since this approximation assumes that the 
surface cannot move up and down, models using this approximation are not relevant for 
the vertical motion associated with storm surges, although they may still yield reasonably 
accurate information on the horizontal motion. 

Backhaus (1978) considered a three-layer model for the calculation of tides in the 
German Bight, ignoring stratification. Basically, he wrote the vertically integrated forms 
of the equations of motion and continuity for each layer. These layers are dynamically 
coupled through the interfacial shear stresses and the barotropic pressure gradient. 

Simons (1980) showed how stratification can be introduced into the classical Ekman 
problem: first through the horizontal pressure gradients, which have a baroclinic com-
ponent when stratification is included, and second through the vertical eddy viscosity, 
which is much less in the stratified case than in the homogeneous case. Abbot et al. (1976) 
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developed a time-dependent two-layer model for storm surges in the Baltic Sea and the 
North Sea. 

Geisler (1970) studied the steady-state linear response of a two-layer ocean to a 
moving hurricane, whereas Galt (1971) considered the time-dependent nonlinear re-
sponse. Krauss (1978) considered the response of a stratified ocean to traveling mesoscale 
weather systems such as meteorological fronts and squall lines. Kuo and Ichiye (1977) 
dealt with the problem of the response of a barotropic ocean to a moving hurricane. 
However, these studies are for the deep ocean and are not particularly relevant for the 
storm surge problem. 

In a series of reports, the Rand Corporation (for example, see Liu and Leendertse 
1979) developed sophisticated three-dimensional models and applied these to various 
water bodies. A detailed consideration will follow of a three-dimensional model developed 
by Simons (1973) for application to Lake Ontario. In this model, Simons treats the water 
body as a completely closed system (which of course is justified for Lake Ontario); for 
bays and gulfs with openings, the model must be modified. 

Under the assumption of incompressibility the continuity equation is 

(3.1) 	+ ax ay 	az 

where u and y are the horizontal velocity components along the horizontal axes x and y 
and w is the velocity along the vertical coordinate z. Let D(x, y) be the water depth in the 
undisturbed state and let h(x, y, t) be the free surface deviation from its equilibrium 
position. The vertical integration of eq. 3.1 gives 

h 	 h 

(3.2) 	
-p-a  f udz + 

-g--
a  f vdz + 19-1 - = 0 ax -D 	 aY -D 	 at 

The hydrostatic relation 

aP 
(3.3) 	—az  = — pg 

can be vertically integrated to give the internal pressure distribution. 
h 

(3.4) 	P = Ps  + po g(h — z) + 1 crdz 
z 

g 
The density anomaly may be related to temperature and pressure by an equation of 

state. Usually, the pressure effect can be neglected and one can write 

(3.6) 	o-  — 

where E is a constant and 

(3.7) 	0 .- T — To  

Here, T is the temperature and To  is its value at maximum density. 

where P is the pressure, Ps  is the atmospheric pressure at the water surface, p is the density 
of water, p o  is the value of p at the temperature of maximum density, g is gravity, and o-
is a density anomaly given by 

P — Po  (3.5) 	o-  — 

124 



Following Simons (1973), define a barotropic pressure function  i and a baroclinic 
pressure field (1) such that 

(3.8) 
kil - Ps + po gh 

cl) 	crdz 

Note that the (I) field is z dependent but that the Ji field is not. Also note that (II is only a 
part of the total barotropic pressure field which increases linearly with depth. 

Next, Simons defines two operators 2 and 8 which respectively represent the ad-
vection by large-scale motions and diffusion by subgrid scale processes. Let (ID be any 
scalar field and let a, 13, and 'y be the components of the diffusive flux of this scalar along 
x-, y-, and z-axes. Then: 

al) 	a 	a 	a 
2(40 = — + — (A)) + —ay (4)) + —(w) at 	ax 	 az 

(3.9) 
aa 	a P 	a'y 

8(40= —() — 	(4)) — 

With this notation the equations of horizontal motion can be written in the following form: 

2(u) = f v 	
a 	+ (tP+ d)) 8(u) ax\ po  

(3.10) 
a (di +  

(v) = — f u ay 	Pa 
	+ 8(v) 

The thermal energy equation can be written as 

(3.11) 	2(0) = 8(0) 

Let A and y respectively be the eddy viscosities in the horizontal and vertical directions. 
Then: 

a(u) 	A —au
ax 	a(v) = — A —av

ax

av 
(3.12) p(u) = —A—au 

13(v) = —A 

	

ay 	a— 
y 

	

-y(u) = — A—au
a 	-y(v) = — A —av

a  z 	 z 
From eq. 3.10 and 3.12 one can see that the horizontal diffusion will be in the form of 
a Laplacian operator. In the numerical model, this term represents the subgrid scale 
diffusion. The vertical flux component will be in the form of stresses between the various 
layers and represents the momentum transfer downward from the surface. 

Similarly, for the thermal energy one can write 
30 a(0) =—A o  

ao we)  = — A 0 —

ay 

ao 'y(0) = - K -
az 

(3.13) 
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where A o  and K are respectively the horizontal and vertical eddy diffusivities. The param-
eter K depends on the static stability acr/az. During unstable situations this can assume 
very large values and the convective overtu rning can be simulated. That is, during 
numerical integration, if any static instability occurs, then instantaneous adjustment is 
permitted to remove the instability. 

The following boundary conditions are relevant. 
At the surface, z = h: 

ah 	ah ah (3.14) w = u7)i + v + 7  

At the bottom, z = —D: 

(3.15)  w = — u —8D — v —aD 
ax 	ay 

These conditions mean that the water particles follow the motion of the boundary under 
consideration. 

At the surface z = h, the wind stress condition can be written as 

	

Ts, = — Po[Y(q) Œ(u)- 	pco u, 

ahl ah 

Ts, = —po [y(v) — a(v)-Fx  — 13(v) u)  h] ah 

The conditions at the bottom z = —D (i.e. bottom stress) are 

= — po  [y(u) + a(u)—aD + p(u) 

	

ax 	ay 

At the bottom, z = —D: 

(3.19) 0 = y(0) + a(0) —aD +  
ax 	ay 

For the layered model, the equations of motion and continuity are vertically inte-
grated in each layer. With reference to Fig. 3.1 when the interfaces between the layers 
intersect the bottom, the number of layers will be a function of x and y and could also be 
a function of t. However, it is convenient to assume that the total number of layers is the 
same throughout the water body, and this can be done by allowing the interface to coincide 
with the bottom beyond their intersection. Thus, in principle, each layer extends over the 
whole surface area of the water body. 

Let the number of layers be k and let Hk with k =  1, 2, . . . , k — 1 be the distance 
between the interface and the equilibrium free surface (z = 0). The nature of the interfaces 

(3.16) 

(3.17) 
Ta  = —po Pv) + a(v)-Fx  + p(v) aD1 al) 

Let qs  be the downward surface flux of heat. Then, the thermal conditions are the 
following. 
At the surface, z =  h: 

(3. 18) qs = P0) oz(0) 	P (0) u 
ah 
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FIG. 3.1. Vertical configuration of a three-dimensional model. (Simons 1973) 

could be any of the following three: Hk  = Hk (x, y, t), i.e. the layers are separated by 
moving material surfaces; Hk = Hk(X, y), i.e. the layers are separated by rigid permeable 
interfaces; Hk is constant, i.e. the layers are separated by rigid levels. 

Thus, one can denote the surface and the interfaces by 

	

(3.20) 	z = zk (x, y, t), 	k = 0, I , 2, ... , K 

Then: 

Free surface: zo  = h(x, y, t) 

	

(3.21) 	Interfaces: 	zk  =- -Hk(x, y, t), 	k = 1, 2, ... , K — I 

Bottom: 	zk  = — D(x, Y) 

Note that for certain regions of the water body, some of the interfaces may coincide with 
the bottom. 

The principal dependent variables are the thickness, transports, and heat content in 
each layer. The following notation is introduced: 

Layer thickness: 

(3.22) 	Layer transports:  

dk- 1/2 	Zk- I 	Zk 

 045 	 (II, y) dz 

Layer heat content: Tk- 1/2 dz 

As can be seen from Fig. 3.1, an integer subscript denotes a variable evaluated at an 

zk 
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=0  
az, 

=- — at 

interface whereas a half-integer subscript refers to a layer. 
To be able to generalize the model to a multilayer situation, Simons introduced a 

vertical velocity wk  relative to a surface z,(  as 

azk 	azk 	azk 
(3.23) oh wk — zik — vk 	—a t ax 

Let x denote the diffusive flux through a surface z,: 
az, 	azk 

(3.24) 	erOk •• "Y( (1) )k 	ote)k 	—  ax 

If the scalar 11) denotes momentum and temperature, then eq. 3.24 represents the 
stresses and the heat fluxes between layers, which are denoted in Fig. 3.1 by T and q. 

Corresponding to eq. 3.9 one must define advection and diffusion operators for each 
layer: 

(3.25) 

L (43)k- 1/2 

A((13)k-1/2 

2(cID) dz 
zk 

zk- 1 

8( ) dz 
zk, 

Integrate eq. 3.9 with respect to z over each layer and interchange differentiation and 
integration and use eq. 3.23 and 3.24 to give 

a 	4-1 	 a  
(3.26) 	L(c13) k 	 ax_ 1/2 	j-z, 	dz + 	lictedz + — f 	dz 

ay zk  zk 

+ (0)(13)k-1 — (0)(13)k 

and 
a 	a  f. 

	

(3.27) 	343)k-n i 	—ax 	a(c1)) dz — —ay 	p(I)) dz — x(d)) k -, + x(c1)), 
z, 

Next, for the layered variables given by eq. 3.22 one must derive the equations of 
motion and continuity. From eq. 3.22 and 3.23 the continuity equation becomes 

ad, 	a
at 	

21/ 	 a m• 

	

(3.28) 	-r — auk-1/2 	v 1/2 4. (OA- 1 - COL = 0  ax 	ay 

Using eq. 3.26 this equation can be written as 

	

(3.29) 	L(1)k _ 1 ,2  = 0 

Using this equation one can either compute the displacement azdat of a material 
surface or the apparent vertical motion, 0)L , through a rigid interface. The computation 
could start at the bottom and proceed upward with the following conditions being applied. 

Bottom (rigid, impermeable), zk (x, y): 

azk 
Rigid interface (permeable), zk (x, y): 	—= u at 
Material interface (impermeable), z k (x, y, t): 	= 0 

Free surface (impermeable): z o (x, y, t): 	 = 0 

(3.30) 
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Note that these conditions are written using eq. 3.14 and 3.15. 
The equations of motion (3.10) integrated over z in each layer become 

	

dk _ 1/2  a III 	ait. 
(3.31) 	L(M)L-u2 = f Nk-I/2 	 — (—) dz + Li(M)k-1/2 

	

P0 a x 	,k  a x pa  

and 

dk- 1/2 	a 
(3.32) LNk- = 

 Po a Y 	z, 	
dz + A(N) k _ /2  

 a Y Po 

From eq. 3.11 the thermal energy equation becomes 

( 3 .3 3 ) 	L(0)k-u2 = .à(0)k-u2 

For convenience, define 

1 
Zk- 1/2 ...=-7" 	 ( Zk- I 	Zk) 

Sk-1/2 -== f 	o-  dz 

in 
(Pk-  I/2 ="-. 	Cr dz 

Zk- 1/2 

The baroclinic pressure field defined by eq. 3.8 can be assumed to vary linearly with 
height in each layer. Then, differentiating I) with respect to x and y and integrating with 
respect to z gives 

(3.35) 	V  dz = dk-u2V(i)k-u2 + Sk-inVzk-u2 
zk 

The first term on the right is the gradient of the baroclinic pressure evaluated at the 
midpoint of the layer. The second term is a correction for the variable thicknesses of the 
layers. 

For numerical integration purposes, although we now have a closed set of equations, 
these must be expressed in terms of the primary dependent variables defined in eq. 3.22. 
The product terms can be approximated as follows: 

(3.36) 1.'"  u0 dz = ( —11471  

From eq. 3.6 and 3.34 the layer density can be defined as 
T2 \ 

( 3 . 37) 	Sk-1/2 = 	) 

Then, from eq. 3.26 the advection of temperature is given by 

aTk-u2 	a (mT) 	a 
(3.38) 	L(0)k_ = 	

(Lek- 	(W°)k  at 	k- 1/2 	a, 	d )À-1/2 

The nonlinear inertial terms also can be approximated in the same manner. The inter- 
polation schemes to calculate the temperature and horizontal velocity fields at the inter- 

(3.34) 

1
. 2.k_ I 
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faces will be governed by energy considerations. For the details of this as well as for the 
formulation of the horizontal diffusion, temperature fluxes, and interfacial stresses, see 
Simons (1973). 

The scheme for the numerical integration is as follows. Initially, the temperature 
field, positions of all the interfaces and surface, and the horizontal transport components 
are prescribed. Then, the barotropic pressure gradient is given by eq. 3.8 and the baro-
clinic pressure gradient is obtained from eq. 3.34, 3.35, and 3.37. The vertical motion at 
rigid interfaces can be calculated from eq. 3.28. Then, the time stepping of the primary 
variables is determined by eq. 3.28, 3.31, and 3.32. Note that the numerical scheme in 
time and space for the layered model is the same as for the homogeneous model. Simons 
(1973) showed through energy considerations that inclusion of the nonlinear advective 
terms does not lead to any instability as long as the finite-difference schemes are conser-
vative (Lilly 1965; Arakawa 1966; Bryan 1966). 

3.2 Two-and-a-Half-Dimensional Models and Improved Treatment of 
Bottom Stress 

A two-and-a-half-dimensional model is a combination of a two-dimensional verti-
cally integrated model and a locally one-dimensional Ekman model. These models serve 
to determine the vertical variation of the horizontal current and also permit a better 
treatment of the bottom stress. In Chapter 2 it was shown that the vertical integration of 
the terms ya2 u/az 2  and ya 2 y/az 2 , where y is the vertical eddy viscosity and u and y are 
the x and y components of the velocity, leads to Ts, — TB , in the x-momentum equation and 
to Ts, — TB , in the y-momentum equation. Here, Ts  is the surface wind stress and TB  is the 
bottom stress. In numerical models of storm surges, since the vertically integrated forms 
of the equations are usually used, rather than prescribing y one can deal directly with Ts  

and  'FB . The wind stress is prescribed either from observations or hypothetically, whereas 
the bottom stress is parameterized through an empirical drag coefficient. In Chapter 2, 
three versions of such a parameterization (linear, quasilinear, and nonlinear) were 
discussed. 

In the classical Ekman theory (1905, 1923) one deals directly with the terms y0 2 u/a z 2  
and y3 2 y/0z 2  rather than with their vertically integrated forms. Also, the classical Ekman 
theory was developed for the steady state only, although later authors extended it to the 
transient state. The steady-state equations of motion used in the classical Ekman theory 
are as follows: 

y (—
a

azu  

z2
) +fv=fy 

z2 
— fu = —fu, 

a2 v  

wheref is the Coriolis parameter and u, and 1,, are components of the geostrophic current, 
defined by 

I a P 
u = — 

pf ay 
(3.40) 

(3.39) 

, 1 a P 
-r — 

pf ax 
where p is the density of water and P is pressure. 
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With reference to an origin taken at the undisturbed water surface, with the vertical 
coordinate z positive upward, the boundary conditions are the following: 
At the surface, z = 0: 

	

(3.41) 	v( 4 ) 	Ts% 	v ( av 	T  = s' 
3z 	 \ azi 

At the bottom, z = — D, the no-slip condition is 

	

(3.42) 	u 	v = 0 

The solutions of eq. 3.39 under these boundary conditions are (Simons 1980) 

€)  
u (1 — —clug  — 	+ 3, 1pfrY e)  1 S +  C Ts  

13  

a 	13 	1  [('Y + €) 	 e)  
V = (1 — 	, 	, 

V g 	Ug 	àpf 	c  Ts, 	C Ts  

where C is a nondimensional parameter defined by 

C cosh (28) + cos (28) 

(3.43) 

(3.44) 

and 

(3.45) D 
8 = — à 

(3.46) à == Ekman depth 

In eq. 3.43 the parameters a, 13 , y, and E are all functions of z and are defined as follows: 

a cosh (8 + 0 cos (8 —) + cosh (8 — ) cos (8 + 

sinh (8 + ) sin (8 —) + sinh (8 — ) sin (8 + 
(3.47) 

-y 	sinh (28 + ) cos () + sinh () cos (28 + 

E 	cosh (28 + ) sin () + cosh () sin (28 + 

where 

(3.48) 

For great water depths (i.e. small Ekman numbers), 8 	co and eq. 3.47 reduces to 

cos 

13  —e -ç sin 

(3.49) 
cos 

—E é sin  
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(3.55) 

and 

where 

(3.50) 	'=+ 8 

Thus, in deep water, the solutions for u and v are a linear combination of (a) the 
geostrophic current, (b) a bottom current, and (c) a surface drift current. Of these, the first 
is uniform in the vertical direction, the second decreases exponentially sta rting at the 
bottom, and the third decreases rapidly with depth starting at the top. The surface drift 
current satisfies the upper boundary condition whereas the geostrophic current, together 
with the bottom current, satisfies the lower boundary condition. One important result is 
that, at the surface, the drift current is directed 45° to the right of the wind stress in the 
Northern Hemisphere. 

The x and y components of the volume transport and the components of the bottom 
stress can be written as follows: 

M = 	u dz = D [(1 — B)u, — Av g ] + 1 
 —[ET s  + (1 — F)Ts,] 

—D 	 P f 

N = 	y dz = D [(1 — B)y, + Au,] + 1 [ETs  — (1 — F)Ts] 
—D 	 Pir 	Y  

and 

(3.52) 
TB

' 
= pfD(A — By,) + F + ETS 

TB, = PfD(Ay, + Bu g ) + FTs —  ETS, 

where the dimensionless constants A, B, E, and F are defined by 

sinh (28) — sin (28) 
A = 28C 

sinh (28) + sin (28) 
B = 

28C 
(3.53) 

2 sinh (8) sin (8) 
E=  

2 cosh (8)  cos (8) 
F=  

For great water depths, 8 —> 

1 	1 (3.54) A —28' B 	E 0,  F- 0  

Hence, in deep water 

à 	1  M = (D 	 4_lig 	V g pf TS ' 

à) 	à N = (D — 	+ 714, — —fp
1

Ts, 

(3.51) 
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1  
= 2pfil (ug 

— v
8

) 

1  
T'‘ 	2p f ug 	vg )  

It can be seen that in the deepwater case, the bottom stress is directed 45° to the left of 
the geostrophic current (or 45° to the right of the pressure gradient force) and the surface 
drift transport is directed 90 0  to the right of the wind stress. 

In the shallow-water limit, eq. 3.51 and 3.52 reduce to 

m =_- D 2  (Ts 	D ap) 
pv 2 	3 ax 

N — — — — 
D 2  (Ts, D aP) 
pv 2 3 ay 

and 

—DCap  7x ) + 

OP , 
TB, = 	

1-/ (--)
m Ts, ay 

At times the no-slip condition at the bottom given by eq. 3.42 could be restrictive. 
In its place, one can use a more flexible statement that the velocity and stress be parallel 
at the bottom, i.e.: 

av 
(3.59) 	Vb = S 

0 Z) b 

where S is a slip parameter, V is a vector denoting the current, and subscript b denotes 
bottom. When S =- 0, the no-slip condition results, and when S = 00, the stress is zero. 
In a model in which the vertical eddy viscosity, v, is held constant, it is necessary to use 
eq. 3.59 so that the drastic decrease of v as the bottom approaches can be taken into 
account. 

Fjeldstad (1930) and Hidaka (1933) extended the theory to the transient state. In the 
steady-state case of the Ekman problem, one can express the vertically integrated transport 
in terms of the local surface gradient and wind stress and then solve for the horizontal 
motion using the lateral boundary conditions and the continuity equation. However, in the 
time-dependent case, the equation for the surface elevation in terms of wind stress is an 
integrodifferential equation (Welander 1957) and is not easy to solve. Approximate solu-
tions to the time-dependent problem are given by Nomitsu (1934) and Platzman (1963). 

Welander (1957), making use of the Ekman theory, showed that the bottom stress can 
be determined from the local time histories of the wind stress and the surface slope through 
the use of a convolution integral. He extended the Ekman theory to the shallow case. The 
linearized equations of motion with the neglect of horizontal friction are as follows: 

au r 	ah , 	82 u 
— 	 v— j v --g— — 
ar 	 ax 	z2 

a v 
a7 + f u —gPli 4_ 82 v 
-  ay v  —az 2 

(3.56) 

(3.57) 

(3.58) 

(3.60) 
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where the coefficient of vertical eddy viscosity, v, is assumed to be constant. The 
boundary conditions are 

(au v 

= 
(3.61) 

,( ay) = T  
\az/z=0 

vi,=_D= 0 

Ekman (1905) determined the current structure from these equations for prescribed wind 
stress components Ts, and Ts, and surface slopes ah/ax and ah/ay . Ekman (1923) assumed 
that the depth of frictional influence, d, which is given by 

2v (3.62) 	d 

is small compared with the water depth, D. 

For convenience, following Welander (1957), write 

w = u + iv 
ah 	ah, I  .ah — = — — a n ax 	ay 

Ts = Ts, 4-  iTs, 

The boundary conditions (eq. 3.61) then become 

aW 
V (—,) = Ts 

C/Z 

Wiz—D = 0  

Let wa (z, t) and wi,(z, t) respectively represent the current generated as a result of a 
suddenly imposed wind stress of unit magnitude and a suddenly imposed surface slope of 
unit magnitude. For the first case, the equation of motion and the boundary conditions can 
be written as 

aw +  if w = v- at 	az 2  

v( a: 	= 1  
,z ) z =0  

Wlz—D = 0  

14.0 = 0 

(3.63) 

(3.64) 

(3.65) 
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(2n + 	Trz 
e 	n \ 2 ) D 

For the second case (i.e. suddenly imposed surface slope): 

a w + ifw= —g +1,- 1'2  
a z 2  

( a 	_ 
v \az 4=0 —  

WID = 

wl,=0 = 0  

Following Fjeldstad (1930) and Hidaka (1933), the general solution of eq. 3.65 and 
3.66 are as follows: 

1 D (f_t) 2  E 	1  	cos 

	

1 2n + 1  7rz 	+ ou  
7r2  v D „-o 	i) 	2 ) D 

N/2 g d 	(-1)" 
— 2., 'rr f D n=0  (IJL 

	  cos 
, 

1  (2n + 1) 
2V 2 	d 

and 17,0  and li)b are the steady-state solutions. 
The combined response to an impulsively introduced wind stress ATs and a surface 

slope àah/an is 

w = ATs wa (z, t) + à —ah wh (z, t) an 
since 

aTs 	O h 	a2h  
ATs = 	àt and an Otan 	 àt 

and adding all the contributions from such differential step-forcing from wind stress and 
surface slope for all time a < T gives 

02 h  
(3 . 70) 	w = 	[ aT s  -- (t 	a-)wo(z, a) 	atan (t 	a)wb(z, a)] da at 

it is assumed here that initially, Ts  and ah/an are zero. 
From eq. 3.70 after integration by parts 

awn 	ah 	aw, 
(3.71) w = 	{T s(t — a) —at (z, a) + —(t — a) 	(z, a)] da 

On 	at  

If eq. 3.71 is integrated with respect to z and substituted for wa  and wb  from eq. 3.67 
and 3.68: 

(3.72) w = -4--. 	Ts(t — a) E 	
n 
"" 	 da 

IT  0  

8 	r ah 	 1  
--ZeD 	(t (1) E 'rr 	an 	„=0  (2n + 1) 

(3.66) 

(3.67) 

and 

(3.68) 

where 

(3.69) 
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TB — = (3.76) 

The continuity equation can be written as 

(3.73) —ah = —div w ar 
Substituting eq. 3.72 into eq. 3.73 gives one integrodifferential equation, which is a 
prediction equation for h. The interesting point is that the right side of this equation 
contains terms representing the time histories of the wind stress and surface slope. 

Jelesnianski (1970) used a convolution integral of the local time histories of the wind 
stress and surface slope for a study of storm surges on the Atlantic coast of the United 
States. It was seen earlier that the transient Ekman problem consists of a drift current due 
to wind stress and a gradient current due to the slope of the surface. The vector velocity, 
V, is given by Simons (1980) as r

t 
(3.74) 	V = — 2, cos (a„z) 	[Ts (t  — t')+ 	V P(t — pD n=1  

a.„=(ti 2/ D 

0„ =  if  va,2, 

Note that to derive the integrodifferential equation of Welander (1957), one can integrate 
eq. 3.74 with respect to z and substitute the transport components into the vertically 
integrated form of the continuity equation. The bottom stress, TB  , can be obtained from 
the relation 

a V v —az at z = —D 

where V is given by eq. 3.74. Jelesnianski defined the following Kernel functions (K, and 
Kr): 

K,(t) 	E (—  1)",,e -va! 
 

11= 

K(t) 	e 
n= I 

Equations 3.74, 3.76, and 3.77 give 

(3.78) 	TB = —2v 1` [KT (/' )Ts ( t — t') 	Kp(t')V P(t — 	dt' D 

Since the terms in the series decay exponentially, the first few terms are sufficient to 
evaluate K, and K.  Jelesnianski gave a recurrence relation for eq. 3.78. 

Gedney and Lick (1972) used a technique similar to that of Welander (1957) and 
Jelesnianski (1970) for circulation in the Gulf of Mexico. In all of these studies a constant 
value was assumed for the vertical eddy viscosity, v. 

Weatherly (1977) showed from observations in the North Sea that there is over-
whelming evidence for the existence of a logarithmic boundary layer at the bottom. Also 
for the North Sea, Bowden (1965) and Ronday (1976) showed that the vertical eddy 
viscosity increases with height near the bottom and then flattens out in the upper layers, 
following a parabolic curve. 

where 

(3.75) 

(3.77) 
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av, —ar + A i  + Bi  + Si , 

av, 
A i  = u 	+ v- ax 	ay ' 

i = 1, 2 

i = 1, 2 

(3.84) 

where 

(3.85) 

Nihoul (1977) used a variable eddy viscosity. He made series expansions of the 
modified Ekman variables in eigenfunctions of the vertical turbulent diffusity and sought 
analytical solutions to the Ekman equations in terms of wind stress, vertically averaged 
current, and the surface elevation. Near amphidromic points (locations in a water body 
where the vertical range of the tide is zero) where the nonlinear advection terms are 
important he used an iteration procedure. 

Following Nihoul (1977), a two-and-a-half-dimensional model will be developed 
beginning with the equations of motion and continuity in a Cartesian coordinate system, 
neglecting horizontal friction but including the advective terms: 

	

, 	au , „ri 	a (P. 	, a ( au) 

	

(3.79) 	vvu —fy= — —ax 
—
p 

-r gn) -r 	v- at 	- 	 az 	az 
av 	 a h + 	(v (3.80) 	+ yVy + fu 	Tiy p  g 	az az  

(3.81) 	yy = 0 

where V = (u,  y,  w) is the velocity vector and V is the three-dimensional operator. The 
origin iTs taken at the undisturbed level so that the free surface is denoted by z = h and the 
bottom by z = —D. 

Introduce a new independent variable to replace the vertical coordinate z such that 

z + D 
= H 

where 

(3.83) H -= D + h 

Note that 0 	1. This change of variable is convenient in the determination of 
eigenfunctions of the vertical eddy viscosity parameter. 

According to Nihoul (1977), t should, strictly speaking, vary from a very small value 
= zo /H to 1 where zo  is the so-called Rugosity length (zo  is the distance above the bottom 

where the velocity is set to zero, zo  — 10 -3 m). Although << 1, it cannot be taken as zero 
because the linear variation of the vertical eddy viscosity, y, near the bottom leads to a 
logarithmic velocity profile that is singular at = 0. The lower limit of can be taken as 
zero so long as it does not create a singularity. 

The first two terms on the left side of eq. 3.79 and 3.80 become, after the change of 
variable, 

(3.82) 

av, 

	

(3.86) B, — —(1 — t)(u—aD + v-0.19 + w), 	i 1, 2 
H 	 ax 	ay 

av,
at 	

ah 	ah [(3.87) 5, = 	(us — u) — + (vs — v) —ay — (ws 11))], H 	 ax i = 1, 2 
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Here, subscript S denotes the surface; in writing the above relations, use was made of the 
relation 

a 	 a h (3.88) 	h 
—

a t 

+ us —ah + vs — w s  at z = h ax 	ay  

Nihoul (1977) pointed out that without some knowledge of the vertical profile of the 
velocity field, the orders of magnitude of the terms A, B, and S cannot be estimated. 
Although it is somewhat theoretically unsatisfactory (Nihoul 1975) near the bottom, since 
it reproduces the observations reasonably well, Nihoul (1977) used the so-called van Veen 
(1938) profile: 

(3.89) 	V = V se.2  

The terms B 1  and B2 from eq. 3.86 have maximum values near the bottom and vanish 
at the surface. For long waves, one may consider a frequency co (i.e. angular velocity of 
the earth's rotation) and a typical wave length c/ co where c = Noting that to  f 
— 10, for a grid of 10-km size, the B terms are comparable with the time derivative terms 
near the bottom where the streamlines may follow the bathymetry approximately. It is 
expected that 

aD (3.90) // —aD + v —ay + w— 0 at the bottom ax 

Thus, for a 10-km grid, the B terms will be ignored at the bottom, since the three terms 
together cancel to zero. However, for a smaller grid the B terms may be important near 
the bottom. 

The A and S terms are generally negligible compared with the time derivative terms. 
The ratio of A to S is V I c where V is the horizontal velocity. Compared with the B terms, 
the S terms vary more evenly over the water depth. Near amphidromic points, the A term 
may not be smaller than the time derivative terms. In fact, it may be an order of magnitude 
greater. Hence, near amphidromic points, one must retain the nonlinear adyectiye terms 
(Nihoul 1975; Nihoul and Ronday 1975). 

The last terms on the right side of eq. 3.79 and 3.80 become, with the introduction 
of 

1  a(  av; \ 
.H2 	

= 1, 2 

Bowden (1965) argued from observational evidence that the vertical eddy viscosity, 
y, can be expressed as the product of a function of t, x, and y and a function of t, i.e.: 

(3.91) 	= o- (t, x, y)X() 
H 2  

When the nonlinear terms are ignored, eq. 3.79 and 3.80 become, in the present notation, 

au a (pa 

at 	v = —-- g h) _ 
x p 	 n 

—av + f = --a (—P„ 
+ gh) + 	(X 12 ) at 	aY P 	 () 

(3.92) 

and 

(3.93) 
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These equations are valid everywhere except near localized areas (e.g. amphidromic 
points) where the discarded nonlinear terms become important. In the case where the 
nonlinear terms are important, one can treat them as driving forces and initiate an iteration 
process. 

Next, consider a locally one-dimensional model of the variation of the horizontal 
current in the vertical direction. Let 

(3.94) 

and 

V = u + iv 

av 	a V H X (3.95) 	T = V 	= o-   liz  

Let 

(3.96) (l) =—( + gh)— i4.(Lpa  gh) 

Then eq. 3.92 and 3.93 can be combined into a single equation: 

av 	 a a V 
(3.97) —

a t 
+ ifV = dce + 	(X.—

at
) a  

where the forcing function, (13 , is a function of t, x, and y. 
Thus, although the vertical dependence cannot be seen, one must treat  Vas a function 

of t, t, x, and y. For any given location (x, y) eq. 3.97 gives a locally one-dimensional 
model for determining the vertical variation of V as a function of t. 

The depth-averaged velocity i7 is given by 

aV = + ers — TB) 

H 

The deviation I/ 	V — -1-/ is expressed by 

aft 	a ( af/) 	(Ts 	T — B)] 
(3.99) w. + ifV = o' LyÉ X n  crH J 

The vertical variation of the eddy viscosity, v, may differ from case to case; however, 
its asymptotic form for small is 

(3.100) v = 

where K may be taken to be the Von Karman constant of the classical turbulent boundary 
layer theory. From eq. 3.91 and 3.100 it can be seen that a-H K I TBI 1/2  . According to 
Nihoul (1977) there is no loss of generality in giving a value of unity to the proportionality 
constant. Thus 

(3.101) ŒH = KITh r2  

Also note that X( ) 	for small values of 

Define new variables W and Y through 

TS 	 TB 
(3.102) i> = We -1-f + —0.1/ S(t) + 	b( )  oR  

(3.98) 

KIT B I 112 (z + D) 
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a ( ift  Tc, 
aY e  o-H) ' a = S, b 

and 

(3.103) Y = 	o- (E) dE 

where E denotes a dummy variable. Also define 

(3.104) s(t)= Lo  mi)  chi 

and 
t 1 — 

(3.105) b(t) = 14c . 	mi)  

where ri is another dummy variable. 
Define 

° if: a  
(3.106) 02 = 	+ if) ( 	= 

CT at 	crH 

Then, eq. 3.99 becomes 

aw a (,,aw (3.107) — + 	+ ebn = 	—) a y 	s 	 at 	at 
The boundary conditions are 

a W (3.108) X — = 0 at = 0, 1 at 
If one knows the vertical profile of y, then S and b can be determined as functions 

of Then, from eq. 3.107 the vertical profile of the velocity can be determined in terms 
of cr, H, Os , and Ob. Note that for any given point (x, y), these are functions of t and thus 
of Y. 

Nihoul (1977) gives the following relation between  V ,  Ts, TB, and V: 

Ts 	 TB 
(3.109) V = 	[S(t) — S] + 	[b( )  — b] 

1 a r 	(siTs 	b TB)] 

o- 	Lo-H 	a, 	.ft ()e 

Since the total velocity must vanish at the bottom 

(3.110) i> = — V at = 

The bottom stress can be parameterized in terms of depth-averaged velocity and wind 
stress and this bottom stress then can be used in the vertically integrated two-dimensional 
model. The two-dimensional model gives the depth-averaged velocity, h, and hence TB and 
a. These can be substituted into eq. 3.109 to give the vertical profile of the velocity. The 
mean (in the vertical) velocity field calculated from the two-dimensional (broken line) and 
the two-and-a-half-dimensional (solid line) models is compared in Fig. 3.2. 

Heaps (1973, 1974, 1975) developed two-and-a-half-dimensional models for calcu-
lation of storm surges and tides. He expanded the horizontal components of the velocity 
in terms of a set of eigenfunctions through the depth and reduced the problem somewhat 
similar to the traditional two-dimensional problem so that similar finite-difference tech- 
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FIG. 3.2. Comparison between the mean velocity computed by the depth-integrated two-dimensional model 
(broken line) and the locally one-dimensional depth-dependent model subject to the condition of zero velocity 
at the bottom (solid line). (Nihoul 1977) 

niques could be used for numerical integration. He began with the following forms of the 
equations of motion and continuity: 

(3.111) 

(3.112) 

(3.113) + L3- ID  u dz + rydz=0 at 	ax 0 	Y o 

Here, h' is a parameter that could be interpreted as the elevation of the sea surface if the 
water was at every instant in hydrostatic equilibrium under the tide-generating forces, with 
the atmospheric pressure, P a , and the other symbols as previously defined. One can write 

(3.114) 
 

ax 	ax pg 	ax 

ahi = ah 	1 al),, — — — — — ay 	ay  pg ay 
where fi is the equilibrium tide. 
At the surface, z = 0 (due to the linear approximation z = h is replaced by z = 0): 

u 
- P ( 

a 
v 	= uz 0  

(h — 	a ( 
vTil 

au e 	a 

+ fu = — g—
a
y (h —  h')+ a (.„ av 

8Z\  azi 
av 

(3.115) 

(3.116) 
— 	p  (

av v 	Ts, az 0  
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At the bottom, z = D: 

(3.117) 

au — p —) = TB a z 

=—p(y a y—) TB 
0Z 

Using a linear form for the bottom friction: 

TB, = KpuD 

TB ,  = KpvD 

In the above equations, Ts ,  and Ts, are the x and y components of the wind stress, TB , and 
TB , are the x and y components of the bottom stress, and p is the density of water. The initial 
conditions are 

(3.119) u=y=h=Oatt= 0 

Along closed boundaries, the normal horizontal flow must vanish: 

(3.120) u cos tp + y sin i  = 0 

where III is the inclination of the normal to the x-axis, directed away from the sea. At any 
position, E, on an open boundary, a shape function of current through the depth might be 
assumed with either the time variation of h given by 

(3.121) h = hE(t) 

or a radiation condition postulated by which energy is transmitted only outwards across 
the boundary, in the form of a simple progressive wave, according to the relation 

ch (3.122) ii cos 41 + Y-  sin Ili = —D 

where 

(3.123) c = \/gD 

Let F (z) be a differentiable (but unknown) function of z within the range 0 z D for 
a given location (x, y). Multiply eq. 3.111 by F (z) and integrate with respect to z from 

au 	 a D 	a 	au (3.124) 	— 	= — ga à7.  (h — h') + 	L ( v ) 
F (z) 	v 	dz 

where 
D 

(3.125) u 	f F (z)u dz D , 
D 

(3.126) v 	f F (z)v dz D , 

and 

(3.127) a 
D 	F (z) dz 

(3.118) 
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From eq. 3.111, 3.112, and 3.124, after some algebra, one can write 

au 	 a Ts, 
(3.128) •— + Xu — f v = — g a 	— h') + — 

d t 	 pD 

a (3.129) —
av + kv + f u = — g,-8y (h — h') + at 	 PD 

where X is defined Such that 

ez [v F' (z)] = —X F (z) 

(3.130) 
d F F' = —dz 

For eq. 3.128 and 3.129 to be satisfied, only certain combinations of X and F are 
possible, i.e. 

X = X r  

(3.131) F = Fr(z) 

r = 1, 2, 3, ... , 00 

These are eigenvalues (in ascending order) associated with the differential equation 3.130 
when it is solved subject to the following conditions: 

(3.132) F'(0) = 0 

(3.133) vD F' (D) + K F (D) = 0 

(3.134) F (0) = 1 

From eq. 3.125-3.127 define 

(3.135) ur  = I 	Fr(z)u dz 
D 

(3.136) vr  = 	J  Fr(z)v dz D o 

(3.137) a, = 	ID  Fr(z) dz D o 

Then from eq. 3.128 and 3.129 

0u 	 8 Ts, (3.138) —

at 

+ Xrur  — f v r 	(h h) + 

	

r 	 ' 

	

= — ga 	— ' 	— 	r = 1, 2, 3, ... , 00 ax 	pD 

ay, 	 a Ts, 

	

+ xr vr  + fu r  = — gar -8-3-7(h — h') + —b-p  , 	r = 1, 2, 3, ... , 00 

U  = E A r Fr(z) 
= (3.140) 	r I 

 

= E B r Fr(z) 
r= 1 

(3.139) 

Let 
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where A,. and B r  are independent of z. From eq. 3.130, 3.132, and 3.133: 
D 

(3.141)  J  Fr(z)Fs(z) dz = 0 for , 	S 
o 

and 
D 

(3.142) f F z) dz = 1r(D) — 1,(0) 

where 

, aF (3.143) /,.(z) = v (F 	— F 

Then from eq. 3.140-3.142: 

(3.144) 

where 

u = E (p rur F,.(z) 
r=1 

E (prv,F,-(z) 
r=- I 

D  

(3.145) (1)r 
1,(D) —  1,.(0) 

From eq. 3.144 and 3.113: 

ah  (3 	 a [.146) — + 	— (Da 4, u ) + 1- (Da 11) v )] = 0 at 	ax — 	ay r " 
The final set of equations are eq. 3.138, 3.139, and 3.146 for the three dependent 

variables ur, vr, and h. Once u and V are determined by numerical integration, the 
horizontal velocity components, u and y, at any depth can be determined from eq. 3.144. 
Thus, this model enables one to determine the horizontal currents as the sum of a series 
of vertical modes of progressively increasing order. 

Clarke (1974) modified the above procedure by removing the bottom stress from the 
vertical eigenfunction expansion; he applied the bottom stress externally on each vertical 
column of fluid. The only advantage of this technique appears to be that, whereas Heaps 
is forced to use a linear form for the bottom stress, Clarke can express the bottom stress 
as an arbitrary (not necessarily linear) function of the horizontal velocity. Davies and 
Fumes (1980) modified Heap's method further by allowing eddy viscosity to be an 
arbitrary function of space and time. Davies (1980) also used a coupled two-dimensional 
and two-and-a-half-dimensional model. 

3.3 One-and-a-Half-Dimensional Models 

In one-and-a-half-dimensional models, one horizontal coordinate and the vertical 
coordinate are the independent variables, along with time (i.e. the system is x, z, t). The 
models are referred to as one-and-a-half-dimensional because the x direction is properly 
treated whereas the z direction is approximately included. One-and-a-half-dimensional 
models are mostly used in estuarine circulation studies and are not popular with storm 
surge studies. Nevertheless, some typical models of this type will be briefly considered. 
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Although salinity intrusion into estuaries is not particularly relevant to storm surges, it will 
be included to show the versatility of the x—z models.' 

Hamilton (1975, 1976) developed several different models of the (x, z, t) type. In his 
1975 paper, application was made to the Rotterdam watersay. In his 1976 paper, he 
discussed a semi-implicit method that permits longer time steps. In both papers, unlike in 
layered models, variables are treated as continuous in the vertical direction. His treatment 
is mainly applicable to narrow estuaries, because no attention was paid to the lateral 
direction (models by other authors using lateral averaging will be considered later). 

For a narrow water body with rectangular cross-section, the governing equations 
under the Boussinesq approximation are the following. 
Continuity: 

D 

(3.147) 2/-1  + 	(b 	u dz) = 0 at 	b ax 	-h 

a (3.148) —(bu) + b w = 0 
ax 	az 

Salt conservation: 

as 	as 	as 	a ( as\ 
(bK (3.149) — -I- at 	u — + 

 ax 	az 	\lc 	
) 

azz az 	b ax 	axi —  

Momentum conservation: 

(3.150) 

 

aut 	u  aa t, 	waauz 	_ ag(z + h)_7.7;caS — 2 ah , a ( v att 
- aX 	aZ I 

where x is the horizontal coordinate pointing towards the sea, z is the vertical coordinate 
pointing downwards, D is the undisturbed water depth, h is the free surface perturbation, 
b is the channel width (b = b(x)), u and w are the velocity components in the x and z 
directions, respectively, S is salinity, Kx  and K. are the horizontal and vertical eddy 
diffusivities, respectively, and y is a coefficient of vertical eddy viscosity. An equation of 
state can be written as 

(3.151) p = po (1 + aS) 

where po  is the density of freshwater and a = 7.8 x 10-4  (from cr, tables). For an estuary 
of length L, the following boundary conditions can be used (assuming that all the fresh-
water flows in at the head): 

(3.152) S(x, z, t) = 0 at x = 0 

(3.153) u(x, z, t) = 	 at x = 0, z, t 
(D + h)b 

where q is the river flow. At the mouth (x = L) the tide as well as the salinity are 
prescribed: 

(3.154) h(x, t) = A(t) at x = L 

40n the coasts of India and Bangladesh, salinity intrusion into estuaries and rivers and flooding 
of farmland by salt water due to storm surges has detrimental effects on crops in the subsequent 
years. 
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(3.155) S(x, z, t) = So  at x =  L 

For a semidiurnal tide 

A(t) = — A0  cos (o- t) 
(3.156) 

2e = — 
T 

where Ao  is the tidal amplitude and T is the tidal period (12.42 h for M2 ). Further boundary 
conditions are as follows. 
No salt flux at the bottom and the water surface: 

as (3.157) K — 0 at z = D and —h z az  

The wind stress at the surface will be ignored (this can be introduced quite easily): 

au (3.158) v —az = 0 at z = —h 

A quadratic form for the bottom stress will be used: 

(3.159) au — v—az = Klu,lu, at z = D 

where K 0.0025 and 

(3.160) z = h — à 

Here, the bottom stress is expressed in terms of the velocity at a distance à above the 
bottom (à — 1 m). 

The following approximation is made in writing the underlined terms in eq. 3.150 
using the hydrostatic approximation. Actually, we have 

aP 	ap 
(3.161) — = g(z + h)— + gp- —ah 

ax 	ax 	ax 

where P is the pressure and p is the average density of a water column stretching from 
z = —h to D. Hence 

2 1 	 (3.162) p(x, t) = 	 p(x, z, t) dz 
(z + h) -f-h 

The approximation made here is to replace p by p in eq. 3.161 and use 3.151 putting 
P/Po — 1. This approximation (which introduces only a slight error) will simplify the 
numerical integration of eq. 3.162. The grid and the finite-difference scheme used were 
similar to those of Heaps (1969). 

Hamilton (1976) extended the earlier model to permit the free surface to move 
vertically through the grid points. He also introduced a semi-implicit scheme for use with 
larger time steps. Special attention was paid to the seaward boundary condition. Blumberg 
(1976) used lateral averaging, thus simplifying the formulation, and expressed the vertical 
eddy diffusivity in terms of a Richardson number. Application was made to the Potomac 
Estuary on the east coast of the United States. Wang and Kravitz (1980) gave the following 
equations for a laterally averaged estuary model. 
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Continuity: 

(3.163)
ax 

 (uB) + —a (wB) = 0  az 

aa 	h 

(3.164) —a t (B o h ) + 	(uB) dz = 0 ax 

Momentum: 

a 	a 	a 	a 
(3.165) 	(uB) + F 	 B r (uuB) + , (uw) — 	— e (Bvz Pe) 

aB 	gB a + Kulul 	 p dz = 0 +  

Salt conservation: 
a 	a 	a 	— a 	as 	a- ( 	as 

(3.166) —a t (SB) + — (SuB) + (SwB) — (BK —) — —BK —) = 0 ax 	 ax 	ax 	az 	z az 

Equation of state: 

(3.167) p = p o (a +  13S) 

Here, u and w are the velocity components in the x and z directions, B is the width of the 
estuary, h is the surface deviation from equilibrium, D(x) is the water depth in the 
undisturbed state, S is the salinity, Kr  and I), are the longitudinal diffusivity and viscosity, 
K. and v. are the vertical diffusivity and viscosity, and K is the boundary friction coeffi-
cient. The boundary conditions are 

as (3.168) Kz—az = 0 at z = h and z = —D 

(3.169) I), —a u = prescribed wind stress at z = h a z 

(3.170) vz —au = Kulul at z = —D az 

At the estuary head, the horizontal salt flux is set to zero and the inflow condition is 
specified. 

These above equations can be solved by standard explicit finite-difference techniques 
on a staggered grid. The diffusion and friction terms are lagged one time step for stability. 
The Euler backward scheme is used at every 10 time steps to eliminate the time splitting 
due to the use of the leapfrog scheme. 

To save computer time, a semi-implicit formulation is also attempted. Integrating eq. 
3.165 from the bottom to the top gives 

a h 	ah 
(3.171) — 	uB dz + g— 	B dz = remaining terms ut 	 a X -D 

If the right side of eq. 3.171 is zero, equations eq. 3.164 and 3.171 are the traditional 
shallow-water wave equations governing the fastest gravity waves. Equation 3.164 and the 
left side of 3.171 will be approximated implicitly, whereas the right side of eq. 3.171 will 
be treated explicitly, i.e. 

1 

	

(3.172) Bo8thn + —2 ( 8 ,M,H-1 + 	= 0 
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(3.173) 8,M„ + (g f B dz)-1 (8,14 + , + B,11„) = (right side of eq. 3.171)„ 2 	• -D 

where 8, and 8, are centered difference operators in time and space and M is the total 
transport. The subscript n denotes variables calculated at time step n. Equations 3.172 and 
3.173 can be simplified to a system of equations for h„,,, knowing the values at time 
step n. The Gaussian elimination method is used to solve these equations. 

There is no stability criterion for the implicit method. However, it was found that, 
whereas it reproduces the circulation well, it gives somewhat lower values to the amplitude 
of storm surges. On the other hand, the explicit method reproduces the storm surges well 
but must be governed by the following stability criteria. 
C—F—L criterion for stability: 

(gE,.. ) 112 

Diffusion criteria (for circulation): 

1 (àz) 2 	1 (Az)2  
(3.175) àt 15_ 	and àt 4 K, 	 4 I), 

For other versions of one-and-a-half-dimensional models see Blumberg (1976) and Elliott 
(1976). 

3.4 One-Dimensional Models 

One could obtain a one-dimensional (x, t) model by putting v = 0 and a/ay -= 0 in 
the two-dimensional vertically integrated model. However, the one-dimensional models 
are usually more rigorously derived. There are literally dozens of one-dimensional models 
available; here, one typical one-dimensional storm surge model will be discussed. In this 
era of ever increasing computer storage capacities, one-dimensional models have lost 
some of their earlier appeal. Nevertheless, for narrow and elongated water bodies, these 
models may yield useful and reasonably accurate results because two-dimensional models 
might be impractical for narrow water bodies. 

As a typical one-dimensional storm surge model, the model of Svansson and Szaron 
(1975) is used which was applied to the Baltic Sea. With reference to Fig. 3.3, the water 
body under consideration must be divided into sections that are perpendicular to the local 
axis of the channel. It is assumed that the water moves only in a longitudinal (i.e. x) 
direction. Then, the vertically integrated horizontal equations of motion become 

	

M   am 	ah (3.176) —a/14 + 	aP. 
at 	(A + bh) ax 	 ax 	ax 

+ g(A + bh) 	+ bTs  — bT 8  ax 	x 
and 

ah  (3.177) fM = — g(A + bh) 	— (A + bh) 
aP0

+ bTs, 

The continuity equation assumes the following form: 

(3.178) —a h 
= — 11-111  at 	b ax 

(3.174) àt 	Lïx  
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FIG. 3.3. One-dimensional numerical model of the Baltic Sea. The numbers refer to the various channels. 
(Svensson and Szaron 1975) 

In several one-dimensional models, traditionally there is only one momentum equa-
tion (in the longitudinal direction x) and the continuity equation. Here, the momentum 
equation in the transverse direction is partly retained for the following reasons: (a) to 
provide the boundary conditions at the junction of two branches and (b) to compare the 
computed water level with the observed level on one side of the narrow water body. 

In the above set of equations, M is the transport in the longitudinal direction, A is the 
cross-sectional area of a given section, b is its width, h is the variation of the level, h is 
the equilibrium tide (which is generally not important), f is the Coriolis parameter, P a  is 
the atmospheric pressure, g is gravity, Ts  is the wind stress, TB is the bottom stress, and 
y is the transverse direction. 
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bi   
(3.182) A /11, n  + 1 - 2g (Ai  + 	[ 

- f;   Mi,,,  - (A i  +  b hi ) 
A,P„\ 

AYi 

The above authors defined the bottom stress term as follows: 

R' MIMI 
TB = 

(A + bh)2  

TB ,  = 0 

where R' is a friction coefficient whose value is in the range of 0.003-0.015. The 
following boundary conditions were used. At the first section in channel 1, the average 
of the observed sea level at Goteborg and Frederikshaun was used. At the closed ends of 
the Gulfs of Finland, Riga, and Bothnia, M was taken to be zero. At branching sections 
the following two conditions were prescribed: (a) continuity of M and (b) equality of h 
except for a correction determined from eq. 3.177. 

For the numerical integration, Fischer's (1959) scheme was used, i.e. central-
differences in x and forward-differences in t. The finite-difference forms of eq. 
3.176-3.179 are as follows: 

	

AtMi.n  (Mi+1,n 	M1- 1,n)  (3.180)  A, +1 	Mi,„ 

	

(A i  + bi  hi) 	Xj1  + àxi) 

	

g (A i  + bi h;) (hi  + 1 ,„ - hi  _ „) 	 àP„ 
3,t (A i  + bi  hi) (—A  

	

(Llxi  _ + xi ) 	 n + 1/2  

+ g At (A + 	
(hi  + 1,, + 	-  k-1, +1/2)  + At b;  T i  

( a;  _ +  Lx)  s9,„ 

àtbiR i Mi, „ 

(Ai + hi hi )2  

3a(Mi+i,n+i 	Mi--1,n+1) (3.181) h.b „, 1  = hi  „ 
' 	[(bi  _ + hi) 	(b;  + hi+  

_ + 	 2 	 2 	1 

(3.179) 

For the linearized case, the stability criterion is 

(3.183) At < 2Ax  
gH 

The authors found it necessary to use smoothing when the nonlinear terms are included 
(as in the present situation). The following procedure was used for the smoothing. In eq. 
3.180, rather than 

Mi,n+ = Mj,n +it( • • •) 

the following smoothed form is used: 

(1 - a) 
+ = 	?I + 	2 	(M, + 	+  M1_ 	 + At ( • • .) 
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where a is the smoothing coefficient. 
The following steps can be used for the numerical integration. 
1) At time step n = 0, specify M1, 0  and h,, o . 
2) Using eq. 3.180, solve Mi. , for j = 1, 2, ... , (N - 1), i.e. for all the internal sections 

in each canal. 
3. In canals 2, 4, 5, 6, 8, 9, 11, 12, 18, and 19 use backward-differences to solve MN . 1: 

- t MN,0  (MN,0 	MN_  1.0) 	 (hN 0 - hN - 1.0)  
g At (A N  + bNhN) 	A (A N  + bN hN ) 	àXN  - I 	 caXiv - 

	

1),, 	 (41/2 	
h(N -1)1") - Ai(AN bN hN )  

	

à\ 	g  àt  (A N  + bNhN) 	3,XN- I  (àXN)112 

+ At bN(Tsw)l/2 	
àt bNev,o1A4N.o1  

(A N  + bNh 2  N) 

Similarly, use forward-differences to solve M0 , 1  in canals 1, 2, 3, 4, 5, 8, 9, 11, 12, 
13, 15, 16, 17, 18, and 19. 

4) In the remaining sections (except channel 13, section 10; channel 16, section 16; and 
channel 20, section 25, which are boundary conditions) the condition of continuity of 
transport is used to determine the M I 's in the branching points. 

5) Using eq. 3.181 determine /11, 1  for j = 1,2, ... , (N - 1). 
6) Use backward-differences again to solve hN , 1  in canals 1, 3, 7, 10, 13, 14, 15, 16, 17, 

and 20: 

(MN. I  - MN - 1.1)  
hN, I = hN,0 	àt 

Then use forward-differences to calculate h 0, 1  in canals 6, 7, 10, 14, and 20. 
7) Equation 3.177 must be used to determine the water level in certain branching points: 

1:N, 3:N, 6:0, 7:0, 7 :N, 10:0, 10:N, 14:0, 14:N, 15:N, 17:N, 20:0. 
This completes the integration for step n = 1. The same steps must be repeated for n -= 
2, 3, ... 

Next, a model that paid special attention to islands in the water body will be 
considered. Prandle and Crookshank (1972, 1974) developed a one-dimensional model for 
tidal propagation in the St. Lawrence Estuary. The sections are shown in a schematic form 
in Fig. 3.4. In this diagram, in the middle portion, the two networks on either side of the 
main axis together represent the Orleans Island near Quebec City. The length of each 
section lies in the range of 2-12 mi (3.2-19.2 km) and is determined by using the stability 
criterion: 

(3.184)  à t 

where U is the velocity in the x direction and C = gH where H is the average water depth 
in that section. 

First, the estuary was divided lengthwise into sections. Then the cross-section at the 
center of each reach was drawn, and the area of cross-section A for each elevation was 
determined. At the corresponding elevations, the surface area, S, for each reach was 

MN,I 

(6N-1 + bN) 

2 	axN- 
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KILOMETRE 0 	 19 	 39 

	

• 	 • 	 • 

	

SECTION 2 	 3 	 4 

174 	 193 

12 11 

SECTION 13 

34 35 36 37 38 

23, 24 25 26 27 28 29 30 31  53 54 
39 	 /52 

3-km 
SECTION 
LENGTH 

KILOMETRE 296 299 302 	428 431 434 439 444 

96 97 98 99 	100 

5-km 
SECTION 
LENGTH 

SECTION 55 56 57 

536 541 545 

/ 	• o • o • 

119 	120 	121 

286 290 293 232 235 238 241 245 

I9-km 
SECTION 
LENGTH 

Flo. 3.4. Section length and rotation for a one-dimensional model of the St. Lawrence Estuary in Canada. 
(Prandle and Crookshank 1972) 

measured. Note that one must use the hydrographic charts for this and interpolate between 
high and low water. 

To obtain the surface width, B, one must divide S by the reach length, àx. In the 
bottom friction term (to be discussed later) there is a hydraulic radius R equal to A/P where 
P is the wetted perimeter. Since it is difficult to determine P, Prandle and Crookshank 
(1972) used the hydraulic mean depth, M (equal to A/B), in place of R. 

Further difficulties arise when one uses cross-sectional average values. Prandle and 
Crookshank divided the estuary into conveying and storage sections (Fig. 3.5) with the 
understanding that the storage sections do not contribute to any momentum along the 
channel. This division can be accomplished by using the formula 

(3.185) A = A 1  + A2 

where  A 1 ,  A2, D I , and D2 are shown in Fig. 3.5. This division is not exact because the ratio 
D.,/D, depends on the state of the tide. 

The grid scheme used in the numerical integration is shown in Fig. 3.6. A staggered 
grid with central finite-differences in x is used. The equation of motion in the longitudinal 
x direction is 
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CONVEYING 	STORAGE 

FIG. 3.5. Division of the channel into conveying and storage 
sections. (Prandle and Crookshank 1972) 

	

u 	au 	ail 
(3.186)  ax 	ax 
where U is the velocity in the x direction, F is the bottom friction, and Q is the discharge 
(Q = UA) where A is the area of cross-section and QT is the discharge of freshwater from 
the tributaries into the estuary per unit length. The continuity equation is 

	

a Q 	a H (3.187) — + B 	— QT = 0 ax 

(3.188) F = 
C2R 

where C is the Chezy friction factor (R as previously defined). 
In eq. 3.186 wind stress is not included. However, it can be easily added without 

causing any problems. The finite-difference form of eq. 3.186 is 

U + 1  t + 	U + t \ 	2 ' 	2/ 	\ 	2 ' 	zi 
(3.189) 	  à t 	 + [U + t + 2 ' 	2 

+ u + t  _ _ u  _ t 	)1 [ 	 1 
\ 	2 ' t 	U(x + 2/L L 

1 	1 
g[H (x + 1, t) — H (x, t)] gKU + , t + 	U + 	t — 

àx 

where 

K — 
C 2  

where B is the width of the channel. 
The Chezy formulation for the friction term is 

gUlUI 

=0  
R + I , 2 

153 



A A 

(3.190) 

t+At 

H 	 t -At H 

x -Ax 	X 	x+Ax 

FIG. 3.6. Staggered grid used in the one-dimensional model for the St. Lawrence Estuary. (Prandle and 
Crookshank 1972) 

Note that Ax and K are functions of x (although not written as such in eq. 3.189). Here, 
H(x + 	t) is the average of H(x, t) and H(x + 1, t). 

The continuity eq. 3.187 centered at (x, t + ) can be written as 

[U(x+I 	 — —QT (x)1 

Ax 	  

1) [H(x,t  + 1) — H(x,t)] 
+ B(x, t + 	 = 0  2 	At 

Equations 3.189 and 3.190 can be rearranged to provide expressions for U(x + L t + 4) 
and H(x, t + 1). 

At a junction, eq. 3.189 and 3.190 must be modified. In eq. 3.189, it is the 
convective term u(3ulax) that must be modified. Since its contribution may not be very 
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significant, Prandle and Crookshank (1972) simply ignored this term immediately adjacent 
to junctions and boundaries rather than complicating the equations. 

Initially, the water was assumed to be at rest. The seaward boundary condition is the 
specification of tidal elevation at Pointe au Pere. (For storm surge calculation the wind 
stress must also be specified.) The landward boundary condition at Montreal involves the 
specification of the river discharge. 

Next, consider computational stability problems for one-dimensional models. 
Leendertse (1967) proposed an implicit finite-difference scheme for long-wave problems 
in two dimensions. He performed a stability analysis for a simplified form of the finite-
difference equations (Weare (1967a) refers to this as scheme I) and showed that the system 
is unconditionally stable except for a weak constraint arising from the Coriolis terms. 
Weare (1967a) showed that there is an instability due to the imperfect time centering of 
the nonlinear terms. 

Leendertse (1970) gave a modified version of the original scheme (referred to by 
Weare as scheme II) which exhibits a similar but even stronger instability. At times, this 
instability can be controlled through the friction term. This instability occurs even in 
one-dimensional (in space) systems, and for simplicity, only the one-dimensional case will 
be considered. The following discussion is based on Weare (1967a) and gives a compre-
hensive view of the stability problems.  associated with one-dimensional models (the same 
principles apply to two- and three-dimensional models). 

The continuity equation and the equation of motion are 

a h 	a (3.191)  at 	ax 
and 

(3.192) 	+ 	= 	g U l U I 
ax C2 H 

where x is the coordinate along the axis of the water body, h is the deviation of the free 
surface from its equilibrium position, D is the water depth in the undisturbed state (i.e. 
bed level), and 

(3.193) H = D + h 

Note that u is the depth-averaged velocity and C is a Chezy friction coefficient. 
In scheme I, the parameters h and u are defined at each time step on a staggered grid. 

Scheme I consists of an explicit step from (t —)àt to tAt and an implicit step from tà t 
to (t + b At for both eq. 3.191 and 3.192. The finite-difference forms in the explicit step 
are as follows: 

(hi,o — hi ) 	(Fli 	+ i) 	(171,- 	i)  
(3.194) 	 = 0 

(A t/2) 	 àx 

and 

( 1,11+  1,0 - U1-1- 1)  

	

(At/2) 	 2Ax 
	.4,  g ( 1.,-

+2 	
g 	Ill;  + i l 

	

(3.195) 	 + u i+1.0 	 . Ax  ‘, v 	hi) = 	,.., 2  17j+ I ,- 
u 	rii+ , 

In the implicit step: 

	

(h:'-  —  h 0) 
 0

) 	(H• + 1 oti'
+ 

) — (11; - Lou T-1) = 0  

	

(3.196)  	1 	' 	j 1  
(At/2) 	 Ax 
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and 
, + 

tij  + I , 0) 	 U./ + 3, 0 - u_10) 0) 	g 	+ 	
+ (3.197) 	 + j+ I 	  + Ax (hi" – h.) (At/2) 	 2Ax 

	

- 

g 	I iti + 1,01 
 U- 

	

c2 	H + 

where 

1 - (3.198) F-1;  +1 	(hi+  2 + /-2j ) - hi  + 

Note that eq. 3.194 and 3.195 can be solved directly for ho  and uo . However, eq. 3.196 
and 3.197 must be solved simultaneously for h +  and u +  

In scheme II the above explicit and implicit equations are combined into a single step 
implicit equation of the Crank–Nicolson type. In this scheme eq. 3.194 and 3.196 still 
hold for h. On the other hand, for u, the intermediate step tto  is eliminated. Then, the 
combined equation for u is 

, – Ft., + 1 ) 	(II, + 3 - 	- 1) g 	+ 	 + (3.199) 	 +  	— 	+2  -I-  + 2 - 	tt.0 j + I A t 	 Mx 	2Ax 	' 
g (uj+4. , + 	+1 )  111,+ I  

C 2 	2 	H 

One cannot perform a stability analysis of the full equations 3.194-3.199 because of 
the presence of nonlinear terms. The usual approach with linear equations is to determine 
the growth of an individual Fourier component in the solution. Since nonlinear terms give 
rise to interactions, one should not consider the propagation of individual components. 
However, in the case of the shallow-water equations, the nonlinear interactions are 
generally weak. Then, one can obtain some idea of the stability by considering a quasi-
linear system. The following set of equations are obtained from the original set 
3.194-3.198 by dropping the friction terms, assuming that the depth, D, is uniform, and 
ignoring the nonlinear advective terms in the velocity equations: 

_ 
(3.200) 	 —

(Ix 	
– 	= 0 

(At/2) 
+ 

 

(uf+1,0
+ 	(j; 	- (3. 201) 1) 

(3,1'12) 	
3ac J + 2 – 1-  1 

(hit –  
 (3.202) 	 + —„ 	+ , – tt;_ ,) = 0 

(At/2) 	ax 

(I1J
+
+1 	+1,o) 	g 	+ (3.203) 	 2 

	

(h 	– h.+ ) = 0 
(3,t12) 	

A x J +  

These equations can be combined to eliminate h o  and uo . Then it is similar to a 
Crank–Nicolson implicit scheme. As is shown by Leendertse (1967), this scheme is 
unconditionally stable. 

Actually, it is not necessary to omit the nonlinear terms completely. Let the solutions 
for the water level be z + h and for the velocity field be V + u where z and V vary slowly 
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with x and t, and h and u are error terms. Then, by definition, h < z and u < V. 
Substitute z + h and V + u into eq. 3.194-3.197, then to first order in the error terms: 

(3.204) 
(11 1 . 0  — hi) 	H 

 (At/2) 	

, 	 V 
l
, 

lUi+ 1 	- I) I 	 n +2 	h12)j-2) — 
3■ X 	 23■ X j  

1.0 	g 	_ 	(a 3 — ll -1) = 0  (3.205) 	 + 37x  (hi+2 	 + (3,t/2) 

(3.206) 
(hi+  — hj,o)  + H (til 

1 

_ u ;E-  i ) 	(h1+  2 . 0 — hj_2 . 0) = 

	

(4àt/2) 	3`x 	>1+  

	

(ci f++ , — 	g 	h+) 	(u 3 0 	U -1 0) 	° 	 + 37r (h1+2 	
2Ax '+'' (At/2) 

H = z + D 

Equations 3.204-3.207 determine the propagation of the error terms h and u in x and 
t. For simplicity, define the following linear operators: 

t 

	

(3.208) alyi 	
2. x 

 (h+2 

and 

" 	(tt, 4. 1  + u_1)
(3.209) Su,/ = 	  2 

Define a column vector: 

h 
(3.210) V = 

and define the following four matrix operators: 

(3.211) Â 1  = 

(3.207) 

where 

10  

01  

1—VU —Ha 
—ga 1—VE 

(3.212) Î3 1  = 

(3.213) 

1 	g 
A2 =  

gd 1 

1 — V CLS' s 	0 
B 2 = 

0 	1— V C‘R's  

Equations  3.204 and 3.205 together can be written as 
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(3.214) Â, V°  = /3,1/ -  

Equations 3.189 and 3.190 together can be written as 

(3.215) Â, V + = Î3, 

Considering the propagation of a single Fourier component of wave number o- , let the 
errors in water level and velocity field be of the form 

h  = ho  e'ff 1  
(3.216) 

u =  Ito  el'y 

Here, amplitudes ho  and fro  are functions of time and ci.  Define 

1 (3.217) 0 	—2 crAx 

The influence of the linear operators a and on h can be written as 

àt 	. (3.218) ah 
 = 2àx 

 2111 sin 0 

and 

(3.219) g' h =  h cos 0 

Let X denote the amplification factor in the two-step process given by eq. 3.198 and 3.199, 
i.e. 

(3.220) ho (t + At) =  X ho (t) 

The factor X is the roots of the characteristic equation obtained by eliminating the inter-
mediate step V °  in eq. 3.214 and 3.215, i.e. 

(3.221) IA, 1 B I  — XB 2-I A 2 1 = 0 

Define 

y' 	y sin 0 cos 0 
(3.222) 

sin 0 

where 

(3.223) y —àt V àx 

and 

At (3.224) Ia. 	v gH 

Since eq. 3.221 is quadratic in X, the roots can be written as 

(3.225) X = (1 — iv') (1 — iv' -± ip,') (1 ± 

The two roots of this equation correspond to propagation in the + x and — x direc-
tions. For propagation in the same direction as V (the mean flow) it can be seen from eq. 
3.225 that 
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1- 21/ 	+ 1/ 2-n 
(3.226) IX1 2  = ( 1 + 1/ 2) 11 + 	 I_ (1 + 11' 2) 	I 
Thus 

(3.227) IX1 2  > 1  

Hence, for this scheme I, the calculation will always be unstable, and this instability is due 
to the presence of the nonlinear terms (which generate the v terms). 

When v --> 0, the situation considered by Leendertse (1967) is arrived at. Then, the 
amplification factor is given by 

1 ± 
(3.228) X —> X 0  = 	 =1 

1 ± 

Thus, the scheme is stable because IX0 1 2  = 1 for all 0 (i.e. all wavelengths). 
Weare (1967a) studied this instability through a numerical experiment. A basin of 

20-km length was used and the undisturbed water depth was taken as 10 m. Initially, a 
wave with an amplitude of 1 ni was assumed and Ax and àt were chosen to be 2 km and 
100 s. First, the linearized equations 3.200-3.203 were used and the total energy was 
calculated. The scheme was found to be stable. Then, the nonlinear terms are included (but 
not the frictional terms), and using eq. 3.194-3.197 the total energy is again calculated 
as a function of time. The scheme was found to be unstable. Later, situations will be 
considered in which this instability is weak enough to be controlled by frictional terms. 

One can proceed as above for the stability analysis of scheme II which leads to the 
following characteristic equation: 

(3.229) k2 (1 + 	— X[(I — iv') 2  + ( 1 — 2iv') — 11' 2 (2 — iv')] 

+ [(1 — iv') (1 — 2iv') + pu' 2] ( 1 — iv')  =  0 

When v —> 0,  X --> X0  as in eq. 3.228. Even without solving eq. 3.229 it can be shown 
that scheme II is unstable (with the nonlinear terms present). For this scheme to be stable 
14 and IX 2 1 must be less than or equal to 1. Hence, for stability IX, X2 1 :5_  I. Here, X 1  and 
X2 denote the roots of eq. 3.213. From eq. 3.229 one can write 

1 — iv' 
(3.230) XI X2 = 	[( 1 - iv') (1 — 2iv') + 

1 + 11 2  

It can be seen that IX, X2 1 	1 only when v —> 0. Hence, scheme II is unstable. 
One can obtain some idea of the relative strength of the instabilities by comparing 

the magnitude of the amplification factors in schemes I and II. For situations in which 
I VI < 1/FH, i.e. when v < it„ one can expand k in a series of v as follows: 

(3.231) k = X 0  + vX, + 0(v2 ) 

Substitute eq. 3.231 into eq. 3.229 to give for scheme II 

(3.232) !XV = 1 ± 3 	+2) + (v2) 

Hence, scheme II is more unstable, which is easy to understand because the time centering 
of the nonlinear terms is poorer in scheme II. The numerical experiment confirms this 
result. 

Thus, for a given V and H, the strength of the instability depends on p, and v, i.e. 
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on the values of àx and àt. One can expect that frictional  ternis  will damp to a certain 
extent the instability due to the nonlinear terms. Since a stability analysis with the 
inclusion of the nonlinear and frictional terms is difficult, a simpler set of equations 
corresponding to the fully time-centered Crank–Nicolson approximation for the linearized 
equations 3.200-3.203 will be studied: 

(h.;  – hi  ) 	H 	+ (3.233) 	+ —
2àx (11 	+ 	– Irj+_ , – u _ 1 ) = 0 àt 

(u j , – u.,,) 	g 
àt 	2àx 

+ 
(3.234) 	  +  	+ 	, – 

( 11++ I 11  ++ 11 + ti,+ I u,-+ I I) CH " 

The amplification factor for these difference equations satisfies the following character-
istic equation: 

(3.235) (X + 1)2  i2  + 2K(X + 1) (X – 1) + (X – 1) 2  = 0 

where 

(3.236) K = 1 gV  àt 
2 C 2H 

The roots of this are 

k – 1  (3.237) K ± (K 2  – p. 12 ) 1 / 2  X + 1 

In the overall stability of a finite-difference scheme, it is the shortwave components that 
are the most important. Since generally K < 1, the frictional damping due to shortwave 
components is (as for schemes I and II) 

(3.238) IXI 2  = 1 	4K  

A comparison of eq. 3.238 with eq. 3.231 shows that the overall stability condition 
can be written as 

(3.239) -yp, < constant 

where 

(3.240) 'y = c2H  and p, —àt 
V7/2 

The nondimensional parameter -y is a measure of the frictional effect whereas the param-
eter p, is a measure of the accuracy of the finite-difference scheme. When an explicit 
scheme is used, p, < 1 and is limited by the C–F–L stability criterion. For an implicit 
scheme, although in theory there is no such restriction, in practice there is a restriction 
based on the accuracy of the scheme (there is also a lower limit on àx). 

The following numerical experiment verifies the result of eq. 3.239. A one-
dimensional basin of 9.5-km length with a uniform undisturbed water depth of 10 m was 
taken. The boundary conditions are u = 0 at x = 0 and h = cos (w  t) at x = 9.5 km. The 
period T = 21-r/w is taken as 25àt. The initial conditions are u = 0 and h = 1 m 

– hi  ) 

( 1 + 11 12) 
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everywhere. With C 2  ---- 4000 m • s -2  and Li t  = 200 s, four tests were conducted using 
scheme I. In these four tests, àx was taken as 1000, 500, 250, and 125 m. The corre-
sponding values of 'y were 4, 8, 16, and 32 and the values for II were 2, 4, 8, and 16. The 
first two tests were stable, whereas the finer grid calculations proved to be unstable. 

In this test, at the velocity point adjacent to the open boundary, u aulax was set equal 
to zero (Leendertse 1967). The numerical experiment used to test scheme II showed for 
which combinations of 'y and F.t. scheme II was stable and for which combinations it was 
unstable. 

3.5 Combination of Two-Dimensional and One-Dimensional Models 

In dealing with storm surge problems in real water bodies, situations are often faced 
in which the surge is generated in a bay or gulf and is amplified (or dissipated) as it 
propagates into an estuary, inlet, or river. It is impractical to use a two-dimensional model 
for the whole system because the river or estuary is too narrow. On the other hand, a 
one-dimensional model for the whole system is unrealistic because it cannot represent 
accurately the topography of the bay or gulf and the influence of the transverse motions. 
For situations such as this, one must use a two-dimensional model (for the bay or gulf) 
that runs concurrently with a one-dimensional model for the river. Two such models will 
be considered: one for the North Sea and Thames River and the other for the Bay of Bengal 
and one of its estuaries. 

Prandle (1974, 1975) developed a dynamically coupled two-part model to calculate 
the propagation of tides and storm surges in the southern part of the North Sea and the 
Thames River. A two-dimensional model for that part of the North Sea south of 53°20' 
latitude and that part of the English Channel east of the Greenwich meridian is interfaced 
with a one-dimensional model for the Thames River. 

Both models are vertically integrated. The model developed by Prandle (1974, 1975) 
is somewhat similar to that of Banks (1974) for the same area. First, consider the 
one-dimensional model. The continuity equation is 

ah aQ (3.241)  at 	ax 

where S is the surface area between adjacent sections, h is the elevation of the water 
surface above a fixed horizontal datum, x is the axis along the river (positive towards 
upstream), Q is the total flow in the longitudinal direction, Ax is the section length, and 
QT is the water discharge from the tributaries. 

The equation of motion is 

O u 	Ott + g 
ah 	gulul  

	

(3.242) — + u — 	+ 	= 0  at 	ax 	ax C 2  M 

where u is the velocity in the x direction (average value over a cross-section), M is the 
hydraulic depth, and C is a Chezy coefficient. 

Equation 3.241 can be written at  (j, n)  as follows: 

S (h n+112 112)  
(3.243) 	 + + 1/2 Url I/2,n — Ai— I/2 tij— I/2,n — QT = 0

Lit  

where A is the area of cross-section. 
To calculate A and S, the following interpolations are made. 
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For Al  -1/2: 

1 
 hi-1/2,n 	
( 	

- 1/2 + hj- I,n+ 1/2) 

For A +  1/2: 

+ I /2, n = 	(hid, + 1/2 + hj+ I, n - 1/2) 

For Si : 

1 „ 
1'1Ln = 	1/2 + hj,n - 1/2) 

It can be seen for the calculation of A, + 1/2 and S  that  h,, + /2  must be known. Hence, 
eq. 3.243 must be solved by iteration. Beginning with an initial value of -1/2,  in 
practice four iterations appeared to be sufficient. Equation 3.242 is solved at (j + 1/2, 
n + 1/2) and the following expression can be written for tti+  I/2,„+ 

(iii + I/2,n+ I — 	1- j/2 	 1/2 	h+ 1/2) 	g 	+ 1/2,n+ I I  Ili+  1/2,  (3.244) 	  + 	 0 à t 
(t-j+ 1/2MJ+ 1 /2) 

Equations 3.243 and 3.244 must be solved for the two dependent variables (water level 
and velocity). The stability condition is 

àx (3.245) —
àt 

u + C 

The equations for the two-dimensional model are as follows: 

au 	ah 	1 aP 	gul(u 2  + v2) 1 / 2 I 
(3.246) i7+gi-x- + p 	+ Ts,  + 	 fv = 0 

C2D 

av 	a 	i  aP 	
gvi(u 2 	v 2) 1 / 2 1  

	

(3.247) 737: + g 	+ 	+ Ts, + 	  fu = 0 
c2D 

ah au (3.248) — + — (h + D) + —0v (h + D) = 0 at 	ax 	a)  
where u and y are the depth-averaged velocities along the x and y directions, D is the depth 
of the bed below the same horizontal datum,  P is the atmospheric pressure, p is the density 
of water, Ts, and Ts, are the wind stress components in the x and y directions, and f is the 
Coriolis parameter. 

Using a central finite-difference staggered grid, eq. 3.246 is centered at (x, y + àyI2, 
n + 112) to give an expression for u.,,, +1/2 ,„ +  I. Let j and k denote the indices for x and 
y. Then 

	

(ilf,k+ 1/2,n + I — 	I/2,n) 	(hj + I/2,k+ 1/2,n + 1/2  — hj-  I/2,k+ 1/2,n + 1/2) 
(3.249) 	 g + 

	

At 	 Ix  

, (Pi+ I/2,k+ I/2,n + 1/2 — Pj- I/2,k+ 112.n+  1/2)  , 
-1-  

pàx 	 • 	+1/2 

I f  2 	 1/2I 
, g  uf.k + 1/2.n + I 	k +112,n ' 'Bar/ 	I  

.4+1/2 VBar  = 
ipDE 
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where 

VB ar  
4 

(Vj— I/2.k.n+ 1 	Vj—  I/2,k+ I.n + I + Vj+ 1/2.k.n 	Vj+ 1/2.k  + 1,n)  

and 

(hi+  /2.k +  112.n + 1/2 + hi— 1/2.k  + I/2.n  +1/2)  
DE = Di,k+ 1/2 + 	 2 

Equation 3.247 is centered at (x + Ax12, t + Aot12), which gives an expression for 

(v1 	+  I  — vj +  I/2,k.„) 	g(hi , I/2.k + 1/2,n+ 1/2 — 	1/2.k.— 1/2.n + 1/2)  
(3.250) 

àt 	 ày 

(Pi+ I/2,k + 1/2.n 1 1/2 —  Pi + 1/2.k I/2.n  + 1/2) 

PàY 
+ TS Yj+ I/2.k 

i f  2 	 „,2 \1/2
I  g v.;  + 	k, n + I RV./ + 1/2. k,n ' "Bar/ 	

fk UBar = 

Ci2.+ I/2DE 

where 

(Uj,k+  1/2,71 + 1 	Uj,k — 112, n + 1 + Uj + I . k—  I/2,n 	Uj + I.k— I/2,n) 

UB ar  — 	 4 

and 

(hi+ I/2,k + I/2,n+ 1/2  4-  hj+ I/2,k— 112.n  + 1/2)  
= Hi+ I/2,k + 	 2 

Equation 3.248 is centered at (x + Ax12, y + Ay/2, t + At/2) and gives an 
expression for hi  + ink +112.n+ 3/2: 

(3.251) 	
(hj+  I/2,k + I/2,n +3/2 — hi+ I/2,k+ I/2,n+ 1/2)  

At 

(u.,+1.k+1/2.,i+IDE 1  — Uj.k+ 112,n+  I DE2) 

àx 

(v1+  l/2 , 	
n k+I  +I DE3 — Vj+ I/2,k,n + 1  DE4) 

+ • 	 =, 0 
Ay 

where 

DE! = Hi+ I,k+1/2 + 
(hj+ I/2,k+ I/2,n +3/2  + Ili +  3/2,k + 11.2,n + 1/2)  

 2 

(hi+ I/2,k + 1/2,n +1/2 + hj—  I/2.k + 1/2,I1 + 3/2)  
DE2 = H 	+ j,k + 1/2 	 2 

(hi+ 
 DE3 =-- H 	
I/2,k+ 112.n + 3/2 + 111+  I/2,k + 312.n + 112)  

H +  I/2,k + I + 	
2 

(hi+ I/2,k 4- 112,n + 1/2 + 111+ I/2,k— I/2.n + 3/2)  
DE4 = Hj+ I/2,k + 

2 

Initial conditions are specified for values of h at t — At/2 and values of u and y at 
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time t. For correct interfacing of the one- and two-dimensional models, the mass and 
momentum transfer across the interface must be correctly represented. The downstream 
boundary condition for the Thames River is denoted as the volume transport to or from 
the adjacent boundary of the North Sea model. This ensures correct transfer of mass. To 
represent correctly the transfer of momentum, the volume transfer is calculated in terms 
of the water level on either side of the common boundary. From the continuity equation 
for the one-dimensional model: 

S2 (h2  +1/2 — /12,, -1/2)  
(3.252) 	' 	 A2/(2,,, — Q1 = 

where Q, is the volume of water transported across the interface and is given by 

1  
(3.253) Q 1  = — 	 -1-  [D7,18 	— „" 	/ + 1/ + /17,18,11- 1/2)] 3,y 2 	-- 	- 

where (7, 18) is the interface point. The negative sign corrects for opposing direction of 
axes in the one- and two-dimensional models. 

The equation of motion in the x direction for the two-dimensional scheme is used to 
obtain an expression for the velocity at the interface: 

(u7, 18,n + I — 11 7,18,n) 	g(h7. 18,  n +  1/2  
(3.254) 	

àx 	
+ other terms = 0 à t  

where hll  = /16.18./1 lp for an interior grid point if located 10' west of h7 , 18. The one-
dimensional model is so chosen such that the location of the first tidal elevation in the 
Thames River is at a location 10' west of /4, 18 . Hence, one can simply use 

(h8 	+ 1/2) 

For inclusion of tidal flats, the following scheme was used in which the boundary grid 
squares are modified. A triangular-edged prismatic section is added to the landward side 
of the grid. The velocity  Uj . k across this grid is set to zero, which of course is not strictly 
correct. The continuity equation for the boundary grid gives 

ah 	tan 0  a 	2 	a 	 a 
(3.255) 	 (h + A) + — u(h + D) + — v(h + D) = 0 ar 	2Ax at 	ax 	ay 
where D is the water depth in the undisturbed state and h is the height of the water surface 
at the center of the square. The parameters A and 0 define the slope of the prismatic 
section. 

The first two terms in eq. 3.338 can be reduced to ah/ar[1+ (tan 0/x) (h + A)]. 
Equation 3.254 is then solved in the same manner as eq. 3.250. 

The value of h in the term 1 + [tan 0 (h + 	[Ix is given an approximate value 
of h,, k  of the previous time step. Then, eq. 3.254 is solved through iteration. The mag-
nitudes of the parameter A were set equal to the maximum tidal amplitude at the locations 
under consideration. The values of 0 were calculated so that the horizontal movement of 
the land—water boundary in the model is equivalent to the distance between high and low 
water levels. Note that the same scheme can be used to provide a smooth transition 
between successive grid points when grid squares are added or subtracted (which is an 
alternate but more complicated scheme). 

Next, a model for the Bay of Bengal will be considered. Johns and Ali (1980) 
developed a two-dimensional model for the Bay coupled to a one-dimensional model for 
the Ganges—Brahmaputra—Meghna river system. The geographical area and the grid 
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FIG. 3.7. Grid system used in the Bay of Bengal model. (Johns and Mi 1980) 

limits for the two models are shown in Fig. 3.7. Uniform depth was assumed in region 
3, and in regions 2 and 1, depth decreases towards the lateral boundaries and equals 10 m 
along the coastline. The depths in rivers 1, 2, and 3 are taken as 8, 7, and 7 m, re-
spectively, and they were all assumed to be uniform. The model is nonlinear so that 
tide—surge interaction could be studied. Region 3 has a coarse grid with  ix  = Ay = 
72 km, and regions 1 and 2 have a fine mesh with àx = ày = 18 km. Also in the rivers, 
ày  =18 km. 

For the two-dimensional model, the equations of motion are, in the flux form, 

a 	 a a 
(3.256) —

a t 

[(h + D)u] + — [(h + D)u2] + —ay [(h + D)uv] — f(h + D)v a x 

a h TS = — g(h + D) — + 	— Ku(u2 v2)112 ax 	p 

and 

a 	a (3.257) —a t 
[(h + my] + —[(h + rAtiv] + —a [(h + D)v 2] + f(h + D)u ax 	 ay 

a h 	Ts,  = — g(h + D) — + — — Kv(u2 + v 2) 112 
ay 	p 

In these equations, D is the water depth, h is the free surface elevation, and K is a bottom 
friction coefficient. The continuity equation is 
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ah 	a 	 a 
(3.258) — + — [(h + D)u] + — [(h + D)v] = 0 at 	ax 	 ay 

For the one-dimensional model, let b(y) be the breadth of the river at location y. The 
continuity equation is 

ah 	a 
(3.259) b —a t + .i.y [b(h + D)v] = 0 

The equation of motion along the axis of the river is 

a 	 a ah 
(3.260) —

at 

[b(h + D)v] + — [b(h + D)v1 = — gb(h + D) —ay — Kbvivl ay 
The matching of the two-dimensional model to the one-dimensional model is done 

as follows. Let B be the breadth of region 1 at section PQ where it joins river 1. Continuity 
of water level elevation requires that 

1 
(3.261) hnver = 	f hsca dx B 

Continuity of volume flux implies that 

(3.262) B [(h + D)v]river = 	[(h + D)v]se. 
PQ  

	dx 

Equations 3.259 and 3.260 are solved knowing the water level elevation from region 1 of 
the Bay model (i.e. two-dimensional model) in river 1. Motion is communicated from 
river 1 to rivers 2 and 3. 

At the open boundary of region 3 in the two-dimensional model, the tidal elevation 
is prescribed as follows: 

(3.263) h = E as sin (us t  + ')'s) 

where, as , crs, and 'ys  are the amplitude, frequency, and phase, respectively, of the relevant 
tidal constituents. The numerical integration is performed on a staggered grid. 

3.6 Finite-Element and Irregular-Grid Finite-Difference Models 

This section will be concerned mainly with the finite-element approach to storm 
surges and tides and will later deal with some irregular-grid finite-difference techniques 
which combine the best features of both the finite-element and the finite-difference 
methods. Compared with the finite-difference methods, the finite-element methods are 
more recent (they began to appear in the literature in the middle 1960's) but they are better 
suited for representing the topography realistically than are regular-grid finite-difference 
techniques. 

Following Wang and Connor (1975a), the literature on finite-element methods will 
be briefly reviewed. Unlike in the finite-difference method, in the finite-element method 
the variables satisfying the governing equations and boundary conditions are approximated 
by piecewise polynomials. The main advantage of the finite-element method is the highly 
flexible grid so that real water bodies can be modeled more realistically. 

Wang and Connor (1975a) distinguished between the finite-element method and the 
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discrete-element method as follows. The discrete-element method makes use of both the 
finite-difference and finite-element methods. In the discrete-element method, rather than 
using differential equations for the infinitesimal element, one can perform all the balances 
on the computational discrete element which can have an arbitrary shape. However, one 
generally uses square, rectangular, or triangular elements. In an element the variation of 
any given parameter is represented by discrete nodal values. Usually, these nodes are 
located at the center of the sides of the elements. To satisfy conservation, the discrete 
equations must approximate the differential- equations as the control volume is reduced to 
zero. This may be difficult to prove for odd-shaped elements. Simon-Tov (1974) and 
Eraslan (1974) gave some examples of the discrete-element method. Wang and Connor 
(1975a) pointed out that one drawback of the discrete-element method is that if one wants 
to refine the grid at one point, e.g. (xo , yo), then one must have the same value of Lx for 
all the elements along the line y = xo  and the same value of ày for all elements along the 
line x = yo . However, this is not a serious shortcoming because either an interpolation 
technique or trapezoidally shaped elements can be developed to get around this problem. 

According to Wang and Connor (1975a) the finite-element method was first used in 
1956 in aeronautics. Until the late 1960's its use was mainly confined to solid and 
structural mechanics (Zienkewicz 1971). In the early stages the success of the finite-
element method depended on the existence of a variational statement of the problem. 
However, Finlayson and Scriven (1965) showed that Galerkin's method can be derived 
from the method of weighted residuals and there is no need for a variational statement. 

Consider the differential equation 

(3.264) Lu = fo  

where L is a differential operator, u is an exact solution, andfo  is the inhomogeneous term. 
Define the residual R as 

(3.265) R = Lû — fo  

where û is an approximate solution. Application of a weighting function w to the residual 
and summation over the complete domain 1/ gives 

(3.266) WR = f Rwdco = 	(Lû — f o)w do) 

where WR is the weighted residual. The finite-element solution is based on the condition 
that the weighted residual should vanish. 

For some applications of the finite-element method to circulation in shallow water 
bodies, see Gallagher et al. (1973), who calculated the steady wind driven circulation in 
shallow lakes under the rigid lid approximation. Taylor and Davis (1972) used a fourth-
order predictor—corrector method for the time integration. They compared the trapezoidal 
rule and the finite elements in time. Grotkop (1973) studied the same problem using linear 
finite elements in space and time. According to Wang and Connor (1975a) this method is 
less accurate than the trapezoidal rule. Consider the equation 

(3.267) M.ic = F 

where the tilde denotes a matrix quantity. Applying the linear finite elements in time to 
this equation gives the following recurrence relation: 

1 	2 
(3.268) ig.,c„.}. 1  = Mx,, + àt (-3 F„ + —3 Fn+ i) 
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On the other hand, the trapezoidal rule can be written as 

(3.269) Mx„ +1  =  Mx, + -à . (F„ + F„. I ) 

Note that the trapezoidal form is centered around time n + 1/2 and is better than the 
skewed form (eq. 3.268). Taylor and Davis (1972) made use of a cubic expansion in time 
based on trial runs. It should be noted that the predictor—corrector method and the cubic 
finite-element method give more accurate results than the trapezoidal rule; however, they 
require much more computational effort. Because of asymmetric matrices, even the 
trapezoidal rule is not very efficient. 

Norton et al. (1973) used the Newton—Ralphson method to include the nonlinear 
terms. Wang and Connor (1975a, 1975b) gave some new concepts which helped to solve 
troublesome details encountered in earlier studies. The boundary condition of nonzero slip 
in the tangential velocity field is conceptually difficult to apply when curved land bound-
aries are approximated by triangular elements. At the break points of the model boundary, 
the nonzero tangential velocity component gives rise to flow across the adjoining seg-
ments. Then, to satisfy the continuity equation at the break points, one is forced to equate 
both velocity components to zero. Norton et al. (1973) suggested that one should keep as 
few break points as possible and at these points both the velocity components must be 
prescribed equal to zero. Once one is forced to do this, the flexibility of the finite-element 
grid is sacrificed; also, near the break points one must use a fine grid. This will necessitate 
the use of long and narrow triangles (distorted elements). Wang and Connor (1975a) 
resolved this problem by a proper definition of a normal direction at the break points, and 
this permits a nonzero tangential component of the velocity without reducing the number 
of break points. 

For a detailed derivation of the equations involved in the finite-element method see 
Wang and Connor (1975a). They solved several simple problems to enable comparison 
with analytical solutions. Finally, they applied the technique to a study of tides in the 
Massachusetts Bay. Wang and Connor (1975a) also formulated a two-layer model (for 
other details see Connor and Wang (1973) and Wang and Connor (1975b)). 

Weare (1976a) compared the computational expenses for the shallow-water problems 
using finite-difference and finite-element methods and concluded that, at present, finite-
element methods are less economical due to the use of band algorithms. However, the 
situation is changing now. Gray and Pinder (1976) made a comprehensive comparison of 
finite-difference and finite-element methods and showed that the finite-element represen-
tation of the differential equations is essentially a spatial average of standard finite-
difference equations written for each mode of the grid. 

Kleinstreuer and Holdeman (1980) developed an interactive triangular finite-element 
mesh generator for water bodies of arbitrary geometry. Niemeyer (1979a) applied a 
finite-element technique to study tidal flow in certain water bodies in Hawaii. Orlob (1972) 
used triangular grids for studying circulation in the San Francisco Bay area, but he wrote 
the equations in finite-difference form. Fix (1975) used a finite-element model to study the 
circulation in a limited area of the midocean. 

Grotkop (1973) used a finite-element technique for studying long waves in the North 
Sea. Cheng (1972a, 1974), Cheng et al. (1976), Cheng and Tung (1970), Gallagher et al. 
(1973), Gallagher and Chan (1973), and Huebner (1974) applied finite-element techniques 
to study wind-driven circulation in lakes. Other relevant works are those of Cheng (1978), 
Walters and Cheng (1980a, 1980b), Jamart and Winter (1979), Mei and Chen (1975), 
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Reichard and Celikol (1978), Hauguel (1978), Le Provost (1978), Leimkuhler et al. 
(1975), and Taylor and Hood (1973). 

Jamart and Winter (1978) used the finite-element approach to study tidal propagation. 
One of their important assumptions is periodic motion. Because of this assumption, this 
model cannot be used to study storm surges (which are not periodic). Kawahara et al. 
(1977) used a mixed approach of the finite-element method and perturbation method, 
again with the assumption of periodic motion. Thacker (1977) studied the normal modes 
in a circular basin using an irregular-grid finite-difference model (this will be considered 
in detail below). Wang (1977) criticized Thacker's work and pointed out that Thacker's 
model is unstable and inaccurate. 

Mei and Chen (1975) introduced a hybrid-element method for water-wave problems 
in infinite fluid domain. They introduced artificial boundaries and thus divided the fluid 
into a finite-element region in the neighborhood of infinity or of singular points. In the 
finite-element region, polynomial interpolating functions are used to approximately repre-
sent the unknown functions. In the super-element region, infinite series solutions are used. 
Numerical computations involve only integrals in a finite domain and the inversion of a 
banded symmetric matrix. Examples of shallow-water waves in a harbor are included. 

Houston (1978) used a finite-element numerical model to study the interaction of 
tsunamis with the Hawaiian Islands. This model solves the generalized Helmholtz equa-
tion: 

0)2 
V[D(x, y) S74.(x, y)] + — 4)(x, y) = 0 

where d)(x, y) is the velocity potential, w is the angular frequency, and D(x, y) is the water 
depth. This equation is not relevant for storm surge studies, at least in its present simple 
form. 

FINITE-ELEMENT MODELS FOR TIDES AND STORM SURGES 

Brebbia and Partridge (1976) studied the tides and storm surges in the North Sea using 
two finite-element models. In both the models they used six-noded triangular elements. 
One model made use of an implicit integration scheme with curved sides, and the other 
utilized an explicit integration scheme. The models are vertically integrated and include 
tides, wind stress, atmospheric pressure gradients, bottom friction, Coriolis force, and 
advection terms. 

Following Brebbia and Partridge (1976), a Cartesian coordinate system, with the 
origin at the equilibrium water level and the z-axis pointing upwards, is used. Let 
D(x, y) be the deviation of the free surface from its equilibrium position. The horizontal 
momentum equations can be written in the following form: 

au , 	au , 	au — at 	ax 	ay 
(3.270) 

v 	aV 	aV 
i7; =  B.  

1 Oh 	a (P.\ 4_ I T  
Bx = 	g 	-àjc Fp) P 	P 

1 
(3.271) 

ah 	+ Ts. — TB, 
By  = fu g 	ay \ P 	P 	P 
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where u and y are the x and y components of the velocity field averaged in the vertical 
direction. 

The following expressions can be written for the surface stress, Ts, and the bottom 
stress, TB. 

(3.272) 

Wi 	2 	2  1/2 
TS; = 	 W 2 , 	X or y 

P H 2  
g Vi  

TB, 	— 	n 	( u 2 	v 2)I/2 , 	=  1,2 
C H 

If i = 1,  V  = u; if i = 2, V1  = v. Here, C is a Chezy coefficient, W, and W., are the x 
and y components of the wind, and 'y is a parameter related to the atmospheric density, 
Po('Y = Pa • constant). Finally, H = D + h. 

The vertically integrated form of the continuity equation is 

aH a 	a (3.273) 	+ 	(Hu) + 	(Hy) = 0 

At closed boundaries, the velocity component perpendicular to the boundary is set to zero, 
while the tangential component is nonzero. At open boundaries, either the normal com-
ponent of the velocity or the water level is prescribed. 

To develop the finite-element model, the two momentum equations (3.270) and the 
continuity equation (3.273) together with the influx type boundary conditions must be 
written in the following weighted residual manner: 

If (au 	au —at + u— — 13,)8udA =0 a a- 

(3.274) If (0V 	0v 	av 
- -r 	-r at 	ax 	—ay - ,.) vdA = 0 

f 
at 

 + (Hu) + --(Hy)1SHdA = f (HV„ 	V — H„)811dS = HV„ SHdS  ax 	ay 

where n denotes the normal and V„ denotes the normal component of the velocity. It will 
be assumed that over an element, the same interpolation applies for the unknowns u, y, 
and H. Thus 

u = qm" 

(3.275)  y = 

H = 

where cl) is the interpolation function and u", v", and H" are the nodal values of u, y, and H. 
A six-nodal triangular finite-element grid was used. These elements were referred to 

as "isoparametric" by Brebbia and Partridge (1976). The advantage of using curved 
elements is the suppression of the spurious forces generated on the boundaries by straight 
line segments joining at an angle (Connor and Brebbia 1976). 

From eq. 3.274 and 3.275 
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the transpose): 

g f (1) T (u 2  + 
C 2 J 	H 

v 2) 12 
	 cPdA 

wt 	2 + 

(pr 	(w2,  

1,11 ) 112  dA 

141 ) 112  dA 

au" —at + Ku" — fMv" + G x  H" +  F.  = 0 

(3.276) M 	+ Kv" — f Mu" + Gy  H" + F, = 0 

m —at + cru" — c y  v" + Fll  = 0 

with the following definitions (superscript T denotes 

K 
 = I

—a (1)1. 1))udA + f —a (et,)vdA + ax ay 

g f 	(4,T4))dA 

G — fa T 
g 	Ty' (4)  (P)d  A 

M 	(PT  (I) d A 

Fx = (vex- (--Ppa) dA + f 

FY 	(v-  (—Ppa) dA +
pi  

c,  f
a --a—x. (T) M4 

Cy  -- f O(4T)H4 

FH = HV„ dA 

I • 

(3.277) 	• [

N 

 M 

• 	• 

au" . 	 K —fM G x 	u" 	Fx 	0 at 
;14  1 fav" + a t }[f M K G yi 	+lv"). IF,1= 10} 

air  

	

—c., —c y  0 	H" 	Fll 	0 at 

or in the abbreviated form 

(3.278) MÔ + KQ = F 

Then, all such elements must be assembled and the boundary conditions applied. 
Two different time integration procedures were used. The first one is an implicit 

scheme involving the tapezoidal rule. Assume 
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A  QT QO 
àt 

QT QO 
- 2 

+ F, 

(3.279) 

F=  2 

Then, eq. 3.278 becomes 

2 	 2M (3.280) (à-7, M + 	Q, = (Fo  + F,) + 	 Qo  

This can be written in the abbreviated form as 

(3.281) K * 	= 

Then, the recurrence relationship is given by 

(3.282) Q, = (K* ) -I  F*  

The K *  matrix which must be inverted will generally be a large asymmetrical banded 
matrix of size approximately three times the number of nodes by six times the element 
band width (i.e. the maximum difference between element nodal point numbers plus one). 
The explicit time integration used here follows the fourth-order Runge—Kutta method. 

Hamblin (1976) used finite-element techniques to study seiches, circulation, and 
storm surges in Lake Winnipeg. His paper will be considered in some detail below. With 
reference to a Cartesian coordinate system (x, y) directed towards east and north, re-
spectively, for a homogeneous fluid, under the hydrostatic approximation, with the neglect 
of the nonlinear terms and assuming a uniform value for the Coriolis parameter f: 

(3.283) 

, 	ah 
at 	-r g —  = 0 ax 

av 	ah 
fu + g = 0 ay  

ah 	a 
at ' 	(Du) 	(Dv) = 0 

uY 

where u and y are the vertically averaged horizontal velocity components in the x and)' 
directions, D (x, 3 , ) is the water depth, and h (x, y, t) is the deviation of the water level from 
its equilibrium position. 

In studying seiches, since concern is with periodic motion, the explicit time de-
pendence can be eliminated by using an exponential time factor. Then, the modified set 
of equations in 3.283 can be written using an elliptical operator (self-adjoint) for all 
boundary conditions (except when energy radiates through the openings). A variational 
formulation of the problem may be made and a numerical solution can be sought. For this, 
multiply the first equation of 3.283 by u* (u* is the complex conjugate of u) and add this 
to the product of the second equation of 3.283 with Then, use the continuity equation, 
integrate over the volume of the lake, and use Green's theorem to give the total kinetic 
and potential energy in the lake: 

172 



(3.284) I(h) =  fi- 
 Ihh *  + 	gip 	r f ( ah ah* 	ah  ah *) 

 f2  - 0-2) [ Cr 	ax 	ax ay  

(ah ah *  ah ani}  dx dy 

	

ax 	ay ay 

where i = V-1 and o-  is the frequency of oscillation (i.e. seiche). 
In deriving this eq.uation, it is assumed that any of the following three boundary 

conditions can be used, noting that all of them permit zero energy flux across the bound-
aries: (a) vanishing depth at the shoreline and finite values of h and its gradients, (b) finite 
depth at the shoreline and zero velocity normal to the shoreline, and (c) finite depth and 
nonzero normal current but zero value of h across the boundary. Hamblin (1976) took zero 
depths at the coastline. 

It can be shown that the function that minimizes eq. 3.284 will be the solution of eq. 
3.283. The parameters h and h *  are expanded in a series of trial functions and weighting 
coefficients q: 

h = E q', 111 1  and h *  = E q;* 

Substituting into eq. 3.284 gives 

(3.285) I(q' q' *) = 	cr3 [L] q' + qi*T  cr[M]q + q'* [N]q' 

Here, [L], [M],  and [N] are Hermitian matrices, q' is the vector of unknown coefficients, 
and .i *T  is the transpose of q' *  

To determine the minimum of the approximating function: 

ai  * = o 
aq' 

which gives from eq. 3.285 

(3.286) cr3 [L]z + o- [M]z + [N]z = 0 

where z is the vector of weights minimizing I. The calculation of the approximating 
function proceeds as follows. 

Lake Winnipeg is subdivided into triangular elements (Fig. 3.8a) giving a total of 144 
elements. In the interior, the sides of the elements are straight lines, whereas at the coast 
they are curved. In locations where detail is not important, a coarser grid has been used. 
The trial function is chosen such that the weighting coefficients become the free surface 
displacements, h, at the vertices and the three midedge points (left side of Fig. 3.8b). Six 
points are required to determine the six coefficients of the second-order polynomial in x 
and y. The quadratic surface determined in this manner is continuous across the edges 
between the triangles, but the gradients may not be continuous. 

Next, the depth D is expanded using an identical polynomial expression, in which the 
weighting coefficients become the specified depths at the six nodes of the triangle. If one 
expresses the Lagrangian interpolation functions in terms of the local triangular coordi-
nates (rather than the global x and y coordinates), all the integrations in eq. 3.284 can be 
performed analytically for the interior elements. The matrices [L], [M], and [N] are 
formed by summing the contributions from each element I. Owing to the symmetry of the 
variational formulation, the computer storage requirements and the number of integrations 
required are halved. 
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FIG. 3.8. (a) Triangular finite-element grid for Lake Winnipeg (144 ele-

ments); (b) a typical triangular element in the interior of the lake (the six 
nodes defining the element are numbered); (c) element adjacent to a 
boundary. (Hamblin 1976) 

In general, the side of a triangle along the coastline will not coincide with the 
boundary (right side of Fig. 3.8b) and one must transform the curved shoreline into a 
straight line by means of a coordinate transformation. Define a coordinate system such that 

x = x(p, q) 

Y  =  Y(1,,  (I) 

Then, a boundary integration of the form 

If 	(x, y) 1(x, y) 17K  Ady 

becomes 

if 4,,[x(p, q), y(p, q)lki] [x(p, q), y(p, q)] ha(p, q) dpdg 

where J is the Jacobian of the coordinate transformation: 
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= ax aY ax ay 
— -- ap aq aq ap 

For the boundary elements, numerical integration is necessary (unlike analytical integra-
tion for interior elements). 

Next, Hamblin (1976) considered the problem of steady wind driven circulation and 
setup in Lake Winnipeg, while retaining the vertical friction term. The relevant equations 
are 

_ fv  _ Û  (ah + v  (8 2 /4 
ax-) 	laz 2 / 

	

(3.287) fu =  —g 	+ y (22-1) 
ay 	az 2  

au av , aw — + — -r — = u 

	

aX ay 	Oz  

where y is the vertical eddy viscosity and w is the vertical component of the velocity (here, 
u and y are not vertically averaged). 

The boundary conditions are the following: 

au 	Ts 	 Ts, 
(3.288) y 	=__! and y 	— 

	

otz = 0 	p 	 oz z . 0 	p 

where Ts, and Ts, are the wind stress components at the surface and 

(3.289) u I, -D = 0 and yj, _D =  0 

In the vertically integrated form the continuity equation is 

(3.290) —
a u + —av  = 0 
ax 	ay 

where 

ro 

-D 

is the horizontal transport vector. At the lateral boundaries the normal transport is taken 
as zero. 

Making use of the Galerkin method, Hamblin (1976) developed a technique which 
enables one to determine the free surface and transport variables with a single solution of 
the equations, which is applicable for multiple-connected regions. The variational formu-
lation used earlier is not applicable because the self-adjointness condition is not satisfied 
owing to the presence of the surface wind stress terms. Hence, a somewhat weaker 
formulation, namely the Galerkin method, is used. In this method, a stationary point 
(rather than a minimum) of an expression related to the function will be determined. 

Multiply eq. 3.290 by a weighting function W(x, t) and integrate over the area of the 
whole lake to give 

(3.291) f W 	+ 	dxdy = 0 ax 	ay 

Using Galerkin's method, W must be chosen such that eq. 3.290 is satisfied at all the 

175 

(U, V) -= (u, y) dz 



nodes. As above, expand the variables U, V, and h in a series of trial functions  4i and 
qi: weighting coefficients 

h= 

Partial integration of eq. 3.291 gives 

	

0  W( -) dti ) — 	(u 121-4/  + v 	dxdy o ax 	ay 
Boundary 

Note that the line integral is zero in the case where there is no river input or outflow. Using 
eq. 3.289 one can eliminate U and V and write 

	

(3.292) f gD (E 73i — F 	dxdy + 	gD 	+ E 	duly ah 	ah aw 	 ah 	ah aw 
ax 

, aw , , = — 	[cTs ,— DT
s•
,,— CiXay 	(ATs,+ CTs)

aW  
paX 	 Y pax dxdy 

(For details on the parameters C, A, E, and F, see Welander (1957). In this section, 
Welander's parameter D has been replaced with A.) 

For evaluating eq. 3.292, the parameters D, C, A, E, F, T s,, and Ts, are expanded in 
a series of the same trial functions, i.e.: 

6 

TS = E T 

Then, eq. 3.292 gives a system of six equations for each element: 
6 aqi atilt 	a44 (3.293) EJf gD (E — F 	dxdy + f gD (F + E — — dxdy ax 	ay ax 	 ax 	ay ay = I 

= — JJ (CT, — ATs) -  dxdy —(AT s, + CTs) -  h dxdy for i = 1 to 6 
pax 	 pax ' 

For the whole water body, the equations are obtained by successive integrations of 
each element and by adding all these, which assumes continuity of hi  at each node. The 
matrix 

[M] h = B 

is solved by Gaussian elimination. 
Finally, Hamblin (1976) considered storm surges in Lake Winnipeg by beginning with 

the following time-dependent equations: 

(3.294) 

ah 	TS, 	TB 

at 	' g ax Dp Difp 

O  v a h 	Ts, 	TB , . 

at 	g ay = Dp D—p 

a h 	a 	a 
at 	ax 	aY 

where TB is the bottom stress. 
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Hamblin used a semianalytic technique (spectral method) in which the time variable 
is treated analytically and the space variables are treated numerically. Equations 3.294 can 
be written in the finite-element method as 

dQ 
(3.295) —

dt 	
[M]Q + T(t) 

where the vector Q consists of the individual components of the current and h, the vector 
T consists of the wind stress components at each node, and the matrix [M] consists of 
coefficients which include f, g, D, and the bottom friction. 

For the initial condition, Q(0), the general solution of eq. 3.295 can be written as 

(3.296) Q(t) = [X(t)] Q(0) + 	[X(t — t')]T(t') di' 

where 

[X(t)] = 	 e 1[C]-1  

Here, cr are the eigenvalues and [C] is the matrix of eigenvectors of 

{[M] — oln} {C i }  = 0 

If the water body is initially at rest, Q(0) = 0 and a suddenly imposed wind stress 
can be written as T(t) = K. Integration of eq. 3.296 gives 

1 en' 
(3.297) Q(t) = 	 11 [Cr K + [C][cri' s --,eal[C]- ' K 

crn 

The first term in this equation can be shown to be [M]- ' K, which is the solution to the 
steady-state problem 

[M] Q = K 

The second term is a weighted sum of the free modes of oscillation of the discrete problem 
of order n: 

W .;  {C i} e`r" 

The transient response of the lake interpreted in this manner shows the connection between 
the general time-dependent problem and the steady-state seiche problems considered 
earlier. 

Let the vector of the free surface displacements be denoted by S and let the eigen-
vectors ,  C,,  consist only of h; then, eq. 3.297 can be approximated: 

h(t) 	S + E W, {ci }  e", ` 

where the limit n' is a subset of the total n eigenvectors of [M]. Since the water body is 
at rest initially,  h (0) = O. Then 

[C] W S 

noting that the imaginary part of S is zero. Since initially, u and y are zero, then 
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a h I 	 a2h 
a  It.°  = 0 and t   

at2  
Hence, 

[C] cr W = 0 and [C] cr 2  W = 0 

From these equations the weighting coefficients may be determined by minimizing the 
square of the free surface deviation, h, at each node in the water body. 

After obtaining the step function response, h may be calculated for a general time 
history of wind forcing using the convolution integral. The unit impulse response can be 
obtained by differentiation of the step function response. The free surface displacement, 
h, can be calculated by convoluting the wind input, T(t), with 

h(t) = 	(t — t') T(t') dt' 

In the discrete form, this can be written as 

hK  = àt E h! T • tnip 	K —1 

i= 0 

RECENT DEVELOPMENTS 

Platzman (1979) paid particular attention to proper treatment of the multiconnected 
regions in finite-element models and applied these concepts to a study of the normal modes 
of the world ocean. Platzman (1981) discussed the response characteristics of finite-
element tidal models. 

Lynch and Gray ( I 980b) developed a variable size triangular-grid finite-element 
model in which the boundary is permitted to deform. This technique is especially suitable 
for simulating the penetration of storm surges over land. Certain details of their earlier 
works leading to this model are contained in Gray and Lynch (1977, 1979), Lynch (1980), 
and Lynch and Gray (1978a, 1979, I980a). Here, mainly the moving boundary model will 
be considered. 

Lynch and Gray ( I 980b) used the Galerkin finite-element approach (for fixed bound-
aries) with certain modifications to the moving boundary problem. First, consider the fixed 
boundary problem. In their notation, the problem may be stated as 

(3.298) Lu = f 

where L is a differential operator with derivatives in space and time, u (X, t) is the 
unknown function, f (X, t) is the known forcing function, X is the set of independent space 
variables, and t is time. One can use an approximate solution û (x, t) as 

(3.299) u 	û  = 	 (x) 
,= 

where (te.,(X) are known basis functions. 
Substituting eq. 3.299 into eq. 3.298 produces a nonzero residual r(X, t): 

(3.300) L  û  — f r(X, t) 

The basic requirement in the Galerkin procedure is that the residual must be orthogonal 
to each of the basis functions (5„ i.e.: 

= 0 
o 
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and 

(3.306) 

(3.301) (r(X, t), 1:13 ;) = 0 	i = 1, . . . , N 

where angle brackets denote the inner product. It can be seen that eq. 3.301 forms a set 
of ordinary differential equations for the functions  u(t). 

For the moving boundary problem, the following modifications must be made to this 
procedure. The basis function 4), now becomes an implicit function of time because its 
value at any point depends on the location of the nodes (of a grid which is deforming): 

(3.302) lc, =  4; [X, X b (t)] =  4),(X, t) 

where the node coordinates are denoted by X b (t). In eq. 3.301, the integration domain of 
the inner product changes in time. Thus, the equations become nonstationary and non-
linear, as can be seen, for example, from the fact that the mass matrix, (I),, fl) i ), which 
multiplies the time derivative terms, duj/dt, changes with time. 

Next, an additional relation must be added for the node motion: 

(3.303) —d 	(t) = Vb (t) 
dt ' 

where Vb is the velocity of node b. Generally, for the interior nodes Vb = 0 and for the 
boundary nodes Vb  = vb  where Vb is the velocity of the node and vi, is the fluid velocity 
at node b. Finally, eq. 3.299 must be replaced with 

(3.304) û (X, t) = E u; (0 (1,; (x, 

where  u1 (t) is the value of û at node j (i.e. at the moving joint, XJ (t)). 
The time derivatives of û (X, t) will have, as expected, additional terms (underlined) 

not contained in a fixed boundary model: 

aû 	du; 	ad);  
(3.305)---2,—(1)+2, 

2 	N d2 u.  
v , du. all) a u - = 	+ 2 2, 	E 

a t 2 	dt2 .1 	dt ar 
a 2  

ll• 	 n
t 

 2 
U 

Since the spatial domain is changing with time, the terms a(pilar and a2ear2  must 
be defined throughout the domain. Since these terms depend exclusively on the node 
locations Xb(t) and their derivatives, in principle one can write expressions for &vat and 
a2 /3 t 2 . However, since this is a tedious procedure, Lynch and Gray (1980b) developed 
an alternate procedure, which is applicable to any isoparametric element. For any two-
dimensional isoparametric element, let x and y represent the global coordinates and and 

represent the local coordinates. It is convenient to transform this element from the global 
domain (in which it may have an irregular shape) to the local domain in which it will 
always have the shape of a square (in the 	1) domain the basis functions depend only 
on and 'q).  Since the 	-q) space does not deform, a basis function  j,(, lq) at a location 

lo) will not change with time. The corresponding location to (cr, 10) in the (x, y) 
domain, however, may change with time and it depends on the isoparametric trans-
formation: 

X(t) = E x1 (0 
i= I 
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«, and one can write 

4 1  al);  
(3.308) —

dt 
= —at + ye  V  --- 0 

Similarly, one can write 
a 2 4),  

(3.309) —
at2 =  —[ E 

i=1 

dy;  
dt cf)

tiVck i  + 2Ve(VVe) V(I) ;  + Ve(VV1)1) Ve 

From this, at a given point 

dX 	dX 
(3 . 307 ) —dt  = E 	

;
, (bA 	= E dt 	

V 1 (t) 11)A, TI) = V" 

where V' is the elemental velocity (i.e. the velocity with which the element is moving). 
In a reference frame which is moving with the elemental velocity, there is no change in 

Lynch and Gray (1979) showed that, for the shallow-water problem, rather than using 
the continuity equation in its ordinary form, a computationally superior way is to use the 
following wave equation, which can be derived from the momentum and continuity 
equations: 

a2H  
(3.310) —

at2 
+ T 

-a = V (gHV) + HVVT + V [V (HVV) + fXHV — W] ar 
This lias  to be integrated in time together with the horizontal momentum equation 

av (3.311) —

at 

= —VVV — fXV — g •V r  — TV + —
H 

where H(X, t) is the total depth, (X, t) is the free surface perturbation, h(X) is the 
equilibrium water depth, V(X, t) is the horizontal velocity vector (vertically averaged), f 
is the Coriolis parameter, g is gravity, and W(X, t) is the wind stress. The bottom stress 
is written as 

gIVIV  
(3.312) TV(X, t) = 	, 

C -H 

where C(X, t) is the Chezy coefficient. 
The boundary condition is 

H = 0 on X = X 0  + f V dt 
cl 

(3.313) 
V = v 

where X(t) is the location of the boundary at time t, X0  is the initial position of the 
boundary, V is the velocity of the boundary, and v is the velocity of the fluid. 

Solutions of eq. 3.310 and 3.311 can be written in the finite-element form as follows: 

H(X, t) 	H1 (t) 	t) 
t = 

	

(3.314) V(X, t) 	E vim 	t)
jI  

	

T(X, t) 	E T(t) (mx, t) 

t= 
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i=1 

(3.315) 

Substituting eq. 3.314 into eq. 3.310 and 3.111 and equating the weighted residuals 
to zero gives the following set of ordinary differential equations: 

and 

id2

dt

1-1j  

2 

dil; 	 I ad>, 	\\ 
+ 	(13 i> 	 Ci)i)) = (RW, (I)i) 

	

dv 	 aq), 
(3.316) 	2, 

(. 	
cl)
" 

) + V 	I) 
" 

)) 	(R„,, 	= 1, . . . , N 

	

dt 	.1 	at  
1= 1  

Here, R w (X, t) and Rm (X, t) are the right sides of eq. 3.310 and 3.311, respectively. 
For the time derivative terms, a standard three-level finite-difference scheme has been 

used. For a stationary grid and one-dimensional case the C—F—L stability criterion reduces 
to 

A, 2 
(3.317) gH 

The boundary condition V = y (i.e. fluid velocity equals the velocity of boundary move-
ment) may lead to significant shearing of the boundary elements. To avoid this, Lynch and 
Gray (1980b) satisfied the mass conservation by requiring that 

(3.318) H = 0 or X =- 	+ f V dt, 	(V — v)n = 0 

where n is a unit vector normal to the boundary. Rather than attempting to satisfy this 
relation at every boundary grid point, one can satisfy it in an average sense by requiring 
that 

(3.319) f (V — v)n dS = 0 

where S is the moving boundary. Using the finite-element solution forms for V and y: 

E  V1 (1), 
(3.320) 

v, 

Substituting eq. 3.320 into 3.319 gives 

(3.321) E(v, — v,) n 	dS = 0 L  
' To obtain an expression for the local nodal normal direction, it is required that each 

term of eq. 3.321 be zero, i.e.: 

(3.322) (V;  — vi) f n 	dS = 0 

From this one can define the nodal normal direction, n i , as follows: 
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(3.323) n, 	f n (I) ;  dS 	f n 41, dS 

where node i represents the junction of two moving segments of the boundary. Using the 
divergence theorem: 

(3.324) f n ci) ;  dS = fi V gte, dA 
A 

where A is the total domain. The moving boundary condition becomes, finally, 

H1  = 0 on X,  = X,, 0  + f V, dt, 	(V, — 	ni  = 0 
(3.325) 	 0 

V, X1  = 0 

where i represents all moving boundary nodes. Here, X, is the tangential direction at node 
i. The second relation in eq. 3.325 is invoked to reduce element shearing. 

A typical time step proceeds as follows. 
1) Using eq. 3.323 and based on the existing grid, the nodal normal directions are 

determined. 
2) The nodal velocities at the boundary are determined using eq. 3.325. The locations of 

the nodes are calculated from the following finite-difference form of the first relation 
in eq. 3.325: 

(3.326) X,. - 	 2àt 

3) The term dV,Idt (which is required to evaluate etyar2) is calculated from 

	

dV, (a; 	— 2X,. 1  + 
(3 ' 327) cit 	 dt 2  
4) From eq. 3.315 and 3.316 H, and V, are calculated at t + àt. Then, the steps are 

repeated by beginning with the determination of the new nodal normals. 

IRREGULAR-GRID FINITE-DIFFERENCE MODELS 

Although, strictly speaking, this topic should have been included in Chapter 2 under 
the two-dimensional finite-difference models, it is deliberately deferred until now to point 
out that irregular-grid finite-difference techniques have many similarities with finite-
element models, the first similarity being that both techniques can make use of identical 
grids. There appears to be a controversy about the relative merits of the finite-element and 
finite-difference methods. For example, Lam (1977) suggested that the finite-element 
method is superior whereas Thacker (1978a, 1978b) suggested the reverse. It appears that 
both techniques, as applied to the storm surge problems, are constantly being improved 
and an objective comparison cannot be made at present. 

In both the finite-element and finite-difference methods, one of the most important 
steps is the construction of the grid. Usually, in most of the models, the grid consists of 
irregular sized and shaped triangular elements. Thacker (1980a) reviewed the presently 
available techniques of automating (using the computer) the construction of these grids; 
references within (a total of 80) show that there is a well-advanced literature on this topic. 
Following Thacker et al. (1980), a technique for automatic construction of irregular 
triangular grids for storm surge models will be considered in detail. Such a model was 
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NK 

E 4,„, (K)  (x„,, K)  Cos  °b(K) sin  °b(K)  + Y„, (K , sin2  Ob(K) ) 
i= I 

(3.329) 

YK = 

applied by these authors to Lake Okeechobee in Florida and also to Mobile Bay in 
Alabama (Thacker 1978c). An equilateral triangular grid is superimposed on the region of 
the water body to be modeled. The segments of the curved coastline are then approximated 
by the nearest sides of the triangle, and this process results in a zigzag grid (i.e. a grid 
composed of triangular elements with the boundary being straight line segments and not 
curved lines). A curvilinear grid is then developed from the zigzag grid by simultaneously 
solving a set of equations for the coordinates of the points on the curvilinear grid. To be 
able to do this. Thacker et al. (1980) made use of the analogy with springs under tension. 

The springs are supposed to be infinitesimal in length (when unstretched) and all 
interior springs are assumed to have the same strength, whereas the boundary springs are 
stronger by a factor r. The coordinates of the interior grid points are given by 

(3.328) 

1 
XK = NK  

1 
YK = N K  

NK 

E Xri,(K) 
i= I 

NK 

E 
i= 

Here, K is the index of the interior point and ni (K) are the indices of its NK neighbors (note 
that usually, NK = 5, 6, or 7). For the boundary points the equations are as follows: 

NK 

XK = E (14, (x„,,,, cos2 o b,„, + Yu», Cos  °b(K) sin Ob(K)) 
1= 1  

Xb(K) sin2 Ob(K) 	Yb(K) COS Ob(K) sin Ob(K) 

— Xb(K)  cos O b(K)  sin Ob(K)  + Y b(K)  cos2  0 -1,(K) 

Note that the factors 11)„ 1(K)  account for the different strengths of boundary and interior 
springs. 

1  
= 	 (for an interior point) 

(2r + NK — 2) 
(3.330) 

= 	  (for a boundary point) 
(2r + NK 2) 

Making use of some iterative technique, these above equations can be solved. 
The next step is the determination of the depth at each grid point. The depth at any 

given grid point is determined by linearly interpolating the depths Da , Db, and De  from the 
three closest neighboring points: 

(3.331) D = aDa  + c1:11,Db  + 
where 

(3.332) ck, = 
 

(X„ — Xb)(Y« Y() 	(X„ —  X) (Y 1,  Yb) 
Similar relations can be written for cle b  and It . Note that the denominator in eq. 3.332 
corresponds to twice the area of the triangle with vertices a, h, and c. 

Once the depths are determined at each grid point, they are checked for smoothness 
as follows: 

(X — X b) ( Y — )1,) — (X — X(..)(Y Yb) 
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FIG. 3.9. Irregular triangular grid for Lake Okeechobee, U.S.A. (Thacker et al. 1980) 

6 
I 

- DK) 
i =  

(3.333) SK = 
DK 

It can be seen that the smaller the terni SK the smoother is the bathymetry. For a grid system 
consisting of only equilateral triangular elements, the relationship 

means that the depth pattern lias no Fourier components with wavelengths shorter than two 
grid increments. The condition SK = 0 signifies that the Laplace equation is exactly 
satisfied. Although, in principle, this condition provides the smoothest possible bathy-
metry, it is too stringent a condition for practical purposes (since when this condition is 
satisfied, it means that the interior depths are solely determined by the boundary depths). 

The criterion for the suitability of the grid size to the bathymetry is that the ratio, RK, 
of the polygonal area, AK, of each element to its local depth, DK, be the sanie for each 
element. When this condition is satisfied, the time taken by a long wave to travel between 
successive elements is the same anywhere in the waterbody. Again, in practice, a uniform 
value of RK throughout the basin is difficult to achieve, and one must use a more relaxed 
condition: 

(3.334) aRmax < RK < &lax 

for all interior points K and 0 < a <  1. 
Contour lines of otR,„„ can be drawn so that the elements outside these contour lines 

are compatible with the depth field and those inside are too closely spaced. In a systematic 
manner, some of these closely spaced elements may be combined to obtain a coarser grid. 
A grid obtained in this manner for Lake Okeechobee in Florida is shown in Fig. 3.9. This 
same technique was applied by this author for the Bay of Bengal, to the Dixon 
entrance—Hecate Strait—Queen Charlotte Sound near the west coast of Canada, and the 
Arctic Ocean coast of Canada. 

184 



Chapter 4 

Different Approaches to the Storm Surge Problems 

In Chapter 2 the storm surge equations were formulated and two-dimensional finite-
difference solutions were discussed. In Chapter 3, three-dimensional, two-and-a-half-
dimensional, one-and-a-half-dimensional, and one-dimensional finite-difference solutions 
as well as finite-element solutions were considered. In this chapter, other approaches to 
the storm surge problems will be considered and the following techniques discussed: 
analytical, empirical, graphical, statistical, electric analog, laboratory experiments, hy-
draulic models, and hybrid models (i.e. combination of hydraulic and numerical models). 

4.1 Analytical Methods 

Analytic methods were popular before the computer era but, at present, these 
methods are little used in storm surge studies, except possibly for a quick and approximate 
study of some practical problem. Nevertheless, these methods will be considered not only 
for the sake of completeness and historical interest, but also because they provide insight 
into the physics of the problems. Since analytical solutions can only be obtained mainly 
for water bodies with rather simple geometries, hypothetical water bodies with rectangular 
and other regular shapes will be the focus of attention. 

There is a vast literature on this topic in Japanese and Russian and some in Spanish. 
Not knowing these languages and not having any translation facilities for his use, the 
writer is forced to ignore this literature. Surprisingly, there is little North American 
literature on this topic and the main source is western European literature. There are 
several interesting analytical works dealing with the interaction between storm surges and 
tides (this will be discussed in Chapter 5). In this section, the simple (in concept) analytical 
models that were used in studying storm surges mainly in the North Sea and surrounding 
region will be discussed. 

Proudman (1954b) studied storm surges in a closed rectangular basin and in a 
rectangular gulf (i.e. a partially open basin) with the aim of application to the North Sea. 
His study showed that wind stress is much more important than atmospheric pressure 
gradients in space and time. Proudman also showed that the equations of motion used in 
the vertically integrated form are quite satisfactory for storm surge studies. Before pro-
ceeding with 'a detailed discussion of this paper, reference is made to some other useful 
papers dealing with analytical models. These are Kivisild (1954), Schônfeld (1955), 
Langhaar (1951), Birchfield and Hickie (1977), and Lynch and Gray (1978a, 1978b). 

STORM SURGES IN A CLOSED RECTANGULAR BASIN 

To keep the mathematical problem tractable, Proudman (1954b) assumed uniform 
depth and homogeneity of the water column, ignored the nonlinear advective terms and 
the Coriolis force, but retained friction. Let the ends of the basin be denoted by x = 0 and 
x = irlx and let D be the uniform depth of the basin. Let u denote the horizontal 
component of the current, t is time, g is gravity, p is the density of water, and h is the 
deviation of the water level from its equilibrium position. At t =  Oit  is assumed that a wind 
field and a spatially nonuniform atmospheric pressure field are suddenly imposed on the 
basin at its surface z = 0 (z is the vertical coordinate) and then the forcing function is held 
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(1963) as the Proudman number 

atmospheric pressure gradient is 
= —D, 

constant. The imposed wind stress can be written as 

Ts 
(4.1) 	— = v 	= gDW sin (xx) az 

where Ts  is the friction per unit area of the wind on the sea surface and v is a coefficient 
of eddy viscosity assumed constant and uniform. The atmospheric pressure field, Pa , at 
the sea surface can be written as 

SP (4.2) 	Po  = constant +  -P  cos (xx) 
X 

In eq. 4.1 and 4.2, W and P are constants. Define 

(4.3) 	a = 
gD 5 x 2  

V
2 

Note that parameter a was later referred to by Platzman 
(see Chapter 2). 

The water elevation, h, due to the wind stress and 
given by, subject to the boundary condition u = 0 at z 

cos (xx)  / 	3 
(4.4) 	h -- 	 += -2  I 	E cs e - xedD2) 

where ks  is a root of 

(tan X1/2) = x1/2 4_ Œx5/2 

with 

	

2P a + 214/ 1- sec(Xisn) 	— 11  
L 	x 2s  

[tan (Xs/2 )1 2  
5 a L 	xs 

Note that if the water level disturbance is due to atmospheric pressure only, then 
W = 0. Proudman and Doodson (1924) numerically evaluated h from eq. 4.4 for the case 
W = 0 and a = 0.0615; their solution was 

(4.6) 	h = H cos (xx) [1 — 1.062e -1.272m/ D2  cos (3.435 	— 19.2°) 

-1- 0 . 003 e  -22Nr /D 2  

with 

X 
If the storm surge is produced by wind only, then P = 0 and 

(4.8) 	h  = H cos (xx)[1 — 1.075e- 1 272M/D2 cos (3.435 1\±' — 22 8°) D 2 

— 0.009e-22Nt/D2 	.1 
with 

(4.5) 	Cs  = 

(4.7) 	H — 
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3 W 
(4.9)  

Both solutions 4.6 and 4.8 tend to 

(4.10) 	h –› H cos (xx) as t –> 00 

although H is different in both cases. 
Thus, in the steady state, which is asymptotically reached as t --> 00, the form of the 

solution for h is the same whether the surge is produced by wind or atmospheric pressure. 
However, there is one important difference. In the case of pressure-generated stationary 
water level, there are no horizontal currents, whereas for the wind case, there are currents 
in the direction of the wind near the surface and in the opposite direction near the bottom, 
although the depth-mean value of the currents is zero. 

In eq. 4.6 and 4.8 the numerical coefficients are so close that one may use eq. 4.6 
whether the water level disturbance is generated by pressure field or wind field. One may 
intuitively feel that, even when the currents do not follow the (artificial) law assumed 
above, but are nonzero near the bottom, the above relations might be valid even for the 
case of a variable eddy viscosity. These ideas will be incorporated in the following 
treatment. The equation of motion is 

, 	au 	ah 	1 a P a , 1 aF 
(4 A 1 . . ) — = - – g — – – --- + – — 

at 	ax  p ax 	p az 

The continuity equation is 

(4.12) D 
	+ —

ah  = 0 ax 	ar 
where û is the depth-mean value of u. Integrate eq. 4.11 with respect to z and then divide 
by D to give 

au 	ah 	laPa , 1 , 
(4.13)—=–g-- -- + --- (Ts  ar 	ax p ax 	pD 

where TB is the bottom friction. The following form is assumed for the bottom friction 

(4.14) 	TB = 2Kpl)17 

where K is a bottom friction coefficient. 
From eq. 4.1, 4.2, 4.13, and 4.14: 

l apa 	TS 
(4.15) – –p —ax + —pD = g(P + W) sin (xx) 

Hence, in the stationary state 

cos (xx)  
(4.16) h = –(P + W) 

X 

From eq. 4.4 the solution is 

cos (x)  
(4.17) h = – (P  + 2 1,0 2 1 	X 

The difference between eq. 4.16 and 4.17 is the factor î multiplying W in the latter 
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(4.21) x 2c2 K2 

equation. According to Proudman (1954b) the true value lies between 1 and -1. 
From eq. 4.15, on writing 

	

(4.18) 	
--

1  aP„ 	Ts 

p ax 
+ —pD = œxgH sin (xx) 

the equation of motion 4.13 becomes 

aa  (4.19) —

at 

+ 2Kii + g—ah  —xg sin (xx) ax 

With the initial condition h -= 0 and u  = 0 at t = 0, the solution of eq. 4.19 and 4.12 is 

	

(4.20) 	h = H cos (xx) 	— 	 (o- t) + 1,7<r  sin (o- t)1} 

where 

Equation 4.20 can also be written as 

(4.22) 	h = H cos (xx) [1 — e -Â ' sec -y cos (o- t — -y)] 

where 

= XC cos 'y 
(4.23) 

K xC sin 'y 

To enable comparison of eq. 4.6 with eq. 4.22, take 

= 3.435 -- 
D 2  

K' = 1.272 
D 2  

Then, using eq. 4.3 and for the same value of Œ as above: 

o-  = 0.9444 x C 
(4.25) 

K = 0.3289C 

The close agreement of ci  to  ci',  K to  K',  and sec -y(= 1.058) to 1.062 (in eq. 4.6) suggests 
that eq. 4.22 may be used instead of eq. 4.6. That is, eq. 4.20 may be used approximately 
for the generation of a steady state in which 

(4.26) h = H cos (xx) 

whether the forcing function be wind or pressure or both acting together. 
Next, the decay of the storm surge once the steady state (eq. 4.26) is reached will be 

examined by assuming that the wind is suddenly stopped and the atmospheric pressure 
gradient forcing is removed. Assuming t = 0 as the time at which the decay begins, then, 
for subsequent times 

(4.27) 	h = H cos (xx)e -Kr [cos (crt) + K sin (crt)1 
ci  

where  ci  is given by eq. 4.21. 

(4.24) 

188 



For the case K < xC the solutions are given by eq. 4.20 and 4.21. For K>  xC the 
corresponding solutions are obtained from eq. 4.12 and 4.19 as 

h -= H cos (xx){1 — e -Kr [cosh  (Œ 1 t)  + — sinh (o- i t)1} K  (4.28) 

where 

(4.29) 0.21 	K2. 	x2c2 

STORM SURGES IN A RECTANGULAR GULF OF INFINITE LENGTH 

Consider a rectangular gulf of inifinite length closed at the end x = 0. At t = 0, it 
is assumed that h and u are zero everywhere in the gulf. The wind and the atmospheric 
pressure are suddenly imposed at t = 0 and then maintained constant. Suppose that the 
water level in the gulf tends to a steady state in which the water level is given by 

	

(4.30) 	h = F (x) for 0 x < 

where F is a function such that the integral 4.32 below converges for all x. Using the 
Fourier integral representation: 

	

(4.31) 	F (x) = 	H(x) cos (xx) dx 

where 

	

(4.32) 	H(x) = 	F()  cos (xx) dx 
Tr 

By superposition of an infinite number of infinitesimal motions of the type given by 
eq. 4.1, 4.20, and 4.28: 

kle 

	

(4.33) 	h = f H(x) cos (xx) {1 —  e -K ` [cosh  (cr, t) + —
K sinh (cr i  1- )1} dX 

o  cr i  

K  + J H(x) cos (xx) {1 — e -Ki [COS ( St) + —0. sin  (Œt)]}  dx 
Klc 

where cr and OE, are given by eq. 4.21 and 4.29. Thus, h is given by eq. 4.33 in the process 
of generating the steady state given by eq. 4.30. 

Next, consider the decay of the storm surge, once the forcing functions are removed, 
say at t =  0. Then 

xv, 
(4.34) 	h = 	H(x) cos (xx)[cosh (13 . 1 0 + —K sinh (o- , 	dX 

o  

e-Kt 	H(x) cos (xx) [cos (crt) + K 
 sin  (al)] dx 

For small values of bottom friction coefficient K, eq. 4.33 becomes 
K  x+ct 

(4.35) h = F (x) — —2 e' [F (x + ct) + F (x — ct)] + — f 
c 	

F (4 
 1 

An approximate solution for the equation of motion and continuity of free motion in 
a channel is given by 
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(4.42) 

(4.43) 

(4.36) 	h = e—  Kt [ f t  (x + ct) + I7(‘ f (x + ct)1 

and 

(4.37) 	Ft = — e —Kt  f' (x + ct) 

where f' is the derivative off provided that K 2  f (x + ct)1c 2f (x + ct) may be neglected. 
Here, f" is the second derivative off with respect to x. Note that the sign of c in eq. 4.37 
may be reversed. 

In the stationary state, let the perturbation h be only within a distance a from the 
closed end of the gulf. Then 

F (x) = 0 for x a 

Then for ct +  x> a from eq. 4.35 

1 —K (4.38) h = F (x) — —2 e 	(x — ct) + 	F c 	f  
This represents damped waves progressing away from the closed end of the gulf. For 
ct — x > a, the solution is 

(4.39) 	h = F (x) — KK, F () 

For x = 0, for all values of t: 

(4.40) h = F (0) — e -K tF (ct) + 	ict  F 	dt c 

To the same degree of approximation as in eq. 4.36 and 4. 37, other solutions of the 
equation of motion and continuity for free motion in a channel are 

h = e-K` (x + ct) 
(4.41) 

ü  = _ e —Kt 
D 	[f' (x + ct) — 	(x + ct)] 

h = enic[f (x + ct) + —Kf(x + c t)] 

= — e kxic (x + ct) D 

h = eKxf` (x + ct) 

= — 	(x + ct) — f (x + ct)] 

The sign of c may be reversed in each case. 
If eq. 4.43 is treated as a surge approaching the closed end of the gulf, then the 

reflected surge is given by 

h = e-Kxle (ct — x) 

II  = e —Kx/c [f'  (ct — x) — —c f (ct — x)] 
D 

(4.44) 
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ADEQUACY OF THE DEPTH-AVERAGED EQUATIONS 

Proudman (1954a) considered the question of adequacy of the depth-averaged equa-
tions for storm surge studies. Following Charnock and Crease (1957), one can write the 
depth-averaged equations as follows (compare these with the vertically integrated linear-
ized storm surge equations for the transport field in section 2.1): 

au  1  aP. 	1 

ax D ax ' r17,(Ts.,- TB) 

av fU = — g _ 1 aPa 	1  
aY pD ay + -1Z, ( rs, - TB) 

au ,_av 	ah 
ax ' By 	D Bt  

Here, U and V are the depth-averaged velocities (not transport) in the x and y directions, 
f is the Coriolis parameter, h is the water level perturbation, Ts  is the wind stress, TB  is the 
bottom stress, Pa  is the atmospheric pressure, and D is the uniform water depth. 

Suppose motion is considered in the x-z plane only and variations in the y direction 
are ignored. The non-depth-averaged equation of motion in the x direction, after ignoring 
the earth's rotation, is 

, au 	ah 	aP. , a (,,
A — au) 

(4.48) — = - g — - - — -r — a t aX p ax 	az 	az 

where u is the velocity in the x direction. The continuity equation is 

(4.49) —a f
h 	 ah u dz + = 0 ax 

From eq. 4.48 and 4.49: 

( a' 	1 a'
) 	

1 82P 
 + 

.  Klau) 	K (au 
— — ( 4 5 0 ) 	— - 	 pax 	 - 2  D aZ „-h D az),-D 

— h 
ax 2  gp at2  

This is essentially a nonaveraged equation because u= u(x, z, t) must be prescribed from 
eq. 4.48 and 4.49 and the following boundary conditions: 

(4.51) u = 0 for x = 0, x = /, and z = -D 

Also, one must prescribe the stress at the surface, i.e. the term K/D(a u/az),=_h  in 
eq. 4.50 must be prescribed. The depth-averaged equations are given by eq. 4.45, 4.46, 
and 4.47. From the one-dimensional forms of these, the equation for h is 

( 82 	1 	82 \ 
) h  = 	

, 	
— 

1 a2P.  1 	1 
(4.52)  

	

aX 2  gr)  at 2 	P ax 2 	PD 	PD 

For the boundary conditions: 

K(.911 	1 
az z =h =  

Thus, eq. 4.50 and 4.52 differ only in their bottom stress terms. Thus, insofar as the 
computation of h is concerned, the adequacy of using the depth-averaged equations 
depends entirely on the assumptions made regarding the form of the bottom stress. This 

(4.45) 

(4.46) 

(4.47) 
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statement concerning the averaged and nonaveraged equations is quite general and holds 
even if K is not constant in eq. 4.48 and 4.49 and the motion occurs under different 
boundary conditions. 

INFLUENCE OF THE NATURE OF THE FORCING FUNCTION ON THE STORM SURGE 

Haurwitz (1951) considered the relevance of the time required to generate maximum 
storm surge amplitudes and he also included variable wind velocity in his studies of storm 
surges on a lake with application to Lake Okeechobee in Florida. Following Crease (1955) 
and Holland (1969, 1970), the influence of the rate of growth of the storm on the maximum 
amplitude of the surge, as well as on the time of occurrence of this maximum amplitude, 
will be considered. The vertically averaged (not integrated) equations of motion and 
continuity are given by eq. 4.45-4.47. 

To keep the mathematical problem tractable, the simplest topography will be con-
sidered, namely an infinite rotating sea. Crease (1955) showed that in the nonrotating case, 
a forcing function acting over a semi-infinite plane will lead to an ever increasing surface 
elevation. However, rotation will lead to a dispersion of the waves and will produce a 
steady elevation after a long period of time. Again, for simplicity, the bottom stress and 
variations in the y direction are ignored. Then, eq.  4.45-4.47  become 

, 	au 	ah 	1 al). 	1 (4.53) —at — , v„ = — g— — — — —7 5  ax p ax 	pD 

av + fU = 0 

au 	ah 

	

(4.55) 	= — Ox 	Dot  

Define 

	

(4.56) 	E(x, t) = 
1 (aPa  

pg ax D 

Eliminate U and V from eq. 4.53 and 4.54 and substitute in eq. 4.55 to give 
82 	1 ( ,9 2 	ah _ _ a2 E 

(4.57) 	[—at2  — 	 at 	 — axat 

Integration of this with respect to t gives: 
02 	1  a2 	= afx  (4.58) 	[—a t2  — ---Dg 	 at2  

The constant of integration can be taken as zero if at some time h, &II/at', and aE/ax 
are all zero. The initial conditions are h = ahlat =  0 and E = constant for t 	0. 

Take the Laplace Transform of h(x, t) and E(x, t) to give 

(4.59) 	rz (x, S) = 	h(x, t) exp (tS) dt 

(4.60) 	K(x, S) = 	E(x, t) exp (tS) dt 

(4.54) 
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Making use of the initial conditions, the equation for it becomes 

r 3 2  _ 1 (s2 f2) ] it  = _ aÉ 
L ax 2  SD 	 a x 

Define 

(S 2  + f2 ) g D  and L2  _  

Then the above equation becomes 

(4.61) 	(L2  — IP 2 ) = _e• 

The particular integral becomes 

1 [ 	1 	1 	1 aÉ 
21  (L +) 	(L — qi)J 

or 

a E (4.62) 	h = —2111 [exp (-11tx)  J  exp (quo)—.., (x0 , S0) dxo  axo  ao 
aÉ — exp f exp ( - 41x0 ) — (xo S) dxo axo  bo 

The constants ao  and bo  must be evaluated simultaneously with the constants A and B,  
which are determined by the complimentary function 

(4.63) 	i = A exp (t1tx) + B exp (-4rx) 

Thus, the total solution for h is 

1E 
(4.64) 	i = A exp (111x) + B exp (—titx) + —2qt [exp (Hp() f exp (t1ix 0 ) 	dxo  LX 

aE , — exp 	exp (— Iltxo) 	(ix° xo  

The choice ao  = —00 and bo  -= 00 will ensure the convergence of the two integrals in 
eq. 4.64. The condition h = 0 at t = 0 gives  h  = 0 for S = 0 0,  i.e.  fi = 0 for i = 00• The 
condition that it must be finite for both positive and negative values of x for large 1x1  leads 
to A = B = 0. Define 

(4.65) 	F (S) = 
VS 2  + R2  

whose inverse Laplace Transform is 

(4.66) F (t) = Jo (RV t 2  — Q 2 )H(t — Q) 

where Jo  is the Bessel function of order zero and H is the Heaveside step function. Making 
use of the convolution rule and noting that  0E/0x0  is the value of 8E/0x at x0  and to : 

a2 

x 2   

exp (— Q  VS 2  + R 2 )  
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and 

(4.72) V = —2 

t — to  = T 

fT =  R 
f t b 

fx _ 
vgD  — a 

VF) 	 y  2 1,2 

(4.67) h — 	
f 

2 	dxo 	.10 14(t to ) 2 	(x 	
gD 	

}H[(t — to ) 
0   

(x — x 0)]  aE d 	\rib 	 à 1/2 

dXo 	Jo{ f[(t 	t0 )2 	(x 	x- ' 2 ] 
VFF) axo t° 	2 	o 	 gD 

(x0  — x )] aE x H[(t — to) 	vF)  axo 
A simple adjustment of the limits of integration and the step functions gives 

1/FD 	 aE  
(4.68) 	h = 	2 	0

t 
dto 	Jolf[(1- 	gD 	J to)2 	

(x — 4)2 1 1/2 1  
a x 

x H[(t — to) 	
Ix  — xol] 

dxo 
Vg7) 

From eq. 4.53-4.55, equations for U and V can be written: 

(4.69) [2- — 	(2- + f 2 )] U = -a--4  
at2  SD at2 	D at 

	

(4.70) 	[-`. — 	(. (1. + f2 )] V = 	E 
ax 2  gp a t2 	 D 

Using the same procedure as above, the solutions for U and V can be written as 

1 	 aE 	
gD 	

1/2 

	

(4.71) 	U = --î 5 0  dto 	rit-0 ,10 14(t — t0) 2 	(X 	— 4)21  } 

X  H [(t — to ) 
lx — xo l vF, 	(Ix°  

f 
dto 	E .10 {f[(t — 	

(x — 4) 2 1112.1 

fo 	 gD 

X H[( t Ix  — x°1 1  dx0  — to ) vFD- 
To understand the nature of these solutions, following Crease (1955), assume the fol-
lowing form for the generating function: 

(4.73) 	E(x, t) = A H(t)8(—x) 

Using this in eq. 4.68 and integrating with respect to x: 

(4.74) h = 11" 	H(t0 ) Jo lf[(t — t0 ) 2  — —gD 2 	0
to 	

X2 "2  }H [(t 	to) 	/—viXg1D 1 dto 

Define 

(4.75) 

194 



The nondimensional form of eq. 4.74 after incorporating the step function into the 
integration limit is 

2f  
(4.76) 

AV-F
h = 	

J0[(132 
 _ a 2 ) 2 ] d p 

D 

This equation is valid for all values of a and is symmetric about a = 0. The upper limit 
of integration could be replaced by  maxi al,  which is the maximum distance a disturbance 
could travel in time t. Here, the maximum group velocity is VgD. 

From eq. 4.71 and 4.72: 

A g f j_v b2 _ ot 2 ) iny (b  _ l a" )  da  
(4.77) U = —2 f a  U  
and 

(4.78) 	v = — A-2 	dp I-  Jo [(0 2 _ OE 2 ) ,2 ][1(p, _ 1°,1)  da  
a 

For a > 0, eq. 4.77 becomes 

Ag 
U = —2 f H (b — a) f 0[(b2  — a2 ) 112] da 

 L 

On splitting this integral into two parts and simplifying: 

A g 
(4.79) 	U = -H (b — a) {sin b — f J 0[(b 2  — a2 ) 112] da l 

Thus, finally for a > 0, U is given by eq. 4.79 and V is given by 

A 	 a 	fb 
(4.80) V = — —11 — cos b — f da 	Jo [03 2  — a2 )"2 ] d13  H(b — a)} 

2f 	 o 	a 

For a < 0, two situations arise: b >  lai and b <  l a i.  In the former case: 

A g 	 a 

(4.81) 	U = —2 f 2 sin b — H(b — lai) f J0 [(b 2  — a2)1/2] 
-b 

and 

Ag { 
	 1.1 	11,  

(4.82) V = — —2f 1 — cos b + 	J0 [(13 2  — a 2)] dp} 
0 	a 

For the second case: 

Ag 	Ag 
(4.83) U = —2 f 2 sin b =

f 
sin b 

2A g 	 Ag 
(4.84) V = — —2f (1 — cos b) = — — (1 — cos b) 

Note that the time taken for a surge to travel a distance x with the maximum group 
velocity is given by b = a. This is the minimum time the surge can take to travel a 
distance x. 

At t = 0, assume that a force is impulsively applied over one-half of an infinite ocean 
(i.e.  —œ  < x < 0) in the x direction. As a result of this, some motion is created in the 
same direction in the region over which the force is acting. Because of this motion, a 
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transverse velocity field develops, which balances the effects due to rotation. 
Note that the generating force has a discontinuity at x = 0, which propagates with 

a maximum velocity of VgD. Before this discontinuity can reach a point (i.e. b <  la i) 
there can be no motion at this point if this point lies outside the generating area (i.e. a > 
0). If it lies inside the generating area (i.e. a< 0), then, inertial motion (horizontal motion 
without accompanying water level changes) occurs. Hence, in either case there is no 
change in the water level until the discontinuity at x = 0 reaches this point. When this 
happens, b la i and there will be a positive h. 

When the earth's rotation is not included, the above system should lead to an infinite 
surface elevation, and all wavelengths travel with velocity VgD (i.e. no dispersion). On 
the other hand, in the rotating case, dispersion allows a steady-state elevation to be reached 
as t —> 00 because the pressure gradient force from the steady slope is balanced by the 
transverse velocity. 

Until now, it has been assumed that the generating force is impulsively applied. 
However, in reality, the generating force takes a finite time to build up to its maximum 
value. To allow for this finite growth period, the generating function given by eq. 4.73 
will be rewritten as follows: 

(4.85) 	E = AH(—x)H(t) tanh (et) 

Using the same procedure as above and defining 

	

(4.86) 	E0 	?- 

the solution for the water level becomes 

AVgD  i'b 

	

(4.87) 	h = 	2 	tanh ko(b — p)] j [(1320 [(1322 	a2)1/2] d
d13f 	 ja 

Comparison of eq. 4.76 and 4.87 shows that the only difference is the factor 
tanh [€0 (b — p)] in the latter case. 

For practical convenience, Holland (1969) defined the growth period as the time 
interval during which the generating force achieves 90% of its maximum value. The surge 
(in dimensionless form) against time (also in dimensionless form) for two different growth 
periods, i.e. 0.5 and 10 h, is shown in Fig. 4.1. It can be seen that (1) the maximum 
amplitude of the surge decreases as the growth period increases and (2) as the growth 
period increases, the maximum surge occurs at increasingly later times. The first result 
may partly explain why intensive and small-scale pressure systems such as squall lines in 
which the growth period is small can generate large-amplitude surges. However, in water 
bodies where tides are significant, the maximum water level deviation (tide plus surge) 
need not be the greatest for the shortest growth period. This is due to the second result 
above, i.e. as the growth period changes, the time of occurrence of the maximum surge 
also changes. It may just happen that the surge due to a moderate growth period may occur 
at the same time as the high tide, in which case the total water level deviation may be 
greater. 

Holland also considered a finite generating width. He also referred to Proudman's 
(1929) work in which Proudman showed that there will be resonance if the disturbance 
creating the surge is not stationary but moves with velocity VgD. For example, Crease 
(1955) took the forcing function as 

(4.88) 	E(x, t) = — AH(t)H(V o t — x) 
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MG. 4.1. Dimensionless storm surge (ordinate) versus dimensionless time (ab-
cissa) for several growth rates of the storm. 

This force is applied beginning at t = 0 over the region — co  < x <Vo t. This means the 
discontinuity in the force at the edge of the generating area is moving with velocity Vo . 

The elevation at the leading edge (i.e. at x = VgDt or a = b) is 

2f 	1 . (b + a)  In ji(b2 _ a) 21/2 = b (4.89) 	h = 	lim 
AVgD 	2 b b — a 

Hence, h grows indefinitely at the leading edge, and this leads to a discontinuity. The 
surface slope at the leading edge is given by 

2f 	Oh 	1 	a 2.  = _ _  
A -\/Fr) 8a  2 4 

In Chapter 5, resonance effects due to traveling atmospheric disturbances will be discussed 
in detail. 

STORM SURGES ON A CONTINENTAL SHELF 

Lauwerier (1957a, 1957b) calculated the storm surges on a continental shelf using 
analytic models. He included the Coriolis force as well as bottom friction and considered 
several time-dependent but uniform wind stress fields. Kajiura (1959) also studied similar 
problems. Ichiye (1962) studied storm surges due to a model hurricane which moves onto 
a continental shelf of uniform depth and uniform width. Several authors studied ana- 
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lytically the water level changes due to wind fields in infinite and semi-infinite water 
bodies (Lauwerier 1955; Crease 1956; Takegami 1936; Miyazaki 1957, 1956; Kajiura 
1956; Ichiye 1949; Nomitsu and Takegami 1934; Nomitsu 1934, 1935; Goldsborough 
1952; Jeffreys 1923; Hidaka 1953). 

In the discussion below, a simple analytical study of storm surges on a continental 
shelf, following Heaps (1965), will be presented. A shelf of uniform depth and uniform 
width, terminating in a long straight coast on one side and bounded by an infinitely deep 
ocean on the other side, will be considered. The origin of a Cartesian coordinate system 
(x, y, z) is taken at the undisturbed level of the water surface with x pointing towards the 
ocean and z pointing downward. Let / and D be the length of the shelf and the depth of 
water on the shelf, respectively. 

In the vertically averaged eq. 4.45-4.47, using eq. 4.14 for the bottom stress and 
ignoring y dependence, one can rewrite the equations of motion and continuity. Heaps 
used this set of equations to study the following cases: (1) the response of the water level 
on the continental shelf to a prescribed time variation in the water level at the oceanic edge, 
i.e. a surge generated in the ocean and propagating onto the shelf, (2) surges generated 
on the shelf by wind, (3) surges due to a stationary wind field impulsively applied over 
part of the shelf, and (4) surges due to a traveling wind field. 

Essentially the same method of solution is used for these four cases. Here, only the 
first case will be considered. For this case 

a Po  
(4.90) 	Ts, = Ts, = 0 and 	= 0 

and 

h = F (t) at x =- 

(i.e. prescribed). Initially 

(4.91) u=v=h=Oatt= 0 

Then, the equations of motion and continuity reduce to the following after taking the 
Laplace Transform: 

(4.92) 	(S + 2K)rt  — .1. 17 = -2 
dh 

dx 

(4.93) (S + 2K)17 +fü = 0 

S - (4.94)  

where the upper bar denotes Laplace Transform defined by 

(4.95) 	fi(x, S) = f C s`R(x, t) dt 

where k is the Laplace Transform of R, and S is a dummy variable. 
Eliminating and h  from eq. 4.92-4.94 gives 

d2  ü ot - tt 
dx2 

where 

(4.96) 
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S[(S + 2K) 2  + 

(S + 2K)gD 

Solving eq. 4.96 for /7/ and then using eq. 4.92-4.94 to solve for 17 and 

(4.98)  û  = A cosh (ax) + B sinh (ax) 

	

(4.99) 	= 
(S + 2K)[A 

cosh (ax) + B sinh (ax)]} 17 	f 

(4.100) k = — (9+,3' ) [A sinh (ax) + B cosh (ax)] 

The condition of zero normal flow at the coast is given by 

(4.101) u = 0 and rc = 0 at x = 0 

The condition of prescribed h at the ocean edge is 

	

(4.102) 	= F(S) at x = / 

From eq. 4.98 to 4.102 the constants A and B can be determined and the solutions 
become 

cosh (ax) 
(4.103) it = É(S) cosh (al)  

SF'(S) sinh (ax) 
(4.104) /7/ =- 

Da cosh (al) 

FSF(S) 	sinh  (ax) 
(4.105)  i  = 

Da(S + 2K) cosh  (ai)  

Inverting the Laplace Transforms: 

F(s)  cosh (ax) 
(4.106) h = 

cosh (al) 
e s` dS 

1 	fv1+1 ,  SF(S) sinh (ax) 
 St  dS (4.107) u = — —27ti 	Da cosh (al) 

(4.108) v = 	e' d S 
27r / 

fl 	FSF(S) 	sinh (ax) 

Da(S + 2K) cosh (al) 

Note that in each of the integrals, 	is real and positive and is greater than the real parts 
of all the singularities of the integrand. 

Flather (1976b) extended this work and considered an idealized shelf connected to an 
ocean of uniform depth and width. McIntyre (1979) used the models of Heaps (1965) and 
Flather (1976b) to study storm surges on the west coast of the United Kingdom. Simons 
(1980) reviewed some of the analytical solution studies on storm surges. Red (1979) 
developed an analytical model to include the effects of stratification. 

Using analytical techniques, Miyazaki (1952) studied the storm surges due to 
traveling atmospheric disturbances. Galt (1971) studied storm surges on a continental shelf 
assuming the water column to be homogeneous in density. Geisler (1970) included 
stratification and studied the linear response of a two-layer deep ocean to a moving 

(4.97) 	a 2  

FSF(S) 	sinh (ax) 
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FIG. 4.2. Schematic representation of the adjustment process for the homogeneous 
case. (Rossby 1937) 

hurricane. In his model the forcing function is a localized radially symmetric pattern of 
positive wind stress curl and negative pressure anomaly. In the steady state, there is an 
internal wake in the lee of the storm when the speed of movement of the storm is greater 
than the speed of the baroclinic long waves. The duration of the wind stress determines 
the amplitude of the wake. Since the scale of the hurricane is much larger than the 
baroclinic radius of deformation, the angle of the wedge-shaped wake is small. After the 
dispersion of the wake, a geostrophically balanced baroclinic ridge remains along the track 
of the hurricane. 

THE ROSSBY ADJUSTMENT PROBLEM AND THE ULTRASHALLOW WATER STORM SURGES 

The classical adjustment problem first formulated by Rossby (1937, 1938) will be 
briefly discussed followed by its relevance to the so-called ultrashallow water storm 
surges. Rossby examined the mechanism by which initially unbalanced fields of mass and 
momentum adjust to a final state of geostrophic balance. At present, this problem is 
referred to as the Rossby (geostrophic) adjustment problem. This problem will be sum-
marized following Blumen (1972). 

Rossby (1938) considered a homogeneous ocean of uniform depth (Fig. 4.2) and of 
inifinite lateral extent. At t =  0, a certain amount of momentum is imparted to the fluid 
in a region of width 2a. Rossby showed that in the steady state there will be a slope of 
the free surface (rising to the right in the Northern Hemisphere) which is balanced by the 
Coriolis force. There will be a geostrophic current in the strip 2a (in Fig. 4.2, the current 
is directed into the paper), and outside this strip on either side there will be counter 
currents. Also note that by the time the adjustment is completed, the current system has 
shifted to the right side by an amount E. In the final state, the balance of forces is given 
by 

dD 
(4.109) fo 	—g —dy 

whereto  is the Coriolis parameter, assumed to be uniform, U, is the geostrophic velocity 
(positive into the paper in Fig. 4.2), g is gravity, D is the variable depth, and y is the 
coordinate pointing towards the north. 

Rossby also showed that the sum of the kinetic and potential energies in the final state 
is less than the kinetic energy of the initial state. The difference in energy goes into 
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inertia—gravity waves which propagate outside from the strip of width 2a. Cahn (1945) 
studied the transient aspects of the adjustment problem and considered the linearized 
version of the initial value problem, and based on these results, he offered an explanation 
for the nonlinear process of adjustment towards a geostrophic state. Note that the inclusion 
of the nonlinear terms is essential for obtaining the shift mentioned above. 

Mihaljan (1963) gave an exact solution to the adjustment problem. Some notable later 
works on this and related topics are those of Bolin (1953), Charney (1955), Veronis 
(1956), Veronis and Stommel (1956), Blumen (1967), Geisler and Dickinson (1972), 
Kibel (1955), Matsumoto (1961), Oakland (1970), and Red and O'Brien (1981). Ob-
ukhov (1949) distinguished between the process of adjustment to a geostrophic state from 
the evolution of the geostrophic flow pattern; these two time scales, i.e. a shorter adapta-
tion time and a longer evolution time, have great significance in storm surges in very 
shallow water (ultrashallow water) as will be shown later. 

Consider a Cartesian coordinate system (x, y) pointing towards east and north, 
respectively. The equations for horizontal motion and continuity can be written as follows: 

(4.11o) 	+ e au*  + v*  au* 	a 
at 	ax 	ay  » = _ (gh*) 

	

(4.111) 	+ u *av* 	*av* 	* 	a 
at 	ax 	Ty- 	= 	( g h * 

ah* 	a . 	a 

	

(4.112) 	at + ax (u*le) 	(v*h*)  

Here, u* and v* are the velocities in the x and y directions and an asterisk denotes a 
dimensional quantity (note that the asterisk has not been used for x, y,f, g, and t, although 
they are dimensional). Also 

(4.113) h* = D0 (1 + 
Do l 

where h is the deviation of the free surface from its equilibrium position and Do  is the 
undisturbed uniform depth. The hydrostatic approximation has been made and the Coriolis 
parameter, f, is treated as uniform (fo). 

Obukhov (1949) suggested that the characteristic time scale, T, for adjustment is 
T f 0-1  whereas the characteristic time scale for evolution (which is a slower process) is 
T  LU'  where L is a characteristic horizontal scale and U0  is a characteristic horizontal 
velocity. The ratio of these two time scales is the Rossby number, R o : 

(4.114) Ro 	—
Uo 

T 

Ordinarily, the Rossby number is interpreted as the ratio of the acceleration term to the 
Coriolis term. 

Next, the following dimensionless variables are introduced: 

	

u* 	_ x 

	

u' «=- uo , 	x' — i , 	t' --= tfo  

(4.115) 

	

v* 	Y 	gh 	(fo U0L)\
)  , 
	/ L\ 2  

V ' :=• — - 

	

U0 ' 	Y i  ..- L' 	800  — 	gDo  P — -1■. ) R°191  
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where X is the Rossby radius of deformation, given by 

gDo  
(4.116) X = 

.fo 

Equation 4.110-4.112 become, after using eq. 4.115 and 4.116 and dropping the 
primes for convenience: 

au 	( au 	au 	ap 
(4.117) --à-t- + Ro  u 	+ 	—  y  = — 

a y oP (4.118) 	+ Ro  u 	+ yi 
y 	av;) + u = iTy  

ap 	f  ap 	(L) 2 [ 	(9 2 	](au (4.119) .-07 + Ro ( u 	+ 	+ 	1 + 	R op 	+ ();) = 0 

where p is defined in eq. 4.115. 
Following the multiple time scale technique developed by Cole (1968), define a "fast 

time" 

(4.120) T = tEl + O(R)] 

and a "slow time" 

(4.121) T = R o t 

Thus 

a 	a (4.122) — = — + Ro —a + O(R) at 	aT 

Assume the following expansions: 

u = E R on  u„ 
n=0 

(4.123) y = E Rgv„ 
n=o 

P = E Ro"P„ 

Substituting eq. 4.121 and 4.122 into eq. 4.116-4.118 gives two sets of equations. 
Zero order: 

(4.124) 

au 	apo  
aT 	+  -j-:- 	° 

ay() 	apo  ° 
apo 	L\-2 ( a uo 	a vo \ 

= aT + 	ax 	ay I  
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First order: 
a au, 	ap 	auo 	au 

	

, 	 o 	il 
— — v, + — = — [— + 14 . + v o  .• aT 	ax 	aT 	dx 	oy 

	

av 	ap, 	r ay, 	ay, 	ayol 

	

(4.125) —aTI 	4-  ay = L aT u° ax 	v° ay J 

	

ap , 	(L,\ -2 (au, 	av, 	apo 	apo 	apo 	(au, + _ 	„ 	„ 

	

aT 	)■.) 	ax 	ay) 	[ aT • -0  ax 	' 0  ay 	r° ax 	ay 

From the first two equations of 4.124, eliminate po  by cross-differentiation and use 
in the third equation to give 

a [avo  auo  (92 
(4.126) — — — — — — p o ] = 0 aT ax 	X 

The statement of the conservation of potential vorticity is 

d  rav* _ au* + 41 
ax 	ay 

(4.127) 	 = 0 
dt 	h* 

However, the expression 

avo  auo  (n2 
 (4.128) no — — — U) Po ax 	ay 

appearing in eq. 4.126 is not necessarily independent of time, because integration gives 

(4.129) no  = no(x, y, T) 

Any solution of the zero-order equations in 4.124 that satisfies alaT =  0 is the 
nondivergent geostrophic solution 

(4.130) V=Kx VP 

where K is the unit vector in the vertical direction pointing upward. Then the zero-order 
variables can be written as 

uo  = U(x, y, T) + u(x, y, T, T) 
vo  = V(x, y, T) + v(x, y, T, T) 

Po = P(x, y, 	+ P(x, y, T, T) 
no  = SZ(x, y, T) + w(x, y, T, T) 

where u, y, p, and w are the nongeostrophic (ageostrophic) solutions. 
From eq. 4.129-4.131: 

(4.132) [3, — L) 2 jP = 12(x, y, T) 

and 

(4.133) w 	_ au 	(L\ 2  
ax ay P = 0 

where 

(4.131) 
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2 	0 2 8  + 

ax 2 	ay 2 

From the first-order equations in 4.125: 

	

an, 	[ 	
4-  14

ano 	ano 	ano 	(au° 	0v0 \  

	

(4.134) —a t 	L 	0  aX 	1)0  ay + aX + 

where 

av, 	8u 	(L\ 2  (4.135) n i  .«=• 	— 	— 	Pi 

From eq. 4.130-4.134: 

an, 	a 	a 	 an 	an 	aft (4.136) — + — (un) + —ay (vn) = -[— + u— + v—ay ] aT 	ax 	 aT 	a x 
Note that one can determine the nongeostrophic solutions from the zero-order system. 

Obukhov (1949) gave the following general solutions for u: 

(4.137) u = AqA (x, y, T) + BqB (x, y, T) 

where qA  and qB  are independent solutions of the zero-order equations and A and B can be 
arbitrary functions of T. One can write a similar solution for v. From eq. 4.132, 4.136, 
and 4.137: 

a an 	an 	an (4.138) —a T [n, + function er) 	function(x, y, T)] — [— + U 	+ V —
ay

] aT 	a x 
The secular terms on the right side of eq. 4.138 are functions of T only. Hence, for the 
expansion 4.123 to be uniformly valid to the slow time T, one must set 

(4.13 9 )  aT 	ax 	ay 
Hence, the total solution of the zero-order system consists of a slowly varying geostrophic 
part, determined independently from eq. 4.137, and a nongeostrophic wave solution 
4.135, which is modulated by a slowly varying amplitude whose time scale is the same 
as that of the geostrophic solution. 

Tseng-Hao and Shih-Zao (1975) applied the concepts of geostrophic adjustment and 
geostrophic evolution to storm surges. They divided the theory of storm surges into two 
parts: (a) ordinary shallow-water theory of storm surges and (b) ultrashallow-water theory 
of storm surges. For an ultrashallow sea such as the Pohai Sea, the adaptation time is of 
the order of several days. According to these authors, for the ordinary shallow-water storm 
surges the time derivative terms are as important as the other terms and one cannot 
conveniently make any distinction between the adaptation time and the evolution time. For 
the ultrashallow-water surges, the time derivative terms are at least an order of magnitude 
smaller than the other terms. Hence, there is a quasibalance among the rest of the terms 
and if this state is disturbed by atmospheric forcing, it will be restored vigorously. 

THE NORMAL MODE APPROACH 

The work of Haurwitz (1951) was referred to earlier in which he mentioned that the 
duration of the development of the storm surge must depend on the sieche type motion 
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(normal modes). In Chapter 5 the normal mode problems will be studied in some detail. 
Here, following Schwab (1975), a method of calculating storm surges using the normal 
mode approach will be discussed. 

In the equations of motion, if all the inhomogeneous terms are omitted, the solutions 
of the homogeneous system are the normal modes, and there is, in principle, an infinite 
spectrum of these modes. However, when the system is forced (such as happens in the 
storm surge case when the forcing is from the atmosphere), the particular solutions of the 
inhomogeneous equations can be determined by an expansion in terms of the normal 
modes with time-dependent coefficients. Reid (1958) used this procedure to calculate the 
edge waves on the shelf. The advantage of using the normal mode approach is that the 
expansion automatically satisfies the space dependence. Each expansion coefficient satis-
fies a first-order inhomogeneous ordinary differential equation in time and these equations 
can be solved by numerical techniques. Since this is an uncoupled system, no expensive 
matrix inversion techniques are required. Although the normal mode approach is, in 
principle, very elegant and efficient, this approach is rarely used in storm surge studies, 
probably because the method has not lived up to its expectations, especially when applied 
to real water bodies with irregular coastlines, depth variations, and openings. Rao (1974) 
used this technique for certain idealized. situations. 

Following Schwab (1975), the equations for horizontal motion can be written in the 
following vector form: 

am (4.140) —

a t 

— f[M] = — gDV h + T 

where M is the horizontal transport vector and is defined as 
h 

M 	V dz 
-D 

where V is the horizontal velocity vector, V is the horizontal gradient operator, T(x, y, t) 
is the prescribed forcing function, and [l is an operator that denotes rotation of a vector 
900  clockwise in the horizontal plane (the other variables have been previously defined). 
The continuity equation is 

ah (4.141) —

a t 

+ vm = o 

The boundary condition is 

(4.142) M•n=DV•n= 0 

where n is a vector normal to the shoreline. The normal modes represent the solutions of 
eq . 4.140 — 4.142 when T = 0. 

Following Rao and Schwab (1974), the transport vector M will be expressed as the 
sum of a nondivergent part and an irrotational part: 

(4.143) M = 	+ 

where 

= — [Vqi] 

Here, ci) and (11 represent, respectively, the velocity potential and the stream function for 

(4.144) 
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the transport field. We have the following properties: 

V 	= 0 
(4.145) 

V./le = 0 

Equation 4.143 is valid as long as M is independent of depth (because it is vertically 
integrated) and the boundary conditions are adiabatic. 

The boundary condition 4.142 becomes 

Mn  = 0 
(4.146) 

M n  = 0 

or in terms of (13 and tp this becomes 

ai) 
D—an  = 0 

111  = 0  

on the shoreline. 
The divergence of the transport field and the vorticity of the velocity field can be 

written as follows: 

V.DV41 = —V•M 
(4.148) 

V•DVtli = V• [L - M] 

The parameters ci) and 4, will be expressed in terms of the spectra of the elliptic operators 
in eq. 4.148. That is, the following characteristic value problems are considered: 

V*DVck, 
(4.149) 

ai)« 	A 
D-  a n = v 

on the boundary, and 

V • D -I Vql« = 

lifta  = 0 

on the boundary. The subscript a refers to the number of the spectral components. The 
systems 4.149 and 4.150 are self-adjoint under the more stringent boundary condition 

D -1 111a  = 0 

Thus, the characteristic values Xa  and 	are real, and the related eigenfunctions cl) a  and 
Ilia  give rise separately to an internally orthogonal set. The orothogonality condition is 

4.151) 
11) -1 1Vr5OE M;',' dA = xc, f (1) OE (kg dA = 

(  f 	dA =  c, f ij5a li5 p dA = gA8 Œ p 

where 8 is the Kronecker delta and A is the surface area of the water body. 
From eq. 4.144: 

Marl' = —DVcicia  

(4.147) 

(4.150) 

(4.152) 
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To represent  M'' and  Arl' define the following nondimensional expansion coefficients: 

Pa .---- —gA 1 D -I M àk M 4' dA = —gA f D -i M à5  dA 1 	 1 

(4.153) 

Then 

Qa  = 	f D -I M 4)„MI dA = -j— 1. D -I M`Pa  dA 
gA 	 gA 

M 4' ---- E PaM a4>  

(4.154) 	
. 

M 4'  = E Qam,,qi 

Because of eq. 4.151, the right sides in 4.154 represent the left side in a least square sense 
if the summation in 4.154 covers the complete spectra of eq. 4.149 and 4.150. 

From eq. 4.141 it is evident that the divergent part of M determines h. Thus 

(4.155) hOE  = g -I X„u2 ■1)„ 

Then, the orthogonality relation is 

(4.156) f hahp dA = A 80, 13  

Then, h can be expanded: 

(4.157) h = E Rh a  
. 

where 

(4.158) Ra  -=, A-
1 f h a h dA 

Define 

A.p. ' {M`k  a, [MP} 
Bocp ' {A 14)  ., [MPI 

Cag ' {/le  a, {M .P} 
Eap ' fin [MU 

The notation {A, B} represents the inner product 

{A, B} = —1 I fD -I  A • B dA gA 

From eq. 4.159 it can be seen that 

lic, g  =  

(4.160) 13,43 = - 4, 

Eap = —Epa  

Substituting eq. 4.154 and 4.157 into eq. 4.140 and 4.141 and taking 'T = 0 and then 
using the orthogonality conditions 4.153 and 4.156 gives the following spectral prediction 
equations: 

(4.159) 
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dPa  
--E A P5  —E B ap Q p  — v aR a  = 0 dt  

13 	 13  
dQ, 

(4.161) —dt — 2, C,,r3Pp E EŒ pQp 
3 	 13  

dR a  
dt + vaPa  = 0 

Define the following column vectors and matrices: 

15 	col (Pa ), 	col (Qa ) 
(4.162) 

R 	col (R a ),  
R 

and the following matrices: 

AIAI , 	
C 	IC,,I 

(4.163) B 	E = !Eij i 

(v) 	diagonal (vc,) 

Then, eq. 4.161 can be written in the matrix form 

(4.164)  —d + a-S-7  = 0 dt 

where a is a square matrix defined by 

—A —B —(y) 

	

(4.165) a = —C —D 	0 
(v) 	0 	0 

Making use of the property that the time dependence of g is given by el" where o-  is the 
frequency of oscillation, eq. 4.164 becomes 

icrg + aS" = 0 or 
(4.166) 

— 	= 0 

where I is the identity matrix. The eigenvalue problem 4.166 can be solved for the 
characteristic (real) values of œ and the eigenvectors S. Once the eigenvectors are known, 
using eq. 4.152, 4.154, and 4.157, the M and h fields can be derived. 

Note that here, only gravity modes have been considered, which are also referred to 
as oscillations of the first class (OFC). In Chapter 5, OFC and oscillations of the second 
class (OSC) will be discussed briefly. For a real water body with irregular geometry, the 
characteristic value problem (eq. 4.419, 4.150, and 4.166) must be solved numerically. 
Analogous to the tidal problem one can construct cotidal lines and corange lines. To be 
able to do this, write 

(4.167) h = Real E Rahae' A(x, y) cos [o- t — 0(x, y)] 
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The isolines of A (x, y) give the cotidal diagram, and the isolines of 0(x, y) represent the 
corange lines. 

Let the solutions of M and h with T = 0 (i.e. the free solutions) be MF and hF, 
respectively. These can be expressed as 

MF 	y)eta.` 
(4.168) 

hF 	y)en.' 

The space-dependent normal mode functions can be found from eq. 4.154 and 4.157. 
Here, a is a subscript to order the normal modes and j can take a value of either 1 or 2 
to represent the normal mode or its complex conjugate. Note that the complex functions 
satisfy the normal mode equations 

i cr, a 	— f[M] — gDV 
(4.169) 

icria h,„ + VA/1,a  = 0 

These functions are orthogonal (in a general Hilbert sense). 
Let /lep and h; be the complex conjugates of the normal mode functions for 

The conjugate equations for eq. 4.169 are 

—ialperç'p — f [M;,'.' 13 ] = —gDV h x p 
(4.170) 

—icr;p1Cp + VM'K'p = 0 

The orthogonality condition is 

(4.171) f (m ja K13  
gD + h h*  dA = X 8 8 

	

J. Kg 	 JK g 

where Xia  is the normalization for the normal mode associated with (T. The solution of 
the forced problem (i.e. 'T * 0) can be expressed as 

2 
M(X, y, t) = E E 44 (t)M, Œ (x, y) 

(4.172) 
 

2 
h(x, y, t) = E E 4,,,(t)h(x, y) 

J =1 a 

Here, Aja  represents the complex time-dependent amplitude factor for the normal mode 
with frequency cria . 

Substituting eq. 4.172 into eq. 4.140 and 4.141 gives 

dA 	 2 	 2 
+ f 	A .,„[M,] = — gD 	A .,„k„ + T 

J=1 a 	 j=1  a 	 j= 1 a 

(4.173) 

dA ie,  

 dt hi + 	VMJ« = 0 
« 

Multiply the first equation of 4.173 by /lep, the second equation by hl'p, the first equation 
of 4.170 by M/(gD), and the second equation by h (here, M and h are given by eq. 4.172) 
and add these and integrate over the area of the water body and use the orthogonality 
condition 4.171 to give 

CrKg• 

2 
E E 
J=1 a 
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dAia 	 Tile/ 
(4.174) Xia ( it  J  + icriaAja  = 	dA 

or 

dA, a  1 f TM,0, 
(4.175) 	+ io- •„A = 	dA 

di 	' " Xia  J gD 

Since T is a known quantity, the equation for  A(t) is an ordinary inhomogeneous 
differential equation of the first order. 

Formally, the solution of eq. 4.175 can be written as 

(4.176) A,„(t) -= 	 dT 

where 

(4.177) 
B" 	J gD 

= 	f Tel"'  dA 

In real situations the integrand on the right side of eq. 4.177 will not be a simple analytical 
function of time, and one must use numerical integration. Schwab (1975) used the 
following finite-difference scheme: 

1 (4.178) 	[Aie,(t + At) — 4(0] + [Aie,(t + At) + 4(0] 

= [B(t + à t) + 	(t)] 

This can be rearranged to give 

	

2 — icriaLlt 	 At  (4.179) Aia(t + àt) = 	 ( 2 + icr• At) i" A• (t) + ( 
2  + 	3,t ) 	+ At) + 

Ja 	 Ja 

According to Kurihara (1965a, 1965b) this scheme is unconditionally stable for any At. 
However, if At is greater than one-sixth of the period of the fastest wave in the system, 
phase errors will then occur. 

The integration procedure is as follows. Once the normal modes are determined, from 
eq. 4.171 the normalization factors XiOE  can be calculated. Since T is given for all time, the 
Bia  values that enter eq. 4.179 can be detemined from eq. 4.177. Since the earlier mode 
calculation also gives the normal mode frequencies, cr, o,, the time-dependent expansion 
coefficients can be determined from eq. 4.179. Then, at each time step, the M and h fields 
can be determined from eq. 4.173. Schwab (1975) claimed that although the numerical 
integration involved appears to be a considerable effort, the ability to limit the range of 
the index a in eq. 4.179 makes this approach more efficient than the ordinary finite-
difference techniques. 

4.2 Empirical Methods 

Empirical methods are those techniques that are derived from simple analytical 
theories and experience and that are usable more or less directly for practical situations. 
In the empirical storm surge techniques, the contributions and reviews by two authors, 
namely R. Silvester and C. L. Bretschneider, are considered here. Hence, one subsection 
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will be devoted to the works of each of these authors; other works will be considered in 
a third subsection. 

THE WORK OF SILVESTER 

In stretches of open coast or in bays where actual measurements of storm surge 
amplitudes are not available, one might have to determine the amplitude in the deeper part 
of the ocean (or sea) and trace the long wave shorewards. From analytical theories, 
relationships are available for the propagation of waves across channel transitions with 
either variable depth or width and with friction included in channels of uniform depth. 

Silvester (1969) developed a method that enables one to derive multiplicative factors 
for calculating the surge amplitude farther inshore. The friction coefficients are assumed 
based on wave Reynolds number and bed roughness factor. Following Dean (1964), 
Silvester first considered the solutions for the frictionless case. Let H be the wave height, 
b the width, and d the depth, and let subscripts 1 and 2 denote the deepwater side and the 
shallow-water side of the transition, respectively. An amplification ratio. H2 /1-1 1 , can be 
computed for ratios di  /d2  and (b 1 /b2 )2 . Define 

4ird 1/2  
(4.180) Zn = 	(for depth variations) 

g 1 /2 	(for 

and 
'1T b i  

(4.181) ZB   (for width variations) 
g1/2 (11/2TSH  

The notation is defined in Fig. 4.3. Using this figure, one can write these factors as 
follows: 

47rL, 	2irL z A  -k-- and 4  = —X 

where L is also defined in the figure. Here, X is the wavelength, and its value in the 
frictionless case is 

X0  = 

where T is the wave period. 
Consider the following four limiting cases. 
(i) Zn = 0 (i.e. L =  0) gives rise to an abrupt step: 

H2 	2\/  
H (V71 1  + V712) 

	

Hence, as d2 	0, H2 /1/ 1  ---> 2. 
(ii) ZA = 00 (i.e. L = 00) gives rise to an infinitely long channel: 

H
2= 

 (d 1  ) 1/4 

	

HI 	d2 

for shallow-water situation (i.e. C = \/gD). Hence, as d2  —> 0, H2 /H 1  —› 00 (note that 
here the effect of friction and breaking waves is not considered). 

(iii) Z  = 0 (i.e. L = 0) leads to an abrupt reduction in width: 

	

H2 	2 b 1  

	

Hi 	(b, + b2 ) 
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Fia. 4.3. Wave amplification in a channel transition without the inclusion of friction. (Silvester 1969) 

Hence, as b2  —> 0, H2 /1-1 1  —› 2. 
(iv) 4  = 00  (i.e. L = co) leads to an infinitely long channel: 

H2 	( b i ) 1 /2  

HI 	b2  

for shallow-water conditions. Hence, as b2  —> 0, H2 /H 1  --> co •  From Fig. 4.3 one can 
determine the wave amplification, H2 /1-1 1 , for varying depths and widths. 

Next, Silvester used the work of Jonsson (1965, 1966) to include the modifications 
due to friction. Using pipe flow as an analogy, Jonsson gave a fw  — Rw  diagram for long 
waves. Here, A is a wave friction factor and R w  is a wave Reynolds number defined as 

UnlaxXnmx Rw  = 	 

where (in„x  is the maximum water particle velocity, x„,„, is the maximum deviation of the 
water particles from their mean position, and v is the kinematic viscosity of seawater. 

H2 
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FIG. 4.4. Wave friction factor f„, for waves for the case 27r dT2  I g 5- 0.01. See text for an explanation of the 
symbols. (Silvester 1969) 

In Fig. 4.4 the abcissa is R w  whereas the ordinate is  'r0  

e  1 77 2 
JW 7 p- max 

For shallow-water conditions, making use of the linear theory, one can write 

(4.182) R w  = 112T 	g  
d 
	

 (81-rv) 

Note that Silvester takes v = 11 x 10 -6  ft • s -1  (10-6  m • s -I  ). 
For the bed roughness factor, Jonsson used xinax  /K where K is the Nikuradse sand 

roughness on a smooth surface. Silvester wrote 

	

x„,,,x 	HT g 112 
(4.183) 

	

K 	411- 1(cr2  

This is shown in Fig. 4.4. Kajiura (1964) showed that for large values of d/K the friction 
factor varies only with the right side of eq. 4.183. In Fig. 4.4 for values of H2 /T greater 
than 105 , the smooth bed curve can be extrapolated by using 

0.075 	0.0084  

	

(4.184) fw  = 	or 
(R w)° 19 	(H 2T/ d)° 19  

Next, Silvester made use of the work of Ippen and Harleman (1966) who studied a 
damped long wave traveling through a canal of infinite length (so that no reflections 
occur). Silvester considers the continental shelf as a combination of discrete sections, each 
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of uniform depth. Using the wave height for the frictionless case, a wave attenuation factor 
M can be derived: 

(4.185) M = 37r gd 	67r g 1/2  d2/2  

This can also be written as 

21T[ 2 	tan a  1 27r (4.186) M = —Tg tan 2a =- 
Tg 	— tan 2  a)] 

where 

11 X tan a —21T 

and ji is a parameter. Here, it is assumed that p, and X are uniform over the section of 
constant or slightly varying width. From above: 

f;vH TVF1 f lvH X 0 	[  p,X/27r 
(4.187) 	 = 2477 2  

d2 	 1 — (p,X/27 ) 2 -1  

For the frictionless case, the wavelength is X 0  and C = 

( 	2 	
i 2 	 ( 	 (x \2 

 

(4.188) 	-..) = 	x  
Try 	or 	= 1  

X0 	 U0 ) 

Substituting eq. 4.188 into 4.187 gives 

f;vHTVF1 
 = 24112

[1 — (k/X0 ) 2 1 
(4.189) 

	

d2 	 (x/x0)2 

Silvester (1969) included a graph of solutions to this equation for a range of values of X/X o . 
The wave attenuation depends on X/X 0  and the ratio of the distance traveled to the 

wavelength. Let H, be the wave height at a distance from the entrance of the channel 
section. Then 

H, 
(4.190) —H = 

or 

H,  
(4.191) —H = e -2 o V( X  2

—) — 1 Xo  

where 

X0 =  TV -g-21 

Silvester included a diagram of the graph of eq. 4.191 for a range of X/X o  and x 1 (TV -g-71). 
Silvester (1971) considered an enclosed body of water such as a rectangular lake. Let 

d be the (uniform) depth of the lake, U 10  the wind speed 10 m above the water surface, 
L the length of the lake (or wind fetch), and S the surge amplitude at the downwind end. 
Then 

s U2,,L 
(4.192) 	= 	 

d 	2gd2  

fw Uina, 	f H 
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where K w  = 3.3 X 10-6  (wind drag coefficient). Note that this equation is dimensionless. 
For nonrectangular shapes, S/d must be multiplied by a form factor N. 

For storm surges on the continental shelf, Silvester assumed a uniform variation from 
a depth di  at the shelf edge to d2  near the coast. Let L be the width of the shelf and F the 
fetch length. The depth ratio d2 /d, can be expressed in terms of L/x where x is the distance 
inland where the plane of the bed meets the mean water level. For extratropical cyclones, 
F>  L generally; however, we must take F = L, since only the portion of the fetch over 
the shallow zone is effective in producing the surge. On the other hand, for tropical 
cyclones, usually F  <L.  Let V be the speed of movement of the wind field; if V = 0, the 
wind field is referred to as a static wind field. 

For the static wind field case, the surge S is given by Bretschneider (1966a) as 

(4.193)  S = KU 2L 	In  (di  
d i 	di   - 

gd2, (1 — 
"j

)
2 

For tropical cyclones a triangular wind field is more relevant. Reid (1956) expressed the 
surge amplitude as 

(4.194) 	= 	2 gd, 
s 	Kua„L  [  1.12 	(d1)"4 1 

Silvester graphed this relation. 
When a wind field is moving across the shelf towards the shore, the forward part of 

the surge wave system is being reflected as the later waves are still approaching the shore, 
Reid (1956) considered the interaction between these two wave systems and included 
graphs for the ratio, R, of the maximum surge, S., to that of static storm situations. 
Silvester gave the following formula for the surge, So , due to reduction in the atmospheric 
pressure: 

(4.195) Sa  = (1013 — Pc ) 0.033 

where Sa  is the surge amplitude in feet and P„ is the pressure at the storm cente in millibars. 
This relation is also known as the inverse barometer effect and, as usually expressed, 
indicates that a decrease of 1 mb in the atmospheric pressure gives rise to an increase of 
1 cm in the water level. 

THE WORK OF BRETSCHNEIDER 

Bretschneider (1966a) gave the following convenient classification (Table 4.1) of 
water bodies for engineering design purposes with respect to storm surges. Consider a 
rectangular channel of uniform depth and let the wind blow with a constant speed along 
the channel axis. Under steady-state conditions the following equations may be written 
(Hellstrom 1941; Langhaar 1951; Keulegan 1951, 1952). 
Slope of the water surface: 

dS 	Ts + Tb  
(4.196) 

dx pg(h + S) 

1 + 
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TABLE 4.1. A convenient classification of water bodies for developing empirical relations 
for engineering design problems. (Bretschneider I966a) 

A. Enclosed lakes and reservoirs 
1. Rectangular channel, constant depth 
2. Regular in shape 
3. Somewhat irregular in shape 
4. Very irregular in shape 

B. Off coast or on continental shelf 
1. Bottom of constant depth 
2. Bottom of constant slope 
3. Slightly irregular bottom profile 
4. Irregular bottom profile 

C. Coastline 
1. Smooth coastline 
2. Coastline somewhat irregular 
3. Jagged coastline 

D. Behind coastline 
1. Low natural barriers 
2. Medium-high natural barriers 
3. High natural barriers 

E. Open bays and estuaries 
1. Entrance backed by long estuaries and with tidal flow moving freely past entrance 
2. Entrance backed by short estuary and with tidal flow moving freely past entrance 
3. Entrance obstructed sufficiently to prevent free movement of tidal flow past entrance 

Conservation of volume for nonlinear exposed bottom: 

(4.197) 	(h + S)dx = lh 

Conservation of volume for exposed bottom: 

(4.198) f (h + S) =  1h  

Here, S is the surge amplitude, x is the horizontal distance, Ts  is the wind stress, h is the 
water depth, 1 is the channel length, x0  is the length of the exposed bottom (when 
applicable), and Tb is the bottom stress. 

Based on studies in Lake Okeechobee, Saville (1953, 1961) wrote 

Ts = 3.0 	03-6u2/g and Tb/Ts  — 0.1 
Pg 

Then, eq. 4.196 can be written as 

(4.199) 
dS 	KU2
—dx  = g (h s) 

where K = 3.3 x 10 -6  and U is the wind speed. It is quite possible that the wind stress 
is proportional to U" where in * 2 (see Chapter 6). With reference to Fig. 4.5, for exposed 
bottom, the constant of integration in eq. 4.196 is x0 , and the setup between x = 0 and 
x = x0  is S = — h. For the case of a nonexposed bottom, x0  = 0 and eq. 4.197 can be used 

xo 
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FIG. 4.5. Schematic representation of a rectangular channel of uniform depth for storm surge calcu-
lations. (Bretschneider 19666) 

to evaluate the constant of integration in eq. 4.196. For finite values of U, h, and 1 the 
nodal point (i.e. S = 0 at x = xr,„d ) is given by 

2 
Xnod 

	

( S ax 	2S,„„h 
(4.200) —/ = 1 

2KU 21, 

where S S ma„ at x =  I.  Solutions of the above equations are given in Tables 5.2 and 5.3 
of Bretschneider (1966) for the cases of nonexposed and exposed bottoms, respectively 
(not included here). 

Next consider an enclosed lake of regular shape. Essentially the same equations as 
above can be used, as a first approximation, if the depth is replaced by the average depth 
h.  To obtain the next level of approximation the lake can be divided into several segments, 
and then eq. 4.196-4.199 can be solved numerically. Since this will involve trial and 
error, the process can be made efficient by incorporating the second-order term into the 
equations. 

With reference to Fig. 4.6, the incremental rise, àS„ of the water level over the ith 
section can be written as 

(4.201) 	S = hr [ \i2NKU 2  Ax 
à, 	 + 1 — 

L g(h)2  

where  Lx  is the length of the section. The total water depth, hT , in the ith section 
(excluding incremental àS, rise over that section) is given by 

M-1 

(4.202) hT  =  h1  +  

1=1 
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FIG. 4.6. Schematic diagram for empirical formula for wind setup calculations. (Bretschneider 1966b) 

where it, is the average still water depth in the ith section. In eq. 4.201 the parameter N 
is the planform factor. The surge is given by 

(4.203) Sm  = E às, 
i= 1 

The wind stress effect can be written as 

(4.204) KU2L  = E  [Ku 2àxl  
g h2 	I-1 L g(h1) 2  

To begin the computation, one must know a first approximation for the nodal point, 
and Tables 5.2 and 5.3 of Bretschneider (1966) can be used. The convention is such that 
3,S;  is positive from the nodal point to the downwind end of the lake and negative towards 
the upwind end of the lake. The continuity relation is 

Af 

(4.205) E B iSi àx = 0 
i=1 

where /3 1  is the width of the ith section. 
Essentially the same procedure can be used for enclosed lakes of slightly irregular 

shape. Bretschneider (1966) selected Lake Okeechobee (Florida) and Lake Ponchartrain 
(Louisiana) as examples of lakes of slightly irregular shape, and for lakes of very irregular 
shape he chose Fork Peck Reservoir (Montana), Lake Texoma (Texas), and Lake Mead 
(Colorado River). He suggested that the irregular lakes may be subdivided into several 
more or less regular-shaped lakes in certain situations. In some other situations, statistical 
techniques (correlating storm surges with the winds) may be appropriate. The writer feels 
that for irregular bodies of water, numerical models are preferable. 

Until now it has been assumed that the wind blows either parallel to the lake or 
perpendicular to the lake. It is more likely that winds blow at an angle to the lake. In this 
case, in eq. 4.201 or 4.204, U 2/ix can be replaced with UU„àx and solving for 3,S, (here, 
U„ is the wind speed in the x direction) which is the setup in the x direction and repeating 
the calculation by replacing U'àx with Utly ày and solving for àS„. Then one can 
determine two nodal lines x„„d // and ■ inod/i. The point of intersection of "these two lines is 
the nodal center. At this point one can begin the computation using eq. 4.202 and noting 
that AS, = àS, + 

Next, Bretschnekler (1966) considered a continental shelf of uniform depth and wind 
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FIG. 4.7. Schematic representation of a continental shelf of uniform depth. (Bretschneider 1966b) 

blowing perpendicular to the coast. With reference to Fig. 4.7 the solution of eq. 4.196 
is 

g(h + S/2) 

This being a quadratic equation for S, the positive root is given by 

h  ( , i2KU 2x  (4.207) S = 	 + 1 — 1) 
V gh 2  

It may be noted that eq. 4.207 and 4.201 are similar and would be identical if eq. 4.201 
were used as a one-step formula. 

For the case of a shelf of uniform slope (Fig. 4.8), the maximum surge due to a wind 
field moving perpendicular to the coast with a triangular wind stress distribution such as 
that due to a hurricane is given by 

T, (lily 2 
(4.208) Sm. =  K — 

, IT0 

u rna,z 

where, as above, the wind stress coefficient has a numerical value of 3.0 x 10 -6 , h, is the 
depth at the edge of the shelf, ho  is the depth near the coast where Smax  applies, 1 is the 
length of the shelf, Umax  is the maximum wind speed, and Z is the response factor. Other 
relations are c i  = Vgh l , co  ---- V gh o , ê =1(c, + c2 ), and T1 = 11E. . In shallow areas (i.e. 
when ho  is small) in eq. 4.208 one may replace h o  with ho  + S. 

For steady-state storm surge calculation over a continental shelf of uniform slope (see 
Fig. 4.8) one can write 

(4.209) h --= h, — m i x 

where m l  is the bottom slope and the integration proceeds from x, = 0 at h, to x at h. In 
eq. 4.199 the term S in the denominator on the right side can be written approximately: 

(4.210) S = in2x 

where the second-order term, m2 , is the mean waterslope and is assumed to be constant 
in the region of integration. The solution of eq. 4.199 is 

(4.211) S = 	KU2 	In 	  
g(m — m2) ( hi — ( 

h, 

 mi — m2)x )  

KU 2x 
(4.206) S = 
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FIG. 4.8. Schematic representation of a continental shelf with a uniformly sloping bottom. 
(Bretschneider 1966b) 

Using eq. 4.209 and 4.210, eq. 4.211 becomes 

KU 2x  
(4.212) S = 	 In ( 	h' 

g(h, — h — S) 	+ S 

Note that for the case of uniform depth, /2 1  -= h, eq. 4.212 reduces to eq. 4.206. 
In an approximate manner, eq. 4.212 can be modified for variable wind speed and 

direction if U 2  is replaced by 

(4.213) U
2 
 ---- —

1 fl  I Ul U.,C/X 
e  

This can be achieved through computing cross-sections of wind field or stress diagrams 
and using that portion giving maximum value of the integral of eq. 4.213 over length / 
where / = x l  — x2. 

It will be seen in section 4.3 that the component of the wind stress parallel to the coast 
gives rise to the so-called bathystrophic storm surge. Based on the work of Freeman et al. 
(1957), Bretschneider (1966a, I966b) wrote 

dS 	KUU, 	f Fy  
(4.214) 

	

	 + 	 
dx g(h + S) g(h + S) 

Here, U is the absolute value of the wind speed, U, is the component perpendicular to the 
bottom contours, f is the Coriolis parameter, and Fy  is the flux parallel to the depth 
contours and is given by 

(h+s) 
(4.215) Fy  =vdz 

where v is the current parallel to the depth contours. The following equation holds for Fy : 

	

A  F 	 IC 	2 (4.216) 	Y  = KU U, 

	

At 	 F 
(h + S )7" ›

, 

where Ur  is the component of wind speed parallel to the bottom contours, K = 3.0 x 10 -6 , 
and X lies between 10 -2  and 10-2 . 

If the wind speed is constant during some time interval, the solution of eq. 4.216 is 

(4.217)  F) (2) = VK UU y (h  + S)713 tanh r ,/  ICCUUy (t2  _ t1)  

I '1  (1/ + S ) 7" 

+ tan 	
F) (1) 

 -I  
VKUU y (d  + S) 713 1  

5.0 

x2 
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Here, F;(1) and Fy (2) refer to F), at times t 1  and t2 , respectively. 
For a uniformly sloping bottom to a (straight) coastline the surge S at the coast 

(h = 0) becomes (from eq. 4.208) 
VI 12

In 
h 

	

(4.218) S = 	 
g(h, — S) S 

The bottom slope usually increases rapidly near the coast; hence, eq. 4.218 can over-
estimate the surge. À better technique is to use eq. 4.212 to a depth h, prior to the sudden 
increase in bottom slope, and then use either eq. 4.212 or the numerical equation to solve 
for AS in the remaining region. 

Bretschneider gave greater emphasis to the planform factor mentioned above in his 
later work (Bretschneider 1975). In certain enclosed bodies of water such as lakes, the 
varying depth and width can be approximately taken into account by utilizing the planform 
factor N. Equation 4.199 then becomes 

KU 2  (4.219) —dS = N(X) 

	

dX 	g(h + S) 

where N(X) is the planform factor and is a function of distance down the channel, varying 
depth, and varying width of the channel. At the downwind end of the channel, X = L, the 
planform factor N(X) = N. 

For an enclosed lake and assuming linearity, the setup (surge) at the downwind side 
is equal to the draw at the upwind side and S is small compared with h. Hence, in the 
denominator of eq. 4.219, S can be ignored compared with h. Then, this equation can be 
written as follows: 

K U 2  (4.220) S = N 2gh 
In deriving mathematical expressions for N(X) it is convenient to consider the following 
three subcases for an enclosed lake: (a) constant depth, variable width, (b) constant width, 
variable depth, and (c) a combination of a and b. For the first case either an exponential 
change or a trapezoidal change may be considered. For simplicity, consider an enclosed 
channel with exponential width variation: 

(4.221) B = B o  exp  (-2ŒX)  

where B is the width of the channel at distance X measured from B o , which is the width 
at the beginning of the channel, L is the length of the channel, and a is a constant to be 
determined. 

Integration of eq. 4.199 with respect to X gives 

KU 2L 	 NKU 2L  
(4.222) S 	 + C = 

2 g(h +  S/2) 	2g(h +  5/2)  

where C is the constant of integration. To determine this, note that 

(4.223) f B(h + S) dX = A s (h + S) 

where A s  is the surface area, A s (h + S) being the volume of water in the channel. Noting 
that 

(4.224) B = B o  exp (-2a i-X) 
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and 
fL  

(4.225) A s 	B dX 
o 

we obtain 

B oL 
(4.226) A s  = a 

[1 — exp ( -20 )] 

Hence, the planform factor is given by 

I(4.227) N(X) = 2 1 + 

where 

X) 	 [ [ 2aX 	2aX 1 — 2a 	exp — 	— exp — 

2a[exp (—/x) — 1] 

a Bo/BL 

Generally speaking, one must select Bo  by trial and error so that the exponential change 
in width is satisfied. Bretschneider's (1975) Fig. 23 shows N as a function of Bo /B L . Note 
that when a = 0, we have a rectangular channel of constant depth and width, and 
N = 1. 

Next, consider a trapezoidal channel for which 

(4.228) B = B o  — 13X 

where 

Bo —  BL  
13  = L 

For this case, it can be shown that the planform factor is given by 

(4.229) N= 
2  1 2B0  
3 Bo  -I- BL  ) 

Next, consider a bottom sloping upward in the direction of the wind. To simplify the 
problem, assume trapezoidal variation both in the depth and in the width. This slope is 
usually referred to as the prismoidal planform. 

Write 

(4.230) B = B o  — BX 

(4.231) h  = ho  — niX 

where m is the bottom slope and 13 is the slope of convergence of the sides. The surface 
area of the water is given by 

fL  

(4.232) A, = BdX 
o 

and the volume of water in the channel is given by 
fL  

(4.233) V = BhdX 
o 

The planform factor can be shown to be given by 
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1 	7 	1 2 	9 	3 	7 	( 1  4_ 1 	2 4_ 	1 	4) (4.234) N = 2 _ 	,m — 320 m 4-  160 —  — Y 	120 m  ' 2120 m  

For a trapezoidal channel of constant depth, m = 0, and eq. 4.234 reduces to 

(4.235) N = 1 — 

When both m and p are zero (i.e. rectangular channel of constant depth and width), then 
N = 1. Note that until now, N has been derived on the assumption that S < h. But when 
the winds are stronger and the surges are significant, a second approximation may be 
obtained by replacing h with h +  512. 

Next, Bretschneider (1975) considered surges over the continental shelf. Under the 
bathystrophic approximation (see section 4.3) the equations of motion and continuity can 
be written as 

dQ 	 Q)2 
(4.236) —dt = KUU, — KD -112  (—D 

(4.237) —
dS = 	(KUU., f Q) dX gD 

(4.238) 
s —a — a —Q = 0 ar 	ay 

where Q is the transport in the direction perpendicular to the shore (i.e. x), S is the surge 
(feet), y is the direction parallel to the coast, f is the Coriolis parameter, D is the water 
depth (feet), U is the wind speed, Uy  is the component of the wind speed parallel to the 
coast (feet per second), and K is a wind stress coefficient. Integration of eq. 4.236 between 
the limits Qo  and Q 1  for times to  and t, gives 

IKUU D"3 \ 	f 	UU>, 1/2 	 1/2-1 

(4.239) Q 1  = 	) tanh 	
D713

) At + tanh-  Qo 	 
(KUUy D v3)  

If it is assumed that Qo  = 0 at to  = 0, then 

KUU3,D713)112 
	(KN.UU  )1/2 

(4.240) Q =  	tan h 	Y  At 
D 713  

The mean current parallel to the coast is given by 

(4.241) 

Hence 

V116 	K 	[ tanh Ut (Int sin 0  1 `2 ] 
(4.242) 	= D 5'f sin 0 	D 	D"3 I 

From eq. 4.237 and 4.242: 
1/2 dS 	KU 2  cos 0  4_ f 	sin  cs) (D + 5) 1/6  (4.243) 

dx = g(D S) 	g 

X  tanh [  Ut 	KX sin Ø  rl 
1-(D + S) (D + S)"31  
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Here, X is between 10 -2  and 10' and 0 is the angle at which the wind is blowing towards 
the coastline. To obtain the steady state, the tanh term is set at unity. 

For the case of a constant bottom slope: 

(4.244) D + S = Do  — 111X 

where D o  is the break-off end of the slope at the edge of the continental shelf, ni is the slope 
of the continental shelf, and x is measured shoreward from X = X 0  = 0 where D = Do . 
The solution of eq. 4.243 for the steady state becomes 

KU 2  cos 0 	Do  	6 f u (lc 	1/2 
7/6 (4.245) S = 	ln 	 sin 0) [D o  — (Do  — nix) 7'6 ] gin 	(Do  — nix) 7  gin X 

From eq. 4.244 and 4.245: 

S = S, + S.,. 

where 

KU 2X cos 0 	Do  
(4.246) 5, = 

	

	 ln 	 
g[Do  — (D + S)] (D + S) 

(4.247) S, 
= 6 	fç.  sin 

 0
à 1 /2  [D 7016  — (D + S) 716 1  f UX 

7  g \X 	L D, — (D + S) 
At the coastline, D = D, and X = F, the fetch length. Hence, eq. 4.246 becomes 

KU 2 F cos 0 	Do  
(4.248) S, = 	 la 	 

g[Do  — (D, + S)] (D, + S) 
For small values of De  + S, eq. 4.247 becomes 

6 f  U F  (K 1/2  
(4.249) 	 sin 0) Dr = 7 g X 

Here, D, includes the astronomical tide. For the technique of choosing Dc , Do , and F, see 
Bretschneider (1975). 

SOME MISCELLANEOUS WORKS 

Rao and Mazumdar (1966) expressed the storm surge S as 
(4.250) S=B+P+X+F 
where B is the static rise due to atmospheric pressure deficiency towards the center of the 
storm, P is the rise due to piling up of the water against the coast by offshore winds, X 
is the height of crests of individual waves (wind-generated waves) superimposed on the 
general rise of the water level, and F is the effect of forerunners. 

Of these, P and X are the most important. These authors combined the effects of B, 
P, and X and gave the following formula for the surge: 

d"V ,"1D " 3,1D 	5 APa (4.251) S = —5 x 4.8 x 10 	2 	 10 

	

' W2  , — + 	x -2  3 	 D 	3 
 di , AD, 	
g  

where W is the sustained speed of the onshore component of the wind, AD is the horizontal 
length of a section, d is the depth of the water column, and AP„ is the pressure deficiency 
(in millibars) at the point under consideration. 
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Murty and Polavarapu (1975) expressed the surge  S as a combination of S I  (inverse 
barometric effect), 52 (due to the component of wind stress perpendicular to the bottom 
contours), and 53 (bathystrophic storm surge): 

(4.252) S I  = 1.14AP0 (1 — e-R1r) 

where A P0  is the reduction in atmospheric pressure in inches of mercury, R is the radius 
of the maximum winds, r is the radial distance from the storm center to the point of 
interest, and the factor 1.14 converts inches of mercury to feet. For the second component: 

N-I 

(4.253) 52 = E Si  

where IS is the rise in water level in an increment of distance N (in units of grid 
increments) along the profile due to wind action. In general: 

(4.254) AS; = d, 
V2KUU,(3a + 1) — 1 

g(d1 ) 2  

where d, is the total water depth at the point under consideration, including the rise from 
all previous sections but excluding S;  for the section under consideration, K is a stress 
parameter equal to 3.0 x 10 -6 , U is the'absolute wind speed, U, is the component of the 
wind speed in the profile direction, and Ax is the increment of horizontal distance along 
the profile. 

Bolduc (1974) used empirical techniques to simulate storm surges at Point Petre on 
Lake Ontario. Hamblin and Budgell (1973) used empirical techniques to calculate storm 
surges in Lake St. Clair (which connects the Detroit River with the St. Clair River). 
Armstrong (1962) also used empirical techniques to simulate storm surges on the west 
coast of Canada. These three papers will be considered in some detail in section 7.1. 

Barrientos and Jelesnianski (1976) and Jelesnianski and Barrientos (1975) used 
empirical techniques to compute storm surges on the east coast of the United States due 
to hurricanes and extratropical storms. Donn (1958) used empirical techniques for pre-
dicting storm surges at six locations on the northeast coast of the United States. Wilson 
(1959) did a comprehensive study of storm surges in New York due to hurricanes, using 
empirical techniques. Kajiura (1959) made a thorough study of certain aspects of storm 
surges on the east coast of the United States. These papers will be treated in some detail 
in section 7.2. 

4.3 Graphical Techniques 

Reid (1956) appears to be among the first to use a graphical technique (method of 
characteristics) for calculating storm surges. By ignoring Coriolis force and bottom fric-
tion and using one-dimensional hydrodynamic equations, he evaluated the changes in the 
water level at the shore of a sloping shelf due to a wind field moving directly on shore. 
It should be noted that the graphical method's appeal was mainly in the precomputer era. 
However, for engineering and practical purposes and quick and approximate estimates, the 
graphical methods, along with empirical and statistical methods, have a useful role to play 
in storm surge studies. 

METHOD OF WAVE DERIVATIVES 

The method of characteristics (e.g. see Freeman 1951), as is commonly understood, 
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is used when there are two independent variables. Freeman and Baer (1957) developed a 
technique that can be used with three independent variables (e.g. the two horizontal 
coordinates x and y and time t); they referred to this technique as "the method of wave 
derivatives." With the neglect of bottom friction, the equations of motion and continuity 
are 

au 	au 	au 	a 	Ts, 
(4.255) 	+ u 	+ v 	+ 	(2c) f + 

av 	av 	av 	a •, 
(4.256) 7 + u +

y + cT
y 

(2c) —f u + h—p  

	

au 	ay (4.257) —a (2c) + u—a (2c) + v—a (2c) + c 	+ 	0 at 	ax 	ay 

where c = V gh (h is the water depth, assumed to be uniform). 
Equations 4.255-4.257 are combined in four different ways, i.e. [1] ± [2] ± [3]. 

Here, the notation H represents the left side of the corresponding equation. This operation 
yields four equations. To both sides of these four equations, add and subtract (a v / ax + 
au/ay). Let the resulting four equations be A, B. C, and D. Then, the following four 
operators again result in the following four equations ([A + 13], [C + D], [A + C], and 
[B + D]): 

D I A, 	D2A2 	
2 Ts, 

(4.258) dt 	dt = 	+ ph 

D 3A 3 	D4A4 e 	21-5, 
(4.259)

a't 	dt = 
2f 
 + ph 

D I A, 	D3A 3 	 2 Ts, 	27s, 
(4.260) 	

dt 	 = 2f),  2 u + ph  + —
dt  

D 2A 2  D4A4 	 2T2T 

	

s, 	5, 
(4.261) 	 +2f v + 2f u + 	 

dt 	dt 	 plz 	ph 

where 

(4.262) 

and 

(4.263) 

a Tx.  + (y + t.). );  dt — ii 4-
ot + c)  

D2 	a 	a a 
dt — 	4- (11  + c) Fy + (v  — c)  i' 

D3 	a 	a 	a 
Tt ' 	+ (" — c)-a. + (y  — '' ) y 

D4 	a 	a 	a + (u — c) à--,:  + (y + c)-(53-.)  

u + y + 2c 

A2 u — y + 2c 

A3 =  u +  y  — 2c 

A4 =  // -  y  - 2c 
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In eq. 4.258-4.261, temporarily set f and Ts, to zero. Then, the resulting equations 
are relatively easy to solve graphically. The equation 

D I A I  D2 A2  
(4.264) 	 = 0 dt 	dr 

means if we move along vector V I  (with components u + c and y + c) and measure A I , 
and along vector V2 (with components u + c, y — c) and measure A2, the sum of the 
changes in A I  and A2 measured in this manner do not change. 

When f and Ts, are not zero, in eq. 4.258 multiply and divide the right side by aA,/ ax 
to give 

) 

Ts 

	

D I A I 	D 2A 2 	2(f 4-  Ph 	(aA,\ 

	

dt 	dt = 	aA 1 	âx 
ax 

Define the following operator: 
Ts, 

	

DÇ 	a 	2 (fir 

 +

+ 
 

a 

	

(4.265) c-w 	+ (u + c) ax(y + c) ay 
ax 1 

Then, eq. 4.258 can be written as 

D;A I  D2A2 
(4.266) dt 	dt = " 

Equation 4.266 can be treated exactly as eq. 4.264 except that vector V I  involves aA, lax. 
Thus, eq. 4.258-4.261 become, in addition to eq. 4.266, 

D3 A3  D4A 4  

	

(4.267) 	 
dt 	dt = ° 

D 3A 3  

	

(4.268) 	 dt 	dt = ° 

D2A 2  

	

(4.269) 	 dt 	dt = ° 

where 
Ts,  

a 	2(f + ) a  a (4.270) 	73  + (u — c) 	 aA4 	
ax  + (v + 0 7;  

Tç,  Ts
— \  

, 

D'; 	a 	 ph 	 ph )  
(4.271) w .=- 	+ (u + c) (aA, 	(M1 , 	+ ( I, + c)—a 

(2f y + ) (-2f u + 

ay 
ax 1 	ax ) 

ax ax 
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21-5, 21.s,, 
(2f y + --) (-2f u + ph ) a 	 a 

ph  
+ 	+ (y+ c)—a (4.272) w -=. 	+ (u — c) 

(8,44 	(8,44 	ax 	ay  at  

\ ax i 	 ax )  

A knowledge of u, v, and c at a given time enables determination of A I  to A4 at that 
time. The above equations can then be used to calculate A I  +  A7, A3 + A4, A I  + A3, and 
A, + A4 at a later time. But the situation is not straightforward because of the following 
reason. From the following set of equations 

A I  +  A 2  = K1  

A3 + A4 = 

A I  + A3 = K3 

+ A4 = K4 

one cannot determine  A 1  to A4 because the equations are not linearly independent. Since 
the aim is to determine u, y, and e, one can write from eq. 4.263 

(A 1  + A3 ) + (A, + A4) 

(4.275) 2e = 
4 

Then 

(A 1  + A3 ) 	[(A 1  + A2) — (A3 + A4)] 
A 1 —  2 	

+[ 
4 

(A 2  + A4 ) 	r(A1 + A2) — (A3 + A4)1 
A2 = 2 	

+[ 
4 

(4.276) 
(A 1  +  A3 ) 	[(AI + A2) — (A3 + A4)] 

A3 -  2 	 4 

(A 2  +  A4 ) 	[ (A I  + A2) — (A3 + A4)1 
A4 -  2 	 4 

Once the terms such as A I  + A2, etc., are determined, using graphical addition and 
subtraction one can determine 2c first and then A I  to A4. Freeman and Baer (1957) used 
this method to determine the u and v fields associated with the spread of a mound of water 
placed in a basin of uniform depth. 

THE BATHYSTROPHIC STORM SURGE 

Freeman et al. (1957) introduced the concept of "bathystrophic storm tide" as the 
surge that results from winds blowing parallel to the coastline; they showed that this is a 
very important component of the storm surge. The calculation of the bathystrophic storm 
surge is somewhat simpler than the traditional two-dimensional surge computations. 

(4.273) u = 4 

(A 1  +  A3 ) —  (A2 + A4) 
(4.274) v = 

4 

(A 1  + A 2) — (A3 + A4) 
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Bretschneider (1966b) mentioned that there are at least two well-documented cases of 
bathystrophic storm surge (i.e. winds blowing parallel to the coast causing extreme 
surges): Hurricane Carla during September 9-12, 1961, in the Gulf of Mexico and the 
Ash Wednesday storm on the east coast of the United States during March 5-6, 1962. 
Pararas-Carayannis (1975) used a bathystrophic approach to study storm surges on the east 
coast of the United States due to hurricanes. This will be considered in some detail in 
section 7.2. 

To formuiate the bathystrophic storm surge, Freeman et al. (1957) began with the 
assumption that on an open coastline with regular depth contours there is no sustained 
transport towards the shore across the depth contours. The justification used is that if there 
were such a sustained transport, then much larger land areas than are usually observed 
should be inundated. These authors mathematically justify this assumption in their appen-
dix. To give a numerical example, they stated that a 20-knot (37 km • h.') wind blowing 
toward the shore for a period of 10 h, if uncompensated, would create a surge of 6-ft 
(1.8 m) amplitude which would penetrate 60 mi (96 km) inland. This result follows from 
the simple relation: 

a F, 
 = 

Ts, 
—

at 

— 
P 

where F,„ is the flux normal to the depth contours, t is time, Ts, is the x component of the 
wind stress (i.e. the component perpendicular to the coast), and p is the water density. A 
similar result holds for offshore flow. Freeman et al. (1957) defined the "compensating 
sustained current" as the bathystrophic flow. (This concept is somewhat analogous to 
geostrophic flow in the atmosphere.) 

The second assumption made is that divergence of the velocity field does not bring 
about significant changes in the water level. In justification of this, they mentioned that 
a mound of water placed on a sea surface with a sloping bottom will be dissipated in a 
much shorter time than its potential buildup. Basically, these authors have assumed that 
a small amount of cross-contour transport develops to compensate for the divergence in 
the bathystrophic current and the continuity equation need not be considered. 

A third assumption is that the water level changes in a direction parallel to the shore 
(i.e. the y direction) are insignificant. A fourth and final assumption is that space deriva-
tives of the current speed are negligible compared with the Coriolis term. These four 
assumptions can be mathematically expressed as follows: 

(4.277) IF,1 < 	I 
a F 

(4.278) 	< —
a t ay 

Ts 
(4.279) gh—ay 

au au av av (4.280)— — — — f ax' ay' ax' ay 

Here, 

F„. = • udz 
- h 

Fy  = • vdz 
- h 
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(4.286) 

(4.287) 

where u and y are the current speeds in the x (x is positive towards the shore) and y 
directions, h is the mean low water depth, 1 is the deviation of the water level from the 
mean low water depth, and Ts ,  and Ts, are the wind stress components in the x and y 
directions. 

Vertical integration of the equations of motion and use of eq. 3.426 gives 

„ a F., 	art 	Ts, 	TB,  

(4.281)  a r 	a x 

a Fr 	a1 	Ts, 	TB, 

	

(4.282) 	= —gh—
ay 

— fF, + — — — at 
where TB is the bottom stress. Using eq. 4.277 and 4.278, these reduce to 

	

Ts, 	T13 , 

(4.283) gh— = f F, + — — a x 

a F, 	TS, 

	

(4.284) 	= — — --- a t 
Using eq. 4.277 and using Manning's form, the bottom friction can be written as 
(Linsley et al. 1949) 

TB, 

— = 0  

TB + K — = — r 
P 	h"3  

where K is a bottom friction parameter. 
Hence, the two prediction equations for the two unknowns 	and F.  from 

eq. 4.283-4.285 are 

a Fr  = 	F Ts, 	K 2 v  
at 	P 	h"3  

Ts, 
gh—= f F„ + — a x 	P 

Using eq. 4.286, Fr  can be calculated at a given time step, and then using eq. 4.287, 1 
can be determined by beginning at the deep water wherei is assumed to be zero. Freeman 
et al. (1957) suggested that on a time scale of several hours and over 25-50 mi 
(40-80 km) of open coastline, the bathystrophic storm surge is a good approximation to 
the total storm surge. 

SOLUTIONS FOR LAKES AND BAYS WITH UNIFORM AND VARIABLE DEPTH 

The energy imparted by a moving atmospheric disturbance to a water body depends 
on the degree of resonant coupling that is possible when the speed of movement of the 
atmospheric disturbance is approximately equal to that of the free gravity waves in the 
water body. Chrystal (1908) considered an atmospheric pressure jumpline moving with 
constant speed and intensity over infinite and semi-infinite water bodies, and he also 
looked into the question of resonance. Takegami (1938) studied the influence of initial 
conditions in the case of a pressure jump moving from the open sea towards the coast. 

If the horizontal scale of the atmospheric disturbance is smaller than the horizontal 
scale of the water body, the water body can be considered semi-infinite. On the other hand, 

(4.285) 
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(4.289) 

where 

if the scale of the water body is comparable with or smaller than the scale of the 
atmospheric disturbance, then one must consider the reflection of the gravity waves at the 
lateral boundaries of the water body. In connection with the study of a surge on Lake 
Michigan, Harris (1957a) gave a solution for the case of a finite canal valid for a short 
interval of time. 

Rao (1967) studied the water level oscillations in a lake due to an atmospheric 
disturbance passing over the lake. He ignored the influence of the earth's rotation (his 
study is aimed at Lake Erie, which is a narrow elongated lake) and bottom friction 
(somewhat justified as long as interest focuses on the initial transient motion). 

Following Rao, consider a lake of uniform depth h, uniform width, and uniform 
density p. Take the origin of a Cartesian coordinate system at the undisturbed level of the 
lake surface and z-axis upward, y-axis along the width, and x-axis along the length of the 
lake. The lake has rigid boundaries at x =  0 and x = L. In the one-dimensional case the 
vertically integrated equation of motion and continuity are, after ignoring the nonlinear 
terms and using the hydrostatic relation, 

M _ = — c 2 	R rJt  ax 

= am 
at 	ax 

M f udz 

u being the velocity component in the x direction. The external force R is expressed as 

R 

where is the surface wind stress. In the above equations is the deviation of the water 
level from its equilibrium position and c 2  = gh (c is the speed of free long gravity waves 
in the lake). Ignoring rotation gives a nondispersive system and all the gravity waves 
propagate with the same speed. The boundary conditions are 

(4.290) M 0 at x = 0 and x = L 

Initially, the lake is at rest, i.e. M = 0 and 	= 0 at t =  0. 
Rao defined the setup as the difference in the water levels at x = L and x = 0. 

Equations 4.288 and 4.289 are solved for a prescribed R as a function of x and t. For 
convenience, define the following dimensionless parameters: 

—L x* 

—h 

(4.291) 

Ct 
t *  

C
2TI 

RoL 	'Ti 

R oL 

R  R*  -Ka =  
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FIG. 4.9. Schematic in the (x, t) plane of a 
semi-infinite wind-stress band moving across a 
lake of uniform depth. The dashed—dotted line 
shows the position of the leading edge of the 
stress band. (Rao 1967) 

where Ro  is a scale value of the wind stress. 
Substituting eq. 4.291 in eq. 4.288 and 4.289 and then adding and subtracting 

eq. 4.289 in eq. 4.288 gives (omitting the asterisk for convenience) 

a 	a (4.292) —

a t

(Ad ± To ± —(m 	) = R ax 
Essentially, this states that 

d  (4.293) 	(M -± 	-=- R for dx.  = ± 1 

For a lake of uniform depth, the positive and negative characteristics are straight lines 
given by x = -±t + constant. 

Following Rao (1967), consider the case of a semi-infinite stress band moving with 
a speed V (nondimensionalized by VF/), as shown in Fig. 4.9. For this case: 

R = 0 for t —x 
V 

(4.294) 
R = 1 for t —x 

V 
The top part of Fig. 4.9 shows two successive positions of the stress band and the bottom 
parts show R in the x—t plane. For details on the integration of eq. 4.293 using the method 
of characteristics, see Rao (1967) who considered the two cases V > 1 (atmospheric 
disturbances traveling faster than 1/Fi) and V < 1. 

The case of a finite-stress band can be studied by the superposition (this is permissible 
in the linear case studied here) of a positive stress band and a negative stress band of the 
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same intensity (as the positive stress band), both moving with the same speed and in the 
same direction but with their jumps separated by a finite distance. The formulae for the 
setup in the case of the negative stress band are the same as the formulae for the positive 
stress band, except that the sign of the setup must be reversed and t — T substituted where 
t appears (here, T is the dimensionaless time interval between transits of the front and rear 
of the stress band at a fixed point). Hence, one can write 

R = 0 for t —x and t —x + T V 	V 
(4.295) 

x' R = 1 for — t 
—x T V 	V 

Again, see Rao (1967) for a detailed form of the solutions. The interesting results obtained 
from this study can be summarized as follows. With reference to Fig. 4.10 for a given V, 
the maximum setup for all time and all band widths is achieved for a semi-infinite stress 
band. If V = 1 the maximum is reached for all band widths a> 1 (i.e. for all stress band 
widths greater than the lake length). For V > 1, the maximum is reached for all band 
widths a> V. The most important result is that for all t, all a, and all V, the maximum 
setup is achieved for the case of an instantaneous semi-infinite stress band. In the case of 
the semi-infinite stress band the maximum setup decreases from its dimensionless upper 
limit of 2 at  1/V = 0 to a lower limit of 1 at  1/ V  = 3, after which the response curve 
shows a sawtooth type behavior (see Fig. 4.10) and the setup reaches a value of 1 
asymptotically as 1/V —> co. 

To study the response in the case of finite band widths, one must consider two cases: 
a> 1 and a < 1. For the case a < 1, the maximum setup for all t and all V is achieved 
at V = 1, which shows the importance of resonant coupling. For the case a > 1, the 
maximum setup is achieved for alV = 1 (aIV = 1 means that the time taken by the stress 
band to pass a fixed point in the lake is the same as the time taken by a free gravity wave 
to cross the lake). In the case of a pressure jump (i.e. stress band of zero width) due to 
resonant coupling, a setup of magnitude 1 is produced at V = 1 and the setup is 0 for all 
other V. The setup for different transit times is shown in Fig. 4.11. 

Rao (1967) also solved the response of the fundamental mode (his appendix A) and 
showed for the semi-infinite case that the maximum setup of 1.62 occurs at  1/V = 0 and 
decreases to 0.81 as 1/ V  increases from 0 to 3; after this, the setup shows essentially the 
same features as the total response, but with a smoother variation. 
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Irish and Platzman (1962) performed a statistical study of storm surges on Lake Erie 
and conlcuded that resonant coupling is not important. Rao (1967) explained this apparent 
disagreement between these results and his results by pointing out that statistical evidence 
for resonance requires a classification based on band width. Since Irish and Platzman did 
not sort out their data according to band width, they did not find significant support for 
resonant coupling. 

Platzman (1963) found in a numerical calculation of storm surges on Lake Erie that 
the fundamental mode is quite well developed in some cases and quenched in others. Rao 
(1969) examined this by calculating the residual energy in the fundamental mode (residual 
energy is the energy left after the passage of the atmospheric disturbance). Rao showed 
in his appendix B that there are certain adverse combinations of width and propagation 
speed of the stress band that quench the fundamental mode by extracting a major part of 
the energy supplied to the lake during the passage of the disturbance over the lake. 

Rao (1969) extended his earlier study to the case of a bay (in the case of a bay, only 
one lateral boundary is closed). In the case of the lake the boundary condition at both the 
lateral boundaries is zero volume transport whereas in the case of the bay, at the closed 
end a zero volume transport is invoked and at the open end the water level fluctuation is 
prescribed as zero. 

Next, a lake with variable' depth is considered. Murty (1971) used the method of 
characteristics to study the case of a lake with a depth discontinuity. The formulation and 
the method of solution are similar to that of Rao (1967). For a lake of length L and uniform 
density p, let the left boundary be x =  0, the depth discontinuity at x = L/2, and the right 
boundary at x =  L. The vertically integrated forms of the equations of motion and 
continuity in the areas to the left side of the depth discontinuity (subscript 1) and the right 
side of the discontinuity (subscript 2) are 

31(41,2 	31212 
(4.296) 	= gD1,2 	R at 	ax 

ah1,2 	3A41,2  
(4.297) 	— a t 	ax 

where 

.1112 

1.  

- DI.2 
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FIG. 4.12. Semi-infinite stress band moving over deeper to shallower water and a finite stress band 
Moving over shallower to deeper water. 

Here, M is the volume transport through a vertical section and u is the velocity component 
along the length of the lake; R = Tip, T is the wind stress, and p is water density. The 
boundary conditions are 

M I  = 0 at x = 0 
(4.298) 

M2 = 0 at x =  L 

At the depth discontinuity, continuity of M and h is invoked: 

M1 = M2 

h i =  h2  

Let c 1 , 2  represent the speeds of long gravity waves in regions 1 and 2. Then 

(4 . 300) c21,2 = gD1,2 

Addition and subtraction of eq. 4.296 and 4.297 and using eq. 4.300 gives 

d 
(4.301) —

dt (M1,2  ± c1,2h1,2) = R for —
dx 

=c ± -1,2 dt 

This means the quantity  M 1,2  ± C1,2h1,2 is constant along the characteristics dx dt = 
-±c1 , 2 . Since both regions of the lake have uniform depths individually, the characteristics 
in both regions are straight lines with slopes c l  and c2 . 

The calculations were performed both for semi-infinite and finite stress bands 
traveling over deep to shallow (case I) and shallow to deep (case II) water. The left side 
of Fig. 4.12 shows an atmospheric disturbance of the semi-infinite stress band type 
moving from left to right with a constant speed V for case 1. The right side shows a finite 
stress band for case II. 

Murty (1971) performed the calculations for various combinations of parameters such 
as band width, V, c l , and c2 . The water levels at the left and right boundaries for cases I 
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FIG. 4.13. Variation of water level at left and right boundaries for cases I and II for a finite stress 
band of width 0.4L. 

and II for a finite stress band of width 0.4 L are shown in Fig. 4.13. The important results 
follow. For semi-infinite stress bands the water level at the left side is predominantly 
negative whereas it is positive on the right side and it becomes both positive and negative 
for finite band widths. The results for the case of a depth discontinuity differ from that 
without the discontinuity in that, whereas for the latter case the setup becomes periodic 
some time after the disturbance crosses the lake, this does not happen in the former case. 
Dingle and Young (1965) also used the method of characteristics to simulate storm surges 
in an idealized lake due to a moving squall line. 

4.4 Statistical Techniques 

In this section, statistical techniques for storm surge prediction for real time purposes 
will be considered. Those statistical techniques dealing with probability, theory of ex-
tremes, etc., will be discussed in Chapter 7. Harris (1962) appears to be among the first 
who suggested the relevance of statistical methods for storm surge prediction. He ascribed 
the superiority of statistical methods over dynamical methods to the nonrequirement in the 
former case of interpolation of input data in space and time, which is needed in the latter 
case. He also showed that one can derive a regression equation that can contain the same 
information as a numerical solution of the linearized storm surge equations. 

Welander (1956, 1957) introduced the so-called "admittance method" (in his 1961 
paper, he referred to it as the "influence method") for storm surge calculations. At each 
location where a storm surge prediction is needed, one must calculate an influence or 
admittance function. Either theoretical considerations or analysis of historical data can be 
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used to detemine this function. Hamblin (1978) also made use of the influence method in 
a calculation of storm surges on Lake St. Clair. 

If the initial conditions lose their influence after some time interval , which is short 
compared with the time interval of the development of the surge, the solution of the 
linearized storm surge equations can be written as 

(4.302) 'n(xo, Yo, t) = E a,,,, k (xo , yo )F,, k (t — iAt) 

where 11 is the storm surge amplitude at location (xo , yo ) at time t, A t is the time step, i 
is the number of time steps between the time of observation and time t, j is an index 
referring to the observation station, k is an index that denotes the nature of the observation, 
Fi, k (t — izIt) is a meteorological factor of type k from station j at time t — i3a, and 
ai,i,k(xo, yo) are coefficients that depend on x0 , yo , j, j, k, and Note that eq. 4.302 
contains all the information about ri inherent in the linear storm surge equations as well 
as the available meteorological data. As mentioned above, the values of a can be deter-
mined from theoretical considerations and the assumptions required for numerical solu-
tions of the equations, or by evaluation of existing data. 

In deriving statistically the regression equations, one requirement is that the obser-
vation stations be fixed and the same time lag pattern be used. However, these stations 
need not be equally spaced, nor must they be real stations (for example, they could be grid 
points on a chart). 

Wilson (1960) studied storm surges in New York Bay resulting from two hurricanes 
and two extratropical cyclones and, using multivariate analysis, developed a model with 
nine regression coefficients. Four constants must be subjectively determined to make the 
regression analysis possible. Harris (1961) made some improvements to Wilson's model. 

STORM SURGE FORECASTING ON LAKE ERIE 

Significant storm surges occur more often at Buffalo (at the eastern end of Lake Erie) 
than at any other location in the United States (Harris and Angelo 1963), probably because 
Buffalo is situated on the shallowest of the Great Lakes and in the path of traveling 
cyclones, and the local topography is conducive to significant storm surge generation. 
Irish and Platzman (1962) originally introduced the term "setup" to define the difference 
in the water level between Buffalo and Toledo (located at the western end of Lake Erie). 
This concept is supported by the fact that positive surges at Buffalo are almost always 
accompanied by negative surges at Toledo. 

Harris and Angelo (1963) used hourly wind and pressure observations from six 
weather stations around Lake Erie, namely Toledo, Sandusky, Cleveland, Erie, Buffalo, 
and Clear Creek, and hourly lake level observations at two stations, namely Toledo and 
Buffalo; to derive the coefficients in eq. 4.302 they used linear as well as quadratic wind 
stress laws but the differences were insignificant. 

Richardson and Pore (1969) discussed two methods for predicting surges at Buffalo 
and Toledo. The first method is for manual use at a weather forecast office and the second 
method is for use at a center where numerical weather forecasts are available in real time 
as input. However, both methods were developed using regression techniques and cali-
brated with dependent data and tested with independent data. The major axis of Lake Erie 
is along west— southwest — east—northeast, a direction in which significant winds can 
develop and be sustained. Irish and Platzman (1962) showed that the wind stress is mainly 
responsible for creating surges on Lake Erie and atmospheric pressure gradients are of 
secondary importance. (Platzman 1967 developed a simplified one-dimensional model for 
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operational storm surge forecasting.) 
Richardson and Pore (1969) used the same input data as Harris and Angelo (1963), 

i.e. 19 dependent storms and 11 independent storms during the period 1940-59. 
However, their studies differed: whereas Harris and Angelo represented the pressure and 
wind fields over the lake by observed winds at several stations surrounding the lake, 
Richardson and Pore used a grid of sea level pressures. This is an improvement because 
this scheme is not affected (at least directly) by closing off some weather stations. 
Richardson and Pore (1972) extended their earlier study of 1969 using more data. 

Richardson (1972) discussed the evaluation of Lake Erie storm surge forecasts for the 
period 1971-72 using regression equations. Pore et al. (1975), based on data from 1940 
to 1972, deduced that the observed water level at Buffalo exceeded the monthly mean level 
by at least 1.4 m on an average of once a year and the water level at Toledo was depressed 
by the same amount with the same frequency. Schwab (1978) developed an operational 
forecasting model using the impulse response method. This model has the following 
features: two dimensionality of the lake and the wind field; resolves the wind and water 
level changes on an hourly basis (so that the peak surge may not be missed); the surge can 
be predicted at any point on the shoreline of the lake. In this model, forecast winds (e.g. 
Feit and Barrientos 1974) were used instead of sea level pressure. 

Schwab began with a linear dynamical model and determined the response functions 
at several water level stations for three different types of forcing, namely lake average 
forcing, interpolated two-dimensional forcing, and forcing at Great Lakes wind forecast 
points. For a total of 15 episodes studied, inclusion of the atmospheric stability in 
determining the drag coefficient improved the prediction. 

Richardson and Schwab (1979) compared storm surge forecasts for Lake Erie made 
from the statistical model of Richardson and Pore (1969) and the dynamical model of 
Schwab (1978) and concluded that the dynamical method yields better predictions at 
Buffalo than the statistical method. However, at Toledo the improvement using the 
dynamical method is slight. 

For the statistical model, water level deviations from the monthly mean at Buffalo and 
Toledo were correlated with analyzed 6-h sea level pressure with the National 
Meteorological Center's (NMC) (Shuman and Hovermale 1968) primitive equation model 
(Fig. 4.14). Using a screening correlation program (Miller 1958) the best predictors were 
found for the storm surge. The regression equations have the form 

11 

(4.303) 14, =  Ao  + 	AP 
1= 1  

where hk  is the storm surge at time k, A o  is a constant, A, is the regression coefficient, P., 
is the sea level pressure at a NMC grid point with a lag time of 0, 1, 2, 3, 4, or 5h, and 
n is the number of predictors. In 1973 the regression equations were updated using 
atmospheric pressure as well as storm surge data for the period 1940-71. Six equations 
were developed for Buffalo whereas for Toledo, only three equations were derived 
(because water level data for Toledo were available only during even hours); observed 
pressures at NMC grid points 2, 3, 7, 8, 12, and 13 (Fig. 4.14) were used as predictors 
with a lag time of 0, 1, 2, 3, 4, or 5h.  

In the dynamical model (Schwab 1978), impulse response functions were used to 
calculate the storm surge height. The storm surge is represented as the weighted sum of 
forcing terms during some period before the specified time, i.e. 

111 	11 

(4.304) hk  = E E Gii 
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FIG. 4.14. Location of National Meteorological Center (NMC) primitive equation model grid points sur-
rounding the Great Lakes and the Great Lakes wind forecast points. (Feit and Barrientos 1974) 

where hk  is the storm surge at time k,  ö 	the water level response at time j due to an 
impulse from forcing at station i, 	is the forcing function at station i and time k—j, 
m is the number of forcing stations, and n is the length of the response function. The 
forcing function is calculated as 

(4.305) 7r' iri  --- CI 

where -1-7› 1, is the wind vector at station i and time j and C is a dimensionless constant. 
The response functions  G .  were calculated by means of a linear finite-difference 

numerical model of Lake Erie (Schwab 1978). To include hourly changes in the forcing 
function, the response functions are recorded as hourly values. The observed and fore-
casted storm surges at Buffalo using the dynamical and statistical methods are compared 
in Fig. 4.15. It can be seen that the dynamical method provided better prediction. Similar 
results for Toledo are shown in Fig. 4.16. In this case, the dynamical method is only 
slightly superior. In Fig. 4.17, comparison is made between observed storm surge and 
predicted storm surge using the dynamic method only for Buffalo and Toledo. As can be 
seen, the perdictions are quite reasonable. 

STORM SURGE PREDICTION IN OTHER GREAT LAKES 

Here, storm surge prediction in the other Great Lakes and connecting waters will be 
briefly considered. On Lake Ontario, one area of storm surge generation is Point Petre 
(Bolduc 1974). Although Point Petre is not located at the end of Lake Ontario, the storm 
surge here is greater than at any other location on this lake. For example, on January 25, 
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FIG. 4.15. Comparison of observed and computed peak storm surges at Buffalo, NY.  •, dynamical method; 
,,, statistical method. (Richardson and Schwab 1979) 

1972, the surge at Point Petre was 1 m whereas at Burlington (at the western end of the 
lake) the surge was only 27 cm and at Kingston (at the eastern end of the lake) the surge 
was 46 cm. Bolduc (1974) developed prediction formulae for storm surges at Point Petre, 
making use of the water level and wind measurements. 

Hamblin and Budgell (1973) developed prediction equations for storm surges on Lake 
St. Clair. One important feature in this work is the inclusion of atmospheric thermal 
stability. 

Venkatesh (1974) developed statistical regression models for storm surge prediction 
at several stations in Lakes Ontario, Erie, Huron (including Georgian Bay), and St. Clair. 
He mentioned that storm surges are not important in Lake Superior. Using data for the 
period 1961-73, regression relations in terms of sea level pressures and air—water 
temperature differences with lag times of 0-6 h have been developed for Lakes Ontario, 
Erie, Huron, and Georgian Bay, whereas for Lake St. Clair, the sea level pressures were 
replaced by local winds. 

The grid points shown in Fig. 4.18 (also see Table 4.2) are the same as in the 
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Fin. 4.16. Comparison of observed and computed peak storm surges at Toledo, OH. •, dynamical method; 
A, statistical method. (Richardson and Schwab 1979) 

Canadian Meteorological Center's numerical weather forecast models so that the sea level 
pressures forecast can be directly used. For Lake Erie grid points 1, 2, 3, 4, 6, and 7 are 
used, for Lakes Huron and Georgian Bay grid points 3, 4, 6, 7, 9, and 10 are used, and 
for Lake Ontario grid points 4, 5, 7, 8, 10, and 11 are used. The input data were divided 
into two parts, namely dependent and independent storms (Table 4.3). The data from the 
dependent storms have been used in developing the regression relations and the data from 
the independent storms are used to verify the models. The portion of the variance in the 
storm surges accounted for by the statistical method is between 55 and 75%. The model 
compares best with observed data for Lake St. Clair. The standard error of the estimate 
for all the lakes except Erie is between 0.2 and 0.3 ft (0.06-0.09 m) whereas for Lake 
Erie it is about 0.6 ft (0.18 m). 

The following equation gives the storm surge S at Belle River on Lake St. Clair: 
(4.306) S = 0.0189 + 0.00075110 — 0.0000446(TA  — T1 )0 17 2  

+ 0.0000149 (TA  — 
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TABLE 4.2. Stations for determining sea level pressure at each of the grid points of Fig. 4.18 (A, airport). 
(Venkatesh 1974) 

Grid 	 Station 	 Station 
point 	 name 	 code 

Grid 	Station 	 Station 
point 	name 	 code 

1 	Lexington 	 LEX 
Cincinnati 	 CVG 
Huntington 	 HTS 

2 	Roanoke 	 ROA 
Beckley 	 BKW 
Elkins 	 EKN 

3 	Fort Wayne 	 FWA 
Toledo 	 TOL 
Columbus 	 CMH 

4 	Youngstown 	YNG 
Erie 	 ER1 
Bradford 	 BFD 

5 	Wilkes Barre 	AVP 

6 	Houghton Lake 	HTL 
Oscada 	 OSC 
Saulte Ste. Marie 	SSM 

7 	Wiarton (A) 	 YVV 
Mount Forest 	WMN 
Muskoka (A) 	YQA 

8 	Trenton 	 YTR 
Ottawa Int. (A) 	YOW 
Massena 	 MSS 

9 	White River 	YWR 
Sault Ste. Marie 	YAM 
Timmins 	 YTS 

10 	Ear1ton (A) 	 YXR 

11 	Val d'Or (A) 	YVO 
Roberval (A) 	YR.I 
Ottawa Int. (A) 	YOW 
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FIG. 4.18. Locations of grid points (+) and observing stations (•) for the Great Lakes area. (Venkatesh 1974) 

TABLE 4.3. Number of dependent and independent storms by lo-
cation for stations on Lake St. Clair, Lake Ontario, Georgian Bay, 
and Lake Huron. (Venkatesh 1974) 

No. of 	 No. of 
Location 	dependent storms 	independent storms 

Belle River 	 24 	 6 
Burlington 	 13 	 8 
Collingwood 	 21 	 6 
Point Edward 	 29 	 5 
Port Colborne 	 26 	 9 
Kingsville 	 14 	 9 

243 



where S is the surge in feet from mean water level, V' is the component of effective wind 
speed in the north—south direction, and (To  — Tw)0 and (Ta  — Tw)-1 are the air—water 
temperature differences at 0- and 1-h lag times, respectively. As an example, the storm 
surge equations at Collingwood on Georgian Bay are listed below. Prediction equations 
for other locations on the Great Lakes are given in Venkatesh (1974): 

So  = 10.903050 +  0.01097P(4 ,_ 6)  — 0.03517P(10, _ 6)  — 0.02183P(3 , 0)  

+ 0.04691P(6, 0)  — 0.01164P(10, o)  — 0.004680(7'„ — Tw)o 

S I  = 9.890630 +  0.01580P14,_ 61  — 0.02339P19 , _ 6)  — 0.01110P(10 , _ 6)  

—0.003700( TA — T1 ) -6 —  0.02271P(3 , 0) 	0.06267P(6 , o)  — O. 02559P(7,0) 

	

0.0548P(9,0) 	0.02093P(~,o) — 0.001740 (TA  — T 1 )0 

S2 =  8.069170 — 0.01213P(5 , _ 6)  + 0.03338P(7 , _ 6)  — 0.01754P(9 , 

—0.01323P(10 ,_6)  — 0.01314P (3 , 0)  + 0.05873P(6 , 0)  — 0.03047P(7,0) 

+ 0.02644P(9 , 0) 	0.04000P(10,0) — 0.004320( TA — T 1 )0 

S3 = 8.389940 + 0.02566P(7.  _ 6)  —  0.02229P(9,_ 6)  — 0.00598P(10 , _ 6)  

+ 0.0117P(3 , 0)  + 0.05529P(6 , 0)  — 0.03541P17 , 01  + 0.02561P(9, 0)  

— 0 .03940P (10, 0)  — 0.005040 ( TA — T 1 )0 

S4 = 9.677820 — 0.01089P (3 ,_6)  +  0.03688P(7,_ 5)  — 0.01901P(10, -6) 

+ O. 06540 P(6 , o)  — 0 . 05273P(7 , 0)  — 0 . 02922 P(10 , 0)  — 0.003790 ( TA — TIV)0 

55 = 9.393110 —  0.02087P(3 ,_6)  +  0.04418P(7,_6)  — 0.02025P(9 , -6) 
—0.0128P(10 , _6)  + 0.01087P(3 , 0)  + 0.05780P(6 , 0)  — 0.0566P(7 , ~)  

+ 0.01208/3(9 , o)  — 0.02615P(10 , 0)  — 0.004380(TA  — Tw)o 

where S = surge (feet), with the subscript representing the number of hours after the time 
of the pressure forecast, P(N,T) = pressure (millibars) at grid point number N (see Fig. 4.18) 
and lag time T (hours), and (TA  — T w ) = air—water temperature difference at the water 
level station at lag time T (hours). 

TIME SERIES MODELING 

The time series modeling approach of Box and Jenkins (1970) has also been used in 
storm surge studies (Budgell and El-Shaarawi 1979) for Lake St. Clair. The input data are 
hourly water level measurements at Belle River and hourly wind stress values estimated 
from meteorological observations at Windsor Airport. The calculation of wind stress 
included the influence of atmospheric stability, as suggested by Hamblin (1978). The drag 
coefficient was made to depend on the atmospheric stability, as given by McClure (1970), 
and on the wind speed, as suggested by Smith and Banke (1975). The following discussion 
is based on Budgell and El-Shaarawi (1979). 

One can regard the storm surge as the output of a dynamic system under the influence 
of a set of physical parameters; here, these parameters are the x and y components of the 
wind stress. Let the input data, which is assumed to consist of N observations taken at 
equal time intervals, be written as 

(111, T,,, Tr,), 	(112 , Tr2  T3 2 ) • • • (it 	Ty,), 	(TIN, TxN , TYN )  

(4.307) 
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where  'ii, 	and Ty, are, respectively, the observed water level and the x and y com- 
ponents of the wind stress at time t(t = 1, 2, . 	N). 

The model of Box and Jenkins (1970) consists of two major parts. In the first part 
is the discrete transfer function model: 

(4.308) Ti 	̂n ir — 	— • • • — 	= 030Tx,t-b, 	 + • • • + 04Tx,r-b i -s 

XOTy,t-b2 	XITy,i-b2-1 

for t = 1, 2, . ., N. Here, b i  b2 , 	= 1, 2, . , r), 	= 1, 2, . 	s), and X k (k = 
1, 2, . . ., V) are unknown constants that must be determined. 

Let B denote a backward shift operator such that 

B 111 1, =- 

Then, eq. 4.308 becomes 

(4.309) 8 (B )T1, = co(B)Bb,T,, 	x(B)Bb,T), 

where 

8(B) = 1 — 8 1 B — 82B 2  — . — 8,Br 

(4.310) o(B) = coo  + co 1 /3 + . 	+ coses 

X(b) = X 0  + X I B + 	+ XvB v  

Equation 4.309 can be rearranged to read 

(4.311) 	= 8 -1 (B)w(B)B b 'Tri 	8-1 (B)X(B)B b2 Ty (t) 

The second part of the present model deals with a correction for the noise that affects 
the output. Let N, denote the resulting error in the transfer function. The joint transfer 
function and noise model is 

(4.312) 	= 8-I (B)co(B)B b iTx , + 8-1 (B)X(B)B b2 T,,, + N, 

The idea is to fit the observed data to eq. 4.312. 
Budgell and El-Shaarawi (1979) did this following a technique from Haugh and Box 

(1977). They outlined the following steps: (1) fit an univariate Box and Jenkins model to 
each of the three series ri„ Tx„ Ty,; (2) estimate the residual for each univariate model; (3) 
fit a Box and Jenkins transfer function to the residuals, taking the residual of the q,  series 
as the dependent variable and the residuals of the;, and Ty, series as the independent 
variables; (4) substitute the expressions for the TI„ T„, and Ty, residuals obtained in step 
1 into the transfer function obtained in step 3 to obtain a transfer function in terms of the 
variables ri„ Tx„ and Ty,; (5) check the adequacy of the fit and rectify the fit models if 
necessary. 

The details of the univariate model and the transfer function model are provided by 
Budgell and El-Shaarawi (1979), who studied the storm surge episode of July 10-14, 
1964, on Lake St. Clair using a time series of 91 hourly observations for Ti ,le TX!, and Tyt  . 

It was found that the autocorrelation function for these does not attenuate quickly, which 
suggests nonstationarity. The original time series is then modified by taking the first 
differences. The resulting autocorrelation and partial autocorrelation functions then are 
small. This means, taking the first differences generated, a more or less stationary time 
series. 

The observed storm surge and the surge computed from this model for the July 1964 
episode are compared in Fig. 4.19. The model was also tested on another 18 storm surge 
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13 14 12 
July 1964 

FIG. 4.19. One-step-ahead predictions (broken line) and observed (solid line) water levels (for dependent 
storm) for Lake St. Clair in North America. (Budge 11 and El-Shaarawi 1978) 

episodes. The model reproduced about 72% of the total variation in the water level, and 
the residual variance was 16.6 crd. The observed and computed surge for this episode and 
the largest storm surge, in this water body, are compared in Fig. 4.20. 

Tronson and Noye (1973) developed statistically a regression model, a numerical 
model, and also an autoregressive moving average (ARMA) model for storm surges at 
Port Adelaide on the eastern shore of St. Vincent's Gulf in the southern part of Australia. 
The general form of the ARMA model is 

(4.313) S, = E 	+ E ctiP1+1 + E PinW t+ + E XnEt+n 

where S,, P1, W„ and E, are the water level residual, atmospheric pressure, northwest wind 
stress, and northeast wind stress, respectively, at time t and the coefficients )1, a, [3, and 
X are to be determined. The summations extend over sets of K, L, M, and N integers, 
which depend on the variables considered. 

Although, regression analysis gives large variances, since it is simple for practical 
purposes, it has been used to obtain the following fomula for the storm surge: 

(4.314) S, = 1.81P,_5  +  3.70W,_ 2  + 0.91E1_ 1  

where L = M = N = 1 and/ = —5,  in  = —2, and n = 1 in eq. 4.313. Note that t = —5 
means a lag of 5 h. Equation 4.314 accounts for only 70% of the variance. Using 
autoregression gives a better relation: 

(4.315) S, = 0.83S,_, + 0.36P„ 5  +  0.77W, 2  

where k = —1, 1 = —5,  in  = —2, and n = —1. 

11 
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FIG. 4.20. One-step-ahead predictions (broken line) and observed (solid line) water levels (for independent 
storm) for Lake St. Clair in North America. (Budgell and El-Shaarawi 1978) 

4.5 Electronic Analog Models 

There are two approaches for storm surge calculation and prediction that have great 
potential but have not been made use of fully. These are hydraulic models and electronic 
analog models. Electronic analog models will be dealt with in this section (hydraulic 
models will be discussed in the next section). Significant work on these models has been 
done by Ishiguro (1963, 1968, 1972, 1976a, 1976b). The following discussion is based 
on the excellent review paper by Ishiguro (1972). Some other important works on this 
topic are those of Smith (1962), Blackford (1966), and Makarov and Menzin (1970). 

Here, no distinction is made between electric and electronic analogs but they are 
referred to under the general title "electronic analog models". Ishiguro (1972) defined an 
electronic analog as an electronic system that is in some respects analogous to another 
system, so that the phenomena in the second system may be simulated. Electronic analogs 
can be classified from different points of view: principles of analogy, mode of operation 
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(i.e. steady or transient), linearity or nonlinearity, dimensions (one, two, or three), type 
of apparatus used, and type of application. The factor that causes the major differences 
among various models is whether it simulates a steady state or transient motion. 

Ishiguro (1972a, 1972b) pointed to the analogy between an electric circuit and a 
hydrodynamic system as follows: (1) an external force creates water currents in the 
hydrodynamic system whereas an electromotive force generates electric currents in an 
electric network; (2) an electric current through an electric impedance produces a voltage 
across it, whereas water flow over a dynamic impedance produces a water level difference 
across the impedance; (3) in the hydrodynamic system, there is continuity of water currents 
and in the electrical system there is continuity of electric currents in the network; (4) time 
is relevant in both systems; however, a scale factor is needed to relate both time units. 

Systems where there is a direct analogy in the above manner are called direct analogs. 
In direct analogs it is not necessary to express a phenomenon mathematically. However, 
in indirect analogs such a mathematical expression is necessary. A hydrodynamic phenom-
enon first must be expressed mathematically in the indirect analog and then solved using 
an electric analog computer. Discussion here will be confined to direct analogs. 

DIRECT ANALOGS 

According to Ishiguro (1972a), one-, two-, and three-dimensional hydrodynamic 
motions can be simulated electronically because the dynamics in both systems can be 
expressed through a Laplacian equation. In the electronic analog, one can either use a 
discrete network or a distributed network. Whereas the former type is better in principle, 
the latter type is more practical. In the discrete type, the space increments must be 
sufficiently small so that the scale of the motion to be simulated can be properly rep-
resented. This problem is akin to the grid resolution problem in numerical finite-difference 
models. 

To express the quantitative relationships between the variables in the hydrodynamic 
system and in the electronic system, the following scale factors were chosen by Ishiguro 
(1972): 

(4.316) t = K i t, 

(4.317) (I), = Ke e 

(4.318) (D I  = K,i 

In the hydrodynamic system, t is time and (De  and (I) ;  are two dependent variables (e.g. 
water level and transport). In the electronic system, te  is time and land i are two variables 
(e.g. voltage and current). If It is taken as the water level displacement, and (Di  is taken 
as the volume transport, W, of water, then 

(4.319) 	= Ke e 

(4.320) W = K,i 

Scale factors for other variables can be derived from combinations of these three param-
eters K„ Ke , and K.  The reason this system was chosen is its simplicity, since voltage and 
current can be measured easily. 

ONE-D1MENSIONAL TIME-DEPENDENT ANALOGS FOR LONG WAVES 

Ishiguro (1972a) stated that, in principle, there is no difference between one- and 
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(4.321) 

(4.322) 

two-dimensional analogs, except that one of the horizontal components is treated as zero 
in the one-dimensional system. Ignoring the Coriolis force, but including the nonlinear 
terms, the equation of motion in the x direction and the continuity equation can be written 
as 

1 au +1 u—au 	Kclulu  
ax —  g—  at g ax g(h + 

n [ub(h + )] 
b 

where A is the area of cross section when the water level is at its mean position, b is the 
width, is the water level deviation, u is the depth-averaged velocity, and K.  is the bottom 
friction coefficient and is written as 

(4.323) K, = gC,72  

where  C.  is a Chézy coefficient and 

A (4.324) h = —b 
The volume transport Q is 

(4.325) Q = h' bu 

where 

(4.326) h' = h + 

Equations 4.321 and 4.322 can be written as 

(4.327) — -a— 	
1 aQ 	Q  a ( 	IQIQ 

 ax—  gh' b at ' gh' b ax h' b 1  C 2c h' 3 b 2  

1 aQ 
(4.328) —— 

The finite-difference forms of these two equations are 

Qo  
(4.329) — 	1 3  ( Q° 	 (hi) bo àQ 	Qoboàh' — Qo ho iàb) 

Ax = g 	\Kbo i 	g(hi) 120 ) 3Ax 

+  I Q0 1 Q0  

 c e2 N3 b 2, 
and 

no  1LQ 
(4.330) — —= — — at 	b àx 

Subscript 0 denotes that the variable is at the center of a section of length A.x. 
An analog representation of eq. 4.329 and 4.330 is shown schematically in 

Fig. 4.21a. The system consists of two voltage generators G I  and G2, an element G3, which 
differentiates i or integrates e, a voltage sampling circuit V,, and a current sampling circuit 
C.  Each of the voltage generators generates a voltage of ..f,(e o , io ). With reference to the 
notation of Fig. 4.21a: 

(4.331) —à.e = fe (e0 , io ) 
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FIG. 4.21. (a) Principle of one-dimensional nonsteady 
nonlinear analogue; (b) example of one-dimensional non-
steady linear LCR analogue. (Ishiguro I972a) 

a eo  
(4.332) — 	= 

where 
i2  

(4.333) io  = 	and ài 2 	 2 

where IC, is a coefficient. 
Figure 4.21b represents the network in the absence of nonlinear terms. In this case, 

the components are all passive only. Then eq. 4.331 becomes 

a io  
(4.334) —  Le = L(Tt ) + Rio  

From eq. 4.316, 4.319, and 4.320: 

Px 1 
(4.335) L = 

Ke  
(4.337) C = —  Pxbo  

where the linear bottom friction coefficient is represented by rb . 
Next, the inclusion of the nonlinear terms will be considered. First, consider the 

nonlinear bottom friction term, which is the last term on the right side of eq. 4.327. 
Equating this term alone to the term on the left side of this equation gives 

4 2 (4.338) IQIQ = --C,W3b2 

i2 

KJ< bo gh()  
Px 	 

(4.336) R = bo g h,;2  
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If the analog is so constructed that 

Q 

(4.339) 	e4  

h' — eh  
then the electric resistance element should have a characteristic 

(4.340) i 2  = —K Fee 13,b 2  

where KF is a coefficient. The following five types of electronic elements have been 
developed to include the nonlinear bottom friction: two-diode circuit, two-triode circuit, 
thermocouple circuit, single-transistor circuit, and two-transistor circuit. 

Time-dependent one-dimensional analogs have been constructed for the following 
water bodies: tidal river Lek in Holland (van Veen 1947a, 1947b, 1947c; northern part of 
the Dutch Delta (Schônfeld and Verhagen 1959; Schônfeld and Stroband 1961), California 
delta tidal system (Glover et al. 1953; Harder and Nelson 1966), proposed sea level 
Panama Canal (Harder and Masch 1961), tidal river Hooghly (Bandopadhyay and Maz-
umdar 1969a, 1969b, 1970), and Nagasaki Bay (Ishiguro 1950; Ishiguro and Fujiki 1954, 
1955). This list is not meant to be exhaustive and there must be several other models 
available. Observed storm surges in Nagasaki Bay are compared with those determined 
from an electronic analog model in Fig. 4.22. 

TWO-DIMENSIONAL TIME-DEPENDENT ANALOGS FOR LONG WAVES 

As pointed out earlier, in principle, there is no difference between one- and two-
dimensional analogs, except that in the latter case, provision must be made to include the 
Coriolis force. The finite-difference forms of the linearized version of the relevant equa-
tions are (here the x and y derivatives are in the difference form, except for the term, 
and the t derivative is in the continuous form): 

A n 	1 (Al 	
gh 

awx nw,  3aTb,  3aTa,  AX ap àx 

	

(4.341) — L.i.X — = -- - 	 + 	 + — — + —X 

	

ax gh ày at 	pgh 	pgh 	pg ax 	g 

u 
A n 	1 (zilalv, . nw,  AyTb,  An', Ay ap 	ày 

	

(4.342) — y — = -- —+ 	+ +--  + —Y = 0 

	

ay gh àx at 	gh 	pgh 	pgh 	pg ay 	g 

n 	1 aw +  , 	1 aw, --- — — — — at ày ax 	ix  ay 

(4.344) Wx  = f
0 f- 

udzdy 
-h 2 

and 

Ax 
0 

(4.345) Wr  f 	2  vdzdy 
-h 2 

and 12= 2u) sin 0 is the Coriolis parameter, 8 being the latitude. 
In the above equations,  T,, and T„, are the x and y components of the wind stress, Tb,  

and Tb, are the components of the bottom stress, P is the atmospheric pressure, X and Y 

(4.343) 

where 
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FIG. 4.22. Storm surge of (a) March 19, 1952, (b) March 25, 1951, 
(c) December 26, 1949, and (d) March 26, 1951. Top: simulated 
disturbance at the entrance to Nagasaki Bay; middle: simulated surge at 
the head of the bay; bottom: observed surge at the head of the bay. 
(Ishiguro  1972a) 

are external forces, p is the density of water, is the deviation of the water level from its 
equilibrium position, and u and y are the currents in the x and y directions, respectively. 
The quantities W, and W. are the components of the volume transport. 

The electric analog circuit consists of four horizontal arms and one vertical arm 
connecting the center to earth. Each one of these four arms is made up of a current-
differentiating (or voltage-integrating) element, a resistive element, and two voltage 
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generators, one for representing the Coriolis force and the other for all the external forces. 
There is a current-integrating (voltage-differentiating) element, a capacitor can be used as 
a current-integrating element, and a linear resistor serves as a resistive element. 

The technique of introducing Coriolis force in the analog was developed by Ishiguro 
(1956, 1962). Two-dimensional time-dependent models have been developed for rectan-
gular basins and V-shaped bays by Ishiguro (1959), and the latter is applied to Lough 
Neaugh in Northern Ireland. Scholer (1960) developed a model for Port Kembla Harbor 
in Australia. Makarov (1963) developed models to represent the semidiurnal tides in the 
North Sea and White Sea. Makarov and Menzin (1965) studied a channel connected to a 
rectangular bay. 

Joy (1965, 1966) developed a model for the Chesapeake Bay. Joy (1966) constructed 
a model for Cabrillo Marina in Los Angeles. Makarov and Menzin (1967) studied the 
normal modes of a rectangular basin, as well as the North Sea. The northern boundary of 
the North Sea was kept open in the model. The agreement between observed periods and 
those determined from the model was within 2.5%. 

Ishiguro (1976a, 1976b) developed several models for the North Sea to study tides 
and storm surges. Some of his results will be discussed in section 7.3. Prandle (1980) 
made use of the analogy to AC circuit theory in modeling the influence of tidal barriers 
on the tides in the North Sea, and he placed particular emphasis on the open boundary 
problem. 

4.6 Instrumentation, Laboratory Experiments, and Hydraulic Models 

In the laboratory modeling of storm surges, similar to the laboratory modeling of any 
other physical phenomenon, one must consider the question of similitude. This will be 
done following Nakamura et al. (1964). It will be useful for the present discussion to 
rewrite the storm surge equations in a slightly different form: 

au 	au 	 a 
(4.346) 7  + 	au 	 P g—ax (—pg + Ti) 

1 Tx 

ay 	ay 	ay ( 1± 	
1 a Ty 

(4.347) sin  ay pg 	p az 
h 

(4.348)  

where u and v are the velocity components in the x and y directions, (1). is the latitude, n 
is the angular velocity of the earth's rotation, g is gravity, P is pressure, p is the density 
of water, lq is the deviation of the water surface from its equilibrium position, h is the water 
depth, and Tx  and Ty  are the components of the shear stress. 

Let u', y', and w' be the components of the fluctuation velocity and let ex  and ey  be 
the coefficients of eddy viscosity in the x and y directions. Then 

(4.349) 

Define 

8u  
Tx  =  —pu 'w' = E — 

x  a Z 

a 
Ty = —pv'w' 
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(4.350) 

h ( 	 2 u 	d ,, 
CX. x  

U) h 

dz „ 

OEY - J
0 
	h 

f h u y dz Rx "== Py = Jo 	—h  

where U and V are the vertically averaged values of u and v, respectively. 
Using eq. 4.349 and 4.350 in eq. 4.346-4.348 and using subscript r to denote the 

ratio between nature and model, it can be shown that the following parameters must be 
equal to unity: 

(4.351) ax,.= 	= (3,, = f3„ = (251— sin (P) ,  (—) — 	 
V' 	 V12 	( p '')r = 1  

where L' denotes the scale of the horizontal dimension, V' the scale of the horizontal 
velocity, D' the scale of the vertical dimension, and T '  the scale of the stress. It can be 
shown (Nakamura et al. 1964) that 

(4.352) (11,, ce„, 	13„) — 0(1) 

Since gravity is the same both in nature and the model, the condition on gravity requires 
that 

(4.353) ( 1-= 	1 or 	— 
17 12  

Since V 1„ = L',./T 1r , from eq. 4.353, the scale ratio for the time factor is 
L', 

(4.354) T ir  = 
V D'r  

From eq. 4.351 and 4.353, for the stress term: 

(4.355) 
, 	prD 1, 

T r = 

From eq. 4.349 and 4.355 the scale ratio for the eddy viscosity is 

p,./),. 512  

	

(4.356)er, — 	 
L', 

In terms of a roughness coefficient, n',  eq. 4.355 becomes 

T' 1/2 
 

(4.357) 	— 	 
P r  I/2D /. 312 

The Coriolis term in eq. 4.351 requires that 

	

(2511'  sin (0 	1  

	

\ V' 	r 

If the latitude, 4), is chosen such that 25), sin cl) — 1, then this condition simply becomes 
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(4.358) — = 1 

Note that conditions 4.353 and 4.358 are mutually incompatible, and the conclusion is that 
the condition on the Coriolis term is difficult to satisfy. 

However, Nakamura et al. (1964) satisfied the condition on the Coriolis force in an 
approximate manner by requiring that 

	

D 11 /2 	s in  4).) 
4 sin 

	

(4.359) S2„, = (— 	 1 	EI)„ sin (I) 

where subscripts m and r denote model and nature, respectively. Nakamura et al. (1964) 
performed laboratory experiments on storm surges in Ise Bay, Japan. In these experi-
ments, the following scale ratios were used for the horizontal and vertical dimensions: 

1  L r  ' = 1000 and D' = 65 

From the above relationships, the scale ratios for the other parameters will be 

Time  =  T  = 1/124 
Wind stress = 	= 1/435 

Eddy viscosity = E:. = 1/34.1 
Bottom roughness  = 14 = 1.91/1 
Coriolis force = n,„ = 5.06 x 10-3  

Horizontal velocity = Vir  = 1/8.06 

In the literature, one can find references to several hydraulic models for studying 
tides. Early examples of tidal models are for the Sagami Bay by Okada and Miyoshi (1933, 
1935) and for various harbors by  Can (1952); a recent example is the tidal model for the 
Seto Inland Sea by Higuchi et al. (1978). The storm surge hydraulic models to be 
discussed in the next section are also capable of simulating tides and, indeed, generally, 
these models are first calibrated against known tidal regimes. 

Abraham (1961) modeled storm surges due to hurricanes, especially taking into 
account their resonance amplification. Redfield and Miller (1955), making use of obser-
vations during hurricanes, showed that the magnitude of the storm surge in the open deep 
sea is approximately equal to the static water displacement (i.e. the change in sea level due 
to change in the barometric pressure). Abraham (1961) invoked the resonance ampli-
fication concept to account for storm surge displacements. In his study, he modeled the 
following three surges: (1) the Lake Michigan surge of June 26, 1954, (2) the Lake Erie 
surge of May 5, 1952, and (3) the United States east coast surge of August 30 and 31, 
1954. 

In his model study, Abraham (1961) simulated a moving low pressure area (i.e. a 
hurricane) by towing a suction fan over the surface. The wind pattern in the hurricane was 
not included in this simulation. Based on this study, the following was deduced: a time 
duration of about 1 h is adequate for the development of the maximum surge. 

HYDRAULIC MODELS OF STORM SURGES 

Tickner (1961) studied the transient aspects of storm surge development in shallow 
water using a laboratory wave tank. One of the important results of this study is that the 
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water surface setup will overshoot its steady-state value by a factor of two. For deepwater 
cases, this factor is slightly greater than two, and for shallower water it is slightly less than 
two. Another important result is that the surface current reaches a steady state in a short 
time and achieves a value of about 1/30 of the average wind velocity for a Reynolds 
number 2 x 10-3 . 

The experiments were performed in a tank 18.3 m long, 0.3 m wide, and 0.39 m 
deep. The wind was generated by a blower mounted at one end of the channel. Piezometers 
located at five different positions were used to measure the water depth and the pressure 
in the channel, with reference to atmospheric pressure. 

Brogdon (1969) discussed the effects of proposed barriers on storm surges generated 
by hurricanes in Galveston Bay. Fairchild (1956) discussed a model study of wave setup 
at Narragansett Pier in Rhode Island. Simmons (1964) made a thorough study of the 
protection of Narragansett Bay from storm surges through a scheme of barriers. Certain 
details of this model will be considered, following McAleer (1964). 

Storm surges generated by hurricanes on the Atlantic coast of the United States have 
amplitudes as great as 4.3 m. In the 1938 storm surge, 110 people died; but because of 
better warning the loss of life was only 10 in a 1954 surge. In addition to storm surges, 
wind waves of amplitudes up to 7.6 m were recorded near the entrance of the bay. 
Maximum sustained winds up to 121 kmh 1  and gusts up to 201 km •11 - ' were noted. 
Minimum pressures of 964.8 mb were recorded. 

In the hydraulic model for Narragansett Bay, the barriers (for storm surge protec-
tion) studied were of the rockfill type with large ungated navigation openings at the three 
entrances of the bay. The model tests showed that, by suitably locating the barriers, the 
surge amplitudes could be reduced up to 1.8-2.1 m. The simulated effect of the barriers 
on the 1938 storm surge levels is shown in Fig. 4.23. In the absence of the barriers, most 
of the increase of 3.3 m in the mean sea level took place within 2 h in the bay, and the 
total duration of the surge was 6-8 h. When barriers are present, since the bay opening 
is 'reduced to about a fourth of its original area, the rate of rise of the water level is lower 
and the surge levels are also lower. Although the normal tidal range is not significantly 
affected by the barriers, the phase of the tide in the bay will lag behind the ocean tide by 
about 15 min when barriers are present. 

Allen et al. (1955) used a hydraulic model to simulate the storm surge of 
February 1, 1953, in the Thames Estuary. The model was 24.4 m long and the following 
scale relationships were used: horizontal (linear) scale, 1/3000; vertical (linear) scale, 
1/120; vertical exaggeration, 25; time scale, 1/273.8; velocity scale, 1/10.95; discharge 
scale, 1/(3.943 x 106 ). In the model, the tides were generated by an electronically 
controlled pneumatic displacer. The displacer is made up of an inverted box located across 
the seaward end of the model and opens only below the lowest low-water level on the side 
towards the upstream direction. At the top of the displacer there is an exhaust fan, which 
creates a reduced air pressure above the water surface. The displacer is connected to the 
atmosphere through a pipe in which there is a butterfly valve. By controlling the angular 
opening of this valve, any type of tidal motion may be created. Obviously, this type of 
tide generator is more sophisticated than the usual plunger type. To provide for adequate 
bottom roughness, a wire mesh was placed at the bottom. After reproducing the normal 
tides and the 1953 storm surge, experiments were carried out on the effect of a barrier on 
the flooding levels. Allen et al. (1954) used the term "barrage" to refer to a structure that 
would consist of a number of gates suspended between piers above the water level, the 
central spans being wider than those at the sides and their gates being suspended higher 
above the water to provide a passage for shipping. The gates would be lowered to act as 
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FIG. 4.23. Effect of barriers on storm surges at Newport, Narragansett Bay, RI. (McAleer 1964) 

a barrage only when a dangerous surge was predicted. Ordinarily, this structure provides 
almost no obstruction to the tidal flow. 

In the tests, this barrage was located 30.6 km downstream of the London Bridge, and 
the simulations showed that the flooding risk to London is reduced, whereas there is a 
slight tendency toward an increase of water levels on the downstream side of the barrage. 

Hayami et al. (1955) modeled storm surges in the rivers and canals around Osaka 
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(4.362) 
U2 ti 	( U2) 2  Xi 	X1 RI ( U2) 2 	h, x i  
Ui 	U I XI 	 Ui 	x, t2 	\ / X2 	Xi R2 WI / 	hi X1 

City. They paid particular attention to the correct simulation of the bottom friction. They 
wrote the one-dimensional equation of motion and continuity in the following form: 

T2 r„ 	 -r 
atI , ,au 	x. 7' 	■ 	. 	ah) (4.36u) —

a t 

--, u---- --u g (1 - — ax 	2R 	 ax 

(4.361) e  + ex. (A U) = 0 

where A is the cross-sectional area, i is the slope of the channel bed, R is the hydraulic 
mean depth, h is the water depth, X is the coefficient of friction, g is gravity, and U is the 
average velocity in the x direction. Let subscripts 1 and 2 denote nature and the model, 
respectively. 

From similitude considerations: 

A2 h 	U2 A2 xl 

h 	Al X1 

From eq. 4.362 and 4.363 the following relations can be written: 

X, 	R, x l  = 
XI 	RI x2 

t2 	X2 (h2) -u2  

1. 1 	h, 

The relationship for the friction is given by the first equation of 4.364 and the time scale 
is given by the second equation of 4.364 (the time relationship indicates that the Fronde 
number must be the same in nature and the model). 

A resistance low for turbulent flow in a channel can be written as 

(4.365) 	= A, + —1 ln —
R + 8 

x K 

where A, is a constant whose value depends on the roughness, x is a mixing length, K is 
a roughness height (in the bed), and 8 is a correction factor for the nonuniformity of the 
free surface and the shearing stress. 

From eq. 4.365 and 4.363: 

R 
A,

' 	
i 

 + — ln — + 8, 
 xl 

R2 
Ar2  + -x2  ln 	+ 82  

This becomes, after assuming x i  = x2  = x and Ar, = A„= Ara , 
K„ 	(K)P 

(4.366) 	= 

where 
R 2 -1/2 (x l  -1 1 2 

(4.367) P 	(IT
) 	) 

72  

(4.363) 

(4.364) 

= 
R11/2 (x i  ) 1/ 2 

R I 	X2 
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(4.368) q.••• exp X[4,(1 — P) + (82 — KO] 

and K. is the equivalent sand roughness. 
The value of Ksi  can be determined from Manning's formula: 

(4.369) n 2  = X R  1/
3  

2g 

From eq. 4.369 and 4.365: 

Ks  (4.370)  _ = exp x (Aro  + 8  _ g  -1/2R 1/6 n -.1 )  
' R 

The following values were used: n = 0.03, A, = 6.0, x = 0.4. 
For a channel of rectangular geometry, deulegan (1938) wrote 

(4.371) 8 ---- 	= 1  [In (1 + 	— Li  1 
X X 	B 	B 

where h is the water depth and B is the width of the channel. Using eq. 4.366-4.368, K52 
(bottom friction in the model) can be determined. 

Murota (1963) simulated the effect of breakwaters on storm surges in Osaka Bay. His 
results indicate that the water levels might actually increase due to the presence of 
breakwaters, and increased seiche motion is invoked as the main reason. 

MODELS FOR WIND AND BOTTOM STRESS 

In this section, hydraulic and laboratory models for storm surges, in which special 
emphasis was given to the wind stress and bottom friction terms, will be considered. 
Hellstrom (1941), Francis (1951), and Keulegan (1951) performed laboratory experiments 
on surface slope due to wind stress. Although Hellstrom (1941), Haurwitz (1951), and 
Keulegan (1951) studied theoretically the slope of the free surface in a confined body of 
water acted upon by a uniform steady wind, they did not include the inertial terms in their 
treatment. van Dom (1953) measured the surface slope and wind stress in an 800-ft 
(244 m) model yacht pond. Following van Dom, the physical forces that govern the slope 
of the free surface will be examined. 

With reference to Fig. 4.24, taking the x-axis in the direction of the wind and taking 
the origin of the vertical coordinate z at the bottom of the water body, which is assumed 
to be homogeneous, the vertically integrated form of the vertical momentum equation 
becomes, after neglecting the pressure gradient and Coriolis terms, 

a H+h 	 a  r

2  
, 	 8h 	(T s + Tb)  

(4.372) — j"  udz + 7x- 
o 

udz = — g(H + h) 	+ at 0 	 ax 	P 

where H is the water depth in the undisturbed state, h is the deviation of the water surface 
from its equilibrium level, p is the water density, u is the velocity component in the x 
direction, and T, and Tb are the horizontal stresses at the surface and bottom, respectively. 
Basically, eq. 4.372 is a statement of the momentum budget for a column of water of unit 
area extending from the surface to the bottom. 

Assuming steady state will suppress the first term in eq. 4.372. Since the free surface 
height h was measured at the end of the tank, it is convenient to average the remaining 
terms over the length L of the pond to give 
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Tb 

FIG. 4.24. Longitudinal section of a rectangular channel to show the slope of the free surface under 
the action of the wind stress Ts . The velocity distribution within the water for laminar flow is also 
shown. (van Dom 1953) 

T. a  r h _ 	 a h 	1 (4.373) —

L o

—ax o u 2 dzdx = 	(H + h)-
8x

dx + 	IL —pL 0 (Ts  + Tb)dx L 

Actually, L is 220 m and is slightly less than the length / of the pond, which is 240 m. 
If .the bottom profile is symmetric, then eq. 4.373 will hold provided the two points at 
which h is measured are at an equal distance from the respective end. 

With these considerations, the advection term vanishes, and if H » h and if H is 
uniform (in the case of H varying with x, H should be treated as the mean depth), then 
eq. 4.373 becomes 

gH 
(4.374) 0 = 	(ho  — hL ) + 	+ 

where the bar denotes average value over the length L. In the discussion below, for 
convenience, the bar will be omitted. On defining the setup S as the difference in h 
between the two ends of the pond, the average surface slope SI L is related to the surface 
stress Ts  through 

S 	nTs  (4.375) L pgh 

where n is defined through 

Tb 
(4.376) n — 1 	— 

Ts  

For laminar flow: 

all (4.377) T = 
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where is the dynamic viscosity of water. 
Using this value of T in the nonintegrated form of the equation for horizontal motion, 

and after ignoring the time-dependent term and inertial term, Keulegan (1951) showed that 

d2u g dh (4.378) —
dz2. 

= v —
dx 

where y is the kinematic viscosity of water. Based on the condition that the net flow 
through any cross section be zero, this relation can be integrated directly to give 

dh 6v us  
(4.379) 

dx gH 2  

and 

(4.380) Ts  = — 2Tb = 	H  

where us  is the value of u at the surface. From eq. 4.376 and 4.380 

(4.381) n 

The horizontal velocity distribution in the vertical direction is given by 

2 

(4.382) u = u ,[3 (17) —  2(t)]  

This relation is plotted in Fig. 4.24. 
Note that the circulation consists of a current at the surface in the wind direction and 

this current extends to one-third depth. Below this current, there is a current in the opposite 
direction and this has a minimum value u = u.,I3 at two-thirds depth. Also note that the 
bottom stress is half of the surface stress. These results are for laminar motion only. For 
turbulent flow, one cannot simply relate Ts  and Tb . Hellstrom (1941), making use of the 
Boussinesq theory of turbulence and also using an analogy to open channel flow, deduced 
that n lies between 1.0 and 1.5. van Dom (1953) assumed n to be unity. In his experiments 
van Dom found that the bottom stress was less than one tenth of the surface stress. 

Keulegan (1951) suggested that the total setup results from two factors: (a) the 
frictional drag on the water surface, which exists at all wind speeds, and (b) an additional 
drag due to the presence of wind waves at the surface. This drag exists only if the wind 
velocity exceeds a critical value V.  referred to as the "formula velocity." This partition of 
the setup can be expressed as follows: 

S I  = aV 2  
(4.383) 

S2 = b(V — c) 2  

where S I  and S2 are the setups due to surface drag and waves, respectively. Note that 

S = S I  for V 
(4.384) 

S I  + S2 for V>  
Using dimensional considerations, Keulegan (1951) proposed the following forms for a 
and b: 
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FIG. 4.25. Square root of the additional setup S2 due to waves as a function of the wind speed for three different 
anemometer heights. (van Dom 1953) 

BL ,e1 b = —gH —L 

where A and B are nondimensional constants for any given set of wind measurements. 
Instead of eq. 4.385, van Dorn (1953) proposed the following: 

L 2  a = —a gH 
(4.386) 

where a is determined from the slope of the straight line that gives the best fit to the 
observed data with detergent used at the surface (to suppress waves) and making use of 
the first formulae in eq. 4.383 and 4.386. In Fig. 4.25 the square root of S2 is plotted 
against wind speed for three different anemometer elevations (25, 100, and 1000 cm). The 
intercepts at S2 = 0 were taken to be the values of Vc , and the slope is the value of 13. 

The values of a, p, and V. deduced for different anemometer elevations are listed in 
Table 4.4. The values obtained by Keulegan (1951) are also shown. The setup as a 
function of the wind at 10 m elevation is shown in Fig. 4.26. In calculating the setup, 
entries from Table 4.4 were used. 

For V 	V c , from eq. 4.383 and 4.375: 

AL 
a = — gH 

(4.385) 

L 2 
gH  b = 	f3 
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TABLE 4.4. Comparison of three empirical parameters for the 
model yacht pond and the laboratory channel. (van Dom 1953) 

Anemometer 
elevation (cm) 	a x 103 	13 X 103 	V, (1-1 • s- ') 

25 	 2.1 	4.6 	 3.1 
100 	 1.7 	3.2 	 4.0 

1000 	 1.1 	 1.5 	 5.6 
Keulegan 	 1.8 	3.7 	 3.9" 

'Average for five water depths. 
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FIG. 4.26. Setup as a function of the square of the wind speed at 10 m of elevation. (van Dom 1953) 

(4.387) Ts  = pa 2 v2 

Taylor (1916) expressed the surface stress in terms of a resistance coefficient )1 2 : 

(4.388) 	= ,y 2 pa  v2 

where  Pa  is air density. Thus 

(4.389) 'y 2 = P a2 
Pa 

For V V,: 

(4.390) Ts  = pot2v2 4_ 02(v 

Since a and p depend only on the anemometer height at which the wind is measured, to 
a first approximation, the wind stress appears to be independent of the fetch and thus 
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independent of the size of the waves. 
Sibul and Johnson (1957) mentioned that all the modeling studies on wind tides prior 

to their work were done with smooth bottom. These authors paid particular attention to the 
bottom roughness, and they used three different types of bottom roughness: (a) smooth 
bottom, (b) rough bottom, and (c) rough bottom with strips of cheesecloth in the channel 
to imitate the effect of vegetation (such as in Lake Okeechobee). For steady state, the 
momentum balance per unit width can be expressed as 

(4.391) —2 [(z, + dzs ) 2  — 	= (Ts  + Tb )dx 

The water surface is given by (after ignoring higher order terms) 

dzs 	(Ts  + Tb) 
(4.392) dx 	.-yz s  

where 'y is unit weight of water, zs  is the distance from the bottom to the mean level, and 
Ts  and Tb are the surface and bottom stress, respectively. Following Keulegan (1951): 

(4.393) T b  = Ts (X — 1) 

where  X  is a coefficient that depends on turbulence in the flow. 
From eq. 4.392 and 4.393: 

dzs 	Ts 
(4.394) —dx 	— zs  

This is a relation that is used by several authors in modeling storm surges. For example, 
Hellstrom (1941) integrated eq. 4.394 to give 

, 	2XT 
(4.395) z; = 	(x + C I ) 

'Y 

This means that the water surface is parabolic in shape and may be written in gs , 
coordinates as follows: 

, 	2X T, 
(4.396) 	= 	 

For details in determining the constant C 1 ,  see Sibul and Johnson (1957). The surge 
amplitude h can be determined from 

(4.397)  h = 4s2X  (x + CI) — d 

When the water depth is much greater than the surge, Hellstrom (1941) writes 

XTs 
(4.398) h = 	( d x f)  2 

The water level at the windward side (x = 0) is 

X  T  F (4.399) /4=0  = — —2 — —
d 

and at the leeward shore (x = F) is 
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X Ts F 
(4.400) hx-F = —2 	—d  

where F is the fetch (i.e. the distance from the leeward still water shoreline to the point 
at which the water level is measured). 

Langhaar (1951) defined the statical tide as the surge due to a persistent wind and the 
dynamical tide as due to seiche action. For small surges and when the bottom is not 
exposed, the surge is given at the leeward shore by 

F 
(4.401) hx=F = 2'yd 

This is identical to eq. 4.400 provided X = 1. For the case in which a part of the windward 
bottom is exposed, the total water level is given by 

(4.402) S' = 
3  \13T,Fd 

'Y 

Based on actual data, this was modified for the surge: 

(4.403) hx=ir = 3 
\13.373 Ts F dN d 

The planiform factor is N = 1 for uniform width (of the water body), N < 1 for diverging 
cases, and N>  1 for converging situations. 

The so-called Zuider Zee formula (Thijsse 1938) is 

U2  F  
(4.404) S = 800d 

where S is the difference between windward and leeward water surface elevations (feet), 
U is the wind velocity (miles per hour), F is the fetch (miles), and d is the water depth 
(feet). A slightly modified form of this is 

U2  F  
(4.405) h = 1400d cos A 

where h is the water level (feet) above the undisturbed level and A is the angle between 
the wind and the axis of the surge. Saville (1952) gave 

KX.pa U2 F 
(4.406) S = 	cos A 

pgd 

where S is the difference between the water levels at the windward and leeward sides,  Pa 
 is air density,  pis  water density, K — 0.003, and A is the angle between the wind direction 

and the fetch. Equation 4.406 is referred to as the Beach Erosion Board formula. 
The experiments performed at the U.S. Beach Erosion Board (Sibul 1955; Sibul and 

Johnson 1957) were done in a channel 18.3 m long, 0.3 m wide, and 0.4 m deep. The wind 
was generated by a blower mounted at one end of the channel. The water depth and the 
pressure were measured using piezometers. By using parallel wire resistance elements 
connected to brush recorders, the wave heights and periods were measured at four 
locations. 

Experiments were performed using the following bottom roughness. For the smooth-
bottom case, the original bottom was painted with white oxide primer paint (for this case 
the Manning coefficient n =  0.0116). For the rough-bottom case, the smooth-painted 
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bottom was covered with a 7/8-in,  expanded metal lath. For this case, n = 0.0207. In a 
third set of experiments, a combination of the rough bottom and cheesecloth in the channel 
was placed at the bottom. The top of each piece of the cloth was made to float with the 
help of a thin strip of balsawood. The buoyancy of the cloth was adjusted to be at a 
minimum so that it could follow the current in much the same way as blades of grass 
submerged in water. 

The experimental data were compared with the data computed from the relationships 
above. Keulegan's (1951) relationship fits the data for not too shallow water. For shallow 
water, Langhaar's (1951) formula agrees better with observations. The modified Zuider 
Zee formula underestimates the surge for the deepwater cases. Reid (1957b) showed that 
the traditional quadratic bottom stress law is not appropriate when significant wind stress 
exists on the water surface, and he derived a more appropriate formula for the bottom 
stress taking the effect of the wind stress into account. This will be considered in 
Chapter 6. 

Tickner (1957) studied, using a laboratory channel, the effect of bottom roughness 
by using strips of common window screen. The simulations showed that when the water 
depth was slightly greater than the thickness of the roughness elements, the surge ampli-
tudes were about twice those for the smooth-bottom case. However, when the water depth 
was about half the thickness of the roughness elements the surge heights were about 0.08 
of those for the smooth-bottom case. For cases in which the ratio of the undisturbed water 
depth to the roughness height is greater than 4, the surge heights are independent of the 
height of the roughness elements. 

Tickner (1961) also modeled the effect of sloping bottoms and reefs at the bottom. 
He showed that when reefs are present, the surge heights are about twice the value for the 
smooth-bottom case for a solid reef and somewhat less in the case of a reef with an opening 
in it. 

Two recent examples are considered. Tang et al. (1978) simulated wind-induced flow 
phenomena in a laboratory tank. The wind stress coefficients were found to be well scaled 
by the Froude number (Wu 1969) 

1 	1 1  
(4.407) 	= In 

K ( 0.0112C,F 

where Cy  is the wind stress coefficient defined through 

To 
(4.408) C), = 	 

Uy  

Here, Fr  is the Froude number defined as 

Ur  
(4.409) Fr 	 

V  gy 

where To is the wind stress, K is Karman's constant, U), is the wind velocity at height y, 
p„ is air density, and g is gravity. 

In these experiments, the bottom stress also was measured as a function of the wind 
friction velocity and was compared with the wind stress. The average bottom stress 
increases slightly as the wind friction velocity increases. It can also be seen that the bottom 
friction increases remarkably as the water depth increases. The ratio of the wind stress to 
the bottom stress varied from 5 to 0.08 depending on the wind friction velocity and the 
water depth. 

DeVries and Amorocho (1980) performed field tests on a 9.7-km stretch of the 
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California Aquaduct near Patterson, California, with a view to measuring wind setups in 
large open channels. They pointed out that whereas considerable data exist on wind setups 
in lakes and semienclosed seas, there are little data for open channels. 

Wind setup in channels can be locally important: e.g. (a) irrigation canals in 
Australia, (b) St. Lucie canal in Florida (large storm surges were recorded in this canal 
following hurricane occurrences), (c) canals and fjords on the coast of Jutland in Denmark 
(storm surges from the North Sea propagate into these canals), and (d) several canals in 
the western part of the United States. 

In the field tests of DeVries and Amorocho (1980), the wind shear was determined 
by (a) measuring the wind velocity profiles above the water, (2) theoretical calculation, 
or (3) measuring the Reynolds stresses in the wind stream. The results of this study showed 
that the general relationship between wind shear and wind speed for the open sea is also 
applicable to open channels. 

STORM SURGE INSTRUMENTATION 

In most storm surge studies, storm surge data are obtained as the residuals that are 
calculated by subtracting the predicted astronomical tide from the recorded water levels. 
Briand (1980) systematically examined storm surge data for a period of 11 yr in Canadian 
waters, and he found that the residuals, although more or less satisfactory in a majority 
of cases, show unrealistic results in certain cases (these unrealistic results appear as 
persistent and large positive or negative surges). Part of the difficulty can be traced to an 
improper removal of the tide from the total record. In those water bodies where the 
tide—surge interaction is significant, a linear addition of tide and surge is not appropriate. 
This problem will be considered in detail in Chapter 5. 

Besides the difficulty in calculating the residues, there are some fundamental prob-
lems associated with the recording of the water level itself. Lennon (1971) remarked that 
since most of the tide gauges usually are located in harbors, coastal regions, and estuaries, 
these sites have a maximum noise from the point of view of long-wave phenomena, the 
noise being due to wind waves, seiches, variations of temperature and salinity, and 
freshwater discharge. Also, as pointed out by Lennon (1971), the basic instrumentation, 
which has not changed much in several decades, consists of a stilling well and a recorder; 
both of these have serious shortcomings. The main problem is filtering out the wind waves 
while leaving the long-wave motion unaffected as far as possible. This is accomplished 
by using a vertical tube connected to the open water through an orifice or pipe. However, 
the filter may be influenced by clogging due to weeds, trash, marine growth, and siltation. 

The stilling well can be thought of as a pressure device in which equilibrium is sought 
between pressures imposed at the orifice by the water inside and outside of the well. There 
may be density variations in the water in the stilling well. Turbulence outside the well 
could also have serious consequences. Besides the problems with stilling wells, the 
recording of the water level itself is another difficult task. The problems are more serious 
for analog gauges. Problems in the pen carriage drive, nonconstant tension in the float 
suspension, etc., are also present. Most of the instruments show a lag in response to water 
level changes but this is not a serious problem for long waves. 

At present, digital tide gauges with electronic wave filters are being developed and 
used, although most of the tide gauge installations are still of the old type. For theoretical 
studies on the response of the stilling well, see Shipley (1963) and Noye (1968). Braddock 
(1980) gave a most thorough discussion of the response of a conventional tide gauge to 
long waves such as tsunamis. Muir (1978) discussed the Bernoulli effects on pressure- 
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activated water level gauges. Other important works are those of Noye (1974a, 1974b, 
1974e) and Braddock (1977). One of the interesting results obtained by Braddock is that 
the tide well is basically a linear device for periods greater than about 10 3 -106  s (tides and 
storm surges fall into this category) and behaves in a nonlinear fashion for periods less than 
this (tsunamis fall into this category). 

Finally, the use of vertical pendulums in storm surge observations will be considered. 
Zschau an Kümpel (1979) argued that the additional mass of water in a storm surge 
influences tilt measurements inland from the water body, similar to the manner in which 
marine tides influence earth tidal measurements. Two effects occur: the first is a tilt of the 
local vertical and the second is a tilt of the crustal surface. 

Three vertical pendulums were used near the German Bight of the North Sea to 
measure tilt due to nine storm surges during the period November—December 1973. The 
measured tilts can precede the surges by as much as 12 h. 

4.7 Hybrid Models 

Holz (1977) and Funke and Crookshank (1979) appear to have introduced the con-
cepts of hybrid modeling in tidal estuarine problems. In a hybrid model, long-wave 
propagation in a coastal water body is simulated by dynamically coupling a hydraulic 
model representing a portion of the water body to a numerical model of the remaining 
portion of the water body, so that both models can be run jointly at the same time. For 
example, the water level at the junction (of the numerical and hydraulic models) can be 
measured in real time in the hydraulic model and fed into the numerical model. Then, the 
flow can be computed numerically and the flow at the junction of the models can be used 
as a boundary condition to the hyraulic model. In this manner, one can construct the 
hydraulic model to represent the area of immediate interest and the numerical model to 
cover a larger area so that boundary conditions can be provided. 

Funke and Crookshank (1979) developed a hybrid model for the St. Lawrence 
Estuary whereas Prandle et al. (1980) developed a hybrid model for the Bay of Fundy. In 
the St. Lawrence Estuary case, the numerical model used was one dimensional, whereas 
for the Bay of Funday a two-dimensional model was used. Since the concepts are similar, 
and since the one-dimensional model is simpler, certain details of the St. Lawrence 
Estuary model will be considered. 

The hybrid model of the St. Lawrence Estuary, in which a hydraulic (physical ) model 
and a numerical model are run simultaneously and interactively by exchanging information 
at their mutual interface, is shown in Fig. 4.27. The original hydraulic model of the St. 
Lawrence Estuary, which was partially dismantled (due to space requirements for other 
projects), represents the reach from Pointe-au-Père to Montreal. The dismantled portion 
is from Neuville to Montreal. A one-dimensional numerical model was developed for this 
dismantled portion and was dynamically coupled to the remaining part of the hydraulic 
model. Thus, the hybrid model simulates the tidal motion in the estuary from Pointe-au-
Père to Montreal. Thus, out of a total stretch of 550 km in the hybrid model, a 330-km 
stretch is simulated by the physical model and the remaining 220-km stretch is simulated 
by the numerical model. 

At the downstream end of the hybrid model (i.e. Pointe-au-Père), the water depth is 
about 300 m and the width of the estuary is about 47 km. At the interface of the two models 
(i.e. Neuville), the depth is about 15-20 m and the width is about 3 km. The tidal range 
at Pointe-au-Père varies from 1.5 to 4.5 ni with a maximum discharge of about 2 x 106 

 m3 . s' . Near Quebec City the tidal range varies from 3.5 to 6.0 ni. At Neuville, the tidal 
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FIG. 4.27. Scheme of a hybrid model for the St. Lawrence Estuary in Canada. (Funke and Crookshank 1979) 

range is about 3-5 m with a maximum discharge of about 28 000 m 3 • . At Montreal, 
there are no diurnal or semidiurnal tides, but the average discharge is about 7000 m3 • 
(all the numbers given above are for the natural state). 

The total length of the physical model is 165 m and its horizontal and vertical scales 
are 1:2000 and 1: 120, respectively. Funke and Crookshank (1978, p. 2857) stated that 
the downstream boundary is 23.5 m wide and is connected to a bidirectional variable pitch 
impeller pump with a capacity of 1 m3 •s. Computer control at this point follows a known 
vertical tide. The upstream boundary is discharge controlled by means of a fixed inflow 
into a 4 x 4 m tidal basin and a variable outflow from this basin over a sharp-edged 3-m 
horizontal weir operating under computer control. The difference between basin inflow 
and outflow is the model discharge, which is bidirectional and of the order of 0.02 m3 . s'. 

The diurnal vertical tide and the pump control curve at the downstream boundary are 
harmonic recompositions of the Fourier coefficients for the specified tide and the control 
curve. One can generate 14-d tidal cycles, including wind setups. 

In the numerical model, one-dimensional explicit finite-difference solutions to the 
shallow-water wave equations are obtained for a 220-km stretch consisting of 58 sections 
whose grid sizes vary from 3.2 to 4.8 km. The boundary conditions to this model are 
provided as a constant discharge at Montreal and a variable water elevation at Neuville 
obtained by locating a water level gauge at Neuville in the hydraulic model. The output 
of the numerical model is a value for the discharge at Neuville, which is fed into the control 
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FIG. 4.28. Comparison of the water level at Lauzon, Que., obtained from the vari-
ous models. (Funke and Crookshank 1979) 

computer, for providing the discharge value at the downstream boundary. 
Since the time domain of the hybrid model is determined by the hydraulic model, the 

time domain of the numerical model must be synchronized. The simulated results at 
Lauzon obtained from various models are compared in Fig. 4.28. It can be seen that the 
hybrid model reproduces the tide quite satisfactorily. 
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Chapter 5 

Special Hydrodynamic Problems 

In this chapter the following topics will be discussed: the phenomenon of resonance, 
which plays an important role in the coastal effects of storm surges; edge waves, a 
knowledge of which is needed in interpreting certain storm surge records; tides in the 
oceans and in certain selected coastal water bodies; the interaction between storm surges 
and tides and between storm surges and wind waves, which are different because wind 
waves are short-period waves whereas tides and storm surges are long-period waves; the 
influence of an ice layer and stratification on storm surges. 

5.1 Resonance, Edge Waves 

The topic of resonance, although relevant to storm surges, is so vast that it cannot be 
considered in detail here. Reference is made to Proudman (1953), Defant (1961), Murty 
(1977), and Leblond and Mysak (1978). For acoustical analogy and electrical analogy to 
the resonance phenomenon, see Raichlen (1966) and Miles (1974), respectively. 

Any water body, such as a lake, inlet, bay, gulf, or a continental shelf, has natural 
modes of oscillation whose periods are determined by the geometry of the water body and 
the water depth. A knowledge of the natural modes of the water body is quite important 
in determining whether a given storm surge will be amplified or not and in determining 
the detailed characteristics of the surge in a particular water body for a given forcing. 

For convenience, this section will be divided into three subsections: in the first 
subsection the theory of seiches will be described in some detail; in the second subsection 
the Helmholtz mode will be considered; in the final subsection the correct boundary 
conditions at the open part of the water body will be discussed. 

THE THEORY OF SEICHES 

The following discussion is based on Wilson (1972). The word "seiche" is believed 
to be derived from the Latin word "siccus," meaning dry or exposed, and has been used 
for several centuries to describe water level oscillations in Lake Geneva. The first mention 
of such a motion in Lake Constance (Switzerland) was made by Schulthaiss (1549, in 
Wilson 1972), and de Duillier (1730, in Wilson 1972), recorded such an oscillation. 
Vaucher (1803, in Wilson 1972) noted that similar motion occurred in many other lakes 
and he attributed this motion to meteorological causes. In the Great Lakes of North 
America the seiche motion was mentioned by Fra Marquette (1673), Baron Hontan 
(1689), Charlevoix (1721), and Dearborn (1829) (all in Wilson 1972). Major Whiting 
(1829, in Wilson 1972) attributed atmospheric pressure variations and wind as the causes 
of this motion. 

Probably the first scientific study of seiches was that of Forel (1892), and Chrystal 
(1905) was probably the first to put forth a hydrodynamic theory of seiches. Important 
contributions to the theory of seiches were reviewed by Harris (1908), Lamb (1945), 
Proudman (1953), Defant (1961), Wilson (1972), and Miles (1974). 

Merian (1828) gave a theory for free oscillations of water in a rectangular basin of 
length L and uniform depth h, the period T being given by 
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(5.1) 	T=  2L  

where g is gravity. Forel (1892) applied this formula to seiches in lakes. For real lakes with 
variable depth, he chose an average value of h to replace the variable depths. Lagrange 
(1781) showed that the velocity c of a long wave is given by 

(5.2) 	c - \/gh 

From eq. 5.1 and 5.2 

2L (5.3) 	T = 	= X c 	c 

where X is the wavelength of the oscillation (assuming it is in the form of a wave). Thus, 
the length of the wave is twice that of the water body (or basin). Forel explained this 
apparent paradox as being due to the superposition of two long waves whose length is 
twice that of the basin and traveling in opposite directions. 

In the following, an attempt will be made to visualize a seiche as a special type of 
standing wave. For this, consider two progressive waves traveling in opposite directions 
in water of uniform depth. At every quarter period the crests and troughs are either in phase 
or out of phase. At half-wavelength intervals (x = X/4, 3X/4, 5k/4, . . .) surface elevation 
is continuously zero with time. Such points are called nodes and the points intermediate 
to these are the antinodes. This type of standing wave can also result if a progressive wave 
is reflected (without dissipation) at a vertical wall. Then, there will be an antinode of 
amplitude 2A (A being the amplitude of the progressive wave) at the wall and a first node 
at x = X/4 from the wall. 

A seiche is a special case of a standing wave that would result from interposing a 
second vertical barrier at any of the points x = X/2, 3X/2, 2X, . . . . The standing wave 
or seiche exists due to repeated reflections (assuming no dissipation) from the two vertical 
walls, where it would have its antinodes. On the other hand, if the second vertical barrier 
were inserted at any point other than a multiple of X/2, the standing wave would become 
an irregular motion of the water surface. Thus, one can think of a seiche as a standing wave 
that is commensurate with the basin length L. 

The seiche is uninodal for L = X/2, binodal for L =  X , trinodal for L = 3k/2, .. 
n-nodal for L = nX12. Hence, from eq. 5.3, the period T„ of the nth mode of oscillation 
in a rectangular basin of length L and uniform depth h is 

(5.4) 	T„ = 2L 

This is a generalization of the Merian formula and is valid for one-dimensional oscillation 
(no transverse motions). Note that at the nodes the motion is purely horizontal and at the 
antinodes it is purely vertical. The higher nodal (binodal, trinodal, etc.) seiches that may 
occur simultaneously with the fundamental mode (i.e. uninodal oscillation) are higher 
harmonics of the fundamental. 

From eq. 5.4: 

T„ 
— = 1 –1 –1 . . . –1 n = 1, 2, . . . , n T 1 	' 2' 3 	n' 

nVgli 
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However, for irregular water bodies with variable depth (unlike in the case of a narrow 
rectangular basin of uniform depth), such a simple relation as above need not exist. 
Another point worth remembering is that neither the use of an average depth "ft nor a better 
version of this, as done by du Boys (see Defant 1961) 

(5.5 ) 	T, 	
2 ri- 	dx  

n io [gh(x)] U2  

improves the Merian formula significantly. 
Next, the concept of regarding seiches as a combination of free and forced oscillations 

will be developed. Any natural system, when displaced from its equilibrium position, will 
try to regain its equilibrium position (due to a restoring force) and will exhibit free 
oscillations once the disturbing force is removed. The nature of these oscillations depends 
on the system alone, the influence of the disturbing force being restricted to setting the 
initial amplitude of the oscillation. After some time, the free oscillations will gradually 
dissipate. In a water body or basin, the seiche is a type of free oscillation of the water, 
the restoring force being gravity. However, in nature the seiches could be of a forced 
nature because the disturbing force, instead of being instantaneous, can act over some 
period of time. 

The equation of motion for a linear vibrating mass spring system subject to a 
displacement X due to a disturbing force F (t) is, in the canonical form, 

F (t)  
(5.6) 	Y + 213aii + o.) 2X = 

m 

where 13 is a nondimensional damping coefficient, m is the mass of the vibrating body, co 
is the angular frequency, and m co 2  is a spring constant for the restoring force. The solution 
of eq. 5.6 can be visualized as the combination of a free and forced part of a transient and 
steady-state part. To obtain the solution for the free oscillation, put F (t) = O. Then 

(5.7) 	X0  = e -I'la sin (y t) + b cos (yt)] 

where a and b are amplitudes of the motion determined by the initial conditions. The 
natural frequency y of the system is 

(5.8) 	y = io(1 — 132)1/2 

and the natural period T is given by 

21-r 
(5.9) 	T=  

The frictional damping, which is given by 13, makes the free oscillations decay at a rate 
such that the amplitude decreases in one cycle by e -6  where 8 is the logarithmic decrement 
and is given by 

(5.10) 	8 -= Bo) T 

For the forced solution, one must use eq. 5.6 in complete form and take a periodic 
disturbing force as follows: 

■ 

'Y 
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(Z) 2 1 2  + [213  (731 }

n 2 -i  
(5.13) 

F(t)  
(5.11) 	=  F cos ((rt + E) 

n 

where E is an arbitrary phase angle. Then 

F p, 
(5.12) Xf  = 72 cos (crt + E 11) 

where 

2I3()  

\2 

(x)) 

(5.14) 	tan a = 

Here, p, is the dynamic amplification of the oscillation and a is a phase angle by which 
the forced oscillation lags the disturbing force. Thus, the total solution is 

(5.15) X = X 0  + Xf  

Here, X0  decays with time whereas X1  persists as long as the disturbing force is applied. 
One can deduce that 

(5.16) 	1  = 	 
(F 2  
\c7al 

where Xi  is the amplitude of the input displacement. 
Ordinarily, one shows p, and a as ordinates versus cr/o) as abcissa. If the damping 

coefficient p < 1, then from eq. 5.8 the natural freuency 'y of the system is approximately 
given by co. Hence, the ratio olo) in eq. 5.13 and 5.14 is effectively the ratio of the forced 
to the natural frequency. The dynamic amplification p., approaches its peak value when 
cr/w — 1. When this happens, resonance occurs and the amplitude of motion will be 
several times greater than the amplitude of the disturbing force. 

For small frequency ratios olw << 1, the magnification is small, p, — 1, and the 
motion follows the excitation (i.e. a —> 0). For cr/co 1, the resulting motion is much 
smaller than that of the exciting force; then, p, —> 0 and the motion tends to become out 
of phase (i.e. a —> 1800). Hence, the degree of resonance is determined by the damping 
factor 213. Miles and Munk (1961) defined the degree of resonance through the factor Q, 
which is the maximum value of the dynamic amplification p.  From eq. 5.13 if cr/co — 1 
(as occurs at resonance) 

n 	1 
(5.17) 	Pmax = 	2p 

In the frequency range (1 — p) < 0-4) < (1 + P), if the damping factor 2 13  is small, 
the power amplification 11 2  has a value greater than Q 2 /2. Hence, the frequency band 
width (over which the power amplification exceeds half its maximum value Q 2 ) is 1/Q. 
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Thus, the sharper is the resonance, the narrower will be the spectral energy peak. This can 
be quantitatively expressed by stating that near resonance 

Q 2 
(5.18) 	--2- — 1 + 4Q 2 (1 — 

CO) 

The following results can be easily deduced from the above relations. For low Q 
conditions (i.e. heavy dissipation), a large rate of absorption of energy from the disturbing 
force to the oscillating system is necessary whereas for high Q (small damping) only a 
small energy absorption rate is sufficient for resonance. Miles and Munk (1961) showed 
that for a water body with a rather regular topography, low damping prevails; hence, the 
response is of the high Q type. Hence, a relatively small amount of energy (from, e.g. 
atmospheric pressure gradients) at the correct frequency can excite strong resonance. 
However, if the topography is irregular, damping is heavy and a low Q situation prevails. 

Next, some theoretical aspects of free and forced seiches will be considered. With 
reference to a Cartesian coordinate system (x, y), let q, and q). be the components of the 
transport, ri is the water level deviation from its equilibrium position, h is the water depth, 
Pa  is the atmospheric pressure, Ts  and Ts, are the wind stress components, and Kx  and IC, 
are the bottom friction coefficients. The equations of motion are 

—a t + K,q, + g(h + 1)—
al 
ax 

a 17A 

a q, 
(5.20)  

where 

Ts, 	(h + 	ai'.  
F 	+ 	 

	

p 	ax 
Ts, 	(h + 	ap„ 

Fs, = + 	 

	

P 	aY 

Here the Coriolis terms are omitted, which, however, will be important for large lakes and 
bays. 

For simplicity it will be assumed that a/ay  =  0 and y = 0. Then, the equation of 
motion 5.19 reduces to 

a q 
(5.22) —a t + Kq + g(h + 	= F s(x, t) ax 

where subscript x on q is omitted. The continuity equation is 

aq 
(5.23) —

at 
 + —

ax
= 0 

Equations 5.22 and 5.23 can be transformed into two hyperbolic equations in the de- 
pendent variables q and 

a2,1 	al 	a  I 	a1 
(5.24)  

at 
a2 q 	aq 	a2 q 	a  Fs  

(5.25) —at , + 	— g(h + ax2  = at  

(5.19) 

(5.21) 

a Fs  
ax 
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The solutions of eq. 5.24 and 5.25 with the right-hand sides set to zero give the solutions 
for the free oscillation, whereas the solutions for the complete equations are the forced 
oscillations. 

In a rectangular basin of length L and uniform depth h, in which a free oscillation is 
generated by equating the disturbing force Fs  to zero, eq. 5.2, 5.24, and 5.25 give 

821 	81.921 
(5.26) — + K— — c 2  — = 0 

at2 	at 	ax 2  

(5.27) 
82q 	a  q 

+ K  at2 	at  
,a2 q 

—c --
ax2

= 0 

Since these equations have the same form in 1 and q, one can use the method of 
separation of variables to solve them: 

(5.28) 	1(or q) = X(x)T(t) 

The solution can be shown to be 

	

(5.29) 	1(or q) = e'2  [A  cos (kx) + B sin (kx)] [C.  cos ()et) + D sin (-yt)] 

where the angular frequency 'y of the free oscillation is given by 

	

(5.30) 	= w (1 — 
U2 

The wave number k and the angular frequency w are related through 

	

(5.31) 	w = kc 

in which either k or w must be determined. 
To determine the constants of integration A, B, C, D, the following boundary 

conditions must be used. At the ends of the basin, x = 0, L transport q must be zero for 
all time. Thus 

q = B' e-1(112  sin (kx) sin (-yt + E) 

sin (kL) =  0 

where B' is a constant to be determined and e is a phase angle. From the continuity 
equation and taking a as the amplitude of free oscillation: 

— ae -Kt12 cos (kx) cos (yt + E) 

a"Y -K112 • 

	

T e 	
sin (kx) sin (-t + E) 

The wave number k can be determined from the second equation of 5.32 to give 

	

(5.34) 	kL 	tvir, 	= 1, 2, 3, ... 

Then, one can determine -y and w from eq. 5.30 and 5.31. Since eq. 5.31 represents a 
standing wave whose amplitude is a at t = 0 and decays exponentially with time, this 
oscillation is similar to the mechanical system discussed earlier. Thus 

(5.35) k = 2pw 

Next, the disturbing force will be explicitly introduced. Since the role of edge waves 
in storm surges and resonant coupling to the atmosphere will be considered later in this 

(5.32) 

(5.33) 
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as 

to 

section, this disturbing force will be prescribed as an atmospheric pressure pulse moving 
with a uniform velocity V over the water body along the length of the water body. Note 
that in Chapter 4 solutions to essentially a similar problem using the method of character-
istics were discussed. The atmospheric pulse is assumed to be sinusoidal with a pulse 
length 2 1. The amplitude of the pulse is the pressure gradient (aPjax).,„ or simply AP. 

The external force Fs  in eq. 5.22 can then be written using the Fourier series 
representation as follows: 

AP  Th/ E  [ 
(5.36) 	Fs  = 	 el '  sin (k rl) sin (k rx) cos (k r Vt) 

IT p 

where 

k r  = 	r =  1, 2, 3, . . . 

The right-hand sides of eq. 5.24 and 5.25 then become 

0F, 	AP hl v, 	/ri \ 2 l 
— ax =  4— — 2, r[1 — (—) 	sin (k rl) sin (k rx) cos (k r i/t) 

P 	r=, 
(5.37) (v s 	AP hl v,  —at 4 — — 2, [ ( i•ii n j  si 

2 	
1 — 	n (kJ) sin (k rx) sin (k r17t) L J  

Wilson (1972) simplified the problem by considering only a general rth term in these 
Fourier summations and obtained solutions to eq. 5.24 and 5.25 by a trial of possible 
solutions: 

M r(t) cos (k rx) 
(5.38) 

qr  = r(t) sin (k rx) 

where M r(t) and IV r(t) must be determined, and the complete solutions can be written 

= E irk 
(5.39) 	r=1 

= E qr 
r= I 

Substituting eq. 5.38 into eq. 5.24 and 5.25 gives 

am, 	am, (rucy 
at 	at 	L 

aN, v aN, (riTcy m  
at ' — at ' ■ L I 

rl  (5.41) P r  =4 	 h 	[1 — (T I—
L

) 	sin (k rl) 
p L L 

This system is analogous to the mechanical system discussed earlier. To be able 
exploit the analogy, define 

(5.40) 

where 

M r =  Pr  cos (k r i t) 

Pr V  sin (k rVt) 
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/MC 
(Or 	 = k rc 

rmV  
= k r V 

(5.42) 
k r  = rir  

2Pcor  = K 

By analogy to the mechanical system, the forced oscillations M r  and Nr  can be written as 

P 

	

(5.43) 	Mr  = 	cos (o-r t — a) 
(g),- 

P r p,V 

	

(5.44) 	N, = 	2  sin 
(e), 

= 1[ 1  - (n 2 ]

2  + [2ec)f} -1/2  
2p(Y) 

tan a = 

From eq. 5.38 and 5.41-5.44, the contributions from the rth terms to the forced 
oscillations can be written (using subscript f to denote forced motion) as 

	

(5.46) 	(110,- = RcP r i.t cos (k rx) cos (crr t — a) 

	

(5.47) 	 RV(1), sin (k rx) sin (o-r t — a) 

where 

4-  R = LAP 
f:, g  

tp, sin 'rrtlir 

 r- (1 — 

, 	rl 
L 

Here, the quantity d), is an excitation amplification factor that varies according to the 
relative size //L of the pressure pulse (in the rth mode) with reference to the basin length. 
The relationship between //L and (13, is shown in Fig. 5.1. It can be seen that when 
//L = 1.125, the forced oscillation reaches the maximum possible amplitude, and mostly 
the fundamental mode is generated (i.e. r = 1). For //L =- 0.563, the second mode 
r = 2 has its maximum amplitude, although its amplitude will be less than that of the 
fundamental mode. The smaller the value of //L, the greater is the tendency for a large 
number of harmonic oscillations with small amplitudes to be generated. Each harmonic 
will have a maximum amplitude for a certain value of //L. 

(0-'1 — a) 

where 

(5.45) 

[i - (n1 

(5.48) 
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The free oscillations generated by the pressure pulse are 

(5.49) 	
= ar exp (-Pco r t) cos (k rx) cos ('/rt + E) 

cvy, exp (—Bo rt) 
(go), -= 

,  

Here the amplitude ar  and the phase angle E must be determined. 
The total solutions can be written as follows: 

= (9f)r 	(q0),- 

The amplitude ar  and the phase angle E can be determined from the following two initial 
conditions (i.e. before the pressure pulse starts to move over the water body): 

(5.51) 	1r =0and qr = 0tt t = 

From eq. 5.46, 5.47, and 5.49 - 5.51, (ar)o and Eo  can be determined from the following 
simultaneous equations: 

R ■ilmi, cos (k r1 + a) + (ar)o exp [P(i5)kr1] cos [(7) - Eo l = 0 

(5.52) 
"Yr  

Rilmi,V sin (kJ + a) + (ar) 0 (-k-r) exp [f3 WM] sin 7) - Es ] = 0 

where subscript 0 denotes the beginning of the fetch. 

kr 	
sin (k rx) sin (y r t + E) 

irk = (11f),. 	("rio)r 
(5.50) 
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(5.56) 

1 
— 243 

— 90° 

The solutions for (a,)0 and Eo  obtained from eq. 5.52 are relevant as long as the 
pressure pulse is over the water surface. During this stage there are free and forced 
oscillations. However, from the instant the pulse passes over the far end of the basin, i.e. 
t = (L + 1)IV, only free oscillations occur. Thus 

L +  

	

(5.53) 	Th. 	Tio  and qr  = qo  at t = v  

The free oscillations at the end of the fetch will be denoted by subscript L. Hence, during 
this free oscillation stage, (ar )L  and EL can be determined from the following two simulta-
neous equations: 

	

(5.54) 	R(1),.ii, cos [1(,.(L + 1) — a] + (a,)0  exp [ —13 (—c  )k (L + 1) Vr 

(L +  I) 
X cos 	 + eo l = (ar)L  exp [ p (c )k,(L + /)] cos 

p (L + 1) r 	
+ E] 

and 

(5.55) 	R i.tV sin [kr(L + I) — 	+ (a r )0  (;±) exp [ —13 (f7)1(,(L + I)] 

ry,. 	
r V 

(L  + /) 
X sin 	 + €0] 	( = (a )/ —) exp 	()Icr(L 	+ 1) ] k, 	V 

. 	+ I) 
sm 	

V 	+ EL 

When the speed V with which the pressure pulse moves is about the same as the 
velocity c with which a long gravity wave moves in the water body, then resonance occurs. 
That is, when V/c 1, eq. 5.45 gives 

Then from eq. 5.52: 

(ar )0  = 
243 exp (3k,/) 

Eo =- 90°  

Then from eq. 5.46, 5.47, 5.50, and 5.52: 

Rite r  I 1 

	

= 	— exp [— 13(,),(t + Ï7)]} cos (k rx) sin (corn 

(5.58) 
R41),(gh) 1/2  

	

qr  = 	2e 	{1 	exp [— 13(,),.(t + tii)1} sin (k rx) cos 4,1) 

during the interval — IIV < t < (L + I)IV. 
For this resonant case, the free oscillations after the pulse completes its traverse over 

the water body are given by the right sides of eq. 5.54 and 5.55. The parameters (ar )L  and 

Rcl), 

(5.57) 
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EL  have the following solutions: 

— exp [— f3k,(L + 1)]} 
exp [— pkr(L  + 1)] 

EL = 90°  

For t> (L + 1)1 V , the water body exhibits damped oscillations, which are given by 

R(1), 	 (L  + 1)] 1 
= 	{1 — exp [— r3k r (L + 21)]} exp — pw r  [ t 	v  

X cos (k,.x) sin (w rt) 
(5.60) 

R4.,(gh)u2
{1 	

(L  + 1)] 1 
20. 	exp [ f3kr (L + 20]} exp 	[3 wr  [ t 

X sin (k,..x) cos (tort) 

for t> (L +  1)/V.  
Wilson (1972) evaluated the above solutions for the following two sizes of the 

pressure pulse: (1)  1/L  =  1.125 for which I), = 1.62 is a maximum for the fundamental 
mode oscillation (r = 1) and (2) //L = 0.563 for which cP, = 0.80 is a maximum for r 
= 1 and 111.2  = 0.40 is a maximum for r = 2 in the second harmonic. 

In case 1, only the fundamental mode r = 1 is important and in case 2 the fundamental 
mode r = 1 and the second harmonic r = 2 are important (Fig. 5.1). 

The relationship between the dimensionless time Vt/L as abcissa versus amplitude 
of oscillation (in units of R) as ordinate is shown in Fig. 5.2 (for a definition of R see 
eq. 5.48). In this calculation p was taken as 0.0075. The resonance condition is 
V = c = "\/87,t. The results for cases 1 and 2 can be summarized as follows. Case 1 dealt 
with a larger pressure pulse, which took a longer time to cross the water body, and 
case 2 dealt with a smaller pulse and a shorter duration to cross the water body. For case 
1 type forcing, a strong uninodal oscillation is excited, which reaches its maximum 
amplitude a short time after the pulse traverses the water body. This uninodal seiche 
decays as the logarithmic decremental law of eq. 5.10. For case 2 type forcing, a strong 
binodal oscillation also appears, and at times this augments the uninodal seiche. However, 
this binodal oscillation disappears faster, and after some time only the uninodal oscillation 
remains. 

From the foregoing the following conclusions can be stated concerning excitation of 
seiches by pressure pulses. 

1)When the speed of movement V of the pressure pulse agrees with the phase velocity 
c of a free wave in the water body, resonance occurs and the dynamic amplification 
defined as [1, = 1/2 13 , can have large values. In Fig. 5.2, 13 = 0.075; thus, [L, -= 6.7. 

2) The size of the pressure pulse 21 relative to the distance L it traverses over the water 
body determines the response factor 4),.. In Fig. 5.1, for the fundamental mode, (Pr  can 
contribute an amplification factor of 1.62 when 11 L 	1. 

3) When the size of the pulse is not optimal for the maximum response of the water 
body, higher seiche modes also appear. 

Next, the magnitude of the pressure anomaly required to produce a seiche or surge 
of the amplitudes that occur in natural water bodies is considered: 

(5.61)  

(c4.11. = R2:r 
(5.59) 
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Fia. 5.2. Free and forced seiches induced by a traveling pressure pulse in a rectangular basin of uniforrn 
depth (at x = 0). (Wilson 1972) 

where 

Po  -= pressure anomaly 

(5.62) AP = maximum pressure gradient 
p'gH 

Po = 	 12 

where p' is the density of mercury and H is the pressure anomaly in terms of inches of 
mercury. 

From eq. 5.48, 5.61, and 5.62: 

(5.63) H = 67r —P —1 R L 

Taking p'/p = 13.6 and //L — 1, then 

(5.64) 	H = I.39R 

Here, H is in inches and R is in feet. In Fig. 5.2, the maximum amplitude of the seiche 
for //L — 1 is roughly 5R. If — 1 ft (0.305 m) (i.e. 5R = 1 ft or R = 0.2 ft), from 
eq. 5.64 the pressure anomaly required to produce this disturbance is 0.28 inches of 
mercury (10 mb). Note that the inverse barometer effect requires H = 1 in. for T1 = I ft. 

Next, some actual cases will be considered in which moving pressure fronts excited 
seiches. Proudman (1953) was probably among the first to invoke resonant coupling 
between a squall line and the gravity waves in the water on the coast of the United 
Kingdom to account for certain water level disturbances. However, in the hydrodynamic 
context, Lamb (1945) recognized such a possibility and discussed the role of the dynamic 
magnification p, (see eq. 5.45 and assume that the damping coefficient 13 is zero). 
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TABLE 5.1. Seiches in typical lakes: observed modes of oscillation. (Wilson 1972) 

Fundamental 	Period ratios (T„/T 1 ) for higher modes at n 
mode 

Lake 	 Location 	Ti (min) 	2 	3 	4 	5 	6 

Geneva 	 Switzerland 	 74.0 	0.480 
Constance 	German- 

Swiss border 	55.8 	0.700 	0.503 
Garda 	 Italy 	 42.9 	0.666 	0.507 	0.348 	0.281 	0.230 
Loch Earn 	Scotland 	 14.5 	0.557 	0.414 	0.275 	0.244 	0.198 
Loch Treig 	Scotland 	 9.2 	0.560 
Loch Neagh 	Ireland 	 96.0 	0.718 	0.468 
Ontario 	 U.S.A., Canada 	289.0 
Erie 	 U.S.A., Canada 	858.0 	0.632 	0.499 	0.292 	(0.262) 
Michigan- 

Huron 	 U.S.A., Canada 	2700.0 
Michigan 	U.S.A. 	 543.0 	0.578 	0.411 	0.344 	0.278 	0.222 
Superior 	 U.S.A., Canada 	480.0 
Tanganyika 	Africa 	 4.5 	0.511 	0.378 
Chiemsee 	S. Bavaria, 

Germany 	 41.0 
Vâttem 	 Sweden 	 • 179.0 	0.542 
Ktinigsee 	Germany 	 10.6 
Yamanaka 	Japan 	 15.6 	0.677 	0.350 
Chiuzenji 	Japan 	 7.7 
Baikal 	 USSR 	 278.2 
Sea of Aral 	USSR 	 1368.0 
Sea of Azov 	USSR 	 1470.0 	0.603 	0.522 
George 	 Australia 	 131.0 
Baltic Sea- 

Gulf of Finland 	Europe 	 1636.0 

EXAMPLES OF SEICHES GENERATED BY ATMOSPHERIC DISTURBANCES 

1) Weather front over the Gulf of Mexico, March 17-19, 1952. A weather front 
traveled eastward across the northern coastline of the Gulf of Mexico followed by large 
oscillations at several locations. At the mouth of the Mississippi River in Southwest Pass, 
at Burrwood a large surge occurred. The weather front traveled with a speed V greater than 
26 mi • Fr' (41.5 km •11 -1 ) across this delta. According to Wilson (1972), resonant 
air- water coupling occurred between Southwest Pass and the main Louisiana coastline. 
Wilson (1957b) suggested that the fundamental mode and the second mode with periods 
of 3.5 and 1.8 h are present in the Burrwood marigram. The existence of a low-amplitude 
third mode probably accounts for the sharpness of the first wave. From the decay of the 
fundamental and the first harmonic it was deduced that f3 = 0.075. Wilson (1972) 
deduced, using the equations discussed earlier, that the theoretically expected amplitude 
of the fundamental should be 0.58 ft and the second and third modes together should be 
0.35 ft. The marigrams support this conjecture. 

2) Squall line over Lake Michigan, June 26, 1954. This case will be discussed in 
detail later. 

3) Storm surge resurgence off the coast of New York, August 30-September 1, 
1954. Hurricane Carol generated a surge along the east coast of the United States. A train 
of long-period surges were also produced with periods of the order of 7 h. This activity, 
mainly between Atlantic City and New York, was identified as edge waves by Munk 
et al. (1956). 
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44-45 	40 32-38 22-25 

180 
45-57 

295 
41-44 
69-72 

28 
156 

21-24 
103 

36-39 
54 

TABLE 5.2. Coastal seiches in typical gulfs, bays, and harbors: observed modes of oscillation. (Wilson 1972) 

Gulf, bay, or 	 Observed periods of oscillation (approximate) 
harbor 	 Location 	 (min) for fundamental higher modes 

St. John Harbor 	Bay of Fundy, 
Canada 	 74 	42 

Narragansett Bay 	Rhode Island 	 44 	46 
Vermillion Bay 	Louisiana 	 180 	120 
Galveston Bay 	Texas 	 75 
San Pedro Bay 	Los Angeles, CA 	72-84 60-65 44-45 35-40 
San Francisco Bay 	California 	 116 	47 	34-41 	24-27 
Monterey Bay 	California 	 60-66 36-38 	28-32 22-24 
Hilo Bay 	Hawaii 	 20-25 	10 	7 
Guanica 	 Puerto Rico 

Caribbean 	 45 
Lerwick 	 Scotland 	 28-30 
Port of Leixoes 	Near Porto, 

Portugal 	 20-25 	13-15 	3-5 
Bay of Naples 	Italy 	 48 	17-18 
Gulf of Venice- 

Gulf of Trieste 	North Adriatic Sea 	210-240 	60 	40 	10 	5 
Euripus, Gulf of 

Talanta 	Greece between 
Is. Euboe and 
mainland 

Algiers 	 Algeria, North Africa 
Casablanca 	Morocco, North 

Africa 

South Africa 

57 42-52 	35 20-25 	16-17 

28-35 24 — 27 
17-19 
16 — 20 	10 — 15 

Table Bay, 
Capetown 

Algoa Bay, Port 
Elizabeth 

Tamatave 
South Africa 
Madagascar 

(Malagasy 
Republic) 	 15 	8-10 	1-2 

	

105 	60 
20-26 

	

35-40 	18-20 

	

58-62 	38-43 	25-30 	18-21 	14-17 	10-11 

69-75 

Tuticorin, Gulf 
of Mannar 

Bay of Hakodate 
Bay of Aomori 
Bay of Ofunato 
Bay of Nagasaki 
Wellington 
Lyttleton 

India—Ceylon 
Hokkaido, Japan 
Honshu, Japan 
Honshu, Japan 
Kyushu, Japan 
New Zealand 
New Zealand 

4) Seiches and barometric fluctuations, Loch Earn, Scotland. A classic study of this 
problem was done by Chrystal (1906). He showed that wind alone cannot account for the 
seiches, and atmospheric pressure gradients should also be considered. 

5) Pressure pulse over San Francisco Bay, November 21, 1910. Marmer (1926) 
studied the small seiches produced. 

6) Eastward moving pressure fronts generate seiches in the Gulf of Venice and the 
Gulf of Trieste. Invoking resonant air —water coupling, Greco et al. (1957) accounted for 
several of the seiches produced. 

7) Seiches in Table Bay, Cape Town, South Africa. See Wilson (1972) for details. 
8) Atlantic Ocean Islands. Cartwright (1960), Donn et al. (1954), and Donn and 

McGuinness (1959) discussed seiches at Lerwick in the Shetland Islands and at 
St. George's Harbour (Bermuda). 
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FIG. 5.3. Resonance characteristics of a system with a single degree of freedom. (Raichlen 1966) 

The periods of seiches in selected lakes are listed in Table 5.1 and the periods of 
seiches in selected gulfs, bays, and harbors are listed in Table 5.2. 

HELMHOLTZ MODE 

Following mechanical and acoustical analogy, the so-called Helmholtz mode will be 
defined and then a hydrodynamic explanation invoked. With reference to Fig. 5.3, the 
equation of motion for the mechanical system shown can be written as (Raichlen 1966): 

(5.65) M'., + c.i + kx -= Fo  cos (um) 
where M is the mass of the oscillating body, c is a linear damping coefficient, k is a spring 
constant, and (of  is a (circular) forcing frequency; dots denote differentiation with respect 
to t. 

The following steady-state solution can be assumed: 

(5.66) 	x = X cos (o)1t — .1)) 

where X is the maximum displacement and cl) is a phase angle between the input and output 
functions. The parameters X and .1) can be made nondimensional as follows: 
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X 	1  (5.67) f 	 (2  

44/  

(5.68) 	tan (1) = 
1 — - 

cof) 2  

where 

Fo  
T  

co, (

Ii)"2 
m  

C  
2A1o4 

Figure 5.3 represents graphically eq. 5.67 and 5.68. First, consider the behavior of 
X/X„. For the case of small frictional dissipation, when the frequency is approximately 
equal to the undamped natural frequency of the system, the forcing function X, is greatly 
amplified. As the damping gets bigger, the difference between the resonant frequency 
and w„ increases. For low values of the frequency ratio, the amplitudes of the input and 
the output are approximately equal. However, for frequencies considerably above the 
resonant frequency, the response decreases substantially and the maximum displacement 
of the mass approaches zero. If the damping is zero, eq. 5.67 gives infinite amplitude at 
resonance. However, this result, which is obtained from the linear theory, must be 
modified at great amplitudes to include the influence of the nonlinear effects. 

Next, consider the behavior of the phase angle with respect to the forcing frequency. 
For low values of the frequency ratio, the forcing function is mainly in phase with the 
output displacement, and at high values they are 1800  out of phase. At resonance the phase 
angle becomes 90°, and hence, the force F0  cos (wft) is in phase with the velocity Y. Thus, 
when the mass is going through its zero-displacement position, a maximum force is 
impressed upon the system. 

The number of degrees of freedom of a system is the number of independent co-
ordinates that are required to describe the motion of the system. Raichlen (1966) cited the 
vibration of a clamped circular membrane as an example of a system possessing infinite 
degrees of freedom, whereas the spring— mass —dashpot system considered here is an 
example of a system with a single degree of freedom. 

In acoustics, an example of a single degree of freedom system is the so-called 
Helmholtz resonator, which consists of a cavity of volume V connected to a tube of length 

and area of cross-section A. The equation of motion for this system is: 

(5.70) MY + r + —x --= P cos (wft) 

where x is the volume displacement, c is the wave velocity, r„ is the radiation loss 
coefficient, and 

2 c.of/(e)„ 

(5.69) 
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p/ 
M -=•• —A 

(5.71) 
V 

B  — pc 2  

The natural frequency of the Helmholtz resonator is given by 

A 
(5.72) 	co„ 	c -\1 /  

Since eq. 5.70 and 5.65 are similar, it can be seen that when the frequency is equal to co„, 
the ratio of the volume displacement to the applied pressure will be 00 when ra  is zero. 
Also, the ratio of the volume displacement to the applied pressure varies, as shown in 
Fig. 5.3. 

Next, consider the Helmholtz mode in the context of hydrodynamics (Miles (1971) 
used the term "Helmholtz mode," Platzman (1972) used "co-oscillating mode," and Lee 
and Raichlen (1972) referred to it as the "pumping mode"). Basically, Helmholtz reso-
nance represents the balance between the kinetic energy of water flowing in through a 
narrow connecting channel and the potential energy from the rise in the mean water level 
within the harbor (Freeman et al. 1974). It is an additional gravitational mode of a 
substantially longer period than the fundamental free oscillation, as can be seen below. 

To conceptualize the Helmholtz mode, Platzman (1972) presented the following 
argument. Suppose that at the mouth of a rectangular bay an adjustable barrier exists and 
that this barrier is gradually moved from the two sides of the bay to the center, completely 
closing off the bay. The open modes with periods initially of the form 2T/(2n — 1), 
n = 1, 2, 3, . . ., will be transformed continuously into the closed mode periods of T I n, 
n = 0, 1, 2, . . . . It is obvious that the fundamental mode for the open bay transforms into 
the zeroth mode for the closed basin, and as the barrier closes, this period approaches 00. 
For small openings, the period of the Helmholtz mode is less than 00 but greater than the 
period for a completely open bay. Platzman (1972) showed that rotation changes the period 
of the Helmholtz mode by, at most, 3%. 

In section 7.1, how the Helmholtz mode in Goderich Harbor (Lake Huron) con-
tributed to an amplified storm surge will be considered in detail. The classic theory for the 
Helmholtz mode can be applied only to a single channel harbor. Freeman et al. (1974) 
extended this to a harbor (or basin) with multiple channels (or openings). The dissipative 
forces (due to the eddy viscosity of the fluid and to the energy radiated from the mouth) 
are ignored. These forces affect the amplification factor at resonance and will shift the 
resonant frequency slightly. The solution developed by Freeman et al. (1974) for the 
frequency co o  is 

n 	Si I/2 

(5.73) 	co o  = 	
() 

E - rad • s' 
A Li  

where g is gravity, A is the surface area of the harbor, Si  is the cross-sectional area of the 
ith channel, and L, is the length of the ith channel. 

Miles and Munk (1961) introduced the so-called harbor paradox in which they 
showed that narrowing of a harbor mouth (relative to the other dimensions) diminishes the 
protection from seiching. For a quantitative estimation of this in terms of the sharpness or 
Q at resonance, the reader is referred to their paper. Miles and Lee (1975) used equivalent 
electric circuit analysis to study this problem. Garrett (1970) showed that the harbor 
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iudn=0 

0 

FIG. 5.4. Defant's (1961) distinction between independent and cooscillating tides. (a) Independent tide; (b) 
cooscillating tide; (c) gulf G with mouth M and coastline B set into the coastline C of ocean O. (Garrett 1975) 

paradox, as originally postulated by Miles and Munk (1961), only holds for the Helmholtz 
mode. 

OPEN BOUNDARY CONDITIONS 

Gan•ett (1975) considered the problem of the proper boundary conditions to be used 
when calculating the co-oscillating tide between an ocean and a gulf. He also showed that 
the traditional method (e.g. see Defant 1961) is incorrect. The traditional method of 
separating the co-oscillating and independent tides in a gulf is illustrated in Fig. 5.4. The 
independent tide is due to the direct action of the astronomical forces on the gulf and is 
obtained as the solution of the tidal equations, including the tide-generating forces with 
the boundary conditions of zero normal velocity over the gulf's boundary and with the 
elevation at the gulf's mouth equal to the observed tide. 

With reference to an ocean and gulf, as shown in Fig. 5.4, the equations of motion 
and continuity can be written as 

a û (5.74)  

(5.75) —
aZ + v • (hû) = 0 at 

Here, û(x, t) is the current and (x, t) is the water level deviation. The depth h and the 
Coriolis parameter f can vary with x, and F = X(x)ii is a linear bottom stress law. Let L 
be the potential or equilibrium tide; then, ,g•G' t e  is the tide-generating force. On the 
coastlines B and C of the gulf and ocean (Fig. 5.4) the normal velocity û • n = O. Also, 
the normal mass flux hû • n and elevation must be continuous across the mouth M of the 
gulf. Assume periodic solutions of the following form: 

û = R e fi(x)e' 
(5.76) 	„ 

= R(x)e10r 
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where 

1, (5.81) 

1, (5.82) 

The periodic forcing is represented by 

(5.77) 	Z e  = ReL(x)e' 

Then, from eq. 5.74-5.77: 

(5.78) icou  +f X u + gVg — 	+ Xu = 0 

(5.79) 	+ V • (hu) = 0 

Next, the solutions for u and will be split into two parts: um, 0 and u (2) , (2) . Let 
subscripts G and 0 represent gulf and ocean, respectively. The solutions to eq. 5.78 and 
5.79 with the boundary condition um • n = 0 on M, B, and C are um and (1) . These 
solutions (with subscripts G and 0) refer to the tide that would be generated in the gulf 
and ocean when they are assumed to be separated by a thin rigid wall. Here, n is the 
outward pointing normal to the gulf, and let S be the distance measured along M. The 
solutions of eq. 5.78 and 5.79 without the forcing term el, and with the boundary 
conditions u (2)  • n =  0 on B and C and hum • n = F(S) on M are um and (2) . Here, F(S) 
is a function to be determined; since hu • n is continuous, this function is the same for the 
gulf and the ocean. 

The total solution of eq. 5.78 and 5.79 is given, then, by um + u (2)  and 0 + 
The condition that the elevation is continuous across the mouth of the gulf can be written 
as 

a)  + g) 	(6! ) 	ô)  on M 

Note that ,(1)  and Con  are determined entirely from the geometry and the tide-generating 

force but e) and e)  are dependent on the flux F(S) on M. 
The next problem is the determination of F(S). For this, assume that hu (2) • n 

8(S — cr) produces water levels G(S) = KG (S, o-) and WS) =- — Ko (s, cr) on the gulf 
side and ocean side of the mouth, 8(5) being the Dirac delta function. Then eq. 5.80 
becomes an integral equation for the current F(cr): 

(I) e(S) + 	KG (S, o-) + F(cr)do-  = 	(S) — 	KG (S, Œ)F(Œ)dŒ 

Write 

F(a) =FG(Œ) + Fo(œ) 

[Ko (S,  ci)  + KG(S, 0-)]Fo(0-)dcr = — () ( ,S) 

[Ko (S,  ci)  + KG(S, cr)]Fo(0-)do-  = a ) (S) 

The mass flux F(ci) produces a response um and (2) . For the water level write 
(2) 	(2) (5.83) 	(x) — GG (x) +- x) 

where  1 J  is the elevation produced in the gulf due to mass flux FG (S) at the mouth and 

a(2) ( 

C2)  is due to F o(S) GO -- 
Garrett (1975) developed the formal solutions using the impedance approach. These 

solutions will not be discussed here. To summarize, the tidal response in the gulf can be 

(5.80) 
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interpreted as follows, in terms of the forcing functions. (1) Direct astronomical forcing 
produces separate responses in the gulf and the ocean, when it is assumed that the mouth 
of the gulf is closed. (2) The water levels for the gulf and the ocean will be different at 
the mouth of the gulf. To balance this difference, a mass flux F(S) is needed, and this is 
obtained as the solution of eq. 5.81. (3) This mass flux F(S) produces a response over the 
gulf and the ocean. 

In terms of the response, the tide in the gulf can be assumed to be made up of the 
following parts: (i) response Z,(1)  of the closed gulf to direct forcing, (ii) response Z,(2), of 
the gulf associated with the mass flux FG (S) in the mouth required to balance  nS), and 
(iii) response Z (G20)  of the gulf associated with the mass flux in the mouth required to balance 
e(S). 

Although Garrett's work is of interest, like many other analytical works, it is not easy 
to use in practical situations. More comprehensible and amenable to practical application 
is the paper by Heaps (1975), which will be considered in detail below. Heaps applied his 
results to resonant oscillations between Lake Michigan and Green Bay. Observations 
showed that long-wave disturbances in Lake Michigan acting at the mouth of Green Bay 
set up resonant co-oscillations in Green Bay with periods of 9.0 and 12.4 h. Heaps 
attributed these to the fundamental mode of Lake Michigan and the M2 tide, respectively. 
The period of the fundamental mode of Green Bay is 10.8 h and since this lies between 
9.0 and 12.4 h, conditions for near-resonance exist in Green Bay. 

Let Z be the actual (observed) water level at the mouth of Green Bay and let a portion 
of it, namely Z, be attributed to disturbances from Lake Michigan. Then Z — Z is due to 
the response of Green Bay. Here, the assumption is made that the presence of Green Bay 
has no effect on Z. One can visualize two distinct cases here. In the first case, the water 
level is prescribed at the mouth of Green Bay (i.e. assume a node at the mouth as is 
traditionally done) and its resonance periods are calculated. In the second case, the total 
system is considered, i.e. Lake Michigan together with Green Bay, and the resonance 
periods of the total system are considered. The periods calculated for both cases will agree 
only when each mode of the total system has a node at the mouth (a node is a location 
where the vertical water level deviation from the equilibrium position is zero). 

Observations show that the period of the fundamental mode of Green Bay (connected 
freely with Lake Michigan) is 10.8 h. Numerical models for the period of the fundamental 
mode of Green Bay (assuming a node at the mouth) gave a period of 9.75 h. These results 
will now be interpreted from a mathematical point of view. 

The equation of motion and continuity equation for free oscillations in a narrow 
rectangular gulf of length / and uniform depth h are, after ignoring the friction and 
nonlinear terms, 

(5.84) —
au 

 = -n 
 

ar 	ax 

(5.85) 	h  

au 	a 
—=  — ax 	at 

The condition of perfect reflection at the head requires 

(5.86) 	u = 0 at x = 0 

The solutions for the rth mode of free oscillation can be written as 
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(5.88) 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

u = U(x)e'ffr` 
(5.87) 

= Z(x)e'ffr i  

where 

Z =  H cos (Œr )  

U -=- — ( g ) H sin (11,-) 

crr l 

c V gh 

The period of the rth mode is given by 27/o-r . Here, H is a constant that denotes the 
amplitude of at the closed end. 

Taking the real parts in eq. 5.87 and 5.89, it can be seen that high water occurs at 
x = 0 at t = 0. From eq. 5.88 and 5:89: 

ihB r  
(5.93) — = — at x / u 	c 

with 

	

(5.94) 	B r  = cot ot, 

Here, B r  is proportional to the impedance of the gulf evaluated at cr„. From eq. 5.93 it can 
be seen that equating B r  to zero is the same as 

	

(5.95) 	= 0 at x = / 

(i.e. there is a node at the mouth). From eq. 5.94 the frequencies Œ,(r = 1, 2, 3, ...) are 
given by cot a, = 0. Thus 

(5.96) 	a, = (2r —0'1- 

From this 

	

(5.97) 	cr, = (2r — 1) 

The periods are given by 

2ir 

	

 
(5.98) 	Tr 	

4/ 	1  
Œr 	c (2r — 1) 

There is no a priori reason to assume that the free oscillations of Green Bay have a 
node at the mouth. Thus, in general, B r  is not zero. Assume that it is positive. Then from 
eq. 5.93 it can be seen that leads u by a quarter period at x = 1, and from eq. 5.94: 

(5.99) 	a, -= (2r — 1) —  tan -I  B r  
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41/c 
(5.101) Tr  = 

2r — 1 — —
2 tan -1  B, 
'Tr 

Then 

(5.100) o-,. = (2/. — 1) .1.--  - 	 tan-1  B, 

or 

These results tend to the earlier ones if B r  --> 0. 
Comparison of eq. 5.98 and 5.101 shows that the periods T, are greater when B, is 

positive. In other words, when a node is assumed at the mouth, the periods of free 
oscillation are smaller than those when a node is not assumed at the mouth. For Green Bay 
the corresponding periods for the fundamental mode are 9.75 and 10.8 h, respectively. For 
the Bay of Fundy, for example, the corresponding periods are 9.05 and 13.3 h. 

Thus, the condition 5.93 incorporates the influence of Lake Michigan on Green Bay. 
Here, one assumption that was made is that B, is real (which is a necessary condition for 
free oscillations). Complex B, represents damped oscillations, the damping agent being the 
external water body (Lake Michigan in this example). 

Heaps (1975) also considered the forced response of a gulf from the outer sea and 
showed that the surface elevation at the mouth may be equated to the elevation of the 
incident wave only when B, = 0. Since, in general, B, 0, prescribing the water level 
at the mouth cannot represent a totally external input, since such a prescribed water level 
contains a contribution from the gulf's response. 

NUMERICAL MODELS FOR RESONANCE CALCULATIONS 

Murty (1977) discussed numerical methods for resonance calculations in complex 
one-dimensional systems, such as coastal inlets and rivers, and semianalytic techniques for 
two-dimensional systems, such as bays and gulfs. The discussion below will be confined 
to numerical techniques for two-dimensional systems. First, smaller water bodies such as 
harbors will be considered where the earth's rotational effects are not significant. Then, 
how to include rotation will be considered. Finally, certain examples will be given. 

Typical examples of resonance calculations in two-dimensional basins (assuming a 
node at the mouth) without including the effects of rotation are given in Loomis (1970, 
1972, 1973). In this technique, one begins with the linear shallow-water wave equation: 

1 (924)  

(5.102) V • (//Vc1)) = 
 

where ci) is the velocity potential and h(x, y) is the water depth. The boundary of the water 
body is taken in a general way so that two types of boundaries can exist: 

4. 

(5.103) — = 0 on B 1  an 

and 

(5.104) ci) = 0 on 13 2  

Substituting 
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hy(i,j) 
• • 	• 	 • —À  

hx(i,j) 	rib(i,j) 	hx(i,j+1) 
• • 	 • 	+ Ay • 

(a) 	(b) 	(c) 
 hy(i+1,j) 	
(/)(i,j+1) Fit—Ax 	I  lei 

• • 	• 	 • 
FIG. 5.5. Spatial relations of hx(i, j), hy(i j), and ti)(i, j). (Loomis 1973) 

(5.105) (I)(x, y, t) =  e°'4 1  (x,  y) 

into eq. 5.102 gives 

(5.106) V•(hV(I),)e l' = 

For convenience, omit the subscript on clh, divide by e' , and define X 	w2 /g to give 

(5.107) V • (hVcr)) =/ute 

Note that a value k for which there is a nonzero solution 11)(x, y) is an eigenvalue and the 
corresponding 4)(x, y) is an eigenfunction. The grid is shown in Fig. 5.5. Note that the 
bathymetric specifications hx(i, j) and hy(i, j) are somewhat unconventional. In writing 
the finite-difference from of eq. 5.107, the following form is used: 

(5.108) 	(h-a±-1) ) = 	hx(i '  j + 1)[(1)(i ' + 1) 	(1)(i, j) ] ax ax 	àx 	 AX 

— hx(i, j)[ (1)(i, 	i) 	— 1) 1} àx 
The first square-bracketed term on the right-hand side is a differencing centered at point 
c of Fig. 5.5, and the second square-bracketed term is centered at point a so that the entire 
right-hand side is centered at point b. Similar arguments can be used for the y derivative. 
In this scheme 

(5.109) h ax-
cic' 
 = hx(i, j)

ri, 	ck(i,  
àx 

is centered at point a. The boundary condition aliVax = 0 at point a can be affected by 
taking hx(i, j) = 0 at a so that eq. 5.109 is zero. Hence, at each point where hx(i, j) = 
0 and/or hy(i, j) =  0, eq. 5.109 or a similar relation for halVay will be zero so that on 
the boundaries of the water body, equating h to zero gives the same difference equations 
as though 19(1)/ax and/or all)/ay were set to zero. This arrangement takes care of the 
B 1 -type boundaries. Boundaries of B2 type where cb(i, j) = 0 are handled differently. 

The finite-difference form of eq. 5.107 is 

	

hx(i, j + 1) 	 hx(i, j) 	 hy(i + 1, j) 
(5.110)

(àx)2 	
j + 1) + (àx)2 
	(i 	1) + 	(àx)2 	

+ 1, j) 

	

hY(i, j) 	 [hx(i, j + I) + hx(i, j)  
+ (Ki 

hy(i + 1, j) + hy(i,  
= (Ay) 2 
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This can be rearranged in the form 

(5.111) ad (i, j + 1)45(i, j + 1) + 	j — 1)4)(i, j- 1) + 	+ 1, j)(1)(i +1, j) 

+ 	— 1 , ,j)(i)(i — 1, j) + 	MU, 	= X(1)(i, j) 

Let ih>  represent a vector with components ck(i, j) and let A represent the matrix of 
coefficients. Then eq. 5.111 becomes 

(5.112) Aci) = À.4; 

Although eq. 5.111 gives the impression of double-indexing for (I) and four indices for A, 
a single index /(i, j) = 1, 2, ... , n can be defined so that a single distinct integer could 
be assigned to each (i, j) using capital letters for the new indices. Thus, if (i, j) <—> I and 
(i, j + 1) J , then 

(5.113) 	j+ 1) = an  

which will be the coefficient of (1)., in the /th equation. The coefficient of (1) /  in the Jth 
equation will be an . It can be shown that 

nij  = ajj  

so that A is symmetric, which can be deduced from eq. 5.110. 
To take care of a boundary condition of the type (1) j  = 0 one can assign to those 

boundary grid points an index J > n so that when the n X n matrix A is constructed, those 
A11 values will lie outside the matrix, which in essence makes 

(1)., = 0 

Since A is symmetric, the eigenvalues of eq. 5.112 will be real. Thus, the solutions 
are X 1 ,;  À. 2 ch 2 ; 	; X.n,(1)„ and the normal mode frequencies are given by 

co 	\/—gXi 
(5.114)  t  — 211- 	

i = 1, 2, ... , n 
21-r 	' 

The vectors cie i , i = 1, 2, ... , n, describe the envelope of the normal mode. 
Next, numerical models for resonance calculations when the Coriolis terms are 

included will be considered. To this author's knowledge, such calculations were originally 
made by Platzman (1972), and some modifications and alternate techniques were sug-
gested by Hamblin (1972) and Rao (1974). Here, the so-called "resonance-iteration" 
method introduced by Platzman will be briefly discussed. 

The equations of motion and continuity for an inviscid, homogeneous fluid are in the 
vector form 

av (5.115) 	= —gVg — 	— 21ZXV 

(5.116) —
at 

= —V•hV 

where h is the fluid depth, g is gravity, 	is the deviation of the water level from its 
equilibrium level, V is the horizontal velocity of the fluid, V is the horizontal gradient 
operator, and n is the vertical part of the earth's rotation vector (i.e. it is equal to the 
earth's rotation speed multiplied by the sine of latitude multiplied by the vertical unit 
vector). In the above equation, gVZ is the tidal force. 
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For convenience, a matrix column a (, V) is defined. Then eq. 5.115 and 5.116 
become 

(5.117) 

where 

aa 	. = t2(a — a) 

i
r 0 	V h 
gV 

à = ( , 0) 

The boundary conditions considered here are of the adiabatic type, i.e. normal component 
of 

(5.118) hV = 0 

or 

(5.119)  l = 0 

These boundary conditions do not permit flux of energy into or out of the region at any 
time. Condition 5.118 applies to solid boundaries and condition 5.119 is used for the 
openings. 

The properties of the operator 2 are determined by the scalar product of two arbitrary 
vectors a' and a: 

(5.120) {a', a} = f 	+ hV'V)dS = 0 

where dS is an area element and the integration is carried out around the boundary. It can 
be shown that the system 5.117-5.119 is self-adjoint and hence, the eigenvalues of Y are 
real. If these eigenvalues are denoted by cr and the corresponding eigenvectors by 
A =- (z, V), then 

(5.121) YA =  ŒA  

Then Ae'° is a normal mode solution of eq. 5.118 with  ii  = 0. 
Noting that Y is purely imaginary, real representation of the normal mode with 

frequency Icri is 

Ae t'l ± Me' 

where A* is the complex conjugate of A. 
The scalar product of A* with each side of eq. 5.121 gives the primitive Rayleigh 

quotient: 

{A*, YA } 
(5.122) o-  = 

{A*, A} 

The numerator and denominator are 

{A*, 2A} = i f [gz*V • hV + hV* • (gVz + 211XV)]dS 

{A*, A} = f (glzI 2  + hlvi2 )ds 
In using eq. 5.122 in estimating  ci  from the approximation to A 	(z, V), one can take 
in principle any z and V that satisfies the boundary conditions. Other constraints are the 
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kinematic and dynamic parts of eq. 5.121, which are, respectively, 

(5.123) o- z = iV • hV 

(5.124) (o• — 211iX)V = igVz 

The parameter z can be explicitly expressed in terms of V in the kinematic part; the 
dynamic part can be manipulated to express V explicitly in terms of z: 

cr V = iFgVz 
(5.125) 

F 
	(i

i
j 

[ i 	(2 x ] 

0- 2 	 0- 

The operator o-  — 2ftiX is nonsingular except for the trivial case when cr and SL are zero. 
Hence, in the operator F, the latitudes (if any) where 412, 2  = o-2  are only apparent 
singularities. 

Irish and Platzman (1972) pointed out that three alternatives are possible for the use 
of the Rayleigh quotient. (1) The kinematic and dynamic constraints are not used. Then 
the relevant operator is 2 in eq. 5.117. The normal mode frequencies o-  are identical to 
the eigenvalues of this operator and hence are equal to the stationary values of the 
corresponding Rayleigh quotient 5.122. (2) The dynamic constraint is imposed and the 
velocities are eliminated in the traditional way. Then the relevant operator is the second-
order Laplacian tidal operator and its spectrum is parametrically dependent on o- . Then the 
Rayleigh quotient becomes a variational statement, which can be solved explicitly for o-
only for the case of uniform depth. (3) The kinematic constraint is imposed. Again, the 
relevant operator is of second order with a spectrum parametrically dependent on cr. In this 
case, the Rayleigh quotient becomes an explicit equation quadratic in o-  with coefficients 
that are homogeneous quadratic functions of the particle velocities or displacements. 
Platzman (1972) used the Richardson lattice for space discretization and a leapfrog scheme 
for time discretization. Murty and Taylor (1975) computed two-dimensional free oscil-
lations of Georgian Bay (on Lake Huron), Green Bay (on Lake Michigan), and Ched-
abucto Bay (in Nova Scotia). However, the method used here is not as elegant as that of 
Platzman (1972) but is more straightforward and can be used only when the frequencies 
of the gravitational modes and those of the rotational modes are well separated. 

The free oscillations (normal modes) of any water body can be conveniently classified 
into gravitational and rotational modes. The gravitational modes owe their existence to 
disturbances of the mass field, whereas the rotational modes primarily depend on defor-
mations of the potential vorticity (Platzman 1974). A spectrum of gravitational modes 
would exist in the absence of Coriolis force, and similarly, a spectrum of rotational modes 
would exist in the absence of gravity. Gravitational modes cluster at the short-period end 
of the spectrum and rotational modes cluster at the long-period end. 

Identification of a given mode (whether it is of gravitational or rotational type) can 
be made on the basis of several factors (Platzman 1975). The distribution of the periods 
provides some basis for identification. As the typical length of the disturbances (that 
excites these modes) increases, the period of a rotational mode will decrease and the period 
of a gravitational mode will increase. Since the length scale of the water body is an upper 
limit of the length scale of the disturbance, there is a limiting minimum value for the 
rotational mode periods and a limiting maximum value for the gravitational mode periods. 

Murty and Taylor (1975) used the time-dependent two-dimensional equations of 
motion and continuity and solved them numerically. For the basic condition for calculating 
the free oscillations, they invoked the standard (but not strictly correct) condition of zero 
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surface elevation at the mouth. The free oscillations were excited by applying a wind stress 
for some length of time over the bay. The resonant frequencies were abstracted from the 
numerical model output by spectrally analyzing the computed water level at selected 
locations in the bay. One disadvantage of this technique is that all the modes may not 
systematically be identified. However, the results for Green Bay and Georgian Bay agree 
with the results of other calculations. Tronson (1975) calculated the normal modes of the 
South Australian Gulf System. 

Heath (1975) calculated the normal modes of Lake Wakatipu in New Zealand. One 
very interesting feature is that the most energetic mode is not the fundamental but the 
second one. Quoting from Heath (1975, p. 235): 

One reason generally given for most of the seiche energy in a lake being in the 
fundamental mode is that this mode has the longest wavelength and is therefore less 
affected by scattering than the higher order modes. It can be shown by Fourier 
decomposition of the initial shape of the lake level that in a unidirectional lake most 
of the seiche energy might also be expected to be initially in the fundamental mode. 
However, further examination of this method of generation indicates that this dog-leg 
shaped lake might respond like three uni-directional lakes acting separately with the 
elevation distribution of the fundamental mode in the two meridional legs being similar 
to that of the second mode in the entire lake. 

KELVIN WAVES, SVERDRUP WAVES, AND POINCARÉ WAVES 

There are classes of normal mode solutions with special proPerties that have been 
referred to as Kelvin waves, Sverdrup waves, and Poincaré waves.These wave types have 
been frequently invoked to explain the tidal phenomena in water bodies. For an excellent 
review on this topic, see Platzman (1971). Other relevant works are Defant (1961), 
Proudman (1953), Voyt (1974), and Leblond and Mysak (1978). Simons (1980) has given 
a rather concise summary, and this discussion will essentially follow his line of argument. 

Earlier, the gravitational and rotational modes were introduced, also referred to as 
oscillations of the first class (OFC) and oscillations of the second cfass (OSC). It was also 
pointed out that OFC are motions with large divergence, whereas OSC are essentially 
nondivergent. For introducing the concepts of different types of wave motion mentioned 
here, discussion begins with the linearized version of the vertically integrated equations, 
and these will be applied to a rectangular basin of uniform depth: 

au — — f V = c 2  — a t 	ax 

av 
(5.126) —

at 

+ fU = c2  

aTi au av 0  
at 	ax 	ay 

where U and V are the x and y components of the volume transport, 11 is the deviation of 
the water level from its equilibrium position, f is the Coriolis parameter, and c 2  = gD 

where D is the unform water depth. 
Assuming a time factor eir" where o-  is the frequency and eliminating U and V from 

eq. 5.126 gives the wave equation 

(5.127) (cr 2  — f 2),,
1 
	c 2V21,1  = 
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The boundary condition of zero normal transport to a boundary can be stated as 

(5.128) f— + io- - = 0 as 	an 

where S and n are the coordinates along and perpendicular, respectively, to the wall. 
Equation 5.127 can be satisfied by 

exp [i(kx + ly)] 

where the frequency  o  is given by 

(5.129) u 2  

For the nonrotating case, the condition 5.128 is easily satisfied by standing waves 
with wave numers k = nun. I L and / = I B where in and n are integers and L and B are 
the length and breadth of the basin, respectively. However, in the rotating case, because 
of the complicated nature of the boundary condition 5.128 it is difficult to determine the 
normal modes. However, even in the rotating case, for an infinitely long channel, there 
are some elementary wave solutions that do satisfy the boundary conditions. 

In eq. 5.126, if V = 0, then the solutions to the resulting equations are 

Ti = 'fl o e 	e 

C 2  alrl (5.130) U = 	—a—

Y 

V = 0 

(5.131) 0. f  2 + c 212 

Th ese waves are referred to as Sverdrup waves and have horizontal crests. For a straight 
shore parallel to the x-axis, two Sverdrup waves traveling in opposite directions may be 
combined to form a standing wave that satisfies the boundary condition 5.128. Thus, 
standing Sverdrup waves with wave numbers / = tir/13 are the normal modes of an 
infinitely long rotating channel. 

The more general solutions of eq. 5.127 are known as Poincaré waves. One can 
combine pairs of progressive Poincaré waves into standing waves that display cellular 
patterns. For an infinite channel, in analogy with Sverdrup waves, Poincaré waves can 
be made to satisfy the boundary conditions by properly choosing the transverse wave 
numbers. 

At a transverse barrier in the channel, none of thesè waves could be made to satisfy 
the boundary condition 5.128. Hence, the analytical determination of the normal modes 

f2 	c.2(k2 + /2) 

The wave speed is the same for the nonrotating and the rotating cases, but in the latter, 
the wave amplitude decreases exponentially from right to left for an observer looking in 
the direction of wave propagation. The rate of decrease of the amplitude from right to left 
is proportional to c/ f, the Rossby radius of deformation. These waves are known as 
Kelvin waves. 

Another elementary solution can be obtained by setting a/ax and a/ay to zero. This 
will result in inertial oscillations with frequencyf (note that ri is zero for these and there 
is only horizontal motion). If only the gradients in one horizontal direction are ignored, 
e.g. a/ax = 0, then the solutions are 

ifly-at) 
= Tioe 
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of a rotating rectangular bay is more difficult, and it is convenient to resort to numerical 
techniques. 

EDGE WAVES AND THEIR ROLE IN STORM SURGES 

The literature on the topic of edge waves has grown enormously in recent times, and 
the reader is referred to Leblond and Mysak (1978) and Murty (1977) for a review. Here, 
edge waves will be considered strictly for the role they play in storm surges; discussion 
will not deal with the general phenomenon of edge waves. 

Stokes (1847) obtained solutions for wave motion over a sloping beach, these solu-
tions being different from the traditional wave pattern on beaches. In these new solutions, 
the crests are perpendicular to the coast, but they travel in a direction parallel to the coast 
and their amplitudes decrease drastically from the shore seaward, and at a distance of one 
wavelength from the beach, their amplitudes are negligible. Lamb (1945) called them edge 
waves. Ursell (1952) showed that the Stokes solution is the gravest of an infinite number 
of possible modes of edge waves. For the nth mode (which has n extrema in elevation 
between the coast and the sea), the velocity c and the length L are given by 

gT sin (2n + 1) f3 

(5.133) L = 
2•rr 

where T is the period of the edge wave, g is gravity, and p is the slope of the beach. 
Munk et al. (1956) detected edge waves in the recorded water levels at Scripps Pier. 

On January 6, 1954, at 03:35 (GMT) an unusual gust was recorded at Scripps Pier. 
Atmospheric pressure abruptly increased by 2 mb and wind speed rose from 3 to 14 mi • h -  ' 
(4.8-22 km • h -I  ). This was followed by pressure and wind oscillations of an 8-min 
period. These authors detected periods corresponding to edge waves (with modal number 
n = 1) in the recorded water level at Scripps and at Oceanside, which is 38 km distant. 

On August 31, 1954, Hurricane Carol crossed Atlantic City. Munk et al. (1956) 
computed the edge wave modes at Atlantic City and Sandy Hook and compared the 
calculated periods with observed periods (as shown in Table 5.3). The observed surges at 
Atlantic City and Sandy Hook are shown in Fig. 5.6. In Table 5.3 the calculated and 
observed periods for three other storms are also shown. It can be seen from the table that 
the observed periods agree well with the computed periods. The main result is that the edge 
wave periods are largely due to the gently sloping bottom. The longest edge wave period 
is associated with the fastest hurricane. 

Munk et al. (1956) also computed the edge wave modes for Osaka Bay, Japan, over 
which a storm passed on August 29, 1953. The bottom slope in Osaka Bay is about 
15 times greater than that of the New Jersey coast. Hence, the periods of edge waves in 
Osaka Bay should be about 1/15 those on the New Jersey coast, and this result is supported 
by observations. 

Greenspan (1970) did a theoretical study of edge waves in an exponentially stratified 
fluid. He showed that the first mode is completely insensitive to the density field. Strati-
fication modifies the range of existence of higher modes. 

On June 26, 1954, a squall line passed over the southern part of Lake Michigan and 
caused a surge on the Chicago water front. Several people were killed. This was explained 
by resonant coupling between the squall line and the resulting gravity waves generated in 

(5.132) c = 27r 

gT 2  sin (2n + 1) p 
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TABLE 5.3. Periods and durations of edge waves generated by four hurricanes. (Munk et al. 1956) 

Wave period T (h) 	 Duration (h) 

Computed Observed 	 Observed 

Hurricane 
Velocity U Track length Travel time 	 Atlantic 	Sandy 	 Atlantic 	Sandy 
(km 	Y (km) 	D (h) 	sin p = 5 x 10 	sin p = 4.2 X 10' 	City 	Hook Computed 	City 	Hook 

Aug. 30—Sept. 1 
(Carol) 	 59-63 	1000 	24 	 5.8-6.1 	 6.9-7.2 	5.5 	7.0 	16-24 	20 	26 

Sept. 11-12, 1954 
(Edna) 	 59 	981 	 24 	 5.8 	 6.9 	 6.0 	7.0 	17-24 	23 	? 

Sept. 14-15, 1944 	61 	 666 	 12 	 6.0 	 7.1 	 5.6 	7.2 	11-12 	23 	30 
Sept. 21-22, 1938 	74 	666 	 9 	 7.3 	 8.6 	 — 	8.0 	9 	— 	16 
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Fio. 5.6. Storm surges at Sandy Hook and Atlantic 
City, New Jersey, during Hurricane Carol of August 
30—September 1, 1954. Arrows indicate the time of 
passage of the storm center. (Munk et al. 1956) 

TABLE 5.4. Time of occurrence and pressure change for the squall line of July 6, 1954, in the United States. 
(Donn and Ewing 1956) 

Magnitude of 
Station 	 Time (CST) of occurrence 	pressure change 

Station name 	code 	 State 	 of pressure change 	 (mb) 

Fargo 	 FAR 	North Dakota 	 06:50 	 2.03 
St. Cloud 	STC 	Minnesota 	 08:39 	 3.05 
Minneapolis 	MSP 	Minnesota 	 09:54 	 2.37 
Green Bay 	GRB 	Wisconsin 	 11:00 	 1.36 
Traverse City 	TVC 	Michigan 	 12:30 	 0.68 
Madison 	 MSN 	Wisconsin 	 13:02 	 2.71 
Milwaukee 	MKE 	Wisconsin 	 13:24 	 2.03 
Muskegon 	MKG 	Michigan 	 14:00 	 1.36 
Chicago 	 CHI 	Illinois 	 15:30 	 3.39 
Battle Creek 	BTL 	Michigan 	 15:30 	 1.36 
South Bend 	SBN 	Indiana 	 15:55 	 2.03 

the lake (Donn and Ewing 1956). A resurgence (i.e. reflection of the waves from the 
eastern shore of the lake) explains its unexpected arrival at Chicago some 2 h after the 
squall line had passed. 

On July 6-7, 1954, another squall line crossed Lake Michigan from north to south 
with an average speed of 50 mi •11 -I  (80.5 km • IC I ). Long-period waves were recorded at 
several locations following this squall line. Donn and Ewing (1956) invoked edge waves 
to account for these water level disturbances. The time of arrival of the squall line and the 
magnitude of the pressure change at several stations are listed in Table 5.4, and the travel 
time curves of the squall line are shown in Fig. 5.7. The abbreviations for the stations 
shown in this diagram are the same as in Table 5.4. The water level records from 
Waukegan, Wilson Avenue (Chicago), Calumet Harbor (Chicago), and Ludington (see 
Fig. 5.8) were used. 

The pertinent meteorological and water level data at these four stations are sum-
marized in Table 5.5. It can be seen from Fig. 5.8 that the depth increases more or less 
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FIG. 5.7. Travel time curves (isochrones) of the 
squall line on July 6, 1954, over Lake Michigan 
and surroundings. Numbers represent hours Cen-
tral Standard Time. FAR, Fargo, North Dakota; 
STC, St. Cloud, Minnesota; MSP, Minneapolis, 
Minnesota; GRB, Green Bay, Wisconsin; TVC, 
Traverse City, Michigan; MSN, Madison, 
Wisconsin; MKE, Milwaukee, Wisconsin; MKG, 
Muskegon, Michigan; CHI, Chicago, Illinois; BTL, 
Battle Creek, Michigan; SBN, South Bend, Indiana. 
(Donn and Ewing 1956) 

Fin. 5.8. Bottom topography of the southern  port of 
Lake Michigan and the water level stations used in the 
study. (Donn and Ewing 1956) 

uniformly with distance from the shore. The distance (i.e. k/21r) at which the edge wave 
amplitude should be negligible is about 16 mi (25.6 km). Starting just north of Chicago 
to up to 50 mi (80.5 km) north of Waukegan, the bottom slope was determined to the 
300-ft (91.4 m) contour at six different locations. These values (i.e. of sin p) were 0.0016, 
0.0021, 0.0024, 0.0035, 0.0034, and 0.0029. For the phase velocity c of the edge wave 
a value of 72.5 ft • s -1  (22 m • s - ') was used. This gives from eq. 5.132 (for n = 1) a period 
of 103 min. From Table 5.5 the average period is 109 min. Thus, the calculated period 
of edge waves agrees with the observed period. 

Calculations gave values of 50 mi • 	(80.4 km • 11 -  ) and 61 mi •11 -1  (98 km •11 -1 ), 
respectively, for the edge wave velocity in the northern and southern  parts of Lake 
Michigan. Since the speed of travel of the squall line was 50 mi •11 -1  (80.4 km •11 -1 ), 
resonance transfer of energy occurred from the squall line to the gravity waves in the 
water. At Ludington, the bottom topography precludes generation of edge waves. Hence, 
just after the passage of the squall line (at 1:00 p.m.) the amplitudes of the water waves 
were small. However, at 8:00 p.m. much larger waves appeared at Ludington. This was 
explained as due to the reflected larger waves from other areas traveling towards 
Ludington. 

The observed duration of the water level disturbance in the Chicago—Waukegan area 
is estimated to be about 29 h. About 20 h of this record at Calumet Harbor is shown in 
Fig. 5.9. The theoretical estimate of 18 h for the edge wave duration is somewhat smaller. 
The period of the edge waves was close to that of the seiche period in the southern part 
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TABLE 5.5. Arrival time of pressure jump and first wave of surge and wave periods and duration of the water 
level disturbance at four stations in Lake Michigan associated with the squall line of July 6, 1954. (Donn and 
Ewing 1956) 

Period  (min) 
Pressure jump 	Time of arrival 	 Duration of 

arrival time 	of first wave of 	Long-period 	Short-period 	wave 
(CST) 	surge (CST) 	waves 	waves 	disturbance (h) Station 

Waukegan 
(Illinois) 	—15:00 	15:00 	110-120 	20 

Wilson Ave. 
(Chicago) 	15:30 	 15:30 	97-100 	18-20 

Calumet Harbor 
(Chicago) 	15:30 	 15:30 	 115 	 20 

Ludington 
(Michigan) 	—13:00 	20:00-22:00 	84 

Not  to be confused with wind waves whose periods are of the order of a few seconds. 
'Record incomplete. 

FIG. 5.9. Water level disturbance at Chicago's Calumet Harbor during July 6-7, 1954. (Donn and Ewing 
1956) 

of Lake Michigan; hence, seiche activity is expected and observed water levels confirm 
this. 

Earlier, reference was made to the storm surge in Lake Michigan due to a squall line 
on June 26, 1954 (six persons were killed in Chicago). Platzman (1958a) studied this surge 
using a time-dependent two-dimensional numerical model. The travel time curves of this 
squall line are shown in Fig. 5.10. The lake level, wind, and atmospheric pressure at the 
Wilson Avenue crib in Chicago are shown in Fig. 5.11. 

Platzman made five computations, i.e. using five different speeds of propagation for 
the squall line. These were 42, 48, 54, 60, and 66 knots (1 knot = 1.85 km •11 -1 ). In each 
of these five computations he took the direction of propagation of the squall line as 
northwest to southeast, the width of the squall line as 10 nautical miles (18.5 km), and the 
magnitude of the pressure rise as 4 mb. The observed and computed results are compared 
in Table 5.6. In interpreting these results, it should be noted that the computations include 
atmospheric pressure gradient as a forcing term, but not wind stress. (Also, the Coriolis 
terms were ignored, although this omission may not be significant.) 

Platzman (1958) summarized the results at the Wilson Avenue crib as follows. 
1) The computed amplitude of the main (reflected) surge is approximately one-half the 
observed amplitude, but the inclusion of wind stress probably will remove this 
discrepancy. 
2) The computed phases between significant events (Table 5.6) are in good agreement 
with the observations. 
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FIG, 5.10. Isochrones of the pressure jumpline of June 26, 1954, over Lake Michigan and 
surroundings. Numbers represent hours Central Standard Time. (Platzman 1958a) 
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Fin. 5.11. Lake level, wind, and atmospheric pressure records at Wilson Avenue crib on June 26, 1954. The 
broken curve of lake level shows the results of numerical computation for a squall line speed of 100 km•11 -1 ; 
the broken curve of pressure gives the corresponding pressure increase assumed in the calculation. (Platzman 
1958a) 
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FIG. 5.12. The power transmitted by the atmosphere to the lake as a function of time 
for each of the five computed cases. Inset shows the total energy absorbed by the lake 
as a function of squall line speed. (Platzman 1958a) 

3) The structure of the tail of the reflected surge (and probably also the primary surge) is 
not in agreement with the observed structure, probably because the resolving power of the 
grid is inadequate for this purpose. 
4) The background fluctuations of lake level that arise from normal meteorological dis-
turbances must be computed if one attempts to obtain better agreement. 

The power transmitted by the atmosphere to the lake as a function of time for the five 
cases computed is shown in Fig. 5.12. Platzman also discussed the three phases involved 
in this surge's propagation (see Fig. 9 of Platzman 1958). Phase I (t = 0-100 min) 
includes the formative stage of the surge and ends when reflection sets in on the south-
eastern  shore of the lake. In this interval the developing surge advances into still water as 
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FIG. 5.13. Isochrones of the squall line of May 5, 1952. 
Numbers represent hours Central Standard Time. MKW, 
Mackinaw City, Michigan; TVC, Traverse City, Michigan; 
SGW, Saginaw, Michigan; HBR, Harbor Beach, Michigan; 
TOL, Toledo, Ohio; YNG, Youngstown, Ohio; ZE, Gore Bay, 
Ontario; HC, Hamilton, Ontario; V V, Wiarton, Ontario; ERI, 
Erie, Pennsylvania; DET, Detroit, Michigan; CLE, Cleveland, 
Ohio; CE, Centralia, Ontario; BUF, Buffalo, New York. (Donn 
1959) 

a solitary wave (of elevation) and leaves in its wake a broad area of slightly lower water 
levels. As the wave advances into depths greater than 260 ft (79 m) or more, the wave 
speed exceeds the squall line speed (54 knots (100 km • 11 -  )) and the central portion of the 
surge moves ahead of the squall line and the surge assumes a slightly convex shape. 

Phase II lasted from 100 to 180 min. It began with reflection at the southeastern shore 
followed by a wave of depression. During this interval the surge contracted and moved 
southwest to the Chicago water front. Phase III lasted from 180 to 300 min. It began with 
reflection at the southwestern shore and a standing wave appeared in the southernmost 
portion of the lake. It should be noted that the highest water levels in the Chicago area were 
not produced in phase I but by the reflected surge that formed in phase II and arrived from 
the northeast about 85 min after the first wave. 

Freeman and Murty (1972) and Murty and Freeman (1973) discussed a squall line 
generated surge on Lake Huron. This will be discussed in section 7.1. Donn (1959) studied 
the storm surges in Lakes Huron and Erie due to a squall line on May 5, 1952. The travel 
time curves of the squall line are shown in Fig. 5.13. The pressure and wind data are 
summarized in Tables 5.7 and 5.8, respectively. Water level data are used from 
MacKinaw City and Harbor Beach (both on Lake Huron) and from Cleveland and Buffalo 
(both on Lake Erie). Donn showed that either long gravity waves or edge waves were 
generated depending on the local topography and the orientation of the squall line track. 
Significant seiches were excited when the periods of either the gravity waves or the edge 
waves were close to the natural modes of oscillation of the whole lake or distinctive parts 
of the lake. 

Greenspan (1956) developed an analytical theory for the transient aspects of the 
steady-state problem of Munk et al. (1956) and applied it to edge wave generation by 
hurricanes on the east coast of the United States. It was assumed that edge waves generated 
here in this fashion had amplitudes of the order of 3 ft (0.9 m), a wavelength X of the 
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TABLE 5.6. Computed and observed time intervals be-

tween significant events associated with the squall line of 

June 26, 1954, in the United States. Columns: 1, speed of 

squall line (km •11 -1 ); 2, duration of pressure jump (min); 3, 
time interval between first surge at Michigan City and sec-

ond surge at Wilson Avenue Crib (Chicago) (min); 4, time 

interval between first and second surges at Wilson Avenue 

Crib (min); 5, time interval between arrival of pressure jump 

and occurrence of and second surge at Wilson Avenue Crib 

(min); 6, time interval between second surge and first one 

following depression at Wilson Avenue Crib (min). 
(Platzman 1958a) 

1 	2 	3 	4 	5 	6 

Computed 

78 	14.3 	55 	85 	109 	35 
89 	12.5 	63 	85 	114 	25 

100 	11.1 	66 	85 	118 	20 
III 	10.0 	68 	85 	120 	17 
122 	9.1 	67 	85 	121 	18 

Observed 

5 	68 	88 	113 	6 

TABLE 5.7. Atmospheric pressure data at several stations in the United 

States and Canada for the squall line of May 5, 1952 (NA, not available). 

(Donn 1959) 

Location 

Time (EST) of 	Magnitude of 
Station 	arrival of pressure 	pressure jump 

code 	jump line 	 (mb) 

Buffalo, NY 	 BUF 	 08:00 	 4.06 
Centralia, Ont. 	CE 	 06:30 	 5.08 
Cleveland, OH 	CLE 	 09:28 	 2.71 
Detroit, MI 	 DET 	 07:38 	 237 
Erie, PA 	 ERI 	 08:00 	 3.39 
Harbor Beach, MI 	HBR 	 05:20 	 NA 

Mackinaw City, MI 	MKW 	02:36 	 NA 

Saginaw, MI 	 SGW 	05:40 	 2.03 
Toledo, OH 	 TOL 	 09:40 	 0.68 
Traverse City, MI 	TVC 	 03:45 	 0.68 
Youngstown, OH 	YNG 	09:30 	 3.39 
Gore Bay, Ont. 	ZE 	 04:30 	 3.39 
Hamilton, Ont. 	HE 	 07:30 	 NA 

Wiarton, Ont. 	 VV 	 05'15 	 4.74 

order of 200 mi (322 km), and a period of about 6 h. These scales permit the use of the 
linear shallow-water theory. 

The equations of motion and continuity are in the usual notation: 

(5.134) 

au _ 	ap 
at — p ax 
a v __ 1 ap 
at 	p ay 
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Buffalo, NY 

Cleveland, OH 

Detroit, MI 

Erie, PA 

Mackinaw City, MI 
South Bend, IN 

Toledo, OH 

Tranverse City, MI 

Youngstown, OH 

Centralia, Ont. 

Gore Bay, Ont. 
Hamilton, Ont. 
Wiarton, Ont. 

TABLE 5.8. Wind data at several stations in the United States and Canada for the squall line 
of May 5, 1952. (Donn 1959) 

Station 	 Wind data 

On arrival of pressure jump, weak winds shifted from east 
to north 

On arrival of pressure jump, winds at 32 km •11 -1  from 
northeast shifted to 48 km •11 -1  from southeast 

On arrival of pressure jump, winds at 40 km •11 -1  from 
southeast shifted to 63 km •11 -1  from northeast 

Winds of 35 km•li-t  from the north. On arrival of pressure 
jump, winds shifted to southeast 

Winds of 58 km • 11 -  shifted at 02:36 (EST) 
Winds of 29  km • h- ' from northwest. On arrival of jump, 

wind shifted to northeast to north—northeast 
On arrival of jump, wind shifted from south to north 

(19-24 km•11 -1 ) 

On arrival of jump, wind shifted from southeast to east 
(32-40 km • h-  I  ) 

On arrival of jump, wind shifted from north to southeast 
(48-56 km • h -  ) 

On arrival of jump, wind shifted from south—southwest to 
north—northeast 

Wind shifted from east to north (16-41 km • IC') 
Wind from northeast at 16 km .11 -1  

Wind speed increased from 5 to 27 km -11 -1  and shifted from 
northeast to north—northeast 

a (5.135) —at = --(uh)— —a (vh) ax 	ay 

where P(x, y, z, t) = P(x, y, 0, t) + gp('ri — z) and P(x, y, 0, t) is the applied surface 
pressure. Eliminating u and v from above gives 

a 2,9   
(5.136) V • (hVri) — — — = — 1 — (hV 2P + Vh. VP) g3 2 	pg 

Define a potential (I) such that 

a(12, 	ad, 
u=— v = — ax , 	ay 

Eliminating gives 

	

8 24) 	aP (5.137) V • (hVd)) — — — = — — 

	

g at2 	pg at 

and the wave height is given by 

P 	I al) (5.138)  pg g at 

Assume that the coastline is straight and assume a linear depth profile perpendicular 
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to the shore, i.e. h = ay. The average slope over the first 120 mi (193 km) was chosen 
for a. Thus, with h = ay, eq. 5.136 becomes 

aT1 	1 a211 
(5.139) yV 2-ri + —

a t 

— —
ag 

—at2 — —q i (x,y, t) 

(ap + yv2p) __. _i  pg  ay   

Equation 5.137 becomes 
ail) 	i a 24)  

(5.140) yV 21:1) + 7  — 0--,--g at2  = — 92(x, y, t) 

= 1  aP 
pga dt 

Since P(x, y, t) = 0 for t < 0, the boundary conditions are 

Ti(x, y, 0) — 0 

al 
— (x, y, 0) — 0 at 
yi(x, y, t) —> 0 as lxi —> 00 for all positive y and for all x as y —> 00 

Note that except for the forcing function, eq. 5.139 and 5.140 are similar. Hence, eq. 
5.139 can be solved for 1 and then 1 replaced by (I) and q l  replaced by q2 . Making use 
of Fourier and Laplace transforms and expanding in Laguerre polynomials, Greenspan 
(1956) solved eq. 5.139. 

For application to the cases considered by Munk et al. (1956), Greenspan (1956) 
assumed that 

Poa(y + a) 
(5.141) P(x, y, t) — 	  

(x — Ut) 2  + (y +  a ) 2  

H(t) 

where U is the velocity with which the hurricane moves parallel to the coast, a is the half 
pressure radius, and H(t) is the Heaviside function. From eq. 5.139 the forcing function 
is 

Poa (x + Ut)2  — (y + a)2 

 Pg [(x — Ut)2  + (y +  a ) 2 ]2  

q i (x, y, t) = 

Greenspan (1956) showed that the pressure distribution assumed here can excite only 
the fundamental edge wave mode because in the solution, only the first Laguerre poly-
nomial appears. 

The solution for the water level is written as 

P 

and I, II, and III are integrals (see eq. 31 of Greenspan 1956). Integral I represents the 

(5.142) Ti(x, y, t) = — 	(1 + 11+ III) 

where 

am - Poa 
(5.143) y ..=- 
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FIG. 5.14. Storm surge of September 14-15, 1944, along 
the east coast of the United States. Arrows indicate the time 
of nearest approach of the hurricane's center, distance in 
kilometres, and direction of tide gauge from the storm track. 
(Groen and Groves 1961) 

quasi-steady-state solution of Munk et al. (1956). Greenspan (1956) showed that integral 
III is equal to the complex conjugate of II. Hence 

(5.144) 	= — 	(I + 2R eII) 21-r.  

where Re stands for "the real part of." 
The asymptotic solution of the wave height of the resurgence phenomenon is 

0 for x > Ut 

2m-Po a ko  
(5.145) m. Pg 
	exp [— ko (y + a)] sin ko (x — Ut) for —1 

Ut < x < Ut 2 

0 for x < —1 
Ut 2 

The computed and observed edge wave periods and durations for four hurricanes are 
compared in Table 5.3. 

Redfield and Miller (1957) divided hurricane-produced surges into three parts: the 
forerunner, the hurricane surge, and resurgences. The forerunner is a slow and gradual 
change in the water level, commencing several hours before the arrival of the storm. There 
appears to be good coherence between the records at nearby stations in this stage, and one 
must consider winds over a more extended region than the hurricane proper. Facing the 
coast from the ocean, if the hurricane moves to the right along the coast, the forerunner 
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usually is a rise in the water level and if the hurricane moves to the left, the forerunner 
consists of a decrease in the water level. 

The hurricane surge is a sharp rise in the water level that occurs at about the time the 
hurricane center passes over the station. The duration of this stage usually does not exceed 
2.5-5 h. In this stage, the coherence between neighboring stations is not good. This 
means that the strong winds in the hurricane proper are responsible for the water level 
oscillations. In the Northern Hemisphere, the highest water levels occur to the right of the 
hurricane track. 

The resurgences (see the Atlantic City record in Fig. 5.14), being unexpected (since 
the storm has passed), could be dangerous. These were attributed by Munk et al. (1956) 
to a wake of waves in the trail of the hurricane, and these have periods of free edge waves. 
Kajiura (1959) mentioned that even at stations close by (i.e. separated only by one 
wavelength) the periods could be considerably different. He attributed the resurgences to 
a free onshore—offshore standing wave on the shelf. 

Webb (1976) considered resonance problems of long gravity waves on the continental 
shelf. He began with a simple model of a rectangular continental shelf at the end of a canal. 
It is assumed that a Kelvin wave propagates along the canal, which is partly absorbed and 
partly reflected by the continental shelf. The depth of the canal is of the same order as that 
of the deep oceans and the shelf parameters are taken to represent the Patagonian Shelf off 
Argentina. The simple analytical model showed that usually most of the incident wave 
energy is reflected by the edge of the shelf. However, at the dominant shelf resonance 
.frequencies, more than 95% of the energy is absorbed by the shelf. 

Myers (1970) cited an example of extremely strong edge waves at Brown's Bank off 
the east coast of the United States, and he provided a good review of the theory of edge 
waves. A significant advance in the theory of edge waves occurred with the publication 
of a paper by Longuet-Higgins (1967) on long-wave trapping around Macquarie Island. 
To understand the relation between trapped modes and edge waves, begin with the 
equations of motion and continuity: 

au 	1 a P 
at  = --pg —

ax 
= — — ax 

av 	a P (5.140)  — = 	— -- at 	pg ay 	ay 

n a 	a — + —(hu) + (hv) 0 at 	ax 

in the standard notation. The equations can be made dimensionless by dividing the 
horizontal length scale by L and the vertical length scale by the water depth h. Taking the 
origin at the undisturbed level, the bottom is given by z = — h(x, y). From eq. 5.146 
eliminate u and y to give 

(5.147)  (v2  — 
 h 	

+ —1 (Vh )(V = 0 a  t 2 	h 

Basically, eq. 5.147 is a wave equation, and the propagation velocity is given by the 
traditional c = V gh where h(x, y) is the local water depth. Since the propagation velocity 
is proportional to the water depth, the wave crests and troughs swing towards the shallows 
during propagation. Hence, it is possible that waves propagating towards the ocean may 
turn around and propagate towards the coast. One may think of a hypothetical barrier in 
the ocean beyond which the waves cannot travel towards the ocean. These waves, which 
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have been turned back, would be partly reflected and the process repeats itself. Thus, 
resonance is possible even on an open coast and also around islands. 

Consider plane waves near a straight coast. Take the x-axis perpendicular to the coast 
and positive away from the coast and the y-axis along the coast. Taking h = h(x) gives 
for the water level 

	

(5.148) 	y, t) = A(x) exp (imy — ice) 

From eq. 5.147 

_d ( h dA + (0)2  _ 

	

(5.149) 	 ni 2 h )A = 0 
dx \ dx 

The nature of the solution of eq. 5.149 depends on the sign of the coefficient 

(t)
2 

— M 2 h = q(x) 

Let h„ be the depth as x —> co •  Then, positive number pairs (OE), m) exist such that q(x) > 
0 near the coast and q(x) < 0 far from the coast. These pairs satisfy the relation 

2 

(5.150) 0 < 	< h„ in 2 

The waves described by any of these numbered pairs are periodic in y but oscillatory 
in x only near the coast. Away from the shore they are exponentially damped. This 
transition from oscillatory to exponential behavior occurs at the caustic x = x, defined by 

q(x) = w 2 
— in 2 h(xe ) = 0 

This is the mathematical representation of the hypothetical barrier. 
Waves that are restricted to only a portion of the shelf are termed "trapped waves," 

and edge waves are an example of trapped waves. On the other hand, there are pairs 
(u), m) such that (co/n7) 2  > h. and the solutions correspond to wave forms 5.148. These 
waves are reflections from the coast of plane waves incident from co. It can be seen that 
on open coasts (unlike in bays and gulfs), trapping is essential for resonance to occur. 
However, the existence of trapped waves does not necessarily imply resonance (e.g. shelf 
waves are trapped waves but are not always resonant). 

5.2 Tidal Regimes in the Oceans and Coastal Water Bodies 

This section will begin with a description of the tides in the global oceans. Although 
storm surges are not important in the oceans, but achieve significant amplitudes only in 
the coastal areas, nevertheless some understanding of the tides in the oceans is necessary 
because the coastal seas usually are not large enough to generate their own tides and the 
observed tides in these coastal water bodies are usually the result of co-oscillation with the 
neighboring ocean. 

For a discussion of the theory of tides and analysis of tidal data the reader is referred 
to Defant (1961), Godin (1972), and Leblond and Mysak (1978). It is well known that the 
oceanic tides arise mainly from the attractions of the moon and sun. Although the moon 
is a much smaller body than the sun, it exerts a stronger influence in generating oceanic 
tides because of its proximity to the earth. The most important of the semidiurnal and 
diurnal tidal constituents that are needed in representing an observed tidal record are listed 
in Table 5.9. 
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TABLE 5.9. Tidal constituents usually required for deter-
mining the tide at a given location. Note that this is only a 
small part of a rather lengthy list, most of which is generally 
irrelevant for storm surge—tide interaction purposes. 

Nature of 	Symbol for 	Frequency 	Period 
constituent 	constituent 	(degrees •11 -1 ) 	(h) 

Semidiumal 	M2 	 28.98 	12.42 
Semidiumal 	N2 	 28.44 	12.66 
Semidiurnal 	S2 	 30.00 	12.00 
Semidiumal 	K2 	 30.08 	11.97 
Diurnal 	 0 1 	13.94 	25.82 
Diurnal 	 K, 	 15,04 	23.94 
Diurnal 	 13 1 	 14.96 	24.06 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 1 
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FIG. 5.15. Schematic representation of a 1-mo-long tidal record. (a) Semidiurnal; (b) mixed, mainly 
semidiumal; (c) mixed, mainly diurnal; (d) diurnal. 
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J 

FIG. 5.16. Tides in Canadian waters classified according to the following scheme:  I.  semidiumal; 2, mixed, 

mainly semidiumal; 3, mixed, mainly diurnal; 4, diurnal. (Dohler I967b) 

Following Godin (1980a, 1980b), the vertical component z(t) of the tide is as 
follows: 

(5.151) z(t) = z o  + E A;  cos (œt  — ai) 
J= I 

where zo  is a constant that denotes the reference level, which is chosen such that the 
observed water level rarely, if ever, falls below zo , and the other term on the right is a 
summation of n constituents of amplitude Ai , frequency cr.' , and phase cti  where j varies 
from 1 to n. Note that the frequencies  o 1  of the constituents are the same for any tidal 
record (for the same constituent); however, the amplitude and phase of the constituent 
might vary from one tidal station to another. Through a harmonic analysis of the observed 
tidal record, one can determine the amplitudes and phases of the various tidal constituents. 
In principle, the total number of constituents could be as high as 500, but rarely must one 
use more than a dozen or so of the important constituents in representing a tidal record. 

In practical tidal studies, it was found convenient to classify the tides into the 
following four types: semidiurnal, mixed— mainly semidiurnal, mixed— mainly diurnal, 
and diurnal. A tide is referred to as semidiurnal if there are two high waters and two low 
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waters daily of roughly the same amplitude (Fig. 5.15a). Mixed tides of the mainly 
semidiurnal type have two high waters and two low waters with the amplitudes being 
unequal (Fig. 5.15b). Mixed tides of the mainly diurnal type are said to exist if at times 
there is only one high water and one low water per day and at other times there are two 
large inequalities (Fig. 5.15c). For diurnal tides, there is one high water and one low water 
per day (Fig. 5.15d). Canadian waters are classified according to this scheme in Fig. 5.16. 

A cotidal chart is a convenient way of presenting tidal information for each tidal 
constituent separately. Two sets of lines exist on a cotidal chart. Corange (coamplitude) 
lines represent contours of the range (amplitude) of the constituent, whereas cophase lines 
represent the contours of equal phase (usually with reference to Greenwich, expressed in 
degrees per hour). Amphidromic points, which appear for certain constituents in water 
bodies, are the locations where the range (amplitude) of the particular constituent is zero. 
Thus, it is basically a node for the vertical motion, the nodal line becoming just a point 
either due to the presence of transverse motion or due to the influence of the earth's 
rotation (George 1980). In a water body, one tidal constituent may have an amphidromic 
point, whereas another constituent may have more than one or no amphidromic points. 
Similarly, a given constituent may have an amphidromic point in one water body but may 
have more than one or no amphidromic points in another water body. 

TIDES IN THE OCEANS 

The tidal regimes in the world oceans are usually described through cotidal charts, 
which show lines of simultaneous occurrence of high water in various regions. Whewell 
(1833) appears to have produced the first cotidal chart for the semidiurrial tides in the 
global oceans. These charts are not very accurate because they are produced by simply 
interpolating from the coastal data. The next charts to appear were those of Harris (1904). 
This work also suffered many drawbacks, notable ones being neglect of the earth's rotation 
and not giving absolute values of amplitudes of the tides. Sterneck (1920) produced charts 
for the semidiurnal tides, mainly based on interpolation of observed data. Dietrich (1944a, 
1944b) gave charts for the constituents M2, S2, K 1 , and O.  Villain (1952) gave a chart for 
the M2 tide in the global oceans. Defant (1961) appears to be among the first to have 
produced a cotidal chart based on a numerical model. Since then, dozens of numerically 
produced cotidal charts for various water bodies on the globe have appeared in the 
literature. 

Proudman (1944) studied the distribution of the M2 tide in a section of the Atlantic 
Ocean between 35°S and 45°N including the effects of the earth's rotation but ignoring 
coastal energy dissipation. He prescribed arbitrary values for the current and water level 
along the 35°S latitude as boundary conditions. The motion he considered consisted of an 
independent tide due to the tidal potential and four free oscillations in the form of 
northward and southward propagating Kelvin and Poincaré waves. Linear combinations 
of these have been made to agree with observed M2 at different coastal locations. 

Accad and Pekeris (1978) studied M2 and S2 tidal regimes in the global oceans by 
solving the Laplace tidal equations, based on a knowledge of the tidal potential alone. 
There are about 1300 tidal stations in the open ocean at which the tide is measured by 
recording the pressure with an instrument located at the bottom. The topography of the 
global ocean model is made up of 2° arcs of latitude and longitude on a Mercator 
projection. It was assumed that tidal dissipation occurred only at the coast where a portion 
of the incident tidal energy is assumed to be absorbed. 

To understand the influence of sharp corners introduced in the numerical model by 
approximating the continuous coastline with arcs of latitude and longitude, a model with 
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FIG.  5.17. Distribution of the M2 tide in the global oceans. Solid lines show phases in Greenwich hours and 

dotted lines show tidal range in centimetres. (Accad and Pekeris 1978) 

FIG. 5.18. Distribution of the S2 tide in the global oceans. Solid lines show phases in Greenwich hours and 

dotted lines show tidal range in centimetres. (Accad and Pekeris 1978) 

a smooth coastline was also run. The influence of the sharp corners appears to be 
insignificant in the results. The M2 and S2 tidal regimes in the global oceans, as computed 
by Accad and Pekeris (1978), are shown in Fig. 5.17 and 5.18, respectively. Observed 
and calculated tides at selected island stations in the various oceans are compared in Table 
5.10. 
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Station Region 

Falkland Island 
South Georgia 
South Orkney Island 

Seychelles Island 
Mauritius 

Cocos Island 

Kerguelen 

Marianas Island 
Caroline Island 
Marshall Island 

Hawaiian Islands 
Hawaiian Islands 
Hawaiian Islands 

Tasman Sea 
New Caledonia 
New Hebrides 
Norfolk Island 
Tonga Island 
Ellice Island 
Cook Island 
Easter Island 
Galapagos Island 
Polynesian Archipelago 

TABLE 5.10. Comparison of observed and computed M2 tidal amplitudes and phases at island stations in the 
oceans. (Accad and Pekeris 1978) 

Amplitude (cm) Phase lag (h) 

Observed 	Computed 	Observed 	Computed 

Azores 
Azores 
Madeira 
Canary Island 
Cape Verde Island 
Bahama Island 
Bermuda 

North Atlantic Ocean 
Flores Island 
Santa Maria Island 
Funchal 
Tenerife 
Santo Antao 
Eleuretha Island 
St. George's Island 

South Atlantic Ocean 
Ascension Island 
Fenando de Noronha 
St. Helena Island 
Isla Trinidade 
Tristan da Cunha 
Stanley Harbour 
Elsehul 
Scotia Bay 

Indian Ocean 
Port Victoria 
Port Louis 
Addu Atoll 
Port Refuge 
St. Paul Island 
Port-aux-Français 

North Pacific Ocean 
Pagan Island 
Kusail Island 
Port Rhin 
Midway Island 
Johnston Island 
Honolulu 
Kahului 
Hilo 

South Pacific Ocean 
Lord Howe Island 
Paagoumene Bay 
Vila Harbour 
Kingston 
Nukualofa 
Funafuti 
Aitutaki 
Hanga Piko 
Caleta Aeolian 
Cambier Island 
Ahe 
Nukuhiva  

39 	34 	2.0 	1.8 
51 	48 	2.0 	2.1 
72 	71 	1.5 	1.8 
69 	70 	1.0 	1.3 
30 	21 	8.7 	9.2 
32 	20 	0.7 	11.7 
37 	24 	0.0 	11.5 

33 	27 	5.9 	6.0 
79 	70 	6.9 	7.0 
32 	27 	2.7 	2.4 
33 	33 	7.0 	6.8 
23 	25 	0.4 	0.3 
45 	31 	9.1 	9.1 
27 	22 	9.0 	9.1 
46 	30 	8.7 	8.8 

40 	35 	0.4 	0.4 
13 	43 	8.9 	8.9 
29 	36 	8.4 	8.5 
27 	31 	10.4 	9.5 
38 	36 	7.7 	8.0 
51 	16 	6.5 	6.8 

17 	2 	9.8 	4.1 
42 	49 	4.3 	3.3 
57 	55 	4.4 	3.6 
11 	6 	3.0 	4.2 
27 	23 	3.5 	3.0 
16 	16 	2.1 	0.1 
18 	18 	0.4 	0.1 
21 	20 	1.0 	0.3 

59 	33 	10.1 	9.0 
45 	47 	9.0 	8.3 
34 	34 	6.9 	7.3 
57 	79 	8.8 	8.3 
52 	45 	6.4 	5.9 
57 	50 	5.1 	4.5 
17 	32 	7.0 	5.6 
21 	12 	0.5 	10.0 
72 	49 	8.2 	7.3 
27 	12 	11.6 	9.0 
12 	4 	2.9 	4.1 
47 	21 	1.2 	0.6 
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Schwiderski (1978a, 1978b, 1979, 1980a, 1980b,  1980e)  studied global ocean tides 
by introducing several novel features in his numerical models. First, he derived the ocean 
tidal equations in continuous as well as discrete forms. In these equations, the Boussinesq 
linear eddy dissipation law is used and the eddy viscosity is made to depend on the lateral 
mesh area (which is derived from the grid size and the local water depth). The bottom 
friction coefficient also depends on the 'mesh area. In addition to the tidal potential, 
secondary factors such as the influence of the oceanic and terrestrial tides on the tidal 
potential are included. Zahel (1973) studied the diurnal K 1  tide in the world oceans. 

Harris (1911) appears to be among the first to give a cotidal chart  for the Arctic 
Ocean. He showed that the tide entering from the Atlantic Ocean takes about 20 h to cross 
the Arctic Ocean. Following the observations taken during the Maud expedition, Defant 
(1924) and Fjeldstad (1929a, 1929b) showed that the tide wave takes only 12 h (instead 
of 20 h) to cross the Arctic Ocean. Goldsbrough (1913) developed an analytical model for 
the tides in the Arctic Ocean. His study, which was limited to the region between 60 and 
75°30'N, showed that the semidiurnal tides in the Arctic Ocean are very small. 
Goldsborough concluded that the independent tide in the Arctic Ocean is insignificant and 
the observed tide is a co-oscillation with the Atlantic Ocean tide. 

Defant (1924) used a one-dimensional numerical model for the combined Atlantic 
and Arctic oceans and showed that for the M2 tide in the Arctic Ocean there is an 
amphidromic point north of Canada. Nekrasov (1962) used Defant's method for the 
Greenland Sea and the Norwegian Sea. Dvorkin et al. (1972) used a two-dimensional 
numerical model with a grid spacing of 1 0 . Actually, Zahel's model is for the global oceans 
and includes the Arctic Ocean also. Kowalik and Untersteiner (1978) developed a two-
dimensional numerical model with a grid size of 75 km for the Arctic Ocean. One novel 
feature of this model is the manner in which these authors avoid the difficulty associated 
with the integration in a spherical polar coordinate system near the pole (the North Pole 
in this case). Kowalik and Bich Hung (1977) used a stereographic polar coordinate system 
by means of a scale factor in, and this was adapted by Kowalik and Untersteiner (1978). 

Take the origin at the North Pole and let x and y be coordinates along 0 and 90°E 
longitudes. Let M and N be the transport components along the x- and y-axes and xi be the 
free surface elevation. Then the equations of motion and continuity are 

am (5.152) — — in 2A V 2M + —k MIMI — fN + mgH —01 = F., at 	 H' 	 ax 

aN aT1 
(5.153) —

a t 

— tn 2AV 2N + —k NIMI + fM + ingH— = 
H 2 	 aY 

am (5.154) —

at 

+  in-j--  m —ay
0N = 0 

Here, A is the horizontal eddy viscosity (taken as 109  cm 2 . s -  '), k is a bottom friction 
coefficient (3 x 10 -2 ), f is the Coriolis parameter, M = (M, N), H(x, y) is the water 
depth, and F., and F.  are the components of the tidal potential (taken to be zero). The 
gravity g is determined from 

(5.155) g = 978.05 (1 + 0.0053 sin 2  4)) cm • s' 

where cl) is the latitude (of a given grid point). The scale factor in relates the surface 
elements 8S on a stereographic map to those on a sphere as follows: 

	

8S„,„ 	1 + sin (Po  
(5.156)  ni  = 	 

	

84k,, 	1 + sin cl) 
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where fbo  is the latitude through which a parallel plane of the stereographic projection 
passes. Near the pole, m is unity. 

At the closed boundary 

(5.157) M = N = 0 

and at the open boundary 

(5.158) Iri -= 

is prescribed. 
Conservation of mass is assured by requiring that the integral taken over one tidal 

period T„ along the open boundary be zero: 
I', i'L 

(5.159) 	(M cos a + N sin a)dtdS = 0 
lo o 

where a is the angle between the perpendicular direction to the open boundary and the 
x-axis and L is the length of the open boundary. 

A staggered grid in space (Hansen 1962) and a leapfrog scheme in time are used. The 
stability criterion is 

mV2gH 

where A is the grid size (taken as 75 km). However, in practice the following stability 
criterion is more appropriate (Phillips 1959): 

A R + 2m 2 —à2 

2f 2  

where R is related to r, H, M, and N (see Kowalik and Untersteiner 1978). 
Topography plays a major role in the Arctic Ocean tidal model because the depth 

varies from 5.1 to 0 km. The north Siberian Shelf is the widest continental shelf on the 
globe and hence, lateral friction is also important. One might expect that at a critical 
latitude (where the tidal and inertial periods agree with each other), resonance occurs. 
However, Flattery (1967) showed that this does not happen. Kagan (1968) showed that the 
almost permanent ice cover in the Arctic Ocean has negligible effect on the tide. For a 
general discussion of the influence of an ice layer on long waves, see Murty and 
Polavarapu (1979). 

The cotidal and corange lines for the M2 tide in the Arctic Ocean are shown in Fig. 
5.19A and 5.19B, respectively. These cotidal and corange maps agree with those of the 
U.S. Navy Hydrographic Office (Anonymous 1958) and those of Zahel (1977). There is 
an amphidromic point at latitude 81°30'N and longitude 133°W. This is in the deep water 
of the Canadian Basin off Prince Patrick Island. The M2 tide from the Atlantic Ocean 
mainly enters through the Greenland Sea. At Spitsbergen its amplitude is about 40 cm and 
during its propagation northwards decreases to about 2 cm near the East Siberian and 
Chukchi seas. In the region of the East Siberian Shelf, Chukchi Sea, and Beaufort Sea, 
the cotidal lines are somewhat parallel to the depth contours. At the entrance to the East 
Siberian Sea the amplitude is 10-15 cm falling to 2-3 cm near the coast. 

Another branch of the Atlantic Ocean tide enters the Arctic Ocean between 
Spitsbergen and Norway. This causes higher amplitudes in the southern part of the Barents 
Sea and in the White Sea and begins to dissipate towards Novaya Zemlya. The model of 

(5.160) Lit-- 

(5.161) 	At 
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FIG. 5.19. (a) Cotidal lines for M2 in the Arctic Ocean. Phase angles (with 
reference to Greenwich) are in degrees. (b) Corange lines (centimetres) of M2 
in the Arctic Ocean. (Kowalik and Untersteiner 1978) 
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Kowalik and Untersteiner (1978) did not reproduce the tide in the area of the White Sea, 
western part of the Barents Sea, and around Novaya Zemlya. 

Platzman (1975, 1979) calculated the normal modes of the Atlantic and Indian 
oceans, including their topography and the effect of the earth's rotation in a finite-element 
framework and paying particular attention to the effects of multiple connectivity due to the 
presence of islands. Tidal regimes can then be developed using the results of the normal 
modes. Several authors (e.g. Fairbaim 1954) used the so-called Proudman tidal theorem 
to calculate the tides in the oceans or in small water bodies. This theorem permits one to 
determine the tidal regime across the open boundary of a water body, knowing the tides 
around its shore. However, Foreman et al. (1980) showed that the mathematical problem 
is ill-posed, and attempts to use the theorem numerically have failed. 

Thacker (1979) simulated tidal motion on a sphere using a geodesic finite-difference 
method. This method permits variable resolution of the grid, and the use of a three-
dimensional Cartesian coordinate system, rather than a two-dimensional curvilinear sur-
face coordinate system, makes computations on irregular surfaces somewhat easier. 
Clarke and Battisti (1980) considered the influence of the continental shelf on coastal tides. 
Their coastal boundary layer theory suggests that semidiurnal tides will be amplified on 
wide continental shelves in middle and low latitudes, but diurnal tides will not be ampli-
fied. Observations bear out these theoretical results. 

TIDES IN CANADIAN WATERS 

In this subsection, the tidal regimes in various Canadian water bodies will be con-
sidered in some detail. In the next subsection, the tidal regimes in certain selected water 
bodies on the globe will be considered. 

The second greatest tidal range in Canada, and probably in the world (the greatest 
tidal range occurs in Ungava Bay, which joins the Hudson Strait in Canada), occurs in the 
Bay of Fundy in which the tidal range is greater than 40 ft (12.2 m). Along the Atlantic 
coast of Canada from Cape Race to Cape Ray (Newfoundland), across to Glace Bay (Nova 
Scotia), and along the shores of Nova Scotia and New Brunswick, the tide is semidiurnal 
(Dohler 1967a). From Placentia Bay (Newfoundland) to Shelbourne (Nova Scotia), high 
water occurs almost at the same time. The tidal range (i.e. difference between high- and 
low-water heights) here is usually less than 6 ft (1.83 m). However, near the southern tip 
of Nova Scotia, the tidal range as well as the time of occurrence of high water varies 
significantly over short distances. 

Along the east coast of Newfoundland and along the Labrador coast south of 
Cartwright, the tide is mainly semidiurnal. North of Cartwright the tide becomes in-
creasingly semidiumal, and at the northernmost point of Labrador (at Cape Chidley) the 
tide is entirely semidiurnal. The tidal range here is about 0.9 m but it increases towards 
the Davis Strait. 

The tide that propagates through the Cabot and Belle Isle straits into the Gulf of St. 
Lawrence is also mainly semidiumal, expect between Cape Tormentine and Richibucto 
(New Brunswick) and also near Savage Harbor (Prince Edward Island) where the tide is 
dominated by diurnal constituents. At the southern end of Magdalen Islands and near 
Crossman Point (New Brunswick) the tide is diurnal. The tidal range in the Gulf of St. 
Lawrence is less than 2.4 m. 

The tide in the Gulf of St. Lawrence (which is a co-oscillating tide with the Atlantic 
Ocean) propagates through the St. Lawrence Estuary and River to Lake St. Peter (a 
distance of 644 km from Sept-îles). It takes the crest of the tide 1 h (counting from 
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FIG. 5.20. Computed tidal regime for the M2 constituent in the Bay of Fundy and the Gulf of Maine. Solid 
lines show the amplitude (centimetres) and broken lines show the phase (degrees). (Greenberg 1975) 

FIG. 5.21. Distribution of the M2 tide in the Gulf of St. Lawrence, Canada. Amplitudes are in centimetres and 
phases are in degrees. (Farquharson 1970) 
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FIG. 5.22. Distribution of the K 1  tide in the Gulf of St. Lawrence, Canada. Amplitudes are in centimetres and 
phases are in degrees. (Farquharson 1970) 

Sept-Îles) to travel to the mouth of the Saguenay River, 5 h to Quebec City, and 10 h to 
Lake St. Peter. The range of the tide increases from about 2.1 m at Sept-Îles to about 
4.3 m at Quebec City and decreases to about 0.3 m in Lake St. Peter. Upstream of Lake 
St. Peter, a semidiurnal tide with a range of 0.15 m is present. A very small tidal range 
of 0.03 m can be seen in the Great Lakes. 

In the Hudson Strait, Hudson Bay, and Foxe Basin, the tide is mainly semidiurnal, 
except in a small region between Povungnituk and Port Harrison and also at Hall Beach. 
Here, large diurnal variations take place. Beginning at the mouth of the Hudson Strait, 
along the north shore the tidal range increases from 5.5 m to about 9.1 m (at Ashe Inlet) 
and decreases again to 4.9 m at Schooner Harbor. Along the southern shore of Hudson 
Strait, the tidal range increases rapidly and the average range is about 12.2 m in the Leaf 
Basin. At the mouth of Hudson Bay the tidal range is about 1.8 m and increases to about 
3.7 m near the western shore and decreases gradually along the southern  and eastern  shores 
to about 0.3 m at Port Harrison. At the head of James Bay, frequent large storm surges 
obscure the tidal effect (Dohler 1967a). 

From the Labrador Sea, the tidal range increases northward into Davis Strait and 
decreases again towards Baffin Bay. Halfway along the Baffin Island coast, the tidal range 
is almost zero. From here, it increases towards Smith Sound and Lancaster Sound. In 
Davis Strait, high water occurs almost simultaneously everywhere. However, in Baffin 
Bay, high water at the northern end occurs at the same time as low water at the southern 
end. In Smith Sound, the tidal range is about 3.1 m and in Lancaster Sound (at Resolute) 
the average range is about 1.2 m. In the inlets leading off from Lancaster Sound, the mean 
range is about 1.8 m. In the western Arctic, west of Barrow Strait, the tidal range is very 
small. 
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FIG. 5.24. M2 tide in Hudson Bay. Amplitudes are in centimetres and phases are in degrees. 

Tides on the west coast of Canada will not be considered because significant storm 
surges do not occur here (except possibly in the Hecate Strait and Queen Charlotte Sound). 
For more details on tides in eastern Canadian water bodies, see Yuen (1967), Greenberg 
(1975, 1979), Garrett and Greenberg (1977), DeWolfe (1979), Farquharson (1970), 
Levesque (1977), Dohler (1967a), Easton (1972), Godin (1965a, 1965b, 1966a, 1966b, 
1974), and Freeman and Murty (1976). Godin (1980a) produced cotidal charts for all 
Canadian waters. 

One of the important water bodies in western Canada that is relevant for storm surge 
studies is the Beaufort Sea. Henry and Foreman (1977) studied the tides in this water body 
using a two-dimensional numerical model. The tidal regimes in Canadian water bodies in 
which storm surges are significant are shown in Fig. 5.20-5.27. 
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FIG. 5.25. K1 tide in Hudson Bay. Amplitudes are in centimetres and phases are in degrees. 

TIDES IN SELECTED WATER BODIES ON THE GLOBE 

The M2 tidal regime in the North Sea is shown in Fig. 5.28. Three amphidromic 
points can be seen. The cotidal chart for M2 in the Baltic Sea is shown in Fig. 5.29. Again, 
one can see three amphidromic points. In Fig. 5.30 is shown the M2 tidal regime in the 
Adriatic Sea, which has only one amphidromic point. The Black Sea also shows only one 
amphidromic point (Fig. 5.31). Tidal regimes are also illustrated for the Persian Gulf (Fig. 
5.32), Indonesian Archipelago (Fig. 5.33), Eastern China Sea (Fig. 5.34), and the Sea of 
Okhotsk (Fig. 5.35). The M2 and K 1  tidal regimes in the Gulf of Mexico are shown in Fig. 
5.36 and 5.37, respectively. The K2 tidal regimes in the Arabian Sea and the Bay of Bengal 
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FIG. 5.26. Coamplitude lines (centimetres) for M2  in the southern Beaufort Sea. Numbers in large type indicate 
computed values and those in small type denote observed values. (Henry and Foreman 1977) 
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FIG. 5.27. Cophase (wth reference to Greenwich, in degrees) lines of the M2 tide in the southern Beaufort Sea. 
Numbers in large type are computed values and those in small type are observed values. (Henry and Foreman 
1977) 
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FIG. 5.28. Cophase (degrees, solid lines) and corange (centimetres, broken lines) of the M2 tide in 
the North Sea. (Defant 1961) 

are illustrated in Fig. 5.38. The M2 tidal regime in the northern part of the Bay of Bengal 
is shown in Fig. 5.39 and 5.40. 

5.3 Interaction Between Storm Surges and Tides 

The traditional method of subtracting the astronomical tide from the observed water 
level and treating the residue as storm surge assumes that tide and surge are linearly 
additive and that there is no nonlinear interaction. However, observations show that there 
are situations in which there is an interaction (i.e. tide influencing the propagation of the 
surge and vice versa), especially in shallow areas. This interaction phenomenon, although 
probably present in other water bodies as well, appears to be quite pronounced in the 
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Flo. 5.29. Cophase lines (degrees) for the M2 tide in the Kattegat and Baltic seas. The observed amplitudes 
(centimetres) are also shown. (Defant 1961) 

Thames Estuary of the North Sea. In a series of papers, Proudman (1955a, 1955b, 1957, 
1958) studied this problem analytically, and his work will be considered at some length. 

ANALYTICAL THEORIES 

Observations in the North Sea and Thames Estuary show that maximum surges (both 
positive and negative) occur nearer the time of tidal low water than the time of tidal high 
water. Proudman (1955a) explained this observation through an analytical theory in which 
it was assumed that the surge and tide are generated in the North Sea and then propagate 
into the estuary. Ignoring the earth's rotation, computations have been made for uniform 
as well as variable width of the estuary. 
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FIG. 5.30. M2 tide in the Adriatic Sea. Numbers at stations represent the 
phases (degrees). Transverse lines correspond to the sections used for the 
computation. (Defant 1961) 

FIG. 5.31. Amphidromy of the semidiurnal tide in the Black Sea. (Defant 
1961) 

Before giving a summary of the mathematical analysis of Proudman, the important 
results from his theory will be stated. For this purpose the following terms in the equations 
of motion are identified: (Klulu)1 h is the friction term, aulax is the convective term, and 
a/ax( ti) is the shallow-water term. The important results are as follows. 
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FIG. 5.32. Phase (lunar hours) and amplitude (centimetres) of the spring tides in the Persian 
Gulf derived from observations. (Defant 1961) 

icio° 	 1200 	 140° 

FIG. 5.33. Cotidal lines of M2 in the Indonesian Archipelago (with reference to 
the upper culmination of the moon in Greenwich). (Defant 1961) 

1) For the case of a progressive wave in an estuary of uniform width, friction has no 
influence on the times of high and low waters. The shallow-water term makes the high 
water occur earlier and the low water occur later than otherwise. Also, for a given 
meteorological situation, the height of the surge in the estuary whose maximum occurs 
near the time of tidal low water tends to be greater than the surge height whose maximum 
occurs nearer the time of tidal high water. 
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FIG. 5.34. Cotidal lines of M2  and range of the semi-
diurnal tide in the East China Sea. Phases are with reference 
to 135°E; corange 2(M 2  + S2 ) in metres. (Defant 1961) 

2) For a progressive wave in an estuary of variable width, the contraction of the 
estuary influences the shallow-water  terni and the friction term. However, the direct effect 
of the variable width is to make high waters higher and low waters lower than they would 
be in an estuary of uniform cross-section. The friction term makes high water lower and 
low water higher whereas the shallow-water  terni  makes high water occur earlier and low 
water occur later than otherwise. 

3) For the case of a standing wave in an estuary of uniform cross-section, both the 
friction and the shallow-water terms make the time of high water occur later than other-
wise. Regarding the amplitude of the surge, friction could either increase it or decrease 
it depending on the nature of the variation of the surge with time. For example, if the surge 
curve rises to its maximum value at a greater rate than it decreases from the maximum, 
the friction term will tend to decrease the surge height. 

It should be noted that these above results apply only for a short distance down the 
length of the estuary, the distance being measured from the junction of the estuary with 
the open sea. Also, the analysis applies only for small values of tide and surge amplitudes. 
In his second paper, Proudman (1955b) ignored the nonlinear inertial (i.e. convective) 
terms but removed the restriction on the distance from the open sea and also on the 
amplitudes of the tide and surge. The important results from this paper are the following. 
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FIG. 5.35. Cotidal lines of M2  and range 2(M2  + S2) in metres for the Sea of Okhotsk. Phases 
are with reference to 135°E. (Defant 1961) 

For a progressive wave, the surge amplitude is greater at the time of low water than at the 
time of high water, and this is attributed to the friction term. In his third paper, Proudman 
(1957) showed that for the case of a standing wave, the shallow-water term will make the 
surge height greater at the time of tidal high water. 

The mathematical development, following Proudman 1955b, leading to the result that 
for the case of a progressive wave, friction makes the surge height greater at the time of 
tidal low water than at the time of tidal high water will be considered. For a one-
dimensional system, the equations of motion and continuity are 

au 	g K 
= 	g IuIu 

 (5.163) Fr. (A u) + b-à7 = 0 

where u is the current averaged over a cross-section in the x direction, t is time, g is 
gravity, is the deviation of the water level from the average level, K is a friction 
coefficient (0.0025), A is the area of vertical cross-section up to the level of the average 
water height, and b is the estuary width at the level where A is considered, and 

(5.164) h = 

(5.162) 

333 



FIG. 5.36. Cotidal lines and amplitudes of the M2 tide in the 
Gulf of Mexico. (Defant 1961) 

FIG. 5.37. Cotidal lines and amplitudes of the K 1  tide in the 
Gulf of Mexico. Solid lines are phases with reference to 
89.9°W; broken lines are amplitudes (centimetres). (Defant 
1961) 

Define 

(5.165)  c\/  

Assume that the tide and the surge are generated in the open ocean and travel into the 
estuary. Let x = 0 be the mouth of the estuary and let F(t) be the form of at x = O. Define 
a contraction coefficient P and a friction function q: 

p  = iboco 
bc 

(5.166) 
K  u 

=  4bh2  P lui 
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Also define 

V PAu 

dx'  (5.167) 0 = 
fo c(x 1 ) 

1 _ K P , 
= 	0  172  dx 

336 



where prime denotes variables of integration. Note that for an estuary of uniform cross-
section, h is uniform and P =  1; then 

2 k 2  H — Kx 

and this situation is considered in Proudman (1955a). For convenience, also define 

0 + t 
(5.168) 

-= 0 - t 

Proudman restricted his study by making the following assumptions: (1) d2P1d02  is 
negligible; (2) only those distributions of the current are permitted, in which there is 
entirely either flood or ebb but not a combination of both between the estuary mouth and 
the cross-section under consideration. From eq. 5.166: 

4bh2P 

the positive sign being used for the flood and the negative sign for the ebb. 
Use of eq. 5.166 and 5.167 transforms eq. 5.162 and 5.163 to 

a 	bo ca  a( 
(5.170) 	= 0 

and 

a 	bo co  
(5.171) 	(Au) + 	— Kblulu 

Eliminate in eq. 5.170 and 5.171, use eq. 5.166, ignore a2P/ao2 , and use eq. 5.168 to 
give 

(5.172) 	a2 v  _ ( a 	a /7 2 

narl 	am/ ' 

For small values of 	the solution of eq. 5.172 can be written as 

(5.173) V = 	+ 	+ f 	+ 	1') 

After neglecting some integrals, which are small, eq. 5.172 can be written as 

a 2e, 	 a 24,2 

(5.174) —at2  + atai  + at  + q 	ayi2  + 2qd» = 0 

Proudman represented eq. 5.174 in two parts as 
a24., 	a 	2  

(5.175) 	 + 	( el) ) = 0 

and 
a 2,1, 	aq, 	a  q 

(5.176)  ae 
After some algebra, the expression for the water level  l  can be written as 

(5.169) q = ± K  
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be° 	 2 	I dP 	, (5.177) 	p 	= 	+ 	(Ili 	2g.t. — 	F (I)  ) d  0 
For the case of a progressive wave, at the estuary mouth (x = 0): 

o  = 0, +  ii  = 0, P = 1 

and 

cl) = U, cif = U2 (Y + 2q) 

where U and Y are defined through 

I  (5.178) 	+ 	, = 	1  
11) 	 (Jeri) 

and 

tiJ (5.179) Y = 2 	(1 2 4)d i  — 2g +  

From 

d (5.180) b0 c0  = U + I  [YU
2  — P 

Jo  de 0  

Assuming the following forms: 

dP) 1 Y (— — de 0  U 
(5.181) 

U = bo co  F(1) 

and -=- F(—t) at the mouth of the estuary gives 

(5.182) (l) = 

from 

1 + 2Ugqd0' 

b0 c0 o 
(5.183) —= = cl) + I 14) 2 [( elo b — 4 f q 2  11)d01 — 	e:--IL0' 11)

)
d'q' P 	o 	 o 

Finally, from eq. 5.167, 5.181, 5.182, and 5.183: 

(5.184) 	= 	F 	r 	1 

	

E, 	1 
 2F ' 
	cP2dx' 

	

(1 -± TIF ) jo ( i  FV 	 ° 	± 

	

[\ c  dx1,` 	4 K F  

	

\ —T11 
	TF1) 

c dP 	F  
P dx 	Fl 
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Next, following Proudman, the origin of time is chosen so that high water occurs at 
the cross-section at x for t = 0 (i.e. 1 = 0). Since for a flood current the positive sign in 
eq. 5.184 must be taken, the height of the high water is given by 

P F (0)  

[1  + F(0)1 
H i 

(5.185) 

Denoting by T(—t) and S(—t) the tide and surge heights at the estuary mouth and writing 

F(q) = T(1) + S(q) 

and using eq. 5.185, the height of the high water is given by 

(5.186) 
PT(0) + PS(0)  

1  + [T(0) + S(0)1 
L 	H 	i 

The predicted astronomical tide at the same location and time is given by 

(5.187) 
PT(0)  

[

Te  1 +l 
H 

For the same h, the height of the surge at the time of high water is given by eq. 5.186 and 
5.187 and is 

P5(0) 
(5.188) 

[ 1 4_ T(0)1  [ l 4_ 
H 	

T(0) + S(Orl 
] L 	H 	j 

Note that, provided T(0) and S(0) are positive, then for a given S(0), the surge height given 
by eq. 5.188 decreases as T(0) increases. 

Next, the low water situation will be considered. For this write 

F (1) = —T(i) + S(1) 

and assume that low water occurs at the cross-section x for t = 0. 
For an ebb current between the estuary mouth and the cross-section at x, the height 

of the low water is given by 

—P T(0) + P'S(0) 
(5.189) 

where P' and H' denote the values of P and H at low water. The predicted tide at the same 
location and time is 

—P'T(0) 

1 + 
H' 

r - T(0)  + S(0)  
1 L H' 

(5.190) 
T(0) 
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Then the surge height at low water is given by 

P'S(0) 
(5.191) 	 

T(0) 1  r 	T(0) 	S(0)  1 
[ 

+ 
 H' i[ 

+ 
	H' 

Since a lowering of the water level increases the degree of contraction of the estuary, 
then P' > P. Thus , for a given T(0) and S(0) the surge height at low water (given by 
eq. 5.191) will be greater than the surge height at high water (given by eq. 5.188) provided 

P 	
T(0) } { 	[T(0) + S(0)] } 	{ 	T(0) } { 	[T(0) — S(0)] } 

I 1 + —H 
1 + 	 > P 1 + 	1 + H 	 H' 	 H' 

In other words, the surge height at low water will be greater than the surge height at high 
water provided the following condition is satisfied: 

2 (11 (0)(2- — r-) S(0) 	H' 	ri 	 H i2  H2  (5.192) 
T(0)  

 H' 	
+ T 

11 

Proudman (1957) considered a standing wave, as opposed to a progressive wave in 
his two earlier papers (1955a, 1955b), and showed that for a short estuary (for the 
definition of a short estuary see eq. 7.1 and 7.2) the amplitude of the surge is lower at tidal 
high water. Thus, the result for the standing wave case is exactly opposite to that for the 
progressive wave case. The result in the standing wave case is attributed to the shallow-
water terms whereas the opposite result in the progressive wave case is accounted for by 
the friction terms. 

Proudman (1958) considered an idealized situation of an infinitely long estuary of 
uniform cross-section when a permanent current independent of the tide and surge is 
present. In this analysis, friction was ignored. Proudman pointed out that his results are 
similar to those of McCowan (1894). The important result is that the heights of high and 
low water at any place up the estuary are the same as at the mouth and that a bore will 
always form. The exact location of formation of the bore depends on the amplitude and 
form of the oscillation at the estuary mouth. 

Wolf (1978) extended Proudman's work by considering two-plane progressive waves 
traveling together in a semi-infinite channel of uniform cross-section. She evaluated the 
influence of the various nonlinear terms. The nature of this work is similar to that of 
Proudman in the sense that these are one-dimensional models and the influence of the 
earth's rotation is ignored. 

Wolf (1978) wrote the one-dimensional nonlinear equations of motion and continuity 
as 

(5.193) .12Y. + u  au , 	Kluitt  

at 	g ax  + h  = 0 

and 

(5.194) 
ig 	ail 	a 

± h  7; + «F; ( " )  ° 
where u denotes the velocity in the x direction, h is the water depth, is the water level, 
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and K is a friction coefficient. Let the solutions for 4 and u for the first-order part of these 
equations be denoted by subscript 1 and for the second-order part by subscript 2. 

Let c = \/ 	the phase speed of the wave and let F be an arbitrary function of 
t — xlc. Then the first-order solution can be written as 

x) (5.195)  

Writing 

= 
(5.196) 

u = u l  + U2 

and substituting eq. 5.196 into 5.193 and 5.194 gives 

(5.197) 	at2 	c ax2 	g ax2 ( 1u1) 	2axat(u") 

and 

a 2 	a 
(5.198) h'12a 	+ ax 	at 	ax 

Using eq. 5.195, eq. 5.197 and 5.198 must be solved for u2  and 42  using the following 
boundary conditions: 

u2  = 

By these conditions, the possibility of nonlinear effects at the channel mouth is suppressed. 
The initial condition is 

(5.200) 42  = 0 at t = 0 for all x 

i.e. initially everywhere there is no nonlinear part in the water level. 
For convenience, Wolf (1978) made the same transformation as per Proudman 

(1957): 

(5.201) 

c 

or 

x = c 
—  

\ 2 
(5.202) 

t = 	 \ 2 / 

	

a2 u2 	a2u2 	a2 

	

— z 	2  "z 	 a2 	K a 

(5.199) at x =  0 for all t 
= 0 42 	0 
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F (t - 

F 

K x 
- 2h 

K x 
2h 

F(t - F - + 
Kc f l+xle  

c 	IF(0)IF(0)d0 --
4h 

Kx 
2h 

F (t - 
+ F2 

(
t 	F2 i t  + 

8 	c) 	8 [F2 (t -1)] ' T1. (5.206) 

K x 
2h + c 	8 	c F (t - 

c P«- 32  [ F2  (- x  8 c 	4 c 	c)]  

(- 

Kx + — 
2 h 

The solution of eq. 5.197 can be shown to be, after some algebra, 

u2 	3 
(5.203) — = 	[F`(t - 	- —F2 

(t -
8 

 "I) + 	(t + ;) - 	F (t x  c 	4 c 	c 	8 	c 	c 	2h 	-c) 

X  F ( t  _ _x) Kc 
c 	4h J 	I F (C ) I F (0)de 

where  O  is a variable for integration. The solution of eq. 5.198 is 

(5.204) 	
8 (t - 'Lc) - 2-(t + 	+ 	[F2 (t - h 	c 	8 	c 	4c 

t-x 

F  (t — 	— 	xl 	F2  x \ 	3x r 	\ -1 
c 	8 	 U‘) -47 [ F2  

F(_ 
	lz(-di 	F F (0)de 

Kc ri+sle
IF F (Ma 

4h J1-xl, 

where prime denotes differentiation with respect to 
Since u l  and are known from eq. 5.195 and from eq. 5.203 and 5. 204, the total 

solutions can be written as 

(5.205) 	= F (t - "Lc ) + 	[F2  (t - 	- 
F2 ( t 	

) 

a.\ + F2 é t  + x  \ 

c 	4c 	c 	8 	c 	8 

and 

K c 'xi' F 	-
c 

+ —
4 h 	

I F (0)1 F (0) d 0 

The second-order solutions were given by eq. 5.203 and 5.204. Next, the contributions 
from the quadratic friction term KI ill 11 I h , the convective term au/ ax, and the shallow-
water term a/axgu) will be determined separately solving the following second-order 
equations (but using the same boundary and initial conditions as above): 

	

a2 112 	8 2 112  
K a (5.207) 	

t2 	ax2 = --
h 

—a t (ludu) 

and 

K.  ric - 	IF (0)1 F (0) d0 4h 
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F (-  ) F fx'` IF(0)1F(0)(10 Kx 
2h 

a U2 aL 
(5.208) h -- + — = 0 ax 	at 
The solution for the set of eq. 5.207 and 5.208 is 

, 	2 	Kc re 	 ,+xic 
(5 . 20

n
) (71  ) quadratic = 4h 	IF(0)1F(0)d0 - —

Kc f 	IF (0)IF (0)d0 
friction 

 

4_ Kx F ( _.x_. F( 	_ Kx I F  ( t  _ ..x_) 
2h 	cl 	\ cl 	2h I 	ci 

Next, solve the following set: 

a2 ti2 	,a2 /42 	1 	a 2 	K a 
(5.210) 	- c` 	= 	2 axat (u " ) 	(11411u)  at 	ax 
and 

au2  
(5.211) h 	—a—t- 	o 

ax 

This results in 

(5.212) 	= - (t - 	- 	(t + 	+ 	(- 	- fg2- 

	

[ F2  ( t 	 [ F2 ( — 	— 	F  ( t .1.cc) 4c 	c 	4c 

(t - x-c ) 

(t - 

Kc 11+xle 
- 	IF(0)1F(0)d0 —4h 1-x/, 

Note that eq. 5.209 gives the contribution from the quadratic friction term to the 
second-order solution. To obtain the contribution from the convective term, the difference 
between eq. 5.212 and 5.209 must be taken, which gives 

(5.213) ( (2)_ — F2 	x )  + F2 (  + 	FF2 

 (

t  

convective 	8 \- 	8 \ t 	4cc L"  

+ F2  ( 
c

_ .x_. ) _ 8 F2  (1 _ x 
4c  [

F2 (_ 11' 

	

8 	 c 	 c 

The contribution from the shallow-water term is the difference between eq. 5.204 and 
5.212, which becomes 

(5.214) L  (Ti  )sha _ 
F2 ( t  _ 	_ F2 ( t  + .1 \ + F ( _ 2 ._\ 	F42 i — .1 \ 

How — 71. 	c) 	4 	c) 	4 c) 	c ) 
water 

+ X [ F2 ( t  _ 	_ x [ F2 ( 
2c 	c 	2c 

• 
Next, consider the interaction between the surge and the tide. Let S(t - x/c) denote the 
first-order surge, T(t - x/ c) the first-order tide, and 7.-Es the total water level at time t 
and at distance x from the open end of the channel. Substituting 
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(5.215) F (t — '--) = S (t — 1 + T (t — c 	c 	c 

into eq. 5.206 gives an expression for 4 T+  s. The solution r for the tide alone can be 
obtained by setting F(t — x I c) = T(t — x I c) in eq. 5.206. The residual water level 
is then given by 

(5.216) 	R = T-i-S — 

The same procedure can be used to derive separately the influence of the quadratic friction 
term, the shallow-water term, and the convective term. 

The interaction between tide and surge, denoted by 7-, is given by 

(5.217) 4/  --- 	— 	= 

noting that 4s  can be determined from eq. 5.206 by setting F(t — x I c)= S(t — x I c). The 
reader is referred to Wolf (1978) for details of the expression for 4 / . These expressions 
were used by Wolf to study the interaction between tide and surge on the east coast of the 
United Kingdom. This will be discussed in Chapter 6 when the North Sea surges are 
considered. However, some important results of general interest will be stated here: the 
shallow-water and convective terms are responsible for an increase in residuals on rising 
tide whereas the quadratic friction causes a decrease in residuals on high tide. 

Wolf defined two different measures for the degree of interaction. The first one is 
called the mean absolute interaction or real interaction, which is defined as the mean of 
all values of the absolute difference between each residual and the corresponding surge 
obtained when the tide is absent (given by 4/ ). The second measure is termed the observed 
interaction, and this can be applied to observations when 4 /  is not available. The observed 
interaction is defined as the standard deviation of the mean absolute residual height at each 
tidal phase with respect to tidal phase. 

Computations were made for the magnitude of both types of interactions for a channel 
of depth h = 40 m, a tidal amplitude AT = 1.0 m, and surge amplitudes A s  = 0.4, 0.6, 
0.8, and 1.0 m. It waS found that the contributions from the convective term and the 
shallow-water term to both the real and observed interactions are about the same whereas 
the contribution from the quadratic friction is about twice in the real interaction than in the 
observed interaction. This difference in behavior could probably be attributed to the fact 
that whereas the shallow-water and convective terms tend to redistribute the energy with 
respect to tidal phase, the quadratic friction term actually removes energy from the surge. 

Among the three terms, the largest contribution comes from the quadratic friction 
term. Roughly, it can be said that the contribution from the convective term is about 14%, 
the contribution from the shallow-water term is about 29%, and the remaining contribution 
is from the quadratic friction term. The magnitude of the interaction appears to increase 
with increasing surge amplitude as well as with increasing distance from the mouth of the 
estuary.  . 

EMPIRICAL METHODS 

Rossiter (1959a) presented a method for extracting storm surges from tidal records. 
This method was developed in the precomputer days when tide-predicting machines were 
in use. Hence, Rossiter's method is of historical interest only. Earlier, the work of 
Proudman (1955a, 1955b, 1957, 1958) was considered in which he developed analytical 
theories to study the interaction between tide and surge in the North Sea and Thames 

T-I-S — T — S 
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TABLE 5.11. Number of occasions when surge heights at Southend exceeded given values for four states of tide: high water (H), low water (L), rising tide (R), falling 
tide (F). (Rossiter 1961) 

Surge height (m) 
State of 

tide 	0.0 	0.15 	0.30 	0.46 	0.61 	0.76 	0.91 	1.07 	1.22 	1.37 	1.52 	1.68 	1.83 	1.98 	2.13 

Positive surges 

H 633 	368 	186 	91 	44 	23 	15 	5 	9 	2 	1 	1 	1 
F 	594 	339 	168 	66 	36 	22 	11 	5 
L 539 	306 	161 	90 	55 	31 	15 	9 	2 	9 	1 
R 	579 	378 	255 	156 	94 	58 	39 	17 	10 	7 	1 

Negative surges 

H 425 	230 	113 	62 	38 	23 	15 	10 	6 	3 	3 	2 	1 	1 
F 	464 	233 	131 	77 	41 	18 	19 	7 	5 
L 519 	274 	129 	72 	30 	20 	8 	3 	1 
R 	479 	301 	172 	99 	60 	39 	23 	17 	12 	6 	4 	1 	1 	1 	1 

All surges 

H 1058 	598 	299 	153 	82 	46 	30 	15 	8 	5 	4 	3 	2 	1 
F 	1058 	572 	299 	143 	79 	40 	93 	12 	5 
L 1058 	580 	290 	162 	85 	51 	23 	12 	3 	2 	1 
R 	1058 	679 	427 	255 	154 	97 	62 	34 	22 	13 	5 	1 	1 	1 	1 



TABLE 5.12. Number of occasions when surge heights exceeded given values for four states of tide: high water 
(H), low water (L), half-tide rising (R), and falling (F). (Keers 1968) 

Surge height (ni) 
State 
of tide 0.0 	0.15 	0.30 	0.46 	0.61 	0.76 0.91 	1.07 	1.22 	1.37 	1.52 	1.68 	1.83 	1.98 

Aberdeen 

H 301 	177 	80 	21 
F 	296 166 	79 	27 	5 	2 
L 303 196 	98 	35 	7 	3 
R 	296 	181 	102 	38 	11 	2 	1 

Tyne 

H 343 237 	105 	48 	15 	2 
F 	328 234 	130 	61 	26 	6 	2 
L 349 254 	136 	54 	16 	8 	3 	1 
R 	341 	237 	154 	82 	34 	12 	4 	1 

hniningham 

H 291 	209 	116 	62 	26 	11 	3 	1 
F 	267 	160 	93 	51 	23 	10 	3 	1 
L 309 224 	149 	92 	37 	14 	11 	5 	3 
R 	310 252 	182 	125 	69 	34 	18 	8 	2 

Lowestoft 

H 379 289 	221 	137 	82 	37 	13 	7 	2 	2 	I 
F 	374 298 	212 	148 	104 	47 	18 	10 	4 	2 	1 
L 366 296 	230 	152 	93 	50 	19 	11 	7 	4 	1 	1 
R 	373 298 	234 	172 	104 	59 	27 	14 	8 	4 	1 

Harwich 

H 300 227 	137 	79 	40 	14 	8 	4 
F 	278 	195 	121 	85 	40 	17 	10 	6 	3 
L 295 	240 	181 	115 	67 	35 	21 	12 	4 	3 	2 	I 
R 	290 240 	199 	142 	88 	49 	26 	13 	7 	3 	2 	2 	I 

Southend 

H 321 	214 	113 	56 	26 	11 	5 	I 
F 	280 	183 	115 	70 	41 	24 	11 	5 
L 325 	251 	175 	106 	50 	31 	16 	12 	6 	3 	2 	1 	1 
R 	309 264 212 	169 	124 	86 	52 	29 	15 	8 	6 	5 	4 	2 

Estuary. However, it was Rossiter (1959b, 1961) who looked specifically at this problem 
using real data, and he attributed the interaction to the fact that the surge changes the phase 
of the tide and vice versa. For this to be possible the tide must have the nature of a 
progressive wave, which according to Rossiter is the situation in the Thames Estuary. 

Discussion will begin with the 1961 paper of Rossiter. Attention was given to this 
interaction problem because positive surges at the time of high water in the region of 
Lowestoft and Harwich and propagating southwards with the tide seldom were as great as 
was originally expected. Earlier, Doodson (1956) attempted to explain the interaction, 
treating the tide as a continuous oscillation with a period of 12 h and the surge as a transient 
oscillation with a period of about 24 h. The geometry used by Doodson is rather simple: 
a uniform gulf of depth 128 ft (39 m) and length 105 mi (169 km). No appreciable 
interaction was noticed and this is attributed by Rossiter (1961) to the fact that Doodson 
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Fin.  5.41. Values of surge height (metres) at Southend, U.K.  (ordinale),  at four 
stages of tide relative to surge height averaged over the tidal cycle (abcissa). (Rossiter 
1961) 

used a mean depth that was too large. 
Rossiter (1961) inferred the interaction in the observed data through the following 

technique. From the mouth of the Thames Estuary, Southend is located at about 7 mi 
(11.3 km) up the estuary and Richmond Lock (at the head of the tidal portion of the river) 
is at a distance of 68 mi (109.5 km). It is assumed that the water level at Southend is typical 
of the estuary. For the period 1928-38, the hourly surge heights for all significant surge 
episodes were tabulated (both positive and negative surges were considered). Each of these 
hourly surge heights was identified to be associated with one of the four stages of the tide: 
high water (H), low water (L), rising tide (R), and falling tide (F). The number of surge 
heights exceeding given values for these four states of the tide is listed in Table 5.11. 

It can be seen from Table 5.12 that there is a tendency for the surges to be greatest 
on the rising tide and no particular preference among the other three stages. Doodson 
(1929) noted this earlier, although the data used by him were much less. Rossiter (1961) 
used the x 2  test to prove that the result (i.e. tendency of surges to be greatest on the rising 
tide) is statistically significant. Next, Rossiter attempted to quantify this qualitative result 
by listing the surge height in units of a tidal cycle and grouping according to the mean 

1.2+  
/ 	

1.21 
 

/ 
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residual in each cycle. In Fig. 5.41 the mean residuals for each of the four states of tide 
are plotted on the ordinate and the mean residual for the complete tidal cycle is plotted on 
the abscissa. If one assumes linearity over the range considered, one can infer that the 
surges are about one quarter greater on the rising tide compared with the other three stages. 

Before offering an explanation for the interaction, Rossiter (1961) disagreed with 
some of the earlier explanations by Doodson (1929). Doodson suggested that the inter-
action is typical of the North Sea and occurs at other locations also. But Rossiter (1961), 
after examining the residuals at Aberdeen, Tynemouth, Immingham, and Lowestoft, 
concluded that there is no significant interaction at any of these locations and the result 
noted at Southend is due to local effects. Doodson (1929) suggested a second possibility: 
water level gradients generated by wind are inversely proportional to the water depth. 
According to Tomezac (1952a, 1952b) this effect is indeed important in the estuaries in 
Germany. However, Rossiter ruled this out for the Thames Estuary and concluded that the 
interaction occurs while the surge and tide propagate together from the open sea into the 
estuary. 

To verify the possibility of interaction while the tide and surge travel together, 
Rossiter (1961) used a one-dimensional numerical model following Hansen (1956) and 
Otter and Day (1960). These calculations showed that a positive surge can accelerate the 
propagation of the tide and a negative surge can retard the tide. Two simple reasons can 
be seen why a positive surge can accelerate the tide. First, since the speed of propagation 
of the tide is proportional to the square root of the water depth, on a positive surge the tide 
can travel faster. Second, since the bottom friction is inversely proportional to the water 
depth, on a positive surge there is less bottom friction and the tide can travel faster. 
Rossiter and Lennon (1965) suggested that a positive surge hastens the tide due to 
increased rate of travel and also due to decreased effect of bottom friction. These effects 
combine to produce a forward phase shift of the tide, which distorts the surge heights. 

However, this may be too simple an explanation. Also, the above explanation 
assumes that the tide is a progressive wave. Rossiter (1961) argued that the earlier held 
opinion that the tide in the Thames is a standing wave is based on the assumption that the 
estuary has uniform cross-section. However, Otter and Day (1960) showed that an estuary 
of exponential cross-section would more likely give rise to a progressive wave. 

The next paper of an empirical nature to be considered is that of Keers (1968) who 
considered the tide—surge interaction problem on the east coast of the United Kingdom 
and not just for the Thames Estuary. His main conclusion was that for locations under the 
influence of the same amphidromic system, the degree of interaction is highly correlated 
with the tidal range. But the correlation of the degree of interaction with surge height is 
considerably less. 

The significance of the tide—surge interaction as they travel together southward along 
the east coast of the United Kingdom is shown in Fig. 5.42. Whereas there is reasonable 
correlation between the surge at Lowestoft and the northerly component of the geostrophic 
wind, the surge at Southend is dominated by nonlin6ar shallow-water effects. The main 
effect of the interaction is the frequent occurrence of large surge heights on rising tide and 
the fact that at the time of high water fewer large surge heights occur (Table 5.12). Note 
that for the case of no interaction there would be an equal number of surge heights at each 
of the four stages of the tide. Thus, the standard deviation of the differences from 25% 
for the four states of the tide is a measure of the interaction between the surge and the tide. 

Keers studied the degree of interaction by considering the distribution of the 100 
largest surge heights at each location (see Table 5.13). For these six locations, the average 
of these 100 surge heights, averaged over the four stages of the tide, is given in the third 
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FIG. 5.42. Storm surges at eight locations in the United Kingdom during October 
11-12, 1960. HW, time of high water. (Keers 1968) 

column of Table 5.13. It can be seen that as the tide and surge propagate together, the 
interaction increases from Aberdeen to Immingham, with a marked discontinuity between 
Immingham and Lowestoft, followed by an even greater increase of interaction with 
distance traveled. These two distinct regimes of interaction are related to the two amphi-
dromic systems in the North Sea. There is strong correlation between the degree of 
interaction and the mean range of the spring tide (the later quantity is listed in the second 
column of Table 5.13). The factors that determine the degree of interaction appear to be 
range of the tide, depth of the sea, bottom friction, surge height, coastline geometry, and 
the duration the tide and surge traveled together. 
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TABLE 5.13. Distribution of the 100 largest surge heights at six locations on the east coast 
of the United Kingdom. The numerals indicate the number of times the surge occurred at the 
time of rising, low, falling, or high tide. (Keers 1968) 

Tidal range 	Average surge 	Rising 	Low 	Falling 	High 
Location 	(In) 	height (m) 	tide 	tide 	tide 	tide 

Aberdeen 	3.62 	0.61 	32 	28 	22 	18 
Tyne 	 4.30 	0.73 	38 	18 	28 	16 
Immingham 	6.22 	0.91 	47 	22 	15 	16 
Lowestoft 	1.95 	 1.13 	33 	26 	23 	18 
Harwich 	3.63 	 1.07 	43 	30 	15 	12 
Southend 	5.30 	1.13 	60 	20 	14 	6 

TABLE 5.14. Number of occasions when the negative surges 
exceeded given heights at Southend during the period 1928-38. 
(Rossiter 1971) 

Given height (ni) 

Stage of tide 	2.13 	1.83 	1.52 	1.22 	0.91 

Rising 	 I 	1 	4 	12 	23 
High 	 1 	3 	6 	15 
Falling 	 5 	12 
Low water 	 I 	8 

Keers (1968) used the following technique to examine quantitatively the interaction 
problem. Let t = 0 refer to the time of tidal high water and let be the surge height at 
time t. Let ire represent a hypothetical linear surge. Then 

4 	 4 

(5.218) 'r (t ) = E A„(t)Te(t — 3n) + E B„(t, / *( — 3n) 
, ■ =0 

Here, A„(t), n = 0, 1, . . . , 4, are nondimensional constants for a given value of t and 
B„(t, h), n = 0, 1, . . . , 4, are arbitrary functions of time and tidal height h. 

Keers (1968) assumed that the degree of interaction at any given location is indepen-
dent of the range of the tide. For Southend he also assumed that the hypothetical linear 
surge is given by the observed surge irk at Lowestoft (however, there is a 3-h time duration 
for the tide and surge to travel between Lowestoft and Southend). Also, ignoring mete-
orological forcing, eq. 5.218 becomes 

4 

(5.219) il(t) = E A„( ) t ,TIL,1-3(n+1)  + c 
llO 

where c is a constant. Using the method of least squares one can then find the non-
dimensional regression coefficients A„(t) in eq. 5.219 for any given time relative to the 
time of tidal high water at Southend. Keers (1968) pointed out that in contrast with the 
theoretical prediction by Proudman (1955a, 1955b), including the range of the tide at 
Southend on the right-hand side of eq. 5.219 made matters worse. 

Heaps (1967) remarked that as long as the nonlinear terms in the equations of motion 
are retained, the interaction between tide and surge can be simulated with reasonable 
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accuracy. Rossiter (1971) briefly examined the interaction between tides and negative 
surges, which can be seen from Table 5.14, which lists the number of occasions when the 
negative surges at Southend exceeded prescribed amplitudes during the period 1928-38. 
Note that the characteristics of the surge—tide interaction are not necessarily the same for 
negative surges as for positive surges. 

NUMERICAL MODELS FOR THE TIDE- SURGE INTERACTION 

Banks (1974) appears to be among the first to use a two-dimensional numerical model 
to study tide— surge interaction in the North Sea. She showed that in the southern part of 
the North Sea, the major part of the interaction is between the M2 tide and the surge. 
Prandle and Wolf (1978a) studied the interaction between tide and surge in the Thames 
Estuary through a one-dimensional model and used a so-called parallel model approach 
(i.e. to run a tidal model with surge interaction term and to run a surge model with tide 
interaction term). Here the parallel model approach for the two-dimensional case, as 
developed by Prandle and Wolf (1978), will be described. 

In a right-handed Cartesian coordinate system, with x towards east and y towards 
north, the equations of motion and continitity in depth-averaged velocities u and v and free 
surface height ri are 

(5.220) au 	a (u2 ) 	a (uv 	aTi  
at  + 	17. +•iy- 	+ g11797 + Ku(u2 + v 2 ) 1/2 — fV = 0 

(5.221) —a
a v  +—a (-1 + (—v2 )+ gH— + Kv(u 2  + v 2 , 1/2 ) + fU = 0 t ax H 	ay H 	ay 

al au av _ 0  
(5.222) 	+ 	+ 	— 

where 

H D + 

(5.223) U uH 

V -.=" vh 

Here, D is the water depth in the undisturbed state, U and V are the volume transport 
components, and K is a friction coefficient. 

At this stage Prandle and Wolf made an assumption that could be satisfactory from 
a practical point for the southern North Sea; but nevertheless, theoretically the assumption 
is not satisfactory. They assumed that the interaction between tide and surge is contained 
only in the quadratic friction term and the contribution of the nonlinear convective terms 
to the interaction is insignificant. 

The basic idea of the parallel model approach is that at every location and at every 
time step, the transports and surface elevation in the tidal model denoted respectively by 
UT, VT, and 11 7- and the corresponding parameters in the surge model, Us, Vs, and 
satisfy the following relationships: 
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Uc = UT + 
Vc = VT + Vs 

11C = 	+ 
uc  = UT + US 

Vc = VT + VS 

(5.224) 

Here, subscript C denotes the values obtained from a model in which the tide and surge 
are combined. 

Substitute eq. 5.224 into 5.220-5.222 to give 

(5.225) 	(UT + Us) + (D 	11T)g 	(11S + 1T) 	K (us + ur)[(us + ur)2  

+ (vs  + VT) 2 ]"2  — f (vT. + vs ) 	o 

	

(5.226) 	(VT  + Vs ) + (D + ils + 	g e,,,„+ 	+ K(vs +  VT)  

x [(us  + ur) 2  + ( vs  + 1),Yr + f (U5  + (1T ) = 0 

a 	a 	a 

	

(5.227) 	(11r + 11s) + 	(UT + Us) + 	(VT  + Vs ) = 0 

At open boundaries the water level elevation  1) 0 (t) must be prescribed. Thus, in the 
parallel models, the open boundary condition is 

(5.228) -n -io,c = 110,T + 1)0,S 

Another major assumption (no satisfactory justification) is that eq. 5.225, 5.226, and 
5.227 can be separated into two parts as follows. 
For the tide: 

(5.229) 

a 	 a 

	

(5.230) 	VT + (D + ris + 	g à+); 11T + Kvr [(us 
+ 102 + (vs 

 V7-)2] "2 
 + f ur  = 0 

11 \ a 	 n — TI T  — T 	r T = at 	ax 	ay 
with the boundary condition 

(5.232) 10 = T■ o, T 

For the surge: 

a 	 a 

	

(5.233) 	Us  + (D + 	+ 	g 	lls + KlisRUS ilT) 2  + (VS + VT)1 1/2  f Vs = 0 

a 	 a (5.234) 71.  Vs  + (D + ris +  1g -1 s  + K vs[(us + ur)
2 
 + (vs  + 1,T)2r2 + f u s  0 

a 	a 	a (5.235)— + — Us  + — Vs  = 0 ax 	ay 

a 	 a 
UT (D + 	+ 11 1)g 	KUT [(lIS 

4_ ill )2  + ( vs  + vr)11/2 f vr  0 
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with the boundary condition 

(5.236) 110 = Tim 

In running the tidal model with eq. 5.229-5.232 the surge parameters -ri s  , Us , and 
Vs , which appear in eq. 5.229 and 5.230, are evaluated from the simultaneous operation 
of the surge model, whereas in running the surge model with equations 5.233-5.236 the 
tidal parameters TIT, UT, and .VT , which appear in eq. 5.233 and 5.234, are obtained from 
the concurrently running tidal model. 

In the above equations (i.e. 5.229, 5.230, 5.233, and 5.234), the terms underlined 
represent the interaction terms. In eq. 5.229 and 5.230, the interaction terms involving Iri s  
are called the shallow-water terms and the other interaction terms are referred to as the 
quadratic friction terms. This is also the case for eq. 5.233 and 5.234. 

Next, a paper by Das et al. (1974) will be briefly considered in which interaction of 
tide and surge in the Bay of Bengal was studied through a two-dimensional numerical 
model. A destructive storm surge occurred in the Bay of Bengal on November 12-13, 
1970, and the casualties were over 200 000 people (more details of this will be given in 
Chapter 7.) At Chittagong Harbor (located 60 km to the south of the landfall of the storm) 
the observed surge was 1.5 m whereas the surge predicted by the numerical model was 
3.2 m. Das et al. (1974) at the outset attributed thé difference between the observed and 
predicted surge to a faulty tide gauge and interaction between tide and surge. 

Their detailed calculations showed that a linear superposition of surge and tide, as 
was done by Flied and Robinson (1972), overestimated the observed water level (Flierl 
and Robinson gave a value of 8.7 m for the peak surge in the Bay of Bengal whereas the 
observed value was between 6 and 9 m). The model of Das et al. (1974) in which tide and 
surge were included in the computations (not linear superposition) predicted a value of 
5 m. However, the tide—surge interaction in their model could not account for the 2-h time 
difference between the observed and computed time of occurrence of maximum elevation. 
Murty and El-Sabh (1981) studied tide—surge interaction in the St. Lawrence Estuary. 
This will be considered in section 7.1. 

MISCELLANEOUS TECHNIQUES FOR TIDE- SURGE INTERACTION 

Garcia and Houston (1974) described a method to study the interaction between tide 
and tsunami. Interestingly, they attributed this method to a personal communication from 
R. O. Reid in which it appears that the technique was originally developed to study the 
interaction between tide and surge. Following Garcia and Houston (1974), this technique 
for tide—tsunami interaction will be briefly considered with the understanding that a 
similar technique can be applied to tide—surge interaction. Since the period of tsunami 
waves at the coast (0-2 h) is less than the tidal period, the variation in the tidal level is 
assumed to be negligible between the times of arrival of the initial and maximum tsunami 
wave. 

Let z be the runup at a given time above local mean sea level,  P(z) the cumulative 
probability distribution for runup at a given site being equal to or exceeding z due only to 
the maximum wave of the tsunami, Pp(Z) the probability of the runup at the same location 
being equal to or exceeding z due only to the astronomical tide (tidal runup here means 
the tidal level), and P(z) the cumulative probability distribution for runup at a given site 
being equal to or exceeding z due to the maximum wave of the tsunami and the tide. 
Following Chandrasekhar (1942), one can write 
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(5.237) P(z) = f f g(x)P s(z — X)dX 

where 

dPp (z) 
(5.238) f(z) 

dz 

Here,  f(z) is the probability density for the tide. 
If one excludes the situation that two different tsunamis arrive simultaneously at a 

given location, one can write 

(5.239) Ps (z) -=- E Psn (z) 
n=1 

for N independent source regions, and P4 (z) is the cumulative probability distribution for 
runup at a given site being equal to or exceeding z due to tsunamis from source region n. 

The next step is to express these probabilities by an exponential function: 

(5.240) P(z) = 

and 

(5.241) Ps(z) = E A„e''" for N sites 

Let  P(z) be approximated by a Gaussian distribution. Then 

e -z2/202 (5.242) fp(z) = 	1  
o- VFrr 

in which the variance cr 2  is given by 

Œ2 E  C I  
m= I 

Hence, C„, is the mth tidal constituent. Substituting eq. 5.241 and 5.242 into eq. 5.237 
and integrating gives 

(5 .243) P(z) = E A„ e-2/2» 
11=, 

For two different source regions the sum of the two exponential terms in eq. 5.241 can 
be represented by a single exponential: 

2 

(5.244) P5 (z) = E A„e'^' = AC' 
n=i 

Hence 

P(z) = Ae -a ( z -(721'2))  

or 

(5.245) P(z) = Ae -az' 

where 

OUT 
2 

(5.246) z' z — —2 
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Hence, the influence of the astronomical tide is to create a P(z) identical to Ps (z) except 
for a shift of z by an amount  aŒ 2/2.  Knowing the tidal constants for any given location 
one can determine the variance cr. 

Myers (1970) presented a joint probability method of tide frequency analysis in which 
storm surges are combined with the tide in a random manner rather than adding the 
maximum surge to the high tide. This analysis was applied to the coast of New Jersey, and 
some of the results will be dealt with in Chapter 7. 

Cartwright (1968) proposed a rather unconventional method of studying the inter-
action between tides and surges and applied this technique to the North Sea. The tide at 
any given location is represented as a weakly nonlinear response to the gravitation and 
radiation potential of the sun and moon. The functions chosen to describe the mete-
orological forcing are the first six coefficients of a special Taylor expansion of the 
atmospheric pressure field. (Note that a linear wind stress is implied through the pressure 
gradients.) Cartwright used a 3-yr data record covering the period 1959-61. Thus, his 
approach differs form the traditional one in that whereas in the traditional approach storm 
surges are regarded as isolated events, Cartwright treats them as continuous events (al-
though at certain times their amplitudes are greater than at other times). 

Finally, the role of the so-called perigean spring tides and the interaction with storm 
surges will be considered, and in this discussion an important monograph by Wood (1978) 
serves as the source. From Wood (1978, p. XXVII) perigean spring tides and proxigean 
spring tides are defined: 

Tides are caused by the gravitational attractions of the moon and sun acting upon 
the oceans and major water bodies of the earth. Two times during each month, at new 
moon (conjunction) and full moon (opposition), the earth, moon and sun come into 
direct alignment in celestial longitude and, in the combination of their gravitational 
forces, enhanced tide-raising forces result. Tides produced at these times are called 
spring tides. Since the lunar orbit is elliptical in shape, once each revolution the moon 
also attains its closest monthly approach to the earth, a position known as perigee. 

Oridinarily, the passage of the moon through perigee and the alignment of moon, 
earth, and sun at new moon or full moon (either position being called syzygy) do not 
take place at the same time. Commensurable relationships between the lengths of the 
synodic and anomalistic months do, however, make this possible. On the relatively 
infrequent occasions when these two phenomena occur within 1 1 /2 days of each other, 
the resultant astronomical configuration is described as perigree— syzygy, and the tides 
of increased daily range thus generated are termed perigean spring tides, or simply, 
perigee springs. 

Whenever such alignments between perigee and syzygy occur within a few hours 
or less of each other, augmented dynamic influences act to increase sensibly the 
eccentricity of the lunar orbit, the lunar parallax, and hence also the orbital velocity of 
the moon itself. Such solar-induced perturbations also reduce the moon's perigee 
distance in each case by an amount which is greater the closer is the coincidence of 
alignment between these two astronomical positions, but which also fluctuates with 
other factors throughout the years. The tide-raising force varies inversely as the cube 
of the distance between the earth and moon (or sun). On certain occasions, lunar 
passage through perigee involves a particularly close approach of the moon to the earth. 
To distinguish these cases of unusually close perigee, the new term "proxigee" has been 
devised, and the associated tides of proportionately increased amplitude and range are 
designated as `proxigean spring tides.' 

Evidence presented by Wood (1978) indicates that the appreciably enhanced influ-
ences on the tides produced at the time of proxigee— syzygy are revealed, not so much in 
increasing the height of the tide (usually a maximum increase of about 0.5-1 ft 
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(0.15-0.3 m) above mean high water springs) but in accelerating the rate at which these 
augmented high waters are reached. This accelerated growth rate in the height of the tides, 
together with an increased horizontal current movement, creates a sea—air interface 
situation particularly susceptible to the coupling action of surface winds. Although the 
perigean spring tides do not, of themselves, constitute a major flooding threat to coast-
lines, friction between strong, persistent, onshore winds and the sea surface can raise the 
astronomically produced tide level to cause extensive flooding of the coast in lowland 
regions. 

In addition, at the times of perigee —syzygy (proxigee—syzygy), various dynamic 
influences combine to lengthen the tidal day, increasing the period within which the 
enhanced tide-raising forces, effective for some few days on either side of the 
perigee—syzygy alignment, can exert their maximized effects. Actual instances of coastal 
flooding associated with perigean spring tides and storm surges (occurring together) will 
be considered in Chapter 7. 

5.4 Interaction Between Storm Surges and Wind Waves 

One of the areas of storm surge research that is grossly neglected is that of the 
interaction between storm surges and wind waves. In some sense, this problem is similar 
to the interaction between storm surges and tides; however, important differences exist. 
Both storm surges and tides have periods of the order of hours whereas wind-generated 
waves (or simply, wind waves) have periods of the order of a few seconds. Thus, in the 
present case the interaction is between waves of grossly differing periods (and wave-
lengths). The influence of wind waves on storm surges can be visualized in at least two 
different ways. One is to create an extra drag on the water surface and thus increase the 
wind stress (this aspect will be covered in Chapter 6). The other influence is an extra setup 
(i.e. change of water level) due to the presence of wind waves. In this section, this second 
aspect will be discussed. 

Harris (1967) considered the influence of wind waves and rainfall on storm surges 
because, as he put it, since the storm surge results from high winds, it is usually accom-
panied by breaking waves and heavy rainfall. For his mathematical analysis the x-
momentum equation can be written as 

au 	au 	au 	au 	a 	a 	a (5.247) p t —fy+ 	+ —ay + w 	T,, + 	+ — Tzt ax 	az 	ax 	ay 	az 

where u, y, and w are the velocity components in the x, y, and z directions, respectively, 
f is the Coriolis parameter, and p is water density. Also 

au 
= 	P  

au (5.248)  T,  = —

ay 

au 
Tz, = 

where  p  is the coefficient of molecular viscosity and P is the pressure. The continuity 
equation is 

(5.249)  ax ay 	az 
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For convenience in treating the nonlinear terms, the momentum equation is rewritten 
as 

(5.250) p 	— f v + (u 2 ) + —ay (uy) + —a z (uw)] = 	+ — T„ — T + — T„ 

	

ar 	ax 	
a 	a 	a 	a 	a 

ax 	ay Y 	aZ 

Let a bar denote the average flow and a prime denote the perturbation. Then 

u =  II  + u' 

y = + V 

P = Pw 
w = + w' 

P = /5 + P' + Pw  

= '7(1+  1' 
where 1 is the height of the free surface, is the mean pressure not including the effect 
of surface waves, and Pw  is the mean dynamic pressure due to wave action. By definition, 
an averaged quantity is unchanged by repeated averaging, and the average of a per-
turbation quantity is zero. However, the average of the product of two perturbed quantities 
need not be zero. 

Substituting eq. 5.248 and 5.251 into eq. 5.250, dividing by p, and averaging all 
terms gives 

	

,„ 1 af 	a2 u 	a 	 au , v 	a -2 	a — 	a (5.25z.) — — = v — — — u'w' — — 	— — u — — uv 	IV — U 

	

p ax 	a z 2 	a Z 	a t 
-r j 	

aX 	ay 	az 
a 2 ti 	a 	a2 	a  ____ 

+ 	— 	) 2  + V 
aX 2  aX 	ay 2 	ay 

In eq. 5.252, (p'/p' ) 2  is neglected compared with unity. 
The perturbed quantities consist of three different types of small-scale phenomena: 

turbulence, waves, and unresolvable features by the grid. In this scale analysis, Harris 
(1967) ignored the third type. Generally, the influence of turbulence on the mean flow is 
treated by redefining the stress tensor as follows: 

a û T„ + P =l.L—  — (14') ax 
au 

(5.253) Tyx = 	u v 

T„ = au  

These could be also written as 

a tit 
+ P = A1 -Fx  

(5.254) T x  = A —all 
y 	2 ay 

aa T„ =- A3 — 
aZ 

(5.251) 

1 	, 1 -0' a P' — — — p ax 	ax 

u'w' 
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Thus, the A's will consist of quantities such as p, (u')2 , u'v', and u'w'. 
Next, eq. 5.253 is used to represent the effects of viscosity and turbulence, and the 

prime notation is used only for the influence of surface waves. Equation 5.252 becomes 

1 — —air,- —a T., — — + fi5" — —u - - 	— 	+ —(T„ + 13) afi 	a 	a 	a 	a 
p ax 	Oz  -. 	 ax 	ay 	ax 

, a ,,, 	a 	, 	a --- a --1 	1 p' OP '+—i v ,— —0'12  — —ay tiv — 	—----+ -- ----- 

	

—  	—   ay 	ax 	 ax 	-0  p  ax 
Although for the short waves (wind waves) the vertical acceleration term is im-

portant, and since this is being treated separately here, one may use the hydrostatic 
equation for F. Thus 

(5.256) 21—'3 = gp(it)—ah + g f — dz ax 	ax 	ax 

Substituting eq. 5.256 into 5.255 and then integrating from the bottom to the free surface 
and rearranging the terms gives the following expression for the mean slope of the water 
surface (see the appendix in Harris 1967): 

I  aPa 	1  	 au 
(5.257) 	= 	[T,(fi) —  T( — D)]  — — ax 	govi 	+ ) ax 	gD(I + (fi ID)) p(fi) 	 at  

(5.255) 

(I) 	(II) (III) 	(IV) (V) 	(VI) 	(VII) 

+ f V r 
a 	u2   + a  uv + R L ax (D + h) 	0.Y (D + h)iJ  

(VIII) 	(IX) 	(IX) 

where 

a f i? 	a 	h 

(5.258) R =- gDo +1 el))) 	ax 	u dz — 	dz — J 	f 	d z 
u Y -D 	 -D r  z 0x 

(111) 	 (X) 	 (X) 	 (XI) 

h 

+ 	[—
a

(T„ + P) + 
a 

—T„1dz + 	_D 	
dz — = 

aX 	 ay 	-D 	p p ax 

(XII) 	 (XIII) 

h a—  — 	[— (uY + — //iv + 7z + Fz /iv + — —1dz}
j5 0x _ D  ax 	ay  

(XIV) 

In eq. 5.257 and 5.258 the terms indicated by roman numerals have the following 
significance: I, water surface slope term; II, atmospheric pressure gradient term; III, depth 
term; IV, stratification term; V, wind stress term; VI, bottom friction term; VII, acceler-
ation term; VIII, Coriolis term; IX, vertically averaged inertial terms; X, vertical shear 
inertial terms; XI, density gradient term; XII, eddy viscosity term; XIII, density per-
turbation term; XIV, wave setup term. 
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The continuity equation can be written as 

(5.259)  
at 	ax 	ay 

In the above equations is the mean atmospheric pressure at the sea surface. Also 

U = f iidz 
(5.260) 	

-D 

V = f 17c/z 
-D 

(5.261) 

(5.262) 

û=11(z) 	 
(D + h) 

V  
17(z) 

(D + h) 

+ 3(z) 

p =  (D +
1 	

h
_

) 
f

h-D 
p(z)dz 

Note that in eq. 5.257 and 5.258, the following terms are normally included in storm 
surge numerical models: water surface slope term, atmospheric pressure gradient term, 
wind stress term, bottom friction term, acceleration term, Coriolis term. It can be seen that 
the atmospheric pressure gradient term is independent of the water depth, whereas the 
wind stress term is inversely propo rtional to the total depth. The two sources that can 
impart energy to the water are atmospheric pressure gradient force and wind stress, 
whereas energy is dissipated by bottom friction. The other terms merely redistribute the 
energy between potential and kinetic forms. 

The relative importance of the various terms in the above equations will be con-
sidered. The terms whose importance is obvious (such as the surface slope term, atmo-
spheric pressure gradient term, wind stress term, bottom friction term, acceleration term, 
Coriolis term) will not be considered. If the flow is not restricted by boundaries, the 
inertial terms are not significant. If the x-axis is taken parallel to the flow, then as long 
as the velocity decreases in the flow direction, the inertial terms make a positive con-
tribution to the slope. For example, if the flow is towards the head of a water body, then 
U 2  must be zero at the head. Thus, the conversion of kinetic energy to potential energy will 
create, at the head, water levels higher than computed using a linear theory. Harris (1967) 
cited a practical example. Hydraulic model studies of Ise Bay, Japan, showed greater 
storm surge heights than predicted from a linearized numerical model (Nakamura et al. 
1964). 

Equation 5.258 includes terms for which data are not usually available (density 
gradients, vertical shear of the mean current, effects of subgrid scale phenomena). One can 
expect the inertial terms that depend on the vertical profile of the mean current to be related 
to the transport terms. In some studies, these terms are approximately taken into account 
by multiplying the transport terms by a factor slightly different from unity. Usually these 
terms will be insignificant unless the topography causes abnormal variations of the vertical 

359 



profile of the mean current within a short distance. The eddy viscosity term could be 
simplified to 

i 
(5.263) I 	(T 	

) 
„ + 	a 	a 	au 

-D OX 	
— T. dz —A 4 — + a  A au  ay 	ax ax 	ay 5  ay 

where A4 and A5 could be determined from observations such that computational results 
agree with observations. Ordinarily one assumes that 

A4 =- A5 = constant 

although, strictly speaking, they are functions of space and time. 
Next, the main aspect of this section will be considered, namely the influence of wind 

waves on storm surges. To simplify the problem, Harris (1967) took the x-axis in the 
direction of wave travel so that the y' term vanishes. Using Wiegel (1964), Harris (1967) 
wrote the nonlinear solutions of the progressive wave equations, noting that the inter-
actions between wind waves and surges will be nonlinear: 

AZ I (z) cos k(x — ct) + A 2Z 2 (z) cos 2k(x — ct) 

u' 	AZ 3 (z) cos k(x — ct) + A 2Z4 (z) cos 2k(x — ct) 
(5.264) 

w' 	AZ5 (z) sin k(x — ct) + A2Z6 (z) sin 2k(x — ct) 

P' — pgz AZ 7 (z) cos k(x — ct) + A 2 [Z8 (z) cos  2k(x — ct) +  4(z)] 

Here, A is the amplitude of the wave and it is a slowly varying function of x such that 

aA -Fx < kA 

Although A may vary from deep water to the shore in a significant manner, its variation 
over one wavelength may be negligible. For convenience, one may choose Z1  and Z2 such 
that both assume values of unity at z = 0. The imposed boundary conditions and the flow 
structure determine the exact form of Z. For the following discussion the exact forms are 
irrelevant. 

Substituting eq. 5.264 into 5.258 gives for the wave set term 

h 	A  
(5.265) 	(u' ) 2  + 	it' w' + --idz = — 	A 2  I [A 2  + ZACIZ 

-D ax 	az 	p ax 	-D ax 2 3  

_ 	a — _B _A 2  ay  
where 

i; 
B = f [-2 .Z

3 
+ Z

9 ]dZ 
2 

where Z3 and Z9 are implied from eq. 5.264. 
When the wind waves approach shallow water, their amplitude decreases until the 

depth to wavelength ratio reduces to about 0.16 (at this stage the wave amplitude is about 
91% of the deepwater value). As the wave moves farther into shallow water, its amplitude 
increases rapidly until it breaks. After breaking, the wave amplitude decreases very rapidly 
until the wave disappears on the beach. Hence, the influence of the waves is to decrease 
the water level (due to the surge) on the seaward side of the breaker zone and to increase 

-D 
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TABLE 5.15. Characteristics of some selected hurricanes in the Gulf of Mexico. A wave 
energy index can be calculated as the product of the radius of maximum winds and the 
difference between the ambient and central pressures. (Wilson 1958) 

Ambient 	Central 	Radius of 
pressure 	pressure 	max. winds 

Date 	 Location 	 (mb) 	(mb) 	(km) 

Sept. 8, 1900 	Galveston, TX 	1008.5 	936.0 	56 
Aug. 16, 1915 	Velasco, TX 	 1001.4 	952.9 	85 
Sept. 29, 1915 	New Orleans, LA 	1020.7 	943.8 	122 
Aug. 18, 1916 	Santa Gertrudis, TX 	1042.0 	948.2 	179 
Sept. 9, 1919 	Dry Tortugas, FL 	1006.8 	929.2 	64 
Sept. 14, 1919 	Corpus Christi, TX 	1000.3 	970.2 	124 
June 22, 1921 	Houston, TX 	 1016.9 	961.1 	52 
Aug. 13, 1932 	East Columbia, TX 	1019.6 	942.4 	51 
Sept. 5, 1933 	Brownsville, TX 	1024.0 	948.9 	123 
Sept. 17, 1947 	Hillsboro, FL 	 1010.2 	940.1 	38 
Sept. 19, 1947 	New Orleans, LA 	1005.8 	968.8 	55 
Oct. 9, 1949 	Freeport, TX 	 1020.3 	978.0 	65 

the surface slope between the breaker zone and the beach. For studies on the effect of wind 
waves on sea level, see Longuet-Higgins and Stewart (1962, 1963, 1964) and Saville 
(1961). To summarize, Harris (1967) regarded the contribution of wind waves to the storm 
surge as a conversion of the momentum carried by the waves to a gradient in the hydro-
static pressure due to the surge. Thus, the kinetic energy of wave motion is converted into 
the potential energy of an increased sea level. 

There have been other studies, either more rigorous or less rigorous than the treatment 
of Harris (1967). For example, Rao and Mazumdar (1966) simply added the height of 
crests of individual waves to the storm surge. Fortak (1962) gave a more rigorous (than 
Harris's) derivation of the influence of wind waves on storm surges. 

SOME INFORMATION ON WIND WAVES 

Although it is not intended to discuss wind waves (which are a major topic in 
oceanography, and several excellent works on this topic are available, e.g. Kinsman 
1965), nevertheless a few remarks will be made. 

Wilson (1958) studied the statistics of hurricane-generated wind waves in the Gulf of 
Mexico using a 50-yr data record (1900-49). The tracks of most of the hurricanes listed 
in Table 5.15 are shown in Fig. 5.43. This study showed the relative vulnerability to 
hurricane waves at several locations as follows (in decreasing order): Gilchrist (Texas), 
Burrwood (Mississippi), Brownsville (Texas), Apalachicola (Florida), and Tampa 
(Florida). 

At least once in 2 yr the wave heights at Burrwood are as great as those at Gilchrist 
(about 19 ft or 5.8 m) and once in 5 yr they are about 30 ft (9.1 m). Brownsville and 
Apalachicola have roughly the same vulnerability. Tampa is quite well protected from 
hurricane-generated wind waves because of its location relative to hurricane tracks. 

Forristall (1978) analyzed a 116-h-long record of wind waves in the Gulf of Mexico. 
These waves were generated by hurricanes, the tracks of which are shown in Fig. 5.44. 
His study showed that the Rayleigh distribution overpredicts the heights of the higher 
waves in the record. A statistical study based on 1000 cases revealed that the highest wave 
is only 0.907 times the height predicted by the Rayleigh distribution. 
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FIG. 5.43. Tracks of selected hurricanes over the Gulf of Mexico during 1900-49. (Wilson 1958) 
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FIG. 5.44. Selected storm tracks over the Gulf of Mexico during 1969-75.(Forristall 1978) 
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FIG , 5.45. Cumulative frequency on logarithmic scale of wave heights observed in the Great Lakes. (Pore et 

al. 1971) 

In the Great Lakes of North America, since the astronomical tides are not significant, 
the interaction between storm surges and wind waves assumes special importance. Pore 
et al. (1971) made a wave climate study of the Great Lakes using a 10-yr data record for 
the period 1960-69. Their results are summarized in Fig. 5.45. It can be seen that in Lake 
Superior the wind waves have the highest amplitudes and in Lake Ontario the lowest. 
Lakes Michigan and Huron exhibited very similar behavior, and Lake Erie is somewhat 
similar to Lakes Michigan and Huron. 

Krauss (1972), making use of the concept of radiation stress, argued that, whereas 
the mean surface elevation is depressed in the wave-breaking zone, shoreward of the 
breakers the wave setup can be as high as 20% of the incident wave height. Dinning (1971) 
described a method of predicting maximum wind wave heights from historical data. 
Cardone et al. (1977) described an experiment to predict wind waves due to hurricanes, 
and this method was applied to Hurricanes Belle of 1976 and Anita of 1977. King and 
Shemdin (1978) described radar observations of hurricane wave directions. Long (1979) 
summarized the techniques of forecasting wind waves following hurricanes. 

Rabe and Brand (1977) described numerical techniques for calculating wind waves 
due to tropical cyclones, and Sobey (1978) discussed wind wave frequencies in a tropical 
cyclone region. Fox and Davis (1979) described computer models for wind wave calcu-
lation. One example of a region not affected by violent tropical storms is the coast of 
Brazil. The wave climate in such a region is described by Homsi (1978). Other useful 
references on wind waves are Phillips (1978), Bretschneider and Rocheleau (1979), 
Niemeyer (1979a, 1979b), Büsching (1979), and a U.S. Navy Hydrographic Office 
publication (Anonymous 1966). 

5.5 Influence of Ice and Stratification on Storm Surges 

This section will begin with a brief discussion of the ice cover in certain North 
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Beginning 	Complete 	Beginning 	Complete 
of freeze-over 	freeze-over 	of breakup 	breakup Station Water body 

TABLE 5.16. Dates of freeze-over and breakup for certain locations in Canadian waters. (Based on Allen and 
Cudbird 1971) 

Resolute 
Tuktoyaktuk 
Clifton Point 
Clinton Point 
Cape Parry 
Bray Island 
Hall Beach 
Rowley Island 
Coral Harbor 
Churchill (NW of 

Churchill airport) 
Poste-de-la-Baleine 
Cape Hopes Advance 
Broughton Island 
Cape Hooper 
Resolution Island 
Daniels Harbor 
Summerside 

Corner Brook 
Mont-Joli 
Montreal 
Quebec City 
Rivière-du-Loup 

Resolute Bay 
Kugmalitt Bay 
Amundsen Gulf 
Amundsen Gulf 
Amundsen Gulf 
Foxe Basin 
Foxe Basin 
(Miller Bay) 
Hudson Bay 

Hudson Bay 
Hudson Bay 
Hudson Strait 
Davis Strait 
(Home Bay) 
Davis Strait 
Gulf of St. Lawrence 
Gulf of St. Lawrence 

(Malpeque Bay) 
Humber Arm 
St. Lawrence River 
St. Lawrence River 
St. Lawrence River 
St. Lawrence River 

Sept. 21 
Sept. 26 

— 
Oct. 24 
Oct. 6 

— 
Oct. 11 
Oct. 11 
Oct. 7 

Nov. 1 
Dec. 4 
Nov. 14 
Oct. 20 
Nov. 13 

— 
Dec. 1 

Dec. 23 
— 

Dec. 16 
Dec. 13 
Dec. 7 
Nov. 24 

Sept. 27 
Oct. 2 

— 
Nov. 15 
Nov. 2 

— 
Nov. 2 
Nov. 10 
Oct. 28 

Nov. 20 
Dec. 28 
Nov. 20 
Nov. 3 
Dec. 2 

— 
Dec. 18 

Dec. 31 
Dec. 10 

— 
Dec. 27 

Dec. 15 

July 18 	Aug. 7 
June 4 	June 22 
June 23 	July 15 
June 3 	June 30 
June 7 	Aug. 14 
June 20 	July 31 
June 24 	July 28 
June 27 	July 11 
June 29 	July 13 

June 8 	July 10 
May 19 	June 21 
May 23 	— 
June 18 	Sept. 29 
June 27 	Aug. 17 
June 23 	July 22 
Apr. 28 	May 3 

Apr. 14 	Apr. 26 

- Apr. 5 
Mar. 28 	Apr. 11 

- Apr. 17 
Mar. 21 	Apr. 15 

TABLE 5.17. Percentage of ice cover in the Canadian Archipelago and nearby waters by month. One hundred 
percent refers to the situation when the water body is totally frozen at the surface. (Sater et al. 1971) 

Water body 

Beaufort Sea 	97 
Canadian 

Archipelago 	97 
Davis Strait- 

Baffin Bay 	97 
Central 

Polar Ocean 	99  

F 	M 	A 	M 	J 	J 	A 	S 	OND 

97 	97 	97 	97 	91 	94 	63 	63 	89 	97 	97 

97 	97 	97 	96 	95 	93 	79 	84 	93 	97 	97 

97 	97 	96 	93 	87 	68 	34 	16 	75 	87 	94 

99 	99 	99 	99 	99 	97 	97 	96 	97 	99 	99 

American water bodies (mainly Canadian) followed with a general discussion of the 
influence of ice cover on storm surges. This section will end with a consideration of the 
effect of stratification on storm surges. 

ICE REGIMES IN WATER BODIES 

The atmospheric Environment Service of the Department of Environment (Federal 
Government of Canada) provides ice prediction services for Canadian waters. For details 
on ice regimes and related information, their reports should be consulted. Wittman and 
Burkhart (1973) provided a review of the forecast services available for North American 
Arctic waters. 

Allen and Cudbird (1971) listed the freeze-up and breakup dates of Canadian water 
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bodies. For further information on freeze-up and breakup, see Catchpole and Moodie 
(1974) and Williams (1965). Some pertinent information about freeze-up and breakup 
dates for selected locations in Canadian waters is listed in Table 5.16. This table has been 
prepared based on data up to 1970 (Allen and Cudbird 1971). 

Sater et al. (1971) summarized (Table 5.17) the percentage of ice cover by month in 
certain water bodies. Berry et al. (1975), Cooper (1975), Markham (1974), and Ramseier 
et al. (1974) discussed the ice conditions in the Beaufort Sea. Murty and Barber (1973) 
discussed ice transport in Hudson Bay making use of the results from a box model. The 
ice conditions in Baffin Bay for certain dates are shown in Fig. 5.46. Keen (1977) 
discussed the response of Baffin Bay ice conditions to changes in atmospheric circulation 
patterns. 

Matheson (1967) related the ice conditions in the Gulf of St. Lawrence to mete-
orological situations. The ice conditions in the Gulf of St. Lawrence on different dates are 
shown in Fig. 5.47. Murty and Smith (1973) used a box model to study the transport of 
ice in the Gulf of St. Lawrence. Bugden (1976) developed sophisticated numerical models 
to study the modification of ice and its movement in the Gulf of St. Lawrence. For ice 
conditions in the St. Lawrence River and Seaway, see Anonymous (1974). The maximum 
ice cover in the Great Lakes during February 1977 (Remus 1979) is shown in Fig. 5.48 
and ice conditions in the Great Lakes are summarized in Table 5.18. Wake and Rumer 
(1979) discussed mathematical modeling of Lake Erie ice regimes. 

Kagan (1967a, 1967b) used numerical models to study the influence of tides on ice 
cover and vice versa. He showed that tides will introduce cracks (somewhat similar to 
wind-produced cracks) and zones of convergence and divergence in the ice cover. His 
study, which was applied to the Okhotsk Sea, produced results in agreement with obser-
vations. Various empirical and analytical relations were developed to predict ice cover 
using concepts of degree days, ice potential, etc. For details of these techniques see Zubov 
(1943), Brown (1954), Bilello (1964), Fertuk et al. (1971), and Assel (1976). 

INFLUENCE OF ICE COVER ON STORM SURGES 

Einarsson (1972) appears to be among the first to have explicitly stated that the 
influence of an ice layer on long waves might be different from that on wind waves. It has 
been fairly well established that wind waves suffer attenuation in the presence of ice (Dean 
1969; Defant 1961; Robin 1963; Wadhams 1972, 1973). Sverdrup (1926) considered the 
influence of an ice layer on tides in the North Siberian Shelf and showed that the amplitude 
of the tide might be somewhat smaller when ice is present and also that the propagation 
of the tide wave may be somewhat retarded. 

Zubov (1943) studied the influence of ice cover on tides in the Kamenka and Pya 
rivers (which empty into the White Sea) and found that the tidal range decreases and the 
high and low waters are retarded. Laktionov (1960) developed empirical relations for 
determining the changes in the amplitude and phase of the tide during ice cover. Influence 
of ice cover on tides in the Canadian Arctic has been examined by Henry and Forman 

 (1977) and Godin (1977). 
Godin and Barber (1980) showed that in some parts of the Canadian Arctic, ice cover 

has an influence on the tides. They speculated that Hudson Bay and Amundsen Gulf have 
resonance frequencies close to the tidal frequency and this resonance frequency is altered 
when ice is present. One interesting result is that, whereas the amplitude of the tide 
decreases when ice is present, the phase is not necessarily retarded (in some cases high 
and low waters occur earlier when ice is present). Godin (1980b) extended this study. 
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FIG. 5.46. Surface ice cover for Baffin Bay. (Anonymous 1956) 

Kagan (1967a, 1967b) studied the influence of ice cover on tides in the Okhotsk Sea. 
Sheng and Lick (1972) developed a numerical model to calculate wind-driven currents in 
a partially ice-covered lake. Liland (1975) studied surges in ice-covered channels. Henry 
(1975) compared storm surges in the southern Beaufort Sea in summer and winter and 
concluded that the effectiveness with which wind can generate a surge is greatly reduced 
when there is a fairly complete ice cover. 

Lisitzin (1974) discussed the influence of an ice layer on storm surge amplitudes in 
the Baltic Sea. She showed that the storm surge amplitudes are smaller when ice is present, 
and thus her results are in agreement with the classical concepts. Lisitzin (1974) used the 
following formula to compute the slope ah/ax of the water surface: 
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FIG. 5.47. Five-year mean ice concentration in the Gulf of St. Lawrence. (Matheson 1967) 

ah 	FT 
(5.266)= —ax  —gpH 
where h is the deviation of the free surface from its equilibrium position, x is the horizontal 
coordinate in the direction of the wind, g is gravity, p is the density of water, H is the 
average depth of the water body, and is the wind stress. The factor F depends on the 
water depth and the frictional conditions at the bottom of the water body, and it varies from 
1 to 1.5 (for deep water, F 1). 

Let W denote the wind velocity at the anemometer level. The following relation is 
used to express the wind stress in terms of the wind: 

(5.267) T = kpa  W 2  

where pa  is the density of air and k is a drag coefficient that depends on the roughness of 
the water surface. Taking k = 2.4 x 10 -1 , p, — 1.3 x 10 -1  g • cm -1 , p — 1.0 g • cm -1 , 
g — 980 cm • s -2 , and F 1 in eq. 5.266 gives 

ah 	3.2 x 10-9  
(5.268) 	 w2 

H 

where W is expressed in centimetres per second. Lisitzin (1974), however, found the 
following formula to be more practical than eq. 5.268: 

a  W2 
(5.269) AH = —H 

where AN denotes the increase in sea level (centimetres) for a distance of 100 km in the 
direction of the wind. In eq. 5.269, if W is expressed in metres per second and H in metres, 
then a — 3.2. The value of a depends on the density of air (which depends on air 
temperature and atmospheric pressure) and may vary by 10%. 
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FIG. 5.48. Maximum ice cover in February 1977 in the Great Lakes. (Remus 1979) 

TABLE 5.18. Dates of ice cover events during a normal winter and the percentage of ice-covered lake surface 
during mild, normal, and severe winters for each of the Great Lakes. (Rondy 1969) 

Ice events during a 
normal winter 

Lake 	 Lake 	 Lake 	 Lake 	 Lake 
Superior 	Michigan 	 Huron 	 Erie 	 Ontario 

Early ice cover 	Jan. 20-30 	Jan. 25— 	Jan. 25— 	Jan. 15-25 	Jan. 25— 
Feb. 5 	 Feb. 5 	 Feb. 5 

Midseason ice cover 	Feb. 25— 	Feb. 20-28 	Feb. 25— 	Feb. 1-10 	Feb. 15-25 
Mar. 5 	 • Mar. 5 

Maximum ice cover 	Mar. 25— 	Mar. 15-25 	Mar. 20-30 	Feb. 20-28 	Mar. 10-20 
Apr. 5 

Early decay period 	Apr. 1-10 	Mar. 20-30 	Mar. 25— 	Feb. 25— 	Mar. 15-25 

	

Apr. 5 	Mar. 5 

Lisitzin (1974) recognized that, when fast ice is present, although the wind stress 
might be the same as in the open sea, the drag coefficients may be different because the 
roughness of the ice surface and water is different. Also, according to her, when the sea 
is completely covered by fast ice, the wind stress will be transferred to the coasts through 
the pressure exerted by the ice cover, and no effects will be transferred to the water below 
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the ice cover. Then water can pile up only as a result of the atmospheric pressure gradients 
and not wind stress. 

Lisitzin (1974) selected two stations: Kemi (in the northern part of Bothnian Bay) and 
Vaasa (in the southern  part). The principal axis of this bay is the south—southwest and 
north—northeast direction. From wind data over a 15-yr period (1928-42), a number of 
cases were selected in which the wind speed was equal to or greater than 14 m • s' , and 
the wind direction was between south and west. In this manner one can make certain that 
the piling up of water is accentuated and the relative effects of the other factors influencing 
the storm surge are minimized. Finally, 40 cases were selected and the coefficient a was 
estimated from eq. 5.269 based on the water level data at Kemi and Vaasa. The results 
showed that the average value of a for the ice-free period was 3.0 and it was considerably 
less when ice was present. 

Murty and Polavarapu (1979) examined the problem of the influence of ice cover on 
storm surge amplitudes in the Gulf of St. Lawrence and the St. Lawrence Estuary in 
eastern  Canada. The following three sets of stations were selected: (1) Pointe-au-Père and 
Bai-Comeau, separated by the St. Lawrence Estuary, (2) Harrington Harbor and Lark 
Harbor, separated by the Gulf of St. Lawrence, and (3) Charlottetown and Pictou, sepa-
rated by the Northumberland Strait. All the storm surge data for these stations for a period 
of 11 yr (1965-75) were examined to select at least one case for each month with similar 
meteorological characteristics. Sometimes, this was not possible (e.g. for the Pointe-au-
Père—Baie-Comeau case, no satisfactory storm could be selected for the month of July). 
The calculations were performed in a manner essentially similar to that of Lisitzin (1974). 
For the Harrington Harbor—Lark Harbor case, the surges show greater amplitudes during 
the ice-free period. The results for Pointe-au-Père —Baie-Comeau show that the storm 
surge amplitudes do not significantly change between ice-free and ice cover periods. The 
results for Charlottetown —Pictou show greater storm surge amplitudes when ice is 
present. Although this disagrees with Lisitzin's result, since the data are not extensive 
enough, this result must be interpreted with caution. If indeed this result is correct, one 
explanation may be that the resonance amplification may be somehow greater during the 
ice cover period. 

Murty et al. (1981) extended the study of Murty and Polavarapu (1979) in several 
respects. First, the water bodies considered in this study were the Bay of Fundy and part 
of the Atlantic Coast, in addition to the Gulf of St. Lawrence and the St. Lawrence 
Estuary. Second, a distinction was made between positive and negative surges, and this 
distinction is justified by the results, which show somewhat different influences of ice 
cover on positive and negative surge amplitudes. Third, in addition to the hourly residues, 
mean monthly residues were also examined for the influence of ice on them. 

For the storm surge amplitude study on the Atlantic Coast, Bay of Fundy, and Gulf 
of St. Lawrence, the following stations were used: North Sidney, Port-aux-Basques, 
Pictou, Charlottetown, Harrington Harbor, Lark Harbor, and Sept-îles. Statistical analysis 
of the storm surge data showed that the highest positive surges of amplitudes of about 
3.0 m occurred only during the months of May—August and December, when no or little 
ice was present. The highest negative surges occurred during January and February, when 
ice was present. Murty and Holloway (1983) showed that ice cover dissipates positive 
surges more strongly than negative surges. The results of Henry (1975) for the southern 
Beaufort Sea confirm this hypothesis (see Fig. 7.26). 

For the study on the St. Lawrence Estuary, the following stations were selected: 
Ste-Anne-des-Monts, Baie-Comeau, Pointe-au-Père, Tadoussac, Rivière-du-Loup, St-
Joseph-de-la-Rive, and St-Jean-Port-Joli. In the St. Lawrence Estuary, highest positive 
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Station Water body Year Month 

TABLE 5.19. Occurrence of maximum storm surge amplitudes in eastern Canadian 
waters during the period 1965-75. 

1975 
1975 
1972 
1975 
1975 
1975 
1975 
1975 
1975 
1972 
1975 
1975 
1975 

St. John, N.B. 
Port-aux-Basques 
Pointe-du-Chêne 
Rivière-au-Renard 
Sept-îles 
Baie-Comeau 
Pointe-au-Père 
St. Joseph-de-la-Rive 
Rivière-du-Loup 
Quebec 

Tadoussac 

Bay of Fundy 
Atlantic coast 
Gulf of St. Lawrence 
Gulf of St. Lawrence 
Gulf of St. Lawrence 
St. Lawrence Estuary 
St. Lawrence Estuary 
St. Lawrence Estuary 
St. Lawrence Estuary 
St. Lawrence Estuary 

St. Lawrence Estuary 

December 
May, June 
January 
August 
June 
August 
September 
September 
June, August 
December 
August 
December 
August, October, 

December 

surges occurred during June, August, September, October, and December and extreme 
negative surges occurred during December and February. Also in the St. Lawrence 
Estuary, the duration of the postitive surges is shorter on the north shore and the duration 
of the negative surges is shorter on the south shore. 

The above remarks pertain to hourly values of the storm surges, which are calculated 
as the residue after subtracting the hourly values of the predicted astronomical tides from 
the observed hourly water level values. However, when the monthly residues were exam-
ined, the results were somewhat different. In the Gulf of St. Lawrence, the extreme 
positive values usually occurred during October, December, and January, whereas the 
extreme negative surges occurred during June— September. The months in which max-
imum surges occurred during the 11-yr period of this study are listed in Table 5.19. 

INFLUENCE OF STRATIFICATION ON STORM SURGES 

Red (1979) studied the storm surges along a straight coast in a continuously stratified 
sea of uniform depth. He used an analytical model and applied it to a part of the Norwegian 
coast. Following Red, consider a continuously stratified sea with the origin of a Cartesian 
coordinate system at the undisturbed level of the free surface. The system rotates with an 
angular velocity 1 /2f about the verical z-axis. The bottom is given by z = —H(x, y) and 
the free surface is given by z = is(x, y, r); initially, ri s  ---= O. The coastline is parallel to 
the x-axis, and the y-axis points towards the sea. It is assumed that there are no horizontal 
variations in density so that in the equilibrium state, the density field p(z) and the pressure 
field vary with z only. Other assumptions are the hydrostatic approximation and 
linearization. 

Using the method of normal modes (Lighthill 1969a, 1969b) the horizontal and 
vertical variations can be separated. To do this, expand the variables as follows: 

(5.270) V(x, y, z, t) = E V„(x, y, t)fi,;(z) 
n=o 
- 

(5.271) ri(x, y, z, t) = E 1„(x, y, t)4-)„(z) 
n=o 
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and 

(5.272) P(x, y, z, t) = Ps (x, y, t) + ps  E P„(x, y, t)(z) 
n=0 

where  Vis the horizontal velocity vector, is the displacement of the isopycnals from their 
equilibrium position, P is the perturbation pressure, and Ps  is the surface pressure anom-
aly. The eigenfunctions i)„(z) are solutions of the following eigenvalue problem: 

N 2 (z)  
(5.273) 	+ 	2 „ = 0 for —H < z < 0 

c„ 

(5.274) 	— 	fi„ = 0 at z = 0 
C,, 

(5.275) fi„ = 0 at z = —H 

where 

(5.276) P„ = 

c„ being the eigenvalue and N 2 (z) the Brunt— Vâisâlâ frequency given by 

g dp 
(5.277) N2 = -- — 

Ps dz 

Here, g is gravity and ps  is the value of the equilibrium density at the surface. 
The eigenfunctions (which are orthogonal) can be normalized through 

(5.278) f 11(z)1 2 dz = H 
—H 

Then the modal equations can be written as (Gill and Clarke 1974) 

a V„ 
(5.279) —at + f kXV„ = — cVTIn + 

an (5.280) VV 	,
, + —

at 

= 0 

where the forcing function T„ is given by 

'fi„(0) 	1 	° (5.281) .T„ = 	 _ H  VPs  + — 	iri"" (z)dz psH 	psH 	az ' 

Here, T is the tangential stress due to turbulence acting between horizontal planes whose 
value Ts at the surface is the wind stress. 

The boundary conditions are the following. At the coast 

(5.282) V, = 0 at y = 0 

Far away from the coast, the displacements must be bounded, i.e. 

(5.283) 111,i < 09 for y —> 00 

Initially 

(5.284)  q,, = 0 and V„ = 0 for t = 0 
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To determine the influence of stratification on storm surges, comparison is made with 
the homogeneous model of Gjevik and Red (1976) and the same pressure and wind stress 
distribution as used by them were also used in the stratified model. A traveling storm with 
no pressure fluctuations but with the following forcing was considered: 

pse k(,-Hoti2i 

Ps  = constant 

The tangential stress «z)  can be written as 

(5.286) T(z) =psT(z)e -mt-u„,)2i 

with 

T(0) = Ts 

where u is the speed of movement of the storm and 1/Wc expresses the horizontal extent 
of the storm. 

Using eq. 5.281, the forcing function T„ can be written as 

(5.287) T„ .---- 're - i(,-uot)i 

with 

, (5.288) T f „ = isi _ h  —aZ 
T1„(z)dz 

If the horizontal extent V in  of the wind field is equal to or greater than the barotropic 
radius of deformation  co /f, then the solution of eq. 5.279 and 5.280 in terms of displace-
ment TI„ of each mode at the coast can be written approximately as 

	

1T  vfiT 	co  

	

(5.289) 1„ = ., 2 L 	 [erf Vic(x — uo t) — erf Vic (x — c„t)] for y --- 0 
' cn 1" (c„ — uo) 

In the appendix of 'toed (1979) it was shown that if "\./k co/f 1 then Vic cu/f < 1 for 
n > 1. 

The following representative data are used for the west coast of Norway: mixed layer 
thickness h i  =- 10 m and thickness of pycnocline layer h2  — h i  = 40 m. In this layer, the 
density increases linearly with depth from the surface value ps  = 1.0252 g • cm' to a value 

Pb  -.= 1.0275 g • cm-3 . In a deep bottom layer, the density is assumed to be uniform at 
1.0275 g • cm'. 

The following three different forms were used for the tangential stress T(z): (1) a 
stress that decreases linearly from its surface value to zero at the bottom of the mixed layer, 
(2) a stress that decreases linearly from its surface value to zero at the bottom of the 
pycnocline layer, and (3) a stress that is uniform and equal to the surface value throughout 
the mixed layer and decays linearly to zero at the bottom of the pycnocline layer. These 
three models can be expressed as 

, 	z 
h i  

— h i z 	0 

(z + h) 
(5.290) T(z) = Ts 	(1 	

-Y) (h2 — hi) 

	

0 	
' 

.. 	-.Ç. 

—11 2  < z < — h l 

 — H _. z 	—h 2  

(5.285) 
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FIG. 5.49. Effect of stratification of the water body on the storm 
surge. Abcissa, dimensionless time; ordinate, dimensionless surge am-
plitude. The solid curve shows the homogeneous case and the three 
broken curves show the influence of stratification for the three different 
parameterizations of the tangential stress. (R0ed 1979) 

Models 1, 2, and 3 correspond to -y = 1, y = h 2 /12 1  (=0.2 in this study), and -y = 0, 
respectively. 

From eq. 5.288 and 5.290 it can be shown that 
2 c„ S„(-y) 

(5.291) TH = 

with 

	

Si') (0) 	(1  + 
(5.292) Su('Y) 	n2 	{^l'fia0) + 

(h2 - 121) 
[1,,(-h1)  

c„ 

From eq. 5.276 and 5.289 the storm surge at the coast is given by 

	

1 Ts .\iir 	c„S„eY)'fin(z)  
(5.293) -q = - 2 gH 	(c„uoYfi„(0) 

	

— - 	 [erf 	(x - u o t) - erf 	(x - c„t)] 

	

k 	-  

It was shown in the appendix of Roed(1979) that c„Sn( -Y)/(cn - u0) decays as n -3  where 
fis(z)/(0) grows as n 2  unless z = 0. Hence, the storm surge at the coast can be reasonably 
well approximated by truncation of the series after six to seven terms. 

The effect of stratification on the storm surge for the three different tangential stress 
formulations is shown in Fig. 5.49. It can be seen that stratification has little influence on 
storm surge. The above analysis is for the case with no bottom friction. Obviously, 
inclusion of bottom friction will reduce the amplitude of the surge. Next, a two-layer 
model for storm surges (and tides), after Heaps (1981) and applied by Heaps and Jones 
(1981) to the Irish Sea, will be briefly discussed. In this model, although stratification is 
not included, the vertical eddy viscosity is given different values in the top and bottom 
layers. The results of these models will be considered in section 7.3. 
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Chapter 6 

Meteorological Problems 

This chapter will discuss the dynamics of extratropical cyclones and tropical cyclones 
and the meteorological problems associated with these cyclones in the Pacific, Atlantic, 
and Indian oceans, as well as in other smaller water bodies. The problems associated with 
obtaining wind stress data for synoptic scale and mesoscale weather systems will be 
examined in detail. 

6.1 Extratropical Cyclones 

The treatment in this section follows closely Petterssen (1956a, 1956b). Fitz-Roy 
(1863) appears to be among the first to propose a model of an extratropical cyclone as 
originating on the boundary between two different air masses (e.g. a warm and moist air 
mass originating in subtropical latitudes and a colder and drier air mass originating in the 
polar regions). Some later authors who recognized that discontinuities in temperature, 
moisture content, and speed of motion were essential for cyclone development were 
Blasius (1875), Helmholtz (1888, 1889), Margules (1905), and Shaw (1921). 

Bjerknes (1919) proposed the first dynamical model for cyclones and agreed with 
Margules (1905) that the kinetic energy of the cyclones comes from the potential energy 
due to the juxtaposition of warm and cold air masses and a decrease of the potential energy 
follows the development of a cyclone. According to Bjerknes the cold air forms a wedge 
under the warm air, with a slope of separation of about 1: 100, and the cyclonic dis-
turbances travel along the frontal surface similar to waves traveling along a discontinuity. 

The life cycle of a cyclone has several stages. In the initial stage, a small amplitude 
wave forms on a more or less straight quasi-stationary front. The currents on either side 
of the front could be in the same direction or in opposite directions. In the second stage, 
the warm air rises to higher levels over the warm front and the cold front wedges in under 
the warm air. In the third stage, the warm air sectors become progressively narrower and 
the cold front tends to overtake the warm front. At this stage the cyclone has reached the 
occlusion stage. 

It is customary to refer to cyclone families, rather than individual cyclones (Fitz-Roy 
1863). Usually there would be two to four or five cyclones in a series, one following the 
other and all moving in a general southwest to northeast direction. Bjerknes and Solberg 
(1921, 1922) accounted for cyclone families as wave disturbances on the polar front. In 
a family of four cyclones, typically the first one would be old and occluded, the second 
would be somewhat younger, the third would be a young wave cyclone, and the fourth 
would be a nascent cyclone wave. On the average, a cyclone family takes 5 — 6 d to pass 
a given location. The occurrence of cyclone families is a regular phenomenon over the 
North Atlantic and western Europe (because of regular major polar outbreaks from the 
Greenland—Labrador area) and not as regular over North America and central Eurasia. 

Usually, cyclone formation begins near sea level and develops to higher levels in the 
atmosphere as the occlusion develops. Once a complete occlusion occurs, generally a 
closed cyclonic circulation can be found in the middle and upper troposphere (located over 
the cold rear of the occluded sea level cyclone). Sometimes, the depression in the pressure 
field aloft may merge with the semipermanent low over the polar region. When this 
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happens, a high-level trough can be noticed in the rear of the occluded sea level cyclone. 
Thus, these upper level troughs represent the vertical extension of the cyclones. However, 
sometimes (particularly during winter), cyclone development may begin at the higher 
levels and at other times simultaneously with the lower level development. One refers to 
these more or less independent developments aloft (middle and upper troposphere) as 
"cutoff cyclones." 

Next, the thermal structure of cyclones will be briefly examined. At sea level there 
is no definite thermal pattern and irregularities occur because of the diurnal variations, 
cloud cover, etc. However, at higher levels the temperature distribution is simpler (but the 
frontal structures aloft are not as sharp as at sea level). 

The thermal structure at the 500-mb level for a 1-d-old cyclone is shown in Fig. 6.1. 
This diagram is for typical winter conditions. Note the zone of demarcation between the 
Arctic air and the warmer polar air. In the summer, usually the Arctic air is absent at the 
upper levels and the temperatures everywhere are greater than shown here. In this diagram, 
note the uniformity of the temperatue aloft on the equatorial side of the sea level front (this 
uniformity is due to the fact that the air is not involved in any significant vertical motion). 
It is convenient to represent the thermal structure of cyclones by the thickness of any layer 
bounded by two isobaric surfaces (it can be shown that the thickness of a layer between 
two isobaric surfaces is proportional to the average temperature of the layer). 

SOURCES AND SINKS OF VORTICITY 

In determining the movement of weather systems, the thermodynamic influences due 
to geographically bound heat and cold sources and the mechanical influences due to 
mountain ranges must be taken into account. The rate of change (following the motion) 
of the potential temperature represents the strength of the thermal source. Petterssen 
(1956) showed that 

aQ 
(6.1) 	V • (QV) = F — To- 0 

where Q is the component of absolute vorticity normal to the surface of constant potential 
temperature, V is the velocity vector, and the dot over 0 denotes differentiation with 
respect to time. The term on the left side of eq. 6.1 is the export per unit time of vorticity 
through the boundaries of a unit area in a surface of constant potential temperature. Such 
an export is determined by the vorticity of the frictional force F and the strength Ô of the 
thermal source. 

It can be seen from eq. 6.1 that the influence of a thermal source varies accordingly 
as the vorticity increases or decreases in the direction of increasing potential temperature. 
Noting that in the mean state, the slope of a 0 surface is of the order of 10 and since 0 
increases with height, the signs of 3 Q/80 and a Q/Dz will be the same. Hence, a cold 
source will make a positive contribution if the absolute vorticity increases with height (a 
heat source makes a positive contribution if the absolute vorticity decreases with height). 
These concepts will now be applied to the polar regions, the midlatitude belt, and the 
intertropical belt. 

As shown in Fig. 6.2, consider an idealized circular continent (or region of ice) 
centered at the pole and surrounded by water of significantly greater temperature. As 
shown in Fig. 6.2A, the surfaces of constant potential temperature form domes over the 
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FIG. 6.1. Schematic representation of the isotherms at the 500-mb level associ-
ated with a wave cyclone. The front at sea level is represented by conventional 
symbols (*, warm front; •, cold front) and the frontal zone at the 500-mb level 
is represented by a hatched ribbon. An Arctic frontal zone farther to the north is 
also indicated. The temperatures (degrees celcius) represent typical winter condi-
tions. (Petterssen 1956) 

cold continent. Note the great concentration of isotherms along the coast during the winter 
season (which this diagram represents). 

An air mass moving into the Arctic in the winter season is cooled (partly through heat 
loss to the underlying surface and partly through radiation), i.e. é is negative. Since the 
surroundings of the polar region are warmer, the horizontal pressure gradient must in-
crease with height. If it is assumed that the geostrophic relation is valid (i.e. the pressure 
force is balanced by the Coriolis force), then the relative as well as the absolute vorticity 
must increase with height. Since 0 also increases with height, eq. 6.1 shows that the 
thermal component of the vorticity source must be positive. 

To evaluate the frictional component, note that the average pressure distribution and 
the vorticity of the motion in the Arctic at low levels are anticyclonic (i.e. clockwise in 
the Northern Hemisphere). Since friction acts against the motion, the vorticity of the 
frictional force must be cyclonic, i.e. F is positive in eq. 6.1. Hence, both the thermal and 
the frictional forces are a positive vorticity source in the Arctic. One can visualize from 
eq. 6.1 that the absolute vorticity thus created is exported towards the surrounding warmer 
waters along 0 surfaces (see Fig. 6.2). Since the Coriolis parameter decreases in this 
direction, in the region of the maximum concentration of isotherms, an even larger export 
of relative cyclonic vorticity takes place. Since the pressure force must mainly balance the 
Coriolis force, a low pressure area must exist along the Arctic coasts. The configuration 
shown in Fig. 6.2B usually appears in the Antarctic, since the distribution of land and 
oceans is not symmetric. The northern parts of North America and Eurasia act as cold 
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FIG. 6.2. (a) Schematic representation of surfaces of constant potential temperature (A-surfaces) over 
a cold continent. Single-shafted arrows indicate the vorticity export. Double-shafted arrows indicate 
transfer of vorticity to and from the earth's surface. (b) Resulting pressure field at sea level. (Petterssen 
1956) 

sources in winter, and cyclonic vorticity is exported zonally as well as meridionally 
towards the North Atlantic and North Pacific. Hence, cyclonic activity occurs over the 
northern parts of these oceans (Fig. 6.3). One should also expect maxima of cyclonic 
activity over nonfrozen water bodies surrounded by land. Examples are the Great Lakes 
of North America, the warm bays on the edge of Arctic ice fields, the Black Sea, the 
Caspian Sea, the Mediterranean Sea, and the Baltic Sea. Observations bear out this 
situation for the winter months. 

During summer, in the northern regions, the continents are warm and the principal 
temperature differences are found along the northern coasts and along the boundaries 
between cold and warm ocean currents in higher latitudes. In this case, vorticity is mainly 
exported from oceans to the continents and from cold to warm ocean currents. Hence, low 
pressure areas will develop over the northern parts of the continents. 

Next, consider the midlatitude belt. There are several problems in trying to use the 
vorticity transfer concepts in this region. (1) Nothing definite can be prescribed about the 
thermal sources. For example, the northern part of the North Atlantic Ocean is an intense 
heat source for air masses traveling from the Arctic, whereas it is a weak cold source for 
air masses propagating from the subtropical regions. Another example is the Eurasian 
continent, which is a cold source (in winter) for air masses coming from the Atlantic 
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FIG. 6.3. Schematic representation of the vorticity export from cold land to 
warmer water. Broken arrows indicate northward drift of cyclones. (Petterssen 
1956) 
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Flo. 6.4. Meridional movement of cyclones and anticyclones. (Petterssen 1956) 

whereas it is neutral to air masses traveling from the Arctic. Hence, in the midlatitude belt 
the thermal sources are not absolute but can be identified relative to the moving cyclones 
and anticyclones. (2) The latent heat liberation must be considered and this also must be 
defined with reference to the mobile systems. (3) The two main assumptions in deriving 
eq. 6.1 (namely stationariness of Q and 0 and no correlation between the variables) are 
not satisfied. 

Note that cyclones and anticyclones in this region mainly move along the gradient of 
the Laplacian of the thermal advection. In an idealized case, as shown in Fig. 6.4, 
cyclones move in the direction from cold to warm advection. Thus, cyclones of the type 
in Fig. 6.4A will move poleward, whereas those of the type in Fig. 6.4B will move toward 
the equator. In the Northern Hemisphere, the principal frontal zones are so oriented that 
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cyclones will mainly be of the type in Fig. 6.4A. Cyclones of the type in Fig. 6.4B occur 
mainly in winter on a trailing front that extends from the Canadian west coast to the Great 
Lakes (these so-called "Alberta lows" usually travel southeast or east—southeast). Also, 
cyclones of the type in Fig. 6.4B occur on any frontal zone with an unusual orientation. 

In the intertropical belt, there is a high degree of stationariness and eq. 6.1 holds 
accurately. Both the frictional and the thermal components of the vorticity source are 
positive in the tradewind belt and, hence, absolute vorticity must be exported from this 
zone. The following are the vorticity sinks: (1) the doldrums are a frictional sink of 
vorticity, (2) the monsoon systems are the thermal lows over the southern continents, and 
(3) vorticity is exported near the western edges of the subtropical anticyclones and 
delivered to the westerlies. 

Next, the influence of the mountains on the vorticity transfer will be examined. In 
midlatitudes, the horizontal vorticity vector Q will be directed towards north and if 
mountain chains are oriented in a north—south direction (e.g. the Rockies), then the 
gradient of the vertical velocity V w„ will be mainly zonal and the vectors qH  and V co will 
be almost perpendicular to each other (here, subscript H denotes horizontal and co denotes 
the vertical velocity with reference to pressure as a vertical coordinate). The vorticity 
equation can be written as 

aQ 	 aQ 
(6.2)— —= V • VQ — DQ — w, — ar 	 ' an 
where Q is the component of absolute vorticity normal to the surface, q is the vorticity 
vector tangent to the surface, and n measures the length along the normal. This equation 
can be rewritten as 

aQ 	 a  w„ 
(6.3) 	— —= V3 . (Q V) + Q an  ar 
where V is the three-dimensional wind vector and V3 is the three-dimensional operator. In 
this equation, aQ/ar is the accumulation per unit time of absolute vorticity in a unit area 
of a surface of constant potential temperature. The term  — V3  (QV) represents the import 
per unit time of Q into a unit volume of unit cross-section in the same surface. The term 
Q a w„/atz is the intensity of the vorticity source, which is determined mainly by the 
amount of stretching or shrinking perpendicular to the surfaces of constant potential 
temperature. A significant upper level trough travels over a mountain chain; the leeward 
side will act as a vorticity source and the windward side will act as a sink. 

CYCLONE PATTERNS 

The patterns of cyclogenesis during winter will be examined first. In the North Pacific 
Ocean a zonal pattern exists around 30-35°N. Also, over the continents, large maxima 
of cyclogenesis occur in the lee of great mountain chains. These patterns are not sensitive 
to seasonal variations. Three pronounced maxima are associated with the Rockies: Sierra 
Nevada, Colorado, and Alberta regions. Similar maxima can be located to the east of the 
Appalachian Mountains, the Scandinavian mountains, and also in East Asia. 

If the frequency of cyclone centers is examined, the influence of mountain ranges can 
be seen even more. Examples are the leeward side of the Colorado and Alberta ranges. 
The cyclones that develop here are mostly of short duration, whereas those that develop 
in the lee of the Appalachians and the mountains in East Asia are of longer duration and 
they also move faster. All major unfrozen inland water bodies show maxima of cyclone 
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centers during winter. In the Mediterranean Sea, there is a maximum on both sides of the 
Italian Peninsula. Other examples are the Great Lakes, the Black Sea, the Caspian Sea, 
the Aral Sea, and the Baltic Sea. Hudson Bay, which freezes over by early December, 
does not show a pronounced maximum similar to the Great Lakes. 

Warm water bodies surrounded by colder land masses also show pronounced 
cyclogenesis. Examples are (1) the Gulf of Alaska in winter, (2) Baffin Bay and Davis 
Strait in winter, as well as in summer, (3) Denmark Strait, mostly in the winter, and (4) 
the Barents Sea in winter. 

One can account for the large cyclone frequency over the northern portions of the 
North Atlantic and North Pacific oceans due to local thermal sources as well as due to the 
poleward flux of cyclones from the midlatitude belt. 

In the subtropics, during summer, cyclogenesis occurs over large areas. Examples are 
the regions south of California and West Africa. 

Next, two terms are introduced: "blocking" and "index cycle." In the midlatitudes, 
the cyclones travel towards the east. Superimposed on this zonal motion is a meridional 
motion. The thermal wind in the middle troposphere to some extent guides the movement 
of the cyclones. Sometimes, when a warm cutoff high forms in the middle and upper 
troposphere, cyclones at sea level are steered either to the south or to the north of these 
highs. This phenomenon is referred to as the "blocking" of the sea level cyclones and 
occurs predominantly off the west coasts of Europe and North America. The blocking is 
more common in the Atlantic Ocean than in the Pacific Ocean and is highest in April and 
least during August to September. 

The general circulation of the atmosphere not only undergoes an annual variation but 
also undergoes irregular quasi-cyclic changes with periods ranging from 3 to 8 wk. The 
intensity of the zonal circulation is expressed by the average pressure difference between 
two latitude circles. Ordinarily, the latitudes chosen are 35 and 55°N; the average sea level 
pressure difference between the latitude circles is referred to as the "zonal index." 

Bradbury (1954) studied the frequency of cyclones during high and low index situ-
ations during the period 1900-39. She found that during summer, the cyclone frequency 
is greater in high latitudes during high index periods and in low latitudes during low index 
periods. The differences are not as pronounced in winter. During winter, large areas of 
high cyclone frequency occur during high index periods (a) over the North Pacific Ocean 
north of 50°N, (b) over the North Atlantic Ocean north of 50°N and to the east of 45°W, 
and (c) along the southern coast of the United States. During low index periods in winter, 
high cyclone frequency occurs (a) over the central part of the North Pacific Ocean to the 
south of 45°N, (b) over the western part of the North Atlantic Ocean, and (c) over the 
Mediterranean Sea. 

INSTABILITY THEORIES OF CYCLONE FORMATION 

Margules (1905) speculated that the potential energy associated with horizontal 
temperature gradients provides the kinetic energy of cyclones. Solberg (1936) showed that 
frontal cyclones will grow as a result of the inherent instability of the polar front (similar 
to the growth of a wave at a discontinuity). Charney (1947), Eady (1949), Berson (1949), 
and Fjortoft (1950) have shown that the baroclinicity of the zonal current may lead to 
instability in which the kinetic energy of the growing perturbations is derived from the 
potential and internai  energies due to horizontal thermal gradients. Kuo (1949) and Fjortoft 
(1950) showed that certain categories of horizontal velocity patterns across a zonal current 
will lead to instability. 
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It has generally been observed that cyclones develop within a period of 1-3 d. In this 
short time scale, it is customary to assume that the motion is adiabatic and frictionless. 
Another assumption is that even during growth, the energy of an unstable zonal current 
is conserved. Let K, P, and E denote the kinetic, potential, and internal energies, re-
spectively. Hence, according to the above assumptions: 

(6.4) 	K + P + E = constant 

The kinetic energy per unit mass can be expressed as 

11 —2 V' = —2 V' + 'V • V' + —1 V'' 2 

where I7 is the averaged velocity of the undisturbed current and V' is a deviation from this 
value. The kinetic energy K can be determined by integration over the total mass. During 
this integration, the second term on the right side of the above equation disappears. Hence 

(6.5)  K= K„, + Kd  

where K„, and Kd  are the integrated forms of the first and third terms, respectively, and 
these are referred to as the kinetic energy of the mean current and the kinetic energy of 
the perturbation. Equation 6.5 may be rewritten as 

(6.6) 	Kd  + K„, + P + E = constant 

Since Kd  represents the average intensity of all the disturbances, for the growth of these, 
Kd  must increase with time. This means that Kd  can increase only at the expense of one 
of the three sources K„„ P, or E or from combinations of these. 

Next, the potential energy of a column of air of unit cross-section is given by 

P =f gzpdz 

Using the hydrostatic equation dp = —gpdz and integrating by parts: 
fpo 	 f"° az 

= 	zdP = [zP]p=p0  [zP]p=o 	dP 
o 

where po  is the pressure at the bottom of the air column. In this equation, on the right side 
the first term becomes zero at z = 0 (bottom of the air column) and the second term 
vanishes because pz —> 0 as p—> O. The third term becomes, after noting a = 1/p where 
a is the specific volume, 

p = f pdz = papdz 

The equation of state is 

aP = RT 

where R is the gas constant and T is the temperature. Using this, the above equation 
becomes 

P = R f Tpdz 

The internal energy of the air column may be written as 

(6.7) 
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(6.8) 	E = C. 	Tpdz 

where C,, is the specific heat of air at constant volume. Hence 

P R (6.9)  

Thus, it can be seen that the potential and internal energies of a column of air (from the 
sea level to the top of the atmosphere) will change proportionately to each other. For this 
reason, the potential and internal energies in eq. 6.6 should not be treated as two different 
energy sources; hence, only two energy sources exist for the perturbations to amplify: (1) 
the kinetic energy K„, of the mean motion and (2) the sum of the potential and internal 
energies P + E. 

The perturbations of the basic zonal current may grow through three different types 
of instability. The first one is the so-called linear current instability. The energy for the 
perturbations is derived from the kinetic energy of the basic current. This instability 
mechanism is similar to the hydrodynamic instability of a linear flow of a homogeneous 
and incompressible fluid between two parallel walls. The second type of instability is 
referred to as baroclinic instability. In this case, the potential and internal energies of the 
basic baroclinic current supply the energy for the growth of the disturbances. The third 
type of instability is referred to as Solberg—Holland instability. Solberg (1936) considered 
a system that initially consists of two barotropic layers separated by a sloping frontal 
surface in the east—west direction. Both layers are assumed to move towards the east, with 
the warmer (southern) layer moving faster. He found that waves with lengths less than a 
few kilometres and also those with lengths between 1000 and 3000 km will amplify and 
waves with lengths in the remaining range will dissipate. The growth of the waves with 
lengths shorter than a few kilometres is similar to the classical Helmholtz instability 
problem, and these short waves are of no relevance to the cyclone problem. A sharp 
discontinuity is essential for their generation. The growth of waves with lengths of 
1000-3000 km can account for the growth of cyclone disturbances. 

It can be shown that each of these barotropic layers can give rise to stable wave 
motion. The wave motion in each layer can be tuned so that each can grow as a result of 
a resonance effect. In this type of instability the disturbances derive energy from the 
kinetic energy of the mean motion whereas the potential and internal energies are sink 
terms. 

THE DEVELOPMENT EQUATION 

Bjerknes (1937) expressed the cyclogenesis problem in terms of an instability of the 
frontal surface. On the other hand, Sutcliffe (1947) formulated the same problem in terms 
of vertical velocity and divergence, and this approach is more suitable from a synoptic 
meteorology point of view whereas Bjerknes' approach is a problem in dynamic 
meteorology. 

In synoptic meteorology for forecasting purposes, emphasis is given to vertical 
velocity and divergence. Adiabatic cooling due to upward motion mainly determines the 
rates of condensation and precipitation, whereas divergence in the atmosphere is very 
important for the development of cyclones. However, the magnitudes of vertical velocity 
and divergence in the atmosphere are small, as will be seen below. 

In a coordinate system in which the pressure field p is the vertical coordinate, the 
vertical velocity co can be expressed as 
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(6.10) 
dp 

In this coordinate system, the continuity equation can be written as 

(6.11) D = --
aw  
ap 

where D is the divergence (which is determined by the variation of the vertical velocity 
in the vertical direction). Thus, if the motion is entirely horizontal, the divergence would 
be zero and the absolute vorticity of each air parcel would be conserved. Scale consid-
erations show that divergence in excess of 10' • s occurs in tornadoes and possibly in 
tropical storms during periods of rapid development. Divergence of up to 4 x 10' • s' 
can be found in upper air troughs and values up to 2 x 10' • s' can be seen in rapidly 
developing and fast-moving sea level cyclones. 

Next, the concept of Dines compensation will be introduced. Let the average di-
vergence in an air column stretching between two isobaric surfaces be denoted by  D.  
Integration of the continuity equation 6.11 gives 

(6.12) 	b- (P 1 — Po) = — (w1 — wo) 

where subscripts 0 and 1 refer to the lower and upper levels, respectively. If the two levels 
considered are the sea level and the top of the atmosphere, then p l  = 0, co l  = 0, and 
eq. 6.12 becomes 

(6.13) 	b= 	10'1'000  

taking po  — 1000 mb. The air parcel at sea level is restricted to horizontal motion, then 
coo  is small and has the same order of magnitude as the local pressure change apo / at. Thus, 
taking a local pressure change as high as 10 mb in 3 h, the mean divergence of the air 
column will be less then 10 -6 . s -1 . Hence, the average divergence of an air column 
stretching from sea level to the top of the atmosphere will be at least an order of magnitude 
smaller than the typical values for traveling cyclones. Hence, it follows that the divergence 
must change its sign at least once in the air column so that its average value is small. Dines 
(1912, 1929) suggested that boxes of convergence and divergence alternate in the atmo-
sphere so that the net divergence almost vanishes. This concept is referred to as "Dines 
compensation." Sutcliffe (1947) made use of this concept in his formulation of the 
so-called development equation in which he takes the amount of convergence as an 
indication of the rate of development. 

Let C be the velocity of the cyclone movement and 8Q/ St be the local rate of change 
of vorticity at a point whose position with reference to the moving cyclone is the same. 
Then 

8Q aQ 
(6.14) —8 t 

= —
a t 

+ C•VQ 

The vorticity equation can be written as 

aQ 	bQ 
(6.15) 	-= —

at 

+ V• VQ = —
bt 

+ (V — C)• VQ = —DQ 

It can be seen that a portion of the divergence goes into the intensification of the vorticity 
system at the rate 8Q18t whereas the rest goes into advecting the vorticity with the 
velocity V — C relative to the moving system. From geostrophic considerations, the 
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vorticity tendency may be expressed as (which relates observed height changes to vorticity 
tendency) 

, 	aQ 	g r7  aZ 
(6.16)  at 	f 	at 
where z is the height of an isobaric surface and f is the Coriolis parameter. If it is assumed 
that the density is horizontally uniform: 

aQ a ap 
(6.17)  

where a is the specific volume. From earlier discussion, it has been seen that there is at 
least one level in the atmosphere where the divergence vanishes. At this level, the vorticity 
equation 6.15 reduces to 

aQ 	 aQ 
(6.18) —

a t 
+ V•VQ = —w—ap 

at D -=- 0 

where V is the horizontal wind. 
Let 170  denote the wind field at 1000 mb and VT  be the thermal wind between 1000 

mb and the level of nondivergence. Then 

(6.19a) V = Vo + VT 

The absolute vorticity at the level of nondivergence is 

(6.19b) Q = Qo + QT 

where QT is the vorticity of the thermal wind. 

The following can also be written: 

aQaqr _ _ ._ _ 
ap 	ap 

since D = 0 at the level of nondivergence: 

Do = — DT 

Hence, the divergence at sea level (or at 1000 mb) is equal to the convergence of the 
thermal wind. From eq. 6.18 

r 	 aqr 
(6.20) 00  -= —Do Qo  = — 

a q 
—
a t 

— v. V qr — VT. V  QO -  

Here, the dot denotes the derivative with respect to time, and terms without a subscript 
refer to the level of nondivergence. 

Since thermal wind is a measure of the baroclinicity in the atmosphere, it can be seen 
that vorticity can neither be created nor destroyed at sea level, for a barotropic state. 
However, baroclinicity (although a necessary condition) is not a sufficient condition for 
development because the terms on the right side of eq. 6.20 may be in balance. The value 
of the so-called development equation 6.20 lies in the fact that it shows that the rate of 
production of vorticity and divergence at sea level can be determined solely from the 
conditions existing below the level of nondivergence. Hence, it is important to know 
where the level of nondivergence exists. 

It can be shown that the last term on the right side of eq. 6.20 makes only a small 
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contribution; hence, this will be ignored. Also, using eq. 6.19 and noting that 

aQ0  
= at  + v0.vQ0 

eq. 6.20 reduces to 

aQ0 a*,  (6. 21) —
a t 

= —v•v Q — — ar 

where V and Q refer to the level of nondivergence. Let A„ and AT denote the vorticity 
advection at the level of nondivergence and the thickness advection from 1000 mb to the 
level of nondivergence, respectively. 

Sutcliffe (1947) found a convenient expression for  aq/at  as follows. Let the 
adiabatic and the actual lapse rates in terms of height be denoted by y„ and y, respectively, 
and let Fa  and F be the corresponding parameters in terms of pressure. From the hydro-
static relation 

	

(6.22) 	—6p = pg8z 

the following can be written: 

1 	 1 

	

(6.23) 	Fa = and F 
Pg 	 Pg 

The first law of thermodynamics may be written as 

(6.24) —a T 
 —V V T + (F0  — nco +  

ar 	 dt 

where C„ is the specific heat of air at constant pressure, — V• VT is the horizontal advection 
of temperature, and dW/dt is the heat (other than latent heat) supplied or extracted from 
a unit mass of air in unit time. It can be seen from eq. 6.24 that the temperature tendency 
(i.e. local rate of change of temperature) is made up of three contributions: (1) the 
horizontal advection, (2) the adiabatic change, and (3) the changes due to nonadiabatic 
heating or cooling. 

Integration of eq. 6.24 with respect to log p from 1000 mb to the level of non-
divergence gives an expression for the thickness tendency: 

aqr R g 	 1 dill (6.25) —
at 

--f V 2 1—R A T  + log I ') ) [ co (F„ — F) + — ci, dt 

where R is the gas constant and the bar denotes mean values through the layer. For 
convenience define 

log (

Po 	 
—) co(F„ — F) =  S 

1 dW log ( p 	-- H 

Then, eq. 6.25 becomes 

aqT R 	g (6.27) —
at 

= —f y 2  (—
R

AT  S H) 

(6.26) 
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Equation 6.21 becomes 

aQ0 	R (g 
(6.28)  

R 
 = AQ 	V 2AT 

-R V 2 S - 7:72  H 
f 	f 

Equation 6.20 becomes 

R 
 v 
r,2(g 

(6.29) 00  = — Qopo = AQ + Vo • V Qo — 7 	AT + s + H) 

Since Vo  • V Qo  makes only a small contribution, it can be seen that at sea level the vorticity 
production èo  and the vorticity tendency aQ0 lat are about the same. 

It can be seen from eq. 6.28 that the development at sea level is due to the imbalance 
between the vorticity advection at the level of nondivergence and the Laplacian of the 
thermal components AT,  S,  and H. From synoptic weather charts one can routinely 
calculate the vorticity advection and thickness advection. However, the contributions from 
adiabatic and nonadiabatic temperature changes require special treatment. 

In eq. 6.28 if the atmosphere were at test relative to the earth, the terms A Q  , AT , and 
S would be zero. Then this equation becomes 

ago  v2H  
at 

Since it is assumed that the atmosphere is at rest, relative vorticity is created only due to 
thermal sources (heat sources create cyclonic vorticity and cold sources generate anti-
cyclonic vorticity). Examples of weather systems generated in this manner are monsoons, 
land and sea breezes, mountain and valley winds, etc. 

Earlier it was seen that geographical distribution of thermal sources could lead to 
development. In the case of a water body surrounded by colder land, H in eq. 6.23 will 
be positive and V 2H will be negative, and this makes a positive contribution to the vorticity 
tendency. For the case of cold land surrounded by warmer water, H < 0 and V 2I-1 < 0 and 
a negative contribution is made. It is not so much the amount of heating or cooling that 
matters, but it is the pattern or the Laplacian of the thermal process that is relevant. 

Geographically fixed thermal sources are mainly important only locally and they 
cannot influence cyclone development over long durations. A more important source is the 
nonadiabatic heating or cooling associated with the movement of an air mass over a 
nonuniform surface. The heat loss or gain during such a motion is distributed through deep 
layers in the atmosphere by eddy exchange. Since the nonadiabatic thermal pattern is 
somewhat in tune with the mobile systems, it is more effective for development. These 
nonadiabatic influences will make a positive contribution to cyclone development in 
situations where an air mass moves from a colder to a warmer surface. Examples of 
cyclone development and intensification due to nonadiabatic influences can be found over 
the Great Lakes in winter and in cyclones entering the North Atlantic from North America. 

In eq. 6.28, the term containing AT denotes the thickness advection. Again, it is the 
Laplacian of the advection that is important. Noting that thermal advection has a positive 
maximum ahead of a developed cyclone and a negative minimum in the rear, one can see 
that the Laplacian of the advection will make a positive contribution ahead and a negative 
contribution in the rear of a cyclone, and the contribution at the center of the cyclone is 
minimal. Basically, the thickness advection creates an asymmetry in the development 

389 



process so that positive vorticity production occurs in the area of maximum warm ad-
vection and negative vorticity production occurs in the region of maximum cold advection. 
Noting that the center of the cyclone moves in the direction of increasing vorticity 
tendency, it can be seen that the main contribution of the thickness advection is to the 
movement of the cyclone. 

The thermal and thickness advections are usually opposed by the nonadiabatic effects 
due to the underlying surface. In eq. 6.28 the thermal terms S and H are usually difficult 
to determine from synoptic charts. Means (1954) used the following equation to calculate 
the vorticity changes associated with cyclones: 

aQ0 	g 2 (6.30) 	 A= A0 	T at 

This equation gave patterns of aQ0/at that more or less agree with observed patterns but 
the actual values were overestimated by a factor of 2 to 4. According to Petterssen (1956), 
this exaggeration reflects the circumstance that the effect of thermal advection is normally 
opposed by the effects of adiabatic and nonadiabatic temperature changes. 

Note that the thermal advection is mainly determined by the circulatory motion 
around cyclones. In the first stages of cyclone development when the front wave is 
forming, the thermal advection is rather small. Hence, initially some other mechanism 
produces thermal advection. Once the temperature field is distorted due to the circulatory 
motion around cyclones, further contributions are made from (g /f)V 2A T  and the system 
is self-developing. 

Next, the vorticity advection (vorticity advection is positive when the wind blows 
from high towards low values of vorticity) is briefly considered. Petterssen (1956) noted 
that the vast majority of cyclogenesis at sea level occurs when the area of positive vorticity 
advection ahead of an advancing trough becomes superimposed upon a quasi-stationary or 
slowly moving front along which the thermal advection is discontinuous. One of the most 
reliable indicators of sea level cyclogenesis is this overtaking by an upper trough (with 
positive vorticity advection ahead of it) of a frontal system in the lower troposphere. 
Usually, a steepening and intensification of the frontal zone occurs after this overtaking. 

To derive an expression for the vorticity advection, write for the absolute vorticity: 

av 
Q = VKs 	+ f 

The vorticity advection AQ is 
aQ 

A Q  = —V as  

where S is the length along the streamlines or contours. Note that the shear and the Coriolis 
parameter do not change much along the streamlines. Hence, one can write 

aKs 	av) 
AQ = V (V 

The term av/as, which denotes confluence, may be replaced with VK„ where K„ is the 
orthogonal curvature (note that K„ is positive or negative depending on whether the 
streamlines converge or diverge in the downwind direction). Thus 

(6.31) 
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a Ks  
(6.32) A Q  = — V2 ( 	+ KsKn) 

Thus, the vorticity advection is proportional to the square of the wind speed. Hence, in 
the jet stream, one could expect very large vorticity advection (provided the streamline 
structure is suitable). 

In Fig. 6.5A the streamlines are sinusoidal and parallel. Hence, a Ks / a n is negative 
downwind from the trough (positive upwind from the trough) and maxima (in a numerical 
sense) occur at the inflection points. In this case, K„ is uniformly small and the vorticity 
advection is insignificant. In Fig. 6.5B and 6.5C the influence of confluence and dif-
fluence of the streamlines on the vorticity advection is shown. There is a tendency for the 
vorticity advection to be located near troughs and wedges with confluence entrance and 
diffluence exit (Petterssen 1956). 

SOME EXAMPLES OF CYCLONE DEVELOPMENT 

Reitan (1974) summarized the frequencies of cyclones and cyclogenesis for North 
America. Danard and Ellenton (1980) examined the physical influences on the cyclo-
genesis on the east coast of North America making use of an eight-level primitive equation 
model. This model includes sensible and latent heat from the ocean surface, parameterized 
convective and large-scale precipitation and release of latent heat, surface frictional drag, 
and orography. The study was applied to several intensive storms, which included the 
storm of January 20, 1977, which produced a Canadian all-time record low sea level 
pressure of 940.2 mb at St. Anthony, Nfld., and the slow moving storm of February  6-8, 
1978, which dumped 90 cm of snow on the New England states and the Maritime 
provinces. One of the important results of this study is that input of heat and water vapor 
from the ocean surface did not contribute significantly during the deepening of the low. 
However, these fluxes produced an initial vertical distribution of temperature and moisture 
that helped subsequent development. 

Danard (1971) examined the roles played by long-wave radiation and surface friction 
in the cyclone development process. Danard and Rao (1972) examined the role of the 
Great Lakes on winter cyclones. 

Brand and Guard (1979) studied the evolution of extratropical storms from tropical 
cyclones. According to these authors, a tropical cyclone is identified as becoming extra-
tropical when it loses its tropical nature (i.e. northward displacement from the tropics as 
well as the conversion of the cyclone's primary energy source from latent heat release to 
baroclinic processes). The movement of recurved tropical cyclones is difficult to predict. 
According to Burroughs and Brand (1973), errors as high as 30% could occur. Even when 
the recurved tropical cyclone becomes somewhat weaker, if it becomes an extratropical 
cyclone, it could still be important. For typhoons to the east of China, during the period 
1971-75, the average value of the maximum wind when the cyclones became extra-
tropical was 28  ms.  In September 1974, Typhoon Agnes became extratropical at 34°N 
and at that time the maximum wind speed was 51 m • s - 

According to Sekioka (1970, 1972a, 1972b) and Matano and Sekioka (1971a, 
1971b), this transformation of tropical cyclones to extratropical cyclones can occur at least 
in two ways: (1) a tropical cylone meets an already existing front causing a new extra-
tropical cyclone to form and grow on the front and (2) a preexisting extratropical cyclone 
merges with a tropical cyclone and usurps the tropical vortex. 

Angell et al. (1969) detected a quasi-biennial (period of about 28 mo) variation in the 
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FIG. 6.5. Schematic representation of the streamline curvature (K,) and the 
orthogonal curvature (K„). In sinusoidal waves (a) the vorticity advection is gen-
erally small with numerical maxima at the inflexions. In waves with confluence 
and diffluence (b and c) the vorticity advection is highly concentrated in the 
vicinity of troughs and wedges with confluent entrance regions. The areas favor-
able for cyclone development at sea level are indicated by C and those favorable 
for anticyclone development by A. (Petterssen 1956) 
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FIG. 6.6. Harmonic amplitude of the mean monthly frequency of North Pacific 
typhoons, North Atlantic hurricanes, severe storms (winds greater than 25 m • ) in 
the vicinity of India, and the total of all three. Numbers above the peaks indicate the 
dominant quasibiennial periods of oscillation (months). The two numbers in the upper 
right-hand corner represent the harmonic amplitudes of the annual (upper number) and 
semiannual (lower number) oscillations in surface pressure at the station. (Angell et 
al. 1969) 

centers of action such as the Icelandic and Aleutian low pressure centers. They related the 
frequency of hurricanes and typhoons to this quasi-biennial activity. Mean monthly sur-
face pressures at stations with long data records were subjected to harmonic analysis. The 
following important results emerged. 

Quasi-biennial variations in the surface pressure occur near the North Atlantic and 
North Pacific subtropical highs and subpolar lows, with amplitudes up to 0.4 mb. The 
quasi-biennial variations in latitude and longitude of the subtropical highs are about I°. 
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The Atlantic high moves in a northwest—southeast direction. Hurricanes in the North 
Atlantic, typhoons in the North Pacific, and severe storms in the vicinity of India show 
a quasi-biennial variation in frequency (Fig. 6.6). 

It is possible that the relatively large annual oscillation may contaminate the harmonic 
analysis for the quasi-biennial band. For this reason Angell et al. (1969) also performed 
an alternate analysis. In the so-called even-minus-odd-year difference method, the number 
of hurricanes or typhoons in the odd-numbered years is subtracted, year by year, from the 
number in the even-numbered years, and these first differences are smoothed through 
determination of a 3-yr running average. The results agree reasonably with observations. 

EXPLOSIVE CYCLOGENESIS 

Bergeron (cited in Sanders and Gyakum 1980) coined the phrase "meteorological 
bomb" to refer to explosive cyclogenesis, i.e. deepening of an extratropical low pressure 
system in which the central pressure decreases by at least 24 mb in 24 h. According to 
Sanders and Gyakum (1980), Bergeron's work referred to the area of Bergen in Norway, 
at latitude 60°N. A geostrophically equivalent deepening rate for any latitude (I) is obtained 
by multiplying 24 mb • 24 h - ' by sin (1)/sin 60 0 . This critical rate is denoted as 1 Bergeron 
and varies from 12 mb • 24 11 -1  at 25°N to 28 mb • 24 11 -1  at the pole. 

Sanders and Gyakum (1980) performed a comprehensive study of the explosive 
cyclogenesis problem. Their data were for the period of September 1976 to May 1979 in 
the Northern Hemisphere. They deduced that this phenomenon is mainly maritime and 
occurs in the cold season usually about 400 nautical miles (741 km) downstream from a 
mobile 500-mb trough, within or poleward of the maximum westerlies, and within or 
ahead of the planetary scale trough. 

A more detailed study for the 1978-79 season by the same authors showed that 
explosive deepening occurs over a wide range of sea surface temperatures but mainly in 
the vicinity of strongest gradients. The forecasts of the National Meteorological Center 
(United States) appear to underestimate the deepening rates. 

This study excluded most of Europe, North Africa, Asia, and the Mediterranean Sea 
where this phenomenon is either totally absent or rare, according to Sanders and Gyakum 
(1980). Holliday and Thompson (1979) found similar deepening rates, as discussed above, 
in rapidly intensifying typhoons. 

Hammond (1980) examined the same phenomenon in the Northeast Pacific Ocean 
with emphasis on the cyclones that were of relevance to the west coast of Canada. For the 
1979-80 season he found several cases that qualify as meteorological bombs. He also 
deduced that the Canadian Meteorological Center's forecasts underestimate the deepening 
rates. The cases selected from Hammond's work for a more detailed study by Murty et al. 
(1983), who extended this study to include several more seasons (1954-77), are listed in 
Table 6.1. Explosive cyclogenesis in the northeastern part of the Pacific Ocean occurred 
predominantly during October to March. The number of cases of explosive cyclogenesis 
by 50  squares during the period 1954-77 is shown in Fig. 6.7. 

6.2 Tropical Cyclones 

In this section, the formation and structure of tropical cyclones and the various stages 
in their life cycle will be considered followed with a discussion of the various models being 
used to forecast their intensity and movement. 
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TABLE 6.1. Number of explosively developing extratropical cyclones in the Northeast Pacific Ocean that 
eventually were relevant for the west coast of Canada, during the period 1955-77. 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 

1955 	4 	0 	0 	1 	2 	0 	0 	1 	0 	1 	1 	1 
1956 	1 	0 	2 	2 	0 	0 	0 	0 	0 	2 	I 	2 
1957 	1 	0 	1 	0 	1 	0 	0 	0 	0 	0 	2 	2 
1958 	0 	2 	2 	1 	0 	0 	0 	0 	I 	2 	2 	0 
1959 	1 	0 	1 	2 	0 	0 	0 	0 	1 	I 	3 	5 
1960 	3 	3 	1 	3 	2 	0 	0 	0 	0 	2 	3 	4 
1961 	3 	2 	5 	0 	0 	0 	0 	0 	9 	0 	3 	2 
1962 	1 	3 	1 	2 	0 	0 	0 	0 	1 	6 	5 	4 
1963 	0 	1 	1 	0 	1 	6 	0 	0 	0 	5 	7 	1 
1964 	3 	2 	2 	3 	1 	1 	1 	2 	0 	6 	0 	2 
1965 	0 	1 	1 	2 	2 	2 	0 	0 	1 	6 	I 	0 
1966 	4 	1 	2 	0 	0 	0 	0 	0 	4 	5 	1 	2 
1967 	3 	3 	0 	0 	1 	0 	0 	0 	1 	4 	2 	3 
1968 	1 	0 	3 	0 	0 	1 	1 	0 	3 	6 	3 	1 
1969 	0 	2 	0 	1 	0 	1 	0 	0 	0 	2 	6 	4 
1970 	3 	1 	0 	2 	0 	0 	2 	0 	1 	3 	2 	3 
1971 	0 	3 	3 	2 	3 	0 	0 	0 	3 	0 	I 	1 
1972 	2 	2 	0 	1 	0 	0 	0 	0 	0 	3 	2 	2 
1973 	1 	3 	3 	0 	1 	1 	0 	0 	0 	2 	I 	3 
1974 	2 	2 	0 	1 	0 	0 	0 	0 	0 	I 	2 	2 
1975 	3 	0 	2 	4 	1 	0 	0 	0 	0 	4 	4 	3 
1976 	3 	1 	4 	2 	I 	0 	0 	0 	2 	3 	3 	3 
1977 	4 	3 	2 	3 	0 	0 	1 	0 	0 	3 	0 	1 

FORMATION AND STRUCTURE OF TROPICAL CYCLONES 

The main source of material for this subsection is Gray (1978a, 1978b, 1978c, 
1978d). Annually over the globe there are about 80 tropical cyclones with maximum 
sustained wind speeds of 20-25 m • s'. The areas of the generation of tropical cyclones 
over a 20-yr period are shown in Fig. 6.8. About one half to two thirds of these cyclones 
reach hurricane strength (i.e. maximum sustained wind speeds greater than 33 m - s - '). 
Over the globe, the percentage change in the number of tropical cyclones over a recent 
20-yr period (1958-77) varied from +23 to —13, with an average of 8 (Table 6.2). The 
ratio of the number of tropical cyclones in the Northern Hemisphere to those in the 
Southern Hemisphere varied from 1.5 to 4.0. 

Month by month occurrences of tropical cyclones for the same 20-yr period for the 
Northern and Southern Hemispheres are shown separately in Tables 6.3 and 6.4, 
respectively. The data for the various ocean basins, which are identified in Fig. 6.8, are 
shown in Table 6.5. 

About 80% of the tropical cyclones occur in the belt between 20°N and 20°S. The rest 
occur poleward of 20° latitude, but mainly in the Northern Hemisphere. Annually, about 
two thirds of all tropical cyclones occur in the Northern Hemisphere; similarly, about two 
thirds occur in the Eastern Hemisphere (as opposed to the Western Hemisphere). Most of 
the tropical cyclones form in the latitudinal belt 5-15°, and rarely do they form within 
4-5° from the equator. In the Southern Hemisphere, tropical cyclones do not form 
poleward of 22°, whereas in the Northern Hemisphere they form at latitudes up to 36°. 

Considering longitude, there are three favored locations for the formation of tropical 
cyclones: 90°E, 140°E, and 105°W. The western part of the North Pacific Ocean accounts 
for about one third of all tropical cyclones. Generally, summer is the favored season for 
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FIG. 6.7. Number of explosive cyclones originating in 5° x 5° squares during 1954-77. 

FIG. 6.8. Ocean basins for which tropical cyclone frequency is given in Table 6.5. (Gray I978a) 

tropical cyclone formation, but they do occur in other seasons, especially in the western 
part of the North Pacific Ocean. 

In the North Indian Ocean, there are two seasons of cyclone formation in the 5-15°  

latitude belt: a major period in the autumn associated with the retreat of the southwest 
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TABLE 6.2. Tropical cyclone statistics for the period  1958-77.  NH, Northern 
Hemisphere; SH, Southern Hemisphere. (Gray 1978a) 

Year 	 No. of cylones 	% deviation 
from 20-yr 	Ratio 

NH 	SH 	NH 	SH 	Total 	average 	(NH:SH) 

1958 	1958-59 	52 	25 	77 	-3 	 2.1 
1959 	1959-60 	48 	21 	69 	-13 	 2.3 
1960 	1960-61 	48 	22 	70 	-12 	 2.2 
1961 	1961-62 	58 	23 	81 	+2 	 2.5 
1962 	1962-63 	50 	30 	80 	+1 	 1.7 
1963 	1963-64 	49 	23 	72 	-9 	 2.1 
1964 	1964-65 	65 	19 	84 	+6 	 3.4 
1965 	1965-66 	56 	22 	78 	-1 	 2.5 
1966 	1966-67 	64 	16 	78 	-1 	 4.0 
1967 	1967-68 	63 	28 	91 	+15 	 2.2 
1968 	1968-69 	61 	23 	84 	+6 	 2.6 
1969 	1969-70 	49 	23 	72 	-9 	 2.1 
1970 	1970-71 	56 	26 	82 	+4 	 2.1 
1971 	1971-72 	70 	27 	97 	+23 	 2.6 
1972 	1972-73 	54 	35 	91 	+15 	 1.5 
1973 	1973-74 	46 	.28 	74 	-6 	 1.6 
1974 	1974-75 	55 	19 	75 	-5 	 2.9 
1975 	1975-76 	47 	29 	76 	-4 	 1.6 
1976 	1976-77 	55 	30 	85 	+7 	 1.8 
1977 	1977-78 	47 	20 	67 	-15 	 2.3 

Total 	 1093 	489 	1583 
Average 	 54.6 	24.5 	79.1 	-±8 	 2.3 

TABLE 6.3. Frequency of Northern Hemisphere tropical cyclone genesis by year and month. (Gray 1978a) 

Year Jan. Feb. Mar. 	Apr. 	May June July Aug. 	Sept. 	Oct. Nov. Dec. 	Total 

1958 	1 	0 	0 	0 	2 	5 	10 	9 	11 	9 	4 	1 	52 
1959 	0 	0 	0 	1 	2 	6 	7 	11 	9 	8 	2 	2 	48 
1960 	0 	0 	0 	1 	3 	7 	6 	14 	6 	8 	2 	1 	48 
1961 	1 	I 	1 	1 	4 	5 	10 	5 	14 	9 	6 	1 	58 
1962 	0 	1 	0 	1 	3 	2 	7 	11 	11 	7 	4 	3 	50 
1963 	0 	0 	0 	1 	3 	5 	6 	5 	14 	11 	0 	4 	49 
1964 	0 	0 	0 	0 	3 	4 	11 	15 	12 	8 	10 	2 	65 
1965 	2 	2 	1 	1 	4 	8 	8 	8 	12 	3 	4 	3 	56 
1966 	0 	0 	0 	2 	2 	3 	9 	13 	20 	5 	7 	3 	64 
1967 	2 	1 	I 	1 	2 	4 	10 	12 	12 	13 	3 	2 	63 
1968 	0 	0 	0 	1 	2 	5 	7 	17 	11 	11 	6 	1 	61 
1969 	1 	0 	1 	1 	1 	0 	7 	13 	10 	9 	4 	2 	49 
1970 	0 	I 	0 	0 	4 	6 	11 	10 	9 	8 	7 	0 	56 
1971 	1 	0 	1 	3 	7 	3 	15 	11 	15 	9 	4 	1 	70 
1972 	1 	0 	0 	1 	4 	2 	9 	12 	12 	6 	4 	3 	54 
1973 	0 	0 	0 	0 	0 	5 	12 	8 	8 	7 	5 	1 	46 
1974 	1 	0 	0 	2 	4 	6 	5 	14 	13 	6 	4 	0 	55 
1975 	2 	0 	0 	0 	2 	3 	6 	11 	9 	8 	6 	0 	47 
1976 	1 	1 	0 	3 	2 	7 	9 	15 	10 	4 	0 	3 	55 
1977 	0 	0 	1 	0 	3 	4 	8 	4 	13 	9 	4 	I 	47 

Total 13 	7 	6 	20 	57 	90 	173 	218 	231 	158 	86 	34 	1093 
Average 0.7 	0.3 	0.3 	1.0 	2.9 	4.5 	8.6 	10.9 	11.5 	7.9 	4.3 	1.7 	54.6 
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TABLE 6.4. Frequency of Southern Hemisphere tropical cyclone genesis by year and month. (Gray I978a) 

Oct. 	Nov. 	Dec. 	Jan. 	Feb. 	Mar. 	Apr. 	May 	Total 

	

1958-59 	1 	1 	3 	5 	7 	6 	2 	0 	25 

	

1959-60 	0 	1 	4 	3 	2 	7 	4 	0 	21 

	

1960-61 	0 	1 	I 	9 	7 	4 	0 	0 	22 

	

1961-62 	0 	1 	4 	6 	8 	2 	2 	0 	23 

	

1962-63 	1 	0 	4 	6 	9 	5 	2 	3 	30 

	

1963-64 	0 	1 	3 	7 	3 	7 	1 	1 	23 

	

1964-65 	0 	2 	5 	4 	5 	3 	0 	0 	19 

	

1965-66 	0 	0 	3 	7 	6 	6 	0 	0 	22 

	

1966-67 	0 	1 	3 	5 	1 	3 	2 	1 	16 

	

1967-68 	0 	2 	4 	8 	7 	3 	4 	0 	28 

	

1968-69 	1 	1 	3 	7 	8 	2 	1 	0 	23 

	

1969-70 	0 	1 	0 	5 	6 	7 	3 	1 	23 

	

1970-71 	1 	3 	6 	4 	7 	4 	1 	0 	26 

	

1971-72 	0 	I 	6 	3 	10 	3 	2 	2 	27 

	

1972-73 	1 	3 	4 	10 	6 	7 	3 	1 	35 

	

1973-74 	1 	3 	5 	7 	4 	6 	2 	0 	28 

	

1974-75 	0 	0 	2 	6 	2 	5 	4 	0 	19 

	

1975-76 	0 	4 	4 	8 	5 	4 	3 	I 	29 

	

1976-77 	1 	0 	4 	8 	9 	5 	3 	0 	30 

	

1977-78 	0 	3 	4 	3 	4 	4 	2 	0 	20 

Total 	7 	29 	72 	121 	117 	93 	41 	10 	489 
Average 	0.4 	1.5 	3.6 	6.1 	5.9 	4.7 	2.1 	0.5 	24.5 

TABLE 6.5. Yearly variation of tropical cyclones by ocean basins. SH, Southern Hemisphere; NW Atl., 
Northwest Atlantic Ocean; NE Pac., Northeast Pacific Ocean; NW Pac., Northwest Pacific Ocean; S. Pac., 
South Pacific Ocean; Aust., Australia; N. Id.,  North Indian Ocean; S. bd., South Indian Ocean. (Gray 
I978a) 

Year 

Year 	SH 	NW Atl. 	NE Pac. 	NW Pac. 	N. Ind. 	S. Ind. 	Aust. 	S. Pac. 	Total 

1958 	1958-59 	12 	13 	22 	5 	11 	11 	7 	81 
1959 	1959-60 	11 	13 	18 	6 	6 	13 	2 	69 
1960 	1960-61 	6 	10 	28 	4 	6 	8 	8 	70 
1961 	1961-62 	11 	12 	29 	6 	12 	7 	4 	81 
1962 	1962-63 	6 	9 	30 	5 	8 	17 	3 	78 
1963 	1963-64 	9 	9 	25 	6 	9 	7 	7 	72 
1964 	1964-65 	13 	6 	39 	7 	6 	9 	4 	84 
1965 	1965-66 	5 	11 	34 	6 	12 	7 	4 	79 
1966 	1966-67 	11 	13 	31 	9 	5 	5 	6 	80 
1967 	1967-68 	8 	14 	35 	6 	11 	9 	8 	91 
1968 	1968-69 	7 	20 	27 	7 	8 	7 	8 	84 
1969 	1969-70 	14 	10 	19 	6 	10 	7 	6 	72 
1970 	1970-71 	8 	18 	23 	7 	11 	12 	3 	82 
1971 	1971-72 	14 	16 	34 	6 	7 	14 	6 	97 
1972 	1972-73 	4 	14 	28 	6 	13 	12 	10 	88 
1973 	1973-74 	7 	12 	21 	6 	4 	16 	8 	74 
1974 	1974-75 	8 	17 	23 	7 	6 	10 	3 	74 
1975 	1975-76 	8 	16 	17 	6 	8 	16 	5 	76 
1976 	1976-77 	8 	18 	24 	5 	9 	12 	9 	85 
1977 	1977-78 	6 	17 	19 	5 	6 	7 	7 	67 

Total 	 176 	268 	526 	121 	168 	206 	118 	1583 
Average 	 8.8 	13.4 	26.3 	6.4 	8.4 	10.3 	5.9 	79.1 
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monsoon and a minor period in the spring associated with the onset of the monsoon. Note 
that the Southeast Pacific Ocean and the South Atlantic Ocean are not regions of tropical 
cyclones. The seasonal location of the intertropical convergence zone (ITCZ) is a favored 
region for tropical cyclogenesis. 

According to Gray (1978a, 1978b, 1978c, 1978d), tropical cylones tend to cluster in 
time as well as in space. Within a period of 1-2 wk there may be as many as 5-15 tropical 
cyclones over the globe and then a lull for several weeks. During such active periods there 
may be as many as two to six times as many cyclones than in the less active periods. Gray 
(1978a, 1978b, 1978c, 1978d) attributdd this to the influence of the larger scale general 
circulation of the tropical atmosphere i.vith time scales of 10-20 d. 

About 80-85% of the tropical cyclones originate in or near the poleward side of the 
ITCZ or the doldrum trough. The remainder occur in the tradewinds at some distance from 
the ITCZ but usually in conjunction with an upper tropospheric trough to their northwest. 

There are some anomalous warm core systems belonging to the class of subtropical 
or semitropical cyclones accounting for about 3-5% of the tropical cyclones. These 
originate in the subtropics inside baroclinic regions where stagnant frontal zones exist to 
the east of the westerly troughs aloft (e.g. Northwest Atlantic and Northwest Pacific 
oceans). These mixed type of tropical midlatitude cyclones usually do not generate intense 
cyclones. 

Since tropical cyclones spend most of their lifespan over the warm waters of the 
tropical oceans, traditional data sources are not dense enough. Aircraft data have con-
tributed significantly. However, for an accurate vertical structure determination, 
Rawinsonde data are the most pertinent. Since enough synoptic Rawinsonde data are not 
available, it is necessary to combine the data of different periods for similar weather 
systems. 

According to Gray (1978a, 1978b, 1978c, 1978d) the seasonal tropical cyclone 
frequency can be related to the following six climatological genesis parameters: (1) low 
level relative vorticity,  r ,  (2) Coriolis parameter, f, (3) the inverse of the vertical shear 
S.  of the horizontal wind between the lower and upper troposphere, 1/S„ (4) ocean thermal 
energy, sea temperature excess above 26°C to a depth of 60 m, E, (5) vertical gradient of 
0, between the surface and 500 mb, 80,/ap, where 0, is the equivalent potential tem-
perature of air, and (6) midtroposphere relative humidity, RH. 

The rationale for selecting these parameters is the following. The first parameter is 
selected because, all things being equal, seasonal cyclone frequency should be related to 
the magnitude of the seasonal lower tropospheric relative vorticity. The Coriolis parameter 
is relevant because cyclones do not appear to form within 4-5° of the equator. 
Cyclogenesis does not occur near the equator because wind accelerations are small due to 
weak pressure gradients whereas frictional dissipation is as large as at any other latitude. 
The third parameter is relevant because tropical cyclones form when there is minimum 
vertical shear of the horizontal wind between the lower and upper troposphere. 

The fourth parameter becomes relevant when recognizing that tropical cyclones can 
have considerable influence on the temperature of the water body over which they travel. 
The feedback effect of the altered ocean temperature influences the cyclone. It appears that 
the inner region of the average-sized hurricane (0-240 km) can consume up to 4000 
cal • cm' •  d' the ocean's sensible and latent heat energy (for details see Leipper and 
Jensen 1971; Leipper and Volgenau 1972; Hefferman 1972; Perlroth 1967, 1969). On the 
other hand, Malkus and Riehl (1960) put this value at 3100 cal • cm-2 . According to 
Frank (1977b), for Pacific typhoons for the inner 80 km, the consumption rate is around 
1470 cal • cm' • d. If a typhoon crosses the track of another typhoon, the second one may 
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weaken sometimes because of the lowered sea surface temperature due to the upwelling 
caused by the first typhoon (Brand 1971). 

The hurricane or typhoon can influence the ocean temperatures down to a depth of 
60 m. Leipper and Jensen (1971) and Leipper and Volgenau (1972) defined an ocean 
thermal energy potential (for cyclogenesis) E (calories per square centimetre) as the ocean 
thermal energy above 26°C down to a depth of 60 m, i.e. 

(6.33) E =  f pC,(T — 26) dz 

where the integral is from the surface down to a depth of 60 m (or to where T = 26°C). 
Here, p„, is the density of seawater, T is the ocean temperature (degrees Celsius), and C„, 
is the specific heat of water. 

The importance of the fifth parameter is obvious when it is considered that cyclones 
do not form unless the lower and upper tropospheric flow patterns are well coupled. The 
primary mechanism for this coupling is the cumulonimbus convection. Hence, 
cyclogenesis should depend on the seasonally averaged moist buoyancy potential (i.e. the 
seasonal magnitude of the difference in the equivalent potential temperature  O.  between the 
boundary layer and the middle troposphere). The importance of the sixth parameter can 
be seen from the observations that tropical cyclones form in areas where seasonal middle 
level humidity values are high. In other words, when the humidity is high, deep cumulus 
convection occurs leading to better coupling in the vertical. 

Based on these considerations, Gray (1978a, 1978b, 1978c, 1978d) defined a 
"seasonal genesis parameter" (SGP) as follows: 

(6.34) 	SGP = vorticity parameter x Coriolis parameter x vertical shear parameter 
X  ocean energy parameter x moist stability parameter x humidity 
parameter 

Here, vorticity parameter =  r + 5 where  l  is in units of 10 -6 . s", Coriolis param-
eter = f, vertical shear parameter = 1/(S, + 3) where  S.  = lav/apl is in units of metres 
per second per 750 mb and V is the wind vector, ocean energy parameter = E is defined 
by eq. 6.33 and is in units of 10 cal • cm", moist stability parameter = a0,/ap + 5 
where a0,/ap is in K • 500 mb" , and humidity parameter = (RH — 40)130 where RH is 
the mean relative humidity between 500 and 700 mb but is zero for RH 40 and for 
RH 70. Note that in the above expressions, arbitrary units are added to enable daily 
values to be used instead of seasonal values. 

Another interpretation of SGP is as follows: 

(6.35) 	SGP = dynamic potential x thermal potential 

where dynamic potential = f ( , + 5)[l/(S. + 3)] and thermal potential = E(a0e /ap + 
5)(RH). The thermal potential might be thought of as potential for cumulonimbus con-
vection. The dynamic potential is in units of 10 -H s 2  (m • s -  5/750 mb and the thermal 
potential is in units of 10' cal • cm" • K • 500 mb". The SGP is in units of 
1.5 x 10' cal • K • s' • cm". Gray (1978a, 1978b, 1978c, 1978d) reported that there is 
very close agreement between the predicted (from SGP) and the observed cyclogenesis 
frequencies. 

LIFE CYCLE OF A TROPICAL CYCLONE 

Riehl (1979) summarized the life cycle of tropical cyclones. For storms with the 
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strength of hurricanes, the duration from their birth to the time of landfall or recurvature 
into middle latitudes is usually about 6 d. The life cycle of a tropical cyclone may be 
considered to be made up of the following four stages: formative stage, immature stage, 
mature stage, and terminal stage. 

Tropical cyclones form in the vicinity of preexisting weather systems. The deepening 
can occupy several days or may occur explosively in as short a time as 12 h. In the 
formative stage, winds are usually less than hurricane force (i.e. 1-min sustained winds 
are less than 74 mi •11 -1  (119 km • IC' )). Strongest winds occur in the quadrant that is to 
the east of the center and poleward. Surface pressure usually drops to 1000 mb. 

Several of these incipient cyclones never deepen enough to become hurricanes. In 
those cases that do deepen, the lowest pressure rapidly decreases to less than 1000 mb. 
Winds with speeds of up to 74 mi •h- ' occur in a tight band around the center (and not just 
in one quadrant). The disorganized squalls of the formative stage change into narrow and 
organized bands of clouds spiraling inward. In this immature stage only a small area is 
involved in the intense inner core (30- to 50-km radius) although there may be a large outer 
core. 

In the mature stage, the surface pressure at the center stops decreasing and the 
maximum wind speeds do not increase further. However, the area of intense circulation 
expands (up to 300-km radius in certain eases). The symmetry of the immature stage is 
destroyed and strong winds and bad weather preferentially occur to the right of the center 
looking downstream in the direction of movement of the cyclone. Some storms with a 
central low pressure as low as 950 mb could still be only  100-200 km in radius. Riehl 
(1979) estimated that for a storm with an average surface pressure of 1000 mb, the total 
weight of air and water involved in the circulation is about 3 x 10" to 1 x 10 12  t 
(3.05 x 10 6' to 1.016 x 10 15  kg). However, another storm with a radius of 1000 km but 
with the same average surface pressure of 1000 mb will have a weight of about 5 x 1012 
to 3 x 10 D  t (5.8 x 10 15  to 3.05 x 1016 kg ).  By comparison, in an ordinary midlatitude 
cyclone, the weight involved is about 5 x 10 12  to 1 x 10" t (5.8 x 10 15  to 1.016 X 10' 6  
kg). 

When the tropical cyclone hits land, usually its core size decreases and sometimes the 
storm dissipates within 1-2 d. Storms can dissipate even over the ocean if they travel  over 

 cold ocean currents (e.g. Northeast Pacific Ocean). Many cyclones recurve (both over land 
and ocean) into the westerlies and travel towards northeast or east (in the Northern 

 Hemisphere). 

SOME CHARACTERISTICS OF TROPICAL CYCLONES 

Riehl (1979) offered the following classification of tropical cyclones. (A) Tropical 
depression: at most, winds barely acquire gale force in one quadrant. (B) Tropical storm: 
winds acquire gale force but less than hurricane force of 64 knots (119 km •1-1 - ' or 
74 mi • IC I ). (C) Minimal hurricane: winds above 64 knots only in one quadrant. (D) 
Moderate hurricane: winds of 80-90 knots (148-167 km •11 -1 ) around the center, with 
the maximum wind being around 100 knots (185 km • IC' ) or more. (E) Severe hurricane: 
maximum winds up to 200 knots (370 km •11 -1 ). 

Tropical cyclone intensity classification is not uniformly used in the various meteoro-
logical services for the various regions of the globe. For example, in the western part of 
the Pacific Ocean, unless the maximum winds are about 150 knots (278 km •1-1 -1 ), a 
typhoon will not be considered severe. 

Riehl (1979) mentioned that the word "hurricane" means "big wind" in the Taino 
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language. In the Pacific Ocean, tropical cyclones are referred to as "typhoons," as 
"willy-willy" in Australia, and "baguio" in the Philippines. 

Next, some characteristics of tropical cyclones will be briefly examined with respect 
to their surface pressure, winds, and thermal structure. Since ordinarily, surface pressure 
varies only by about 3 mb (0.3%) in the tropics whereas pressure varies 5-10% below 
average sea level pressure during tropical cyclones, a useful tool for analysis is the sea 
level isobar field. Gradients of 0.5-2 mb km-I  can occur. 

When the tropical cyclone is over an ocean, the increase of wind with height usually 
occurs in the first 100 m. Above that it increases slowly to about the 300-m level where 
the winds probably attain maximum values. For Hurricane Eloise of 1977 the wind speed 
at the 100-m level was 20  ms;  from 200 to  500m  it was 22 m • s -1 . Then it decreased 
to 14 m.sH  at 1200 m. Usually, the wind at  50m  is about three quarters the geostropic 
wind speed (Riehl 1979). 

In hurricanes, in the inner 80-km core, winds up to 45 m • s' can occur. Winds are 
greater on the right side because here the carrying current and the circulation are in the 
same direction whereas to the left they oppose each other. One of the safest ways to 
identify tropical cyclones is to look for this asymmetry in the surface wind field. For 
convenience, one may think of the following four quadrants around the center: right front, 
right rear, left front, and left rear. Inward spiraling of streamlines is pronounced in the rear 
quadrants. Here, the radial component of the motion is strongest. 

Riehl (1979) gave the following relationship between pressure and wind fields in a 
tropical cyclone (this was derived empirically based on 28 yr of Pacific typhoon data): 

(6.36) 	V„, = 3.35(1010 — per.644  

where V„, is the maximum wind (metres per second) and P.  is the central pressure 
(millibars). 

The theory of vortex flows shows that in the center of every revolving vortex, there 
is a singular point. In a tropical cyclone this center is referred to as the eye, near which 
the circulation is weak. At the edge of the eye, strong precipitation abruptly stops and the 
sky may clear at least partly. The diameter of the eye in a mature hurricane ranges from 
30 to 50 km and probably twice this value in a severe typhoon. The eye need not be circular 
and sometimes it is diffuse and has a double structure. 

Riehl (1979) mentioned that one of the earliest controversies about tropical cyclones 
concerned their vertical extent. Estimates varied from 3 to 10 km or greater. According 
to Haurwitz (1935) the tropical cyclone extends through the troposphere, and high level 
observations substantiated this idea. However, a surprising result revealed from 
Rawinsonde data was that the circulation at higher levels is opposite to that at lower levels. 
This changeover level is at about 300 mb. 

As expected, the air inside a tropical cyclone is less dense than its surroundings. For 
Hurricane Daisy of 1958 near Florida, in the mature stage, the surface pressure in the eye 
was 950 mb and the maximum wind was 50 m s - I . Hurricane Daisy is considered to be 
a hurricane of moderate intensity, and even in this case more than half the temperature 
gradient needed for its existence was internally generated. Riehl (1979) maintained that 
this is the main reason why intense hurricanes occur rarely. In contrast, in extratropical 
cyclones, the cyclone grows at the expense of the potential energy in a preexisting 
temperature field, which becomes pronounced. On the other hand, in a tropical cyclone, 
the cyclone itself must generate most of the required temperature gradient. 

Riehl (1979) suggested that a hurricane may be regarded as a rankine vortex with a 
velocity profile defined by vo /r = constant in the inner core of maximum winds and 
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vo r = constant in the outer core. Here, r is the radial coordinate and vo  is the azimuthal 
velocity. The outer core can be defined as 

(6.37) 	vex = constant, 	0.4 x 	0.6 

In the outer core, with increasing distance from the center, v o  tends to zero. 

MOMENTUM AND ENERGY BUDGETS FOR TROPICAL CYCLONES 

Following Riehl (1979), the energy and momentum budgets for hurricanes will be 
considered. In polar coordinates, the equations of horizontal motion with the neglect of 
lateral friction are 

dvo 	VO Vr 	 1 ap I  aToz —
dt 

+ —
r + fvr  --p —ra0 + —p —az 

(6.38) 

Here, Vr  and vo  are the radial and azimuthal velocities, respectively. After certain algebra 
involving these two equations, it can be shown that 

, 	
--) 

	

° 
d 	fr2 	df 	1 an 	r aToz 

	

(6.39) — 	(V r — 	— 	= — — — -r — — 

	

dt 	2 	2 dt 	p 	p az 

The component of the earth's angular momentum (per unit mass) about the vertical axis 
of the tropical cyclone is 

fr 2 

	

(6.40) a 	= vo r + 	= constant 

For symmetrical storms, eq. 6.40 is a good representation in the upper troposphere. If 
eq. 6.39 is integrated over the entire volume in the storm, by definition the pressure term 
will disappear, but the frictional term will not because of transfer of momentum from the 
atmosphere to the ocean. To compute the momentum budget, integrate eq. 6.37 over the 
volume of the storm to obtain expressions for the transport F 0  (radial) at any radius and 
F0  (vertical) between two radii. These are 

v o v r dp + —2 f v,dp 
fr Pl 

P2 	 P2 

r2 

(6.42) F0 (vertical) = — —21T ir 	r2dr + 	in(er2dr + —2 

where 

(1) -= dpldt 

The surface transport to the ocean is given by 

(6.43) 	En (surface) = 21-r f
2 
 T0 , 0 r 2 dr 

r 

where To•0  is the stress at the ship's deck level (or anemometer level). 
In eq. 6.41 the first term represents the transport by the mean ageostrophic circulation 

13;-, the second term denotes the deviation from symmetry when one goes round the 

dv, _v 20 	 1 Ôp _,_ 
dt 	r fv°  — p ar  ' —p az 
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TABLE 6.6. Transports through I °  radius (10 n  kJ • s -  ) showing the radial energy 
balance in two different hurricanes. (Riehl 1979) 

(6.44) 

Parameter 
Hurricane Daisy 

(1960) 
Hurricane Helene 

(1951) 

Net latent heat inflow 
Flux of latent and sensible 

heat from the sea 
Import of kinetic energy 
Total energy source 
Less net export of (CpT + gz) 
Balance for radiation cooling 

+34.1 	 +31.9 

+6.2 
+0.2 
38.3 

—37.4 
0.9 

+3.4 
+0.4 
37.9 

—36.9 
1.0 

perimeter, and the third term is the influence due to the earth's rotation, assuming the 
Coriolis parameter to be constant. 

One can regard the atmosphere, and particularly a tropical cyclone, in the present 
situation as a thermal engine for which the efficiency (of converting heat to mechanical 
energy) is defined as the ratio of the mechanical energy produced to the heat released. For 
an average hurricane, the kinetic energy produced was estimated by Riehl (1979) as 15 x 
10 18  ergs • s or 0.36 x 10' kW-h • (1 - ` (1 erg = 0.1 pJ, 1 kW-h = 3.6 MJ). The latent 

12 heat released was 13.3 x 10  kW-h • d-  . Thus, the efficiency E is 3%. This is very low 
but is somewhat higher than for extratropical cyclones and the general circulation of the 
atmosphere. Hence, weather systems and the atmosphere are very inefficient heat engines. 
This low value of efficiency for the tropical cyclones indicates that the mechanism for 
energy release is in the central area with local oceanic heat source and not in the advection 
of large masses of water vapor into the system from outside. 

The balance of radial energy for Hurricanes Helen of 1951 and Daisy of 1960 is 
shown in Table 6.6. Concerning oceanic input of energy, Gray (1978a) provided the 
following analysis. In the tropical cyclone, moist static energy h can increase or decrease 
through latent and sensible heat exchange with the ocean Es  through radiation R and 
through horizontal transport through the boundaries V • Vh. One can write for this energy 
balance 

ah — Es  +R—V•Vh at 
where 

(6.45) h = gz + Cp T + Lq 

Note that all these terms have been integrated through the thickness of the troposphere. 
For the inner 4° radius of tropical storms, Es  + R is slightly positive for weak 

disturbances, but for hurricanes it is highly positive because strong input of energy takes 
place from the ocean. The vertical circulations in a tropical cyclone will act as an energy 
sink dissipating the system and the main energy source is the ocean. For this reason, many 
tropical systems weaken or dissipate once they are not traveling over the ocean. 

MODELING OF HURRICANE FORMATION AND INTENSIFICATION 

According to Gray (1978a, 1978b) little effort has gone into numerically modeling 
tropical cyclogenesis. Ooyama (1964), Charney and Eliassen (1964), Ogura (1964), Kuo 
(1965), and several later authors modeled the intensification of hurricanes. The low level 
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Average 900-mb 
Radius of maximum 	tangential wind 	Mean relative 

tangential wind 	about disturbance 	vorticity inside the 
about the 	 center at radius 	radius of maximum 

disturbance 	of maximum wind 	tangential wind 
(km) 	 (ms) 	 (10-6 .s - ') Weather system 

TABLE 6.7. Comparison of observed western Pacific disturbances with regard to their average maximum 
tangential wind, 900-mb tangential wind, and relative vorticity. (Zehr 1976) 

Typical tropical disturbance 
(summer) 	 —400 	 1.6 	 8 

Average tropical disturbance 
(all seasons) 	 —500 	 2.5 	 10 

Precyclone disturbance in 
early intensificaiton stage 	 —400 	 5.3 	 26 

Intensifying cyclone 	 —200 	 10.1 	 107 
Mean assumed initial vortex 

of modelers 	 172 	 12.2 	 142 

'Based on the numerical models listed in Table 6.8 excluding Carrier (1971) model. 

TABLE 6.8. Some numerical modeling papers on tropical cyclone intensification and their assumed initial 
lower tropospheric cyclone strength. (Gray 1978a) 

Assumed initial 	 Vortex vorticity 
maximum wind velocity 	inside the radius 
(m• s - ') and radius (km) 	of maximum winds 	Type of 

Modelers 	 of maximum wind 	 (10-6 .s- ') 	 vortex 

Kuo (1965) 	 10 	 141 	 142 	 Symmetrical 
Yamasaki (1968) 	 4.7 	100 	 94 	 Symmetrical 
Ooyama (1969) 	 10 	 50 	 400 	 Symmetrical 
Miller (1969) 	 10 	 200 	 100 	 Real vortex 
Rosenthal (1970) 	 7 	 250 	 56 	 Symmetrical 
Sundqvist (1970a, 1970b) 	15 	 200 	 150 	 Symmetrical 
Carrier (1971) 	 21 	 50 	 840 	 Symmetrical 
Anthes et al. (1971a, 1971b) 	18 	 240 	 150 	 Asymmetrical 
Anthes (1972) 	 18 	 240 	 150 	 Asymmetrical 
Mathur (1972) 	 15 	 200 	 150 	 Asymmetrical 
Harrison (1973) 	 —10 	—120' 	 —170 	 Asymmetrical 
Kurihara and Tuleya (1974) 	12 	 200 	 120 	 Symmetrical 
Ceselski (1974) 	 17 	—100-150 	 —200 	 Real vortex 
Kurihara and Tuleya (1974) 	12 	 200 	 120 	 Symmetrical 
Anthes (1977) 	 18 	 240 	 150 	 Symmetrical 
Rosenthal (1978) 	 7.2 	220 	 65 	 Symmetrical 

NOTE: Typical precyclone cloud cluster vorticity is 10 x 10' to 15 x 
'Estimated from initial height field. 

winds for different classes of tropical disturbances, as deduced from Rawinsonde com-
posite studies, are shown in Table 6.7. These winds are much smaller than the initial 
cyclone strength assumed by numerical modelers, as summarized in Table 6.8. According 
to Gray (1978a, 1978b, 1978c, 1978d) the transformation of a disturbance to a cyclone 
has yet to be realistically modeled. 

Gray (1978a, 1978b, 1978c, 1978d) classified the disturbance stages and gave esti-
mates of central pressure and maximum sustained surface winds. These are shown in Table 
6.9. Even in a stage 6 cyclone (i.e. typhoon) approximately 50% of the mass inflow at 40  
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TABLE 6.9. Tropical disturbance classification stages and surface pressure and wind esti-
mates at these various stages; two classes of nonintensifying disturbance and six stages of 
disturbance-to-cyclone intensification are shown. (Gray 1978a) 

Estimated minimum 	Estimate of maximum 
sea level pressure 	sustained surface winds 

Disturbance classification 	Stage 	(mb) 	 (m • s - ' ) 

General class of nondeveloping 
disturbances 	 0 	1008 	 8 

Nondeveloping disturbances of 
summer in cyclone genesis 
region 	 00 	1008 	 8 

Initial cluster 	 1 	1007 	 8 
Pretyphoon cluster 	 2 	1005 	 10 
Genesis 	 3 	1003 	 12 
Intensifying 	 4 	1000 	 18 
Tropical storm (980-1000 mb) 	5 	 990 	 25 
Typhoon (950-980 mb) 	 6 	 965 	 40 

radius takes place above the 900-mb layer. Hence, there is significantly more mass inflow 
than can be accounted for by boundary layer processes. In fact, mass convergence could 
occur in a layer as high as 400 mb. 

Ooyama (1964) and Charney and Eliasen (1964) introduced the concept of 
"conditional instability of the second kind" (CISK). This theory can account for the 
processes in the inner core region of already developed cyclones but may be deficient as 
a general theory. Regarding the use of this theory and numerical modeling of cy-
clonegenesis, Gray (1978a, p. 189) stated that the numerical models avoided the most 
important question, i.e. how the deep tropical cyclone (from which integrations are made) 
itself has formed. Also, in the numerical models, unrealistically great cyclone strengths 
and vertical dimensions are assumed, and they have not incorporated the eddy processes 
in the large outer radius. For a recent review on numerical models for hurricanes, see Baer 
(1979). Presently available hurricane models and their features are summarized in Table 
6.10. 

MOVEMENT OF TROPICAL CYCLONES: PREDICTION AND MODELING 

Several different techniques are being used for predicting the tracks of tropical 
cyclones: empirical, statistical, and dynamical. Empirical techniques will be considered 
first. According to Hebert (1979), these may be further classified into three categories: (a) 
persistence and climatology, (b) synoptic, and (c) satellite. These techniques can be used 
for prediction of the hurricane track for 12-24 h in advance. Any extrapolation beyond 
24 h will result in large errors, except possibly in the deep easterlies of the tropics. 

In the persistence technique, one simply extrapolates linearly the last track, assuming 
uniform speed and no change of direction. One can use a higher order persistence forecast 
by allowing for variation of speed of movement and direction of the hurricane in the past 
12-24 h. The simplicity of this technique is its chief advantage. It is obvious that errors 
could occur if the persistence assumption does not hold. 

In a climatological forecast one makes use of the knowledge of the temporal and 
spatial frequency of past hurricanes in given grid areas (e.g. 2.5° latitude—longitude 
squares and time scales up to 5 d). This method works well when the frequency of 
occurrence is great. It fails with increasing latitude (due to recurvature) as well as for 
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TABLE 6.10. List of hurricane models. PE, primitive equations; BAL, balance equation; PBL, planetary boundary layer. Serial Nos.: 1, Kasahara 1961; 2, Rosenthal 
1964; 3, Charney and Eliassen 1964; 4, Ogura 1964; 5, Kuo 1965; 6, Yarnasaki 1968; 7, Ooyama 1969; 8, Sundqvist 1970a; 9, Sundqvist 1970b; 10, Rosenthal 1970; 
11, Yamasaki 1977; 12, Anthes 1977; 13, Rosenthal 1978; 14, Anthes 1972; 15, Miller et al. 1972; 16, Harrison 1973; 17, Kurihara and Tuleya 1974; 18, Mathur 1974; 
19, Madala and Paiesek 1975; 20, Ley and Elsberry 1976; 21, Jones 1977. (Baer 1979) 

Serial No. 
Convective 	Moisture 

System 	parameterization 	prediction Vertical structure Grid 	 Additional features 

Symmetric models 

1 	 PE 	 No 	 No 	50-mb levels 	 Regular 
2 	 PE 	 No 	 No 	550-mb levels 	 Coarse 
3 	 BAL 	 Yes 	 No 	 Linear solution 
4 	 BAL 	 Yes 	 No 	 2 levels 	 Fine 
5 	 BAL 	 Yes 	 Yes 	 2 levels 	 Variable 
6 	 PE 	 Yes 	 No 	 13 layers 	 Expanding 
7 	 BAL 	 Yes 	 No 	Incompressible layers 	Fine 

8, 9 	 BAL 	 Yes 	 Yes 	100-mb levels 	 Regular 
10 	 PE 	 Yes 	 Yes 	 7 levels 	 Regular—fine 
11 	 PE and 

nonhydrostatic 	 No 	 Yes 	25 layers variable 	 Ultrafine 
12 	 PE 	 Yes 	 Yes 	 4 layers Œ-coordinates 	Variable coarse 
13 	 PE 	 No 	 Yes and liquid 

water prediction 	12 layers cr-coordinates 	Expanding 

Three-dimensional models 

14 	 PE 	 Yes 	 Yes 	 3 levels 	 Staggered 
15 	 PE 	 Yes 	 Yes 	 6 layers 	 Coarse 	 Real initial conditions 
16 	 PE 	 No 	 No 	 3 layers 	 Nested 	 Simulated forcing 
17 	 PE 	 Yes 	 Yes 	11 layers 	 Variable 
18 	 PE 	 Yes 	 Yes 	 3 layers and PBL 	 Nested 	 Real initial conditions 
19 	 PE 	 Yes 	 No 	 3 layers 	 Expanding 	P-plane 
20 	 PE 	 No 	 No 	 3 levels 	 Multinested 	Real initial conditions 
21 	 PE 	 Yes 	 Yes 	 3 levels 	 Multinested, 
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untypical situations. Other times when it fails is when a bimodal structure is present. 
In the persistence plus climatology forecasts (Bell 1962; Aoki 1979) one uses the 

formula tip + m C where p and C represent the persistence and climatology, respectively, 
and n and ni are weighting factors. Usually, n = in = 0.5 is used. Amadore (1972) gave 
different weightings to get latitude and longitude components separately for the tropical 
cyclones east of the Philippines. However, according to Hebert (1979), similar attempts 
for the South China Sea region did not significantly improve the results. 

In the synoptic technique, the main assumption is that the air mass in which the 
tropical cyclone is embedded is homogeneous. In the surface geostrophic steering method, 
the zonal (east—west) and the meridional (north—south) components of the hurricane 
movement are determined by estimating (from the synoptic charts) the pressure gradient 
(millibars per degree of latitude) across the storm. Since the surrounding air mass is not 
uniform, one must _apply a correction to the pressure gradient to account for the non-
homogeneity. The main advantage of this technique lies in the fact that almost all forecast 
centers have surface pressure analysis charts. 

In the control point method (Chin 1970), which has been in use for several years at 
the Hong Kong Observatory, one makes use of the observed high correlation between the 
wind direction at certain locations in the midtroposphere and the direction of movement 
of the tropical cyclone. The disadvantage is that in areas of sparse data, midtropospheric 
analyses might be difficult to make. 

In predicting the movement of cyclones, one should also consider the so-called 
Fujiwhara effect (Fujiwhara 1921) in which two vortices close to each other will rotate 
about a common point located on the line joining their centers. 

Next, satellite techniques, which are playing an ever increasing role in the prediction 
of the tracks of cyclones, will be considered. The basic principle is to relate past changes 
in cloud features to future changes in the direction of motion. 

Fett and Brand (1975) used six identifiable cloud patterns and extrapolated the 
rotation of one or more of these patterns during the previous 24 h to calculate the change 
in the motion direction for the next 24 h. In making this extrapolation, an analogy of the 
relationship of the turning of a tropical cyclone to its hyperbolic point was used. 

The method that is occasionally used in the Australian Bureau of Meteorology was 
developed by Lajoie and Nicholls (1974). From available satellite pictures, they identify 
certain cloud features and based on these, extrapolation is made for the next 12 h regarding 
the change of direction of motion of the cyclone. The two main principles involved are 
as follows: tropical cyclones frequently move in the direction of the line connecting their 
centers to the most developed cumulonimbus cluster at or near the downstream end (i.e. 
in a cyclonic direction of the inflow current) of the outer cloud band and tropical cyclones 
usually do not move towards a cumulonimbus-free sector. 

The advantage of the satellite techniques is that they can be used in regions where 
conventional data are sparse. The disadvantages are difficulty in obtaining good satellite 
pictures and the subjectivity involved in interpreting them. Nevertheless, certain simple 
concepts are useful in the prediction of the tracks. For example, Ramage (1973) noted the 
extent of cloudiness along the track of a tropical cyclone. In Japan, substantial obser-
vations exist to show that the successive positions of the spiral cloud band correlate well 
with the movement of recurving typhoons. 

Cyclones moving towards the west sometimes recurve towards northeast after inter-
action with upper air troughs in the westerlies. Chan (1978), based on a study of recurring 
typhoons in the western part of the North Pacific Ocean, suggested that the following two 
parameters, which can be determined from satellite imagery, can be used to estimate the 
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recurvature: D/d, where D is the diameter of the central dense overcast of the topical 
cyclone and dis the average width of the cloud band associated with the interacting trough, 
and 0, which is the angle between the axis of the cloud band and the latitude of the tropical 
cyclone center. If 30° 5_ 0 5_ 40° and Did< 1.5, then it is highly probable that a tropical 
cyclone will recurve. 

STATISTICAL TECHNIQUES OF TRACK PREDICTION 

Following Neumann (1979), statistical models will be discussed. These are broadly 
divided into two categories: models based on analogs and models based on regression 
equations. Regression equation models can be further classified into (i) models using 
predictors based on climatology and persistence, (ii) models that include, but are not 
limited to, predictors derived from observed synoptic data, and (iii) models that include, 
but are not limited to, predictors derived from numerically forecasted data. Models of type 
(i) are referred to as simulated analog, models of type (ii) are referred to as classical models 
(or statistico-synoptic), and models of type (iii) are called statistical —dynamical models. 

Neumann (1969) developed an operational model for predicting the movement of 
hurricanes using analog methods. This model was extended by Hope and Neumann (1969, 
1970) for a 72-h prediction based at the National Hurricane Center in Miami. This model 
is known by its acronym HURRAN (for hurricane analog) and has been in use since the 
1969 hurricane season. 

The basic principle involved in these models is the recognition of the fact that 
temporal and spatial analyses of tracks reveal repetitiveness and close association with 
identifiable synoptic patterns. Hodge and McKay (1970) developed an analog prediction 
model for the North Pacific typhoons. This model, referred to as TYFOON, was modified 
by Jarrell and Somervell (1970) and has been in operation since August 1970 at the Fleet 
Numerical Weather Center/Joint Typhoon Warning Center in Guam. Simpson (1971) 
attributed the moderate success of models HURRAN and TYFOON to the presentation of 
the predictions in terms of probability ellipses, which provide significant diagnostic 
information. Other similar models were those of Gupta and Datta (1971) and Sikka and 
Suryanarayana (1972) for the North Indian Ocean, Jarrell and Wagoner (1973) for the 
North Pacific, Brand et al. (1974) for the Southwest Indian Ocean, Jarrell et al. (1975) for 
the northeastern Pacific, Brand and Blelloch (1976) for the southwestern Pacific and 
Australia, Annette (1976) for Australia (the CYCLOGUE model), Neumann and 
Randrianarison (1976) for the Malagasy Republic, and Chen et al. (1977) for China (an 
adaptation of HURRAN). 

The advantage of the analog method is that it is usually the first available forecast for 
the tracks. Its disadvantage is that it works well only for typical situations. Next, the 
regression methods will be considered. Riehl (1956) gave the first objective technique for 
predicting the movement of tropical cyclones. In this method, known as the 
Riehl —Haggard technique, one makes use of the steering principle, namely that the 
tropical cylone's movement speed is proportional to the speed of the vertically integrated 
flow surrounding the vortex. The 500-mb level was used for approximating this flow. This 
technique was originally used for the Atlantic hurricanes. Wang (1954, 1956, 1960) 
developed regression equations for typhoon motion over 24 h based on predictors at the 
700-mb level. Miller and Moore (1960) used the 700-mb level for the Atlantic hurricanes. 
Arakawa (1963) and Tse (1966) developed models for the Pacific Ocean and Kumar and 
Prasad (1973) developed models for the North Indian Ocean. 

Veigas et al. (1959) used stepwise screening regression methods and used predictors 
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FIG. 6.9. Locations of the 8 x 15 grid for a hurricane centered at 35°N, 70°W with a grid spacing of 556 km. 
The grid moves with the storm. (Neumann 1979) 

from a larger area rather than using a small area in the vicinity of the storm. This original 
model, known as T-59, was modified to T-60 by Veigas (1961, 1962). These models are 
not very sensitive to the initial analyses near the storm, and they are operationally used 
in Hong Kong (Chin 1976). 

Miller and Chase (1966) combined the best features of the Riehl— Haggard method 
and the Miller—Moore method into a single model. This National Hurricane Center model 
(NHC64) uses predictors from the 700- and 500-mb levels and provides forecasts up to 
72 h. Also, this model uses the objective forecasts of the National Meteorological Center 
for the 1000-, 700-, and 500-mb levels and removes the drudgery of hand analyses. Miller 
et al. (1968) revised the NHC64 model into NHC67, which is presently in operation at the 
National Hurricane Center in Miami. Other models that deserve mention are CLIPER (for 
climate and persistence) for the Atlantic by Neumann (1972), a model for the South Indian 
Ocean by Neumann and Randrianarison (1976), a model for the North Indian Ocean by 
Neumann and Mandal (1978), and a model for the eastern North Pacific by Neumann and 
Leftwich (1977). 

The NHC72 model incorporates the best features of the analog and regression models 
(Neumann et al. 1972). The NHC67 and NHC72 models did not work well for untypical 
Atlantic hurricanes in the early 1970's. Hence, statistical—dynamical models (which use 
the output of a numerical mode as input to a statistical model) were developed (e.g. Veigas 
1966). Neumann and Lawrence (1975) developed the NHC73 model using predictors from 
the 24-, 36-, and 48-h 500-mb geopotential height field forecasts. Other models are 
HATRACK (Renard 1968) and MOHATT (Renard et al. 1973). 
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The synoptic data predictors that are used for these models are generally screened 
from a great number of predictors given by storm-centered moving grids. A grid that has 
been used for Atlantic hurricanes is shown in Fig. 6.9. 

DYNAMICAL METHODS FOR PREDICTING HURRICANE MOVEMENT 

Following Pelissier (1979), the numerical models that were developed for predicting 
hurricane motion will be considered. The numerical modeling effort has been slow until 
the 1970's principally because tropical storms mainly occur over the data-sparse areas of 
the tropical oceans, and it is difficult to provide the initial state of the atmosphere. From 
a grid resolution point, the scale of the intense part of the tropical cyclone is small 
compared with the synoptic weather disturbances. Generally, prediction of the tracks of 
tropical cyclones is more successful than prediction of the intensification because the 
movement of the storm is mainly related to the steering current in which the storm is 
embedded. 

Sanders and Burpee (1968) originally developed a barotropic model, referred to as 
SANBAR, which was modified by Pike (1972). In this model the tropical cyclone track 
is predicted based on the track of minimum stream function and maximum vorticity 
centers. On a Mercator projection using a grid size of 1.5 0  and extending from the equator 
to 55°N and from 36.5°W to 123.5°W and using a time step of 30 min, forecasts are made 
up to 72 h in advance. The initial observations are averaged over the 1000- to 100-mb 
layer. 

After specifying the initial winds, the nondivergent part of the wind field is calculated 
through a relaxation of the stream function qi in the interior of the grid using the relation 

(6.46) V21 
	—

a v — —a u + 
u tan (latitude) 

ax ay 

(6.48) 	vo  = 0.72 vmax  {sin  L  LIT ( 2.-)1 (1" ,  
In0.5 )11.5 

where vo  is the symmetric tangential wind field. 
The Japan Meteorological Agency developed a balanced barotropic model for ty-

phoon track prediction northward of 20°N using a 51 X 15 grid with a mesh length of 
381 km at 60°N. At least three types of systematic errors appear: forecast positions for low 
latitude storms are occasionally poor due to a westward bias in the predicted tracks, the 
predicted speed of movement is usually smaller than observed values, and the predicted 
recurvature is usually less than the observed recurvature. 

In this model the initial stream function 4; is determined from the geopotential by 

RE 

where u and v are the eastward and northward components, respectively, of the hurricane 
motion and RE is the radius of the earth. One must specify the component of the wind 
parallel to the boundaries. Then, using the barotropic vorticity equation 

alp 
(6.47) (V' — M) —

at 

= J(f + 

one can determine  4i  where J is the Jacobian, V' is the horizontal Laplacian, and M is the 
Helmholtz coefficient. 

One can identify the storm center with a local minimum in qi or a maximum in V 2 111 
(or as an average between these two positions). Usually, the storm is replaced by an 
idealized circularly symmetric vortex defined by 
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TABLE 6.11. Frequency distribution of direction using the 
balanced barotropic model. The angular intervals listed are 
the ranges of absolute differences between predicted and 
observed directions of displacement. Data listed under 24- 
and 48-h forecast periods are the number of typhoons that 
exhibited these directional deviations. (Pelissier 1979) 

Angular interval 	24-h forecast 	48-h forecast 
(degrees) 	 period 	 period 

0-5 	 10 	 8 
6-10 	 12 	 7 

11-20 	 13 	 9 
21-30 	 5 	 10 
31-45 	 7 	 3 

45 	 7 	 7 

TABLE 6.12. Same as Table 6.11, except this is for east-
ward moving typhoons. (Pelissier 1979) 

Angular interval 	24-h forecast 	48-h forecast 
(degrees) 	 period 	 period 

0-5 	 11 	 15 
6-10 	 14 	 8 

11-20 	 16 	 10 
21 — 30 	 10 . 	 4 
31-45 	 5 	 8 

45 	 3 	 5 

TABLE 6.13. Errors in predicted speed of movement relative to recurvature point. Overrun 
No. indicates number of typhoons that moved slower than the forecast. R, actual typhoon 
displacement; F, prediction by the balanced barotropic model. (Pelissier 1979) 

24-h forecast period 	 48-h forecast period 

	

IR — 	 IR — F 
Total 	Overrun 	 Total 	Overrun 

Typhoon position 	No. 	No. 	R 	No. 	No. 

Before recurvature 	42 	16 	0.406 	38 	14 	0.341 
Near recurvature 	45 	13 	0.334 	34 	12 	0.498 
After recurvature 	20 	0 	0.340 	9 	0 	0.379 
Total (mean) 	107 	29 	(0.381) 	81 	26 	(0.401) 

solving the balance equation 

(6.49) 	V • (f Vqi) + 2 
m241 (9 241  
	 = v2 

ax 2 ay
2 
 ax ay  

where 4. is the geopotential and f is the Coriolis parameter. Using Arakawa's (1966) 
finite-difference schemes, the equation is integrated in time. Based on the data at  00:00  
and 12:00  GMT, forecasts are issued for 48 h in advance, twice daily. 

The frequency distribution of direction errors for westward moving typhoons is 
shown in Table 6.11. In this table, the first row contains the ranges of absolute differences 
between observed and predicted directions of displacements. One can see that there is no 
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directional bias in the forecast. The frequency distribution of the direction errors for 
eastward moving typhoons is shown in Table 6.12. The errors in the forecast speed of the 
the hurricane are classified in Table 6.13 according to the location relative to the point of 
recurvature. The term "overrun" means the number of typhoons that moved slower than 
predicted. Usually, this happens before recurvature but never afterwards. 

A primitive equation model is considered next. The Fleet Numerical Weather Center 
(FNWC) at Monterey, ÇA, and the Joint Typhoon Warning Center (JTWC) at Guam use 
a primitive equation model referred to as the coarse mesh grid model (CMG), which is a 
simplified version of a more elaborate triple-nested grid model (Hinsman 1977). The 
primitive equations are expressed in the pressure coordinates as follows: 

ad) 	aT 	aTrx  
(6.50) —a u — L(u) + f v — M + x  + ar 	 ax 	ax 	ay  

ay a(1) 	aTxy 	aTy,  
(6.51) — — L(v) — f u — M 	+ 	• ar 	 ay 	+ ax 	ay 

a0 (6.52) —

a t 

= —L(0) 

a 41)1000 
(6.53) 	= 	L(4■ 10oo) ar 

-APP- (1.1-) + (2-)] ap 	ax M ay M 

a(I) 	a 	p  \ RICp 

(6.55) 	= (I)CP ap 
(

1000) 

where 

(6.56) L(S) = M 2[1- 	+ 	(—vs )] + 	(ws ) 
ax M 	ay M 	ap 

The region of computation is like a channel with cyclic boundary conditions in the 
east and west and free-slip conditions on the north and south walls. In the vertical there 
are three layers. A movable grid is placed over the tropical cyclone so that initially the 
storm is in the lower central portion of the grid, which covers a span of 56° of longitude 
and 48° of latitude, with a mesh interval of 2°. An objective analysis of the flow fields at 
the 850-, 700-, and 200-mb levels, as well as the temperature at the 850-mb level, serve 
as input. Using a time step of 10 min, the model is integrated in time. The errors in the 
predicted track for the western and eastern Pacific are shown separately and together in 
Table 6.14. The errors are in kilometres and the numbers in parentheses are the cases 
studied. 

At the National Meteorological Center, a multilevel nested grid model was developed 
(Hovermale and Livezey 1978). This is referred to as the moving fine mesh (MFM) model. 
This model appears to be unique in the sense that a nested high-resolution grid centered 
over the tropical cyclone moves during the numerical integration through a coarse outer 
grid. The error analysis for the forecasts based on this model is given in Table 6.15 and 
comparison is made with the errors from other models. For a review of the forecast errors 
using barotropic models, see Sanders et al. (1978). Hope and Neumann (1978) provided 
a survey of tropical cyclone models available worldwide. Elsberry (1979) summarized the 
three-dimensional models that are available for hurricane track prediction. In his survey 

(6.54) 
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TABLE 6.14. Average forecast errors (km) for 1976 for the U.S. Navy 
primitive equation tropical cyclone prediction model (CMG). Number of 
cases in parentheses. (Pelissier 1979) 

24-h forecast 	48-h forecast 	72-h forecast 
period 	period 	 period Area 

Western Pacific 
Eastern Pacific 
Both together 

	

287 (65) 	480 (57) 	693 (43) 

	

263 (18) 	387 (15) 	724 (15) 

	

283 (81) 	461 (72) 	702 (58) 

TABLE 6.15. Mean vector errors (km) of the MFM, official forecasts, and other operational 
objective techniques based on statistical, climatological, and persistence methods (homogeneous 
sample) for Hurricane Belle of August 7-8, 1976. MFM, movable fine mesh; NHC, National 
Hurricane Center; NHC-67, National Hurricane Center's 1967 model. For a description of 
SANBAR and CLIPER, see text. (Hovermale and Livezey 1978) 

Forecast period 
(h) 	MFM Official NEC-67  NHC-72  NEC-73  SANBAR CLIPER 

12 	124 	87 	67 	72 	67 	86 	76 
24 	213 	185 	200 	226 	152 	228 	204 
36 	215 	— 	241 	365 	270 	426 	454 
48 	280 	404 	311 	507 	369 	644 	748 

TABLE 6.16. Characteristics of several baroclinic models being applied for prediction of tropical cyclone 
motion based on operational data. NMC, National Meteorological Center (U.S.A.); MFM, movable fine mesh; 
FNWC, Fleet Numerical Weather Center (Monterey, CA); TCM, tropical cyclone model; NRL, Naval Research 
Laboratory; NEPRF, Naval Environmental Prediction Research Facility; PSU, Pennsylvania State University; 
NPS, Naval Post Graduate School (Monterey, CA); JMA, Japan Meteorological Agency; MNG, multiple-nested 
grid. (Elsberry 1979) 

Lateral 
Vertical 	No. of 	Grid size 	No. of 	Relocatable 	boundary 

Agency-model 	coordinate 	layers 	(km) 	points 	grid 	conditions' 

NMC-MFM 	cc 	 10 	60 	50x50 	Yes 	OW 
FNWC-TCM 	P 	 3 	205 	32 x 24 	No 	 OW 
NRL-NEPRF 	a 	 5 	60 	51x51 	No 	 OW 
PSU-NPS 	 a 	 5 	120 	40 X 40 	No 	 OW 
JMA-MNG 	cc 	3 	291 	31 x 31 	No 	 OW 

145 	31 x 31 	Yes 	 TW 
73 	31 x 31 	Yes 	 TW 
36 	31 x 31 	Yes 	 TW 

'OW, one-way interaction; TW, two-way interaction. 

he omitted the barotropic models. Since it is almost certain that all future forecasts will 
be made with baroclinic models, these three-dimensional models will be briefly reviewed. 

The features of some of the baroclinic models presently available are listed in Table 
6.16. These models (except the FNWC—TCM) are capable of resolving the inner structure 
of the tropical cyclone. Although a 60-km grid such as that used by the NMC and 
NRL—NEPRF models can resolve the primary interaction between the vortex and the 
steering current, to predict intensification the inner core of the typhoon must be resolved. 
Since it is impractical to cover the whole region of the typhoon with a fine grid, one can 
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TABLE 6.17. Track error (km) statistics at 24 and 48 h for selected 1977 
typhoons for official (JTWC), NMC-MFM, and FNWC-TCM. JTWC, Joint 
Typhoon Warn ing Center, Guam. (Elsberry 1979) 

Official 	NMC-MFM 	FNWC-TCM 

Typhoon 	24 h 	48 h 	24 h 	48 h 	24 h 	48 h 

Vera-1 	 178 	107 	294 	289 	106 	III   
Ivy 	 226 	472 	109 	248 	— 	— 
Dinah-1 	 181 	778 	356 	559 	152 	285 
Thelma 	 159 	707 	96 	148 	146 	574 
Jean 	 126 	578 	339 	441 	— 	— 
Dinah-2 	 206 	437 	56 	385 	250 	270 
Babe 	 583 	— 	282 	885 	437 	— 
Dinah-3 	 204 	693 	115 	324 	52 	350 
Vera-2 	 300 	444 	254 	181 	143 	52 
Gilda 	 243 	407 	183 	580 	100 	376 
Babe 	 191 	782 	217 	198 	196 	726 

Homogeneous 	250 	544 	206 	333 	176 	343 
Sample (N) 	9 	8 

use a nested grid, the fine grid having a resolution of 10 km. Also, this inner grid must 
be moved with the storm. At present, the JMA model has these capabilities, although the 
inner grid size is 36 km. 

Two types of boundary conditions are presently used in these models. In the one-way 
(OW) type, no feedback is allowed from the tropical cyclone to the hemispherical model. 
Note that the JMA nested grid model has a two-way (TW) interaction boundary condition 
for the inner grids. The statistics at 24 and 48 h for selected 1977 typhoons for official 
(JTWC), NMC—MFM, and FNWC—TCM models are shown in Table 6.17. 

One important data source should be mentioned. The National Climatic Center's 
(Ashville, NC) magnetic tape deck 993 contains 12-h tropical storm movements for all 
ocean basins (Crutcher et al. 1978) for the period 1886-1975, and this file is continually 
being updated. Crutcher (1971a, 1971b) and Crutcher and Quinlan (1971) used the 
bivariate normal elliptical distribution as a model for the statistics of the distributions of 
hurricane movements. Crutcher et al. (1978) deduced tropical storm accelerations based 
on the data contained in this vast file. 

FORECASTING TROPICAL CYCLONE RECURVATURE 

Most of the forecast errors associated with storm track prediction occur when the 
cyclones turn (or recurve). Chan et al. (1980) studied tropical cyclones in the West Indies 
area for the period 1961-77 using compositing. These studies indicated that through an 
observation of certain parameters around a tropical cyclone (e.g. wind rotation, vertical 
wind shear between 200 and 900 mb, or a gradient of tropospheric mean temperature), 
better forecasts for 24-36 h ahead can be made. The basis for this statement is the fact 
that significant differences exist in the large-scale wind fields at 200-, 500-, and 900-mb 
levels for left-turning, straight-moving, and right-turning cyclones. 

This study was limited to those cyclones west of 55°W and with maximum sustained 
winds of at least 18 m • s'. Three categories are defined as follows (Fig. 6.10): 
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Turn classification T — 24 	T 	T + 24 

Left turn (10 cases) 	 235 	289 	206 
Straight (23 cases) 	 148 	169 	196 
Right turn (22 cases) 	 178 	324 	239 
Special right turn (16 cases) 	148 	417 	245 

RIGHT TURN 

	

(....----e---"1----- --1 	I 	I 	LEFT TURN 
I 

I 	 I 

	

I 	 I I 

	

 T 	 I I T-I2 	I 
T-24 

T-36 

FIG. 6.10. Idealized picture of the three turn classes of 
tropical cyclones and of the time periods (hours) prior to the 
turn. (Chan et al. 1980) 

TABLE 6.18. Average 24-h official tropical cyclone track forecast 
errors (km) issued by the National Hurricane Center, Miami. T, 
time when the storm begins to turn. (Chan et al. 1980) 

TABLE 6.19. Directional deviation (degrees) of 
the mean 24-h forecast position made at turn time 
from the mean verifying position and the mean ex-
trapolated track. A positive number means the fore-
cast position is to the right of the verifying position 
of the extrapolated track. (Chan et al. 1980) 

From mean 	From mean 
Turn 	extrapolated 	verifying 

classification 	track 	position 

Left tum 	 21 	 50 
Straight 	 9 	 11 
Right turn 	 2 	 —38 

Left-turning: 	D(T + 12) — D(T) < —200  

(6.57) 	Straight-moving: —10° < D(T + 12) — D(T — 12) 

Right-turning: 	D(T + 12) — D(T) > 200  

where D is the direction of movement of the storm at a standard time T (00:00 or 12:00 
GMT). A total of 16 left-turning, 33 straight-moving, and 28 right-turning storms were 
selected for this study. 

The 24-h forecasts given by the National Hurricane Center were analyzed for each 
case at three time periods: (a) 24 h before turn time, i.e. T — 24, (b) at turn time T, and 
(c) 24 h after turn time, i.e. T + 24. The forecast errors are listed in Table 6.18. The 
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FIG. 6.11. Streamlines (500 mb) for the three turn cases shown in Fig. 6.10, at turn time. Open arrows indicate 
the instantaneous direction of storm motion. Solid arrows indicate the movement of the storm during the 
next 12 h. (Chan et al. 1980) 

1 
T-36 T-24 T-12 	T 

FIG. 6.12. Vertical wind shear for different time periods. 
The ordinate is the value of the average vertical wind shear 
within  7-11° radius from the storm centre in octants 1 and 
5. (Chan et al. 1980) 

special right-turn class is for those cases with an en-or greater than 350 km. The average 
directional deviation of the forecast locations from the verified locations and the extrapo-
lated tracks are given in Table 6.19. 

The basis for this study is the recognition of the fact that midtropospheric wind 
patterns have a strong influence on tropical cyclone motion. According to George and 
Gray (1977), 500 mb is the best steering level for direction of movement and 700 mb is 
the best level for the speed of movement of the storm. For refining the prediction, flow 
fields at 900-, 700-, 500-, and 200-mb levels were used. The streamline field at the 
500-mb level for the three classes of cyclones is shown in Fig. 6.11. 
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The vertical wind shear for these three classes is shown in Fig. 6.12. Here, Vp 

represents the wind component parallel to the track and VN is the wind component 
perpendicular to the track. It can be seen from this diagram that usually the shear (i.e. Vp 
at 200 mb minus Vp at 900 mb) is greater than 5 m • s -1  for left-turn ing tropical cyclones, 
is in the range of —5 to 5 m • s - ' for straight-moving storms, and is less than —5 m • s -1  
for right-turning cyclones. 

Sometimes it may not be possible to derive satellite winds at the 900- and 200-mb 
levels because of extensive cloud cover. In these situations, the satellite sounder (which 
can measure tropospheric difference) could be used. Generally, for left-turning storms the 
mean tropospheric temperature is lower to the left front of the storm. For straight-moving 
storms a weak temperature gradient shows across the front of the storm. Right-moving 
storms indicate a relatively cold troposphere to the right front of the storm. 

PROJECT STORMFURY 

Project Stormfury is a scientific program aimed at studying the structure and dynam-
ics of tropical cyclones and the possibility of modifying them, e.g. through cloud-seeding 
experiments (Sheets and LaSeur 1978). The project formally began in 1962, although 
some initial seeding experiments were done in 1961. These experiments are designed to 
effect a reduction in the maximum wind speeds in cyclones through changing the location 
of the energy released near the cyclone's center. It is well known that the source of energy 
for a tropical cyclone is the latent heat released during convective overturning of the 
atmosphere. The active convective area in which updrafts of 10-20 m • s occur is less 
than 1% of the area of the hurricane. Hence, one must modify only a small area of the 
hurricane to change its characteristics. The dynamics of the modification through seeding 
is explained by Sheets and LaSeur (1978, p. 281) as follows: 

Injection of silver iodide particles into the upper portion of these clouds causes the 
droplets to freeze, releasing the latent heat of fusion. This additional heat causes that 
portion of the cloud to be warmer and thereafter lighter than the surrounding air and 
thus triggers an increase in the ascending flow. As the air rises, it expands and cools, 
and water vapor condenses or sublimates, releasing considerably more latent heat. The 
result is that the seeded cloud grows to the outflow level, providing a new convective 
conduit that intercepts the inflowing low level air. The result is that a new eyewall is 
formed at a greater distance from the storm center than the initial eyewall. 

The tests on Hurricane Debbie of 1969 showed that winds could be reduced by 15-30%. 
For experiments on typhoon modification, see World Meteorological Organization (1975) 
report No. 408. 

NAMING HURRICANES 

In the July 1978 issue of the Journal NOAA (which is a publication of the U.S. 
National Oceanic and Atmospheric Administration), an interesting article appeared on the 
practice of naming hurricanes. Part of this article was extracted from a book by Tannehill 
(1950) and some recent information was added. Here, a brief summary of this article is 
given. 

In the United States during the nineteenth century and the first half of the twentieth 
century, there were occasions when a hurricane was named after a region, town, person, 
or saint. But most were unnamed. 

Towards the end of the nineteenth century, an Australian meteorologist, Clement 
Wragge, began naming hurricanes using female names. However, he restricted female 
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TABLE 6.20. Official list of hurricane names originating in the Atlantic Ocean 

for the seasons of 1979-83. (Anonymous 1978a) 

1978 	 1980 	 1981 	 1982 	 1983 

Ana 	 Allen 	 Arlene 	Alberto 	Alicia 

Bob 	 Bonnie 	Bret 	 Beryl 	 Barry 

Claudette 	Charley 	Carla 	 Chris 	 Chantal 
David 	 Danielle 	Dennis 	Debby 	Dean 

Elena 	 Earl 	 Emily 	Ernesto 	Erin 

Frederic 	Frances 	Floyd 	Florence 	Felix 

Gloria 	 Georges 	Gert 	 Gilbert 	Gabrielle 

Henri 	 Hermine 	Harvey 	Helene 	Hugo 

Isabel 	 Ivan 	 Irene 	 Isaac 	 Iris 

Juan 	 Jeanne 	Jose 	 Joan 	 Jerry 

Kate 	 Karl 	 Katrina 	Keith 	 Karen 

Larry 	 Lisa 	 Lenny 	Leslie 	 Luis 

Mindy 	 Mitch 	Maria 	Michael 	Marilyn 

Nicolas 	Nicole 	Nate 	 Nadine 	Noel 

Odette 	 Otto 	 Ophelia 	Oscar 	 Opal 

Peter 	 Paula 	 Philippe 	Patty 	 Pablo 

Rose 	 Richard 	Rita 	 Rafael 	Roxanne 

Sam 	 Shary 	 Stan 	 Sandy 	 Sebastien 
Teresa 	 Tomas 	Tammy 	Tony 	 Tanya 

Victor 	 Virginie 	Vince 	Valerie 	Van 

Wanda 	Walter 	Wilma 	William 	Wendy 

names to those storms that arrived in Australia from the tropics. Those storms that did not 
originate in the tropics were named after politicians whom he disliked. 

Since the early part of the twentieth century, Pacific typhoons were also named after 
females. Pan American Airways pilots began using female names for hurricanes in 1938. 
In September 1950 three hurricanes occurred almost simultaneously (one north of 
Bermuda, the second north of Puerto Rico, and the third in the Gulf of Mexico). To avoid 
confusion, these were identified by alphabetical letters. In 1951 the agencies involved in 
weather communication decided to use the following list: Able, Baker, Charlie, Dog, 
Easy, Fox, George, How, Item, Jig, King, Love, Mike, Nan, Oboe, Peter, Queen, Roger, 
Sugar, Tare, Uncle, Victor, William, X ray, Yoke, Zebra. 

However, in 1952 a new international list was suggested as follows: Alpha, Bravo, 
Coca, Delta, Echo, Foxtrot, Golf, Hotel, India, Juliet, Kilo, Lima, Metro, Nectar, Oscar, 
Papa, Quebec, Romeo, Sierra, Tango, Union, Victor, Whiskey, Extra, Yankee, Zulu. To 
avoid confusion, the United States agencies began using female names for hurricanes in 
the Atlantic, Caribbean Sea, and the Gulf of Mexico. For the 1953 season the list was 
Alice, Barbara, Carol, Dolly, Edna, Florence, Gilda, Hazel, Irene, Jill, Katherine, Lucy, 
Mabel, Norma, Orpha, Patsy, Queen, Rachel, Susie, Tina, Una, Vicky, Wallis. Although 
there was some criticism occasionally from the press and the public, this practice of using 
female names (however, the list is changing every year) continued until the 1970's. 

In 1971 the U.S. National Weather Service prepared a semipermanent list of 10 sets 
of hurricanes (to be used over a decade and then repeated), still with female names only. 
Names beginning with Q, U, X, Y, and Z were eliminated because of a scarcity of such 
names. Beginning in 1977, under the auspices of the World Meteorological Organization, 
new lists were composed. In these lists, female and male names alternate. These lists for 
the Atlantic hurricanes and the eastern Pacific storms are shown in Tables 6.20 and 6.21, 
respectively. 
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TABLE 6.21. Official list of tropical storm names in the 
eastern part of the Pacific Ocean for the seasons of 
1978-81. (Anonymous 1978a) 

1978 	1979 	1980 	1981 

Aletta 	Andres 	Agatha 	Adrian 
Bud 	Blanca 	Blas 	Beatriz 
Carlotta 	Carlos 	Celia 	Calvin 
Daniel 	Dolores 	Darby 	Dora 
Emilia 	Enrique 	Estelle 	Eugene 
Fico 	Fefa 	Frank 	Fernanda 
Gilma 	Guillermo 	Georgette 	Greg 
Hector 	Hilda 	Howard 	Hilary 
Iva 	Ignacio 	Isis 	 Irwin 
John 	Jimena 	Javier 	Jova 
Kristy 	Kevin 	Kay 	Knut 
Lane 	Linda 	Lester 	Lidia 
Mirian 	Marty 	Madeline 	Max 
Norman 	Nora 	Newton 	Norma 
Olivia 	Olaf 	 Orlene 	Otis 
Paul 	Pauline 	Paine 	Pilar 
Rosa 	Rick 	Roslyn 	Ramon 
Sergio 	Sandra 	Seymour 	Selma 
Tara 	Terry 	Tina 	Todd 
Vicente 	Vivian 	Virgil 	Veronica 
Willa 	Waldo 	Winifred 	Wiley 

TABLE 6.22. Monthly average number of storms per year for each major ocean basin. T, tropical storms only; 
H, hurricanes only. For the North Indian Ocean, replace the term hurricane with cyclone (winds 
89 km •11 -1 ). -, zero. (Crutcher and Quayle 1974) 

Southwest 
Pacific and 

Eastern 	Western 	Australian 	Southwest 	North Indian 
North Atlantic North Pacific 	North Pacific 	area 	Indian Ocean 	Ocean 

Month 	T 	H 	T 	H 	T 	H 	T 	H 	T 	H 	T 	H 

Jan. 	- 	- 	- 	- 	0.2 	0.3 	2.7 	0.7 	2.0 	1.3 	0.1 	- 
Feb. 	- 	- 	- 	- 	0.3 	0.2 	2.8 	1.1 	2.2 	1.1 	- 	- 
Mar. 	- 	- 	- 	- 	0.3 	0.2 	2.4 	1.3 	1.7 	0.8 	- 	- 
Apr. 	- 	- 	- 	- 	0.2 	0.7 	1.3 	0.3 	0.6 	0.4 	0.1 	0.1 
May 	0.1 	- 	- 	0.3 	0.4 	0.9 	0.3 	- 	0.2 	- 	0.3 	0.5 
June 	0.4 	0.3 	1.5 	0.6 	0.5 	1.2 	0.2 	- 	- 	- 	0.5 	0.2 
July 	0.3 	0.4 	2.8 	0.9 	1.2 	2.7 	- 	0.1 	- 	- 	0.5 	0.1 
Aug. 	1.0 	1.5 	2.3 	2.0 	1.8 	4.0 	- 	0.1 	- 	- 	0.4 	- 
Sept. 	1.5 	2.7 	2.3 	1.8 	1.5 	4.1 	- 	- 	- 	- 	0.4 	0.1 
Oct. 	1.2 	1.3 	1.2 	1.0 	1.0 	3.3 	0.1 	- 	0.3 	- 	0.6 	0.4 
Nov. 	0.4 	0.3 	0.3 	- 	0.8 	2.1 	0.4 	0.3 	0.3 	- 	0.5 	0.6 
Dec. 	- 	- 	- 	- 	0.6 	0.7 	1.5 	0.5 	0.8 	0.5 	0.3 	0.2 

6.3 Cyclones of the Pacific Ocean 

Most of the damage from storm surges on the coast of the Pacific Ocean results from 
tropical storms. Hence, these will be emphasized in this section. The extratropical cy-
clones that occasionally generate storm surges along the Pacific coast will be treated in 
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other sections (while dealing with storm surges in the United States, Canada, Australia, 
etc.). Note that a storm surge is a rare event on the Pacific coasts of Canada and the United 
States (with the exception of Alaska); along these coasts, wind waves and swell are of 
primary importance. 

Earlier it was mentioned that tropical cyclones form over all the tropical oceans 
except in the South Atlantic and in the South Pacific east of 140°W. The highest frequency 
of tropical cyclones occurs in the western Pacific, although maximum damage has oc-
curred on the coasts surrounding the Bay of Bengal. Indeed one may say that tropical 
cyclones and their associated storm surges together are probably the most devastating 
natural phenomena, even more so than earthquakes. 

The number of tropical storms and hurricanes (i.e. tropical storms with sustained 
winds equal to or greater than 48 knots (89 km •11 -1 ) are listed by month for various ocean 
basins in Table 6.22. It can be seen that the maximum frequency is in the western part of 
the North Pacific Ocean during the months of August and September. The preferred 
tropical cyclone tracks over the globe are shown in Fig. 6.13. Again, it can be seen that 
the tracks in the Pacific Ocean and Indian Ocean have more fine structure than those in 
the Atlantic Ocean. Contours of the speed of movement of tropical storms for various 
ocean basins are shown in Fig. 6.14. Maximum values of 35 knots (65 km •11 -1  ) occur in 
the western North Pacific, with maximum values of 30 knots (56 km •11 -1 ) in the Atlantic, 
and with maximum values of 27.5 (51 km •11 -1 ) in the eastern edge of the South Indian 
Ocean. In the following subsections, certain characteristics of tropical cyclones in the 
eastern North Pacific, central North Pacific, and western North Pacific will be detailed. 

CHARACTERISTICS OF TROPICAL CYCLONES IN THE EASTERN NORTH PACIFIC 

This discussion will be based on the tropical cyclone seasons of 1976, 1977, and 1978 
(Gunther 1977, 1978, 1979). For the 1976 season, tropical cyclone activity began on 
June 1 and ended on October 29. The season was average in the sense that there were eight 
hurricanes, six tropical storms, and four tropical depressions. The 1977 season began on 
May 25 and ended on October 23. Thus, the length of the 1977 season was 152 d whereas 
in 1976 it was 150 d. The total number of tropical storms in 1977 was 17 compared with 
18 in 1976. However, in 1977 only 47% of the storms reached hurricane intensity. Note 
that the number of tropical cyclones reaching storm or hurricane intensity in 1977 was 47% 
less than the average for the period 1966-76. For the 1976 season, the highest sustained 
wind speed was 125 knots (231 km •11 -1 ) whereas for the 1977 season it was 90 knots (167 
km • II -I  ). 

In 1978, the season began on May 30 and ended on October 20, with a duration of 
144 d. Although the 1978 season was 8 d shorter than the 1977 season, there was an 
increase of 24% in cyclone activity. The number of cyclones reaching storm or hurricane 
intensity was 86% in 1978 compared with 47% in 1977. The highest sustained wind speed 
in the 1978 season was 120 knots (222 km • IC' ). 

The first tropical cyclone to hit southern California since 1939 was Hurricane 
Kathleen in 1976. In the 1977 season, Hurricane Doreen struck again and in the 1978 
season Hurricane Norman reached the coast. Though none of these three hurricanes caused 
any storm surge activity on the California coast, the heavy rains associated with these 
caused extensive damage. 

During the hurricane season bulletins are issued four times per day from the Eastern 
Pacific Hurricane Center in San Francisco. The number of eastern  North Pacific tropical 
storms reaching hurricane intensity is given in Table 6.23. The tracks of Hurricanes 
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15 12.5 15 20 25 27.5 

FIG. 6.13. Preferred annual tropical cyclone paths. Arrow widths are proportional to storm frequencies along 
indicated paths. (Crutcher and Quayle 1974) 

FIG. 6.14. Average (for annual data) speeds (knots) of storm movement (1 knot = 1.852 km h'). (Crutcher 
and Quayle 1974) 
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TABLE 6.23. Number of eastern North Pacific tropical storms reaching hurricane intensity by month and year. 
Cyclones are ascribed to the month in which they began. (Gunther 1979) 

Year 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Total 

1966 	0 	1 	0 	4 	2 	0 	0 	7 
1967 	0 	1 	0 	2 	1 	2 	0 	6 
1968 	0 	0 	0 	3 	2 	1 	0 	6 
1969 	0 	0 	1 	1 	1 	1 	0 	4 
1970 	1 	0 	1 	1 	0 	1 	0 	4 
1971 	 1 	1 	5 	2 	2 	1 	0 	12 
1972 	 1 	0 	0 	6 	1 	0 	o 	8 
1973 	0 	1 	3 	0 	2 	1 	0 	7 
1974 	0 	2 	2 	4 	2 	1 	0 	11 
1975 	0 	1 	2 	3 	1 	1 	0 	8 
1976 	0 	2 	1 	2 	3 	0 	0 	8 
1977 	0 	0 	1 	1 	I 	1 	0 	4 
1978 	 1 	2 	3 	4 	1 	1 	0 	12 

Total 	4 	11 	19 	33 	19 	11 	0 	97 
Average 	0.3 	0.8 	1.5 	2.5 	1.5 	0.8 	0.0 	7.5 

Kathleen of September 1976 and Doreen of August 1977 are shown in Fig. 6.15. All the 
tropical cyclones during 1977 did not reach land, as they were dissipated over the ocean. 
Hence, the damage in the 1977 season was less than in the 1976 season (during this season, 
several hurricanes moved onshore). In the 1978 season, only three cyclones moved 
onshore. Hurricane statistics prior to 1966 were not used in this study because satellite 
coverage was not adequate prior to 1966 and some hurricanes might have been missed. 

The forecast error for the 1977 season is shown in Table 6.24. These are based on 
various computer models available at the National Hurricane Center in Miami. In this 
table, EPHC stands for the Eastern Pacific Hurricane Center, CLIPER is a simulated 
analog model, EPHC77 is a statistical synoptic model, EPHANALOG is an analog model, 
and SANBAR is a barotropic model. Of these four computer models, EPHC77 gave the 
best results, and these were subjectively improved by the EPHC forecasters. 

TROPICAL CYCLONES OF THE CENTRAL NORTH PACIFIC 

For forecast purposes, the central North Pacific is defined as the region between 
140°W to the international dateline and from the equator to 35°N (see Fig. 6.16). The 
forecasts for this region are issued by the Central Pacific Hurricane Center in Honolulu. 
The 1978 season began on June 24 and ended on October 24; this was the season of 
greatest tropical cyclone activity since weather records were kept (Shaw 1979). A total of 
13 tropical cyclones either originated here or passed through this area during this season. 
Hurricane Fico of July 17 was an exceptional case in the sense that it maintained hurricane 
intensity for as long as 17 d and its track involved a total length of about 5000 mi 
(8000 km). Even on July 31, its effect was felt at Cold Bay in the Aleutians. 

Another hurricane of this season, Susan, of October 18 was one of the two most 
intense hurricanes (in the central Pacific) on record with maximum sustained winds of 120 
knots (222 km •11 -1 ). The other intense hurricane occurred on August 1972 and was 
referred to as Celeste. Hurricane Susan presented several interesting features. First of all, 
it began rather late in the season when the forecasters thought the hurricane season was 
over. After arriving 220 mi (354 km) southeast of the big island of Hawaii, it abruptly 
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Fin. 6.15. Tracks of Hurricanes Kathleen of September 1976 and Doreen of 
August 1977 near Baja California. (Gunther 1978) 

TABLE 6.24. Average forecast errors (km) in tropical cyclone movement using dif-
ferent models. Data in columns 2 to 6 show the average error (km). Value in paren-
theses shows the number of cases. EPHC, Eastern Pacific Hurricane Center; 
EPANALOG, Eastern Pacific analog model. (For a description of these models, see 
the text.) (Gunther 1978) 

Forecast 
period 	EPHC 

(h) 	forecasters EPANALOG EPHC-77 	CLIPER 	SANBAR 

24 	113 (126) 	104 (141) 	96 (129) 	104 (129) 	22 (137) 
48 	44 (239) 	56 (265) 	50 (255) 	56 (255) 	15 (271) 
72 	13 (284) 	22 (365) 	19 (292) 	22 (378) 	6 (508) 
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FIG. 6.16. Typical tracks of tropical cyclones in the central part of the North Pacific Ocean. (Shaw 1979) 

turned southwestward and dissipated rapidly. The central pressure rose more than 50 mb 
in 24 h. 

Hurricane Gilma of July 22 was also somewhat unusual in the sense that it covered 
an area as large as 3 x 10 5  mi2  (7.8 x 105  km2). Hurricanes for the 1978 season in the 
central Pacific are summarized in Table 6.25. 

TYPHOONS OF THE WESTERN NORTH PACIFIC 

The Joint Typhoon Warning Center for the western North Pacific was set up at Guam 
in 1959. The frequency of typhoons by month and year is listed in Table 6.26 and the 
western North Pacific tropical cyclones for the season of 1977 are listed in Table 6.27. The 
1977 season began on March 23 and ended in January 1978. The 1978 season officially 
began on January 8 and ended on November 30. It can be seen that in the western North 
Pacific, typhoons can and do occur at any time of the year. In this respect this ocean basin 
is different from the central North Pacific, eastern North Pacific, and North Atlantic Ocean 
basins where the tropical cyclone season does not span the full year. 

The seasons of 1977 and 1978 (Joint Typhoon Warning Center 1978, 1979) will be 
compared. The season of 1977 had the lowest number of tropical cyclones since 1959. Of 
a total of 21, 2 dissipated as depressions, 8 peaked out as tropical storms, and the 
remaining 11 matured into hurricanes. The monsoon systems of the Indian subcontinent 
and Southeast Asia appear to have some influence on the tropical cyclones in the western 
North Pacific. During the 1977 season there were only 12 multiple storm days (a multiple 
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Maximum 	Lowest 	Total 
Maximum 	sustained 	pressure 	hours 

class 	wind (km •11 -1  ) 	(mb) 	observed Date 
Name of 
storm 

TABLE 6.25. Central North Pacific tropical cyclone data for 1978. All data pertain to the 
period during which the storms were in the Central North Pacific only. H, hurricane; TS, 
tropical storm; TD, tropical depression; ET, extratropical cyclone; —, information not avail-
able. (Shaw 1979) 

Bud 	June 24-26 	Vortex 	 — 	— 	48 
Carlotta 	June 26—July 3 	Vortex 	 — 	— 	168 
Daniel 	July 3-11 	Vortex 	 — 	192 
Fico July 17-28 Hurricane 185 955 225(H) 

15(TS) 
36(ET) 

Gilma 	July 22-27 	Vortex 	 — 	— 	144 
Hector 	July 3I—Aug. 2 	Vortex 	 — 	— 	60 
TD-10 	Aug. 6-9 	TD 	 56 	— 	84 
Iva 	Aug. 19-21 	Vortex 	 — 	— 	54 
John 	Aug. 23-30 	Hurricane 	167 	965 	48(H) 

72(TS) 
48(TD) 

Kristy 	Aug. 26-28 	TS 	 93 	— 	18(TS) 
45(TD) 

Lane 	Aug. 20-23 	TS 	 93 	— 	66(TS) 
27(TD) 

Miriam 	Aug. 27—Sept. 2 TS 	 102 	— 	72(TS) 
6(TD) 

Susan Oct. 18-24 Hurricane 222 945-954 81(H) 
30(TS) 
24(TD) 

TABLE 6.26. Frequency of typhoons in the western North Pacific. (Joint Typhoon Warning Center 1978) 

Year 	Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Total 

1954-58 
(average) 	0.4 	0.1 	0.3 	0.4 	0.7 	1.1 	2.0 	2.9 	3.2 	2.4 	2.0 	0.9 	16.3 
1959 	0 	0 	0 	1 	0 	0 	1 	5 	3 	3 	2 	1 	20 
1960 	0 	0 	0 	1 	0 	2 	2 	8 	0 	4 	1 	1 	19 
1961 	0 	0 	1 	0 	2 	1 	3 	3 	5 	3 	I 	1 	20 
1962 	0 	0 	0 	1 	2 	0 	5 	7 	2 	4 	3 	0 	24 
1963 	0 	0 	0 	1 	I 	2 	3 	3 	3 	4 	0 	2 	19 
1964 	0 	0 	0 	0 	2 	2 	6 	3 	5 	3 	4 	1 	26 
1965 	1 	0 	0 	1 	2 	2 	4 	3 	5 	2 	1 	0 	21 
1966 	0 	0 	0 	1 	2 	1 	3 	6 	4 	2 	0 	1 	20 
1967 	0 	0 	1 	1 	0 	1 	3 	4 	4 	3 	3 	0 	20 
1968 	0 	0 	0 	1 	I 	1 	I 	4 	3 	5 	4 	0 	20 
1969 	1 	0 	0 	1 	0 	0 	2 	3 	2 	3 	1 	0 	13 
1970 	0 	1 	0 	0 	0 	1 	0 	4 	2 	3 	1 	0 	12 
1971 	0 	0 	0 	3 	I 	2 	6 	3 	5 	3 	1 	0 	24 
1972 	1 	0 	0 	0 	1 	1 	4 	4 	3 	4 	2 	2 	22 
1973 	0 	0 	0 	0 	0 	0 	4 	2 	2 	4 	0 	0 	12 
1974 	0 	0 	0 	0 	1 	2 	1 	2 	3 	4 	2 	0 	15 
1975 	1 	0 	0 	0 	0 	0 	I 	3 	4 	3 	2 	0 	14 
1976 	1 	0 	0 	I 	2 	2 	3 	0 	4 	I 	0 	0 	14 
1977 	0 	0 	0 	0 	0 	0 	3 	0 	2 	3 	2 	1 	11 
1959-77 
(average) 	0.3 	0.1 	0.1 	0.7 	0.9 	1.1 	2.8 	3.6 	3.2 	3.2 	1.6 	0.5 	18.3 
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Patsy 	Mar. 23-31 
Ruth 	June 14-17 
Sarah 	July 16-21 
Thelma 	July 21-26 
Vera 	July 28—Aug. 1 
Wanda 	July 31—Aug. 4 
Amy 	Aug. 20-23 
Babe 	Sept. 2-10 
Carla 	Sept. 3-5 
Dinah 	Sept. 14-23 
Emma 	Sept. 15-20 
Freda 	Sept. 23-25 
Gilda 	Oct. 3-10 
Harriet 	Oct. 16-20 
Ivy 	Oct. 21-27 
Jean 	Oct. 28-31, 

Nov. 2-3 
Kim 	Nov. 6-17 
Lucy 	Nov. 28—Dec. 7 
Mary 	Dec. 20—Jan. 3 

TS 	 93 	 981 
TS 	 III 	 980 
TY 	 139 	 970 
TY 	 157 	 957 
TY 	 204 	 926 
TS 	 83 	 986 
TS 	 74 	 990 
STY 	 241 	 906 
TS 	 65 	 994 
TY 	 139 	 964 
TS 	 III 	966 
TS 	 102 	 997 
TY 	 130 	 968 
TS 	 102 	 984 
TY 	 167 	 945 

972 
916 
919 
947 

40° N 

30° 

20° 

5°S 

80°E 	90° 	100 ° 	110° 	120° 	130 0 	140° 	150 0 	160° 	1700 	190°  

TY 
TY 
TY 
TY 

120 
232 
213 
185 

10° 

0° 

TABLE 6.27. Tropical cyclones in the western North Pacific for the season of 1977. TY, 
typhoon; TS, tropical storm; STY, supertyphoon. (Joint Typhoon Warming Center 1978) 

Maximum 	Minimum 
surface 	observed 

Name of 	Period of 	 wind 	 sea level 
typhoon 	warning 	Intensity 	(km•11 -1 ) 	pressure (mb) 

FIG. 6.17. Typical tracks of tropical cyclones in the western North Pacific. (Joint Typhoon Warning Center 
1977, 1978) 

storm day is one during which there is more than one tropical cyclone in the region). In 
1970 and 1975, at certain times there were three or more tropical cyclones simultaneously. 
Storms with long durations could occur. Typhoon Kim of November 6, 1977, spanned 
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Flo. 6.18. Mean typhoon tracks and frequency (over an 11-yr period) for August in the western North Pacific. 
(Jamison 1956) 

Flo. 6.19. Monthly mean tracks of tropical cyclones in the western 
North Pacific. Numbers refer to the months. (Aoki 1979) 
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FIG. 6.20. Typical tracks of typhoons around Taiwan. A, Trix, 1960; B, 
Agnes, 1960; C, Pamela, 1961; D, Nora, 1967; E, Nina, 1975; F, Betty, 
1975; G, Dinah, 1965; H, Wendy, 1974; I, Nora, 1973; J, Judy, 1953. 
(Chu et al. 1978) 

12 d. In this season, Typhoon Babe was classified as a supertyphoon. 
One important feature of the typhoons in the western North Pacific is that they could 

have rather erratic tracks and loops (usually the loops occur when the steering currents are 
weak). The 1978 season had about an average number of tropical cyclones. However, 
there were several surprises. Ten storms and typhoons had erratic tracks. Typhoon Carmen 
was almost stationary for 3 d. Typhoon Faye's track had a large anticyclonic loop and then 
it deepened explosively (surface central pressure decreased by 18 mb in just 6 h). Typhoon 
Trix was the most ill-behaved of all. Storms Hester and Phyllis attained speeds of move-
ment of 40 and 50 knots (74 and 93 km • 11 -  ), respectively, after recurvature in their 
extratropical transition. Typhoons Virginia and Mamie were so compact in size (but not 
in intensity) that they were called midget typhoons. Typhoon Virginia traveled farthest 
north (to 42°N) still behaving like a tropical cyclone. Supertyphoon Rita covered an 
amazing distance of 4142 mi (6669 km) and is second only to Typhoon Sarah of 1976, 
which traveled 4499 mi (8000 km). Some typical tracks of typhoons in the western North 
Pacific are shown in Fig. 6.17. 

TROPICAL CYCLONE TRACKS NEAR JAPAN, TAIWAN, AND THE PHILIPPINES 

Jamison (1956) described the average tracks of typhoons in this region for the month 
of August based on 11 yr of data (1945-55).  These tracks are illustrated in Fig. 6.18. 
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Maximum 
Name of 	 wind speed 
typhoon 	Date 	 (km•h - ') 

Maximum 
Name of 	 wind speed 
typhoon 	Date 	(km.11 -1 ) 

Judy 	June 1953 	74-111 
Kit 	 July 1953 	 204 
Thelma 	Apr. 1956 	 157 
Trix 	Aug. 1960 	204-222 
Agnes 	Aug. 1960 	74-102 
Pamela 	Sept. 1961 	222-278 
Sally 	Sept. 1961 	130 
Wendy 	July 1963 	185-250 
Dinah 	June 1965 	74-241 
Nora 	Aug. 1967 	1 1 1-120 

Gilda 	Nov. 1967 	148-185 
Elsie 	Sept. 1969 	194 
Betty 	Aug. 1972 	157-222 
Joan 	Aug. 1973 	56-83 
Nora 	Oct. 1973 	1 1 1 —176 
Jean 	July 1974 	 93 
Wendy 	Sept. 1974 	93 
Nina 	Aug. 1975 	250 
Betty 	Sept. 1975 	157-167 
Elsie 	Oct. 1975 	222-259 

TABLE 6.28. List of typhoons around Taiwan during 1953-75. (Chu et al. 1978) 

During this period there were a total of 43 typhoons, of which 15 had rather erratic tracks 
(not shown here). The number along each track is the number of typhoons that occurred 
during this 11-yr period. Note that the lowest frequency is for the track that crosses 
Vietnam and the highest is for the Philippines area and continuing toward the Gulf of 
Tonkin. The number of tropical cyclones that traveled over Korea and Japan during this 
period was five. 

The average tracks for several months based on the data for 1940-69 (Aoki 1979) 
are shown in Fig. 6.19. The numerals correspond to the month. 

The tracks of some selected typhoons in the vicinity of Taiwan during the period 
1953-75 (Chu et al. 1978) are shown in Fig. 6.20. Noting that Taiwan is an island with 
a central mountain range with heights exceeding 3000 m, one can expect these mountains 
to influence the typhoon tracks. In Fig. 6.20, the deflecting effect of the mountain range 
can be seen. For a steering current in the east— west direction, the track veers to the north 
when it approaches the island. After it crosses over or around the mountains, it turns 
toward the south. After it leaves the island, the track is similar to the original track (before 
encountering the island). 

On the other hand, for a typhoon moving from south towards north, the track first 
veers towards the east and then moves more or less parallel to the mountain ranges (which 
are generally in the north—south direction), and again it resumes its original track (see 
tracks G—I in Fig. 6.20; track G especially is appropriate). Some details of these typhoons 
around Taiwan are given in Table 6.28. 

EXPLOSIVELY DEVELOPING TROPICAL CYCLONES AND SUPERTYPHOONS IN THE PACIFIC 

Clark (1978a, 1978b), using satellite imagery, studied rapidly developing tropical 
cyclones in the northeastern Pacific Ocean during the period 1973-76. In his analysis, he 
made use of the so-called T number (Dvorak 1975a, 1975b). 5  During this 4-yr period, of 
a total of 62 cyclones, 12 underwent a rapid development. The tracks of these rapidly 
developing tropical cyclones fall within a small area near Mexico (Fig. 6.21). Clark 
(1978a, 1978b) cited persistent atmospheric conditions as contributing to the existence of 

'The T number is based on the maximum wind speed. For example, T I corresponds to 
25 knots, T2 to 30 knots, T3 to 45 knots, T4 to 65 knots, etc., with T8 corresponding to 170 knots 
(1 knot --- 1.852 1(111.11-I). 
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Fin. 6.21. Area of development of eastern North Pacific tropical cyclones, 1973-76 (Clark 1978b) 
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FIG. 6.22. History of central pressure readings for typhoons typical of type 1 development 
(Hurricanes Kit of June 1966 and Fran of September 1976). Arrow indicates onset of rapid 
deepening (1.75 mb .11 -1 ). (Holliday and Thompson 1979) 

a relatively small area of rapid development. 
Holliday and Thompson (1979) made a study of rapidly deepening typhoons in the 

western part of the North Pacific Ocean using data from the period 1956-76. Their 
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FIG. 6.23. History of central pressure readings for typhoons of type 2 development (Hurricanes 
Virginia of June 1957 and Anita of August 1970). Arrow indicates onset of rapid deepening 
(1.75 mb • ). (Holliday and Thompson 1979) 

FIG. 6.24. Areas where typhoons intensified rapidly during summer and early fall (June 20—October 16). 
Numbers represent occurrences during 1956-76. (Holliday and Thompson 1979) 

definition of rapid deepening is a fall in the central surface pressure by at least 42 mb in 
24h. In a total of 79 cases, rapid deepening (i.e. over an interval of 18 h with the steepest 
fall in the first 6 h) produced surface central pressures of 920 mb or less. For a tropical 
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Fin. 6.25. Track of severe tropical storm Agnes from its formation on July 24, 1978, to its passage across the 
coast on July 30, 1978. (Bell 1979) 

cylone to mature into a typhoon, the underlying ocean temperature (up to a depth of 
30 m) must be at least 28°C. This is a necessary condition for rapid deepening but not a 
sufficient condition. 

Two basic types of deepening were noticed. In type 1 (Fig. 6.22) the central pressure 
falls at a moderate rate 0.8 mb • h -1 ) at least over a period of 12-24 h. This is 
accompanied by accelerated development ( 1.75 mb •11 -1 ). This behavior for Typhoons 
Kit of 1966 and Fran of 1976 is shown in Fig. 6.22. In type 2 behavior, initially there is 
slower development (<0.8 mb • ir ) suddenly followed by explosive deepening 
(_?_ 1.75 mb •11 -1 ). This is shown for Typhoons Virginia of 1957 and Anita of 1970 in 
Fig. 6.23. In the 79 case studies, 36% exhibited type 1 behavior and the remainder showed 
type 2 behavior. 

About 36% of the rapid deepening occurred during daytime and 64% occurred during 
nighttime. Sheets (1969) suggested that this may be related to the differences in the 
atmospheric stability during day and night. However, Sheets' (1969) study of hurricanes 
and Frank's (1978) study of typhoons on diurnal variations showed little evidence for 
diurnal changes except in the temperature field and other parameters in the upper 
troposphere and stratosphere. 

The time interval between the weak circulation stage to the commencement of rapid 
deepening varied from 72 to 172 h. The time interval between the tropical storm stage to 
the onset of rapid deepening varied from 12 to 108 h. The interval between the time of 
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FIG. 6.26. Central pressure trace for Supertyphoon Tip of October 1979. (Dunnavan and Diercks 1980) 

TABLE 6.29. Some features of selected ports as possible safe havens in case of typhoon occurrence. 

Port 	 Wind waves 	 Storm surges 	 Remarks 

Apra Harbor (Guam) 	Maximum heights 	Maximum heights 
up to 6.5 m 	 up to 6 m 	 Not safe 

Hong Kong 	 Greater than 10 m 	Greater than 2 m 	Not safe 
Kaohsiung (Taiwan) 	Negligible 	 Negligible 	 Due to shoaling outside 

the harbor, strong 
currents exist; 
not safe 

Yokosuka (Tokyo Bay) 	Negligible 	 Negligible 	 Safe 
Manila 	 More than 3 m 	 — 	 Not safe 
Pusan 	 Up to 4 m 	 1.5-2m 	 Not safe 

reaching typhoon stage and initiation of rapid deepening varied from 0 to 72 h. 
At the time of initiation of rapid deepening the eye diameters ranged from 29 to 

37 km (average 33 km). Twelve hours after initiation of rapid deepening, the mean 
diameter of the eye decreased to 30 km, and 24 h after rapid deepening commencement, 
the average diameter was 26 km. Most of the rapid deepening occurred during the period 
July—November, with maximum activity in August and September. The area where rapid 
development began is shown in Fig. 6.24. The numerals show the number of cases during 
1956 — 76 . 

Next, two interesting typhoons will be considered: Agnes of July 1978 and Tip of 
October 1979. The track of Typhoon Agnes is shown in Fig. 6.25. Because of the loop 
in the track, according to Bell (1979) it is the only tropical storm on record that caused 
gale signals to be hoisted twice at Hong Kong. Another unusual feature was that the 
so-called Fujiwara effect occurred between Typhoons Agnes and Wendy, although they 
were separated by 1000 mi (1600 km). Another interesting feature from a public informa- 
tion point of view was that the American spacecraft Apollo ran into this with 60-knot 
(111 km •11 -1 ) winds and 25-ft (8 m) waves when it splashed down into the Pacific Ocean. 

Supertyphoon Tip developed in the western part of the North Pacific Ocean in early 
October 1979. This had at least two unique features: it holds the world record for the 
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FIG. 6.27. Tropical cyclone threat axis for Guam. Distance and approach times are measured from Guam based 
on an 8- to 12-knot speed of movement (I knot = 1.852 km •11 -I ; 1 nautical mile (M) — 1.852 km). (Brand et 
al. 1977b) 
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FIG. 6.28. Tropical cyclone threat axis for Hong Kong (1 nautical mile 
(M) = 1.852 km). (Brand et al. 1977a) 

lowest minimum sea level pressure (870 mb) ever measured in a tropical cyclone (see 
Fig. 6.26) and it possessed the largest surface circulation pattern ever observed for a 
tropical cyclone (about 2200 km in diameter). Finally, this was transformed into an 
extratropical cyclone around October 18, 1979. Although it caused great destruction in 
Japan, the destruction was minimal for its size because the maximum intensity was reached 
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Fin. 6.29. Tropical cyclone threat axis to Kaohsiung, Taiwan (1 nautical mile (M) = 1.852 km). (Brand 

et al. 1978a) 

while the system was still far away from inhabited areas. Dunnavan and Diercks (1980) 
referred to it as the most significant tropical cyclone of this century. 

EXAMINATION OF SOME SELECTED PORTS AS TYPHOON HAVENS 

Brand and Blelloch (1976) published a book entitled Typhoon Havens Handbook for 
the Western Pacific and Indian Oceans, and the journal Mariners Weather Log published 
a series of articles in which various harbors were examined as to their safety for ships 
during a tropical cyclone. Here, the ports of Guam, Manila, Kaohsiung (Taiwan), Hong 
Kong, Tokyo Bay, and Pusan will be briefly examined. The features of these ports are 
summarized in Table 6.29 and the threat axes to these various ports are shown in Fig. 
6.27-6.34. Note that for the port of Yokosuka (Tokyo Bay), the threat axis changes from 
month to month, as can be seen from Fig. 6.31 and 6.32 for the months of June and July. 
A similar situation exists for Pusan. For details on typhoon havens, see Brand et al. 
(1977a, 1977b, 1978a, 1978b, 1979, 1980). 

6.4 Cyclones of the Atlantic Ocean 

Extratropical cyclones that affect North America are born in the western parts of the 
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Fin. 6.30. Tropical cyclone threat axis for Yokosuka (June). (Brand 
et al. 1978b) 

130° E 	 140° 	 160°  

Fin. 6.31. Tropical cyclone threat axis for Yokosuka (July). (Brand et al. 
1978b) 
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Flo. 6.33. Typhoon tlireat axis for Pusan, Korea (June). (Brand 
et al. 1980) 

continent or in the Pacific Ocean and travel generally towards east (also east—northeast 
and northeast). Extratropical cyclones originating in the Atlantic generally do not affect 
North America but will travel towards Europe. These will be considered in a later section. 
Here, basically, tropical cyclones originating in the Atlantic that affect mainly the North 
American continent will be considered. 

Neumann et al. (1978) gave detailed tracks and statistics of the tropical cyclones of 
the North Atlantic Ocean for the period  1871-1977.  It was mentioned earlier that two 
large tropical ocean basins do not give rise to tropical cyclones. These are the South 
Atlantic and the eastern  part of the South Pacific oceans. During this 107-yr period, at least 
850 tropical cyclones (storms as well as hurricanes) occurred in the North Atlantic. These 
form over the warm tropical and subtropical waters, and about a week or 10 d later usually 
dissipate over the cold waters of the North Atlantic or sometimes evolve into extratropical 
cyclones. 
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These storms are listed by month in Table 6.30 for each of these years. Those that 
eventually became hurricanes are listed in Table 6.31. The distribution of the observed 
duration of hurricanes is given in Fig. 6.35. The cumulative percentage frequency distri-
bution of beginning and ending dates of Atlantic tropical cyclone seasons from 1886 to 
1977 is given in Fig. 6.36. Dates shown are of the first and last recorded positions with 
at least tropical storm intensity. The annual distribution of the 257 Atlantic tropical storms 
and hurricanes together (open bars) and the 140 hurricanes only (solid bars) that either 
crossed or passed near the United States coastline (from Texas to Maine) during the period 
1899-1977 is given in Fig. 6.37. Note that the average annual number of such storms plus 
hurricanes is 3.3, whereas that for hurricanes is 1.8. The 9-d moving averages of the 
number of tropical storms and hurricanes together and hurricanes separately are shown in 
Fig. 6.38. 

Frank (1978) studied the geographical distribution of the generation areas and other 
characteristics of these Atlantic storms for the period 1968-77. During this 10-yr period, 
a total of 1044 systems appeared. Of these, 58% originated near Dakar (Africa). Of the 
approximately 100 tropical weather systems developing in each hurricane season (June 
1—November 30) about 25% become depressions and about 10% become storms. 

COMPUTERIZED TROPICAL CYCLONE CLIMATOLOGY 

Neumann and Hill (1976) described the computerized tropical cyclone climatological 
data at the National Hurricane Center in Miami. The tracks of the 680 recorded Atlantic 
tropical cyclones for the period  1886-1969  were plotted. Later, this number increased to 
743 tracks up to the end of the 1975 hurricane season. Most of these data are based on ship 
reports, and in later years these data were supplemented by aircraft reconnaissance and 
satellite data. The storm track data are maintained at the National Climatic Center in 
Asheville, NC. Based on these computerized data, three examples were prepared (Fig. 
6.39-6.41). Neumann and Cry (1978) discussed the revised Atlantic tropical cyclone 
climatology.  . 

439 



t 	TABLE 6.30. Number of recorded Atlantic tropical cyclones (excluding depressions and after 1967, including subtropical cyclones) that reached at least tropical storm 
o 	intensity in the specified month, 1871-1977. (Neumann et al. 1978) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

1871 	 2 	 2 	2 	 6 
1872 	 1 	1 	2 	1 	 5 
1873 	 1 	3 	 5 
1874 	 1 	1 	4 	1 	 7 
1875 	 3 	1 	 4 
1876 	 2 	1 	 3 
1877 	 1 	4 	2 	1 	 8 
1878 	 I 	1 	3 	4 	1 	 10 
1879 	 3 	1 	3 	1 	 8 
1880 	 1 	 4 	2 	2 	 9 
1881 	 4 	1 	1 	 6 
1882 	 2 	1 	 3 
1883 	 2 	1 	1 	 4 
1884 	 2 	1 	 3 
1885 	 3 	4 	1 	 8 
1886 	 3 	1 	2 	2 	2 	 10 
1887 	 1 	 2 	2 	3 	6 	1 	2 	17 
1888 	 1 	1 	2 	2 	1 	2 	 9 
1889 	 1 	I 	 1 	5 	1 	 9 
1890 	 1 	 1 
1891 	 1 	2 	3 	4 	1 	 11 
1892 	 1 	 1 	4 	3 	 9 
1893 	 1 	1 	5 	3 	1 	1 	 12 
1894 	 2 	1 	3 	 6 
1895 	 2 	1 	3 	 6 
1896 	 1 	1 	2 	2 	 6 
1897 	 1 	2 	2 	 5 
1898 	 2 	5 	2 	 9 
1898 	 1 	2 	1 	2 	 6 
1900 	 1 	3 	3 	 7 
1901 	 1 	2 	2 	3 	2 	 10 
1902 	 2 	 1 	1 	1 	 5 
1903 	 1 	1 	4 	2 	1 	 9 
1904 	 I 	 1 	3 	 5 
1905 	 3 	2 	 5 



1906 
1907 
1908 
1909 
1910 
1911 
1912 
1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 

-P• 	1940 -p. .--. 

1 

TABLE 6.30. (Continued) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

2 	 1 	3 	4 	1 	 11 
1 	 2 	1 	 4 

1 	1 	3 	2 	 8 
2 	2 	2 	2 	1 	1 	 10 

1 	2 	1 	 4 
2 	1 	1 	 4 

1 	I 	 1 	2 	1 	 6 
1 	 1 	1 	1 	 4 

1 	 1 
1 	3 	1 	 5 

1 	2 	3 	4 	3 	1 	 14 
2 	1 	 3 
3 	2 	 5 

I 	 1 	 1 	 3 
4 	 4 

1 	 3 	2 	 6 
1 	 I 	2 	 4 

1 	1 	5 	 7 
1 	 2 	2 	2 	1 	 8 

1 	 1 	 2 
2 	1 	5 	2 	1 	 11 

1 	3 	3 	 7 
2 	3 	1 	 6 

1 	 1 	1 	 3 
2 	 2 

1 	1 	2 	3 	1 	1 	 9 
1 	 3 	3 	3 	1 	 11 
1 	1 	3 	7 	5 	3 	1 	 21 
1 	1 	1 	2 	2 	3 	1 	 11 

3 	1 	2 	 6 
3 	2 	6 	4 	1 	 16 

1 	2 	6 	 9 
3 	1 	3 	1 	 8 

1 	 1 	1 	2 	 5 
1 	 3 	2 	2 	 8 



1941 
1942 
1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 

1 

TABLE 6.30. (Concluded) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

4 	2 	 6 
3 	3 	3 	1 	 10 

1 	2 	4 	3 	 10 
3 	2 	4 	2 	 11 

1 	1 	4 	3 	2 	 11 
1 	1 	1 	1 	2 	 6 

1 	2 	3 	3 	 9 
1 	 1 	2 	3 	1 	1 	 9 

3 	7 	2 	1 	 13 
4 	3 	6 	 13 

1 	 3 	3 	3 	 10 
2 	2 	2 	 7 

1 	 3 	4 	4 	1 	1 	14 
1 	1 	2 	4 	1 	1 	1 	11 

1 	4 	5 	2 	 12 
1 	1 	1 	4 	 1 	 8 
2 	 1 	4 	1 	 8 
1 	 4 	4 	1 	 10 

1 	2 	2 	1 	3 	2 	 11 
1 	2 	2 	2 	 7 

1 	 6 	2 	2 	 11 
2 	1 	2 	 5 

2 	5 	2 	 9 
1 	1 	3 	5 	1 	1 	 12 
1 	 2 	2 	1 	 6 
1 	4 	1 	4 	 1 	 11 

1 	4 	3 	 8 
3 	 1 	3 	1 	 8 

1 	5 	6 	5 	1 	 18 
1 	 I 	3 	3 	2 	 10 

1 	4 	6 	1 	1 	 13 
1 	1 	 2 	2 	 1 	 7 

2 	2 	2 	2 	 8 
1 	1 	4 	4 	1 	 11 
1 	1 	2 	3 	1 	 1 	9 

1 	 1 	5 	2 	1 	 10 
I 	3 	2 	 6 



TABLE 6.31. Number of storms listed in Table 6.30 that eventually became hurricanes. (Neumann et al. 1978) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

1871 
1872 
1873 
1874 
1875 
1876 
1877 
1878 
1879 
1880 
1881 
1882 
1883 
1884 
1885 
1886 2 I 2 2 1 8 
1887 	 I 	2 	3 	2 	1 	1 	10 
1888 	 1 	 2 	 I 	1 	 5 
1889 	 1 	 I 	3 	 5 
1890 	 1 	 I 
1891 	 I 	2 	3 	2 	 8 
1892 	 1 	2 	1 	 4 
1893 	 I 	1 	5 	3 	 10 
1894 	 1 	I 	3 	 5 
1895 	 I 	 1 	 2 
1896 	 I 	I 	2 	2 	 6 
1897 	 1 	1 	 2 
1898 	 2 	2 	 4 
1899 	 1 	2 	1 	1 	 5 
1900 	 1 	2 	 3 
1901 	 1 	2 	 3 
1902 	 1 	 1 	I 	 3 
1903 	 1 	I 	3 	2 	1 	 8 
1904 	 1 	1 	 2 
1905 	 1 	 1 
1906 	 1 	 1 	2 	2 	 6 



1907 
1908 
1909 
1910 
1911 
1912 
1913 
1914 
1915 
1916 
1917 
1918 
1919 
1920 
1921 
1922 
1923 
1924 
1925 
1926 
1927 
1928 
1929 
1930 
1931 
1932 
1933 
1934 
1935 
1936 
1937 
1938 
1939 
1940 
1941 
1942 

1 

TABLE 6.31. (Continued) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

0 
1 	 2 	I 	 5 
1 	1 	1 	1 	 4 

2 	1 	 3 
2 	1 	 3 

I 	2 	I 	 4 
1 	 1 	I 	 3 

0 
3 	I 	 4 

1 	2 	3 	2 	2 	1 	 11 
I 	1 	 2 
2 	1 	 3 

1 	 1 
4 	 4 

I 	 2 	1 	 4 
1 	1 	 2 

1 	1 	1 	 3 
2 	I 	1 	1 	 5 

1 	 I 
2 	I 	4 	1 	 8 

1 	3 	 4 
2 	1 	1 	 4 

I 	 1 	1 	 3 
2 	 2 

2 	 2 
3 	1 	1 	1 	 6 

1 	1 	3 	3 	I 	 9 
1 	1 	1 	1 	1 	1 	 6 

2 	1 	2 	 5 
1 	1 	3 	2 	 7 

3 	 3 
2 	1 	 3 
1 	 2 	 3 
3 	1 	 4 

3 	1 	 4 
3 	 1 	 4 



1943 
1944 
1945 
1946 
1947 
1948 
1949 
1950 
1951 
1952 
1953 
1954 
1955 
1956 
1957 
1958 
1959 
1960 
1961 
196 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 

1 

1 

1 

1 

1 

1 

TABLE 6.31. (Concluded) 

Year 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Total 

I 	1 	2 	I 	 5 
2 	1 	3 	I 	 7 

1 	1 	2 	 5 
1 	 1 	1 	 3 

2 	 I 	/ 	 5 
1 	3 	1 	1 	 6 
/ 4 	1 	 7 
4 	3 	4 	 11 
2 	/ 	3 	 8 
2 	.? 	2 	 6 
/ 3 	1 	 6 
', 	3 	I 	 1 	 8 
3 	5 	1 	 9 

1 	 I 	1 	 1 	 4 
.) 	 3 

3. 	3 	I 	 7 
9 	 3 	1 	 7 
I 	', 	1 	 4 
1 	 5 	I 	1 	 8 

1 	 .., 	 3 
2 	4 	1 	 7 
1 	4 	I 	 6 
9 	1 	 I 	 4 

3 	1 	1 	 1 	 7 
1 	3 	/ 	 6 
1 	1 	 I 	 5 
4 	4 	3 	1 	 12 
I 	1 	9 	 5 
.? 	4 	 6 
1 	 I 	 3 

1 	I 	1 	1 	 4 
2 	.? 	 4 

1 	2 	3 	 6 
4 	 I 	1 	 6 
I 	3 	1 	 5 
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FIG. 6.35. Distribution of observed duration of Atlantic tropical cyclones, 1886-1977. (Neumann 
et al. 1979) 

NORTH ATLANTIC TROPICAL CYCLONE SEASONS FOR THE YEARS 1976-79 

To examine the variations from one season to the next, the hurricane seasons of 1976, 
1977, 1978, and 1979 were selected. During the 1976 season, there were eight named 
tropical cyclones of which six became hurricanes. This was an average season (the annual 
average for the past 30 yr being nine storms including six hurricanes). However, there 
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FIG. 6.39. Tropical storms and hurricanes that passed through the Yucatan Channel on their way from the 
Caribbean Sea to the Gulf of Mexico. (Neumann and Hill 1976) 
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FIG. 6.40. Tropical storms and hurricanes that passed within 100 km of Puerto Rico. (Neumann and Hill 1976) 

were two unusual features of the 1976 season. First, no storm crossed either the Caribbean 
Sea or the Gulf of Mexico. In the twentieth century, this has happened only once before, 
during 1962 (Lawrence 1977). Another unusual feature is associated with the tracks of 
Hurricanes Emmy and Frances. They recurved towards the east at very low latitudes. 
According to Lawrence (1977) this southern latitude of recurvature so early in the season 
is unprecedented. Hurricane Belle of August 6-10, 1976, generated storm surges along 
the east coast of the United States (mainly in the New York—New England area). 

The season of 1977 is considered as rather inactive. In this season there were six 
named storms of which five became hurricanes (Lawrence 1978). The number of hurricane 
days during this season was 9 compared with the long-term average of 29. Also, the 
hurricane season began quite late (on August 29 with Hurricane Anita). The season ended 
with Hurricane Frieda on October 18, rather early. This interval of 51 d is less than half 
the long-term average of 110 d. 

Another interesting feature of the 1977 season is that none of the storms originated 
east of 60°W. In the 30 yr prior to this, only once did this happen (in 1972). Hurricane 
Anita showed a central pressure of 926 mb, which is the fourth lowest ever recorded in 
the Gulf of Mexico. Also, Hurricane Anita has been ranked (Lawrence 1978a, 1978b) as 
the fourth most intense storm in the Gulf of Mexico behind the 1935 Labor Day storm in 
the Florida Keys (892 mb), Camille in 1969 (905 mb), and Beulah in 1967 (923 mb). 
During the 1977 season the only named storm to directly hit the United States was 
Hurricane Babe, which made a landfall along the Louisiana coast on September 5. 
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The 1978 season had 11 named tropical cyclones of which 5 became hurricanes. The 
only unusual feature of this season was the short duration of the individual cyclones 
(Lawrence 1979a, 1979b). The total number of hurricane hours (i.e. each hour the storm 
has wind speeds greater than 63 knots (117 km • IC I )) for this season was 307 compared 
with the long-term average of 620. Hurricane Debra of August 26-29 generated storm 
surges along the Louisiana coast. 

The following are the highlights of the 1979 season (Hebert 1980; Frank and Clark 
1980). Hurricane David (i.e. the winds and the storm surge) killed 56 in Dominica and 
more than 2000 in the Dominican Republic. It also rendered 60 000 of the 80 000 residents 
of Dominica homeless. About 200 000 people were made homeless in the Dominican 
Republic, and the damage there exceeded U.S .$1 billion. Hurricane Frederic caused an 
estimated damage of $2.3 billion in the United States, making it the costliest hurricane in 
United States history. Hurricane Claudette produced a 42-in. (1.1 m) rainfall in 24 h in 
Alvin, TX, which is a United States record for rainfall in a 24-h period. In 1979, the total 
damage resulting from tropical cyclones in the United States exceeded $3 billion, another 
record. 

In the 1979 season there were eight named storms of which five became hurricanes. 
Hebert (1980, p. 973) stated: 

After 13 consecutive years without a hurricane, the Lesser Antilles, Puerto Rico, the 
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Virgin Islands and the Florida east coast were seriously affected by hurricanes. The 
Mobile, Alabama—Pascagoula, Mississippi area had its most intense hurricane of this 
century. Frederic was the first hurricane to strike Mobile directly since 1932. David 
was the first hurricane to strike the Cape Canaveral area directly since 1926. David was 
the most intense hurricane of the season, and probably of this century, in the eastern 

 Caribbean Sea area. It was the strongest hurricane at Dominica since 1834 and at Santo 
Domingo (Dominican Republic) since 1930. 

Storm surges were generated on the United States east coast by both Hurricanes David 
and Frederic. However, the surges due to Frederic were greater (up to 5 m at Gulf State 
Park, AL). 

SOME COMPARISONS OF THE TROPICAL CYCLONE ACTIVITY IN THE ATLANTIC AND PACIFIC 
OCEANS 

Nunez and Gray (1978) and Gray (1978c) compared some meteorological parameters 
associated with Atlantic hurricanes and Pacific typhoons, and their findings are sum-
marized in Table 6.32. 

6.5 Cyclones of the Indian Ocean 

There are no extratropical cyclones in the North Indian Ocean. The extratropical 
cyclones of the South Indian Ocean are not very relevant for storm surge studies and, in 
any case, these will be briefly considered in section 7.4. In this section will be considered 
mainly the tropical cyclones of the South and North Indian oceans with emphasis on the 
Bay of Bengal and to a lesser extent on the Arabian Sea. However, while discussing 
tropical cyclones, another type of cyclone (which is neither tropical nor extratropical) 
referred to as a subtropical cyclone will be considered. 

SUBTROPICAL CYCLONES 
Simpson (1952) referred to the upper level cutoff lows, which frequently develop 

over the eastern part of the North Pacific Ocean during winter, north of Hawaii (locally 
referred to as Kona storms and which occasionally cause heavy flooding in Hawaii), as 
subtropical cyclones. These appear to be preceded by the injection of cold air aloft through 
the mechanism of large-amplitude troughs in the polar westerlies (Palmén 1949). Ramage 
(1962) suggested that subtropical cyclones indeed are direct energy-creating systems. This 
answers the question of how a cold upper cyclone can persist and intensify and even 
occasionally extend to the surface after being cut off from a fresh supply of cold air when 
condensation and precipitation should inevitably weaken the thermal and pressure gra-
dients of the system. 

Based on a study of two subtropical cyclones near Hawaii, Ramage (1962) gave the 
following results. About 500 km from the center and beyond, the upward motion is weak 
and resembles that of a relatively warm-cored weak tropical cyclone circulation. In the 
downward branch (beyond 500 km from the center) gentle downward motion extends to 
the subsidence inversion level. In the surface layer beneath the subsidence inversion, a 
regime that bears some resemblance to the trade winds exists. Local regions of wind 
maxima and corresponding zones of convergence and divergence occur. The eye diameter 
could be as large as 200 km. Although a subtropical cyclone somewhat resembles a 
large-amplitude trough in the polar westerlies associated with a surface low, the sub- 
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Parameter 
Atlantic hurricanes 

(West Indies) Pacific typhoons 

Applies Steering current 
concept for predicting 
tracks 

Applies 

West Pacific typhoons move more 
to the left of the mean current than 
do West Atlantic hurricanes 

TABLE 6.32. Comparison of Atlantic hurricanes and Pacific typhoons. 

Temperature anomaly. This 
is determined as follows. 
A mean temperature is 
calculated by averaging 
the temperature values at 
9 and 15° to the east and 
west of the position of the 
cyclone. Deviation from 
this mean temperature is 
the anomaly 

Warm core throughout most of the 
troposphere. Warmest temper-
ature at about 300 mb. The anom-
aly is +4°C for the hurricane (at 
300 mb) 

Cold core in the upper troposphere 
and lower stratosphere. This re-
gion occurs at a lower level than 
for typhoons and its radial extent 
is greater 

Warm core throughout most of the 
troposphere. Warmest temper-
ature at about 250 mb. The anom-
aly is +7°C for the typhoon (at 
250 mb). Cold core in the upper 
troposphere and lower strato-
sphere 

Relative humidity 

Radial winds 

Tangential wind 

Inflow angle 

About 10% less than for typhoons at 
equivalent radii and heights 

Boundary layer relative humidity is 
about 15% lower than for the 
West Pacific 

Maximum inflow at 950 mb with a 
wind of 8 m • s -  . At 150 mb 
there are two outflow jets: north-
east and southwest. The northeast 
jet is about four times stronger 

Maximum cyclonic flow is at the 
top of the frictional boundary 
layer at 850 mb 

The tangential wind is smaller than 
in typhoons 

The anticyclonic maximum occurs 
at 150 mb 

Generally the hurricane size is 
smaller than a typhoon's 

Vertical shear between 950 and 
150 mb is 10-15 m • 

The boundary layer inflow angle 
decreases from quadrant to quad-
rant in the following order: right, 
front, back, left 

Moister inner core with relative hu-
midities greater than 90% up to 
400 mb whereas in the hurricane, 
such a high relative humidity 
cannot be found higher than at 
575 mb 

Maximum inflow at 950 mb with a 
wind of 6 m • At 150 mb 
there are two outflow jets: north-
east and southwest. The south-
west jet is somewhat greater 

Maximum cyclonic flow is at the 
top of the frictional boundary 
layer at 850 mb 

The anticyclonic maximum occurs 
at 150 mb. The anticyclonic cir-
culation is relevant also in deter-
mining the weather associated 
with the typhoon 

Vertical shear between 950 and 
150 mb is 15-20 m • s - 

The boundary layer inflow angle 
decreases in the following order: 
front, right, left, back 
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FIG, 6.42. Frequency of tropical cyclones in the Indian Ocean (average numbers of occurrences per 10 yr for 
each 10° square by months). Roman-type numbers indicate average 10-yr totals over the northern Indian Ocean. 
The unblackened segments of the histograms and the italicized numbers given corresponding information for 
severe tropical storms. (Ramage 1971) 

tropical cyclone is more symmetric and its field of motion, clouds, and weather are quite 
different. 

Subtropical cyclones occur in the Atlantic as well as in the Indian Ocean (in addition 
to those in the Pacific). In connection with the meteorological program of the International 
Indian Ocean Expedition (HOE) during the 1960's, Ramage (1971) mentioned the exis-
tence of a subtropical cyclone over the Bay of 13engal in June 1963. In July 1963 another 
subtropical cyclone was detected over the northeastern part of the Arabian Sea. 

Miller and Keshavamurthy (1968) developed a model for the subtropical cyclone 
using composited data. Subtropical cyclones develop predominantly near heat troughs and 
in the areas dominated by trade winds. Whereas in the eastern part of the North Pacific, 
the subtropical cyclones persist for weeks without weakening, in the Arabian area, they 
dissipate, probably as a result of ventilation of the cyclone by drier air. 

In the Bay of Bengal and Arabian Sea areas, storm surges occur usually during the 
postmonsoon (September-December) and the premonsoon (April-May) months. Hence, 
subtropical cyclones are not very relevant for storm surge studies. 

TROPICAL CYCLONES OF THE INDIAN OCEAN 

Tropical cyclones develop in all parts of the Indian Ocean. This is in contrast with 
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TABLE 6.33. Tropical cyclones of the South Indian Ocean for the 1975-76  season. 
H, hurricane; T, tropical storm. (DeAngelis 1977a) 

Maximum 	Lowest 
wind 	pressure 

No. 	Name 	Intensity 	Date 	(km•h - ')" 	(mb) 

1 	Audrey 	T 	Nov. 17-29 	 96 	995 
2 	Barbara 	H 	Dec. 3-19 	 157 	980 
3 	Clotilde 	H 	Jan. 7-20 	 250 	980 
4 	Danae 	 H 	Jan. 12-29 	 250 	955 
5 	Gladys 	 T 	Mar. 27—Apr. 10 	111 	998 
6 	Heliotrope 	T 	Apr. 3-12 	 83 	1000 

'Estimated. 

TABLE 6.34. Tropical cyclones of the South Indian Ocean during the 1976-77 season. 
H, hurricane; T, tropical storm. (De Angelis 1978d) 

Maximum 	Lowest 
wind 	pressure 

No. 	Name 	Intensity 	Date 	(km • II' )" 	(me 

1 	Agathe 	T 	Oct. 3-13 	 102 	995 
2 	Brigitta 	T 	Nov. 6—Dec. 1 	 83 	1000 
3 	Clarence 	H 	Jan. 5-16 	 204 	960 
4 	Domitile 	T 	Jan. 18-23 	 102 	992 
5 	Emilie 	 H 	Jan. 26—Feb. 5 	176 	980 
6 	Fifi 	 H 	Jan. 29—Feb. 10 	148 	985 
7 	Gilda 	 T 	Feb. 3-9 	 83 	1000 
8 	Io (Jack) 	H 	Feb. 15—Mar. 2 	250 	935 
9 	Hervea 	 H 	Feb. 17—Mar. 3 	185 	970 

'Estimated. 

the Atlantic and Pacific oceans. There are no tropical cyclones in the South Atlantic and 
eastern part of the South Pacific. The average number of tropical cyclones during a 10-yr 
period for each 10° square by months is shown in Fig. 6.42. It can be seen that the highest 
frequencies occur north of Indonesia (not counting the Philippines area). In the Bay of 
Bengal and to the region east of the Malagasy Republic (Madagascar) high frequencies 
also occur. However, one difference is that whereas in the Bay of Bengal the highest 
frequencies are during September—December, in the region east of the Malagasy Republic 
(i.e. the western part of the South Indian Ocean) and in the region west of the west coast 
of Australia (i.e. the eastern part of the South Indian Ocean) the high frequencies occur 
during January—March. 

TROPICAL CYCLONES OF THE SOUTH INDIAN OCEAN 

Certain features of the tropical cyclones of the South Indian Ocean for the seasons 
1975-76 and 1976-77 are summarized in Tables 6.33 and 6.34, respectively. In the 
1975-76 season there were a total of six tropical cyclones of which three reached 
hurricane strength. In the 1976-77 season, of a total of nine cyclones, five became 
hurricanes. The tropical cyclones for the period 1965-77 are summarized by month for 
various ocean basins in Table 6.35. Note that in terms of frequency, the North Indian 
Ocean has the lowest and the South Indian Ocean has the second lowest. However, this 
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TABLE 6.35. Tropical cyclones in various ocean basins during the period 1965-77. Numbers in parentheses indicate tropical cyclones that 
reached hurricane intensity (i.e. winds - 119 km •11 -1 ). (DeAngelis I979a) 

Eastern 	Western 	 Australia- 
North 	North 	North 	North 	South 	South 

Atlantic 	Pacific 	Pacific 	Indian 	Indian 	Pacific 	Total 	Average 

Jan. 	0(0) 	0(0) 	9(5) 	2(1) 	29(17) 	52(20) 	92(43) 	7.1(3.3) 

Feb. 	0(0) 	0(0) 	4(1) 	0(0) 	30(16) 	41(16) 	75(33) 	5.8(2.5) 

Mar. 	0(0) 	0(0) 	6(1) 	0(0) 	15(5) 	39(18) 	60(24) 	4.6(1.8) 

Apr. 	0(0) 	0(0) 	11(9) 	4(2) 	6(1) 	18(6) 	39(18) 	3.0(1.4) 

May 	3(1) 	5(3) 	14(10) 	14(5) 	3(0) 	4(3) 	42(22) 	3.3(1.7) 

June 	8(4) 	24(9) 	20(13) 	5(1) 	0(0) 	0(0) 	59(27) 	4.4(2.1) 

July 	13(7) 	41(16) 	60(35) 	2(0) 	1(0) 	2(0) 	119(58) 	9.2(4.5) 

Aug. 	32(22) 	53(31) 	67(38) 	2(1) 	0(0) 	0(0) 	154(92) 	11.8(7.1) 

Sept. 	44(26) 	41(20) 	63(43) 	11(4) 	1(0) 	0(0) 	160(93) 	12.3(7.2) 

Oct. 	20(12) 	20(10) 	50(40) 	16(7) 	5(3) 	4(1) 	115(73) 	8.8(5.6) 

Nov. 	4(2) 	4(0) 	34(19) 	19(8) 	5(2) 	18(7) 	84(38) 	6.5(2.9) 

Dec. 	1(0) 	0(0) 	11(4) 	11(4) 	21(6) 	33(15) 	77(29) 	5.9(2.2) 

Total 	125(74) 	188(89) 	349(218) 	86(33) 	116(50) 	211(86) 	1075(550) 

Average 	9.6(5.7) 	14.5(6.8) 	26.8(16.8) 	6.6(2.5) 	8.9(3.8) 	16.2(6.6) 	82.7(42.3) 

Percent 
hurricanes 	59 	 47 	 63 	 38 	 43 	 41 

Month 
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TABLE 6.36. Comparison of the ratings of western Pacific and Indian Ocean ports evaluated as typhoon havens 
(also see Table 6.29 for details on certain ports). (Brand 1978) 

Region 	 Rating 

Apra Harbor 	 Guam 	 Poor 
Kaohsiung 	 Taiwan 	 Poor 
Chilung (Keelung) 	 Taiwan 	 Poor 
Hong Kong Harbor 	 Hong Kong 	Poor 
Yokosuka 	 Japan 	 Good 
Nunazu operating area 	Japan 	 Poor 
Iwakuni 	 Japan 	 Marginal (but has easily accessible anchorages close by 

that are good) 
Kure 	 Japan 	 Good 
Saskebo 	 Japan 	 Good (except for carriers) 
Kagoshima 	 Japan 	 Poor 
Buckner Bay (Okinawa) 	Japan 	 Poor 
Naha (Okinawa) 	 Japan 	 Poor 
Subic Bay 	 Philippines 	Marginal to poor 
Manila 	 Philippines 	Poor 
Cebu 	 Philippines 	Poor 
Inchon 	 Korea 	 poor (unless shelter is available in the tidal basin, then 

it would be considered a good haven) 
Pusan 	 Korea 	 Poor 
Chinhae 	 Korea 	 Marginal (but has easily accessible anchorages nearby 

that are considered good) 
Sri Lanka 	Good 
Pakistan 	 Marginal 
New Zealand 	Good to marginal 
Australia 	Marginal (unless shelter is available in Cockburn  Sound 

or the inner harbor, then it would be considered good) 
Diego Garcia 	Poor 

Port 

Fin. 6.43. Typical tropical cyclone tracks in the South Indian Ocean between the Malagasy Republic and the 
west coast of Australia. 
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FIG. 6.44. Typical tropical cyclone tracks near the west coast of Australia. 

may be misleading when one considers the damage due to tropical cyclones (and storm 
surges generated by them). More than 60% of the deaths and almost 40% of the damage 
due to tropical cyclones occur on lands bordering the Bay of Bengal, which is only a small 
part of the North Indian Ocean. 

Considered earlier were typhoon waves among harbors located around the Pacific 
Ocean. Some Indian Ocean harbors as well as some Pacific Ocean harbors (for com-
parison) are listed in Table 6.36. Among the Indian Ocean harbors, only Colombo is listed 
as "good" and Karachi as "marginal" (Brand 1978). 

Some typical tropical cyclone tracks in the region between the Malagasy Republic 
and the west coast of Australia are illustrated in Fig. 6.43 and typical tracks near the west 
coast of Australia in Fig. 6.44. For comparison, tropical cyclone tracks near the east coast 
of Australia and those affecting New Zealand are shown in Fig. 6.45 and 6.46, 
respectively. 

Australia is the only continent that is affected by tropical cyclones on both the east 
and west coasts. Certain features of the tropical cyclones of Australia are described in 
Tables 6.37-6.39. The average tropical cyclone frequencies for the west and east coasts 
of Australia for the months of December and January are given in Fig. 6.47 and 6.48, 
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FIG. 6.45. Typical tropical cyclone tracks near the east coast of Australia. 

respectively. The frequency of cyclone days in Australia is given in Fig. 6.49 and the 
cyclone frequency change (i.e. trend) during the period 1905-55 is shown in Fig. 6.50. 

TROPICAL CYCLONES OF THE NORTH INDIAN OCEAN 

James Cappar in India suggested in 1801 (also William Dunbar in the United States 
in the same year) that there is a vortex in the center of a tropical cyclone (Ludlam 1963). 
However, it was Henry Piddington who, in 1851, coined the word "cyclone" from the 
Greek word "kyklon" meaning coil of snake to describe the rotary motion. Piddington was 
the president of the Marine Courts at Calcutta, India, and in 1851 he published a sailor's 
handbook in which he stated some laws for tropical storms. During 1839-58 he published 
a series of articles on the structure and movement of tropical storms (Rao 1968). Other 
notable early workers on this topic were Blanford (1883), Chambers (1882 to 1885, cited 
in Rao 1968), Dallas (1891a, 1891b), and Eliot (1900). Basically, all these studies were 
based on surface data only. 

Koteswaram and Gasper (1956), using compositing data for 31 storms, gave detailed 
surface structure of tropical storms in the North Indian Ocean. In these studies, essentially 
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FIG. 6.46. Typical tropical cyclone tracks near New Zealand. 

the following nomenclature was used: depression (wind speed between 18 and 33 knots), 
moderate storm (wind speed between 34 and 47 knots), and severe storm (wind speed 
greater than 47 knots) (1 knot = 1.852 km •11 -1 ). 

Cyclones that affect the Indian subcontinent basically develop out of perturbations 
originating in the intertropical convergence zone (Rao 1968). Since this zone exhibits 
seasonal variations in intensity and latitudinal position, it is natural to expect similar 
changes in the cyclones. During the summer period, the ITCZ lies mostly over land and 
severe cyclones capable of generating destructive storm surges do not form. However, 
depressions giving heavy precipitation occur regularly and frequently. 

During spring and fall, the belt between 10 and 15°N gives rise to several depressions, 
some of which mature into storms and some even into severe storms. Usually, these move 
towards the northwest and strike the Andhrapradesh coast of India. However, some of 
them recurve over the Bay of Bengal and bit the northern coast of the bay (the west Bengal 
state of India and the coast of Bangladesh). During autumn, the storms take a more 
southerly course and strike the peninsular part of India. Some of these storms recurve and 
strike the north coast of the bay (the Sunderban coast). Some cross the peninsula and 
redevelop over the Arabian Sea and travel west—northwest and strike the Arabian Sea 
coast of the subcontinent. Usually, there are no storms during winter. On the rare occasion 
when they occur, they could be extremely violent. 

The tropical cyclones of the North Indian Ocean are usually less frequent and less 
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Section of coast Dec. 	Jan. 	Feb. 	Mar. 	Apr. 

Hamlin Pool-Roeboume 	0.05 	0.18 	0.21 	0.18 	0 
Roeboume-Broome 	 0.10 	0.24 	0.18 	0.13 	0.03 
Broome-Wyndham 	 0.10 	0.26 	0.08 	0.13 	0.03 
Wyndham-Darwin 	 0.03 	0.03 	0.05 	0.03 	o 
Darwin-Melville Bay 	 0.08 	0.03 	0.03 	0.03 	0.03 
N.T. Gulf coast 	 0.02 	0. i4 	0.08 	0.08 	o 
Queensland Gulf coast 	 0.02 	0.22 	0 	0 	0 
Thursday Island-Cooktown 	0.04 	0.04 	0.04 	0.08 	0.04 
Cooktown-Townsville 	 0 	0.12 	0.28 	0.12 	0.04 
Townsville-Rockhampton 	0.04 	0.08 	0.12 	0.16 	0.06 
Rockhampton-N.S.W. border 	0 	0.06 	0.16 	0.16 	0.06 

TABLE 6.37. Percentage frequency and types of tropical cyclone tracks for the west 
coast of Australia. (Brunt and Hogan 1956) 

Type of path 	Dec. 	Jan. 	Feb. 	Mar. 	Apr. 	Season 

Parabolic 	 4 	5 	12 	8 	2 	31 
More or less straight 	6 	16 	12 	13 	1 	48 
Reverse curvature. 	1 	1 	6 	0 	o 	8 
Cusp 	 o 	3 	2 	5 	1 	11 
Doubling of track 	o 	2 	0 	o 	0 	2 

Total 	 100 

TABLE 6.38. Percentage frequency and types of tropical cyclone tracks for the east 
coast of Australia. (Brunt and Hogan 1956) 

Type of path 	Dec. 	Jan. 	Feb. 	Mar. 	Apr. 	Season 

Parabolic 	 2 	6 	14 	15 	2 	39 
More or less straight 	2 	11 	8 	11 	5 	37 
Reverse curvature 	1 	8 	0 	I 	2 	12 
Cusp 	 0 	2 	7 	1 	o 	to 
Doubling of track 	I 	o 	o 	o 	1 	2 

Total 	 100 

TABLE 6.39. Probability of cyclones endangering coastal sections in Australia. (Brunt 
and Hogan 1956) 

intense than the hurricanes of the Atlantic Ocean or the typhoons of the Pacific Ocean (Rao 
1968). Also, their life span is shorter, i.e. 2-3 d compared with 6 d or more elsewhere. 
This shorter life span (even for recurving storms) is basically due to the relatively short 
track over the waters compared with other ocean basins. This, of course, does not mean 
that the destruction of life and damage to property are less. Two of the lowest central 
pressures recorded in these storms are 919.4 mb (False Point Cyclone of September 1885) 
and 959.7 mb (the Nellore Cyclone of November 1927). 

The severe storms have winds up to or more than 100 knots (185 km • IC I ). However, 
their areal extent is quite small. The highest wind speed of 120 mi • h .' (193 km • h -  ) was 
recorded in the Midnapore Cyclone of 1942 (the estimated maximum wind speed for this 
was 140 m •11 -1  (224 km •11 -1 )). During the 1964 Rameswaram Cyclone, the maximum 
estimated winds over Sri Lanka were up to 150 knots (278 km •11 -1 ). 
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FIG. 6.47. Average frequency of tropical cyclones crossing 5 0  latitude—longitude squares per 10 yr in 
December. Heavier broken lines indicate the axes of maximum values. (Brunt and Hogan 1956) 

120° 	 150° 	 180°  

FIG. 6.48. Average frequency of tropical cyclones crossing 5° latitude—longitude squares per 10 yr in January. 
Heavier broken lines indicate the axes of maximim values. (Brunt and Hogan 1956) 
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FIG. 6.49. Frequency of cyclone days in Australia. (Brunt and Hogan 1956) 
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FIG. 6.50. Frequency of tropical cyclones in and around Australia (successive 5-yr totals). (Brunt and Hogan 

1956) 

Another interesting feature of these storms is the difference in the location of 
the maximum winds. For the premonsoon storms (April—May) the sector of strongest 
winds is usually in the southeast or east, whereas for the postmonsoon storms 
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TABLE 6.40. Number of cyclonic disturbances that 
originated over the Bay of Bengal and the Arabian Sea 
in different months for the period 1891-1960. Note that 
"storms" includes "severe storms" also, whereas 
"cyclonic disturbances" includes storms and severe 
storms in addition to cyclonic disturbances. (Rao 1968) 

Cyclonic 	 Severe 
disturbances 	Storms 	storms 

Jan. 	 13 	 4 	 1 
Feb. 	 3 	 1 	 I 
Mar. 	 5 	 4 	 2 
Apr. 	26 	 18 	 7 
May 	56 	 28 	 18 
June 	93 	 34 	 4 
July 	132 	 38 	 7 
Aug. 	145 	 25 	 1 
Sept. 	151 	 27 	 8 
Oct. 	132 	 53 	 19 
Nov. 	102 	 56 	 23 
Dec. 	52 	 26 	 9 

910 	 314 	100 Year 

(October—December), it is to the north of the center (Rao 1968). Mowla (1968) compared 
the cyclogenesis in the Bay of Bengal and the Arabian Sea. 

After the Second World War, using radiosonde data, the upper structure of these 
storms was studied, and several articles appeared in the Indian Journal of Meteorology and 
Geophysics (now called Mausam), especially on the tracks of cyclonic disturbances in 
various months with emphasis on the recurvature. These studies revealed that the areas of 
generation and the tracks in every month are closely related to the anticyclonic cell in the 
upper troposphere at a 10- to 12-km height. However, variations in the tracks could occur 
due to changes in the general circulation produced by troughs in the midlatitude westerlies. 

FREQUENCIES OF CYCLONIC STORMS IN THE BAY OF BENGAL 

The number of cyclonic disturbances over the Bay of Bengal for each month during 
the period 1891-1960 is given in Table 6.40. Raghavendra (1973) performed a statistical 
analysis of the number of tropical storms and depressions in the Bay of Bengal for the 
period 1890— 1969 (for a more recent study, see Mooley 1980b). The average annual 
number of storms and depressions is 13. The monsoon season accounts for 56% of these 
and the postmonsoon season accounts for 31%. The highest number (20 storms) occurred 
in 1927. The frequency distribution of storms and depressions of monsoon and post-
monsoon seasons is normal and that of the annual season is almost normal with slight 
kurtosis. The decade of 1920-29  had the highest mean and the decade of 1950-59 the 
lowest mean for the annual and monsoon seasons, thus indicating a cycle of 60 yr. 

Sadler and Gidley (1973) gave tracks of the storms in the North Indian Ocean. 
Chakravorthy (1956) discussed the dimensions of the eye of the Bay of Bengal storms. He 
found that the eye diameter varied from 7 to 20 mi (11.5-32 km). 

Mooley (1980a, 1980b) studied the severe cyclonic storms of the Bay of Bengal for 
the period 1877-1977. He found that during the period  1965-77, a higher percentage 
(than the average) of storms intensified into severe storms and a higher percentage of 
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FIG. 6.51. Annual frequency of severe cyclonic storms that over the period 1877-1977 (a) 
formed over the Bay of Bengal and (b) struck the coast. (Mooley 1980) 

TABLE 6.41. Mean and variance of the number of severe storms forming 
over the Bay of Bengal, and the number of severe storms striking the coast 
in a year. (Mooley 1980) 

Severe storms forming over Severe storms striking 
the Bay of Bengal 	 the coast 

Period 	Mean 	Variance 	Mean 	Variance 

	

1891-1964 	1.50 	1.420 	1.22 	1.087 

	

1877-1964 	1.42 	1.374 	1.16 	1.091 

	

1877-1977 	1.67 	1.910 	1.40 	1.530 

	

1965-77 	3.38 	1.923 	3.00 	1.833 

TABLE 6.42. Number of cyclonic storms that formed over the Bay of Bengal, number that intensified into 
severe storms over the bay, and number that struck the coast as severe storms in different 13-yr periods. (Mooley 
1980) 

Efficiency of 
Number of 	Number of 	intensification Ratio of severe storms 

Number of 	storms that 	severe storms 	of storms into 	that struck the coast 
storms that 	intensified into 	that struck 	severe storms 	to storms that struck 

Period 	formed 	severe storms 	the coast 	over the bay 	the coast 

	

1877-89 	49 	 13 	 12 	 0.26 	 0.31 

	

1890-1902 	56 	 19 	 18 	 0.34 	 0.36 

	

1903-15 	64 	 19 	 17 	 0.30 	 0.30 

	

1916-28 	61 	 19 	 16 	 0.31 	 0.36 

	

1929-41 	70 	 24 	 19 	 0.34 	 0.39 

	

1942-54 	46 	 13 	 8 	 0.28 	 0.28 

	

1952-64 	45 	 21 	 13 	 0.47 	 0.43 

	

1965-77 	70 	 44 	 39 	 0.63 	 0.66 

	

1886-98 	74 	 24 	 23 	 0.32 	 0.35 

	

1924-36 	74 	 16 	 13 	 0.22 	 0.25 

	

1932-44 	71 	 27 	 22 	 0.38 	 0.47 

storms made landfall. Generally, the formation and landfall of these severe storms are 
random events and are consistent with the Poisson stochastic process. 

For this study, a severe cyclonic storm is defined as one with winds greater than or 
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TABLE 6.43. Frequency of cyclonic storms that formed over the Bay of Bengal, frequency of storms that intensified into severe storms, 
efficiency of intensification of storms, and frequency of severe storms that crossed the coast in different months. Data presented are for the 
whole period 1877-1977 (not annual average). (Mooley 1980) 

Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Annual 

Frequency of storms 	5 	0 	5 	21 	48 	43 	48 	30 	42 	77 	91 	43 	453 
Frequency of storms 

that intensified into 
severe storms 	2 	0 	3 	9 	32 	6 	8 	3 	14 	30 	44 	18 	169 

Efficiency of 
intensification 	 0.43 	0.67 	0.14 	0.17 	0.10 	0.33 	0.39 	0.49 	0.42 	0.37 

Frequency of severe 
storms that crossed 
the coast 	 1 	0 	2 	6 	29 	6 	8 	3 	12 	28 	35 	11 	141 
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Fin. 6.55. Track of the severe storm of December 1964 over Sri Lanka. (Rao 1968) 

equal to 48 knots (89 km • h -1 ). Severe storms can form in any part of the Bay of Bengal, 
in any month, and can strike any section of the coast. However, they do not usually form 
during January—March and they do not strike the Tenasserim coast. 

The annual frequency of severe cyclones that formed over the Bay of Bengal and 
those that struck the coast is shown in Fig. 6.51. The mean and variance of the number 
of severe storms forming over the Bay and those striking the coast are listed in Table 6.41. 
Further details are provided in Tables 6.42 and 6.43. The frequency of severe cyclonic 
storms that formed over the Bay of Bengal and those that struck the coast, for each 10-yr 
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FIG. 6.56. Tracks of a storm pair in the Bay of Bengal (December 7-15, 
1965) and Arabian Sea (December 7-12, 1965). (Swaminathan 1966) 

TABLE 6.44. Details of storm pairs in the Bay of Bengal 
and the Arabian Sea during the period 1891-1960. Date 
indicated refers to the original date of the storm. In each 
pair, the top row is for the Bay of Bengal and the bottom row 
for the Arabian Sea. (Swaminathan 1969) 

Origin 

Latitude 	Longitude 
Date 	 (°N) 	 (°E) 

Nov. 1, 1981 	 8.0 	 74.5 
Nov. 1, 1891 	 9.5 	 98.5 
Oct. 25, 1912 	 15.0 	 72.5 
Oct. 28, 1912 	 8.5 	 89.0 
Apr. 18, 1922 	 9.0 	 68.5 
Apr. 19, 1922 	 9.5 	 93.0 
May 31, 1927 	 11.5 	 71.0 
May 31, 1927 	 17.5 	 91.5 
Nov. 3, 1936 	 9.5 	 75.0 
Nov. 4, 1936 	 9.0 	 88.0 

period, is given in Fig. 6.52. The efficiency of intensification (i.e. a cyclonic storm 
maturing into a severe storm) for different areas in the Bay of Bengal, for the periods 
April—May, June—September, October—December, and the whole year, is shown in 
Fig. 6.53. The locations of severe storms just prior to their weakening into storms or 
depressions are illustrated in Fig. 6.54. 

CASE STUDIES OF CYCLONIC STORMS IN THE BAY OF BENGAL DURING THE PERIOD 1964-78 

The Rameswaram Cyclone of December 1964 was one of the most severe storms of 
the North Indian Ocean (Rao 1968). It was unique in several respects. First, the in- 
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FIG. 6.57. Tracks of storm pairs in the Bay of Bengal and the Arabian Sea during 1891-1960. (Swaminathan 
1966) 

tensification occurred at a rather low latitude (6.5°N). Probably, it is the only severe storm 
that moved across the Palk Strait (see Fig. 6.55) during an 80-yr period ending with 1964. 
Another feature was that the size (but not the intensity) of the storm was small (the closed 
isobaric field extended only 3 0  in latitude from the storm center) and the strong winds were 
confined to a region 100-150 km from the center. During the severe storm stage, the inner 
ring of hurricane winds was only 40 km in width (Rao 1968). Estimated maximum wind 
speed was 175 knots (324 km •11 -1 ), probably the highest ever in India and Sri Lanka. The 
eye passed over Rameswaram (India) between 01:30 and 02:30 GMT on December 23, 
1964. Another unusual feature was that the diameter of the eye was only 6-7 km (this is 
the smallest eye diameter reported for a severe storm in the Indian area). This compares 
well with the smallest eye diameter reported for Atlantic hurricanes, which was 4 mi 
(6.5 km) for a hurricane occurring on July 27, 1936, and which struck the coast of southern 
Florida (Dunn and Miller 1960). 

The upper air structure showed that this storm extended to 400 mb in the vertical. 
Storm surges occurred over the islands of Mannar (Sri Lanka) and Rameswaram (India) 
(these will be discussed in section 7.4) with great loss of life and damage of property. 

The 1965 season also presented some interesting features. The storm of December 
1965 in the Bay of Bengal showed an unusual track (Fig. 6.56). Storm surges were 
generated on the coast of Bangladesh and heavy casualties followed. Not only was the 
track unusual, but the duration of the storm was 9 d compared with the usual 1-3 d. 
During a 70-yr period, about 77% of the storms in the Bay of Bengal lasted only 1-4 d, 
17% lasted for 5-6 d, and only 7% (i.e. three storms) lasted for 7 d. The average duration 
for the Bay of Bengal storms is 3.5 d (compared with the average life span of global 
tropical cyclones, which is 6.5 d according to Riehl 1954). Another unusual feature was 
that this storm hit Bangladesh and Burma in December. Note that in the 70-yr period only 
13 storms did this. A final unusual feature was the simultaneous presence of another storm 
in the Arabian Sea (see Fig. 6.56). Only five times before has a similar situation existed 
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(i.e. storms in the Bay of Bengal and the Arabian Sea at the same time). These cases are 
listed in Table 6.44 and their tracks are illustrated in Fig. 6.57. 

The 1966 season produced the maximum number of storms in the postmonsoon 
season in almost a century (Raman et al. 1967). Between the last week of September and 
mid-December 1966 there were as many as seven cyclonic storms and one depression. In 
the month of November alone, there were four storms. Comparison was made between the 
general circulation for this high-activity season and that for the low-activity seasons 
(e.g. 1954 and 1959). The following deductions were made by Raman et al. (1967). 

The thermodynamical conditions necessary for the development of cyclone storms, 
as discussed by Palmén (1955), are found in all the postmonsoon months. However, 
additional conditions must be satisfied. One of the reasons for the high cyclone activity 
in the 1966 season was the continued northward position of the equatorial trough. Even 
though the low latitude wind fields in 1959 and 1966 were similar, the absence of 
northward horizontal shear in the wind field of 1959 inhibited the development. 

The required minimum energy for development is available at the air— seainterface 
during all postmonsoon months. However, for maturity into severe storms, the zones of 
maximum evaporation should also take place in preferred areas. During the 1966 season, 
the atmosphere gained the maximum heat over the southwest and west central parts of the 
Bay of Bengal. Generally, only in this region do all disturbances mature into cyclonic 
storms. On the other hand, in November 1954, maximum evaporation took place over the 
southwest part of the bay, south of 10°N. Finally, the origin, intensification, and move-
ment of cyclonic storms coincide with the zones of convergence of the total energy that 
is available in the atmosphere. 

The 1967 season produced at least two storm surges. A storm during May 16-18 
with winds up to 87 knots (161 km •11 -1 ) at Rangoon caused great destruction. The 
Mariner's Weather Log (1967, Vol. II, No. 4, p. 206) reported that the storm surge 
inundated whole villages and more than 100 000 persons were left homeless after the 
storm destroyed 800 villages. At least 100 people were reported dead or missing. On 
October 10, another cyclone made landfall near Calcutta and at least 200 000 people were 
left homeless (50 dead and 300 missing). 

During the 1968 and 1969 seasons nothing significant happened. One of the most 
destructive ever storm surges struck the coast of Bangladesh on November 13, 1970, and 
killed at least 200 000 people. This storm surge has been singled out for a detailed study 
in section 7.4. 

Towards the end of October 1971, a severe storm struck the Orissa coast of India near 
Paradeep. About 10 000 people and 50 000 cattle perished in the 2- to 6-m storm surges 
and 800 000 houses were destroyed (Das et al. 1972). Nothing unusual happened in the 
1972 and 1973 seasons. The 1974 season had very low activity. Again, nothing unusual 
happened in the 1975 and 1976 seasons. 

However, the 1977 season was an especially bad one. On November 19, a cyclone 
hit the coast of Andhrapradesh (India) and produced storm surges greater than 5 m in 
amplitude. The path of this storm is shown in Fig. 6.58a (track A). Between November 
21 and 22, another Bay of Bengal originated storm struck the west coast of India 
(Fig. 6.58a, track B). This storm also caused great damage. On October 28, a storm 
originating in the Bay of Bengal struck the coast of Arabia between November 4 and 5 
(Fig. 6.58b, track C). 

Winchester (1979) provided the following details about the Andhra coast storm of 
November 19. The storm made a landfall near the mouth of the Krishna River with a speed 
of 12 mi • II (19.5 km • 11 -I  ) with wind speeds of 75 mi •11 -I  (121 km • h -I  ) and gusting 
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FIG. 6.58. (a) Track A; storm of November 1977 that caused great damage to the Andhra Pradesh Coast of 
India; track B: stonn of November 1977 that did moderate damage to the west coast of India. (b) Track C: stonn 
originating in the Bay of Bengal on October 28, 1977, that struck the coast of Arabia. (c) Track D: storm of 
November 1978 that did great damage on the east coast of Srilankas; track E: storm of November 1978 originating 
in the Arabian Sea and striking the Gujarat coast of India. (De Angelis 1978a, 1978b, 1978c, 1978d) 

to 120 mi • h - ' (193 km .11 -1 ). The storm surge was 5 m in amplitude and penetrated at least 
10 mi (16 km) inland with a speed of about 10 mi •11 -1  (16 km • h - ') over a coastal stretch 
of 35 mi (56 km). The high water due to the surge remained for about 10 h. The cyclone 
and the storm surge together totally damaged an area of about 7500 mi 2  (19 5000 km2 ). 
At least 20 000 people died and 2 million people were left homeless (DeAngelis 1978a, 
1978b, 1978c, 1978d). 

There was no significant storm surge activity in India during 1978. However, Sri 
Lanka experienced a very devastating storm surge during this year (damage of 
$50 million). On November 21, 1978, a tropical storm generated near the Nicobar Islands 
matured to hurricane strength and on November 23 it struck the east coast of Sri Lanka 
(Fig. 6.58c, track D). The resulting storm surge together with the cyclone and the resulting 
landslides that occuned killed 373 people and destroyed 80 000 houses. Wind gusts up to 
204 km •11 -1  occurred. The storm surge inundated rice fields up to 8 km inland. The storm 
then moved to India over the Gulf of Mannar where it killed 10 people (DeAngelis 1979a, 
1979b,  1979c). 

One humorous sidelight of this cyclone was that 160 convicts escaped when the roof 
blew off the jail in Batticaba (Sri Lanka). The fact that not everybody is inconvenienced 
by a natural disaster such as a storm surge can be seen from the fact that, invariably, after 
the disaster looters descend upon the scene and help themselves. These are also good times 
for black marketeers and food hoarders, especially in the developing countries. 
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TABLE 6.45. Storms and depressions in the Bay of Bengal, 1945-54. A, total number; B, number that 
recurved. Storms and depressions that recurved on land or while in the Arabian Sea have been excluded. 
(Chakravorthy and Basu 1956) 

Type 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 

A 	5 	1 	1 	5 	6 	11 	18 	19 	19 	18 	12 	II 
B 	2 	0 	0 	1 	1 	0 	0 	0 	0 	5 	1 	4 

TABLE 6.46. Pressure decrease (mb) before recurvature of cyclones over the Bay of 
Bengal. For NE quadrant the representative station is Akyab (except for entry two for 
which the station is Cox's Bazar). For the SE and SW quadrants the representative 
stations are Port Blair and Madras, respectively. For the NW quadrant, the station is 
Gopalpur (except for entry one for which the station is Visakhapatnam). Note that in 
the cases listed, the recurvature occurred at 08:30 (on the dates shown) Indian Standard 
Time. (Chakravorthy and Basu 1956) 

Point of recurvature 

Pressure decrease (mb) 12-24 h 
before recurvature in various 

quadrants 

	

Date of 	Latitude 	Longitude 

	

recurvature 	(°N) 	(°E) 	NE 	SE 	SW 	NW 

Oct. 23, 1947 	16.5 	89.5 	4 	8 	2 	2 
Dec. 10, 1951 	17.5 	88.5 	3 	1 	3 	5 
Nov. 9, 1952 	17.5 	88.5 	2 	2 	2 	6 

When this author visited his native village in Andhrapradesh, India, in 1978 (1 yr 
after the disastrous storm surge of November 1977), tales of how village officers confis-
cated the emergency relief funds (provided by the federal government of India as well as 
by several international agencies) for their own use were mentioned to him. Although this 
author is not an expert on sociological aspects, his early background in developing 
countries convinced him that there is much truth to these tales. He was given to understand 
by the villagers that corruption is minimal to nonexistent with federal (central) government 
officers (due to the higher calibre of the federal civil service and also due to various built-in 
checks against corruption), and that corruption increases by an order of magnitude with 
the provincial (state) government officers, then by another order of magnitude with the 
district (county) level of government, and to absolute and total corruption at the municipal 
(city, town, village) level. This author would like to recommend to the international 
agencies who provide emergency relief funds to any developing country that only the 
federal government officials be involved in the handling of the relief operations. 

PREDICTING THE TRACKS OF CYCLONIC STORMS IN THE BAY OF BENGAL 

Chakravorthy and Basu (1956), making use of the data for the period  1945-54, 
studied the recurvature of storms in the Bay of Bengal. The total number of storms by 
month for this period, as well as those that recurved, is listed in Table 6.45 and the 
pressure changes associated with the recurving storms are given in Table 6.46. The spatial 
distribution of the occurrence of storms and depressions in the Bay of Bengal and that of 
the recurving storms during the period  1945-54 are given in Fig. 6.59 and some tracks 
of these recurving storms are illustrated in Fig. 6.60. 

Other important features associated with recurving storms in the Bay of Bengal are 
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FIG. 6.59. Spatial distribution of the occurrence of storms and depressions in 
the Bay of Bengal and that of recurving storms during the years 1945-54. 
Lower numbers indicate recurving storms and upper numbers indicate total 
number of storms. Where there are no recurving storms, only the upper number 
is given. (Chakravorthy and Basu 1956) 

the following. About 12-18 h before recurvature, the active front turns from west or 
northwest to north or northeast with an associated turning of the significant precipitation 
belt and cloud field from west or northwest to north or northeast. About 80% of the 
recurved storms showed this feature. Another feature was a retardation in the movement 
before recurvature (i.e. from an average of 18 km •11 -1  before curvature to 8 km • h - ' about 
12-18 h before recurvature). Usually, the recurvature occurs between 10 and 18°N. If 
there is any significant anticyclone in the upper air over Burma and surroundings, this 
anticyclone will probably shift eastward or southeastward before recurvature of the cy-
clone over the bay. Also, before recurvature the upper amospheric structure changes in 
such a manner that the average steering force will be directed progressively towards the 
east (i.e. westerlies at about 3000-m height will strengthen before recurvature). 

According to Datta (1969) the movement of the storms in the Bay of Bengal for the 
month of May can be deduced by dividing the bay into three regions with different 
characteristics, as shown in Table 6.47. Bansal and Datta (1974) used a statistical ap-
proach for forecasting the movement of cyclonic storms in the Bay of Bengal. Regression 
equations were derived separately for the premonsoon season (April to early June) and the 
postmonsoon season (late September to early December). Using a total of 33 predictors, 
equations were developed for computing ahead the central pressure and the position of the 
storm. 
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FIG. 6.60. Tracks of some of the recurring storms in the Bay of Bengal during 
the period 1945-54. (Chakravorthy and Basu 1956) 

TABLE 6.47. Movement of cyclonic storms in the Bay of Bengal in the month of 
May. 

East of 95°E 
South of 12°N between 89 and 84°E 
West of 84°E 
In the area bordered by 13 and 17°N 

and 95 and 91°E 
South of 13°N between 95 and 89°E 
Remaining areas of the Bay 

No westerly component of motion 
No westerly component of motion 
Mostly towards the west 

Mostly towards the west 
Mostly towards the west 
Predominantly northerly 

Choudhury (1978) made use of the theory of images (in hydrodynamics) to calculate 
the tracks of cyclonic storms in the Bay of Bengal. He assumed the cyclone to be a 
cylindrical vortex and considered the motion of this vortex with reference to two land-
masses perpendicular to each other (see Fig. 6.61). He wrote a complex potential: 

(6.58) 	W = 1) + ills 

where 41) and qi are the velocity potential and stream function, respectively. Note that both 
cl:e and III satisfy the Laplace equation: 
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FIG. 6.61. Theoretical model in which it was assumed that the Bay of Bengal is bounded by almost two 
perpendicular boundaries intersecting at the Meghna Estuary of Bangladesh. (Choudhury 1978) 

v 2 4, = 
(6.59) v2 tij  = 

In polar coordinates one can write the radial and azimuthal velocity components as 
follows: 

d cl) 	dIP 

1d 	d41 
= 

where r and 0 are the radial and azimuthal coordinates, respectively. Let a be the radius 
of the cyclone vortex. Inside the vortex, the vorticity is assumed to be constant (equal to 
co) and outside the vortex, the vorticity is assumed to be zero. Then, the velocity distribu-
tions inside (r < a) and outside (r > a) the vortex are given by 

(6.60) 
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V = —1 wr for r < a 
2 

1 w a2  V = — for r> a 

The complex potential for a vortex of strength p, (p, = 1 /2w a 2 ) is 

	

(6.62) 	W = ip, log (z — zo ) 

where zo  is the position of the vortex. The existence of the orthogonal plane boundaries 
will create a system of three images. The complex potential for this system of a vortex and 
three images is 

	

(6.63) 	W' = ip, log (z 2  — z 20)  _ 	log (z2 _  202 )  iji  

where fo  is the complex conjugate of zo . Since the vortex has no effect on itself, excluding 
this, the complex potential can be written as 

	

(6.64) 	W = ip, log (Z 2  - 20) 	i p, log (z 2  — Z- 02 )) — ip, log (z — zo ) 

ip, log (z + zo ) — ip log (z 2. — i02 ) 

The velocity components of the real vortex are 

cos 20  

	

(6.65) 	qr  — R sin 20 

P,  (6.66)  q  = — —2r 

An introduction of an azimuthal wind pi r will lead to 

(6.67) qo = — —2r + = 2r 

Division of eq. 6.65 by eq. 6.67 and integration leads to 

	

(6.68) 	r = K sin 20 

where K is the constant of integration. Note that eq. 6.68 is the equation for a rose petal 
with four loops (Fig. 6.62). This means, in the idealized model, a rose petal is the 
trajectory of a tropical cyclone when the land boundaries are two orthogonal planes and 
the origin is the point of landfall. 

Choudhury (1978) used this simple idealized model to compute the trajectories of 
certain cyclones and storms in the Bay of Bengal. In general, the differences between 
predicted and observed tracks are less than 20%. The actual calculations are performed as 
follows. From the initial motion of the cyclone, after at least two observations, the radius 
of curvature p of the track and the velocity V of motion can be written as 

K(1 + 3  cos 2  20) 3/2  

	

(6.69) 	p = 	  
sin2  20 + 8 

p,(1 + 3 cos2  20) 1' 

	

(6.70) 	V = 	  
2K sin2  20 

The parameter p, is determined from satellite pictures. Then, 0 can be determined from 

(6.61) 
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FIG. 6.62. A rose petal with four loops (Choudhury 1978) 

eq. 6.69 and 6.70. Since tan 41 = 1 /2 tan 20 (where 41) is the angle the radial vector makes 
with the tangent) the point of landfall (origin) can be determined. From eq. 6.69 and 6.70, 
K can also be determined and hence the curve for the rose petal (eq. 6.68) can be traced. 
As more and more observations are available, the trajectory can be modified. According 
to Choudhury (1978), after 1 d of observations, a prediction of the trajectory (and landfall) 
can be made 2-3 d ahead. The travel time of the storm is given by 

(6.71) T — (0 sin 40  
4 

Hence, one can calculate the time of landfall also. 
The observed track of the November 1970 cyclone and the predicted track positions 

are shown in Fig. 6.63. Also shown are the positions of landfall based on two, three, and 
four observations. The errors in the time of landfall for these positions are +9, +23, and 
0 h, respectively. 

Choudhury (1978) also explained why a cyclone accelerates as it approaches land, 
and he also suggested that this theory can be generalized to angles other than 90° between 
the two coasts. For an angle 71 n , where n is an integer, the formula for the cyclone track 
is 

(6.72) 	r = K sin (n 0) 

Note that for n = 1 (straight coast), the trajectory is a circle. This means, for a straight 
coast, that the probability of landfall at a given location is less than the case for two coasts 
meeting at an angle. According to Choudhury (1978), this explains why several cyclones 
make a landfall on the coast of Bangladesh, even though the length of the coast is only 
a few hundred kilometres. Although this model seems to give reasonably good results for 
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represent the fitted points for the rose petal. Predicted landfall points 1, 2, and 3 represent the predictions 
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the track, the prediction of the landfall positions is not accurate enough for storm surge 
purposes. 

CYCLONIC STORMS IN THE ARABIAN SEA 

Compared with the Bay of Bengal, the storms of the Arabian Sea are less frequent, 
generally less intense, and the accompanying storm surges are usually less destructive. 
The statistics by month for the period 1891-1960 are given in Table 6.48. 

Pedgley (1969) mentioned that cyclones develop preferentially over the southeastern 
quadrant of the Arabian Sea and move in a west to northwest direction towards Arabia. 
However, sometimes they recurve to the north or northeast towards northwestern India and 
Pakistan (Fig. 6.64). About one storm in three passes over the western part of the Arabian 
Sea and strikes the coast of the Arabian peninsula. 

The frequency of cyclonic storms for the period 1891-1967 is given in Table 6.49. 
About one cyclonic storm in 3 yr strikes the coast and about half of these that strike have 
cyclone strength. Usually the cyclones make landfall near Salalah and they show a 
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TABLE 6.48. Data on the cyclonic storms of the Arabian Sea during the period 1891-1960. (Rao 1968) 

Type of storm 	Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Year 

Total number of 
cyclonic disturbances 	6 	0 	1 	7 	20 	30 	11 	2 	10 	36 	36 	8 	165 

Total number that 
intensified into 
stonns 	 2 	0 	0 	5 	13 	13 	3 	1 	4 	17 	21 	3 	82 

Total number that 
intensified into 
severe storms 	0 	— 	— 	4 	11 	8 	0 	0 	1 	7 	16 	I 	48 

TABLE 6.49. Number of occurrences of cyclones (Beaufort 12) and cyclonic storms (BF - 8) over the whole Arabian Sea during the period 
1890-1950 and number of occurrences along the Arabian coast during the period 1891-1967. For the Beaufort wind scale, see Table 6.67. 
(Pedgley 1969) 

Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 	Year 

Cyclones and cyclonic 
storms over the whole 
Arabian Sea 	 1 	0 	0 	4 	10 	11 	2 	1 	4 	15 	12 	3 	63 

Cyclones and cyclonic 
storms along the 
coast of Arabia 	0 	0 	0 	0 	8 	5 	1 	0 	0 	7 	6 	I 	28 

Cyclones along the 
coast of Arabia 	0 	0 	0 	0 	6 	2 	0 	0 	0 	2 	2 	1 	13 



20° N 

o° 

FIG. 6.64. Common tracks of Arabian Sea cyclones. (Pedgley 1969) 

TABLE 6.50. Cyclones near the coast of the Arabian peninsula during 1943-1967. (Pedgley 1969) 

Date of approach or 
crossing the coast 	 Nature of the cyclone 

June 6, 1946 
October I, 1948 
October 25, 1948 
May 24, 1959 
October 18, 1959 
May 18, 1960 
November 23, 1960 
May 30, 1962 
May 26, 1963 

November 13, 1966 

Decaying before approaching Masirah from east—southeast 
Decaying before approaching coast between Masirah and Ra's al Hadd from east 
Cyclonic storm crossed Salalah, approaching from southeast 
Severe cyclone crossed Salalah, approaching from east—southeast 
Severe cyclone crossed near Ras Madraka, approaching from east 
Severe cyclone crossed coast at Ras Fartak 
Cyclonic storm approached entrance to Gulf of Aden from east 
Decaying before crossing coast at Ras Madraka 
Severe cyclone, passed just south of Salalah, approaching from east—southeast 

and then turning towards west—southwest 
Severe cyclone with a track similar to that of May 1963 

tendency to turn to the left at a distance of a few hundred kilometres from the coast. The 
10 cyclones that hit the Arabian coast during 1943-67 are listed in Table 6.50. 

The following pressure distribution 

(6.73) 	p =- 1008 — 1.64 (v rr) 

appears to fit the central pressure of the Arabian Sea cyclones. Here, p is the central 
pressure (millibars) and is the radial wind speed in knots at a distance from the center 
of r degrees latitude (Krueger 1959). The maximum wind speed v„, can be estimated from 
Myers (1957): 

(6.74) v„, = KV p l  — p 

where p' is the surrounding pressure and K is a constant (equal to 11). For example, taking 
p = 960 mb and p' = 1010 mb gives v„, = 80 knots (148 km •11 -1 ). 

Although most of the Arabian Sea cyclones originate locally, some (6 of the 28 
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mentioned in Table 6.49) originated in the Bay of Bengal. Usually, cyclones with this 
distant origin occur towards the end of the cyclone season (i.e. towards November). 
Occasionally, the Arabian Sea cyclones cross the Gulf of Aden and even rarely the Gulf 
of Oman. 

One difference between the cyclones of the Arabian Sea and the Bay of Bengal is that, 
whereas in the Bay of Bengal more cyclones occur in the postmonsoon season (September 
to December) than in the premonsoon season (April to May), in the Arabian Sea they are 
about equally distributed between the two cyclone seasons (i.e. May to June and October 
to November). Most of these originate over the southeastern Arabian Sea and move 
towards west—northwest. However, a few originate in the Bay of Bengal and cross 
southern India before emerging over the Arabian Sea. 

Neumann and Mandal (1978) used statistical techniques to predict the storm move-
ment over the Arabian Sea and the Bay of Bengal. The number of tropical cyclones 
(including depressions) passing through 2.5° latitude—longitude squares for the period 
1877-1974 is given in Fig. 6.65. It can be seen that maximum values of up to 
400 cyclones and depressions occurred near the coasts of West Bengal (India) and 
Bangladesh in the Bay of Bengal. By comparison, in the Arabian Sea, the maximum 
number is only 40 and it occurs near the Maharashtra—Gujarat coast of India. 

The errors of prediction of the tracks of tropical cyclones for the North Indian Ocean, 
South Indian Ocean, and North Atlantic Ocean using similar models are compared in Fig. 
6.66. It is interesting to note that the least errors occurred in the North Indian Ocean and 
maximal errors occurred in the North Atlantic Ocean. 

6.6 Wind Stress and Atmospheric Pressure Gradients 

Earlier it was mentioned that the main forcing functions for the generation of storm 
surges are the wind stress on the water surface and the atmospheric pressure gradient 
forces, whereas bottom stress is the chief retarding force. The exchange of momentum and 
energy at the surface of the ocean, which is also the lower boundary of the atmospheric 
boundary layer, will be considered. Since the ocean surface is not rigid, kinetic energy can 
be transferred to the ocean by tangential stresses (from the atmosphere), which produce 
accelerations parallel to the surface, and by normal pressure forces that could create 
time-dependent motions of the surface (Krauss 1967). Krauss wrote the following equa-
tion, which describes the approximate kinetic energy balance for the atmosphere and ocean 
(either whole or for an enclosed part) averaged over a suitably long time interval: 

(6.75) f pgwdV — f OdV — — f uTds — f pv„dS 

where p is the density of air, g is gravity, w is the vertical velocity, V is the volume, 
0 is the dissipation per unit volume, U is the average wind velocity, T is the stress, S is 
an element of unit area of the sea surface, and v„ is the velocity of the boundary normal 
to itself. 

In eq. 6.75, the two terms on the left side give the volume integrals of the potential 
energy conversion and dissipation. The first term on the right side gives the work done by 
the stress T along the surface S (note that this is zero if U = 0 at the surface) and the second 
term on the right side is the work associated with the vector deformation y„ of the 
boundary. The question of interest is how energy can be transferred from the atmosphere 
to the ocean so that transient motions such as storm surges can be generated. The reason 
for asking this question is that it can be shown that viscous friction at the air— water 
interface is not large enough to account for the energy of wind-driven ocean currents and 
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for exciting inertial oscillations (Krauss 1967). Thus, momentum and energy must be 
transferred from the wind to the ocean by processes other than viscous shear at the 
interface. It will be shown below that short-period wind waves predominantly provide 
such a mechanism. 

AIR — SEA MOMENTUM EXCHANGE 

Taylor (1916) appears to have been the first to suggest the following relation: 

(6 . 76) T = py 2  W2  

where p is the density of air, T is the tangential stress at the water surface, W is the wind 
speed at 15 m above the sea surface, and -y is a dimensionless parameter (referred to as 
a drag coefficient). Close to a rough plane wall, Prandtl (1932) wrote 

0.0302  

	

(6.77) 	.y2  = 
(

log 
1500 + z0)2 

zo  
where zo  (centiemtres) is referred to as the roughness length. Using empirical data, Wüst 
(1920) and Rossby and Montgomery (1935) showed that eq. 6.77 holds near a water 
surface. According to Rossby (1936), 'Y 2  is independent of the wind speed for moderate 
and strong winds and is equal to 2.6 x 10-3 . 

Ekman (1905, 1923) and Palmén and Lauria (1938) also calculated 'Y 2  from observed 
water level oscillations due to atmospheric storms and they deduced a value similar to 
Rossby's. However, Neumann (1948) wrote a different form for the stress as follows: 

(6.78) T = 0.09p W3/2  

where the stress is in dynes per square centimetre. In this relation, y 2  (which is implicit) 
is not constant and varies with wind speed proportional to W -1/2 . Sverdrup and Munk 
(1947) mentioned that one must also include the effect of waves. Krauss (1967) gave an 
elegant discussion of the basic formulas involving drag coefficients, roughness lengths, 
etc. 

Miyazaki (1951a) formulated the wind stress problem by assuming an eddy-
generating layer in the air—sea boundary. In his theory, two parameters appear that depend 
on the tangential stress and the wind waves. The functional forms of these parameters are 
obtained for stationary motions with large Reynolds numbers. According to Miyazaki 
(1951a) his formulation is valid for wind speeds greater than 6-7 m • s -1 . 

Miyazaki (1951a) wrote 

u* ph T lf2 
(6.79) u — (log z — log + 	 

where u is the wind velocity, z is the height measured from  the equilibrium position of the 
sea surface, u* is a functional velocity (equal to VT / p„, where T is the tangential stress 
and p„, is the density of water), x is the universal turbulence constant (equal to 0.4), h is 
the wave height, X is the wavelength, and 13 is a constant. 

Miyazaki (195 lb) extended his earlier study and gave the following modified 
formula: 

(6.80) 	u = 	[log z — 3.218 — log 	+ 1.382 (1) 1.6 1 
X Pn, 
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He suggested that this formula agrees with Rossby's formula in the wind speed range of 
5-25 m • s -I . Below this speed, the water surface is hydrodynamically smooth and both 
formulas break down. Above 25 m • s -  Rossby's formula gives stress values smaller than 
Miyazaki's. There is another difference also: in Miyazaki's formula, 'y 2  is not constant; 
it has a maximum value of 2.68 x 10 -3  at a wind speed of about 15 m • s -I . 

Stewart (1961, 1974) considered the question of transfer of momentum from the 
atmosphere to the water and stated that a very large fraction of the momentum transfer is 
in the form of wave generation. Baines (1974) showed that when the wind wave spectrum 
in shallow water is approximately independent of wind speed due to the combined effects 
of white capping and bottom friction, then the wave-induced drag coefficient has a 
maximum value when the wind speed is twice the maximum wave speed, and as the wind 
speed increases further, the drag coefficient slowly decreases. 

Simons (1978) made the important point that numerical models for hindcasting storm 
surges usually require drag coefficients (for wind stress) as high as 3 x 10 -3  whereas 
observations appear to indicate a value about half of this. Donelan (1979) resolved this 
problem by suggesting that the form stress (due to wave drag) is large if the sea state is 
not in equilibrium with the wind (i.e. during the initial stages of a storm when the waves 
are developing). However, once the wave field has adjusted to the wind, the drag coeffi-
cient decreases. 

The stress produced by wind blowing over a water body consists partly of skin friction 
and partly of form drag. Taylor and Gent (1978) showed the dependence of the drag 
coefficient on certain wave parameters such as steepness and wave age. Donelan (1979) 
showed through observational data that the drag coefficient is mostly dependent on inverse 
wave age and wave height and can be approximated well by a simple model involving the 
form drag T1  and the skin drag T,. 

Of the form drag Tf , a portion T,,, adds or subtracts momentum directly from the 
gravity wave spectrum. The remaining part T c. generates changes in the currents. Of the 
momentum flux T ,„ a portion T „ produces a net growth or decay of the wave momentum. 
The remaining part T d  is lost from the wave field by viscous dissipation and white capping. 
Hence, the total drag T between air and water is 

(6.81) 	T = Ts  + 	Td 	Tc 

where 

Tw T,1 	 Td 

and 

Tiv + Tc 

The problem here is to determine the wave field and wind stress, given the wind at 
a 10-m height. For predicting the wave field, must be known and for the determination 
of the wind stress, T — T ,1  must be known. Donelan (1979) stated "to the hydrodynamic 
modeller, to whom wind waves are a sub-grid scale process, the appropriate wind stress 
is not the total T, but the total less that which is carried away by the waves T, • If, as we 
believe, the waves significantly affect the drag coefficient and the local surface stress is 
depleted by the growth and advection of the wave field, then the prediction of the surface 
stress depends rather critically on a knowledge of the wave field." 

Donelan's (1979) model differs somewhat from those of Hasselman et al. (1976), 
Gelci and Devillaz (1970), Barnett (1968), and Pierson et al. (1966). In contrast with an 
energy transport equation used by these authors, Donelan (1979) used a local momentum 
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CD, (6.84) 

balance equation. Using this model, he computed wind stress over Lake Ontario for storm 
episodes, and the wind stress values agree closely with what numerical modelers would 
need for hindcasting storm surges. 

WIND STRESS AND DRAG COEFFICIENTS 

Early measurements of wind stress usually focused on the climatological values, i.e. 
average values for season (or year) for large areas. Priestley (1951) gave wind stress values 
for each 5° latitude zone from 55°N to 55°S for each season for the different oceans. 
Although studies of this type are useful for other problems, these averaged wind stress 
values are of little relevance for storm surge work. 

Garratt (1977) reviewed the drag coefficients over the oceans from all available 
literature. Based on this paper, the literature will be briefly reviewed and certain terms will 
be defined before summarizing the drag coefficients. Earlier, reference was made to 
Taylor's (1916) velocity square law involving the dimensionless coefficient of skin fric-
tion. Based on measurements over land, Taylor (1915) gave values of 2 x 10 -3  to 3 x 
10" for this coefficient. Sutcliffe (1936) gave values of 4 x 10 to 7 x 10 -3  for land 
and 0.4 x 10 -3  for water. 

Deacon (1957) established that, over land, the square law generally holds, except for 
low wind speeds. It is not clear whether it applies to a water surface. Deardorff (1972) 
represented the drag coefficient CD through the aerodynamic roughess length z o . In the 
atmospheric constant flux layer above a horizontally homogeneous surface, the local 
surface stress can be written in terms of the surface wind V(z) at height z as 

(6.82) 	T o  = pCD V 2 (z) 

where p is the density of air and CD is related to the aerodynamic roughness length z o  and 
the stability parameter : 

y 	z 
' L 

where L is the Monin-Obukhov length. Thus 

CD,, 
(6.83) 	CD = 

[ 1  - jk-  (CDN) 112 qQr 

where 

K2  = 
( ln - 

z\ 2 
 ,ln 

where K is the von Karman constant and 

f' 1 — (1)(n 
ql(C) = i 	 d' 

o 

A knowledge of the dimensionless wind gradient (I) (0 allows one to determine CD/CDN 
as a function of (or a bulk Richardson number) and z/zo . 

In numerical models, usually the stress is related to a large-scale wind 1/ such as the 
surface geostrophic wind VG. The stress is expressed as 
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(6.85) TO = PCji2  

where CG is the geostrophic drag coefficient when = VG. Generally, CG will depend on 
the surface Rossby number 

VG 
R0 - or —

I 

fz o 	zo 

where  I  is a height scale. It also depends on the boundary layer stability: 

Kp,, 

and the baroclinicity 

aVG  
S = — az 

In Ro  = A (II, S) — In C G1/2  + KC G-I/2  cos ao  

[B S)C G1 
ao  =-- 

is the angle between the surface wind and the wind vector V; the similarity functions A and 
B must be determined from observations. 

Charnock (1955) showed that 

zo g 
= constant = 

u - * 
This formula was later modified by Charnock and Ellison (1967) to include effects of 
viscosity, surface tension, and water density. Kitaigorodskii (1968) and Kitaigorodskii 
and Zaslavskii (1974) included the effects of fetch and wind duration and wrote 

(6.88) 	'z' g  = f 	) 
u 2 	U

* 

where Co  is the phase velocity of the dominant wave and Co / u. is the wave age. 
Observations of surface stress over water bodies by various authors (see Garratt 1977 

for details) and the deduced values of CDN  were summarized by Garratt (1977). Based on 
these he suggested that 

(6.89) 	c,„ = 0.51  X v0
•
46 >< 10-3 

or in another form 

(6.90) CD, = (0.75 + 0.067 V) X 10' 

where V is the wind speed in metres per second at a 10-m height. 
It is well known that wind stress depends on the stability of the atmospheric surface 

layer. In earlier observations of drag coefficients, little attention was paid to atmospheric 
stability conditions. Hence, for comparison with earlier data, several later investigators 
also made measurements under neutral stability conditions. Wu (1980) summarized the 

Thus 

(6.86) 

where 

(6.87) 

485 



3.0 

2.5 

o  
= 2.0 

o  
LI 
u. 
Lu 
o 1.0 

o 0.5 

0 
5 	10 	15 	20 

WIND VELOCITY (m.s - ') 
25 

Fia.  6.67. Variation of drag coefficient with wind velocity. (Wu 1980) 

wind stress coefficients over the sea surface for neutral conditions. He presented a scaling 
law for wind stress coefficients; the coefficient increases with wind velocity (see Fig. 6.67) 
and decreases with fetch. 

Smith (1980) considered the question of wind stress over the ocean for strong winds 
(i.e. gale force). He also showed that the drag coefficient increases gradually with in-
creasing wind speed. 

The approach by DoneIan (1979) of dividing the total drag into a form drag and a skin 
drag was discussed earlier. Plate and Wengefeld (1979) used a similar approach but wrote 
the equations somewhat differently. The work done by the air on the water is divided into 
two parts: one part produces the energy change of the mean water motion and the other 
part maintains the wave pattern. The energy balance equation for the first part can be 
written as 

dElv  dEk 	dE 	diV w  
(6.91) —

dt 
= 	+ 

dt 	
dt — + —

dt 
= 0 

where the subscript W refers to water, Ek, Ep  , and E are the means (in time) of the kinetic, 
potential, and total energies, respectively, W w  is the work done on the water body, and 
D w  is the mean energy dissipation inside the water column. 

The second part that maintains the waves against energy loss due to radiation and 
dissipation can be written as 

dE0  dEk  dE , 	dWo  
— 	+ — Do  + — — 0  
dt dt 	dt 	dt 

where subscript 0 stands for the wave field and Wo  is the work done to maintain the wave 
field. 

The total work done by the air on the water surface is Ww  + Wo . However, it is not 
clear how this partitioning can be specified. Under the assumption that the mean flow does 
not vary in x, the flux of vertical momentum at a height 8 is constant and is equal to T. 
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TABLE 6.51. Values of the coefficients a, b, c, and d in eq. 6.95 as a 
function of fetch and water depth. (Hamblin 1979) 

Fetch (km) 

Depth (m) 	Coeff. 	1 	 10 	 100 

	

5 	 a 	 0.100 	0.850 	0.830 
b 	 0.150 	0.190 	0.190 
c 	-0.068 	-0.091 	-0.110 
d -0.390 	-0.280 	-0.260 

	

20 	 a 	 1.100 	0.670 	0.440 
b 	 0.150 	0.180 	0.200 
c 	-0.068 	-0.094 	-0.140 
d -0.380 	-0.170 	0.220 

	

100 	 a 	 1.100 	0.630 	0.320 
b 	 0.150 	0.170 	0.170 
c 	-0.067 	-0.092 	-0.130 
d -0.370 	-0.140 	0.340 

(for example). Closer to the surface, a part of the momentum flux is transferred downward 
through shear stresses, which gives rise to a surface shear stress TD . The remaining part 
T. is converted (through the changes in the curvature of the streamlines) into a pressure 
pattern and this creates a form drag given by an average stress TF through 

fq.a. 
(6 .93 ) 	TF = 	( 19 „ 	Pd)dY 

The work done by the air on the water can be written as 

(6.94) -
dW 

= TFC + To us 
dt 

This can be solved only  if 'r0  and TF  are known. However, only T. is known, which is given 
by 

T. = TF 	'To 

P. F. Hamblin (1979, Canada Center for Inland Waters, Burlington,  Ont.,  un-
published data) considered the problem of wind stress on small enclosed lakes (Lake St. 
Clair in North America). He gave a convenient formula for practical computations of the 
drag coefficient: 

(6.95) CD X 103  = a + bU + C + d-
AO 
U2  

where CD is the drag coefficient (referred to a 10-m height), U is the wind speed, and 3.13 
is the air- water temperature difference. He tabulated the values of the coefficients a, b, 
c, and d for a range of fetch and water depth (Table 6.51). His results are shown (Fig. 6.68) 
for the neutral case for a wind speed of 10 ms. Gerritsen (1962) showed through 
laboratory experiments the role of wind waves in wind stress. 

WIND AND PRESSURE FIELDS IN TROPICAL CYCLONES 

Storm surges are generated by tropical as well as extratropical cyclones. From the 
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point of view of damage to life and property, tropical cyclone generated storm surges are 
more important. This is one reason why special attention will be paid to the meteorological 
forcing terms for storm surges generated by tropical cyclones. The other reason is that, 
because of the shape and nature of tropical cyclones, certain convenient (if not always 
correct) analytical forms for the wind and pressure fields are used. On the other hand, for 
extratropical cyclones, no such simple analytical forms are commonly used and for these, 
traditionally, the pressure gradients and wind stresses are derived using interpolation 
techniques from surface weather charts and related data. Thus, the meteorological prob-
lems associated with extratropical cyclones will be considered, not as a special problem, 
but in various examples later. 

The maximum sustained surface wind in a tropical cyclone can be determined as a 
function of the local maximum pressure gradient and the radius of maximum winds 
(Atkinson and Holliday 1977). From aircraft and satellite data, the radius of maximum 
winds can be determined reasonably accurately, but it is difficult to determine the local 
maximum pressure gradient. For the various ocean basins and seas, empirical relationships 
between the local minimum pressure and maximum winds were developed based on 
observed data. Holliday (1969) summarized these relationships for the North Atlantic. 

Takahashi (1939) gave the following form of the cyclostrophic wind equation for the 
western part of the North Pacific: 

(6.96) 	V„, = K(p„ — pc )°.5  

where V„, is the maximum speed (knots) of the surface wind, p„ is the environmental 
pressure (millibars), pc  is the central pressure (millibars), and K is a constant. For the 
western North Pacific, he took K = 13.4 and p„ = 1010 mb. Later, Takahashi (1952) 
suggested that K = 11.5 is more appropriate for higher latitudes. 

Making use of aircraft reconnaissance data on central pressure and maximum winds, 
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McKnown et al. (1952) gave the following relation: 

	

(6.97) 	V„, = (20 — —) (1010 — pc )" 5 

where 0 is the latitude in degrees. 
Making use of 700 mb height field observations, Fortner (1958) replaced pc  with 700 

mb height h, (metres) and wrote 

	

(6.98) 	V,„ = (20 — (1 ) (372 	8.54)O3 5  

Note that eq. 6.98 is in the C.G.S. system. Further modifications were suggested by 
Wacholz (1961) and Seay (1964). The Joint Typhoon Warning Center uses the following 
relationship: 

0 	 h,  y  5  
(6.99) 	V„, = (19 — 	(364 	8.54  

The general feeling was that this equation overestimated the surface wind by 23.4 knots 
on the average. For wind speeds greater than 45 knots, a modified form was used. 

Atkinson and Holliday (1977) used 28 yr of data collected at coastal and island 
stations in the western North Pacific. Recognizing that there are problems in measuring 
and interpreting sustained wind speeds at the surface, they made use of only recorded peak 
gusts. These peak gust values were reduced to a standard anemometer level of 10 m using 
a power law relationship and then converted to 1 min of sustained wind speeds making use 
of gust factors representative of an overwater environment. They gave the following 
relationship: 

(6.100) V„, =  6.7(1010 — p)°  

where pc  is the minimum sea level pressure (millibars) and V„, is the maximum sustained 
(1 min) wind speed (knots). This equation gives maximum wind speeds that are signifi-
cantly lower than given in earlier studies. 

Holland (1980) used an arialytic model to relate the wind and pressure fields in a 
hurricane. Earlier analytic models included the modified Rankine vortex (Depperman 
1947) and the negative exponential model (Schloemer 1954). Holland modified 
Schloemer's model in the following manner. 

The pressure field was first normalized to eliminate variations due to different central 
and ambient pressures through the following parameter: 

(6.101) 19  

Pn PC  

where p is the pressure at radius r, pc  is the central pressure, and p„ is the ambient pressure 
(at infinite radius in theory but, in practice, the position of the first anticyclonically curved 
isobar). A plot of this parameter 6.101 against the radial distance from the center gives 
a curve that looks like a rectangular hyperbola and may be approximated by 

(6.102) rB  In 	PC) ] = A 
(P PC) 

where A and B are scaling parameters. Taking the antilogarithm of eq. 6.102 and rear-
ranging gives 
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(6.103) p = pc  + (p„ + p,) exp — .4) 
1.B 

(6.104) V, = AB(p„ — pc ) exp ( 	p—rIBA.B  ) + 1 f 	— 1.f  [ 

	

4 	2 

where  V 	the gradient wind at radius r, f is the 	Coriolis parameter, and p is the density 
of air (1.15 kg • m -3 ). 

In the area of maximum wind speed, the pressure gradient and centrifugal forces are 
dominant and the Coriolis force can be ignored. Thus, for the cyclostrophic equilibrium 
one can write 

(6.105)  V. — AB (p„ -  PC) [ 	

ex,  (._ 43 ) ] la 

P 	r  

P 1.B  
The radius of maximum winds, R mw  or 	is obtained by equating dVc /dr to zero to give 

(6.106) R„, = A 1'8  

Thus, R„, is determined only by the scaling parameters A and B and is not dependent on 
the central and ambient pressures. To obtain the maximum wind speed, V„„ eq. 6.106 is 
substituted into eq. 6.105 to give 

(6.107) V„, =- C(p„ — 

with 

(6.108) C 	( 12) in  pe 

where e is the base of natural logarithms. Note that eq. 6.107 with an empirically 
determined C (instead of eq. 6.108 for C) was used by Takahashi (1939), Myers (1954), 
Kraft (1961), and Atkinson and Holliday (1977). 

From the above relations it can be seen that the maximum wind speed is independent 
of the radius of maximum winds but it depends on the shape of the pressure profile through 
B. From eq. 6.103, the radius Rp  of maximum pressure gradient is given by 

AB " 
(6.109) R1,=[B + 1J 

From eq. 6.106 and 6.109 

(6.110) 11P  = 	B  ) 1/  R„. 	+ 1 

Based on observed data, a lower limit for B is found to be 1.0 and an upper band is 3.0 
and a representative value was found to be 2.5. Then, from eq. 6.106, one can determine 
A by using the observed R„, values. 

Equating B to 1 underestimates the maximum wind speeds for most hurricanes. The 
maximum wind speeds at various central pressures for tropical cyclones in the Northwest 
Pacific are listed in Table 6.52. Schloemer (1954) suggested that eq. 6.103 and 6.104 with 
A = R„. and B = 1 can be used universally. The errors of the Schloemer's (1954) formula 

Making use of the gradient wind relation, the wind profile can be expressed as 

r ) 	r
2 f 2 .2 2 1/2 

pc  )1/2 
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TABLE 6.52. A comparison of maximum wind speeds at various 
central pressures for Northwest Pacific tropical cyclones. D, from 
Dvorak (1975a); AH, from Atkinson and Holliday (1977); S, from 
Schloemer (1954). (Holland 1980) 

Maximum wind speed  (ms')  

S 
Central 	 D 	 AH 	 (1-min 
pressure 	(1-min 	 (1-min 	gradient 

(mb) 	surface wind) 	surface wind) 	wind) 

981 	 33 	 30 	 30 
973 	 40 	 35 	 34 
964 	 46 	 41 	 38 
954 	 53 	 46 	 42 
942 	 59 	 52 	 47 
929 	 69 	 58 	 51 
915 	 72 	 65 	 55 
900 	 80 	 71 	 59 
884 	 88 	 78 	 63 

TABLE 6.53. Mean absolute errors and maximum errors resulting from 
applying Schloemer's (1954) model and eq. 6.103 to nine hurricanes. 
(Holland 1980) 

Schloemer 1954 	 eq. 6.103 

Mean 	 Mean 
absolute 	Maximum 	absolute 	Maximum 

Radius 	error 	error 	error 	error 
(km) 	(mb) 	(mb) 	(mb) 	(mb) 

	

5 	3 	 13 	 3 	 11 

	

10 	5 	 19 	 3 	 6 

	

20 	5 	 23 	 2 	 8 

	

30 	6 	 26 	 1 	 5 

	

40 	7 	 28 	 1 	 3 

	

60 	8 	 26 	 1 	 3 

	

100 	7 	 18 	 1 	 2 

	

150 	6 	 13 	 1 	 4 

	

200 	6 	 13 	 1 	 3 

and the one suggested by Holland (1980) are compared in Table 6.53. It can be seen that 
the modified method of Holland is superior. 

Depperman (1947) suggested that a hurricane could be thought of as a Rankine 
vortex: 

(6.111) Vr -I  = constant 

inside the radius of maximum winds and as 

(6.112) Vr = constant 

outside this radius. Thus, the hurricane is assumed to be a solid rotating body inside this 
radius, and outside this radius it conserves relative angular momentum. Since the air inside 
the boundary layer loses angular momentum by frictional dissipation, eq. 6.112 should be 
modified to give 
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5.0 	157 	970 	964 
5.5 	180 	960 	954 
6.0 	204 	948 	942 
6.5 	226 	934 	928 
7.0 	250 	920 	914 
7.5 	278 	906 	900 
8.0 	315 	891 	885 

MSLP 

Cl 	MSW 	Atlantic 	Pacific 

MSLP 

CI 	MSW 	Atlantic 	Pacific 

	

1.5 	46 	1010 

	

2.0 	56 	1007 

	

2.5 	65 	1003 

	

3.0 	74 	998 

	

3.5 	93 	993 

	

4.0 	111 	988 

	

4.5 	133 	979 

1004 
1001 
997 
992 
987 
982 
973 

75° 

600 

60°  

75 °  

30° 

0° 

30° 

TABLE 6.54. Relationship among the various parameters as determined from satellite imagery. 
Cl,  current intensity; MSW, maximum sustained wind speed (km .11 -1 ); MSLP, minimum sea 
level pressure (mb). (Dvorak 1973) 

120° 150°  180° 	150° 	20°  90° 	60° 	30° 	0° 	30° 	so° so° 	120°  150° 

FIG. 6.69. Coverage by the five geostationary satellites. Note that the circle at the right extreme is a repeat 
of the circle at the left extreme. The circles show the extent of the areas where good wind estimates can be made. 
Satisfactory cloud images can be received from substantially larger areas. (Houghton 1978) 

(6.113) VI = D 

where x is less than unity and D is a constant. Observations indicate that x usually lies 
between 0.4 and 0.6 (Hughes 1952; Riehl 1954, 1963; Gray and Shea 1973). Although 
the Rankine vortex approach can give a good fit to the wind profile in a hurricane, it 
requires a very accurate estimate of the radius of maximum winds (which is difficult), and 
this is one of the disadvantages of this method as compared with Holland's (1980) 
technique. 
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DETERMINATION OF METEOROLOGICAL FORCING TERMS FROM SATELLITE DATA 

Dvorak (1973, 1975a, 1975b) pioneered the techniques of estimating the intensity of 
tropical cyclones based on satellite imagery. He defined a T number (which ranges from 
1 to 8) as the description of a tropical disturbance in terms of cloud characteristics visible 
in satellite data, and the T number can be determined by systematically merging the 
satellite imagery data with a model of tropical cyclone development. However, the T 
number is not used for intensity estimates because the wind speed may be different (for 
the same T number) for developing and weakening storms. 

However, a current intensity number (CI) is used for relating the present (current) 
intensity of the cyclone to the maximum sustained wind speed (MWS) and the minimum 
sea level pressure (MSLP) of the storm. This relationship determined empirically for data 
for the Atlantic hurricanes and Pacific typhoons is listed in Table 6.54. The detailed 
procedures of determining the T number and CI number can be found in Dvorak (1973). 

Dvorak and Wright (1978) discussed the technique of using enhanced infrared sat-
ellite data for determining the intensity of tropical cyclones. Gentry et al. (1978) used 
satellite-measured equivalent blackbody temperatures, TBB , of cloud tops around a hurri-
cane to obtain estimates of the storm's intensity and to predict future changes. Rodgers 
et al. (1978) discussed the technique of using short-interval satellite imagery to determine 
winds for tropical cyclones. Gray (1978a, 1978b, 1978c, 1978d, 1979) discussed the 
techniques of determining tropical cyclone intensity through upper tropospheric aircraft 
reconnaissance. Baynton (1979) suggested that Doppler radars will provide good estimates 
of the wind field. 

Geostationary satellites also could provide useful data (Houghton 1978). The cov-
erage of the tropics provided by the five geostationary satellites is shown in Fig. 6.69. A 
U.S. geostationary satellite is presently helping to track Atlantic hurricanes within ± 17 
nautical miles and determining the wind speeds with an error of about 10 knots (E.O.S. 
Vol. 61, No. 29, July 15, 1980). 

Suomi (1969) and Fujita et al. (1969) described techniques for determining winds 
from cloud pictures provided by geostationary satellites. Basically, cumulus clouds at the 
900-mb level and cirrus clouds at the 200-mb level are used. According to Fujita et al. 
(1975) there could be errors of up to -±40% in the estimated winds. According to Suchman 
and Martin (1976) errors of up to 2 m • s at the cirrus cloud level and 1.3 m • s' at the 
cumulus cloud level could occur in the wind field. However, Hubert (1976) and Davis 
et al. (1976) found greater errors than reported by Suchman and Martin (1976). Gaby and 
Poteat (1973) gave the climatology of low-level winds from satellite images. 

6.7 Meteorological Problems Associated with Storm Surges in Canada 

Storm surges are generated in Canada by extratropical storms and occasionally by a 
hurricane that has transformed into an extratropical storm. In eastern Canada, storm surges 
occur in the Great Lakes, St. Lawrence Estuary, Gulf of St. Lawrence, Bay of Fundy, and 
along the Atlantic coast. Storm surges also occur in Hudson Bay, James Bay, Lake 
Winnipeg, Beaufort Sea, Hecate Strait, and Queen Charlotte Sound. The main storm surge 
season is autumn and early winter, and occasionally, storm surges could occur in summer 
and in late winter. Since all the surge-producing storms are extratropical in origin, the 
calculation of the meteorological forcing terms from the weather charts is straightforward 
(it does not necessarily mean the values are accurate). For convenience, Alaska will be 
discussed in this section along with western Canada. Similarly, the Great Lakes will be 
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FIG. 6.70. Tracks of intense storms over eastem Canada (A) January—March, (B) July—September, and (C) 
October—December. (Archibald 1945) 

FIG. 6.71. Tracks of storms of tropical origin along the east coast of North America. (Archibald 1945) 
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JUNE 

FIG. 6.72. Storm tracks over Hudson Bay and surroundings (A) January—March, (B) April and May, (C) June, 

and (D) July—September. (Archibald 1945) 

treated in this section. However, meteorological problems associated with mesoscale 
systems such as squall lines will be deferred to section 6.11. 

Principal tracks of intense storms (based on the data for the period 1963-67) are 
shown in Fig. 6.70A for January to March, in Fig. 6.70B for July and August, and in 
Fig. 6.70C for October to December. The tracks of storms of tropical origin are shown 
in Fig. 6.71, and the tracks of storms for the Hudson Bay region for different months are 
shown in Fig. 6.72A-6.72D. However, occasionally, rather irregular tracks can occur. 
In Fig. 6.73 are shown the tracks for four storms in 1969 over Hudson Bay. While the track 
for the November storm is not unusual, the tracks for the other three storms show 
forward—backward movements of the storm center, which could be the result of improper 
observations or could be real on certain occasions. 

The corridors for the tracks of intense and ordinary storms in the northwestern  part 
of Canada are shown in Fig. 6.74. The surface weather map for the Alaska area during 
a storm on October 3, 1963, is given in Fig. 6.75A. The distribution of the computed wind 
stress field is illustrated in Fig. 6.75B and the variation of the computed wind stress with 
time near Barrow, Alaska, is shown in Fig. 6.75C. 
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STORM ACTUALLY SIMULATED% 
OCT.I6-20,1969 	.›. 

• 

	  NOV.  4-5  

	 JULY 13-17 

• • ..... • • OCT. 16-20 

- • - • -. - JUNE 17-21 

FIG. 6.73. Selected storm tracks over Hudson Bay for the year 1969. 

METEOROLOGICAL PROBLEMS IN THE GREAT LAKES 

Barrientos (1970) discussed objective methods for predicting winds over Lakes Erie 
and Ontario. Making use of 1000-mb geostrophic wind and sea level pressure forecasts 
issued routinely for eight stations surrounding these lakes, as well as marine observations 
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FIG. 6.74. Corridors of primary and secondary lows over the northwest part of Canada. (Burns 1973) 

from anemometer-equipped vessels, two sets of regression equations were derived for 
predicting wind speed. 

Venkatesh and Danard (1976) used a one-level primitive equation model for com-
puting the mesoscale influences of orography, friction, and heating on surface winds. 
They included the influence of atmospheric stability and land—water temperature contrast. 
Estoque and Gross (1979) discussed diurnal wind variations over Lake Ontario, as 
deduced from Rawinsonde data at six stations. 

Resio and Vincent (1977) estimated winds over the Great Lakes knowing winds over 
adjacent land. Feit and Pore (1978) discussed objective wind forecasting for all of the 
Great Lakes using a technique developed by Feit and Barrientos (1974). The predictors are 
the various forecast parameters computed by the National Meteorological Center's prim-
itive equation (PE) model. The 12 locations at which wind forecasts are made at 6-h 
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FIG. 6.76. Twelve locations in the Great Lakes where winds are routinely pre-
dicted by the U.S. National Weather Service. (Feit and Pore 1978) 

intervals, 36 h in advance, are shown in Fig. 6.76. Mean absolute error in wind speed is 
5-8 knots (2.6-4.1 m • s' ) and mean absolute error in wind direction is about 20° for 
short-term forecasts (6-12 h) and about 70° for long-term forecasts (30-36 h). 

Keulegan (1953) took a somewhat different approach. He derived the wind stress and 
the roughness parameter for Lake Erie using water level data for a 50-yr period. In other 
words, he used the observed storm surge data to estimate the wind stress. He defined an 
effective lake wind velocity as the wind velocity that would be needed to produce the 
observed storm surge, assuming that the wind blows with this effective velocity along 
the lake axis. Recently, Schwab (1982) used a similar but more sophisticated 
inverse technique. 

Keulegan (1953) used the following relationship to deduce the wind stress from the 
storm surge: 

(Ts + To)  L 	AH 	A 
(6.114) 	 = 0.867 TT — 0.134 H (—Ho ) 

pgHo Ho 

where Ts  is the wind stress, To  is the bottom stress, p is the density of water, g is gravity, 
Ho  is the average water depth, AH is the storm surge (feet), and L is the length of the lake 
(feet). The bottom stress To  was related to the surface wind stress through 

(6.115)  'ro  = nTs  

Then, eq. 6.114 becomes 
A 2 Ho  

(6.116) Ts  -- 	1 
(1 + n) 

[0.867 41—ff  — 0.134 	 (
y

`=" 	H 

	

Ho 	L Pg ° Ho  

Write 

(6.117) Ts = "IpalT2  
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TABLE 6.55. Relationship between observed storm surges (in 
the United States) and drag coefficients of wind. (Modified from 
Keulegan 1953) 

Observed 	Observed 	Drag 
Date of 	storm surge 	wind speed 	coefficient 

storm surge 	 (m) 	(km• IC') 	,y X 103  

Nov. 21, 1900 	4.00 	 81.3 	 2.13 
Oct. 20, 1905 	2.04 	5.05 	 2.87 
Oct. 20, 1906 	2.97 	 61.6 	 2.78 
Jan. 20, 1907 	3.67 	 77.4 	 2.17 
Dec. 7, 1909 	3.20 	64.5 	 2.73 
Dec. 31, 1911 	2.90 	62.6 	 2.63 
Jan, 31, 1914 	2.42 	 55.8 	 2.76 
Dec. 9, 1917 	3.10 	69.5 	 2.23 
Dec. 9, 1917 	1.39 	53.3 	 1.78 
Dec. 10, 1917 	2.32 	55.2 	 2.71 
Dec. 18, 1921 	3.75 	 72.6 	 2.52 
Dec. 8, 1927 	4.04 	76.3 	 2.44 
Dec. 9, 1927 	1.26 	43.8 	 2.35 
Dec. 9, 1927 	1.05 	42.0 	 2.15 
Dec. 9, 1927 	0.53 	 35.6 	 1.53 
Apr. 1, 1929 	4.06 	82.6 	 2.88 
Jan. 22, 1939 	2.87 	62.4 	 2.64 
Sept. 25, 1941 	2.76 	57.5 	 2.96 
Jan. 2, 1942 	3.82 	65.0 	 3.22 
Jan. 3, 1942 	0.73 	 31.4 	 2.68 
Nov. 22, 1946 	2.55 	 55.0 	 2.99 
Mar. 25, 1947 	2.54 	57.5 	 2.77 

where pa  is the density of air, Vis the wind speed (feet per second), and the drag coefficient 
y is given by 

(6.118) y = 0.867  [ 
- 	V .  

AH1 AI/ P gH o 
(1 + n) 	Ho  110 Pa V2  

The 22 storms during the period 1900-47 on Lake Erie, the observed wind speed, 
the observed storm surge (during westerly winds), and the calculated value of y from eq. 
6.118 are listed in Table 6.55. 

Hunt (1959) discussed the relationship between the parameter a defined as 

Ts + TB  
(6.119)  a= 	_ 

and D I K where D is the water depth, K is the bottom roughness coefficient, and Ts  and 
TB  are the wind and bottom stresses. The relationship for Lake Erie is shown in Fig. 6.77. 
Hunt (1959) also gave diagrams showing the variation with time in fall and spring of the 
ratio Uw / UL  at Cleveland on Lake Erie (Fig. 6.78). Here, Uw  and UL  are the overwater 
and overland wind speeds. The reason for examining this ratio is to account for atmo-
spheric stability. The ratio Uw/ UL  at four stations on Lake Erie for stable, adiabatic, and 
unstable atmospheric conditions is given in Table 6.56. The overwater wind speeds on 
Lake Erie at 21:00 on November 8, 1957, are shown in Fig. 6.79. 

Irish and Platzman (1961) discussed the meteorological conditions associated with 
extreme storm surges on Lake Erie. The monthly frequency distribution of severe storms 

Ts 
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FIG. 6.77. Variation of a versus DIK(D= water depth, K = bottom roughness parameter, 75  = wind stress, 
and 7,9  = bottom stress). The relationship is shown for two different distributions of bottom stress. (Hunt 1959) 

on the Great Lakes, as given by these authors for the period 1876-1900, are given in 
Fig. 6.80. It can be seen that maximum frequency occurs during October to December, 
November being the month of greatest frequency. 

Platzman (1965b) showed that over Lake Erie, there is a distinct diurnal constituent 
of the longitudinal component of the wind square vector, with maximum in the direction 
Toledo to Buffalo shortly after noontime. This variation is due to the usual convective 
oscillation of the atmospheric boundary layer. The amplitude of this variation is about 
10 m2 .s-2 . 

Schwab (1978) used the impulse response method to simulate storm surges on Lake 
Erie. For inclusion of spatial dependence in the wind field, he used a weighting factor W, 
in the interpolation of winds from different stations, similar to that used by Platzman 
(1963): 

T(x, y, t) = E wi (x, y)71 (t) 
i=1 

(6.120) 
E wi (x, y) = 1 
i=1 

where Wi  is proportional to the inverse square of the distance from station i. 
Schwab (1978) converted the observed wind speeds Si, at the coastal stations into 

overlake wind speeds Sw  through 
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FIG. 6.78. Daily variation in Uw /UL  for southwesterly winds by season at Cleveland, Ohio, during 1956. 
(Hunt 1959) 
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Toledo 	1.95 	1.59 	1.13 
Cleveland 	1.48 	1.37 	1.00 
Erie 	 2.35 	2.03 	1.00 
Buffalo 	1.59 	1.13 	0.90 

30 

wz 20 

IjJ a. 

1940-1959 

1876-1900, 
101—  

JUL. AUG. SEP. OCT. NOV. DEC. JAN. FEB. MAR. APR. MAY JUNE 

TABLE 6.56. Uw /UL  for four Lake Erie sectors accord-
ing to temperature ( °C) classification. Uw , overwater wind; 
UL , overland (shore station) wind; TA, air temperature; Tw , 
water temperature. Data are the values of the ratio Uw /UL  
for the three following states of the atmosphere: TA - 
22.2°C, unstable; TA  -  Ta  = —21.7 to I3.9°C, adiabatic; 
TA - Tw 	—13.3°C, stable. (Hunt 1959) 

Sector 	Unstable 	Adiabatic 	Stable 

FIG. 6.80. Monthly frequency distribution of severe storms on the Great Lakes 
for the period 1940-59 (solid line) and for the period 1876-1900 (broken line). 
(Irish and Platzman 1961) 

Sw  
(6.121) — = (SL)4.(Ta — Tw) SL 

where Ta  and Tw  are the air and water temperatures, respectively, and 

1.9 (6.122) tp = 1.2 +  

— T„V"  
(6.123) (I) =  1.0 	( 1900 

These relations are given by Resio and Vincent (1977) based on boundary layer theory. 
In eq. 6.122, SL, is expressed in metres per second. The vector surface stress is taken 
proportional to the product of wind speed and vector wind U, i.e. 

(6.124) — = Cd  I U;  Ui  
Pa 
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FIG. 6.81. Drag coefficient C,, as a function of air—water 
temperature difference and wind speed at a 10-m height. 
(Schwab 1978) 

FIG. 6.82. Simplified surface weather chart at 01:00 (Eastern Standard 
Time) on April 6, 1979. The pressure field is in millibars. (Hamblin 1979b) 

The air density pa  is taken as 1.25 x 10 -3  g • cm -3 . The drag coefficient Cd  as a function 
of (Ta  — T,,) and wind speed (at a 10-m height) is shown in Fig. 6.81. 

Hamblin (1979) numerically simulated the storm surge of April 6, 1979, which 
produced a record setup of 4.5 m on Lake Erie. The surface isobaric field for this storm 
is shown in Fig. 6.82 and the time variation of the wind stress at four stations is given in 
Fig. 6.83. Hamblin (1979) mentioned that the computed drag coefficients varied from 
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Fin. 6.83. Time history of wind stress at four locations on Lake Erie. 
(Hamblin 1979b) 

0.9 X 10-3  to 3.5 X 10-3  during the duration of the storm. 
Simons (1975) determined the effective wind stress over Lakes Erie and Ontario from 

long-term numerical water level simulations. He showed that the effective wind stress over 
water is greater than indicated by atmospheric boundary layer measurements over Lake 
Ontario; the theoretically derived drag coefficient appears to be about 1.85 X 10-3 . Over 
Lake Erie, the drag coefficient is about the same magnitude in spring and early summer, 
but increases to about 2.5 X 10-3  during the stormy autumn season. These results confirm 
Donelan's (1975) study of the interaction between wind waves and the atmospheric 
boundary layer, whose primary result was that the drag coefficient increases significantly 
if the wave field is not completely adjusted to the wind field. Usually, boundary layer 
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observations are made during steady winds (when no storms are present) and, hence, such 
measurements are not representative of drag coefficient during stormy periods. 

6.8 Meteorological Problems Associated with Storm Surges in the 
United States 

EXTRATROPICAL (AND TROPICAL) CYCLONES 

Frequencies of cyclones over North America were determined for the period 
1899-1939 by Petterssen (1950) and Klein (1957). This period characterized a gradually 
increasing Northern  Hemisphere temperature (and predominant zonal flow). Cyclone 
frequency studies were made for the period 1951-70 (Reitan 1974). During this period, 
the temperature in the Northern  Hemisphere gradually decreased (more frequent meridi-
onal flow occurred). The year 1950 appears to be the boundary between these two epochs. 

Reitan (1974) used a grid with an area of 550 000 km' whereas Klein (1957) used a 
grid with an area of 230 000 km' and Petterssen (1950) used a grid of 100 000 km'. In 
the studies of Petterssen and Klein, a cyclonic event was counted whenever the cyclone 
center was within the area at a specific time (12:30 GMT). Reitan (1974) counted a 
cyclonic event if the track of the cyclone passed through a grid area. The grid system used 
for the total area of the study (Reitan 1979) is shown in Fig. 6.84. The continental United 
States approximately covers the area occupied by rows D—G and columns 4-10. 

The number of cyclonic events by year for the period 1951-70 for the entire grid as 
well as for the continental United States is listed in Table 6.57. The frequencies are given 
separately for January, April, July, and October. Some important differences occurred 
between the results for the post-1950 data and the pre-1950 data. During the pre-1950 
period, the January cyclogenesis maximum occurred in the prairie provinces of Canada 
with a secondary maximum in Colorado, whereas for the post-1950 period, the primary 
maximum was in Colorado with a secondary maximum in Alberta. In the pre-1950 period 
the Gulf of Alaska and the coast of the State of Washington were areas of cyclogenesis, 
whereas this was not true in the post-1950 period. Also, a maximum of cyclogenesis off 
the southwest coast of Greenland in the early period was not found in recent data (Reitan 
1974). Similar differences exist during the other months. 

Reitan (1979) extended his earlier study (Reitan 1974) to cover the period 1949-76. 
This study showed a general trend for a decrease in the number of cyclonic events in recent 
years. Zishka and Smith (1980) studied the climatology of cyclones over North America 
and surrounding area for the period 1950-77. Generally speaking, cyclones are more 
frequent, more intense, and have tracks far more southerly in January than in July. 
Predominant cyclogenesis occurs along the east coast of the United States and in the lee 
of the Rockies. The cyclone frequency has indeed decreased during the post-1950 period. 

In these studies, latitude-dependent area normalization has been used (e.g. O'Connor 
1964; Taljaard 1967; Reitan 1974, 1979). Hayden (1981a, 1981b) pointed out that 
latitude-dependent area adjustments, made after the data extraction is completed, intro-
duce a latitude-dependent bias in the frequency patterns. For example, south of the 
reference latitude, area normalization adjusts the frequency downward and forces it to 
represent an area smaller than the one from which the original data were extracted. This 
artificially decreases the frequency of the cyclones (or whatever parameter being tabu-
lated). On the other hand, north of the reference latitude, the frequency is artificially 
increased. To correct this situation, Hayden (1981a, 198  lb)  recommended the use of the 
so-called "practical equal area grid" as developed by Ballenzweig (1959). 
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Flo. 6.84. Grid system used for counting cyclone frequencies. (Reitan 1979) 

Hayden (1981a) performed a principal component analysis on extratropical cyclone 
data for the Atlantic coast of the United States and surrounding area (shown in Fig. 6.85 
for the period  1885-1978). He stated (p. 162): 

... principal component analysis provides a description of the major modes of vari-
ability in the data set. Typically, each component is identified with some property of 
the data field. The analysis also provides an index which measures the importance of 
each component within each year. Finally, the analysis provides an estimate of the total 
percent of variance in the data set which can be explained on the basis of each 
component. 

The objective of the analysis is to isolate characteristic, recurrent, and indepen-
dent modes of covariance among variables into a new set of independent variables. 
Basically, the analysis transforms a set of intercorrelated variables into a new coordi-
nate system in which the axes are linear combinations of the original variables and are 
mutually orthogonal. To prevent those grid cells with high mean cyclone frequencies 
(high latitudes) from dominating the total variance and consequently from dominating 
the eigen vector forms, the correlation matrix was used rather than the covariance 
matrix. 

The area shown in Fig. 6.85 was divided into 74 rectangles (2.5° latitude by 5° 
longitude). The first principal component showed that, since the beginning of the twentieth 
century, the frequency of cyclones over the marine areas has increased whereas the 
frequency decreased over the continental areas. This trend peaked in the 1960's. The 
second principal component was identified as a cyclogenesis function for the east coast of 
the United States. This showed an increased cyclogenesis starting at the beginning of the 
twentieth century with a maximum in the 1950's. The third and fourth components explain 
the geographic variations in cyclogenesis in the Gulf coast and Great Lakes regions. The 
average cyclone frequencies over the eastern United States for the period 1885-1978 are 
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TABLE 6.57. Cyclone event frequency for four typical months for the grid shown in Fig. 6.84 and for the 
coterminus United States (i.e. rows D—C and columns 4-9 of Fig. 6.84). (Reitan 1979) 

Entire grid 	 Coterminous United States 

Year 	Jan. 	Apr. 	July 	Oct. 	Jan. 	Apr. 	July 	Oct. 

1949 	220 	260 	117 	179 	63 	87 	20 	33 
1950 	242 	134 	111 	228 	83 	52 	36 	66 
1951 	259 	225 	190 	311 	107 	78 	53 	96 
1952 	397 	262 	185 	265 	125 	67 	30 	32 
1953 	276 	269 	200 	261 	97 	93 	31 	55 
1954 	385 	253 	217 	201 	135 	73 	85 	50 
1955 	274 	202 	154 	226 	103 	64 	28 	49 
1956 	242 	282 	185 	198 	77 	80 	45 	50 
1957 	254 	177 	148 	168 	69 	61 	32 	16 
1958 	270 	186 	159 	218 	80 	66 	34 	34 
1959 	222 	210 	258 	207 	75 	59 	32 	59 
1960 	313 	248 	190 	235 	97 	76 	41 	56 
1961 	279 	249 	188 	266 	71 	84 	43 	65 
1962 	360 	202 	219 	264 	119 	55 	52 	69 
1963 	261 	237 	166 	210 	68 	79 	40 	31 
1964 	299 	193 	132 	256 	110 	44 	25 	57 
1965 	332 	193 	177 	197 	122 	51 	44 	34 
1966 	182 	226 	150 	187 	46 	54 	30 	33 
1967 	322 	242 	100 	205 	1 1 I 	93 	13 	62 
1968 	200 	237 	139 	248 	60 	70 	24 	78 
1969 	171 	236 	128 	197 	54 	69 	25 	62 
1970 	244 	187 	163 	216 	50 	76 	33 	36 
1971 	244 	230 	176 	228 	78 	73 	42 	59 
1972 	233 	210 	126 	210 	66 	62 	32 	48 
1973 	289 	204 	99 	165 	76 	64 	16 	42 
1974 	223 	229 	158 	206 	79 	63 	38 	34 
1975 	277 	170 	140 	182 	86 	49 	23 	50 
1976 	184 	201 	175 	206 	52 	49 	32 	44 

Total 	7455 	6148 	4447 	6138 	2359 	1871 	979 	1400 
Average 	266 	220 	159 	219 	84 	67 	35 	50 

also shown in Fig. 6.85. 
Usually, one uses the Norwegian cyclone model to explain extratropical cy-

clogenesis. Reed (1979) pointed out that it is not always necessary for the cyclone to 
originate as a wave perturbation on a polar front separating tropical and polar air masses. 
An alternate mechanism is the formation of cyclones in polar air streams behind or 
poleward of the polar front, as sometimes happens in winter over the oceans. 

Cyclones that form in this manner are relatively small in size. One interesting feature 
is that, in their mature stage, these cyclones exhibit a comma-shaped pattern. A surface 
low pressure center may not always be easily identifiable. When it exists, such a low 
pressure center is situated beneath the head of the comma. Also, under the trailing edge 
of the comma tail, there is almost always a surface trough of low pressure. Thus, cyclones 
of this type somewhat resemble large frontal cyclones. 

WIND STRESS AND PRESSURE IN EXTRATROPICAL CYCLONES OVER THE UNITED STATES 

Tancreto (1958) used the significant wave (wind waves) height as an indication of the 
intensity of the storm. An extratropical cyclone generated storm surge during March 1962 
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FIG. 6.85. Average annual frequency of extratropical cyclones over the eastern part of the United 
States. (Hayden 1981a) 

caused tremendous damage in Atlantic City (New Jersey). The surge was so severe it 
bisected a steel pier (Pore 1964). Extratropical cyclone generated storm surges are not rare 
on this part of the east coast of the United States (e.g. February 1958). 

Hustead (1955) related the 2-h northeast wind movement at Norfolk (Virginia) to the 
storm surge. Miller (1957) made use of geostrophic winds and showed that maximum 
surges are associated with east —northeast winds. There is a lag of 12 h between the wind 
and the surge. 

Pore (1964) studied 18 storm surges during the period 1956-61. For these 18 storms, 
there was a total of 1910 hourly observations available. Most of these storms passed over 
the southeastern  United States and then moved offshore over the Atlantic Ocean. Max-
imum wind speeds varied from 22 to 50 knots (41-93 km •11 -1 ). Three meteorological 
forcing terms were considered separately: (a) onshore component of the wind stress (which 
produces a setup), (b) alongshore component of the wind stress (which generates along-
shore currents, which then are deflected to the right by the Coriolis force, and this creates 
an upward slope of the water surface toward the right), and (c) atmospheric pressure 
(inverse barometer effect). 

An interesting result of this study is that the storm surge at Atlantic City is strongly 
dependent on the alongshore component of the wind. There appears to be little difference 
between the results obtained using linear wind stress and quadratic wind stress. 

Pore (1965) studied extratropical cyclone generated storm surges in Chesapeake Bay. 
There were 11 storms during the period March 1954 to March 1961. The storms that 
passed to the north of Chesapeake Bay and caused a cold front (or a frontal system) to 
move across the bay were called type A storms. The storms that approached the bay from 
the south were referred to as type B storms. Type A storms usually generate significant 
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surges at Baltimore (in the northern part of Chesapeake Bay) but not at Hampton Roads 
(in the southern  part). On the other hand, type B storms could generate significant surges 
at both locations. 

Wang (1979) examined the response of the water level in Chesapeake Bay to the time 
scale of atmospheric forcing. For time scales longer than 7 d, the water levels in the bay 
were driven nonlocally by the coastal water levels. For periods between 4 and 7 d, the 
water level in the bay was driven both by the coastal sea level as well as the lateral 
component of the wind. For time scales of 1-3 d, the water level in the bay was driven 
by the longitudinal component of the wind. 

Wasserman and Gilhousen (1976) examined the meteorological factors involved in 
beach erosion due to storms and storm surges. Severe erosion occurs under the following 
conditions: (1) an angle between 0 and 200  between the predominant wind direction and 
the orientation of the Long Island coastline (for the New Jersey coast this range is 
20 —40°), (2) a setup period in excess of 18 h during which the coastal winds are within 
20° of the predominant wind direction, (3) at no time during this setup period the wind 
direction upstream (up to 550 km) varies by more than 20° from the coastal wind direction, 
and (4) during at least a portion of the setup period, the upwind surface pressure gradient 
is at least 4 mb • 200 km - '. 

Saunders (1977) computed seasonal averages of wind stress over the eastern con-
tinental shelf of North America making use of about I million ship observations for the 
period 1941-72. He assumed a drag coefficient that increases with the wind speed from 
1.0 x 10-3  at 5 m • s -I  wind speed to 2.3 x 10 -3  at 25 m • s -  '. Atmospheric stratification 
was found to have little effect. The stress is strongest in winter (1-15 dynes • cm-2 ) and 
weakest in fall (0.25-0.5 dynes • cm -2 ). In summer the stress is directed towards the 
northeast whereas in the other three seasons it is directed south and east. The wind stress 
generally increases with increasing latitude, but local maxima are found over the Gulf of 
Maine and the Gulf of St. Lawrence. Saunders (1977) attributed the local maxima and 
minima to cyclonic activity. 

HURRICANES AFFECTING THE UNITED STATES 

The term "hurricane" comes from the Spanish word "huracon," which probably 
originated from Maya and Carib Indian usage meaning evil spirit, storm god, or devil. A 
hurricane is an intense tropical storm with wind speeds in excess of 74 mi • h -  ' (64 knots 
or 33 m • s -1 ). In the twentieth century, hurricanes originating in the Atlantic Ocean, 
Caribbean Sea, and the Gulf of Mexico caused about 45 000 deaths (13 000 in the United 
States). About 90% of the deaths were due to drowning in the storm surge. In the twentieth 
century, damage in the United States resulting from hurricanes exceeded $12 billion. 

There appears to be no definite periodic cycle for hurricanes. During the 1940's 
Florida took the brunt, during the 1950's the east coast of the United States was mostly 
affected, and during the 1960's and 1970's most damage occurred along the coast of the 
Gulf of Mexico. There is some indication in the early 1980's that the same trend as in the 
1940's and 1950's may occur (Owen 1980b). 

In the North Atlantic Ocean, from June through November, some 100 disturbances 
develop every year. Of these, about five to six intensify into hurricanes. About 70% of 
these storms originate near the west coast of Africa and are referred to as Cape Verde 
storms. Locations were shown earlier (Fig. 1.14) at which Atlantic tropical storms reached 
hurricane intensity during the period 1901-63. 
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TABLE 6.58. The Saffir—Simpson hurricane damage potential scale. (Simpson 
and Riehl 1981) 

Central 	 Storm surge 
Scale 	pressure 	Wind speed 	amplitude 
No. 	(mb) 	(km• II') 	 (m) 	 Damage 

1 	- 1980 	119-153 	1.22-1.52 	Minimal 
2 	965-979 	155-177 	1.83-2.44 	Moderate 
3 	945-964 	179-209 	2.74-3.66 	Extensive 
4 	920-944 	211-249 	3.96-5.49 	Extreme 
5 	<920 	>2.49 	>5.49 	Catastrophic 

In the 1960's there was a great improvement in forecasting tropical cyclones. How-
ever, this rapid progress did not continue into the 1970's although computer and satellite 
technology improved (Chang 1981). The lack of substantial progress has been attributed 
to the imprecise knowledge of the initial conditions for the numerical models. According 
to Hovermale and Livezey (1978), for a 36- to 48-h forecast, the error in the track 
prediction over the oceans (where data is scarce) is three times the error at coastal stations. 
Not everybody agrees with this evaluation. The EOS Bulletin (Vol. 61, No. 28, July 15, 
1980, p. 538) mentioned that a NOAA satellite that is 22 300 mi (35 680 km) out in space 
is locating Atlantic Ocean hurricanes with an average accuracy of about 17 nautical miles 
and is pinpointing their intensity within an average of 10 knots. For a recent summary of 
the status of operational prediction of tropical cyclone motion over the North Atlantic 
Ocean, see Neumann and Pelissier (1981a). These authors concluded that none of the 
seven models (five statistical and two dynamical) that are in use at the National Hurricane 
Center in Miami can be singled out as superior to the others in every respect. One 
disappointing aspect is that one cannot combine the good points from all these models into 
a single model. 

Hurricanes are classified according to the Saffir —Simpson scale (named after Herbert 
Saffir, a consulting engineer, and Dr. R. H. Simpson, former director of the National 
Hurricane Center in Miami), which is an intensity scale based on the central pressure, wind 
speed, amplitude of the storm surge, and the resulting damage. This scale is illustrated in 
abbreviated form in Table 6.58. More details about this scale can be found in Simpson and 
Riehl (1981). Note that in the twentieth century, only three storms affecting the United 
States are given the highest rank (5) on this scale. These are the Labour Day storm of 1935, 
Hurricane Camille of 1969, and Hurricane Allen of 1980. 

HURRICANE STATISTICS FOR THE UNITED STATES 

Some of the most disastrous hurricanes of the twentieth century in the United States 
and the damage are listed in Table 1.1. Bruun et al. (1962) gave a list of major hurricanes 
affecting Florida during the period 1900-60. In this table there are 40 entries. The 
inverted barometer effect could be quite significant in the generation of storm surges here. 
For each inch (of mercury) of reduction of the central pressure of the hurricane (1 in. = 
2.54 cm) the corresponding hydrostatic water head is 14 in. (Bretschneider 1967). For the 
storm of September 2, 1935, at Lower Matecumbe Key in Florida, the lowest central 
pressure was 26.35 in.Hg (892.3 mb). Taking the normal sea level pressure as 29.92 in.Hg 
(1013.2 mb) gives a 4.1-ft (1.3 m) rise in water level. Similar inverted barometer effects 
could be noticed in typhoons, also. For the typhoon of August 18, 1927, the central 
pressure some 460 mi (740 km) east of Luzon (Philippines) was 26.18 in. (886.6 mb) 
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Fin. 6.86. Track of Hurricane Agnes of June 1972. 

giving rise to a surge amplitude of 4.3 ft (1.31 m). 
Friedman (1975) gave a list of hurricane-generated storm surges, deaths, and damage 

along the Gulf of Mexico coast and the southern part of the east coast of the United States. 
For the period  1873-1973  there were 90 entries in this table. Price (1956) discussed the 
hurricanes that affected the Texas coast from Galveston to Rio Grande. During the period 
1830-1950, a total of 54 hurricanes were noted. 

Simpson and Riehl (1981) discussed tornadoes generated by hurricanes. The damage 
potential from these tornadoes is much smaller than that from the hurricane itself. Hurri-
cane tornadoes occur to varying degrees along the Gulf of Mexico coast, in Florida, and 
along the southern part of the east coast of the United States. They stated (p. 218): 
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FIG. 6.87. Example of an unusual track of a hurricane (Hurricane Flora of October 

1963). Numbers indicate the dates. (Simpson and Riehl 1981) 

130°W 	 70° 	 60° 	 50° 

FIG. 6.88. Another example of an unusual hurricane track (Hurricane Ginger of October 1971). 

Numbers indicate the dates. (Simpson and Riehl 1981) 

Hurricane tornadoes develop in the spiral rain bands, mostly in the right-front 
quadrant outside the areas of sustained hurricane or gale force winds.... Although 
some hurricanes produce families of tornadoes, the individual event is a small, rope-
type vortex similar to a water spout. It has a short path length, maximum wind speeds 
are usually less than 50 meters per second, and pressure drops in the funnels are 
believed to be more than about 20 mb. 

As pointed out earlier, hurricanes usually travel from east toward west or northwest 
with a possible recurvature towards northeast or east. However, sometimes they could 
have a predominantly northward motion. The track of Hurricane Agnes of June 1972 is 
shown in Fig. 6.86. An interesting feature of this hurricane is that during June 22-23, 
1972, it exhibited a double center. Two rather unusual tracks of hurricanes (Hurricane 
Flora of October 1963 and Hurricane Ginger of September 1971) are illustrated in 
Fig. 6.87 and 6.88, respectively. 
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FIG. 6.91. Smoothed adjustment factor curves for reducing hurricane 
wind speeds when the center is over land. (Schwerdt 1978) 

Baynton (1979) argued that the present hurricane detection radars on the United 
States coast are outdated and he suggested deployment of Doppler radars, which will 
provide, in real time, colored displays of the wind field in a hurricane. 

HURRICANE MOVEMENT OVER OCEAN AND LAND 

Earlier, it was seen that hurricanes are born primarily over oceanic areas and they 
weaken when they travel over the continents. A numerical model simulation by Chang and 
Madala (1980) showed that hurricanes appear to move into areas of higher sea surface 
temperature (SST) if the SST gradient is perpendicular to the mean ambient flow vector 
(MAFV). An area of warmer SST located to the right of MAFV is more favorable for 
hurricane intensification than an area situated to the left. 

Schwerdt (1978) studied the reduction of the wind field when a hurricane moves from 
the ocean to over land. Once a hurricane crosses the coast from the ocean to the land its 
central pressure starts increasing and the wind fields start decreasing, and this so-called 
filling process is most pronounced in the inner portion of the hurricane. 

According to Palmén and Newton (1969), filling occurs because the heat flux from 
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the land is negligible, which causes a reduction of the excess temperature of the hurricane 
core. Consequently, the kinetic energy decreases. Bergeron (1954) showed that a reduc-
tion in the equivalent potential temperature of the ascending air in the core leads to the 
filling process. Miller (1963) showed that surface friction plays a minor role in the filling 
process. 

The increase of central pressure of Hurricane Camille (August 1969) after she crossed 
the Mississippi coast from the ocean is shown in Fig. 6.89. Similar increases have been 
noted for other hurricanes. However, there is little change in the peripheral pressure of a 
hurricane after it crosses over to land. Schwerdt (1978) classified the hurricanes affecting 
the east and Gulf of Mexico coasts of the United States (as shown in Fig. 6.90). Category 
C extends to the Canadian border and category A extends to the Mexican border. 

The adjustment factor curves for reducing hurricane wind speeds when the center is 
over the land are shown in Fig. 6.91. The following equation holds for the curves for 
categories A and C: 

(6.125) W, — wce(cci+g(2) 

where VI,/  is the maximum frictionless overland wind speed at some specific time after 
landfall, W. is the maximum overwater wind speed at the time of landfall, t is time, and 
a and 13 are coefficients. For category A (i.e. for the hurricanes landfalling on the Gulf 
coast from Mississippi westward and up to the Mexican border), Schwerdt (1978) gave 

a = —0.035 

13 = 0.00013 

For category C (i.e. the east coast of the United States north of Savannah, Georgia, up to 
the Canadian border) 

a =  —0.026 

13 = 0.00018 

For category B (i.e. Florida coast south of 27°N) the relationship is 

(6.126) W, = W,(1.0 —  0.013 t) 

Hurricanes of category B showed a somewhat different behavior from those of A and 
C. Whereas in categories A and C, intense hurricanes have greater filling rates, in category 
B, intense hurricanes tend to fill slowly. For other related works on storm modifications, 
see Jelesnianski and Taylor (1973), Jelesnianski and Barrientos (1975), and Simpson and 
Riehl (1981). Some characteristics of landfall hurricanes in the United States are listed in 
Table 6.59. 

HURRICANE WIND AND PRESSURE FIELD RELATIONSHIPS 

On a large-scale weather chart, the surface pressure field of a hurricane looks almost 
circular (see Fig. 6.92). The streamlines for the surface flow of a hurricane are shown in 
Fig. 6.93. One can see the spiraling inflow. The isotachs of wind speed at the surface for 
an intense hurricane are shown in Fig. 6.94. The radial profiles of wind speed for a tropical 
storm, a minimal hurricane, a moderate hurricane, and a maximum (intense) hurricane are 
illustrated in Fig. 6.95. The tangential wind speed (averaged around the hurricane) is 
plotted logarithmically against the radius for Hurricane Anita of September 1977 (Fig. 
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TABLE 6.59. Characteristics of landfall hurricanes that brought a sus-
tained hurricane force wind to a 160-km strike area on the central Texas 
coast during the period 1900-78. (Ho et al. 1975) 

Minimum 	Radius of 	Approach 
pressure, 	maximum winds, 	speed, 

Date 	 P. (mb) 	 R (km) 	C (km•11 -1 ) 

Sept. 9, 1900 	936 
July 21, 1909 	959 
Aug. 17, 1915 	949 
June 22, 1921 	954 
June 28, 1929 	969 
Aug. 14, 1932 	942 
Sept. 23, 1941 	959 
Aug. 30, 1942 	951 
Aug. 27, 1945 	968 
Oct. 4, 1949 	963 
Sept. 11, 1961 	931 
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FIG. 6.92. Surface weather chart on September 15, 1957, showing Hurricane Carrie. (Simpson 
and Riehl 1981) 

6.96). The central pressure versus maximum sustained wind speed for Atlantic hurricanes 
is shown in Fig. 6.97. 

Simpson and Riehl (1981) defined the habitation layer as the lowest 500 m of the 
atmosphere. They considered the balance of forces in this layer at a coastal station as a 
'hurricane approaches the station. The centrifugal force C. and the Coriolis force Co  are 
directed outwards, whereas the pressure gradient force Pg  and the frictional force Fs  are 
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FIG. 6.93. Streamlines showing the circulation in a hurricane. (Simpson and 
Riehl 1981) 

FIG. 6.94. Isotachs of surface wind speed (knots) in an intense hurricane. 
Black area shows the region of strongest winds (to the right of the eye) 
(1 knot = 1.852 km.11 -1 ). (Simpson and Riehl 1981) 

directed inward (perpendicular to the streamline). This leads to an acceleration of the 
tangential wind component as the air spirals inward. 

In a hurricane, mainly the tangential (rotational) component of the wind increases 
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Flo. 6.95. Model of radial profiles of wind speed for three hurricane intensities and for a 
tropical storm. (Simpson and Riehl 1981) 
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Fin. 6.96. Tangential wind speed (u) averaged around Hurricane Anita 
(September 1, 1977) and plotted logarithmically against the radius (r). (Simpson 
and Riehl 1981) 

from the periphery of the vortex to the ring of maximum winds (RMW). According to 
Simpson and Riehl (1981) this ring has a radius of less than 35 km: 

(6.127) u = V cos 13 

where V is the wind speed and 13 is the angle made by the streamlines with the isobars. 

100 150 
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FIG. 6.97. Maximum sustained wind speed versus central pressure for 
Atlantic hurricanes. (Simpson and Riehl 1981) 

Neglecting losses due to friction, the angular momentum St per unit mass supplied by the 
surroundings to the hurricane vortex is 

fi -2  (6.128) SI = ur + —
2 

where f is the Coriolis parameter, r is the radial distance from the observation point to the 
center of the vortex, and u is the tangential wind speed. The first term on the right side 
of eq. 6.128 gives the angular momentum relative to the surface of the earth whereas the 
second term represents the angular momentum due to the earth's rotation. 

From eq. 6.127 and 6.128 

f r 
(6.129)  

r 	2 

As the angular momentum is transported inside, the average value of u increases as can 
be seen from eq. 6.129 (ignoring frictional effects). The maximum value of u occurs for 
cyclostrophic balance (i.e. when the pressure gradient force balances the centrifugal plus 
Coriolis forces) and when 13 of eq. 6.127 tends to zero. 

In principle, the increase of u with decreasing r would create centrifugal forces that 
would far exceed the pressure gradient forces, and the air should spiral outward towards 
higher pressure. However, surface friction reduces the value of SZ steadily and this outward 
spiraling tendency is offset. Hence, surface friction plays a dual role. First of all, it permits 
a crossing angle between the streamlines and isobars so that air from the surroundings is 
drawn towards the vortex center by pressure gradient forces. Second, it reduces the 
imported angular momentum so that the centrifugal forces cannot dominate the pressure 
gradient forces and a radius of maximum winds can develop near the center. In this ring, 
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FIG. 6.98. Model of wind speed variation with height in tropical cyclones. 
Speeds are normalized with reference to wind speeds measured by aircraft in 
the 150- to 300-m layer. A, over water; B, over land; C, profile for 1/7-power 
law. (Bates 1977) 

as the air (drawn from the surroundings) ascends, a convective eye wall is created, and 
this leads to the central warm core that maintains surface pressure gradients. Of course, 
friction also is responsible for the creation of gusts in the wind field. 

From the edge of the radius of maximum winds to the center of the eye, wind 
decreases monotonically to almost zero. The point of zero wind speed is (theoretically) 
displaced to the left of the track of lowest pressure at a distance that is proportional to the 
speed with which the vortex moves. 

Usually, the combined Rankine vortex model is used to model the average horizontal 
wind structure in a hurricane. The area inside the RMW is in solid rotation, i.e. u I r is 
constant. Outside the RMW the wind speed decreases exponentially as 

(6.130) u — constant  
rx 

For a Rankine vortex, x =  1. However, for a hurricane, 0.4 < x < 0.8. 
Above the first few hundred metres, the strongest winds of a hurricane do not vary 

much up to 4-5 km of height. The wind speed variation with height in tropical cyclones 
is shown in Fig. 6.98. 

The international standard for sustained winds is the average speed for a 10-min 
period. In the United States the sustained wind is a 1-min average. For extreme winds in 
the United States the unit of measurement is the fastest mile (the highest speed at which 
1 mi of wind passes the anemometer). 

Wilson (1958) considered hurricane wind and pressure fields, particularly with refer-
ence to application for computing wind waves. His period of study was 1900-49 (the 
hurricanes studied are listed in Table 5.16). Let R be the radius of maximum winds and 
let po  and p„ be the minimum central pressure and the ambient pressure, respectively, at 
a great distance from the eye. Then, let 
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(6.131) àp p„ - po  

and 

(6.132) E 	(àp)R 

Here, E is referred to as the wave energy index (Reid 1955). 
Myers (1954) gave the following formula for determining the rate of change of 

pressure p with radial distance r from the hurricane center: 

dp 
(6.133) —dr =- (àp)—R eR 

r 2 

Integration of eq. 6.133 gives 

(6.134) p = po  + (p„ - po )e -R ir 

To determine the surface wind field from the surface pressure field, the cyclonic 
gradient flow equation for a moving cyclone (Holmboe 1945) was used: 

aqi aP (6.135) Kh3 U 2  + (2o) sin cl) + 
t
)u — — — = 0 p 

where K„, is the horizontal curvature of the streamlines, U is the horizontal wind velocity 
above the friction layer, o) is the angular velocity of the earth's rotation, do is the latitude 
of the point under consideration, 115 is the horizontal angle of the wind vector (positive 
counterclockwise from the eastwest direction, say), p is air density, p is the pressure, and 
r is the radial distance to the point from the center of the hurricane. 

If V is the speed of movement of the hurricane, then 

1 P  (6.136) —u2 UV + — sin 0 + 2coU sin cl) = -
p r 

where 0 is the angle at the point under consideration. For large radial distances, eq. 6.136 
reduces to the geostrophic wind relation 

1 	ap 
(6.137) U = U = g 	2p sin c!) ar 

However, close to the center of the hurricane, one must use the complete equation 6.136. 
Its solution for U will be designated by UG and is referred to as the gradient wind: 

(6.138) UG = U c c\Ay 2  + 1 — 

where the cyclostrophic wind U. is defined by 

u = p a r 

parameter -y is given by 

1 (V sin 0  
= 2 U. 	UG I 

Gilman and Myers (1958) gave the profiles of pressure variation from the center to 
a distance of 140 nautical miles (259 km) for five hurricanes (Fig. 6.99). Gradients up to 
70 mb in 140 nautical miles have occurred. They also gave correction factors for the wind 

(6.139) 

and the 

(6.140) 
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Flo. 6.99. Pressure profiles for five selected hurricanes affecting the east coast of 
the United States. (Gilman and Myers 1958) 

fields for filling hurricanes. Taylor (1980) gave a plot of central pressure depression 
against the square of the wind speed for five different speeds of hurricane movement 
(Fig. 6.100). Ross (1979) compared computed and observed wind wave heights based on 
wind and pressure fields for five selected hurricanes (Table 6.60). 

In the U.S. National Weather Service and in the U.S. Army Corps of Engineers, the 
ideas about Probable Maximum Hurricane (PMH) and Standard Project Hurricane (SPH) 
originated in the 1950's (e.g. Graham and Nunn 1959). The PMH is defined as a hypothet-
ical hurricane having that combination of values of meteorological parameters that will 
make it the most severe that can probably occur at a particular coastal location. The SPH 
is defined as a hypothetical hurricane with the most severe combination of values of 
hurricane parameters reasonably characteristic of a specified geographic location, thus 
excluding extremely rare combinations (Schwerdt 1976; Mogolesko 1976). 

In determing PMH and SPH, the following meteorological parameters of the hurri-
cane are used: central pressure p o , peripheral pressure pw , radius R of maximum winds, 
forward speed T of movement, and direction 0 of movement. From Po , pw , R, and T the 
maximum gradient wind V„ and the maximum winds V, over water at distance R at a 
height of 10 m are given by 

R f 
(6.141) Ile 	K(Pw Po)"` 

891 
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FIG. 6.100. Central pressure depression AP (inches of mercury) versus 
square of maximum wind speed (knots') for five different speeds (u,) of 
movement of hurricane (knots) (1 in.Hg = 1013.3 mb; 1 knot = 1.852 
km • h- '). (Taylor 1980) 

TABLE 6.60. Characteristics of selected hurricanes and computed and observed significant wave heights. AP, 
difference between the peripheral pressure and the central pressure of the hurricane (mb); Vf, fonvard velocity 
of the hurricane (km•h - '); R, radius of maximum winds (km); U, wind velocity at a height of 10 m  (ms);  
H, significant wave height (m). (Ross 1979) 

Wave height 

Hurricane 	AP 	R 	Vf 	Observed 	Calculated 	Observed 	Calculated 

Anita 	41 	37.0 	7.4 	34.0 	29.9 	6.5 	6.7 
Ava 	100 	27.8 	22.2 	 48.3 	- 	13.3 
Belle 	58 	22.2 	24.1 	33.0 	37.8 	7.8 	8.5 
Camille 	105 	27.8 	22.2 	51.7 	49.4 	13.5 	13.6 
Eloise 	41 	27.8 	27.8 	35.8 	32.8 	8.7 	7.2 

where K is a constant that depends on the density of air and f is the Coriolis parameter 
(latitudinal dependency permitted) and 

(6.142) V, = 0.9 Vg , + 	RrT = 0 9V + -T 
(R 2  + /.2) 	 le' 	2 

where r is the distance from the hurricane center. 

40 
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R  (f; ) 3/ 2  for 0 5_ r R { V  

(6.143)  V= 
VR( -r ) for r R 

R 1 '2  

METEOROLOGICAL FORCING TERMS IN HURRICANE-GENERATED STORM SURGE MODELS 

Jelesnianski (1965) computed storm surges due to hurricanes on a continental shelf. 
He assumed the storm to be circular and symmetric with maximum winds VR at a distance 
R from the center. Then, in general, he took the wind speed V at any distance r as follows: 

For a tropical storm of August 1949 the observed wind field compared quite well with that 
computed from eq. 6.143. 

A quadratic law was assumed for the wind stress: 

T = KIVIV 

where k is a stress factor, Pa  is the density of the air, and p is the density of water. 
Jelesnianski (1965) referred to the angle made by the wind with the isobars as the "ingress 
angle," which is a function of space and time. Let .1) and 0 be the ingress angle and the 
polar angle, respectively (see Fig. 17 of Jelesnianski 1965). Then, the x and y components 
of the wind stress are 

T = — KV 2  sin (0 + (I)) 
(6.145) 

Ty = K V2  cos  (0 + (1)) 

From eq. 6.143-6.145 

2 1'2 2  r2 
= K V R R-3A  and T = KV R R-3B  for 0 r R Y 

2 R 

 

(6.144) 
kpa  

K — —p  

(6.146) 

where 

2 R 
Tx  = KV -  —A and T = KR -r —B for r R 

R 	 Y 	r2  

A 	—y  cos (I) — x sin cl) 

B==.• x cos 11) — y sin 4) 

Jelesnianski (1965) added an additional wind velocity Vs, to include the effect of 
movement of the storm. This velocity Vs, is determined from 

(6.147) Vs„ = 

R r 	(U + Vs) for r R +  

where i and j are unit vectors along the x- and y-axes and Us  and Vs  are the x and y 
components of motion of the hurricane. Finally, the surface wind can be written as 

I R-Fr  r (Us
i

+ V
si

) for 0 	R 

525 



(6.148) V* = V + Vs„ 

To obtain the wind stress, replace V in eq. 6.144 with V*. The wind velocity 
corrected for the ingress angle ste is 

VR () 3/2  I  

{ RR  '2  1 
VR 	— (Ai + B j) for r R 

r 

The final forms of the wind stress components are obtained by substituting eq. 6.147 and 
6.149 into eq. 6.148. 

To allow for the growth of the meteorological forcing terms in time, the wind stress 
was multiplied by the following time factors: 

/ 0 

for t 5- 0 
1 (6.150) F (t) = 	—2 (1 — cos —1"rt ) for 0 -.  ç . t -.Ç. T T 

1 for t .-_. T 

where T is the growth time. 
Jelesnianski (1965) included approximately the effect of surface friction on the 

pressure gradient and wrote 

VR 
(6.151) p. — po 	j pa 	

\ 
 

'Y 

where p. is the ambient pressure, po  is the central pressure, pa  is the air density, VR is the 
maximum wind (at radius R), and 'y is given by 

(6 . 152) 'y 	2 VR  V 	Pa  
3 (P. — Po) 

Jelesnianski (1967) computed storm surges on the east coast of the United States 
originating from hurricanes, with particular application to surges at Atlantic City. He gave 
a nomogram incorporating the storm parameters such as the maximum wind speed, 
pressure drop, radius of maximum winds, and the inflow angle (Fig. 6.101). Wanstrath 
(1977a, 1977b) made use of Jelesnianski's (1965) model for the wind field in his curvi-
linear grid storm surge model. 

Wilson (1959) computed storm surges in New York Bay originating from hurricanes. 
He used the following form for the wind stress: 

(6.153) Ts = pa(A + BU + CU2 ) 

where  Pa  is the density of air, U is the wind speed, and A, B, and C are constants. He gave 
a table summarizing the drag coefficients C (for various wind speeds) from 
30 different speeds during the period 1905-59. Noble and Hendrickson (1974) gave the 
following values: 

A = 1.0 x 10 to 1.1 x 10 -3  

B = 1.2 x 10' to 1.8 x 10' 

(6.149)  V= 
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FIG. 6.101. Nomogram relating three model storm parameters: stationary storm max- 
imum wind, radius of maximum winds, and pressure drop. The inflow angle occurs 
161 km from the storm centre, which is assumed to be at 30°N. (Jelesnianski 1965) 

Pagenkopf and Pearce (1975) used a formulation somewhat similar to that of Wilson 
(1959). They wrote for the surface pressure field 

(6.154) /2, =  Pa  + ilpe -R,...Ir 

and the gradient wind UG is taken as 

(6.155) UG = (lc ("\Ay 2  + 1 — "i) 

where the cyclostrophic wind Uc  is written as 

(6.156) uc, = 	
— 

.\131.1) Rmax 

Pa --F  eR'air 

with 

	

1 ( V' 	Uc) 'y (6.157) 	-=" 'y -- + — )  

	

u 	L/C 

where 

V' = Vf  sin 0 

Vf being the forward velocity of the storm. 
Finally, they wrote for the wind speed U at 10 m of height 
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Radius SPH 	PMH 

TABLE 6.61. Deflection angles (i.e. the angle between the true wind direction 
and a tangent to a circle whose center is the storm center) for the standard project 
hurricane (SPH) and the probable maximum hurricane (PMH). (Pagenkopf and 
Pearce 1975) 

Deflection angle 
(degrees) for 

Center to region of maximum winds, 1?„,, 	 20 	0-10 
R r,„„ to 1.2R„,,,,, 	 20-25 	10-25 
1.2R,„,n  and beyond to outer limit of hurricane 	25 	25 

(6.158) U = (— 2fl(sinfl)) (0.865) — Vf  sin (0 + p) + f[7:f17  sin (0 + 13) + 2fl(sin(1))1 

AI) Rmax 	1/2 
e —Rmax/r } 0.865) 

r 

where the angles 0 and p are shown in Fig. 3.8 of Pagenkopf and Pearce (1975). The factor 
0.865 is a reduction factor to allow for surface friction. Here, cl) is the latitude and ft is 
the angular velocity of the earth's rotation. 

For the wind stress itself, these authors wrote 

T, = pKIUIU, 

Ty  = pKIUIU>, 

where 

U =  Vu  U 

and 
K1  for U < U„ 

(6.159) K 
K 1  + K2 ( 2  1 — ) for U U„ 

where 

K 1  = 1.1 x 10-6  to 1.2 x 10-6  

K2 = 1.8 x 10-6  to 2.5 x 10-6  

U„ = 13-14 knots (22-23.6 ft • s -1  or 24.1-25.9 km •11 -1 ) 

where cr = critical. 
Pagenkopf and Pearce (1975) also made use of the SPH and PMH in their formu-

lation. The deflection angles used by them are summarized in Table 6.61. Pearce (1972) 
also made use of a similar formulation (i.e. to that of Wilson 1957b) in his calculation of 
the storm surges due to Hurricane Camille of August 1969. Other storm surge studies in 
which some simple analytical forms for the meteorological factors in the hurricane are used 
are Sethuraman (1979) and Overland and Myers (1976). 

Overland (1975) used the wind speed profile of the SPLASH model in his com-
putation of storm surges in Apalachicola Bay, Florida. The maximum wind speed at a 
distance r from the hurricane center is given by 
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2RrW srn. 
(6.160) Ws(r) = R 2 + r 2 

where Ws., is the maximum wind speed and R is the radius of maximum winds. The 
following Îorm was prescribed for the inflow angle: 

0.2856 ( /i)
3 
 exp (- 1R-) for r < 4.4R 

(6.161) (I) = 
0.2967 for r>  4.4R 

The surface pressure gradient was given the following form: 

ap. (6.162) —
ar 

= (p„ — po )•11  exp (— 
r2 

where p„ is the ambient surface pressure. The effect of the storm movement on the wind 
is taken into account by writing 

Rr VF 
(6.163) W = Ws (r) + 

R 2  + r2  

where VF is the forward speed of the hurricane and W is the composite wind velocity at 
any given location. 

Patterson (1972) gave the following form for the wind field in a hurricane: 

(6.164) V = (A + Bp + Cp 2  + D p3  + Ep4 )  X  10.865[73(Ap) h12  — 0.575R f]+ 

Vf 
— 	(1 — cos 0) 

where r is the distance from the center (to the location where the wind speed V is needed) 
divided by the radius R of maximum winds, Vf  is the forward speed of the storm,  O  is the 
angle from the storm track, Ap is the barometric depression, and A, B, C, D, and E are 
empirical constants. 

Tetra Tech. Inc. (1978) used the following form for the radial distribution of max-
imum winds (Collins and Viehman 1971): 

Vmax  

Cirk 
logio 

C2r'n 
 for r > R 

1 

(6.165) Vmax r = 
r 	1 1.5 fimax  (
R
— — —

3
) for R 	r > -à- 

0 for —
R 

r 3 

where V.„ is the maximum wind speed in the hurricane and R is the distance from the 
center at which firna, occurs. The empirical constants k, C I , C2, and m have the following 
values: k = —0.15128, C I  = 3.354, C2 = 1.265 x 10 -3 , and m = 1.607. Here, the 
pressure field is in inches of mercury, R is in nautical miles, and the speed is in knots. 

The maximum wind speed fima, is 

(6.166) V.., = C[63.364 (p„ — p0 ) 1/2  — 0.5 fin + 
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where po  is the central pressure, p” is the ambient pressure, and f is the Coriolis parameter. 
Observations show that C = 0.885 along the Gulf of Mexico and the Atlantic coasts (for 
the Florida peninsula, C = 0.865). Introducing azimuthal dependence of the wind field 

0.5 Vf  (1 — cos 0)1 
(6.167) V(r, 0) = V.(1) [1 

V„,„, 
Yeh and Chou (1979) used the following form for the wind stress: 

(6.168) T = pa l(W2  

where the wind shear stress coefficient K is given the following values: 

(Tr  W — WI)  
(6.169) K = { 1.25 x 10 -6  + 1.75 x 10 -6  sin 	 for WI  <W  < W2 

2  ( W2 — W1) 

METEOROLOGICAL FORCING TERMS FOR ENCLOSED LAKES AND OTHER SMALLER SCALE 
WATER BODIES 

Meteorological problems associated with storm surges in the Great Lakes were 
considered in section 7.1. Here, Lake Okeechobee in Florida will be used as an example 
of an enclosed lake. Schloemer (1954) examined the wind fields over Lake Okeechobee 
due to hurricanes. Some typical hurricane tracks that influence this lake are shown in 
Fig. 6.102. The dates of some important hurricanes during the period 1925-50 are listed 
in Table 6.62 together with the radius of maximum winds and the maximum wind speed 
and the pressure field. Ten different pressure profile formulas that were used by Schloemer 
(1954) are listed in Table 6.63. The data of Table 6.62 appear to fit the second equation 
of Table 6.63. 

The average deflection angle appears to be uniform in the outer portion of the storm, 
and it decreased rapidly near the radius of maximum winds. The most common deflection 
angle was 35°. The hurricanes near Lake Okeechobee appear to move with a speed of 
about 16 km •hH  prior to and during recurvature but much faster after recurvature. 
However, the maximum winds appear to occur before recurvature. Hurricane winds over 
Lake Okeechobee for a synthesized storm at 0, 1, and 2 h are shown in Fig. 6.103. Notice 
the changes in pattern that could occur even in a 1-h time interval. 

Myers (1954) studied hurricanes in and near Lake Okeechobee for the period 
1900-49. His table has 73 entries. For each case the central pressure, ambient pressure, 
maximum wind speed, and radius of maximum winds were listed. The wind field pattern 
for the hurricane of August 26-27, 1949, is illustrated in Fig. 6.104. In this diagram the 
following wind speeds are shown as a function of distance from the center: calculated 
cyclostrophic wind speed Ve , calculated gradient wind speed Vg , gust speeds over water 

gust speeds off-land V,, i , 10-min average overwater wind speed Vo , 10-min average 
off-water wind speed Vw , and 10-min average off-land wind speed  V 1 .  For details of the 
definitions of these winds see Myers (1954). 

6.9 Meteorological Problems Associated with Storm Surges in Europe 

Cyclones causing storm surges in the waters in and around Europe are mainly of the 

1.25 x 10-6  for W 

3.0 x 10 -6  for W _. W2 3.0 x 10 -6  for W W2 
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Fin. 6.102. Typical hurricane tracks over and near Lake Okeechobee, Florida. (Schloemer 1954) 

TABLE 6.62. Hurricane data for Lake Okeechobee, Florida. (Based on Schloemer 
1954) 

Central 	Ambient 	Maximum 	Radius of 
pressure, 	pressure, 	wind speed 	maximum winds 

Date of hurricane 	Po  (mb) 	.13, (mb) 	(km •11 -1 ) 	(km) 

Sept. 18, 1926 	960 	1009 	199 	 28 
Sept. 16-17, 1928 	955 	1015 	185 	 43 
Sept. 2-3, 1935 	977 	1008 	163 	 27 
Sept. 15-16, 1945 	962 	1010 	185 	 24 
Sept. 17, 1947 	940 	1010 	180 	 37 
Sept. 21-22, 1948 	946 	1012 	140 	 30 
Oct. 5, 1948 	892 	1010 	142 	 51 
Aug. 26-27, 1949 	929 	1006 	140 	 37 
Oct. 17-18, 1950 	935 	1005 	117 	 21 
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TABLE 6.63. Ten different forms used to approximate (P — 
P0 )/(P, — P0 ) in a hurricane. Here, P is the pressure at a distance 
r from the center, Po  is the central pressure, and P  is the ambient 
pressure. Parameters n, i, and j must be determined empirically. 
(Schloemer 1954) 

2 
(6) —IT arc tan-1 

nr  

2 	
1 

(7) —7r arc cot —
711., 

• 
(8) —2 arc sec (1 +  ni)  

extratropical type and the meteorological problems associated with these storms are 
somewhat simpler than.those due to tropical cyclones. Most of the storm surges in Europe 
occur in the North Sea; other areas where surges occasionally occur are the Irish Sea, 
Adriatic Sea, Ligurian Sea, the coast of Portugal, the Baltic Sea, and the coasts of Norway 
and Sweden. 

EARLY STORM SURGES IN THE NORTH SEA, INCLUDING THE THAMES ESTUARY 

For convenience all surges that have occuiTed up to 1950 will be referred to here as 
"early surges." Doodson (1929) classified the storm surges in the Thames Estuary (based 
on tidal records at Southend and Dunbar) into three classes: class A, surges exceeding 
6 ft (1.83 m); class  B,  surges in the range of 4-6 ft (1.22-1.83 m); class C, surges in 
the range of 2-4 ft (0.61-1.22 m). He classified the meteorological situations leading to 
these surges: type I, a cyclonic depression forms west of Scotland and travels to the Baltic, 
the winds veering from southwest to northwest or north; type II, a cyclonic depression 
travels over the Flemish Bight; type III, the winds are steady for a long time, the isobars 
running almost parallel to one another in a northwest direction over very large areas, with 
steady northwest winds; type IV, the southwesterly type corresponding roughly with type 
III but with steady southwest winds. Most of the major storm surges in the Thames Estuary 
are associated with type I meteorological situations. 

Doodson (1929) and Dines (1929) listed the storm surges in the Thames Estuary 
during the period 1912-28. Table 6.64 is prepared based on these data. The surface 
isobaric patterns at two different times for the storm of December 30-31, 1921, are shown 
in Fig. 6.105. 

One interesting aspect of the meteorological forcing terms is that whereas in most 
storm surge calculations, priority is given to the wind stress terms, in the early storm surge 
studies on the Thames Estuary, more importance is given to the atmospheric pressure 
gradient terms. Doodson (1929) expressed the surge as follows: 

(6.170) 	— = K(B —) + X(E — É) + i.t(N — K1) 
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FIG. 6.103. Wind field (kilometres per hour) for a synthesized hurricane over Lake Okeechobee at (a) 0 h, 
(b) I h, and (c) 2 h after a specified zero time. (Schloemer 1954) 

where is the storm surge, B is the atmospheric pressure at a location P, E is the excess 
of pressure 500 km east of P over the pressure 500 km west of P, and N is the excess of 
pressure 500 km north of P over the pressure 500 km south of P. In eq. 6.170, Z, 
and g are the arithmetic means of B, E, and N over a time interval considered. The 
constants K, X., and 11, are such that if B, E, and N are measured in millibars, then is in 
centimetres. 

Let z be the mean value of from 25 (or more) hourly heights symmetrically arranged 
in time and let M be the number of observations used in evaluating the constants in 
eq. 6.170. This equation can be rewritten as 

(6.171)  l — = K(B —) + G\/X2  + p, 2  cos ('I1  — e) — constant 
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FIG. 6.104. Wind speed profiles over Lake Okeechobee for the hurricane of August 26-27, 1949. (Myers 
1954) 

where kli is the direction of maximum pressure gradient, G is the atmospheric pressure 
gradient over a distance of 1000 km in the direction of 41, and 

(6.172) e =  tan  -I  ( I±) 
X 

The "constant" in eq. 6.171 is the average value of the second term on the right side. 
Maximum surge occurs when (assumption) tli = E. Taking the direction from which the 
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wind blows as 700  behind the direction of maximum pressure gradient, the most effective 
wind (to generate a storm surge) blows from the direction e — 70°. Doodson (1929) 
tabulated the values of B, E, and N, etc., for the storm of January 6-7, 1928. 

Corkan (1948) used somewhat similar methods to study the following three storm 
surges: January 1-3, 1928, November 10-13, 1929, and November 30 —December 2, 
1936. He expressed the difference in the storm surges at Southend and Dunbar in terms 
of the square of the pressure gradients at two points, A and B (located in the North Sea). 
He wrote 

(6.173) Rs  — RD = aNINI + [3E1E1 + 'V/ 1111 + Selel 

where Rs  is the surge at Southend after correction for the effect of local pressure assuming 
a static law and RD is the observed disturbance at Dunbar after correction for the effect of 
local pressure assuming a static law, 6-10 h earlier. The parameters N and E are the north 
and east gradients of pressure at point A and n and e are the north and east gradients at 
point B, 6-10 h earlier, and a, p, ,y , and 8 are constants. Doodson (1947) also used 
similar methods to study not only the three surges studied by Corkan (1948) but also three 
other surges: January 6-7, 1928, October 17-21, 1935, and February 10-13, 1938. 

Corkan (1950) studied the storm surge of January 8, 1949. The surge was caused by 
a deep depression that developed rather rapidly near the west coast of Scotland and 
traveled rapidly eastward. The passage of the center of the storm across the North Sea was 
accompanied by a quick veering of the winds in the rear of the storm from southwest to 
northwest and north. The disturbance at Southend was computed making use of the 
pressure gradients at points A, C, and D (Fig. 6.106) and the surge at Dunbar 9 h earlier 
(this is to allow for water level disturbances originating outside the North Sea). Corkan 
(1950) wrote 

(6.174) 10(Rs  — R D ) .-- 0.33NIN1 — 0.55E1E1 — 0.75n1n1 — 0.95e1e1 

where Rs  is the observed surge (feet) at Southend after correction for the local pressure 
effect (assuming a static law), RD is the observed surge 9 h earlier at Dunbar (feet) after 
a similar correction, N and E are the north and east pressure gradients at point A 
(Fig. 6.106), and n and e are the average of the north and east pressure gradients at points 
C and D (Fig. 6.106) 6 h earlier. The pressure gradients are taken as the difference in the 
pressure (millibars) at the ends of the straight lines shown in Fig. 6.106. Note that 
eq. 6.174 is a slightly modified version of eq. 6.173. 

THE STORM SURGE OF JANUARY 31—FEBRUARY 1, 1953 

The storm surge in the North Sea during January 31—February 1, 1953, caused 
extensive flooding and damage on the east coast of the United Kingdom and killed 307 
people (Steers 1954). However, there have been earlier instances in which even more 
damage and deaths occurred. Peters (1954) mentioned that a series of surges occurred 
during the period 1086-99 and a surge in the year 1099 killed 100 000 people. During 
the twelfth century, there were more surges. Another period of great surges was 1218-23. 
Other periods when the death toll exceeded 100 000 were in the years 1421 and 1446. 
Great surges also occurred (though the death toll was much smaller) on November 15, 
1875, January 2, 1877, January 18, 1881, and November 29, 1897. After this period, the 
next comparable surge occurred in 1928 and then in 1953. 
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Type of 
Class of 	meteorological 

surge 	situation Date Remarks 

W winds 97 km•11 -1  to NW 129 km•11 -1  

NNW to NE winds 129 km 
W to WNW winds 81-113 km•h - ' 

NW winds 97 km•h -I  

NW winds 129 km•11-1 

TABLE 6.64. Storm surges in the Thames Estuary during 1912-1928. A, surges >1.83 m; B, surges of 
1.22-1.83 m; C, surges of 0.61-1.22 m; T, water level exceeded the Trinity high water mark. 

Nov. 11-12, 1912 
Nov. 27, 1912 	 A 
Dec. 4, 1912 
Dec. 10-19, 1912 	A/B 
Jan. 25, 1913 	 C/T 
Feb. 8, 1913 
Feb. 28-Mar. 7, 1913 
Mar. 18-19, 1913 	A/B 
Mar. 22, 1913 	 BT 
Mar. 24, 1913 	 BT 
Apr. 16-17, 1913 
Dec. 13-14, 1913 
Dec. 26, 1913 
Jan. 7-8, 1914 	 A/B 
Sept. 28-29, 1914 	A 
Nov. 11-13, 1914 	A 
Dec. 26-30, 1914 	A/B 
Feb. 17, 1915 	 A 
Oct. 25, 1915 
Dec. 9, 1915 	 BT 
Dec. 27-28, 1915 
Jan. 2-4, 1916 
Jan. 8, 1916 	 B/CT 
Jan. 13-16, 1916 	A 
Feb. 5, 1916 	 AT 
Feb. 14-16, 1916 	A/B 
Oct. 14-15, 1916 
Aug. 3, 1917 
Oct. 25-26, 1917 
Oct. 30, 1917 
Nov. 25-26, 1917 	A 
Dec. 2-3, 1917 	 A 
Dec. 17, 1917 	 CT 	 III 
Jan. 11, 1918 
Jan. 15, 1918 	 B 	 I? 
Jan. 16, 1918 	 BT 	 I? 
Feb. 26, 1918 
Dec. 24-26, 1918 	A 
Feb. 18, 1919 	 CT 
May 2, 1919 	 CT 
Dec. 19, 1919 	 A 
Jan.  II, 1920 
Feb. 13-14, 1920 	A/B 
Feb. 27-28, 1920 	B 	 IV 
Dec. 4, 1920 	 A 
Jan. 19, 1921 	 A 
Mar. 2-3, 1921 	 A/B 
Oct. 23-24, 1921 	A 
Nov. 1, 1921 	 AT 
Nov. 6-7, 1921 	 B 	 1/Ill  
Dec. 18, 1921 	 AT 	 III  
Dec. 20, 1921 

NW winds 121-161 km•11 -1  

Winds 113 km•11 -1 
 Winds 113-161 km•11 -1  
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NNW winds 161 km -11-I 
 N winds 129 km •11 -1  

W winds 97 km •11 -1 
 N winds 113 km •11 -1  

NNW winds 65 km• 
NNW winds 97-129 km •11 -1  

N winds 129 km•11 -1  

AT  
A 

A/B 

BT 
A 

A/B 
A 
A/B 
A 
A 

A/B 
A 

A 

A/BT 
AT 

III 

IV 

IV? 
II/IV 
IV 
IV 
IV? 

1/Ill 
 I/II 

II 
IV 
IV 

IV 

1009 : 16  988994 	,980  

976 

' 

maismatanil 
1101:e 

term». 4110, 

-4111111rs 
1028 

1004 

1008., 

1012 , 
1016., 

1020, 

1024 

(a) 
HIGH 

992-

996->C 

1004- 
1008- 

1012. 
1016. 
1020 

TABLE 6.64. (Concluded) 

Date 
Class of 

surge 

Type of 
meteorological 

situation Remarks 

Dec. 24, 1921 
Dec. 25, 1921 
Dec. 31, 1921 
Jan. 4, 1922 
Sept. 16-20, 1922 
Nov. 1, 1922 
Nov. 10, 1922 
Dec. 6, 1922 
Dec. 25, 1922 
Apr. 25, 1923 
Aug. 20, 1923 
Dec. 27-28, 1924 
Jan. 1-2, 1925 
Jan. 14-15, 1925 
Jan. 29-30, 1925 
Nov. 25-27, 1925 
Dec. 23-24, 1925 
Mar. 5-11, 1926 
Oct. 9-10, 1926 
Oct. 25, 1926 
Nov. 5, 1926 
Nov. 13, 1926 
Dec. 18-20, 1926 
Jan. 28-29, 1927 
Oct. 3, 1927 
Oct. 29, 1927 
Dec. 26, 1927 
Jan. 6-7, 1928 

FIG. 6.105. (a) Surface pressure field (millibars) on December 30, 1921, at 6 p.m. (local time) over the North 
Sea and surroundings; (b) surface pressure field on December 31, 1921, at 7 p.m. (Dines 1929) 
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FIG. 6.106. Locations (A, C, and D) in the North Sea where 
pressure gradients are evaluated. (Corkan 1950) 

The track of the storm and the central pressure is illustrated in Fig. 6.107. For details 
on the meteorological conditions, see Hay and Laing (1954). Rossiter (1954) studied this 
storm surge and also used the same pressure points (Fig. 6.106) and the same method as 
Doodson (1924, 1929) and Corkan (1948, 1950). 

STORM SURGES IN THE NORTH SEA DURING 1954-78 

Two storms in December 1954, one on the 21st and the other on the 24th, produced 
storm surges in the North Sea. However, since it was not the springtime tides, the damage 
was minimal. These surges, generated 3 d apart, produced interesting resonance ef-
fects in the water levels in the North Sea (Weenink 1956). This will be considered in 
section 7.3. Murray and Marshall (1955) gave some details of the meteorological situation 
of these two cases. These storms orginated over the waters off the southeast coast of 
Greenland after a deep depression from eastern Canada struck the west coast of Greenland. 

Timmerman (1975) showed that storm surges can be generated in the North Sea not 
only by westerly winds over the continental shelf but also by atmospheric pressure 
gradients near the area of transition from deep to shallow water. He mentioned that this 
effect is usually disregarded in storm surge calculations. For the storm surge of February 
16, 1962, the atmospheric pressure gradient effect was very significant. Hansen (1966) 
and Heaps (1969) studied this storm surge. 

Koopman (1963) studied the surge of October 16-17, 1963. In this case, atmo-
spheric pressure gradients were also a significant factor. The storm that generated the surge 
on December 10, 1965, was similar (type III) to that of January 6, 1928. An example of 
a type IV storm is the one that generated the surge of February  25, 1958 (Keers 1968). 
Other important storm surge dates are September 28, 1969 (Hunt 1972), December 
11-15, 1972, and January 29, 1974. In the two latter cases, atmospheric pressure 

538 



60° N 

50° 

0°  

FIG. 6.107. Track of the storm of January 30—February 1, 1953 (pressure field in millibars). 

gradients were important (Timmerman 1975). 
Davies and Flather (1977) developed numerical models to study the storm surge of 

April 1-6, 1973. A coarse grid covered the whole northwestern European continental 
shelf and a fine grid covered only the North Sea. They determined the wind field from the 
geopotential height field extracted from 12-h weather charts for a period of 36 h. From the 
forecast data at 7 and 19 h, the geopotential height H of the 1000-mb level was used. The 
sea surface pressure p is calculated from 

(6.175) p = 1000 + pagH 

where  Pa  is the air density and g is gravity. From the pressure gradients the geostrophic 
wind was determined. The surface wind w is determined from the geostrophic wind 1,1) 
using the empirical relationship of Hasse and Wagner (1971): 

(6.176) w -= A vî,  + B 

where A = 0.56 and B has a range of values depending on atmospheric stability. The above 
formula is valid when w and are in metres per second. Flather and Davies (1975, 1976) 
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used the above formula with B = 2.4 m • 	This gave reasonable results for the storm 
surge of March 26-30, 1972, but gave unsatisfactory results for the surge of April 1-6, 
1973. 

Hasse (1974a, 1974b) expressed A and B in terms of air— sea temperature differences. 
He also related the angular deviation 8 between the surface and geostrophic wind fields 
to the air—sea temperature differences. Hasse (1974b) gave an average value for 8 as 17.2° 
whereas Dunn-Christensen (1971) used a value of 18° in their calculation of the surge of 
February 1967. Flather (1976b) obtained better results for the surge of April 1-6, 1976, 
when he used a value of 20° (compared with the results for 8 = 0°). 

Timmerman (1975) and Dunn-Christensen (1975) used a value of 6  that depended on 
air—sea temperature differences. Hence, their value of 8 varied in space and time. Davies 
and Flather (1977) used A =  0.56, B  = 2.4 m • s' , and 8 = 20° for the surge of April 1-6, 
1973. The wind stress at the sea surface was assumed to be in the same direction as the 
wind and it was computed using a quadratic law with the following values for the drag 
coefficient, CD (Heaps 1965): 

/ 
0.565 for w _. 5 

(6.177) CD X 103  = 	—0.12 + 0.137w for 5 <'iv._:. 19.22 

2.513 for w > 19.22 

where the surface wind speed w is in metres per second. 
There was a series . of storm surges in the North Sea during the period November 

4 —December 18, 1973. Davies and Flather (1978) simulated these numerically, again 
using a coarse model for the whole shelf and a fine model for the North Sea alone. The 
meteorological input data were obtained in a manner similar to their earlier study (Davies 
and Flather 1977). Flather and Davies (1978) simulated the storm surge of January 2-4, 
1976. In this study the meteorlogical input data were prepared in a somewhat different 
manner. 

The basic meteorological data were extracted from the forecasts of the 10-level 
Bushby—Timpson model (Benwell et al. 1971), which gives the data on a rectangular 
array of grid points on a stereographic projection. The following relationships exist 
between the dimensionless Cartesian coordinates (x, y) of the atmospheric prediction 
model and the coordinates of the ocean model: 

2R 	( 	. 
X  = — tan —4 — 	sin (x + 35°) 

(6.178) 
2R 	(7r 	(i) y = — 	 tan 	— 	cos (x + 35°) 

where R is the earth's radius, S is the grid size at the pole (-100 km), x is east longitude, 
and 41 is latitude. The atmospheric pressure at the sea surface is computed from eq. 6.175. 
Then, the longitudinal and latitudinal pressure gradients can be written as 

1 	a P =  	y 
(1 + cz2 ) 	aP„ 	aP„) 

+ x— R cos (I) ax Pa 	2aR 	ax 	ay 

Q  = 1 —3 P = 
(1+  ei. 2 )  ( a P„ 	aP„) 

A + y — 

R 	. 	2aR 	ax 	ay 

where 

(6.179) 
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S 2 (x2  + y 2 ) 
(6.180) a' = 

4R 2  

The eastward and northward components of the geostrophic wind are 

= 	
[  (1  + ce.2 ) -1 Q 

L (1 — a2 ) 2()p 
(6.181) 

„ 	[(1 + a2 )]  p 
w = 

(1 — ot 2 )-1 2(0P « 

where co is the angular velocity of the earth's rotation. A linear relationship was assumed 
between the geostrophic wind 1%1) and the surface wind w: 

wx = (e, cos 8 — Od, sin 8) (A W.' + B)/vis, 

 w4, 	sin 8 + li) d, cos 8) 	+ BW) 

where 8 is the angular deviation between the geostrophic and surface winds and a and b 
are empirical constants, as in the earlier model of Davies and Flather (1977). 

Fischer (1979) developed a combined atmosphere—ocean model to simulate the 
storm surge of January 3, 1976, in the North Sea. The atmospheric model has a grid size 
of 1.4° latitude and 2.8° longitude and has eight levels in the vertical. The ocean model 
has a 22-km grid. The surface wind calculated from the atmospheric model was used to 
determine the wind stress 1-0  in the following manner: 

(6.183) iTol = PaCD'Y'Ivol vo 

where yo  is the wind at the anemometer level, CD is the drag coefficient, -y = 1 (when 
observed winds were used) and y = 1.55 (when predicted winds were used), and Pais  the 
density of air. Wind at the anemometer level is 

(6.184) I vo l = 0.54 — 0.0123,011/n 1 + 1.68 — 0.0153,0 

where the cross-isobar angle is 8° for an unstable atmosphere and 213° for the very stable 
case and 0 is the potential temperature. The drag coefficient is 

(6.185) CD = (1.18 + 0.0161vg0 1) x 10 -3  

where vga  is in metres per second. Here, subscript 0 denotes the water surface. 
The storm surge of January 11-12, 1978 (Townsend 1979), was the worst on record 

after the January 1953 surge in the North Sea. This surge was simulated successfully by 
using empirical methods (Townsend 1979). 

MODELING OF NORTH SEA STORM SURGES 

The models of Davies and Flather (1977, 1978) and Flather and Davies (1978) were 
briefly mentioned. Here, the meteorological aspects of to the models will be briefly 
considered. Useful reviews were prepared by Welander (1961) and Groen and Groves 
(1962). Weenink and Groen (1958a, 1958b) introduced a so-called "apparent windstress" 
as follows. They assumed that the wind stress Ts  is related to the gradient wind V, through 

(6.186) V = 1 x 0.75V, = 1V 

where 

(6.182) (6.182) 
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V I  = 0.75V, 

The wind stress Ts  is related to the surface wind V through 

(6.187) Ts  = KV 2  

Thus 

(6.188) Ts  = KI 2 V 21  = fs V 2, 

where 

(6.189) fs  = K12  

The factor fs  should depend on the wind direction a. Hence 

(6.190) Ts = sfs(ce-)01 

Welander (1957) showed that if one uses a constant vertical eddy viscosity and 
permits the current to be zero at the bottom, then inconsistencies occur. In addition, the 
bottom stress would have a value equal to half the wind stress. According to Weenink and 
Groen (1958) the bottom stress should be no more than a tenth of the wind stress. 

Bowden (1953a, 1953b) showed that in a shallow sea with strong tidal currents, there 
is an additional bottom stress T b  due to the drift current. This additional stress is propor-
tional to the velocity above the bottom boundary layer. An approximate value of this 
current is 

(6.191) U
'  

„ = —
Q 

 D 

where Q is the volume transport and D is the water depth. Since the bottom stress does 
not go to zero when Q vanishes one can write the linear expression 

/*PQ 
(6.192) Tb = To — —

D 

where r is a friction factor to be determined empirically, p is the density of water, and 

(6.193) To  = InTs 

where in is about 0.1. 
The total stress can be written from eq. 6.187, 6.192, and 6.193: 

/*PQ  
(6.194) Tb  + Ts = (1 + in)Ts  

D 

rpQ = (1 + 	)fs (ce)I V1 1V1 — 

= TsA 	TbA  

where the apparent wind stress Ts, is 

(6.195) Ts, = f (01 VI I 	= (1 + ni)fs(0)1  V I  VI  

and the apparent bottom stress Tb, is 

rPQ 
(6.196) T bA  = — —Ty 
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FIG. 6.108. Wind stress factorf (a) for the southern  part of the North Sea during the storm surge 
season of November—February (solid line). Broken line shows the difference 0 between the air 
temperature and the sea surface temperature. The abcissa is wind direction a. (Weenink and 
Groen 1958b) 

A plot of the wind stress factorf (a) for the southern part of the North Sea during the storm 
surge season (November through February) is shown in Fig. 6.108. 

The electronic analog models of Ishiguro (1976a, 1976b) for the North Sea have been 
referred to as well as the two-dimensional (in spherical polar coordinates) model of Heaps 
(1969). This model and the model of Banks (1974) have been discussed elsewhere in this 
book. Other North Sea models developed for storm surge prediction were those of Flather 
and Davies (1976) and Flather (1979). 

The Belgian real-time storm surge model for the North Sea was described by Adam 
(1979). In this model the wind stress was written as 

Pa CD 
(6.197) Ts  =  (1 + m) —p,, —H WI WI 

where m — 0.1, W is the wind velocity, and the drag coefficient CD is given the following 
values: 

1.26 x 10 	for IWI 	10 m•s -1  
(6.198) CD = 

2.4 x 10' for WI> 10 m• 

Adam (1979) mentioned that the use of eq. 6.177 in place of eq. 6.198 did not make much 
improvement. 
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AVONMOUTH LIVERPOOL 
FIG. 6.109. Envelope of the depression tracks that cause large storm surges at Avonmouth and Liverpool. For 
Avonmouth the hatched area shows the region in which the storm centers of the depressions lie when major surges 
occur at Avonmouth. For Liverpool the envelope is divided into a southem section (A) and a northern section 
(B). The cross-hatched and single-hatched areas are, respectively, associated with zones A and B. (Lennon 1963) 

STORM SURGES IN THE IRISH SEA 

Storm surge studies for the Irish Sea are fewer than those for the North Sea, although 
large surges occur in the Irish Sea. Lennon (1963) examined the meteorological situations 
associated with large surges at Avonmouth and Liverpool. He suggested that the speed 
with which the depression moves is quite relevant for surge amplification due to reso-
nance, and he defined a dynamic factor to express this: 

(6.199) Dynamic factor = 	1  

where V is the speed of movement of the depression, h is the average depth of water, and 
g is gravity. 

Lennon (1963) examined the period of 1920-55 and arrived at seven major surges; 
i.e. in all these cases, the surge at Avonmouth exceeded 6 ft (1.8 m) and at Liverpool the 
surge exceeded 4.9 ft (1.5 m). Even the smallest (in size) of the depressions producing 
these surges has a diameter of 400 mi (645 km). 

Based on the tracks of these depressions, one can delineate corriders of dangerous 
zones for Avonmouth and Liverpool, which are shown in Fig. 6.109. The hatched areas 
shows the positions of the depression centers at the times of maximum surges. The 
meteorological character of these depressions is summarized in Tables 6.65 and 6.66. 

In Fig. 6.109 the Avonmouth approach zone is simpler compared with the Liverpool 
approach zone, which is divided into a southern section (section A) and a northern section 
(section B). Depressions whose tracks lie in zone A produce maximum surges when their 

( 1  - gv22) 
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TABLE 6.65. Some details of the depressions that caused large storm surges at Avon-
mouth. (Lennon 1963) 

Location of 
Speed of 	depression center 	Radius of 	Pressure 

movement 	at time of 	depression 	gradient (mb) 
(km • If I ) 	maximum surge 	(km) 	over 463 km 

Jan. 12, 1930 	87 	Irish Sea 	 241 	24 
Sept. 17, 1935 	74 	Irish Sea 	 333 	32 
Jan. 9, 1936 	78 	Ireland 	 296 	34 
Nov. 23, 1938 	65 	South Scotland 	389 	26 
Mar. 16, 1947 	72 	North England 	333 	26 
Apr. 23, 1947 	74 	North Ireland 	370 	28 
Nov. 30, 1954 	59 	East England 	333 	38 

TABLE 6.66. Some details of the depressions that caused large storm surges at Liver-
pool, U.K. (Lennon 1963) 

Date 

Location of 
Speed of 	depression center 	Radius of 	Pressure 

movement 	at time of 	depression 	gradient (mb) 
Date 	(km • V') 	maximum surge 	(km) 	over 463 km 

Jan. 9, 1936 	78 	Ireland 	 296 	34 
Oct. 27, 1936 	69 	North of Scotland 	278 	32 
Nov. 23, 1938 	65 	North England 	389 	26 
Jan. 25, 1944 	65 	West Scotland 	482 	23 
Dec. 2, 1946 	70 	Off West Scotland 	333 	23 
Apr. 23, 1947 	74 	North Ireland 	370 	28 
Nov. 30, 1954 	59 	East Ireland 	 296 	34 

centers lie in the cross-hatched area. Depressions in approach zone B produce maximum 
surges when their centers lie in the single-hatched area. The timing of the maximum surges 
is not as accurate in zone B as in zone A. If the track is such that it crosses from zone A 
to B before arriving at the hatched areas, then the surges produced are not large. An 
example of such a case is the surge of January 31—February 1, 1957, which produced a 
surge of 3.0 ft (less than 1 m) at Liverpool. However, a storm on February 4, 1957, 
produced a much greater surge. 

Based on this study, Lennon (1963) suggested that a major storm surge occurs on the 
west coast of the British Isles, provided the following meteorological situations occur 
together: (1) a deep depression approaches in zone A or B,  (2) the speed of movement is 
of the order of 40 knots (74 km • la - ') (giving a dynamic factor of 2 for this area), (3) the 
depression can be represented by an independent and approximately concentric system of 
isobars to a radius of 150-200 nautical miles (278-370 km), and (4) the pressure gradient 
in the right rear quadrant must be about 30 mb in 250 nautical miles (463 km). 

Cresswell (1928) discussed the storm surges in the Irish Sea at Holyhead, Preston, 
Fleetwood, and Belfast due to a storm on October 28-29, 1927. The first three stations 
are on the east side of the Irish Sea and Belfast is on the west side. The surge height was 
smallest at Belfast (3 ft 2 in. or 66 cm) and largest at Preston (10 ft 2 in. or 310 cm). 

Heaps (1965, 1967) studied storm surges in the Irish Sea. Heaps and Jones (1975) 
used a two-and-a-half-dimensional model (they called it a three-dimensional model) of the 
Irish Sea to simulate storm surges for the period January 10-18, 1965. The first storm 
surge of this period was associated with a storm of January 13-14. A deep depression 
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wind stress. (Heaps and Jones 1975) 
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moved from the Atlantic with a speed of about 35 knots (65 km • Ill on a track (towards 
the east) lying to the north of Ireland. Fronts from this depression swept across the Irish 
Sea and winds veered from south to west. The second storm (January 16-18) was 
associated with a large slow-moving depression to the north of Scotland. 

The following meteorological forcing terms were included in the numerical model: 
atmospheric pressure gradients over the water surface determined at 3-h intervals from 
pressure records and wind stress determined at 3-h intervals frorn geostrophic winds, or 
alternatively, at 6-h intervals from measured surface winds. 

The six rectangular subareas of the Irish Sea and surroundings (regions  Al,  A2, A3, 
Bi,  B2, and B3) are shown in Fig. 6.110. From observations of atmospheric pressure, pi , i  
values were extrapolated for each grid point at each time step. The 16 meteorological 
stations whose pressure data are used are also shown. Heaps and Jones (1975) wrote the 
following for subarea A2 

an 	(p22 — PI2 + P23 	P13)  
(6.200) — = ax 2 	7[1x 

aP 1 (913 — P12 + P23 - P22)  
(6.201) — — ay 2 	9ày 

where Ax = Ay = 7.5 nautical miles (13.8 km). 
For each subarea, the following empirical formulae were used to determine the 

surface wind V from the geostrophic wind VG: 

(6.202) V = 0.56VG  + 2.4 

(6.203) 0 = OG - 22 

where 0  and  OG are the angular veering from the south (degrees) of the surface and 
geostrophic winds, respectively. Finally, the wind stress Ts  was determined from 

(6.204) Ts  = 12.5CD  V' 

Equation 6.177 is used for CD. 
An alternate procedure to determine the meteorological forcing terms was to use the 

measured surface winds (and not the calculated geostrophic winds) to determine the wind 
stress. The anemometer locations are also shown in Fig. 6.110. Based on both approaches 
it was deduced that 

V = 131/G  
(6.205) 

0 = OG - 22 

with 

0.75 for VG 	10 
(640 — 7 VG ) 

(6.206) 13 = 	760 	 for 10 	VG 48 

0.4 for VG 48 

where VG is in metres per second. 
Heaps and Jones (1979) simulated the storm surges of January 1976 and November 

1977 in the Irish Sea using a model similar to that of Heaps and Jones (1975) but with 
improvements. Based on this and other studies, it can be concluded that major storm 
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FIG. 6.111. Storm surge versus wind speed (see Table 6.67 for the Beaufort Scale) at Hook of 
Holland. These results were summarized by Schalkwijk based on earlier studies by a Netherlands 
Government committee. (Schalkwijk 1947) 

surges in the Irish Sea are associated with the secondary depressions from the Atlantic that 
move towards the east and cross the British Isles with a speed of about 40 knots 
(74 km . h - '). Heaps (1965) showed that the Celtic Sea area (south of Ireland) is a major 
region of generation of storm surges. 

SURGES IN THE GERMAN BIGHT AND ON THE COAST OF THE NETHERLANDS 

Schalkwijk (1947) gave a comprehensive analysis of storm surges on the coast of the 
Netherlands until 1940 and the following discussion is based on his paper. He mentioned 
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International 	 Bleck 
equivalent of 	equivalent of 

Degrees 	wind speed 	wind speed 
Beaufort 	(ms) 	 (ms) 

International 	Bleck 
equivalent of 	equivalent of 

Degrees 	wind speed 	wind speed 
Beaufort 	(m • s - ') 	 (m • s- ') 

1 	 1.1 	 1.8 
2 	 2.5 	 4.4 
3 	 4.3 	 7.0 
4 	 6.3 	 9.6 
5 	 8.6 	 12.2 
6 	 11.1 	 14.8 

7 	 13.8 	 17.4 
8 	 16.7 	 20.0 
9 	 19.9 	 22.6 

10 	 23.3 	 25.2 
11 	 27.1 	 27.8 
12 	 >29.0 	 >29.0 

TABLE 6.67. International and Bleck equivalents of the Beaufort Scale. (Schalkwijk 1947) 

TABLE 6.68. Values of deviation angle II, (degrees), wind 
speed V  (ms), and surge  q (cm) for the storm surges on 
the Netherlands coast. (Schalwijk 1947) 

Date 	 Hour 	111 	V 	ii 

Jan. 19, 1921 	1 	50 	20.8 	155 
Jan. 19, 1921 	7 	58 	19.0 	134 
Jan. 19, 1921 	13 	64 	16.7 	99 
Jan. 19, 1921 	18 	55 	14.6 	70 
Nov. 25, 1928 	18 	53 	17.4 	115 
Nov. 26, 1928 	1 	59 	20.1 	172 
Nov. 26, 1928 	7 	61 	19.3 	142 
Nov. 26, 1928 	13 	60 	17.0 	105 
Nov. 26, 1928 	18 	59 	15.0 	86 
Nov. 27, 1928 	I 	55 	13.0 	74 
Nov. 27, 1928 	7 	54 	12.1 	71 
Nov. 27, 1928 	13 	58 	12.3 	71 
Jan. 17, 1931 	7 	40 	18.9 	133 
Jan. 17, 1931 	13 	51 	18.4 	139 
Jan. 18, 1931 	18 	47 	12.5 	45 
Oct. 30, 1935 	13 	50 	14.3 	71 
Oct. 20, 1935 	18 	50 	12.4 	44 
Oct. 20, 1936 	18 	46 	11.0 	54 
Dec. 1, 1936 	1 	43 	18.3 	141 
Dec. 1, 1936 	7 	44 	18.2 	176 
Dec. 2, 1936 	18 	47 	13.6 	71 
Jan. 30, 1938 	1 	42 	17.7 	119 

that very destructive storm surges occurred on the following dates: November 18, 1421, 
November 1, 1570, December 25, 1717, November 14, 1775, February 4, 1825, and 
January 13-14, 1916. In the storm surge of 1421, at least 10 000 people died. 

The destructive storm surge of 1916 caused the Netherlands government to start a 
storm surge warning service. Ortt (1978) expressed the surge height on the Netherlands 
coast through 

(6.207)  q = KR + Rb (76 — p) 

where  q  is the storm surge (centimetres), K is a factor representing the influence of the 
strength of the wind, R is a factor representing the wind direction, Rb is a factor rep-
resenting the effect of atmospheric pressure, and p is the atmospheric pressure (centimetres 
of mercury). 
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F G. 6.112. Three sections of the North Sea for which the storm surge study was made. 
(Schalkwijk 1947) 

For the Netherlands coast 

(6.208) K =  0.14V2  

where  Vis the wind velocity. Schwalkwijk (1947) gave tables of R and Rb for various wind 
directions. Ortt (1897) showed that large surges are produced by west to west—northwest 
winds and the smallest surges are produced by east to east—southeast winds and, in 
general, there is a lag of about 6 h between the wind and the surge. 

Gallé (1915) calculated the storm surge residues from the total water level (after 
subtracting the tide) every hour in contrast with earlier works of every 6 h. However, he 
ignored the effect of atmospheric pressure gradient in his study of 42 storm surges. 

The committee (Rotterdamsche Waterweg) established by the Netherlands govern-
ment in 1920 studied 19 storm surges for the period 1887-1917. They related the surges 
to the wind but ignored time lag and atmospheric pressure gradients. The results of this 
study are shown in Fig. 6.111 (the Beaufort scale is explained in Table 6.67). One 
interesting result is that the winds over the southern part of the North Sea are more relevant 
than the local winds in generating these surges. 

Mazuré (1937) wrote the following for a closed channel: 
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FIG. 6.113. Storm surge versus wind speed for section I of Fig. 6.112. (Schalkwijk 1947) 

aV2L cos 
(6.209) ri = 	 H 

where a  =  0.0036, V is the wind velocity (metres per second), 'r  is the surge (centimetres), 
H is the water depth (metres), L is the channel length (kilometres), and II, is the angle 
between the wind direction and the channel axis. Colding (1880, 1881) used a slightly 
different formula: 

0.048L V2  cos2  ii 
(6.210) 	= 	  H 

This formula was successfully used to hindcast the storm surges of November 12-14, 
1872, on the Danish coast and in the Baltic Sea. 

300 
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Fic. 6.114. Storm surge versus wind speed for section II of Fig. 6.112. (Schalkwijk 1947) 

Palmén (1932) used eq. 6.209 for the Baltic Sea with a = 0.032. He found that the 
direction of the water level slope deviated by 3 0  to the right of the wind during the surge 
of October 3-7, 1936. Witting (1908) obtained values of 1-5° deviation. 

Based on these studies, the following results can be deduced for the Netherlands 
coast. The time lag between the wind and surge is 3-6 h. If one includes the water level 
oscillations, the duration of the surge is about 2 d. The most effective wind direction in 
generating surges is northwest. The relationship between the surge and atmospheric 
pressure gradient is related to the structure and movement of the pressure field. The surge 
in the southern  part of the North Sea is closely related to the average wind over the whole 
North Sea. Along the Netherlands coast, the variations in the surge south of Helder are 
not significant. 

Schalkwijk (1947) developed an analytical theory applicable to an enclosed sea, a 
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FIG. 6.115. Storm surge versus wind speed for section III of Fig. 6.112. (Schalkwijk 1947) 

partly open sea, a bay of uniform depth, and a bay of variable depth. He included the 
influence of the Dover Strait and inhomogeneities and time variations in the wind field. 
He selected 14 surges for the period 1920-40. These cases with factors iii,  V, and -q (from 
eq. 6.209) are listed in Table 6.68 (in this table, 22 cases appear because some cases are 
broken down into separate events). 

Schalkwijk's 1947 study showed that the average deviation of the wind from the 
isobars is 8°, which is somewhat smaller than the values given by other authors, which 
ranged from 13 to 20°. He also found that on the rising part of the curve the time lag 
between wind and surge is  2.2-h  whereas on the falling part of the curve the lag is 2.8 h. 
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FIG. 6.116. Storm surge versus wind speed for the whole of the North Sea based on Schalkwijk's results. 
(Schalkwijk 1947) 

The three separate regions of the North Sea for which this study is made are shown in 
Fig. 6.112. The results for sections I, II, and III are summarized in Fig. 6.113, 6.114, and 
6.115, respectively. The results for the whole North Sea are shown in Fig. 6.116. 
Comparison of Fig. 6.111 and 6.116 shows that differences exist between the results of 
Schalkwijk's (1947) study and the Netherlands government committee's earlier study. 

Schalkwijk also examined the surges in the East Scheldt Estuary. The relevant param-
eters for various surges are listed in Table 6.69 and the results for this case are summarized 
in Fig. 6.117. 
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Date 	 V 

Jan. 17, 1921 	11.5 	—85 	6 
Jan. 18, 1921 	14.0 	—45 	16 
Jan. 18, 1921 	20.0 	0 	30 
Jan. 19, 1921 	18.5 	25 	26 
Nov. 5, 1921 	15.5 	5 	23 
Nov. 6, 1921 	22.0 	30 	26 
Nov. 25, 1925 	16.0 	40 	35 
Nov. 26, 1925 	4.0 	90 	2 
Nov. 27, 1925 	14.0 	30 	22 
Mar. 9, 1926 	13.0 	—30 	20 
Mar. 10, 1926 	20.5 	35 	29 
Oct. 9, 1926 	17.0 	—25 	7 
Oct. 10, 1926 	20.0 	15 	25 
Oct. 10, 1926 	9.0 	—20 	3 
Oct. 11, 1926 	12.0 	—55 	—3 
Oct. 12, 1926 	7.0 	—30 	5 
Oct. 13, 1926 	12.0 	—20 	4 
Dec. 20, 1926 	17.5 	90 	40 
Dec. 21, 1926 	7.0 	40 	—1 
Nov. 23, 1928 	8.0 	—65 	9 
Nov. 24, 1928 	18.5 	0 	43 
Nov. 25, 1928 	16.0 	—20 	24 
Nov. 26, 1928 	17.0 	30 	21 
Jan. 13, 1930 	12.5 	—25 	—4 
Aug. 14; 1930 	16.0 	15 	24 
Aug. 15, 1930 	15.0 	20 	23 
Aug. 16, 1930 	7.0 	20 	5 
Nov. 10, 1930 	13.5 	25 	6 
Nov. 11, 1930 	16.0 	50 	1 
Nov. 12, 1930 	11.0 	0 	8 
Nov. 22, 1930 	13.0 	—60 	25 
Nov. 23, 1930 	21.0 	50 	50 
Nov. 23, 1930 	16.0 	10 	35 
Jan. 17, 1931 	19.0 	25 	53 
Jan. 18, 1931 	14.0 	30 	22 
Feb. 16, 1935 	19.0 	—25 	29 

Feb. 17, 1935 	9.0 	—10 	11 
Oct. 19, 1935 	16.0 	—55 	12 
Oct. 20, 1935 	12.5 	30 	16 
Sept. 8, 1936 	18.0 	—5 	32 
Oct. 16, 1936 	13.0 	20 	4 
Oct. 17, 1936 	13.0 	—10 	12 
Oct. 18, 1936 	15.0 	30 	13 
Oct. 19, 1936 	13.0 	20 	18 
Oct. 20, 1936 	12.0 	65 	20 
Oct. 26, 1936 	11.5 	—60 	—8 
Oct. 27, 1936 	20.0 	0 	33 
Oct. 28, 1936 	15.0 	35 	1 
Nov. 30, 1936 	11.0 	—5 	—7 
Dec. I, 1936 	16.5 	35 	12 
Dec. 2, 1936 	12.0 	20 	22 
Dec. 4, 1936 	11.0 	—10 	14 
Dec. 5, 1936 	10.0 	—70 	4 
Dec. 6, 1936 	15.0 	—5 	22 
Dec. 7, 1936 	11.0 	80 	—6 
Feb. 19, 1937 	9.0 	20 	0 
Jan. 28, 1938 	16.0 	20 	17 
Jan. 29, 1938 	17.0 	—50 	—9 
Jan. 30, 1938 	22.0 	20 	57 
Jan. 31, 1938 	15.0 	60 	30 
Feb. 1, 1938 	10.0 	—50 	1 
Feb. 2, 1938 	15.0 	—30 	15 
Apr. 3, 1938 	11.0 	20 	8 
Apr. 4, 1938 	17.0 	45 	18 
May 30, 1938 	9.0 	10 	7 
May 31, 1938 	19.0 	—10 	35 
Oct. 3, 1938 	8.5 	—70 	—16 
Oct. 4, 1938 	16.5 	—55 	—6 
Oct. 5, 1938 	22.0 	—20 	33 
Apr. 22, 1939 	18.0 	—65 	—17 
Apr. 23, 1939 	12.0 	20 	12 

Date 

TABLE 6.69. Values of wind velocity V  (ms),  deviation angle 41 (degrees), and surge 	(cm) for 
the storm surges in the East Scheldt Estuary. (Schalkwijk 1947) 

Wemelsfelder (1954) mentioned that the meteorological conditions associated with 
the storm of February 1, 1953, are quite different from the traditional storm tracks that 
emerge over Scotland and disappear over Norway or Denmark. In this 1953 case, the 
storm track crossed the North Sea from Scotland to Hamburg. The Netherlands coast is 
very vulnerable (from a storm surge point of view) to this type of track. Detailed mete-
orological data about this storm are presented by Sneyers (1953). 

Reference has already been made to the work of Hasse (1974a) in relating the surface 
wind to the geostrophic wind in the German Bight. Christiansen and Siefert (1979) 
developed a simple scheme for storm surge prediction in the German Bight, making use 
of actual (not predicted) wind direction and speed from a reference station and tide data 
from two locations. A total of 100 storm surges that occurred in the period 1930-78 were 
examined to develop the following relation: 

(6.211) HE  = 1.2HA  + à V + AR — 80 cm 
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FIG. 6.117. Storm surge versus wind speed for the East Scheldt Estuary. (Schalkwijk 1947) 

FIG. 6.118. Geography of the German Bight. (Christiansen and Siefert 1979) 
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Fia. 6.120. Surface weather charts associated with the depression at the western end of the Alps that caused 
a storm surge at Venice during April 21-22, 1967. (Tomasin and Frasetto 1979) 

where HA and Hp are the surges at locations A and B in Fig. 6.118 and A V and AR are 
the contributions from wind speed and direction for the surge buildup. Using this formula, 
surges at Cuxhaven can be predicted knowing the surge at Borkum and measured wind 
speed some 3 h earlier. The relationship of wind speeds at time t — 3 h and time t, giving 
the values of A V in centimetres, is shown in Fig. 6.119a. The relationship of wind 
directions at t — 3 h and at time t, giving the values of ,àR in centimetres, is shown in 
Fig. 6.119b. 
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Flo. 6.121. (a) Surface weather chart showing frontal systems associated with a deep low traveling over the 
Ligurian Sea on December 13, 1957; (b) records of atmospheric pressure and sea level at Genoa during December 
8-16, 1957. (Basano and Papa 1978) 

METEOROLOGICAL CONDITIONS ASSOCIATED WITH STORM SURGES IN OTHER PARTS OF 

EUROPE 
The city of Venice lies in a lagoon off the Adriatic Sea and less than 1 m above the 

mean sea level. Hence, storm surges with amplitudes less than even 1 m cause serious 
flooding problems in Venice. To add to the problem, the openings between the sea and 
the lagoon are more extensive now (due to dredging) than before, which allows the storm 
surge from the sea to travel unimpeded. In addition, in the twentieth century the city 
subsided by 20 cm. 

Storm surges occur quite frequently in this area (Tomasin and Frasetto 1979), for 
example, in the years 1966, 1967, and 1972. The storm surge season lasts from November 
to February and occasionally to April. The first two normal modes of the Adriatic Sea have 
periods quite close to the diurnal and semidiurnal tides. The tidal range is  25-80 cm, the 
tide being forced from the Mediterranean Sea. There appears to be no interaction between 
the tide and the surge. 

The Ligurian Sea is a region of cyclogenesis. Depressions from the Atlantic reaching 
this sea are intensified here and then travel eastwards. Southeast winds appear to generate 
the greatest surges in the Venice area. The surface weather charts at two times for the surge 
of April 21-22, 1967, are shown in Fig. 6.120. Note the depression at the western end 
of the Alps. 

Storm surges occur on the northern  part of the Atlantic coast of Portugal. Morais and 
Abecasis (1975) discussed the storm surge that occurred on Leixoes during January 
16-17, 1973. The tidal range in this area is about 3.8 m, and wind waves up to 13 m in 
height occur here. The storm lasted about 24 h at Leixoes, which is unusually long for this 
region. 

van Hamme (1979) studied the cyclogenesis in the Ligurian Sea. Basano and Papa 
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(1978) showed that an oscillation of the Ligurian Sea with a period of 3.66 h is con-
spicuous when large surges occur in this sea. Even when no surges are present, this 
oscillation can occur when frontal systems cross this sea from west to east. This is 
somewhat like the inverse barometer effect and is shown in Fig. 6.121b. The frontal 
system is shown in Fig. 6.121a. 

Earlier in this book it was mentioned that the early studies on seiches in Lake Geneva 
might be considered as one of the serious beginning points for studies on storm surges. 
Although storm surges in this lake are not important, nevertheless, important aerodynamic 
drag measurements are made here. Graf and Prost (1979) summarized the data and 
suggested drag coefficients for various ranges of wind speed. 

Bergesten (1955) discussed the water levels and winds on the coast of Sweden. He 
mentioned that surges with amplitudes up to 2 m occur on the Baltic coast. In the southern 
part of the Baltic, northerly winds raise the water level whereas southerly winds 
reduce it. 

Gjevik and Red (1974) discussed the storm surges along the west coast of Norway. 
Severe surges occur at Grip and Ona islands. Southwesterly winds appear to create large 
surges on the coast between 62 and 66°N. Largest surges occur when the winds are initially 
southwesterly; after the surge is developed, the winds become westerly. The surges on the 
coast from Stad to Bodo are mainly generated by the wind stress, the contribution from 
the atmospheric pressure gradient being smaller. 

Gjevik and Roed (1974) studied especially three storm surges: (1) November 2, 1971, 
(2) December 30, 1972, and (3) December 31, 1972. The second and third are typical 
surges that frequently occur along the coast between 62 and 68°N. The first one is 
exceptional because the peak surge coincided with the peak tide along the coast between 
Sula and Sandnessjoen. 

The surface weather chart at 21:00 GMT on November 2, 1971, is shown in 
Fig. 6.122. A low pressure system (central pressure 965 mb) crossed the Norwegian Sea 
in a northeasterly direction and crossed the coast at Lofoten. The strong southwesterly 
wind field associated with this low pressure system caused wind speeds greater than 
35 m • s -I  (70 knots) at Nordoyan. The maximum surge occurred between 64 and 66°N. 
The surges at Hammerfest and Tromsô, however, are probably due to the atmospheric 
pressure gradient (and not due to wind stress) because these two stations are located to the 
north of the wind field associated with this system. 

Gjevik and Red (1974) presented detailed surface weather charts for the three surge 
cases considered here. They showed that the meteorological situation was somewhat 
similar for cases 1 and 3. The peak of the wind field moved with an average speed of about 
25 m • s -  . These authors used the following values of drag coefficients for different wind 
speeds: 

1 2.5 x 10-3  for 25m • s' 
CD -'=.- 	3.0 x 10-3  for 30 m • s -  ' 

3.5 x 10 -3  for 35 m • s -1  

In the analytical model for the surges on the Norwegian coast, these authors considered 
surge development due to a wind field moving along the coast. The following forms are 
assumed for the wind stress components and the pressure field: 

T5 	pTo ,F (x, t)e -" 

(6.212) Ts  = pTo,G(x, t)e -lh' 
Po  = constant 
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FIG. 6.122. Surface weather chart at 21:00 GMT on November 2, 1971. (Gjevik and Red 1974) 

for t 0, where Tox , Toy , a, and 13 are constants and F and G are functions of x and t only. 
Here, p is the water density and the horizontal coordinate y is directed perpendicular to 
the coast. The following forms are prescribed for F and G: 

F 	e - K{x - ,,0 1) 2  

G  = e-ex 2 h(t) 

where h(t) is a function of time and 0 	/z(t) 5- 1. 
In the nondimensionalization of the equations of motion and continuity, the following 

two parameters appear: 

(6.214)  R=--x  
Co  

(6.213) 

(6.215) 
110 

V --=E- 

where R is a dimensionless wind fetch (i.e. distance between the initial position of the 
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wind maximum and the observation point, f is the Coriolis parameter, and Co  = NKFI, 
H being the average depth of the water body. Note that for f = 1.32 x 10 -4 . 	and 
C0  = 50  ms, 	• R = 1 gives a fetch of 380 km. Gjevik and Roed (1974) suggested that 
for the west coast of Norway, R < 5. The parameter y expresses the travel speed of the 
wind field. Except in very shallow areas, this is less than unity. 

Two other dimensionless parameters appear: 

Co _ r- 

(6.216)  

Ot Co  
(6.217) B — 

f 

The parameter P is a Rossby number defined through a characteristic horizontal length 
scale of the wind field. Note that small values of P correspond to large wind fields. For 
the Norwegian coast, P is of order unity. Parameter B is a measure of the extent of the 
wind field perpendicular to the coast. Large values of B signify wind fields near the coast 
only. For the Norwegian coast, the contribution to the surge from the component of the 
wind stress normal to the coast is negligible compared with the component parallel to the 
coast. 

6.10 Meteorological Problems Associated with Storm Surges Elsewhere 
than in Canada, the United States, and Europe 

NORTHWEST PACIFIC OCEAN 

Lappo and Rozhdestvenskiy (1977, 1979) studied the energy transferred to the ocean 
from a typhoon via the storm surge. They referred to the storm surge as meteorological 
ocean tides. In their calculations they ignored the influence of the wind but included the 
effect of the atmospheric pressure. When the cyclone is stationary, the energy transferred 
to the ocean is equal to the potential energy associated with the change in the sea level. 
For a moving cyclone, however, there is an additional transfer of kinetic energy. 

Lappo and Rozhdestvenskiy (1977) formulated this problem along the lines of the 
classical quasi-stationary Proudman problem (Proudman 1929). For a plane pressure 
disturbance, with a pressure deficit of 40 mb, a cross-sectional diameter of the cyclone of 
103  km, and the distance traveled as 5 x 10 3  km, these authors gave the following values 
for an average cyclone (Joules): 

Total energy of cyclone = El  = 5 x 10' 7  to 8 x 10' 7 

 Kinetic energy 	= E2 = 5 x 10 16  to 8 x 10 16  

Mechanical energy imparted to the ocean 
(ignoring wind stress ) =  E1  = 5 x 10' 

Potential energy of the 
storm surge created 	= E0  = 10 15  

Lappo and Rozhdestvenskiy (1979) considered moving disturbances with spatial 
scales of 100-1000 km and with time scales of ten to hundreds of hours, moving with an 
average speed of about 10 m • s -1 . Proudman (1929) showed that for a long symmetric 
wave in the ocean traveling in a field of constant atmospheric pressure gradient, the forces 
will be unequal on its sloping parts. The horizontal component of the difference in forces 
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iriP„ loop (in hundreds of kilometres) that correspond to Fig. 6.123a. (Lappo and 
Rozhdestvenskiy 1979) 

causes the waves to accelerate or decelerate. For a plane wave, this horizontal component 
F becomes 

x 
(6.218) F = J pa — dx 

ax 

where  Pa  is the atmospheric pressure, Ti is the deviation of the water level from its 
equilibrium position, x is the direction along which the depression is traveling, and 2X is 
the dimension of the area where apa/ax 0. Let 

(6.219)  i 	
Pa  

Pg 

where àpa  is the pressure deficit in the depression, p is the water density (assumed to be 
uniform), and g is gravity. 

The distribution of the actual water level T1 and the static water level ij  as a function 
of x is shown in Fig. 6.123a. A plot of T) versus 1-1 is given in Fig. 6.123b. The graph is 
in the form of a curve, actually a closed loop, which was referred to as a Tip„ hysteresis 
loop by Lappo and Rozhdestvenskiy (1979). If the water level deviations lag behind the 
atmospheric pressure changes, then the loop is traversed in a counterclockwise sense with 
increasing x. The area S of the loop is 

(6.220) S = TIPAP. 

or 
ap  

(6.221) S =  I  i(x) — dx ax 

If the depression is traveling in a straight line with a uniform velocity U, then it can be 
shown that the area of the spatial q(x)p0 (x) loop is equal to the 1'0)P.M loop, i.e. 

apa 	 ap. 	dxi 
(6.222) f 	(x — Ut) 

(t 
(x — Ut)dt = f (x i  )U 	(x 1 ) 

-uàt 	ax, 	U 

ap. = fx 	(x,)dx, 
ax, 
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In this situation, time t = x/ U is the parameter that varies around the loop. 
Observations of traveling depressions (and the associated sea level variations) near 

the Kurile Islands and Japan showed that the loops can be of different shapes and sizes. 
The loops with the largest areas are caused by depressions crossing the coast in a 

perpendicular direction. The areas of these loops are 10-100 times greater than the areas 
of the loops associated with pressure systems traveling parallel to the coast. Note that if 
there is no phase lag between the atmospheric pressure change and the change in the sea 
level, then the loop degenerates into a straight line. In the Kurile Islands region, the phase 
shift for storm surges traveling perpendicular to the shore is about 24° , whereas for surges 
traveling parallel to the shore, the value is about 14°. This phase shift, 4), varies with the 
time scale of the loop and attains a maximum at 10-18 h. Short-period  (5-7 h) loops 
correspond to nondeforming storm surges. 

AUSTRALIA AND NEW ZEALAND 

Although storm surges are not a serious problem in Australia and New Zealand, they 
do occur and cause damage. In Australia, the areas particularly susceptible to storm surges 
are the central north coast of eastern  Queensland and parts of the Gulf of Carpentaria. 
Hopley and Harvey (1979) studied the storm surges all along the coast of Australia. The 
cyclones in this study are listed in Table 6.70. Cyclones affect the northern  parts of the 
east and west coasts of Australia, as well as its north coast. The frequency of cyclones 
(capable of generating storm surges) varies from 0.4 to 2.8 per year. Lowest central 
pressures occur on the east and west coasts between 20 and 25°S. The central pressures 
on the west coast are usually 3-4 mb lower than those on the coast of Queensland. Central 
pressures drop gradually towards the north but more drastically towards the south. 

Intense cyclones with central pressures less than 960 mb occur on the central part of 
the west coast (Northwest Cape to Port Hedland), the region between Princess Charlotte 
Bay and Mackay on the Queensland coast. However, in the Gulf of Carpentaria, central 
pressures less than 960 mb rarely occur. 

Cyclones in the Australian region usually travel with speeds between 6 and 11 knots 
although sometimes with a speed as high as 35 knots (particularly on the Queensland coast 
between 25 and 30°S). They travel with low speeds over the Gulf of Carpentaria and off 
Arnhemland (Coleman 1972). The variabiility in the meteorological parameters associated 
with cyclones in the Australian region, based on data for 1960-72, is shown in Table 10.3 
of Hopley and Harvey (1979). This variability was determined for the following three 
parameters: (a) variability in the direction of movement by measuring the difference 
between the point on the coast for which the cyclone was heading 24 h prior to landfall 
and the observed landfall location, (b) variability in pressure by comparing changes in the 
pressure field during the 24 h prior to landfall, and (c) variability in the speed of movement 
by comparing the average speed in the 24 h prior to landfall with the mean speed in the 
previous 24 h. 

Nelson (1975) listed 30 severe tropical cyclones in the Australian region during the 
period 1880-1970 that generated storm surges with amplitudes of at least 0.5 m along the 
north coast of Australia. One of the lowest central pressures ever recorded, a storm on 
March 5, 1899, that traveled over Bathurst Bay and struck Barrow Point on the 
Queensland coast, was 914 mb. The storm and the storm surge together killed 300 people 
and the surge penetrated 5 km inland (Whittingham 1958). 

In the 1970's two storm surges did considerable damage in Australia. Cyclone Althea 
of December 24, 1971, made a landfall to the north of Townsville on the Queensland 
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2.0-m surge reported to north of city 

Associated with Brisbane floods 

TABLE 6.70. Cyclones in and around Auscralia. (Hopley and Harvey 1979) 

Lowest 
Date of landfall 	Tidal station 	central 	Highest record 
or nearest point 	closest to 	pressure 	of surge at 

Name 	 to coast 	cyclone 	(mb) 	any station (m) 	 Remarks 

Adeline 	Jan. 28, 1973 	Centre Island 	990 	0.52 
Agnes 	 Mar. 6, 1956 	Townsville 	961 	1.4 
Althea 	 Dec. 24, 1971 	Townsville 	952 	2.85 	3.6 m at Toolakea 
Bridget 	 Jan. 27, 1969 	Lucinda 	 1002 	0.34 
Emily 	 Apr. 2, 1972 	Gladstone 	920 	1.78 	Filled rapidly before crossing 
Eva 	 Dec. 4, 1970 	Broome 	 970 	0.16 	1.2- to 1.5-m surge reported at Broome 

(Met. Bur. 1973) 
Gertie 	 Feb. 16, 1971 	Lucinda 	 983 	0.52 
Glynis 	 Feb. 6, 1 070 	Perth 	 970 	1.01 	Surge incorrectly reported as 4.1 m above 

normal at Carnarvon (Met. Bur. 1973). 
Record tides elsewhere 

Ida 	 Feb. 16, 1971 	Mourilyan 	980 	0.37 
Ingrid 	 Feb. 16, 1970 	Carnarvon 	970 	1.32 	Surge incorrectly reported as 2.3 m above 

normal at Camarvon (Met. Bur. 1973) 
Joan 	 Dec. 7, 1975 	Port Hed land 	—992 	1.52 	Port Hedland recorder malfunction during 

rising surge 
Leah 	 Feb. 28, 1973 	Milner Bay 	990 	0.45 
Madge 	 Mar. 4, 1973 	Milner Bay 	990 	0.42 	Affected east coast and Gulf 
Pam 	 Feb. 6, 1974 	Kirra 	 —930 	0.4 	Came within 450 km of Queensland but 

very large cyclone 
Sheila—Sophie 	Feb. 3, 1971 	Port Hedland 	970 	1.8 
Tracy 	 Dec. 24, 1974 	Darwin 	 940 	1.6 
Una 	 Dec. 19, 1973 	Townsville 	988 	0.72 
Wanda 	 Jan. 25, 1974 	Noosa 	 990 	0.6 
Zoe 	 Mar. 13, 1974 	Broadwater 	975 	0.56 
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Flo. 6.124. Storm surges, atmospheric pressure, and wind stress at Adelaide, Australia. (Tronson and Noye 
1973) 

coast. Winds up to 196 km •11 -1  and lowest central pressure of 971.5 mb generated a 
maximum surge of about 2.7 m at Townsville. Cyclone Tracy of December 25, 1974, hit 
Darwin; a central pressure of 955 mb and winds up to 200 km • h' generated a maximum 
surge of about 1.6 m. 

Tronson and Noye (1973) developed statistical models to predict storm surges on the 
coast near Adelaide in South Australia. The storm surges in this region are particularly 
sensitive to the wind direction. On April 12, 1948, steady winds from the southwest with 
a speed of 90 km •11 -1  caused a surge of about 1.2 m. On June 28, 1972, a surge with the 
same amplitude was generated by winds from the northwest, with a speed of about 
45 km • h -1  . Surges with amplitudes of up to 4 m can occur at Adelaide, e.g. on May 12, 
1960, and June 28, 1972. The atmospheric pressure field, the wind stress, and the surges 
at Adelaide for two cases (January 7-16 and June 10-25, 1970) are shown in Fig. 6.124. 

Heath (1979) discussed the storm surges on the coasts of New Zealand. Storm surge 
amplitudes on the coasts of New Zealand are rather small and are usually less than 1 m 
(Agnew 1966; Gilmour 1963; Pickrill 1972). Even though the amplitudes may be small, 
they could cause severe erosion, especially on the west coast of the North Island, in the 
Bay of Plenty, and on the east coast of the North Island, north of Auckland. 

Heath (1979) studied the following three surges: April 9-11, 1968, on the east coast 
of the North Island, July 30—August 1, 1975, on the east coast of the South Island, and 
September 11-14, 1976, on the west coast of the North Island. The surface weather chart 
for the third case is given in Fig. 6.125. 
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FIG. 6.125. Simplified surface weather chart at  Oh (New Zealand Standard Time) on September 13, 1976. 
(Heath 1979) 

JAPAN 

During the period 1900-53, at least 60 major storm surges occurred in Japan (Wadati 
and Hirono 1954). The dates and locations of the surges are listed in their Table 1. The 
locations where major surges have occurred are shown in Fig. 6.126. The tracks of some 
of the typhoons that generated surges in Tokyo Bay are illustrated in Fig. 6.127. 

Storm surges occur frequently in Ariake Sea, the Seto Inland Sea, Osaka Bay, Tokyo 
Bay, Suruga Bay, and Toyama Bay. The first four of these are shallow water bodies; only 
Toyama Bay is situated on the northwest side of the country. Most of the shallow water 
bodies in Japan are situated on the southern coastline with their mouths towards southwest. 
Wadati and Hirono (1954) listed the pressure fields, wind speeds and directions, damage, 
and the number of people killed during major surges in these bays. 

For early (i.e. precomputer days) investigations of storm surges in and around Japan, 
see Terada and Yamaguti (1928), Yamaguti (1929), Kawabata and Fujito (1951), Honsyû 
(1932), and Unoki (1959). Terada (1912) and Nakano (1949) investigated the secondary 
undulations associated with storm surges in Japan. Rabe and Brand (1980) studied the 
extreme sea states associated with typhoons. 

Miyazaki (1975) studied the characteristics of storm surges along the coast of Japan. 
Some of the major surges (that exceeded 2 m) during the period 1900-73 are listed in 
Table 6.71. The damage associated with some selected surges is listed in Table 6.72. 

There were 15 major surges in Kobe harbor during the period 1926-54. The surge 
of September 21, 1934, had a peak value of 3.5 m (Miyazaki 1975). These surges and 
pertinent meteorological data are listed in Table 1 of Miyazaki (1975). Nomitsu (1935) 
studied the surges in Lake Biwa due to the Muroto typhoon of September 21, 1934. Ogura 
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FIG. 6.126. Locations on the coast of Japan where storm surges occurred during 1900-53 (nume  ais 
indicate number of occurrences). Blackened coastal areas without numerals had one occurrence. (Wadati 
and Hirono 1954) 

(1925) studied the surges around the Tisima or Kurile Islands. Terada (1939) used an 
analtyical model to study the storm surges in Osaka Bay due to the Muroto typhoon. 

In Japanese storm surges, the contribution from the atmospheric pressure gradients 
was at most 15%. In the numerical model of Isozaki (1970a, 1970b, 1970c) the following 
pressure field distributions were specified: 

or 
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TABLE 6.71. Storm surges in Japan during the period 1900-73 with maximum amplitudes in excess of 2m. 
Highest level includes surge and tide. (Miyazaki 1975) 

Meteorological extreme values 

Peak 	Highest 	Central 
Affected 	surge 	level 	pressure 	Wind 

Date 	 area 	(m) 	(m) 	(mb) 	(ms) 	Location 

Oct. 1, 1917 	Tokyo Bay 	2.3 	3.1 	950.4 	SSE 40.0 	Tokyo 
July 18, 1930 	Ariake Sea 	2.5 	- 	954.6 	ENE 30.6 	Tomie 
Sept. 21, 1934 	Osaka Bay 	3.1 	3.2 	954.3 	S 48.4 	Osaka 
Sept. 1, 1938 	Tokyo Bay 	2.2 	 978.6 	S 31.0 	Tokyo 
Sept. 3, 1950 	Osaka Bay 	2.1 	2.5 	964.3 	NE 33.4 	Kobe 
Aug. 17, 1956 	Ariake Sea 	2.4 	4.2 	968.4 	SE 27.0 	Saga 
Sept. 26, 1959 	Ise Bay 	3.4 	3.9 	958.5 	SSE 37.0 	Nagoya 
Sept. 16, 1961 	Osaka Bay 	2.5 	2.9 	937.3 	SSE 33.3 	Osaka 
Sept. 25, 1964 	Osaka Bay 	2.1 	2.6 	983.5 	S 27.1 	Sumoto 
Sept. 10, 1965 	Osaka Bay 	2.2 	- 	966.0 	SSE 38.8 	Sumoto 
Aug. 21, 1970 	Tosa Bay 	2.4 	3.1 	962.3 	SW 35.8 	Ashizuri 
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TABLE 6.72. Severe damage caused by storm surges in Japan during the period 1900-73. 
(Miyazaki 1975) 

Highest 	Peak 	 Houses 
Affected 	sea level 	surge 	Lives 	destroyed or 

Date 	 area 	 (in) 	( n) 	lost 	swept away 

Oct. 1, 1917 	Tokyo Bay 	3.0 	2.1 	1324 	60 175 
Sept. 13, 1927 	Ariake Sea 	3.8 	0.9 	439 	2 211 
Sept. 21, 1934 	Osaka Bay 	3.1 	2.9 	3036 	92 323 
Aug. 27, 1942 	Inland Sea 	3.3 	1.7 	1158 	102 374 
Sept. 17, 1945 	South Kyushu 	2.6 	1.6 	3121 	115 984 
Sept. 3, 1950 	Osaka Bay 	2.7 	2.4 	534 	120 923 
Oct. 14, 1951 	South Kyushu 	2.8 	1.0 	943 	72 648 
Sept. 27, 1959 	Ise Bay 	 3.9 	3.4 	5098 	156 676 
Sept. 16, 1961 	Osaka Bay 	3.0 	2.5 	200 	54 782 

where p(r) and p(00) are the sea level pressures at radial distance r and at the periphery 
of the typhoon, respectively, ro  is the radius of maximum winds, and Ap is the pressure 
drop. Equation 6.224 gives a more rapid decrease of pressure with r but uses a constant 
value of 1010 mb at the typhoon periphery.. The cyclostrophic wind corresponding to 
eq. 6.224 is 

n  2 

(6.225) V2  = 4 	[ 	r- )2 +  

where = r I ro  and V„, is the maximum wind at ro . The maximum wind and the pressure 
drop are related through 

(6.226) V„, = C(V„,) 1 '2  

where C is a constant. 
In other studies, the Jelesnianski (1972) model is used: 

2r0  
(6.227) v(r) = V(ro ) 	2 	2  

ro  + r 

where, again, ro  is the radius of maximum winds. Myers and Malkin (1961) determined 
the angle of inflow for a stationary storm using the equations of motion. The angle varies 
from 0 at the center of the storm to about 30° at a radial distance of about 3r 0  (where ro 
is the radius of maximum winds) and is roughly constant after that. Usually, within the 
region up to ro , the wind field computed from the pressure field (i.e. cyclostrophic or 
gradient winds) is reasonably correct. Outside ro , the angle of inflow (i.e. the angle of the 
wind vector across circular isobars) must be considered. 

Takahashi (1939) used the following form: 

àp 
(6.228) p(r) = p(00) 

This formula underestimates the pressure field at the center. Kawahara et al. (1980) used 
a finite-element model for storm surge propagation in Suragawa Bay. They used eq. 6.223 
to specify the pressure field. 

(1 + 
ro 
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CHINA AND HONG KONG 

In China, storm surges mainly occur on the southeastern coast. In the 1970's, the 
biggest storm surge in China occurred at Shantou on August 2, 1979. The peak surge was 
over 2 m. In the dynamic models for surge prediction used in China (Jin-Chuan and Guang 
1979), Myers' (1954) formula (similar to eq. 6.134) is used: 

(6.229) Ap = 40 (1 — 

where 

(6.230) Apo  = p, — pc  and Ap = p. — p 

where pc  is the central pressure, p. is the peripheral pressure, p is the pressure at any point 
at distance r from the center, and R is the radius of maximum winds. 

The tangential component of the wind field is expressed as 
r 

V„," —R cos a for r _. R 

(6.231) Vo  = 
R V inn,— cos a for 1.>  R r 

The radial component of the wind field is written as 
r sin a for r R 

- Vm`x R 
(6.232) V, = 

—V in„
x 

—R sin a for 1.> R 
 r 

where a is the angle measured inward between the wind direction and the isobars. In the 
surge computations for the Chinese coast, a was taken as 30°. 

The tangential and radial components of the wind stress are computed from: 

To  = Kp„IVIVo  
(6.233) 

Tr  = Kpa lVIV, 

where K = 2.5 x 10 and pa  = 1.2 x 10 -3  g • cm -3 . 
Storm surges are quite frequent in Hong Kong. About three to four occur per year in 

Hong Kong Harbor (World Meteorological Organization 1978). A total of 35 surges with 
amplitudes varying from 0.2 to 1.8 m occurred in Hong Kong during 1954-64 (Cheng 
1967). One of the important surges was caused by Typhoon Wanda in September 1962. 
The surge was 1.8 m at Hong Kong and 3.2 m at Taipo (farther inland in a narrow 
channel). 

Chan and Walker (1979) mentioned that two of the most disastrous surges in Hong 
Kong occurred on September 2, 1937, and September 1, 1962, in the Tolo Harbor region. 
Watts (1959) concluded that pronounced surges occur in Hong Kong when the center of 
a westward moving storm passes over Hong Kong within several tens of kilometres to the 
south. 

If the storm track lies to the west of Hong Kong, the wind field at Hong Kong will 
be strong (east—northeast to east—southeast) and a major surge could be generated. On 
the other hand, if the track is to the east of Hong Kong, the winds will be weak 
(west—northwest to west—southwest) and surges, if generated, will be small. Most of the 
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storms that affect Hong Kong originate in the Philippine Sea. A few, however, develop 
in the South China Sea, and in this case, the above criterion (track to the east or west of 
Hong Kong) does not apply. Also, those storms that make a landfall at Hong Kong usually 
are associated with weak local winds and would not generate significant surges. The major 
surges at Hong Kong are associated with storms that make a landfall within 60 nautical 
miles (111 km) either to the north or south of Hong Kong. 

Based on storm surge data at North Point, the storm surges are classified into three 
categories by Chan and Walker (1979): type 0 refers to storms whose centers lie within 
a 60 nautical mile radius of Hong Kong, type W for storms whose centers are outside the 
60 nautical mile radius and which travel to the west of Hong Kong over the land, and type 
E for storms with centers outside the radius and traveling over the land to the east of Hong 
Kong. For these three categories, the average values of the peak surges are 2.49 -± 0.25, 
1.71 ± 0.13, and 1.31 ± 0.18 ft (1 ft = 0.3048 m). 

For type 0 storms, the following empirical relation was deduced: 

(6.234) s = 0.102 (1009.1 — p) 

where s is the peak surge (feet) and p is the local minimum hourly sea level pressure 
(millibars). Note that in this relation, the local minimum hourly mean sea level pressure 
is used to represent the central pressure of the storm when it landfalls near Hong Kong. 
For type 0 storms, the coefficient of correlation between the central pressure and the peak 
surge was —0.89. For type W and E storms the correlation was poor. 

Again, for type 0 storms, the correlation coefficient between the peak surge s and 
the maximum hourly mean wind speed W60  was 0.84 and the following regression equation 
was derived: 

(6.235) s =  0.088W — 0.75 

The local wind field appears to have more influence on the type W and E storm surges than 
type O. For type W, maximum surges are associated with winds from east—northeast, 
east, or east—southeast. The following relation has been empirically deduced for type W 
storm surges: 

(6.236) sw  = 0.00217 W260  + 0.43 

The correlation coefficient between sw  and W260  was 0.88. No correlation could be found 
for type E storm surges. 

Lau (1980a, 1980b) adapted the SPLASH (Jelesnianski 1972, 1974) model to predict 
storm surges in Hong Kong. Using 57 hypothetical storms, peak surge heights at various 
locations along the South China coast near Hong Kong were determined. In these calcu-
lations, a standard storm is chosen with the following six parameters: (a) a central pressure 
of 973 mb at nearest approach, (b) a movement on bearing 300° at nearest approach, (c) 
a speed of 10 knots at nearest approach, (d) a radius of maximum winds of 26 nautical 
miles at nearest approach, (e) a nearest approach of 26 nautical miles, and (f) landfalling 
to the west of Hong Kong. This standard storm will generate on an open coast a surge 
(using the SPLASH program) of 1.92 m at North Point. 

BAY OF BENGAL 

In principle, the entire coast of the Bay of Bengal from Sri Lanka to Thailand is 
vulnerable to storm surges, although in practice, storm surges occur only on certain 
stretches. Storm surges are not frequent in Sri Lanka; however, in 1978 a major surge 
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Point of 
landfall Remarks 

Dec. 17-24, 1964 South of Tondi 

Dec. 4-8, 1967 
Nov. 4-9, 1969 

Sept. 7-14, 1972 

988 	 130 	 Near Nagapattinam 
970 	 176 	 Between Masulipatnam 

and Kakinada 
957 	 204 	 Near Baruva 

Nov. 15-23, 1972 
Nov. 14-20, 1977 

South of Nel lore 
Chirala 

120 970 

148 983 
250 919 

TABLE 6.73. Storm surges on the coasts of Tamilnadu and Andhra Pradesh in Southeast India during 1964-77. (Modified from DeAngelis 
1978a) 

Date 

Minimum estimated 
central pressure 

(mb) 

Maximum estimated 
wind speed 
(km -II') 

Storm surge amplitude at 
Dhanushlcodi about 5 m, 
500 people died 

Major storm surge, 7 people died 
Storm surges at Visakhapatnam and 

and Koringa, 200 people died 
Storm surges of 1-3 m between 

Baruva and Chandbali 
Minor storm surge 
Surges up to 6 m near Divi. At least 

10 000 people died. Surges 
occurred on a coastal stretch 80 km 
long and penetrated 8-15 km 
inland 



Maximum 	 Pressure 
wind speed 	 drop 
(km • IC' ) 	 (mb) 

Maximum 	Pressure 
wind speed 	drop 
(km .11 -1 ) 	 (mb) 

1 	 46 	 — 
1.5 	 46 	 — 
2 	 56 	 — 
2.5 	 65 	 6 
3 	 83 	 10 
3.5 	 102 	 15 
4 	 120 	 21 
4.5 	 143 	 29 

5 	 167 	 40 
5.5 	 189 	 52 
6 	 213 	 66 
6.5 	 235 	 80 
7 	 259 	 97 
7.5 	 287 	 119 
8 	 315 	 143 

TABLE 6.74. Relationship between T number, maximum wind speed, and pressure drop in a 
cyclone. (Dvorak 1975a; Mishra and Gupta 1976) 

occurred that caused great devastation. Most of the storms developing in the Andaman Sea 
travel towards northwest and strike the coast of Tamilnadu or Andhrapradesh (southeast 
part of India), rather than travel towards the west and strike the coast of Sri Lanka. Certain 
storms have a more northerly component in their motion and these can landfall on the coast 
of Orissa. Those that recurve can hit the coasts of West Bengal, Bangladesh, and Burma. 

On the coasts of Tamilnadu and Andhrapi-adesh, at least six storm surges occurred 
during the period 1964-77. These are listed in Table 6.73 along with the minimum central 
pressure and maximum wind speed. There appears to be some controversy regarding the 
intensity of the November 1977 cyclone (last entry in Table 6.73). Pant et al. (1980) 
suggested that the minimum central pressure was 943 mb and the maximum wind speed 
was 125 knots (231 km • Ill. This cyclone intensified from T6 to T7 between November 
17 and 19 (see Table 6.74 for the classification of T numbers in terms of pressure drop 
and wind speed). Ghosh (1980) suggested that the lowest pressure was 919 mb and not 
943 mb. In intensity, this cyclone was comparable with that of the 1927 cyclone. 
However, the 1927 cyclone generated a surge smaller than the 1977 cyclone (in the storm 
surge of 1927, 300 people died compared with at least 10 000 in the 1977 surge). The 1927 
cyclone made a landfall near Nellore where the topography was much steeper and hence 
the surge was smaller. Another cyclone that had a pressure drop in excess of 90 mb 
occurred in 1885 (Eliot 1890). 

At Visakhapatnam, on the east coast of India, the maximum (positive or negative) 
surge appears to occur usually about a day after the winds attain their maximum intensity. 
The amplitude of the surge depends more on the wind direction than on the wind speed 
(Ramanadham and Varadarajulu 1965). The storm surges at Visakhapatnam are usually 
associated with three types of storm tracks: (a) storms originating to the south of 
Visakhapatnam and recurving near the east coast of India and making a landfall at the 
Chittagong — Arakan coast, (b) storms originating to the south of Visakhapatnam and 
crossing the coast between Masulipatnam and Visakhapatnam, and (c) storms that develop 
in the northern part of the Bay of Bengal and cross the coast near the head of the Bay. 
Storms of the first two types produce positive surges and storms of the third type produce 
negative surges at Visakhapatnam. The maximum amplitudes of the surges are usually 
between 40 and 50 cm. 

The observed winds appear to have a linear relationship with the gradient wind 
calculated from the following formula: 

R an 	1/2 
(6.237) Vg  = [—p —

a r 

+ (wR sin (1)) 2 1 — wR sin cl) 
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FIG. 6.128. Track of the storm of October 1949 on the southeast coast of India. Hatched area shows the 
coastline affected by the storm surge. (Rao 1968) 

where V, is the gradient wind, o.) is the angular velocity of the earth's rotation, (I) is the 
latitude, R is the radius of curvature of the isobars, and p is the density of air. It was found 
that 

V 
— = 0.6 V, 

where V is the wind as measured from ships offshore. 
Although storm surges may be of small amplitude at Visakhapatnam, south of it, 

storm surges could have very large amplitudes. The cyclone of October 28, 1949, made 
a landfall north of Masulipatnam (Fig. 6.128). Winds up to 90 knots (167 km • II') 
produced storm surges with amplitudes of 3-4 m along a stretch of the coast shown in 
Fig. 6.128. The storm crossed the coast at the time of high tide (Rao 1968). 

Another severe storm struck the Coromandel Coast on November 30, 1952 
(Rao 1968). Again, winds up to 90 knots produced surges with amplitudes up to 2.5 m 
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FIG. 6.129. Track of the storm of November 1952 on the southeast coast of India. Hatched area shows the 
coastline affected by the storm surge. (Rao 1968) 

along a stretch of the coast shown in Fig. 6.129. Another severe cyclonic storm traveled 
towards the west over the northern boundary of the Palk Strait (between India and Sri 
Lanka) on November 30 —December 1, 1955. Two different storm surges occurred (Rao 
1968). The first one was along the coast between Point Calimere and Vettaikaran Iruppu 
and had amplitudes up to 2 m. The second surge occurred between Thambkottai and 
Kattumavedi with amplitudes over 1 m. 

One of the most destructive storm surges in southern India occurred on December 23, 
1964 (Fig. 6.55). Winds up to 120 knots (322 km •11 -1 ) created storm surges over the 
islands of Mannar (Sir Lanka) and Rameswaram (India) and the maximum amplitudes of 
the surges were 5-6 m. This storm exhibited some interesting features: (a) the major 
surges occurred to the left of the storm track (at Pamban—Dhanushkodi Islands), (b) the 
surges preceded the arrival of the storm by approximately 3-4 h, (c) although winds up 
to 80 knots (148 km •11 -1 ) were recorded to the west of the Pamban Bridge, no surges 
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FIG. 6.130. Gradient wind speed versus radial distance. Curve A, R = 350 km; curve B, R = 
35 km; curve C, from eq. 6.243. (Holland 1981) 

occurred along this part of the coastline. 
It was mentioned that the amplitude of storm surges at Visakhapatnam is not signifi-

cant. Generally, north of Visakhapatnam, the storm surge activity is not severe, except on 
some stretches of the Orissa coast, until one arrives at the coast of Bangladesh. Saugor 
Island (India) is situated near the head of the Bay of Bengal where the Hoogly Estuary 
empties into the Bay. On this island, the surge heights usually range from 1 /3 to 1 m 
(Janardhan 1967). 

Johns and Ali (1980) used the following pressure distribution in their simulation of 
the November 1970 storm surge that caused great devastation in Bangladesh. 

(6.238) p =  Pa  — àp exp — k) 

where p is the pressure field at radius r,  Pa  is the ambient pressure, àp is the difference 
between the ambient and central pressures, and R is the e-folding radius of the pressure 
distribution. 

A value of 350 km was given to R. Holland (1980) pointed out that R should be the 
radius of maximum winds and that a typical value of R should be about 35 km. 

The argument that R should be the radius of maximum winds was developed by 
Holland (1981) as follows. For tropical cyclones, a typical Rossby number will be about 
100, in the strongest wind region. One may assume a cyclostrophic balance and write 
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FIG. 6.131. Gradient wind speed versus radial distance. Solid line, using eq. 6.238 
and R = 350 km; broken line, using eq. 6.143, R = 40 km, and V„, = 65 m • s -  I . (Johns 
and Ali 1981) 

(6.239)  V. = (L —aPy" 
p ar 

where  V.  is the cyclostrophic tangential wind and p is the air density. Substituting 
eq. 6.238 into 6.239 gives 

(6.240) V, = [
rAp 

 exp (- 2-
111/2 

pR 	RI J 

A plot of V. versus r shows a rapid increase in wind speed with radius from the center 
to a maximum and then a gradual decrease followed by a tangential approach to zero at 
infinite distance. To determine the radius of maximum winds, eq. 6.240 is differentiated 
with respect to r and equated to zero: 

a vc 	1 [rApr 1/2 	r) AP 	( r (6.241) - = -Tep  ex 87 	p ( - ïe )] (1 - É --R-p 	 exp - ) É 
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Ile nontrivial solution of eq. 6.241 is for r = R. Thus, R is the radius of maximum winds. 
Wind speed versus radial distance is shown in Fig. 6.130. The wind speed is 

computed from the gradient wind formula: 

[ 	 fr 
(6.242) V, = 	exp 	+ —

4 	
— —

2 pR 	R 

where V, is the gradient wind and f is the Coriolis parameter. The following values were 
used: zip = 50 mb, p = 1.2 km • m -3 , f = 5 x 10-5 • . In Fig. 6.130, curve A is for 
R = 350 km and curve B is for R = 35 km. It can be seen that taking R = 350 km gives 
an incorrect wind field. 

Holland (1980) remarked that even with the correct value of R, eq. 6.238-6.242 may 
not give correct distributions for pressure fields and winds in tropical cyclones. Instead, 
he suggested the following form: 

(6.243) p = pc  + àp exp — -4) 
rB  

where pc  is the central pressure and A and B are empirical constants. Usually, B has a value 
between 1 and 2.5. Then A is determined from the value given to the radius of maximum 
winds. Curve C of Fig. 6.130 is derived from eq. 6.243 with A = 207 and B = 1.5. 

Johns and Ali (1980) agreed with Holland's (1980) criticism that in their model, the 
maximum gradient wind occurs at a radial distance of about 250 km. They justified their 
model by stating that use of R = 40 km gives a very low surge response. To account for 
the role of the wind stress at radial distances of the order of 200 km, they used a 
representation based on Jelesnianski (1965) with V„,„, for VR in eq. 6.143. Taking R = 
40 km and Vm„„ = 65 m • s' one can calculate the wind speed for r = 1000 km to be 
13  ms.  Thus, eq. 6.143 also shows a curve similar to curve B of Fig. 6.130. 

However, Johns and Ali (1980) did not use the representation in eq. 6.143 because 
their grid cannot resolve features less than 36 km in length. Hence, they used eq. 6.238 
with àp = 50 mb and R = 350 km. If one takesf = 5 x 10-5  • 	the gradient wind speed 
at r = 250 km is 30 m • 	The representation of the wind field from eq. 6.238 and 6.243 
is shown in Fig. 6.131. Basically, what Johns and Ali (1980) did was to use the solid curve 
of Fig. 6.131 in place of the broken curve to represent the wind field. 

6.11 Mesoscale Weather Systems 

Hobbs (1981) defined a mesoscale weather system as one with horizontal scales in 
the range of a few to 1000 km and time scales ranging from several hours to 1 d. Squall 
lines, thunderstorms, and tornadoes fall into the classification of mesoscale weather 
systems. Here, squall lines are specifically examined, since, as will be seen later, they can 
give rise to storm surges. 

Squall lines are nonfrontal lines of active thunderstorms, several to some tens of 
kilometres wide and hundreds of kilometres long, which exist for a considerably longer 
period than the lifetime of the component cumulonimbus clouds (Ramage 1971). 

Stationary as well as traveling mesoscale weather systems such as those that occur 
over the Great Plains of the United States are classified further into the following: regional 
scale (200-2000 km), or meso-alpha; squall line scale (20-200 km), or meso-beta; cloud 
scale (2-20 km), or meso-gamma (Anonymous 1978c). 
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REGIONS WHERE SQUALL LINES OCCUR 

Squall lines occur in midlatitudes as well in the tropics. They occur mainly over the 
United States, Central, West, and South Africa, Venezuela, northern India, and northen 
Australia. In the United States they occur predominantly during spring and summer. 

According to Hamilton and Archbold (1945) and Tschirhart (1958), sub-Saharan 
Africa is a fertile ground for squall lines and, in fact, these account for most of the rainfall. 
Another area where squall lines occur is the Caribbean Sea. On rare occasions, squall lines 
can also be observed over the southern part of the North Sea. 

METEOROLOGICAL ASPECTS 

Prior to the enunciation of the frontal theory of cyclones by the Norwegian School 
of Meteorologists, a squall line was regarded as any line of storms arranged in a general 
southerly and easterly direction from a depression. Characteristic features of these storms 
are strong intensity, strong wind gusts, wind shifts, pressure increases, temperature 
decreases, and heavy rain of the showery type. After the advent of the frontal theory of 
cyclones, some of these storms were redesignated as cold fronts. The term "squall line" 
was reserved for the storms in the warm sectors of the cyclones, roughly paralleling the 
cold front and along which there is intense convective activity. 

Harrison and Orendorff (1941) suggested that the squall line was formed by the 
rain-cooled air of the downdraft. Squall lines develop in air masses that are convectively 
unstable. Most of the squall lines over the United States develop in regions of warm 
advection at low levels with neutral or even slight cold advection aloft (Petterssen 1956a, 
1956b). A favorable situation for squall line development is when a tongue of warm and 
moist air from the Gulf of Mexico moves northward over the Great Plains and the 
Mississippi Valley. 

Squall lines may move with speeds of up to 15-18 m • s -  ' (faster than the ambient 
wind). In midlatitudes, especially, they may be embedded in larger scale synoptic weather 
systems. In such situations, the intense part of the weather might be concentrated only in 
about 10% of the area of the synoptic system. The life span of a squall line is much shorter 
than that of the synoptic scale system in which it is embedded (e.g. a few hours versus 
a few days). 

Squall lines have low-level indraft along their forward edge due to rapid motion 
(Riehl 1979). Individual cumulonimbus clouds in a squall line have life times of at most 
a few hours. Hence, for a squall line to survive, new convective elements continually 
replace dissipating elements (Ramage 1971). Squall lines usually become most intense 
during late afternoons when the convective activity is the highest. 

Newton and Newton (1959) and Newton (1967) showed that the continuous exchange 
of mass between the storm and the surroundings leads to a nonhydrostatic pressure that 
aids the convection process. On the downshear side the convective elements continually 
develop whereas on the upshear side they dissipate. Hence, the storm moves in the 
direction of developing elements and away from dissipating elements. 

Over the Central United States the squall lines move 25° to the right of and about 
4 m • s' slower than the mean wind at the 700-mb level. Squall lines over the midwestern 
and northeastern  parts of the United States deviate 50 and 70°, respectively, to the right 
of the wind direction at the 700-mb level. 

Squall lines usually develop near topographic discontinuities (mountains and val-
leys). Generally, squall lines tend to dissipate when they cross a coast because cool and 

579 



relatively stable surface air suppresses ascent due to buoyancy (Ramage 1971). 
In northern India, squall lines occur in the spring and fall (De 1963). In northern 

 Australia, squall lines occur mainly in spring. The West African squall lines resemble 
those over the United States in the following respects: they tend to develop and are most 
intense in the afternoon and are most frequent in spring. However, there are certain 
differences also. The West African squall lines are usually embedded in an environment 
possessing easterly vertical shear and they travel westward with velocities of up to 
10 m • s'.  the life span of most squall lines is less than 24 h, some persist for 
several days and travel more than 3000 km. Although most squall lines weaken after 
crossing a coastline, some do not (e.g. over the warm Guinea current). 

Probably the first systematic study of squall lines emerged from the U.S. thunder-
storm project during 1946-48. Williams (1948) used the data from the automatic 
recording stations in Ohio operated by the U.S. Weather Service's cloud physics project 
to deduce the microstructure of squall lines. 

Tepper (1950a, 1950b) described the meteorological features associated with the 
arrival of an intense squall line at the ground. Initially there is an abrupt rise in the surface 
pressure, which he referred to as a "pressure jump." Fujita (1955) called it the "pressure 
surge." Within 1 min after the pressure jump there is a sudden change in the wind 
direction, which was referred to as "wind shift." Then, the temperature begins to drop 
rapidly within 2 min after the wind shift. This drop of temperature was referred to as the 
"temperature break". The peak wind gust, the onset of rain, and the pressure maximum 
follow the temperature break. 

On the other hand, Fujita (1955) described the situation somewhat differently. Fol-
lowing the pressure surge, the thunderstorm high occurs and then the pressure decreases. 
The low pressure areas following the wake drop in pressure are called wake depressions. 

Bedard et al. (1977) and Bedard and Meade (1977) described an inexpensive instru-
ment system that was deployed at the Dulles Airport in Washington, DC, to measure the 
gust fronts associated with squall lines. NOAA (Anonymous 1978c) described the various 
modeling activities on squall lines that are being done at the National Severe Storms 
Laboratory (United States). A model being developed by Fritsch (Anonymous 1978c) 
incorporates the effects of deep convection and shows how a series of thunderstorms can 
become organized into groups and how they can influence the winds and pressures in the 
surroundings. Wami moist air accumulates in front of the squall line, and this leads to a 
low pressure system at the surface; colder air from the thunderstorm downdraft forms a 
high pressure area behind the squall line. Presently used weather forecast models cannot 
resolve the squall lines adequately because the grids used are of the order of 200 km 
in size. 

The official U.S. Weather Service definition of pressure jump (associated with a 
squall line) is an increase of pressure of more than 0.17 mb • min --1  with at least a total 
increase of 0.7 mb. Tepper (1950) suggested that the detection of the pressure jump can 
be used as an indication of the movement of the squall line. 

Time series data on pressure jumps were published by Tepper (1950), Fujita (1959), 
and Charba (1974). These data show increases of several millibars in surface pressure 
during a period of a few minutes. Tepper's (1950) data showed pressure increases of 
2.3 mb in 5 min. Williams' (1948) data showed a 2- to 5-mb rise in 5 min. Goff (1975) 
found an average increase of 2.5 mb in 100 s. Blecker and Andre (1950) found significant 
pressure increases in 10 min. 

As for the speed of travel, Williams (1948) gave a value of 13.4 m • s --1 , Tepper 
(1950) found 20.4 m • s - ', and Goff (1975) found 10 ni • s - '. On the other hand, De (1963), 
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TABLE 6.75. Squall lines over Venezuela. (Betts et al. 1976) 

Observed 
Major axis 	Minor axis 	 track 	Speed of 
of squall 	of squall 	Life span 	length 	travel 
line (km) 	line (km) 	(min) 	(km) 	(km .11 - ') 

Fia. 6.132. Schematic cross-section through a squall line system. Streamlines show flow relative to the squall 
line. Broken lines show updraft circulation. Thin solid streamlines show mesoscale downdraft below the base 
of the anvil cloud. Dark shading shows strong radar echo in the melting band and in the heavy precipitation zone 
of the mature squall line element. Light shading shows weaker radar echoes. Scalloped line shows visible cloud 
boundaries. (Houze 1977) 

based on a study of 44 squall lines in northern India, found a value of 33 km • h -  . He 
quoted values from other authors ranging from 35 to 40 km • h -1 . De (1963) also found that 
the direction of movement of the squall lines is generally within 90 0  to the right (looking 
downwind) of the 700-mb wind. They occurred mainly during March—May and their life 
span varied from 3 to 10 h. Their lengths varied from 40 to 400 km and their speed of travel 
varied from 20 to 50 km • h -1 . For comparison, some data on squall lines in Venezuela are 
listed in Table 6.75. 

The cross-section through a squall line system is shown schematically in Fig. 6.132. 
Important results on squall lines may be found in Lilly (1979), Ogura and Liou (1980), 
Betts et al. (1976), Zipser (1969, 1977), Houze (1977), Mitchell and Hovermale (1977), 
Charba (1974), Moncrieff and Miller (1976), and Miller and Betts (1977). 

SQUALL LINE FORCING TERMS FOR STORM SURGE CALCULATIONS 

Wilson (1978) developed simplified pressure and wind profiles for a "historical 
maximum squall line" for use in estimating water levels near United States nuclear power 
plants. One very important point to be made is that, whereas with synoptic scale weather 
systems (e.g. tropical and extratropical cyclones) usually the wind stress is much more 
important than the atmospheric pressure gradients, for squall lines, the pressure gradient 
tems are at least of equal importance and sometimes much bigger than the wind stress 
terms. 
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FIG. 6.133. Idealized pressure (top) and wind speed (bottom) field profiles for a squall line system. Negative 
wind speed denotes inflow into storm system. (Wilson 1978) 

Following Fujita (1955), Wilson (1978) developed a simple model for a squall line 
system, as shown in Fig. 6.133. He also made the following assumptions: (a) the squall 
line is in a steady state and is in the mature stage, (b) the leading edge of the pressure surge 
and the gust front move with the same speed (this is in contrast with Fujita's (1955) result 
that the pressure surge moves with a speed some 40% greater than that of the gust front), 
and (c) the squall line moves perpendicular to the shoreline. 

Making use of these assumptions and the model shown in Fig. 6.133, Wilson (1978) 
developed the pressure and wind profiles (Fig. 6.134) for a historical maximum squall 
line. For example, Fujita et al. (1956) gave a value for the pressure gradient of 9 mb in 
50 mi (80 km) for a squall line over Nebraska on June 25, 1953, with a sustained post-gust 
front wind speed of 45 mi •11 -1  (73 km •11 -1 ). In this model Wilson used a value of 
50 mi •11 -1 . 

It was mentioned that for squall lines the pressure gradient terms are comparable in 
magnitude with wind stress ternis. This is also borne out by the studies of Freeman and 
Murty (1972) and Murty and Freeman (1973) for the squall line of August 22, 1971, over 
Lake Huron. For the squall line, a sharp rise of pressure (epa ) of 4.5 mb and wind (W) 
of 112.6 km •11 -1  were deduced from the observations. Taking the average depth (D) of 
the southern  part of Lake Huron as 54.7 m, a horizontal scale (ex) of 8 km, a time interval 
during which the pressure increased as 5 min, and the speed of travel of the squall line as 
96.5 km •11 -1 , the pressure gradient term becomes 

582 



^ 

-I 

^ 

-  

-  

- 

-1 

1 t 1 

1016 

1014 

1012 

1010 

1008 

1006 

1018 

P
R

E
S

S
U

R
E

 (
m

b)
  

0 
321 	 241 	 160 	 80 

DISTANCE (km) 

FIG. 6.134. Simplified pressure (top) and wind speed (bottom) profiles for historical maximum squall line 
system. (Wilson 1978) 
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1 	8/9. —p D —8—x = 34 cm' • s -2  

The wind stress term gives 
Ts  = 3 x 10-6 w2 = 30 cm2. s -2 

For the synoptic scale, the atmospheric pressure gradient as taken from the isobaric 
plot is a 4-mb change (Spa ) in a 161-km distance (8x). A wind speed (W) of 32 km .11' 
is used as a typical value. The pressure gradient term and the wind stress term become 
1.5 and 2.4 cm2 . s -2 , respectively. 

The detailed calculations of the storm surge due to this squall line of August 22, 1971, 
over Lake Huron will be included in section 7.1. Earlier, the storm surge calculations in 
idealized situations using the method of characteristics (e.g. Rao 1967, 1969; Murty 1971) 
were discussed. The calculations of the storm surge in Lake Michigan due to a squall line 
on June 26, 1954 (Platzman 1958a, 1965a; Irish 1965; Hughes 1965) are included else-
where in the book. Donn and Balachandran (1969) discussed the water level oscillations 
in Long Island Sound (east of New York City) due to a squall line on Novem-
ber 23, 1953. Donn (1959) studied the storm surges in Lakes Huron and Erie due to a 
squall line on May 5, 1952. Krauss (1978) studied the response of a stratified sea to a 
moving squall line. 
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1956. (Timmerman 1971) 
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Douglas (1929) made a simple calculation of the water level oscillations in the 
English Channel due to a squall line on July 20, 1929. Timmerman (1971) studied the 
water level oscillations (he referred to them as "cold fronts") on the Dutch coast of the 
North Sea. When the speed of the squall line is between 29 and 36 knots, resonance occurs 
between the squall line and the long gravity waves in the North Sea, and this leads to water 
level oscillations. During the period December 13, 1956, to January 4, 1968, 20 squall 
lines with speeds ranging from 25 to 36 knots traveled over the southern part of the North 
Sea. The positions of the leading edge of the squall line at four different times on 
December 13, 1956, are shown in Fig. 6.135. 
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Chapter 7 

Case Studies of Storm Surges on the Globe 

7.1 Storm Surges in Canada 

Selected storm surge case studies in Canadian waters will be discussed in this section 
beginning with eastern Canada and proceeding to the west. In Chapter 5 the so-called 
perigean spring tides and their role in coastal flooding when they occur in conjunction with 
storm surges were discussed. Cases of coastal flooding in eastern Canada associated with 
perigean spring tides during the period 1775-1976 are listed in Table 7.1. 

Briand (1979) did a statistical study of the storm surges in eastern Canada, making 
use of an 11-yr data record (1965-75), with emphasis on the St. Lawrence Estuary. In 
his study he considered the Atlantic Coast of Canada, the Labrador Sea Coast, the Bay of 
Fundy, the Gulf of St. Lawrence, and the St. Lawrence Estuary. Briand calculated the 
hourly residues in the standard manner, i.e. by subtracting the predicted astronomical tide 
from the observed water level. The maximum positive and negative surges together with 
their return periods are listed for several stations in Table 7.2. The extreme value of the 
positive surge observed at several stations in each month during the 11-yr period studied 
is listed in Table 7.3. Similar data for the negative surges are given in Table 7.4. 

In Chapter 5, the influence of ice cover on storm surges in eastern Canadian waters 
was discussed. It was mentioned that whereas positive surges are damped by ice cover, 
negative surges are not. A storm surge at Pointe-du-Chêne during January 24-27, 1972, 
is shown in Fig. 7.1. Note the predominantly negative surge during this period when an 
ice cover exists. Murty and Holloway (1984) showed that ice cover damps positive surges 
more strongly than negative surges (also see Table 5.20). 

The interaction  between storm surges and tides in the Thames Estuary was also 
discussed in Chapter 5. The results of tide—surge interaction in the St. Lawrence Estuary 
will be considered here (Murty and El-Sabh 1981). Based on Proudman (1957) it can be 
shown that an estuary is short (with reference to long wave propagation) provided the 
following two conditions are satisfied: 

—crL A < 1 

(7.1) 

hc 2  

where o-  is the angular frequency of the tide, L is the length of the estuary, and c = 
where g is gravity and h is the average depth of the estuary. The parameter A is defined 
as 

Ko-21,3A 
A << 1 	• 

where B is the tidal amplitude at the mouth. Parameter K is a coefficient of bottom friction 
and is taken as 0.0025. Note that it is not the physical length alone that determines whether 
or not an estuary is short, in the sense used by Proudman. 

Length L, average depth h, and tidal amplitude B for the two portions of the St. 
Lawrence Estuary are summarized in Table 7.5. The values of the two Proudman param- 

587 



eters defined by eq. 7.1 are also listed for the two sections. Based on these values, the 
classification into long or short estuary is made in the final column. 

The results of Proudman (1957) can be summarized as follows: (a) for a long estuary, 
for a tide of progressive wave type, maximum surges are associated more with low tide; 
(b) for a long estuary, for a tide of standing wave type, maximum surges are associated 
more with high tide; (c) for a short estuary, maximum surges are associated more with high 

TABLE 7.1. Cases of coastal flooding in Canada associated with perigean spring tides. Times correspond to 
75°W. (Based on Wood 1978) 

Date of 	 Location of 	 Nearest perigee 	Nearest syzygy 
flooding 	 flooding 	 (date and time) 	(date and time) 

Sept. 9, 1775 	Halifax and Newfoundland (Sept. 9-11) 	Sept. 8, 1775 	Sept. 9, 1775 

	

(07:00) 	 (10:00) 
Oct. 5, 1869 	Cobequid Bay, Burncoat Head, and 	Oct 5, 1869 	Oct. 5, 1869 

Noel Bay (all in Nova Scotia). 	 (02:00) 	 (09:00) 
Perigean spring tides amplified 
by Saxby gale 

Oct. 25, 1870 	Cumberland Basin, N.B. 	 Oct. 25, 1870 	Oct. 24, 1870 

	

(00:00)) 	 (11:00) 
Aug. 9, 1873 	Pictou, N.S. 	 Aug. 9, 1873 	Aug. 8, 1873 

	

(06:00)) 	 (09:00) 
Nov. 1-2, 1877 	North Atlantic coast 	 Nov. 1, 1877 	Nov. 5, 1877 

	

(20:42) 	 (03:48) 
Oct. 12, 1887 	Moncton, N.B. 	 Oct. 16, 1887 	Oct. 16, 1887 

	

(13:00) 	 (18:00) 
Feb. 8-9, 1895 	Halifax, N.S. 	 Feb. 9, 1895 	Feb. 9, 1895 

	

(08:00) 	 (12:00) 
Oct. 8, 1896 	Between Amherst, N.S., and 	 Oct. 7, 1896 	Oct. 6, 1896 

Sackville, N.B. 	 (00:00) 	 (17:00) 
Nov. 6, 1896 	Pictou, N.S., and Charlottetown 	 Nov. 4, 1896 	Nov. 5, 1896 

P.E.I. 	 (12:00) 	 (03:00) 
Nov. 27, 1897 	Pictou, N.S. 	 Nov. 24, 1897 	Nov. 24, 1897 

	

(10:00) 	 (04:00) 
Oct. 1 1-12, 1900 	Charlottetown and Summertown, P.E.I. 	Oct. 8, 1900 	Oct. 8, 1900 

	

(01:00) 	 (08:00) 
Apr. 20, 1901 	Between Amherst, N.S., and 	 Apr. 18, 1901 	Apr. 18, 1901 

Sackville, N.B. 	 (16:00) 	 (17:00) 
May 18, 1901 	Between Amherst, N.S., and 	 May 17, 1901 	May 18, 1901 

Sackville, N.B. 	 (02:00) 	 (01:00) 
Feb. 3, 1908 	Port aux Basques, Nfld., and 	 Nov. 16, 1914 	Nov. 17, 1914 

Harrington Harbor, Que. 	 (23:00) 	 (04:00) 
Nov. 20, 1914 	Quebec City 	 Nov. 16, 1914 	Nov. 17, 1914 

	

(23:00) 	 (11:00) 
Oct. 1, 1917 	Moncton and Sackville, N.B., and 	Sept. 29, 1917 	Sept. 30, 1917 

Amherst and Windsor, N.S. 	 (13:06) 	 (15:31) 
Oct. 31, 1917 	Moncton, N.B., and to a lesser extent 	Oct. 27, 1917 	Oct. 30, 1917 

at Sackville, N.B., and Amherst, N.S. 	(17:48) 	 (01:19) 
Nov. 18, 1918 	Batiscan, Que. 	 Nov. 16, 1918 	Nov. 18, 1918 

	

(22:30) 	 (02:32) 
Mar. 4-5, 1931 	Halifax, N.S. 	 Mar. 4, 1931 	Mar. 4, 1931 

	

(05:00) 	 (06:00) 
Dec. 11, 1973 	Halifax, N.S. 	 Dec. 10, 1973 	Dec. 9, 1973 

	

(18:00) 	 (21:00) 
Mar. 16-17, 1976 	Halifax, N.S. 	 Mar. 16, 1976 	Mar. 15, 1976 

	

(14:00) 	 (22:00) 
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I ABLE 7.2. Extreme positive and negative surges and return periods at selected stations in eastern Canada. 
(Briand 1979) 

	

Maximum positive 	 Maximum negative 

	

surge for which 	Return 	surge for which 	Return 
return period determined 	period 	retu rn  period determined 	period 

Station 	 (cm) 	 (yr) 	 (cm) 	 (yr) 

Nain, Labrador 	 100 	 0.55 	 120 	 3.0 
West St. Modeste, 

Labrador 	 80 	 1.0 	 90 	 0.8 
St. John's, Nfld. 	 90 	 11.0 	 80 	 1.6 
Argentia, Nfld. 	 80 	 1.3 	 90 	 4.0 
Port aux Basques, Nfld. 	 100 	 2.5 	 80 	 3.3 
Lark Harbor, Nfld. 	 80 	 1.3 	 120 	 4.0 
Savage Cove, Nfld. 	 110 	 3.0 	 80 	 6.0 
Yarmouth, N.S. 	 110 	 3.5 	 100 	 7.0 
Halifax, N.S. 	 110 	 11.0 	 80 	 11.0 
North Sidney, N.S. 	 100 	 5.0 	 70 	 1.25 
Pictou, N.S. 	 110 	 1.4 	 130 	 2.3 
Charlottetown, P.E.I. 	 130 	 4.5 	 140 	 4.5 
Rustico, P.E.I. 	 90 	 - 	 90 	 - 
St. John, N.B. 	 110 	 11.0 	 100 	 11.0 
Pointe-du-Chêne, N.B. 	 130 	 0.5 	 170 	 2.0 
Pointe Sapin, N.B. 	 130 	 3.0 	 130 	 3.0 
Lonvere Escuminac, N.B. 	 80 	 0.4 	 120 	 1.0 
Rivière-au-Renard, Que. 	 130 	 3.5 	 110 	 2.3 
Harrington Harbor, Que. 	 110 	 5.5 	 80 	 11.0 
Sept-Îles, Que. 	 90 	 3.0 	 120 	 1.0 
Ste-Anne-des-Monts, Que. 	 130 	 3.0 	 150 	 3.0 
Baie-Comeau, Que. 	 140 	 3.0 	 140 	 3.0 
Pointe-au-Père, Que. 	 130 	 5.5 	 140 	 2.2 
Rivière-du-Loup, Que. 	 130 	 2.7 	 190 	 8.0 
Tadoussac, Que. 	 150 	 1.4 	 170 	 3.5 
St-Jean-Port-Joli, Que. 	 200 	 2.0 	 190 	 6.0 
St-Joseph-de-la-Rive, Que. 	 190 	 1.7 	 190 	 11.0 
Lauzon, Que. 	 270 	 5.5 	 220 	 11.0 

tide. Proudman's results were reinterpreted (with justification) to read low tide (or rising 
tide) and high tide (or falling tide) wherever "low tide" or "high tide" appears in the above 
statements. 

The nature of the tide in the section between Sept-îles and Tadoussac is more of a 
standing wave type than of a progressive wave type, whereas between Tadoussac and 
Quebec City the tide is more of a progressive wave type. The cumulative frequency of 
surges of a given amplitude associated with a given state of the tide for Tadoussac is listed 
in Table 7.6. Although the theory does not distinguish between positive and negative 
surges, they are listed separately. Similar tables were prepared (not shown here) for the 
other stations. The observed and theoretical results are compared in Table 7.7. Some 
pertinent data on the surges in the St. Lawrence Estuary are given in Table 7.8. 

In Chapter 5, various tidal models for the Bay of Fundy and the Gulf of Maine (e.g. 
Greenberg 1977) were mentioned. In principle, these could be used as storm surge models 
with slight modification. However, there is at least one storm surge model available for 
the Bay of Fundy (Brandon 1981). 

Brandon (1981) used a two-dimensional ve rtically integrated numerical model to 
study the Bay of Fundy (the Gulf of Maine is not included) and simulated the surge due 
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TABLE 7.3. Maximum positive surge (cm) observed in each month during the 11-yr period 1965-75 at stations in eastern Canada. (Briand 
1979) 

Station 	 Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 

Nain, Labrador 	 100 	90 	70 	90 	100 	90 	100 	60 	90 	90 	100 	90 
West St. Modeste, 

Labrador 	 60 	20 	40 	40 	40 	60 	70 	60 	50 	80 	70 	70 
St. John's, Nfld. 	 60 	70 	90 	60 	60 	50 	50 	60 	60 	60 	40 	50 
Argentia, Nfld. 	 50 	80 	70 	60 	60 	70 	60 	50 	60 	50 	60 	80 
Port aux Basques, Nfld. 	70 	80 	70 	60 	300 	300 	300 	40 	60 	60 	80 	100 
Lark Harbor, Nfld. 	 80 	70 	70 	70 	60 	80 	60 	50 	40 	80 	70 	60 
Savage Cove, Nfld. 	 110 	90 	60 	70 	70 	40 	40 	40 	50 	60 	60 	110 
Yarmouth, N.S. 	 80 	70 	70 	80 	50 	60 	70 	50 	110 	110 	60 	90 
Halifax, N.S. 	 70 	110 	70 	70 	60 	60 	80 	60 	60 	70 	50 	90 
North Sidney, N.S. 	 60 	100 	60 	60 	50 	70 	40 	40 	50 	60 	60 	50 
Pictou, N.S. 	 100 	100 	80 	60 	80 	100 	50 	60 	60 	100 	100 	110 
Charlottetown, P.E.I. 	100 	110 	100 	90 	70 	60 	50 	50 	50 	100 	80 	130 
Rustico, P.E.I. 	 90 	40 	70 	50 	50 	40 	40 	40 	30 	60 	70 	60 
St. John, N.B. 	 110 	100 	90 	100 	70 	60 	80 	60 	80 	70 	100 	300 
Pointe-du-Chêne, N.B. 	60 	120 	70 	60 	70 	50 	50 	50 	100 	130 	130 	90 
Pointe Sapin, N.B. 	 80 	80 	80 	90 	70 	60 	40 	50 	60 	130 	70 	90 
Lonvere Escuminac, N.B. 	80 	50 	80 	70 	50 	50 	50 	40 	40 	60 	60 	70 
Rivière-au-Renard, Que. 	70 	130 	70 	80 	60 	60 	80 	300 	90 	80 	80 	90 
Harrington Harbor, Que. 	90 	100 	80 	70 	40 	50 	70 	60 	50 	110 	80 	100 
Sept-isles, Que. 	 80 	80 	90 	70 	40 	300 	30 	40 	60 	60 	70 	80 
Ste-Anne-des-Monts, Que. 	130 	120 	100 	110 	100 	90 	100 	90 	90 	100 	100 	90 
Baie-Comeau, Que. 	 140 	130 	110 	100 	60 	70 	70 	310 	60 	70 	80 	90 
Pointe-au-Père, Que. 	120 	130 	100 	80 	70 	50 	50 	60 	310 	80 	80 	100 
Rivière-du-Loup, Que. 	110 	110 	120 	130 	80 	310 	70 	310 	70 	90 	100 	100 
Tadoussac, Que. 	 150 	120 	130 	130 	70 	80 	40 	310 	100 	310 	90 	310 
St-Jean-Port-Joli, Que. 	170 	140 	200 	120 	90 	110 	70 	60 	80 	100 	120 	130 
St-Joseph-de-la-Rive, Que. 	140 	130 	170 	100 	70 	140 	70 	80 	310 	190 	100 	120 
Lauzon, Que. 	 230 	220 	270 	190 	140 	120 	110 	310 	120 	120 	250 	230 



TABLE 7.4. Maximum negative surge (cm) observed in each month during the 11-yr period 1965-75 at stations in eastern  Canada. (Briand 
1979) 

Station 	 Jan. 	Feb. 	Mar. 	Apr. 	May 	June 	July 	Aug. 	Sept. 	Oct. 	Nov. 	Dec. 

Nain, Labrador 	 90 	90 	110 	60 	80 	90 	120 	110 	90 	70 	70 	90 
West St. Modeste, 

Labrador 	 80 	90 	90 	60 	50 	20 	10 	10 	20 	30 	40 	60 
St. John's, Nfld. 	 70 	70 	50 	40 	30 	30 	20 	20 	50 	80 	80 	80 
Argentia, Nfld. 	 70 	70 	80 	40 	30 	40 	40 	50 	40 	50 	70 	90 
Port aux Basques, Nfld. 	60 	80 	50 	60 	50 	40 	30 	40 	50 	60 	60 	60 
Lark Harbor, Nfld. 	120 	90 	50 	50 	30 	60 	50 	40 	40 	40 	50 	80 
Savage Cove, Nfld. 	80 	70 	60 	50 	30 	30 	30 	50 	40 	50 	60 	60 
Yarmouth, N.S. 	 80 	70 	70 	70 	70 	40 	60 	40 	60 	50 	50 	100 
Halifax, N.S. 	 80 	60 	50 	40 	30 	20 	30 	70 	60 	60 	50 	70 
North Sidney, N.S. 	70 	70 	50 	30 	30 	40 	30 	30 	30 	40 	70 	70 
Pictou, N.S. 	 80 	120 	70 	60 	50 	40 	40 	40 	40 	60 	80 	130 
Charlottetown, P.E.I. 	140 	140 	90 	50 	50 	50 	40 	40 	60 	70 	90 	130 
Rustico, P.E.I. 	 60 	30 	40 	40 	20 	20 	20 	20 	30 	50 	60 	90 
St. John, N.B. 	 100 	70 	80 	80 	80 	60 	60 	50 	60 	60 	80 	60 
Pointe-du-Chêne, N.B. 	170 	150 	100 	60 	50 	40 	30 	40 	40 	70 	80 	90 
Pointe Sapin, N.B. 	120 	90 	80 	80 	40 	40 	30 	40 	60 	70 	70 	130 
Lonvere Escuminac, N.B. 	70 	80 	50 	80 	30 	40 	30 	30 	40 	50 	60 	120 
Rivière-au-Renard, Que. 	110 	90 	70 	80 	60 	60 	60 	70 	50 	70 	60 	80 
Harrington Harbor, Que. 	80 	70 	50 	40 	30 	30 	60 	30 	60 	50 	50 	60 
Sept-liles, Que. 	 100 	120 	80 	40 	40 	70 	40 	40 	40 	80 	70 	100 
Ste-Anne-des-Monts, Que. 	150 	90 	110 	100 	100 	80 	90 	110 	70 	100 	90 	120 
Baie-Comeau, Que. 	90 	140 	90 	70 	40 	80 	100 	40 	60 	90 	70 	120 
Pointe-au-Père, Que. 	140 	140 	120 	70 	60 	70 	90 	80 	80 	110 	140 	130 
Rivière-du-Loup, Que. 	180 	180 	110 	90 	50 	60 	50 	190 	50 	90 	100 	150 
Tadoussac, Que. 	 150 	160 	100 	80 	60 	60 	50 	120 	120 	100 	90 	170 
St-Jean-Port-Joli, Que. 	150 	190 	170 	100 	60 	60 	70 	60 	110 	120 	150 	180 
St-Joseph-de-la-Rive, Que. 	180 	110 	130 	80 	90 	190 	60 	80 	90 	150 	120 	140 
Lauzon, Que. 	 170 	200 	140 	130 	100 	150 	140 	90 	90 	120 	130 	220 
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FIG. 7.1. Storm surge at Point-du-Chêne during Janaury 24-27, 1972. (Briand 1979) 

TABLE 7.5. Dimensions and classifications of the two sections of the St. Lawrence E'stuary. 

Average 	Tide 
Length 	depth 	amplitude,  B 	Proudman' s 	Proudman's 
(km) 	(cm) 	(cm) 	1st parameter 	2nd parameter 	Classification 

Sept-îles to 
Saguenay River 	350 	25X 103 	(07 	0.002 	0.007 	Short estuary 

Saguenay River to 
Quebec City 	193 	1800 	215 	0.12 	6.7 	Long estuary 

to the storm of February 2, 1976 (referred to as the "Groundhog Day Storm"). The 
calculated surge of 1.3 m at St. John agrees reasonably well with the observed surge of 
1.5 m (a statistical method gave a value of only 0.8 m). 

The Great Lakes system (Superior, Michigan, Huron, Erie, and Ontario) and their 
interconnecting rivers and lakes are prone to storm surges not infrequently. The amplitudes 
and frequency of the surges vary from one lake to another and also from one location to 
another in the same lake. Since Lake Michigan lies entirely in the United States, storm 
surges in this lake will not be considered in this section. Also, discussion here will be 
restricted to the Canadian coast of the Great Lakes system only. Discussion of storm surges 
in the United States part of the Great Lakes system will be deferred to section 7.2. 

Storm surge problems in Lake Erie (the shallowest of the Great Lakes and the one 
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TABLE 7.6. Number of occasions of positive and negative surges exceeding a given height at Tadoussac during 1965-75. Each hourly reading is treated as one 
occasion. 

Surge height (cm) 
State 

of tide 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100 	110 	120 	130 	140 	150 	300 

(a) Positive surges 

Low 	3806 	1763 	904 	468 	260 	147 	77 	48 	26 	16 	10 	5 	3 	2 	0 	0 
Rising 	4195 	2090 	1016 	515 	263 	129 	81 	61 	47 	29 	12 	8 	4 	3 	3 	3 
High 	4063 	1843 	849 	390 	185 	96 	59 	33 	23 	14 	3 	2 	2 	2 	2 	2 
Falling 	4210 	2082 	1057 	571 	315 	187 	115 	60 	25 	5 	3 	2 	2 	0 	0 	0 

(b) Negative surges 

Low 	4466 	2046 	894 	412 	192 	94 	44 	22 	8 	1 	0 	0 	0 	0 	0 	0 
Rising 	4533 	2275 	1146 	634 	324 	178 	94 	56 	35 	16 	5 	3 	2 	1 	0 	0 
High 	3441 	1513 	710 	363 	205 	108 	52 	34 	19 	15 	13 	12 	9 	7 	4 	2 
Falling 	4110 	1934 	851 	385 	205 	102 	53 	35 	18 	12 	8 	7 	5 	3 	1 	0 



Date 	 No. of casualties Date 	No. of casualties 

Sept. 23, 1679 	 34 
Nov. 11, 1835 	Several hundred 
Oet. 13, 1845 	 3 
Sept. 8, 1860 	 287 
Nov. 27-28, 1905 	78 

Nov. 9, 1913 	251 
Oct. 20, 1916 	55 
Nov. 24, 1918 	76 
Nov. 24, 1919 	40 
Nov. 12, 1940 	67 

TABLE 7.7. Comparison between theory and observation of the 
tide—surge interaction in the St. Lawrence Estuary. H, high tide; L, low 
tide; R, rising tide; F, falling tide; A, in agreement; D, in disagreement; N, 
neither agreement nor disagreement. 

State of tide with which the 
maximum surge is associated 

Theory 	Observation 	Comparison 

Ste-Anne-des-Monts 	H—F 	F 	 A 
Baie-Comeau 	 H—F 	H 	 A 
Pointe-au-Père 	 H —F 	R— H 	 N 
Tadoussac 	 H—F 	R—H 	 N 
Riviere-du-Loup 	L—R 	L 	 A 
St-Joseph-de-la-Rive 	L—R 	H —R 	 N 
St-Jean-Port-Joli 	L—R 	H 	 D 
St-François 	 L—R 	L—R 	 A 
Quebec City 	 L—R 	L 	 A 

Station 

TABLE 7.8. Tidal range and maximum amplitudes of positive and negative surges in the St. Lawrence Estuary. 

No. of 
occurrences of 	No. of 
positive surges 	occurrences 

Spring 	Amplitude of 	Amplitude of 	with amplitude 	of negative 
tidal 	maximum 	maximum 	--180 cm during 	surges with 
range 	positive surge 	negative surge 	the period 	amplitude 

Station 	 (cm) 	(cm) 	 (cm) 	1965-75' 	.130 cm 

Ste-Anne-des-Monts 	347 	180 	 140 	 2(24) 	 2 
Baie-Comeau 	 402 	290 	 130 	 2(15) 	 8 
Pointe-au-Père 	460 	300 	 130 	 2(2) 	 5 
Tadoussac 	 519 	300 	 160 	 5(11) 	 16 
Riviere-du-Loup 	567 	300 	 180 	 3(3) 	 21 
St-Joseph-de-la-Rive 	695 	300 	 250 	 5(29) 	 20 
St-Jean-Port-Joli 	573 	190 	 180 	 4(34) 	 33 
St-François 	 686 	240 	 230 	 17(100) 	 93 
Quebec City 	 580 	300 	 210 	 32(157) 	 20 

"Value in parentheses is number of occurrences for .130 cm. 

TABLE 7.9. Casualties due to high water levels in the Great Lakes. 
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with maximum susceptibility to storm surges) were first considered by Henry (1902) and 
Garriott (1903). Henry discussed the techniques of computing surges at the eastern end of 
Lake Erie. Garriott included charts that depicted graphically more than 200 important 
storms that traversed the Great Lakes during the period 1876-1900 (these charts include 
United States and Canadian parts of the Great Lakes). 

Murty and Polavarapu (1975) reconstructed some major storm surges due to storms 
that were extensive enough to affect all the Great Lakes. Their study considered the period 
1679-1940. The casu .alties due to high water levels (attributed to storm surges) in the 
Great Lakes (both in Canada and the United States) during this period are listed in Table 
7.9. The casualty toll resulted not only from people drowning near the coast but also from 
the sinking of ships battered by high waves. This table, at best, is only a partial list and 
several surges may have been missed. The fact that there is no entry for the eighteenth 
century is astonishing; it is inconceivable that there were no storm surges on the Great 
Lakes during a 100-yr duration. 

An examination of Table 7.9 shows that all the major storm surges listed occurred 
during September to November. Irish and Platzman (1961) explained this as due to the 
convergence of two primary storm tracks from Alberta and Colorado lows in the Great 
Lakes region. This is due to the southward displacement of the polar front. Also, there is 
a contribution to cyclogenesis from the Great Lakes themselves. 

Of the 10 entries in Table 7.9, the storm surges of 1913, 1916, and 1940 were 
reconstructed by Murty and Polavarapu (1975). The tracks of these storms considered in 
this study are illustrated in Fig. 7.2. The notation used in the diagram represents day and 
time of storm. For example, 10 (1930) means that the center of the storm was at that 
location at 19:30 on the 10th day of that month. The surface weather chart for 7:30 on 
November 12, 1940, is given in Fig. 7.3. The extensive size of weather system and the 
intensive amosphere pressure gradients associated with this can be seen in this diagram. 
The locations of the water level stations used are shown in Fig. 7.4. The observed and 
computed maximum surges at various locations are listed in Table 7.10. 

Earlier, the effect of rate of growh of the storm on the storm surge was discussed. 
This is examined in Table 7.11 for the three storms studied here. 

The storm surges in Lake St. Clair were briefly discussed earlier. It was mentioned 
that regression techniques using hourly winds and temperature differences (between air 
and water) as predictors were reasonably successful in explaining surges with periods 
equal to or greater than 24 h. However, regression techniques failed to account for water 
level oscillations in the range of 5-14 h. This failure was attributed to a lack of temporal 
resolution in the forecast data, since only 1-h lags were allowed. 

Hamblin (1978) used lags up to 5 h and also used the impulse response method; i.e. 
the response of the water level at any given position in the lake to a suddenly imposed wind 
stress or pressure gradient was calculated. The response functions were expanded in terms 
of the lowest six gravity modes. The amplitudes of the oscillations were determined from 
the steady-state solutions of the free surface and the relative phases were determined from 
the initial conditions. Finite-element methods were used to calculate the characteristic 
functions of the basin as well as the free surface displacement. Atmospheric stability was 
also taken into account in determining the wind stress. 

More than three dozen storm surges were hindcasted using the regression technique 
as well as the impulse response method. Some of the results are as follows: (1) when no 
seiches were present, both methods were reasonably successful for surges with periods 
longer than 12 h; (2) when seiches with periods of 6 h or greater were present, only the 
impulse reponse method was successful; (3) when seiches with periods shorter than 6 h 
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Flo. 7.2. Tracks of three storms in the Great Lakes and surroundings. 
Numbers denote the dates (numbers in parentheses denote the time (GMT) 
in hours). 

FIG. 7.3. Simplified surface weather chart at 07:30 (GMT) on 
November 12, 1940. Numbers represent sea level pressures (millibars). 
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FIG. 7.4. Water level stations used in the storm surge study for the Great 
Lakes. 1, Port Arthur; 2, Michipicoten; 3, Sault Ste. Marie; 4, Thessalon; 
5, Collingwood; 6, Goderich; 7, Point Edward; 8, Port Lambton; 9, 
Tecumseh; 10, Isle aux Pêches; 11, Fighting Island; 12, La Salle; 13, Port 
Stanley; 14, Port Colborne; 15, Port Dalhousie; 16, Toronto; 17, Kingston. 

were present, both methods failed; (4) when hourly measured wind data were used as 
input, the predicted surge agreed well with the observed surge, except when there were 
rapid fluctuations of the water level lasting for several hours. The observed surge and that 
calculated by both methods, for one case, are compared in Fig. 7.5. 

Next, a case study of a storm surge on Lake Huron, in which a squall line played an 
important role, will be considered. The storm surge of August 22, 1971, in the southern 
part of Lake Huron was a combination of the effects of an intense and narrow squall line 
and a cyclonic circulation associated with a low pressure system (Freeman and Murty 
1972; Murty and Freeman 1973). The simplified surface weather chart at 19:00 on August 
22, 1971 (note that the peak surge occurred at 18:00), is shown in Fig. 7.6a. The track 
of the low pressure system is also shown and the dots represent 6-h intervals. The storm 
moved from west—northwest across the southern portion of the lake with a speed of about 
80.5 km • 11 -  I . With the center of the low to the east of the lake, a fairly steady wind from 
north—northeast blew along the longitudinal axis of the lake with a fetch almost two thirds 
of the lake and with an average speed of 32.2 km h-  . Some time before 18:00, the 
deceleration of a portion of the rapidly advancing cold front produced a squall line with 
winds peaking to 112.6 km •  h,  which is much greater than the steady winds. The squall 
line, approximately 32 km long and 8 km wide, traveled over Lake Huron from the 
north—northeast to Sarnia and farther, cutting a 16-km-wide swath inland and causing 
significant damage onshore. 

The water depth contours in the central and southern portions of Lake Huron, as well 
as the data stations used, are shown in Fig. 7.6b. The 5-min digitized wind speed and 
direction values at the Grace Church station are shown in Fig. 7.7. The 5-min digitized 
water level values at Harbour Beach, Goderich, and Fort Gratiot are shown in Fig. 7.8. 
It was shown in section 6.11 that the pressure gradient and wind stress associated with this 
squall line were at least an order of magnitude greater than those due to the larger scale 
cyclonic system. 
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Port Colborne 	Faster growth; range of 
(Lake Erie) 	 surge was >1.22 m 

Fighting Island 	Slower growth; positive 
(Detroit River) 	surge was 0.48 m 

Isle aux Pêches 	Slower growth; positive 
surge was 0.28 m 

Michipicoten 	Station did not exist 

Slower growth; range of 
surge was <0.91 m 

Faster growth; positive 
surge was 0.71 m 

Faster growth; positive 
surge was 0.51 m 

Slower growth; positive 
surge  vas  0.24 in 

Faster growth; range 
of surge was <1.22 m 

Station did not exist 

Station did not exist 

Faster growth; positive 
surge was 0.70 m 

TABLE 7.10. Recorded and computed water levels at Canadian stations on 
the Great Lakes. 

Date of storrn 

Observed 	Calculated 
maximum 	maximum 

Station 	surge (m) 	surge (m) 

November 1913 

October 1916 

November 1940 

Port Colborne 	 1.36 	1.40 
Fighting Island 	0.48 	0.52 
Kingston 	 0.33 	0.27 
Isle aux Pêches 	0.28 
Port Dalhousie 	0.20 
Port Colborne 	 1.22 	0.88 
Fighting Island 	0.71 	0.24 
Col lingwood 	1.64 	0.46 
Isle aux Pêches 	0.51 	0.18 
Goderich 	 0.39 	0.12 
Kingston 	 0.32 	0.15 
Michipicoten 	0.24 	0.15 
Port Dalhousie 	0.20 
Port Arthur 	 0.14 
Port Colborne 	 1.43 	1.52 
La Salle 	 0.81 	0.46 
Collingwood 	0.77 	0.73 
Point Edward 	 0.71 	0.76 
Michipicoten 	0.70 	0.73 
Sault Ste. Marie 	0.58 	0.64 
Tecumseh 	 0.54 	0.27 
Port Stanley 	 0.53 	0.46 
Goderich 	 0.51 	0.55 
Thessalon 	 0.39 	0.37 
Port Lambton 	0.29 
Kingston 	 0.24 
Toronto 	 0.24 
Port Arthur 	 0.19 
Port Dalhousie 	0.18 

'Restricted to observed surges greater than 0.3 ni. 

TABLE 7.11. Effect of the rate of storm growth on the subsequent surge. 

Station 	 1913 storm 	 1916 storm 	 1940 storm 

Freeman and Murty (1972) performed statistical analyses of the recorded water levels 
at Goderich, Harbour Beach, and Fort Gratiot; autocorrelation and cross-correlation coef-
ficients were computed as a function of time lag. The cross-correlograms were used to 
evaluate the travel times of the squall surge and its subsequent resurgences. The auto- 
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FIG. 7.5. Observed storm surge (solid curve), surge calculated with the regression model (broken curve), and 
surge calculated with the impulse response model (dotted curve) for the period January 23-27, 1972, at the 
eastern end of Lake Erie. (Hamblin 1978) 

spectra of the three water level records were calculated using the Fast—Fourier Transform 
(FFT) technique. 

To consider the effect of reflections at the coast on the spectra of the water level 
records, the cepstra were computed using the concepts developed by Bogert et al. (1962). 
To understand the role of nonlinearities, the bispectra were computed. To determine the 
variation of energy in each frequency band as a function of time, the total length of the 
water level record of 5 d for each of the three stations was broken down into four equal 
parts with the autospectra calculated for the 2-d sections; each section has a 1-d overlap. 

The significant periods derived from the autospectra are listed in Table 7.12. Some 
of these periods were accounted for in terms of the longitudinal and transverse free 
oscillations of the whole or part of the lake. 

Murty and Freeman (1973) extended the earlier study of Freeman and Murty (1972) 
by using more extensive data (Fig. 7.9). For Mackinaw City the period of 8.33 h (see 
Table 7.12) agrees well with the 8.8-h period for the first longitudinal mode of Lake 
Michigan calculated by Rockwell (1966) using a one-dimensional model and by Birchfield 
and Murty (1974) using a two-dimensional model. Mortimer (1965) found a value of 
9.0 h through a statistical analysis of observed water level records. For detailed inter-
pretations of the significant periods see Murty and Freeman (1973). 

The lack of significant peaks in the autospectrum for Tobermory verifies that it is 
located at a nodal point and is sheltered from edge wave excitation. In Chapter 5, edge 
waves and their role in storm surges were discussed and some examples in the Great Lakes 
were considered. Another such example is considered here. The edge wave periods, T 
(Table 7.13), were calculated from the following formula (which can be obtained from eq. 
5.132): 

(7.3) 	T=  

where U is the longshore speed of the squall line, g is gravity, and p is the bottom slope 

599 

27r U 



% 
I . 

	• ''' 	

\ LAKE 
l 

	

) 	\ 	••....-, 	: 	II  

	

/ 	•. 	‘N..; ‘, 

j 

  

• 

• • 	•—• •• 146 • 	.1.• 
(b) 	: 11  f

••• 

j 
1  

. • 	
. • :1:1  

	 .. 

HURON     .e:..  \ - 1  ° 9 i

I ; BAIE DU DORE (M) 

\ 	

1 ■\‘‘'■ . .73  ; i:: 
1 — 	/ 

. ••• 	\ ? • 

•
• 

‘• 	1• 
1 	• ' • • . 

cc'er .2) 	 .• \ 
c. 	%;•- 

•:t ...../...../......7"--\\ 

\ 
(WL 

CH .*. 

) 	. 1  

• \ 	
‘. 
\ 	‘ 

HARBOUR BEA 	

I : 

I 	t 

I 	. 

\ 	I .• 

• • 

• \ 	 . 	I I : LGODERICH (WL) 

	

: I 	\ 

1 	• 	I .•  
•73 1 	: 

	

.. 1 	 I : 

	

: 1 	 I • 
• I 	 i • 

—36 •-• 	. 

FORT GRATIOT (WL) 

50 km 

•••• 

• 

• 

SARNIA (M) 

MG. 7.6. (a) Simplified surface weather chart at 19:00 GMT on August 22, 1971, for the Great Lakes area. 
Black circles on the storm track show the positions of the center of the low at 6-h intervals. (b) Locations 
of the various stations (M, meteorological; WL, water level) used in the study. Depth contours (metres) are 
also shown. 

600 



I 	1 	1 	1 	1 	1 	1 	1 	1 	I 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	f 

1112 km•h-1  

- 

— 

,PNe 
: 

— 

1 	I 	1 	1 	I 	1 	1 	1 	1' I 	I 	1WW 	I 	1 	1 	I 
9 	II 	13 	15 	17 	19 	21 	23 

AUG.22,197I 	 TIME (h) 

	

Jill 	III 
3 	5 

AUG.23,197I 

6 
o 

7 7 	9 

7 
m 

.., 56 

o 
w 40 
La 
0°- 32 

24 

16 

E 

N 

W 

S 
88 

72 

D
IR

E
C

T
IO

N
 

FIG. 7.7. Five-minute digitized wind speed and direction values as obtained from continuous recorders at the 
Grace Church station. 

near the shore. In the water level records described here the shorter periods are due to edge 
waves and the longer periods are due to gravity modes. 

At Fort Gratiot, Tobermory, and Parry Sound, topography coupled with the direction 
of propagation of the squall line makes edge wave excitation highly unlikely. At 
Collingwood, the theoretical estimate of 24 min agrees well with the observed period of 
22-25 min deduced from the autospectra. 

Murty and Freeman (1973) also incorporated the squall line forcing in a two-
dimensional time-dependent numerical model. The position of the squall line as a function 
of time as used in the model is shown in Fig. 7.9. The observed water levels and cal-
culated water levels are shown in Fig. 7.10 and 7.11, respectively, using the forcing 
due to the large-scale pressure system only and that due to the squall line alone. It can be 
seen that at Fort Gratiot, the main peak cannot be reproduced unless the forcing due to the 
squall line is included. 

In Chapter 4, statistical techniques for predicting storm surges in the Great Lakes 
were discussed. Here, a few typical surge profiles at selected stations will be included. The 
surge profiles for three storms at Collingwood on Lake Huron are given in Fig. 7.12. 
Surges up to a range of 1.22 m can be seen. The surges at Port Colborne on Lake Erie are 
given in Fig. 7.13. Surges with ranges greater than 2.44 m can be seen. Surges at 
Kingsville on Lake Erie are shown in Fig. 7.14 and 7.15. One interesting feature here is 
the presence of large negative surges. 

Helmholtz resonance was discussed in section 5.1. Here, its relevance to storm surges 
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FIG. 7.8. Five-minute digitized water level values as obtained from continuous recorders at three stations on 
Lake Huron. 

in the Great Lakes will be discussed. Freeman et al. (1974) calculated the Helmholtz mode 
periods for Hamilton Harbor, Toronto Harbor, and Goderich Harbor, and they gave values 
of 2.5 h, 65 min, and 14 min, respectively, for these three harbors. 

During March 17 —18, 1973, a storm passed over Lake Huron and the resulting surge 
caused damage to several ships in Goderich Harbor. This harbor consists of a main 
berthing basin for commercial ships and a comparatively small basin called Snug Harbor 
for pleasure craft. Protection to the harbor against wave agitation is provided by two 
offshore breakwaters. The meteorological situation associated with this storm was studied 
by Lawford (1977) and the general water level problem in Goderich Harbor was studied 
by Shaw (1974). 

Baird et al. (1976) studied the surge in Goderich Harbor associated with this storm. 
They showed that the wind waves and seiches were not the main causes of damage in this 
harbor and the surge was mainly caused by Helmholtz resonance. Recorded water levels 
in this harbor at a normal time (not during any storm) show clearly an average 14-min 
period Helmholtz mode. Actually, the period ranged from 13 to 15 min. Note that the 
independent theoretical calculation by Freeman et al. (1974) gives 14 min as the period 
of the Helmholtz mode in Goderich Harbor. 

A reconstruction of the possible water level changes showed that the contributions to 
the total surge from wind waves, Helmholtz resonance, and static setup were 2 ft (0.6 m), 
4 ft (1.2 m), and 1.2 ft (0.4 m), respectively. The fact that this surge is not an isolated 
event can be seen from the fact that a surge of 3.7 ft (1.1 m) occurred on March 9, 1974, 
and the recorded water level for this surge also showed a period of 14 min, which is the 
Helmholtz period. 
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TABLE 7.12. Significant periods derived from autospectra of observed water levels in Lake Huron. 

Mackinaw 	 Harbour 	Fort 	 Parry 	Little 
City 	Harrisville 	Beach 	Gratiot 	Goderich 	Tobermory 	Collingwood 	Sound 	Current 

h 	min 	h 	min 	h 	min 	h 	min 	h 	min 	h 	min 	h 	min 	h 	min 	h 	min 

8 	21 	1 	05 	6 	15 	6 	15 	6 	15 	No signifi- 	12 	30 	3 	08 	12 	30 
3 	08 	2 	30 	I 	31 	2 	05 	1 	00 	cant periods 	2 	16 	2 	30 	6 	15 
1 	55 	1 	55 	1 	55 	2 	47 	1 	34 	 6 	15 

5 	00 	0 	38 	1 	34 	0 	48 	 3 	35 
1 	23 	0 	58 	 0 	22 

1 	15 	 0 	25 
1 	40 
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FIG. 7.9. Water level (WL) and meteorological (M) stations on and around Lake Huron. The position 
of the squall line as a function of time is also shown. 
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TABLE 7.13. Calculated edge wave periods in Lake Huron. 

Station 	 U (cm• s-i) 	 13 	 T (min) 	L (km) 

Harrisville 	1000 ± 250 	(2.8 ± 1) x 10 -3 	38 	22.5 
Harbour Beach 	1300 ± 250 	(4.7 ± 0.5) x 10 -3 	30 	23.3 
Fort Gratiot 	Cannot be 

generated 
Goderich 	1100 ± 250 	(2.6 ± 1) x 10 -3 	49 	32.2 
Tobermory 	Cannot be 

generated 
Collingwood 	1200 ± 250 	(5.4 ± 1) x 10 -3 	24 	17.2 
Parry Sound 	Too far out into 

harbor 
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1  

4 	8 12 	1'6 	2'0 	2'4 8 

Flo. 7.10. Comparison.of observed water levels (solid line) at 
nine locations on Lake Huron with computed water levels (bro-
ken line) due to forcing from the large-scale pressure system 
alone. 

This discussion on the Great Lakes storm surges will conclude with some findings of 
surveys (Anonymous 1973, 1975) of the damage to the shores of the Great Lakes due to 
high water levels. The lengths of the coastlines of the Great Lakes and connecting rivers 
and lakes are listed in Table 7.14. The percentage of the shoreline protected is listed in 
Table 7.15. The total damage to the United States and Canadian shores of the Great Lakes 
during the period May 1951— April 1952 is given (dollars) in Table 7.16. Thus, in 1 yr, 
the total damage was $122.5 million. 
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FIG. 7.11. Comparison of observed water levels (solid line) at 
nine locations on Lake Huron with computed water levels (bro-
ken line) due to forcing from the squall line alone. 

STORM SURGES IN THE HUDSON BAY — JAMES BAY SYSTEM 

Murty (1972) estimated that in the southern part of James Bay, maximum storm surge 
amplitudes could be as great as 5.7 m. For this estimation he used the following simple 
formula valid for a rectangular bay of length L and uniform depth h: 

2L 
(7.4) inn% = 	T 

gn 
where g is gravity and T is the wind stress. Taking h  =  32 m, g = 9.8 m • s -2 , and a wind 
speed of 23 m • s' gives in. — 5.7 m. Godin (1975) studied four storm surges in James 
Bay that occurred in 1972. 

Godin used the following simple statistical model to calculate the storm surge profiles 
for these four cases: 

/1 

(7.5) 	= E akp(t — 	+ hkE(t — k)IE(t — k)I + cklE(t — k)I + dkIS(t — k)I 
k=1 

where T1 (t) is the storm surge amplitude as a function of time, p is the atmospheric pressure 
at the centre of James Bay, E and S are the east and south components of the wind, and 
k is a time lag in units of 6 h. Godin mentioned that the storm surges sometimes penetrate 
more than 3 mi (4.8 km) inland in James Bay. 

Yuen and Murty (1972) studied storm surges in Hudson Bay and James Bay using 
a time-dependent two-dimensional numerical model. Four different storm tracks over this 
sytem are illustrated in Fig. 6.73. The storm surge that was simulated in this study is for 
the storm of October 16-20, 1969. The numbering system for sample water level points 
(needed for identification in subsequent diagrams) is shown in Fig. 7.16. Also shown are 
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FIG. 7.12. Storm surges at Collingwood on Lake Huron. Curves with vertical ticks are the observed storm 
surge profiles; the other curves are the predicted profiles. (Venkatesh 1974) 

the 10 areas into which the system is divided for the meteorological input data. Since there 
are only a few weather stations in this region, it was not practical to calculate the 
meteorological forcing terms at every grid point. Hence, the forcing terms are averaged 
in each of the 10 regions. The average atmospheric pressure gradients are shown in Fig. 
7.17. 

The inverse barometer effect is shown in Fig. 7.18. The calculated storm surge and 
the observed surge at Churchill are compared in Fig. 7.19. Time series plots of water 
levels around the perimeter of the Hudson Bay—James Bay system are given in Fig. 7.20. 
The station numbers on the ordinate are those shown in Fig. 7.17. Water level contours 
at different times are shown in Fig. 7.21. Note the progression of the disturbance round 
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the perimeter of the system in the anticlockwise direction. The steady depression in the 
western half of Hudson Bay (100 h and beyond) is due to the persistence of the storm. 

Water level contours in James Bay at different times are shown in Fig. 7.22 (again, 
rotation of the level can be seen). Time series plots of water levels at different locations 
in James Bay are given in Fig. 7.23. Note the damping of the high-frequency oscillations 
from the mouth towards the head of James Bay. 

STORM SURGES IN LAKE WINNIPEG 

Some aspects of the storm surges in Lake Winnipeg (following Hamblin 1976) were 
discussed in the section on finite-element methods. During the latter half of 1973, hourly 
wind observations were available at George Island at the northwest end of the lake. Water 
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FIG. 7.15. Storm surges at Kingsville on Lake Erie. See caption to Fig. 7.12 for explanation. (Venkatesh 1974) 

level data were available at Winnipeg Beach and Victoria Beach, both of these being in 
the southern part of the lake. During this half-year period, storm surges with amplitudes 
in excess of 1 m were observed on at least eight different occasions. The computed and 
observed water levels at these two stations for two different storms are compared in 
Fig. 7.24. 

STORM SURGES IN THE SOUTHERN BEAUFORT SEA 

In this system, the southern Beaufort Sea proper will be discussed as well as the 
Amundsen Gulf, Mackenzie Bay, and Kugmalitt Bay. The general geography of this area 
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Type of shore 
protection 

% of shoreline protected 

Lake Ontario 	Lake Erie 	Lake St. Clair 	Lake Huron 

Groynes and jetties 	 0.28 	 1.90 	 2.01 	 2.20 
Dykes 	 — 	 — 	 35.35 	 — 
Offshore breakwaters 	 0.19 	 0.73 	 0.21 	 0.20 
Bulkheads and seawalls 	5.43 	 7.90 	29.73 	 1.70 
Unprotected 	 94.10 	89.47 	32.70 	 95.90 

TABLE 7.14. Length of shorelines (km) of the Great Lakes and con-
necting rivers and lakes. Note that the total length of the shoreline of the 
Great Lakes is about 18 077 km. (Anonymous 1973) 

United States 	 Canada 

Lake 

Shoreline Mainland 	Islands 	Mainland 	Islands 

Lake Superior 	 1389 	615 	1394 	990 
St. Marys River 	 47 	143 	106 	101 
Lake Michigan 	2253 	383 	0 	0 
Lake Huron 	 933 	414 	2044 	2769 
St. Clair River 	 45 	0 	48 	8 
Lake St. Clair 	 95 	135 	114 	69 
Detroit River 	 48 	63 	48 	53 
Lake Erie 	 694 	69 	592 	47 
Niagara River 	 58 	55 	53 	5 
Lake Ontario 	 483 	45 	538 	80 
St. Lawrence Rive? 	243 	264 	241 	303 

Total (rounded) 6288 	2186 	5178 	4425 

'Above Moses—Saunders Power Dam. 

TABLE 7.15. Shore protection of the Canadian part of the Great Lakes. (Anonymous 1973) 

TABLE 7.16. Damage (in dollars at 1952 price levels) to the United States and 
Canadian shores of the Great Lakes due to high water levels during the period May 
1951 — April 1952. (Anonymous 1973) 

Damage due 	Damage due 	Total 
to inundation 	to wave action 	damage 

Superior (including 
Upper St. Marys 
River) 	 1 506 000 	2 853 000 	4 359 000 

Michigan 	 1 560 300 	29 083 500 	30 643 800 
Huron (including 

Lower St. Marys 
River) 	 274 700 	2 461 500 	2 736 200 

St. Clair (including 
St. Clair River and 
Detroit River) 	 1 921 700 	2 317 800 	4 239 500 

Erie (including Niagara 
River above Falls) 	4 753 200 	7 167 000 	11 920 200 

Ontario (including 
Lower Niagara River 
and St. Lawrence 
River to Intemational 
Boundary 	 1 266 300 	6 087 900 	7 354 200 

Total 	 11 282 200 	49 970 700 	61 252 900 
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Fia. 7.21. Computed storm surge water level contours in Hudson Bay. Numbers multiplied by 20 give the 
water levels (centimetres). 
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and the area covered by two storm surge numerical models (Henry 1974, 1975; Henry and 
Heaps 1976) are shown in Fig. 7.25. 

The storm surge due to the storm of September 13-16, 1970, was severe in several 
locations (Anonymous 1971). The following is a summary of the most extreme conditions 
along the coastline between Herschel Island and Darnley Bay: 

Maximum wind velocity 

Duration of maximum velocity 
Prevailing wind direction 
Advance of front 
Maximum wave height offshore 
Maximum wave height onshore 
Maximum storm surge 
Astronomical tide 

65 mi •11 -1  gusting to 85 mi • IC' 
(1 mi • h -1  = 1.609 km •11 -1 ) 

4h 
Northwest 
60 mi •11 -I  (approx.) 
30 ft } . 
5 ft  wind waves (1 ft = 0.305 m) 

8 ft 
2.5 ft 

Along the coast between Herschel Island and Tuktoyaktuk, the wind velocities and 
the storm surge amplitudes were more or less regular. East of Tuktoyaktuk, the conditions 
were somewhat irregular with maximum wind velocities up to 50 mi • II (80.5 km • h -  ) 
and maximum surge up to 3 ft (0.9 m) in amplitude. 

Mackenzie Bay was relatively ice free at this time and the polar ice pack was at least 
100 mi (160 km) north of Herschel Island. Thus, this good fetch, combined with high 
winds and the extensive shallow-water area of the Kugmalitt Bay and Mackenzie Bay plus 
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the V-shaped topographies of these bays, amplified the surge in these bays. The fact that 
this storm surge is not an isolated incident can be seen from the occurrence of at least 
another storm surge on September 9, 1944, with amplitudes up to 10 ft (3.1 m) (Anony-
mous 1971). Some theoretical estimates of this storm surge were made (Anonymous 1971) 
using simple empirical relations of the type discussed in Chapter 4 (see equations 4.201, 
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4.203, 4.250, and 4.252): Herschel Basin (10.7 ft or 3.3 m), Babbage Bight (9.6 ft or 
2 m), Horton River (1.9 ft or 0.58 m), and Clapperton Island (3.1 ft or 0.94 m). 

Henry (1974) listed all storm surges in the southern  Beaufort Sea at Tuktoyaktuk with 
amplitudes in excess of 1 m for the period 1962-73 (Table 7.17). Based on this informa-
tion he concluded that maximum amplitudes for positive and negative surges are 2 and 
1 m, respectively. Henry (1975) mentioned that in the summer of 1974 no significant 
surges occurred probably because of an unusually persistent ice cover. Two surges of 
approximately 1-m amplitudes were recorded in August 1975. The daily extrema of water 
levels at Tuktoyaktuk for the years 1962, 1963, 1964, and 1974 are shown in Fig. 7.26 
(in this diagram, positive extrema of less than 1 m and negative extrema of less than 
0.5 m are omitted). A seasonal distribution of the extrema can be noted. Negative surges 
appear to occur irrespective of the degree of ice cover whereas the suppression of positive 
surges by the persistent ice cover in 1964 and 1974 can be seen in Fig. 7.26. Observed 
and calculated surges at four locations in the southern  Beaufort Sea are compared in 
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•TUKTOYAKTUK 

FIG. 7.28. Storm surge water level contours (metres) in the southern part of the Beaufort Sea for the storm of 

September  1-3, 1972. (Henry 1975) 

Fig. 7.27 and maximum elevation contours in the southern Beaufort Sea are shown in 
Fig. 7.28. For details of the large-area model and small-area model referred to in the 
diagrams see Henry (1975) and Henry and Heaps (1976). 

STORM SURGES ON THE WEST COAST OF CANADA 

Although disastrous storm surges do not occur on the west coast of Canada, surges 
up to 2-3 ft (0.6-0.9 m) can occur. During December 14-18, 1982, a moderate storm 
surge occurred in the Strait of Georgia followed by some destruction to property. 
Armstrong (1962) examined the tidal records for the period 1945-61 for Tofino, Prince 
Rupert, Vancouver Harbour, and Victoria Harbour. For Alert Bay, data for 1949-61 were 
examined. Based on this study, it was deduced that low pressure systems approaching the 
British Columbia coast from west to southwest with an average speed of 25-30 knots 
(46-56 km  h') could cause surges. These weather systems cause maximum surges at 
Tofino, then fill over the Vancouver Island or move northwards to the Queen Charlotte 
Islands. The surges at Tofino during the period December 1952—March 1959 are sum-
marized in Table 7.18. Surges of similar magnitude could occur at Prince Rupert and in 
the Queen Charlotte Islands. 

7.2 Storm Surges in the United States 

This section will begin with a brief description of the tides in selected United States 
waters and a discussion of the perigean spring tides. East coast hurricane-generated storm 
surges and Gulf of Mexico hurricane-generated surges will then be discussed followed by 
special consideration of the Florida coast. Lake Okeechobee surges will be considered in 
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Surge 
Date 	 amplitude (m) 

July 28, 1962 	 1.37 
Aug. 29, 1962 	 1.04 
Aug. 31, 1962 	 1.43 
Sept. 4, 1962 	 1.83 
Oct. 13, 1962 	—0.91 
Oct. 25, 1962 	—1.01 
Nov. 14, 1962 	—1.16 
July 5, 1963 	 1.19 
July 27, 1963 	 0.94 
July 28, 1963 	 1.13 
July 30, 1963 	 1.55 
Aug. 4, 1963 	 0.91 
Aug. 10, 1963 	 1.01 
Aug. 17, 1963 	 1.37 

Sept. 22, 1963 
Oct. 4, 1963 
Oct. 16, 1963 
Aug. 7, 1965 
Nov. 12, 1965 
July 18, 1966 
Sept. 10, 1966 
Oct. 4, 1966 
Oct. 15, 1966 
July 24, 1967 
Aug. 13, 1967 
Oct. 3, 1967 
Oct 12, 1973 

Date 
Surge 

amplitude (m) 

1.01 
1.89 
0.91 
1.37 
0.94 
0.91 
1.13 

—0.91 
—1.10 

1.13 
1.07 
0.91 
1.01 

TABLE 7.17. Storm surges (in excess of 0.9 m) at Tuktoyaktuk (Canada) during 
summer 1962 to fall 1973. (Henry 1974) 

TABLE 7.18. Storm surges at Tofino, B.C., during December 1952—March 1959. (Based 
on Armstrong 1962) 

State of tide at 
Maximum surge 	Time of maximum 	time of maximum 

Date 	 (m) 	 surge (PST) 	 surge 

Dec. 6, 1952 	 0.55 	 21:56 	 Low water 
Dec. 30, 1952 	 1.01 	 05:35 	 Low water 
Feb. 12, 1954 	 0.46 	 21:36 	 High water 
Feb. 17, 1954 	 0.52 	 12:14 	 High water 
Mar. 9, 1954 	 0.46 	 09:46 	 Low water 
Nov. 15, 1954 	 0.34 	 22:32 	 Low water 
Nov. 19, 1954 	 0.58 	 01:26 	 Low water 
Dec. 23, 1954 	 0.37 	 10:50 	 High water 
Jan. 15, 1956 	 0.46 	 20:11 	 Low water 
Jan. 16, 1956 	 0.46 	 02:32 	 High water 
Mar. 2, 1956 	 0.43 	 22:08 	 Low water 
Jan. 12, 1959 	 0.46 	 02:40 	 High water 
Mar. 29, 1959 	 0.34 	 22:07 	 Low water 

detail. Then, case studies of surges in the following water bodies will be considered: 
Galveston Bay (Texas), Lake Travis (Texas), Mobile Bay (Alabama), Cape Fear Estuary 
(North Carolina), Chesapeake Bay, New York Bay, and Narragansett Bay. Extratropical 
surges on the east coast and Great Lakes will be discussed followed by a discussion of the 
surges on the west coast and Alaska. Finally, surges in the area of the Bahamas, the Gulf 
Stream area, and other miscellaneous areas will be considered. The section will conclude 
with probability studies for engineering design, coastal flooding insurance, etc. 

TIDES IN SELECTED UNITED STATES WATERS 

Tides along the Atlantic and Pacific coasts of the United States are summarized in 
Tables 7.19 and 7.20, respectively. In Table 7.19, the mean range and highest and lowest 
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1.52 
1.31 
1.19 
1.31 
2.38 
3.14 
4.75 
2.59 
3.02 
1.22 
1.68 
1.71 
1.65 
1.46 
2.19 
2.62 
1.92 
1.04 
1.71 
1.37 
2.38 
1.19 
0.76 
1.07 
2.38 
3.08 

1.22 
0.91 
0.88 
0.94 
0.85 
0.88 
1.01 
1.07 
1.22 
0.85 
0.94 
0.94 
0.88 
0.73 
0.82« 

 0.94 
0.85 
0.73 
0.79 
0.85 
0.82 
0.58 
0.46 
0.76 
0.55 
0.85 

5.55 
2.71 
2.47 
2.90 
0.55 
1.07 
1.40 
0.79 
2.19 
1.43 
1.34 
1.40 
1.25 
1.77 
0.34 
0.88 
0.76 
1.25 
1.55 
2.10 
1.86 
0.76 
0.40 
0.76 
0.40 
0.30 

Eastport, ME 
Portland, ME 
Portsmouth, NH 
Boston, MA 
Woodshole, MA 
Newport, RI 
Providence, RI 
New London, CT 
Wil lets Point, NY 
Fort Hamilton, NY 
New York Battery, NJ 
Sandy Hook, NJ 
Atlantic City, NJ 
Philadelphia, PA 
Baltimore, MD 
Washington, DC 
Norfolk, Sewell Point, VA 
Southport , NC 
Charleston, SC 
Fort Pulaski, GA 
Femandina, FL 
Miami Beach, FL 
Key West, FL 
Cedar Key, FL 
Pensacola, FL 
Galveston, TX 

	

1.13 	1.28 

	

0.79 	1.98 

	

0.73 	0.85 

	

0.85 	1.07 

	

0.55 	0.76 

	

0.58 	0.79 

	

0.73 	0.91 

	

0.58 	0.91 

	

0.88 	1.16 

	

0.91 	1.25 

	

0.85 	1.16 

	

0.82 	1.13 

	

0.79 	1.07 

	

0.91 	1.55 

	

0.88 	1.37 

	

0.82 	1.04 

	

0.55 	0.82 

	

0.37 	0.58 

	

0.64 	0.85 

	

0.82 	1.25 

	

0.73 	1.13 

	

0.34 	0.43 

	

0.31 	0.43 

	

0.79 	1.40 

	

0.40 	0.61 

	

0.70 	1.49 

TABLE 7.19. Mean range and highest and lowest tides (m) along the Atlantic and Gulf of Mexico coasts of the 
United States. (Disney 1955) 

Highest tide above 	 Lowest tide below 
mean high water 	 mean low water 

Location 
Mean 	Avg. yearly 	Extreme 	Avg. yearly 	Extreme 
range 	highest 	high 	lowest 	low 

tides at a number of stations are shown. The mean range is the difference in height between 
mean high water and mean low water. Heights for the highest tides are above the local 
datum of mean high water whereas the heights for lowest tides are below the local datum 
of mean low water. Along the Atlantic coast the average yearly highest tide varies from 
1.5 to 4.0 ft (0.5-1.2 m) above mean high water whereas the average yearly lowest tide 
varies from 1.0 to 3.7 ft (0.3-1.1 m) below mean low water (Disney 1955). The range 
between the average yearly highest tide and average yearly lowest tide at each station may 
be obtained by adding the heights of the average yearly highest and lowest tides to the 
mean range for each station. The range between the extreme high and extreme low water 
levels at each station may be obtained by adding the heights of extreme highest and lowest 
tides to the mean range for each station. 

On the Pacific coast, the datum for hydrographic charts is the mean lower low water 
(Disney 1955). Because of the large diurnal inequality in the tides (especially in the low 
waters), this datum is used. For example, at Seattle, one low water of the day may be 10 
ft (3.1 m) (or more) lower than the other low water. Thus, there is a special significance 
on the Pacific coast for mean higher high water and mean lower low water and the range 
between these two levels. The difference in height between mean higher high water and 
mean lower low water is known as the great diurnal range (or simply "diurnal range"). The 
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1.13 0.79 0.67 

0.01 0.58 0.46 

TABLE 7.20. Diurnal range and highest and lowest tides (m) along the Pacific coast of the United States. 
(Disney 1955) 

High tide above mean 	Low tide below mean 
higher high water 	 lower low water 

Location 
Diurnal 	Avg. yearly 	Extreme 	Avg. yearly 	Extreme 
range 	highest 	high 	lowest 	low 

San Diego, CA 
La Jolla, CA 
Los Angeles, CA 
Santa Monica, CA 
San Francisco, CA 
Crescent City, CA 
Astoria, OR 
Neah Bay, WA 
Seattle, WA 
Friday Harbor, WA 
Ketchikan, AK 
Juneau, AK 
Skagway, AK 
Sitka, AK 
Yakutat, AK 
Seward, AK 
Anchorage, AK 
Dutch Harbor 

Unalaska Island, AK 
Sweeper Cove, 

Adak island, AK 
Massacre Bay, 

Alta Island, AK  

	

1.77 	0.58 	0.76 	0.58 	0.79 

	

1.59 	0.58 	0.70 	0.58 	0.76 

	

1.65 	0.58 	0.67 	0.58 	0.79 

	

1.65 	0.61 	0.70 	0.52 	0.76 

	

1.74 	0.52 	0.76 	0.58 	0.76 

	

2.10 	0.76 	0.94 	0.70 	0.76 

	

2.50 	0.82 	. 	1.19 	0.58 	0.85 

	

2.50 	0.85 	1.22 	0.91 	1.10 

	

3.44 	0.70 	1.04 	1.19 	1.40 

	

2.35 	0.73 	1.01 	0.98 	1.19 

	

4.70 	1.34 	1.65 	1.37 	1.59 

	

5.06 	1.25 	1.59 	1.55 	1.80 

	

5.15 	1.37 	1.77 	1.65 	1.86 

	

3.02 	1.01 	1.37 	1.01 	1.22 

	

3.05 	1.07 	1.37 	1.04 	1.31 

	

3.20 	1.04 	1.25 	1.10 	1.31 

	

9.01 	1.37 	1.77 	1.31 	1.49 

1.13 	0.61 	0.88 	0.61 	0.82 

0.67 	0.88 

0.55 	0.76 

diurnal ranges at the highest and lowest tides for several stations on the Pacific coast are 
listed in Table 7.20. The heights for highest tides are above the local datum of mean higher 
high water whereas the heights for lowest tides are below the local datum of mean lower 
low water. 

Along the Pacific coast of the continental United States, the average yearly highest 
tide varies from 1.7 to 2.8 ft (0.5-0.9 m) above mean higher high water whereas the 
average yearly lowest tide varies from 1.7 to 3.9 ft  (0.4-1.4  m) above mean higher high 
water and the average yearly lowest tide varies from 1.8 to 5.4 ft (0.6-1.6 m) below mean 
lower low water. 

The range between the average yearly highest tide and the average yearly lowest tide 
in Table 7.20 may be obtained by adding the heights of the average yearly highest and 
lowest tides to the diurnal range for each station. The range between the extreme high and 
extreme low water levels at each station can be obtained by adding the heights of extreme 
highest and lowest tides to the diurnal range of each station. 

Some typical tide curves at five locations in the United States are shown in Fig. 7.29. 
The curves were normalized with reference to the maximum range for each tide station. 
Hence, in this diagram, the relative ranges are not relevant; it is the characteristics of the 
tidal curves that are of interest. The curve for New York is a typical semidiumal curve (two 
highs and two lows each tidal day of approximately 24 h and 50 min). The curve for 
Pensacola (Florida) represents a typical diurnal tide (i.e. one high and one low water for 
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FIG. 7.29. Predicted tide for January 1963 at five locations in the United States. (Harris 1981) 

each lunar day). The curves for Key West (Florida) and Port Townsend (Washington State) 
are of the mixed type. One can see two high and two low waters during each tidal day, 
although the amplitudes of successive waves are different (except for brief periods near 
January 15 and 30 for Key West). The curve for St. Petersburg (Florida) is of the vanishing 
type (i.e. two unequal low and high waters can be seen on most days, but there are other 
days when one of the tide waves vanishes). The nature of the tide along the coasts of the 
Gulf of Mexico and Florida is shown in Fig. 7.30. 

Redfield (1958) showed that along the east coast of the United States the variation 
in the range of the tide and time of high water has a direct correlation with the width of 
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FIG. 7.30. Nature of tides along the coast of the Gulf of Mexico. (Harris 1981) 

FIG. 7.31. Mean range (metres) of the M2 tide in the New York Bight and on the shelf. (Swanson 1976) 

626 



a> 

[Li 

4- 

24  
‘. 

2 8  
o 

4 

L ATLANTIC CITY 
r NOV.25,1950 

0 

-1 

2 

ct 
I F

—(1.1 
2 

3 

18 22 2 	6 	10 	14 
TIME (EST) 

FIG. 7.32. Observed water level, storm surge, and astronomical tide at Atlantic City 
on November 25, 1950. (Swanson 1976) 

the continental shelf. As an example of tides on the shelf and in coastal waters, the New 
York Bight and outer shelf area are chosen. The mean tidal range for these waters is given 
in Fig. 7.31. 

In section 7.1 for Canadian waters, the importance of the interaction between tides 
and surges was discussed. Such an interaction is important in United States waters to 
varying degrees (depending on the location). The tide, surge, and the observed water level 
at Atlantic City on November 25, 1950, are shown in Fig. 7.32. It can be seen that the 
maximum surge occurred almost at the time of low tide (Swanson 1976). 

The so-called perigean spring tides and their role in coastal flooding were briefly 
discussed in section 7.1. The cases of coastal flooding in the United States associated with 
these perigean spring tides (Wood 1978) are listed in Table 7.21. 

STORM SURGES DUE TO HURRICANES ON THE EAST COAST OF THE UNITED STATES 

Harris (1956) summarized the status of research on hurricane-generated storm surges 
in the United States up to the early 1950's. He mentioned the study of Cline (1926) as 
typical of that period. Harris further stated (1956, p. 1): 

Much of the research on storm surges has never been formally published, largely 
because the people performing the work in relative isolation have not been satisfied 
with the results. Much of the material which has been published contains a number of 
questionable statements, mainly in the nature of oversimplification. After the tremen-
dous losses in the northeastern United States due to hurricanes in 1954, congress 
directed both the U.S. Army Corps of Engineers and the weather bureau to conduct an 
intensified study of the causes, behavior and methods of forecasting these storms. A 
large fraction of the available funds are to be spent in studying methods of protection 
against inundations from the sea. 

Thus, one can consider this as the beginning of systematic studies on the storm surges 
due to hurricanes on the east coast of the United States. First, some factual information 
will be considered before proceeding to models. 

The number of people killed by hurricanes in the United States during 1900-72 is 
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TABLE 7.21. Representative examples of major coastal flooding along the United States coastline, 
1683-1976, related to the near continuous occurrence of perigean spring tides coupled with strong, persistent 
onshore winds. (Based on Wood 1978) 

Serial 	Date of 
No. 	flooding 

1 	Mar. 22, 1683 
or 1684, or 
Apr. 1, 1684 

2 	Oct. 19, 1693 

3 	Jan. 15, 1704 
or 1705, or 
Jan. 26, 1705 

4 Feb. 24, 1722 
or 1723, or 
Mar. 7, 1723 

5 	Jan. 8, 1770 

6 	Dec.4-5, 1786 

7 	Mar. 1-2, 1802 

8 	Mar. 26, 1803 

9 	Dec. 15, 1839 

10 	Mar. 1, 1846 

11 	Sept. 7-8, 1846 

12 	Apr. 14-16, 1851 

13 	Nov. 2, 1861 

14 	Oct. 5, 1869 

15 	Nov. 1-2, 1877 

16 	Oct. 23, 1878 

17 	Sept. 28, 1882  

Location of 
flooding 

Boston, Cambridge, 
Charlestown, MA 

From Virginia settlements on 
the Delmarva peninsula 
to Long Island, NY 

Boston, Salem, MA; 
Newport, RI 

Boston, Dorchester, Chatham, 
Plymouth, Marblehead, 
Cape Cod, Salem, MA; 
Hampton, NJ; Falmouth, ME 

New England, especially near 
Boston 

Boston, Nantucket, MA; 
New England 

Coast of Massachusetts 

Portland, ME; Portsmouth, NH; 
Newburyport, Gloucester, 
Beverly, Salem, Davensport, 
Lynn, Boston, Charleston, 
Cambridge, MA 

Boston, Newburyport, 
Plum Island, Salem, 
Marblehead, Cohasset, 
Plymouth, Cape Cod, MA 

Bodie's Island and 
Hatteras Banks, NC 

Bodie's Island, 
Hatteras Banks, NC; coastline 
along Pamplico Sound; 
Oregon Inlet 

Minot's lighthouse, Cohasset, 
Scituate Harbor, Dorchester, 
Deer Island, Shirley Cut, 
Winthrop, Pleasant Beach, 
Salem, Gloucester, Boston, MA; 
Newcastle, NH 

New Jersey coast between Jersey 
City and Newark, NJ, and 
northward to Boston, MA 

Northe rn  Maine in the vicinity 
of Eastport  

North Atlantic coast 

New York City and Coney Island, 
NY; Brighton Beach, Long 
Branch, Sandy Hook, NJ; 
Chester, Greenpoint, 
Philadephia, PA 

Long Branch, Highland Beach, 

Nearest perigee 	Nearest syzygy 
date and time 	date and time 

Mar. 31, 1684 	Mar. 30, 1684 
(01:00) 	(21:00) 

Oct. 29, 1693 	Oct. 28, 1693 
(06:00) 	(23:00) 

Jan. 25, 1705 	Jan. 25, 1705 
(14:00) 	(00:00) 

Mar. 6, 1723 	Mar. 6, 1723 
(13:00) 	(19:00) 

Jan. 10, 1770 	Jan. 11, 1770 

	

(15:00) 	(12:00) 
Dec. 4, 1786 	Dec. 5, 1786 

	

(15:00) 	(08;00) 
Mar. 2, 1802 	Mar. 4, 1802 

	

(23:00) 	(00:00) 
Mar. 24, 1830 	Mar. 24, 1830 

	

(20;00) 	(10;00) 

Dec. 18, 1839 	Dec. 20, 1839 
(14:00) 	(21;00) 

Feb. 24, 1846 	Feb. 25, 1846 

	

(09:00) 	(14:32) 
Sept. 4, 1846 	Sept. 5, 1846 

	

(17:00) 	(08:00) 

Apr. 13, 1851 	Apr. 15, 1851 
(13:00) 	(18:00) 

Nov. 2, 1861 	Nov. 2, 1861 
(12:00) 	(11:00) 

Oct. 5, 1869 	Oct. 5, 1869 

	

(02:00) 	(09:00) 
Nov. 1, 1877 	Nov. 5, 1877 

	

(20:42) 	(03:48) 
Oct. 25, 1878 	Oct. 25, 1878 

	

(01:00) 	(18:00) 

Sept. 26, 1882 	Sept. 27, 1882 
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TABLE 7.21. (Continued) 

Serial 	Date of 	 Location of 	 Nearest perigee 	Nearest syzygy 
No. 	flooding 	 flooding 	 date and time 	date and time 

Sea Bright, Atlantic Highlands, 	(14:00) 	(00:00) 
Ashbury Park, NJ 

18 	Nov. 24, 1885 	Boston, Revere, Winthrop, MA; 	Nov. 25, 1885 	Nov. 22, 1885 
Long Island, Rockaway Beach, 	(03:30) 	(16:30) 
Yonkers, Peekskill, NY; 
Ashbury Park, Atlantic City, 
Rahway, NJ 

19 	Oct. 13, 1981 	Atlantic City, Long Branch, 	Oct. 16, 1891 	Oct. 17, 1891 
Ashbury Park, Sea Bright, 	 (13:00) 	(09:00) 
Cape May, Sandy Hook, NJ 

20 	June 22, 1894 	Cape Hatteras, NC 	 Jan. 20, 1894 	Jan. 21, 1894 

	

(10:00) 	(10:00) 
21 	Feb. 8-9, 1895 	Bangor, ME; Portsmouth, NH; 	Feb. 9, 1895 	Feb. 9, 1895 

Providence, Newport, RI; 	 (08:00) 	(12:00) 
Gloucester, New Bedford, 
Cape Cod, Boston, MA; 
Sandy Hook, NJ; 
Staten Island, NY 

22 	Feb. 8, 1899 	New York, NY 	 Feb. 9, 1899 	Feb. 9, 1899 

	

(09:00) 	(04:00) 
23 	Aug. 17, 1899 	Newport News, VA, and 	 Aug. 20, 1899 	Aug. 21, 1899 

Virginia coast 	 (17:00) 	(00:00) 
24 	Nov. 24, 1901 	Ashbury Park, Jersey City, 	Nov. 25, 1901 	Nov. 25, 1901 

Sandy Hook, Sea Bright, 	 (11:00) 	(20:00) 
Shrewsbury, NJ; Manhattan, 
Coney Island, NY; New Haven, 
Stamford, Greenwich, CT; 
Chatham, Provincetown, MA 

25 	Dec. 26, 1909 	Boston, MA 	 Dec. 23, 1909 	Dec. 26, 1909 

	

(03:48) 	(16:30) 
26 	Dec. 17-18, 1914 	Long Beach, Balboa, 	 Dec. 15, 1914 	Dec. 16, 1914 

Los Angeles, CA 	 (09:12) 	(21:35) 
27 	Apr. 3, 1915 	Virginia Beach, Cape Henry, VA; 	Apr. 1, 1915 	Mar. 31, 1915 

Cape Hatteras, NC 	 (18:48) 	(00:38) 
28 	July 13, 1916 	Charleston, SC 	 July 14, 1916 	July 15, 1916 

	

(19:00) 	(00:00) 
29 	Apr. 10-12, 1918 	Sea Bright, Atlantic City, NJ; 	Apr. 10,1918 	Apr. 11, 1918 

Staten Island, Rockaway 	 (05:00) 	(00:00) 
Beach, southem Long 
Island, NY 

30 	Nov. 18, 1918 	New York, NY 	 Nov. 16, 1918 	Nov. 18, 1918 

	

(22:30) 	(02:33) 
31 	Nov. 7, 1919 	Manhattan, Coney Island, NY 	Nov. 8, 1919 	Nov. 7, 1919 

	

(09:00) 	(19:00) 
32 	Jan. 11, 1922 	Sea Bright, Clifton, Long 	 Jan. 14, 1922 	Jan. 13, 1922 

Branch, NJ 	 (18:48) 	(09:36) 
33 	Dec. 8, 1923 	Southbend, Raymond, WA 	Dec. 6, 1923 	Dec. 7, 1923 

	

(22:00) 	(21:00) 
34 	Feb. 11-13, 1926 	Los Angeles, Long Beach, 	Feb. 12, 1926 	Feb. 12, 1926 

San Diego, Capistrano Beach, 	(07:00) 	(12:00) 
Ventura, CA 

35 	June 28, 1926 	Cape Hatteras, NC 	 June 28, 1926 	June 25, 1926 

	

(04:48) 	(16:13) 
36 	Mar. 3-4, 1927 	New England coast 	 Mar. 4, 1927 	Mar. 3, 1927 
37 	Apr. 2, 1927 	Atlantic City, NJ, and Delaware 	Apr. 1, 1927 	Apr. 1, 1927 
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Nearest perigee 
date and time 

Nearest syzygy 
date and time 

TABLE 7.21. (Continued) 

Serial 	Date of 
No. 	flooding 

38 	Dec. 5, 1927 

39 	Apr. 11-12, 1929 

40 	Nov. 18, 1929 

41 	Aug. 23, 1930 

42 	Jan. 6, 1931 

43 	Jan. 6, 1931 

44 	Mar. 4-5, 1931 

45 	Apr. 1, 1931 

46 	Nov. 2, 1932 

47 	Nov. 30, 1932 

48 	Jan. 27-28, 1933 

49 	Apr. 2, 1933 

50 	Dec. 17, 1933 

51 	Aug. 20-22, 1934 

52 	Dec. 8, 1934 

53 	July 16, 1935 

54 	Oct. 21-23, 1937 

55 	June 3-5, 1939 

56 	Apr. 21, 1940 

57 	Dec. 25-28, 1940  

Location of 
flooding 

Boston, Cape Cod, Peaked 
Hill, MA; Hampton, NH 

Quinault Indian Reservation, 
Taholah, WA 

Boston, Salem, Winthrop, 
Revere, Gloucester, 
Newburyport, MA; Portsmouth, 
NH; Portland, ME; New 
Haven, Greenwich, CT; 
Atlantic City, Jersey City, 
Ventura, NJ; Rockaway, East 
Hampton, NY 

Boston, MA; Flushing, NY; 
Southhampton, Jersey City, 
Atlantic City, Long Branch, NJ 

New York, NY; coast of 
New Jersey 

Boston, Winthrop, Cape Cod, 
Nahant, MA; Hampton 
Beach, NH 

Atlantic City to Bar Harbor, ME 

Long Island, NY 

Aberdeen, Hoquiam, Cosmopolis, 
Montesano, WA 

Newport Beach, Malibu Beach, 
Laguna Beach, Balboa, CA 

Laguna Beach, Newport Beach, 
Santa Monica, CA 

Oak Beach, Long Island, NY 

Boston, MA; New York, NY 

Aberdeen, Hoquiam, 
Neskowin, WA; Marshfield, 
Astoria, Coos Bay, Seaside, 
Tillamook, Portland, 
Delake, OR; Long Beach, CA 

Boston (Deer Island), Cohasset 
(Minot's Light and Bassing's 
Island), Hull, Winthrop, 
Beachmont, Quincy, MA 

Southbend, Raymond, WA; 
Delake, Nelscott, OR; Los 
Angeles, San Pedro, Redondo 
Beach, Point Fermino, CA 

	

(15:00) 	 (23:00) 

	

Jan. 6, 1931 	Jan. 4, 1931 

	

(09:48) 	 (08:15) 

	

Jan. 6, 1931 	Jan. 4, 1931 

	

(09:48) 	 (08:15) 
Mar. 4, 1931 	MAr. 4, 1931 

	

(05:00) 	 (06:00) 

Apr. 1, 1931 	Apr. 2, 1931 
(17:00) 	 (15:00) 

Oct. 9, 1932 	Oct. 29, 1932 

	

(22:00) 	 (10:00) 
Nov. 27, 1932 	Nov. 27, 1932 

	

(10:00) 	 (20:00) 

Jan. 22, 1933 	Jan. 25, 1933 

	

(21:48) 	 (18:20) 
Apr. 12, 1933 	Apr. 10, 1933 

	

(06:12) 	 (08:38) 
Dec. 17, 1933 	Dec. 16, 1933 

	

(07:00) 	 (22:00) 
Aug. 23, 1934 	Aug. 24, 1934 

	

(15:00) 	 (15:00) 
Dec. 8, 1934 	Dec. 6, 1934 

	

(03:00) 	 (12:25) 
July 17, 1935 	July 16, 1935 

	

(21:42) 	 (00:00) 
Oct. 21, 1937 	Oct. 19, 1937 

	

(11:00) 	 (16:48) 
Jan. 6, 1939 	Jan. 5, 1939 

	

(06:00) 	 (16:00) 

Apr. 20, 1940 	Apr. 21, 1940 
(14:00) 	 (23:37) 

Dec. 25, 1940 	Dec. 28, 1940 
(01:00) 	 (15:56) 

Atlantic City, NJ 	 Dec. 6, 1927 	Dec. 8, 1927 

	

(20:00) 	 (12:32) 
Coastal regions of New York 	Apr. 12, 1929 	Apr. 9, 1929 

and New Jersey 	 (16:30) 	 (15:33) 
Boston, Winthrop, MA 	 Nov. 19, 1929 	Nov. 16, 1929 

	

(00:48) 	 (19:14) 
From Block Island, NY, to Maine 	Aug. 23, 1930 	Aug. 23, 1930 
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TABLE 7.21. (Continued) 

Serial 	Date of 	 Location of 	 Nearest perigee 	Nearest syzygy 
No. 	flooding 	 flooding 	 date and time 	date and time 

58 	Nov. 30-Dec. 1, 	New Bedford, Cape Cod, 	 Nov. 26, 1944 	Nov. 29, 1944 
1944 	 Chatham, Provincetown, MA; 	(23:00) 	(19:52) 

Long Island, NY; Jersey City, 
Sea Bright, NJ; Mt. Desert 
Island, ME 

59 	Nov. 20, 1945 	Portland, Eastport, 	 Nov. 18, 1945 	Nov. 19, 1945 
Machiasport, ME 	 (21:00) 	(10:00) 

60 	Jan. 2, 1945 	Boston, MA 	 Dec. 28, 1947 	Dec. 27, 1947 

	

(18:00) 	(15:27) 
61 	Jan. 25-26, 1948 	Vicinity of San Francisco, CA 	Jan. 26, 1948 	Jan. 26, 1948 

	

(06:00) 	(02:00) 
62 	Oct. 18, 1949 	Long Branch, Sea Bright, NJ 	Oct. 21, 1949 	Oct. 21, 1949 

	

(10:00) 	(16:00) 
63 	July 17-18, 1951 	Long Beach, CA 	 July 17, 1951 	July 18, 1951 

	

(18:00) 	(14:00) 
64 	Dec. 3-4, 1951 	San Francisco, Burlingame, CA; 	Nov. 30, 1951 	Nov. 28, 1951 

Duwamish River, WA 	 (08:00) 	(20:00) 
65 	Dec. 29, 1951 	San Francisco, San Rafael, CA 	Dec. 28, 1951 	Dec. 28, 1951 

	

(18:00) 	(07:00) 
66 	Oct. 22-24, 1953 	Manhattan, Brooklyn, New 	Oct. 21, 1953 	Oct. 22, 1953 

Rochelle, NY; Stamford, CT; 	(11:00) 	(08:00) 
Boston, MA 

67 	Jan.7-8, 1959 	Along Hampton Roads and the 	Jan. 8, 1958 	Jan. 5, 1958 
eastern Piedmont and tidewater 	(19:00) 	(15:09) 
portions of Virginia, southern 
Rhode Island; Cape Cod and 
coastal Massachusetts and 
New Hampshire; Wells 
Beach, ME 

68 	Feb. 3-4, 1958 	South San Diego Bay, Imperial 	Feb. 5, 1958 	Feb. 4, 1958 
Beach, Santa Paula, Long 	 (18:00) 	(03:05) 
Beach, Alamitos Bay peninsula, 
Santa Monica, Sea Bright, CA 

69 	Apr. 1-2, 1958 	Boston, Nantucket, Winthrop, 	Apr. 3, 1958 	Apr. 3, 1958 
Chatham, Lynn, Revere, MA; 	(15:00) 	(23:00) 
Portsmouth, NH 

70 	Dec. 29, 1959 	Atlantic City, NJ; Long Island, 	Dec. 28, 1959 	Dec. 29, 1959 
NY; Cape Cod, Gloucester, 	 (20:00) 	(14:00) 
Rockland, Biddeford, MA; 
Kennebunkport, ME; Rye, NH 

71 	Dec. 30, 1959 	San Francisco Bay area 	 Dec. 28, 1959 	Dec. 29, 1959 

	

(20:00) 	(14:00) 
72 	Jan. 15, 1961 	Atlantic City, Ocean City, NJ; 	Jan. 16, 1961 	Jan. 16, 1961 

Delaware. A tower was 	 (18:00) 	(17:00) 
destroyed offshore of New 
York City in water of depth 
18 ft 

73 	Jan. 15, 1961 	San Buenventura State Park, 	Jan. 16, 1961 	Jan. 16, 1961 
Ventura County, CA 	 (18:00) 	(17:00) 

74 	Mar. 6-7, 1962 	Along entire Atlantic coast from 	Mar. 6, 1962 	Mar. 6, 1962 
South Portland, ME, to 	 (04:00) 	(05:00) 
South Carolina 

75 	Oct. 13, 1962 	Local estuaries and bay locations 	Oct. 12, 1962 	Oct. 13, 1962 
of Washington (e.g. Union); 	(23:00) 	(08:00) 
Oregon (e.g. Coos Bay); 
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Serial 
No. 

Location of 
flooding 

Date of 
flooding 

Sept. 26, 1965 

Apr. 27, 1967 

Nov. 28-Dec. 3, 
1967 

Dec. 4-14, 1969 

81 	Mar. 5-6, 1970 

82 	Mar. 26, 1971 

83 	Apr. 22, 1971 

84 	Dec. 3, 1971 

85 	Feb. 18-20, 1972 

86 	Nov. 20, 1972 

77 

78 

79 

80 

TABLE 7.21. (Concluded) 

Nearest perigee 
date and time 

Nearest syzygy 
date and time 

76 	Nov. 10-14, 1962 

87 	Dec. 11, 1963 

88 	Jan. 8, 1974 

89 	Mar. 16-17, 1976 

northern California (e.g. 
Humboldt Bay); central 
California (e.g. Pacifia and 
Redwood drainage areas) 

Cape May to Sandy Hook, NJ; 
coastal erosion from Fire Island 
to Montauk Point (Long Island); 
New York City; Bridgeport, 
CT; Nantucket Island, MA; 
coastal lowlands, ME 

Capistrano Beach, CA 

Atlantic City, NJ 

Coasts of Massachusetts and 
and southern New England 

Rincon Point, Ventura, Ocean 
Beach, Oceanside, Carlsbad, 
Del Mar, CA 

Capistrano Beach, Newport 
Beach, CA 

Virginia Beach, Norfolk, 
Portsmouth, VA 
Oxnard Shores, CA 

Winyah Bay, Georgetown, 
Pawleys Island, SC 

Along Hampton Roads, VA, to 
Stamford, CT; Old Orchard 
Beach, Kennebunkport, 
Portland, ME 

Rincon to Oxnard, Oxnard 
Shores, Hollywood-by-the-sea, 
CA; also on Nov. 25-26 
coastal beaches of Oregon and 
Washington; Gulf of Mexico 

Tokeland, Raymond, 
Southbend, WA; Seaside, 
Astoria, Newport, OR 

Santa Barbara, Santa Monica, 
San Clemente, Newport Beach, 
Capistrano Beach, Malibu 
Beach, CA 

Ogunquit, Cranberry Island, 
Poplam Beach, Saco, 
Kennebunkport, ME; 
Newcastle, Rye, Hampton 
Beach, Portsmouth, NH; 
Marblehead, Princeton, 
Plum Island, MA 

Nov. 10, 1962 	Nov. 11, 1962 
(09:00) 	(17:04) 

Sept. 22, 1965 	Sept. 24, 1965 

	

(18:00) 	(22:18) 
Apr. 23, 1967 	Apr. 24, 1967 

	

(14:00) 	(07:00) 
Nov. 30, 1967 	Dec. 1, 1967 

	

(09:00) 	(11:10) 
Dec. 10, 1969 	Dec. 9, 1969 

	

(06:00) 	(04:43) 

Mar. 6, 1970 	Mar. 7, 1970 

	

(05:00) 	(12:43) 
Mar. 26, 1971 	Mar. 26, 1971 

	

(04:00) 	(14:00) 
Apr. 23, 1971 	Apr. 24, 1971 

	

(13:00) 	(23:02) 
Nov. 30, 1971 	Dec. 2, 1971 

	

(06:00) 	(02:49) 
Feb. 17, 1972 	Feb. 14, 1972 

	

(14:00) 	(19:29) 

Nov. 20, 1972 	Nov. 20, 1972 
(19:00) 	(18:00) 

Dec. 10, 1973 	Dec. 9, 1973 
(18:00) 	(21:00) 

Jan. 8, 1974 	Jan. 8, 1974 
(06:00) 	(08:00) 

Mar. 16, 1976 	Mar. 15, 1976 
(14:00) 	(22:00) 
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listed in Table 1.1. General information on hurricanes is given in Chapter 6. The statistical 
probability of hurricane strike and storm surge occurrence will be considered at the end 
of section 7.2. 

Wiegel (1964) stated that during the period 1900-55 there were more than 11 750 
deaths caused by hurricanes in the United States. The worst storm surge (from the point 
of view of loss of life) in United States history occurred in September 1900 when more 
than 6000 people drowned, most of them at Galveston, Texas (Price 1956). During the 
14-yr period 1940-53, the loss of life due to hurricane-generated surges over the globe 
was 3744; 590 of those deaths occurred in the United States (Wiegel 1964). 

Dunn (1958) mentioned the years and locations of some of the greatest storm surges 
on the east coast of the United States: Galveston (1900 and 1915), Tampa Bay (1921), 
Miami (1926), Palm Beach and Lake Okeechobee (1928, 1949), Florida Keys (1935), and 
New England, particularly Narragansett Bay (1938, 1954). The maximum storm surge 
from these was about 12.5 ft (3.8 m) above mean low water. 

Dunn (1958, p. 27) compared the storm surge heights along the east coast of the 
United States and the coast of the Gulf of Mexico and stated: 

Of the 24 best documented storm tides along the coast of the Gulf of Mexico, the 
maximum storm tide heights averaged 10.3 feet with a range beween 5 and 15 feet. The 
average maximum reported height of 14 fairly well documented storm tides of the 
Atlantic coast was 9.7 feet with a range between 3 and 15.5 feet. This group does not 
include some entering the Florida peninsula where the average height of 15 major storm 
tides between 1900 and 1955 was 9.8 feet, MSL. The number of documented storm 
tides is not great enough to attach much significance to the differences between the 
averages for the various sections given above but because of the predominately shallow 
coastal waters of the Gulf of Mexico and the concavity of the coastline, a higher 
average might be expected there. Very high storm tides will occur at the heads of bays 
and estuaries, particularly when the storm center moves inland on a course at an angle 
of 90°  or less to the coast line (right quadrant). 

Harris (1956) and Dunn (1958) mentioned forerunners to storm surges and also 
resurgences. Redfield and Miller (1957) studied these phenomena in detail and these will 
be considered now. Also, these authors provided a review of the literature up to 1957; 
some pertinent information will be extracted. 

Between 1635 and 1938 there were at least six major hurricanes on the coast of New 
England (Tannehill 1950) and between 1938 and 1957 there were at least another six. 
Since 1874 at least 40 hurricanes passed within 200 nautical miles (370 km) of Rhode 
Island. Namias (1955) analyzed the tracks of hurricanes and showed that the region most 
frequently traversed during 1935-55 near the Gulf of Maine was at 40°N, 65°W. One 
important point made by Redfield and Miller (1957) is that although more than three 
quarters of the deaths due to hurricanes are caused by the storm surge, until the mid-1950's 
little attention was paid to the water level problem and all the consideration was given to 
the meteorological problem. 

The data base for the study by Redfield and Miller (1957) is the following: (1) 
September 21, 1938, (2) September 14-15, 1944, (3) August 31, 1954 (Carol), (4) 
September 11, 1954 (Edna), (5) October 15-16, 1954 (Hazel). The tracks of these 
hurricanes are shown in Fig. 7.33. The three phenomena studied were forerunners, 
hurricane surge, and resurgences. 

A forerunner is the gradual rise in sea level along the coast that precedes the arrival 
of the hurricane, and which may occur while the storm center is at a great distance from 
the coast regardless of whether or not it reaches the point of observation. The hurricane 
surge is the sudden and substantial rise in water level that accompanies the violent winds 
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locations of the tide gauges. Circles on the tracks represent the hours (GMT) and the small numbers denote the 
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of the storm. Resurgences include a number of phenomena that occur after the passage of 
a storm center. They may be attributed in general to the free motion of water in returning 
to the normal level but are augmented in some cases by wind blowing in a changing 
direction. 

Cline (1920, 1926, 1933) noticed forerunners in the Gulf of Mexico and called 
attention to their importance in the prediction of the storm anival. The sea level began to 
rise (above the predicted tide) 1 or 2 d before the arrival of the storm. Elevations of several 
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TABLE 7.22. Relation of duration of surge to size and speed of storm. (Redfield 
and Miller 1957) 

Time (h) 
half level 	Speed at 	Diameter of 	Time (h) 

preceded maximum 	coast 	980-mb 	pressure 
Storm 	 level 	 (km•11 -1 ) 	isobar (km) 	<980 mb 

1938 	1.0-1.5 	 96 	270 	3.2 
1944 	2.1 — 2.2 	 67 	241 	4.2 
1954 
(Carol) 	1.1-1.3 	 74 	183 	2.9 
1954 
(Edna) 	2.0-2.3 	 63 	261 	4.8 
1954 
(Hazel) 	3.0-5.0 	 46 	261 	6.5 

feet were noticed before the rapid rise due to the storm surge itself. Cline explained the 
forerunners as being due to transport of water by the swell that arrives in advance of the 
hurricanes.  

Observations showed that if the tide gauge was within 50 nautical miles (93 km) to 
the left (in the Northern  Hemisphere) of the storm track, or 100 nautical miles (185 km) 
to its right, the rate of rise of the water level increased to more than 1 ft • h 1  beginning 
3 or 4 h before the passage of the center. (This rapid rise is the surge whereas the slow 
gradual rise before this is the forerunner.) 

Examples of forerunners can be found in the storm surge records at Atlantic City and 
Sandy Hook. At Atlantic City during Hurricane Carol of September 1954, the water level 
began to increase even before the storm passed Cape Hatteras (260 nautical miles or 
481 km to the south). This rise continued for 8-12 h at which time the storm center passed 
over Atlantic City and the wind shifted. Then the water level dropped abruptly and this 
was followed by resurgences. The hurricane of September  14-15,  1944, traveled close 
to the coast and the forerunner was not significant. Redfield and Miller (1957) discounted 
the fall in barometric pressure as the cause of the forerunners. They cited wind as the main 
agent responsible. The fact that the water levels decreased abruptly when the wind shifted 
is another piece of evidence, according to them. 

After the storm surge itself, on the outer coast, surges up to 8-9 ft (2.4-2.7 m) 
occurred. At Long Island, and along the coasts of Rhode Island and Massachusetts, water 
level deviations up to 18 ft (5.5 m) occurred (but part of this was wind-generated waves). 
However, in Buzzards Bay, Narragansett Bay, Long Island Sound, etc., surges up to 
15 ft (4.6 m) have occurred many times. These authors introduced the term "half-level 
time" to define the time required to develop from one half the maximum to the maximum 
water level achieved. For hurricanes crossing the coast of New England this time varied 
from 1.25 to more than 2 h (Table 7.22). This half-level time that defines the sharpness 
of the surge varies in proportion with the storm speed at the time the storm crosses the 
coast, as can be seen from Table 7.22. This table also lists the size of the storm as typified 
by the diameter of the 980-mb isobar and the time during which the pressure was less than 
980 mb. This time is roughly twice the half-level time. 

The storm surge amplitude (meters) along the ordinate versus distance (nautical 
miles) from the storm center along the abcissa is given in Fig. 7.34. It can be seen that 
maximum water levels occurred some 50-70 nautical miles (93-130 km) to the right of 

635 



• • 
• ili 

• 

• 

0 Tide Gauge Records 

• Field Observations 

1  
185 	 380 

0 
185 

3.0 

2.7 

2.4 

2.1 

co I .8 
LU  

I—  '.5 • 

1.2 

0.9 

0.6 

0.3 

555 
km 

FIG. 7.34. Storm surge amplitude (ordinate) versus distance from storm centre (abcissa). (Redfield and Miller 
1957) 

the storm center. However, Redfield and Miller (1957) pointed out that the highest water 
levels following Hurricane Hazel of 1954 occurred close to the storm center, arid 
40 nautical miles (74 km) to the right they were small. Hubert and Clark (1955) mentioned 
that for the coast of the Gulf of Mexico the maximum water levels occurred close to the 
storm center or slightly to its right. 

The time of occurrence of the maximum surges with reference to the passage of the 
storm center differed from one storm to another and from one location to another. If the 
storm center passed close to a tide gauge, usually, maximum surges occurred within 1 h 
before or after the storm passage. The differences in the time of occurrence of the 
maximum surges can be explained by differences in the exposure of the gauges and also 
by the fact that the wind and pressure centers of a hurricane need not coincide 
(Myers 1954). 

The maximum surges on the southern New England Coast and their times of occur-
rence following the hurricane of September 21, 1938, are shown in Fig. 7.35 and 7.36, 
respectively. Similar information for Hurricane Carol of August 31, 1954, is given in 
Fig. 7.37 and 7.38. Large surges on the coast of southern New England might to some 
extent be accounted for by the presence of a wide and shallow shelf. This topographic 
effect is most noticeable between Montauk Point (at the eastern tip of Long Island) and 
Martha's Vineyard. However, greatest surges and most property damage occurred on the 
Narragansett Bay coast. Extreme surges up to 13 ft (4 m) were noted at Providence, Rhode 
Island, in water of depth less than 20 ft (6.1 m). 

According to Redfield and Miller (1957), Providence is among the most frequently 
flooded (due to surges) in the United States. Surges up to 11 ft (3.4 m) were observed in 
1944 (but little damage occurred because the maximum surge coincided with low tide); 
15-ft (4.6 m) surges were recorded on August 31, 1954, and there was evidence of 
12- to 14-ft (3.7-4.3 m) surges in 1815. In Buzzards Bay, surges of 13 ft (4 m) occurred 
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FIG. 7.35. Storm surge heights (metres) on the coast of the southern New,England States. The arrow shows 
the track of the storm of September 21, 1938, that caused this surge. (Redfield and Miller 1957) 
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FIG. 7.36. Times of occurrence of maximum surge along the coast of the southern New England States on 
September 21, 1938. (Redfield and Miller 1957) 
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FIG. 7.37. Storm surge heights (metres) along the coast of the southern New England States following 
Hurricane Carol of August 31, 1954. (Redfield and Miller 1957) 
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FIG. 7.38. Times of occurrence of maximum surge along the coast of the southem New England States 
following Hurricane Carol of August 31, 1954. The arrow shows the hurricane track. (Redfield and Miller 1957) 

in 1938 and 15-ft (4.6 m) surges were recorded following Hurricane Carol in 1954. A diary 
entry by Governor Bradford in 1635 (Morison 1952) describes a 20-ft (6.1 m) surge on 
August 14-15 of that year. There is evidence of negative surges of 1-3 ft (0.3-0.9 m) 
in Cape Cod Bay and Nantucket Sound. Surges up to 4 ft (1.2 m) were noted at Boston 
and Portland. North of Cape Cod the amplitudes of surges become small and amount to 
about 1 ft at Eastport (Maine). 

Redfield and Miller (1957) paid particular attention to the resurgences, which are 
basically free oscillations of the water in trying to return to its normal level. Following 
Hurricane Carol of August 31, 1954, the damage at the Cape Cod area was a result of the 
resurgence. In Buzzards Bay, although the main surge had an amplitude of about 12 ft 
(3.7 m) along the western shore, resurgences with amplitudes up to 15 ft (4.6 m) occurred 
on the eastern shore. The resurgence following a 1938 hurricane in Buzzards Bay caused 
great damage and loss of life at Woodshole. In Long Island Sound, resurgences °centred 
following the hurricanes of September 21, 1938, and August 31, 1954. Tide gauges at 
Atlantic City and Sandy Hook showed prominent resurgences (Fig. 7.39). After the 
original surge reaches a maximum, the water level drops abruptly to low values and then 
increases again in a series of undulations with periods of several hours. These resurgence 
periods are about 5.5 h at Atlantic City and 7.2 h at Sandy Hook. The attenuation rate of 
the resurgences at Sandy Hook is about 0.07h.  Munk et al. (1956) explained these 
resurgences as due to edge waves. 

Storm surges on the east coast of the United States also occur as a result of extra-
tropical cyclones. Some differences between storm surges due to tropical and extratropical 
storms on the east coast of the United States are listed in Table 7.23. 

Some models that were developed with the aim of hindcasting and eventually pre-
dicting storm surges will now be considered. The so-called bathystrophic storm surge 
(Freeman et al. 1957) was discussed earlier. Pararas-Carayannis (1975) used this approach 
to hindcast surges on the east coast and Gulf of Mexico coast of the United States. The 
observed and computed surges at three locations are compared in Fig. 7.40. Pararas-
Carayannis (1975) simulated surges due to the hurricanes listed in Table 7.24. Pertinent 
meteorological information is also listed in this table, which is used in the above 
calculations 

Kajiura (1959) examined analytically, as well as empirically, hurricane-generated 
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FIG. 7.39. Comparison of resurgences following the passage of several storms at 
Sandy Hook and Atlantic City. The times were adjusted (for each station) so that the 
time of occurrence of the first resurgence for the different storms coincide. Vertical 
ticks denote time separation of 7.2 h for Sandy Hook and 5.5 h for Atlantic City. 
Ordinate: water level (metres); abcissa: duration of surge (hours). (Redfield and Miller 
1957) 

surges on continental shelves. Using dimensional analysis he showed that the surge is 
determined by the following two dimensionless ratios: V/c and L 2 /L 1  where V is the speed 
of movement of the storm, c is the speed of long gravity waves on the shelf, L2 is the scale 
of the storm, and L I  is the width of the shelf. It was shown that for storm scales comparable 
with or greater than the scale of the shelf, the dynamic response of the water level is 
significantly influenced by the natural modes of oscillation on the shelf (the dynamic 
amplification for a one-dimensional case is between 1 and 2). The free oscillations again 
become important when one considers the transient aspects. Coriolis force becomes 
relevant if the scale of the disturbance is significant relative to c/ f, wheref is the Coriolis 
parameter. When the scale of the shelf is comparable with the scale of the storm, the 
two-dimensional aspects of hurricanes must be considered. 

Other important results from Kujiura's (1959) study are the following. If the storm 
moves perpendicular to the coastline from the sea, then the maximum surge always occurs 
a little later than the time of the nearest approach of the storm center to the water level 
station. For any other type of track, the maximum surge can occur either before or after 
the storm center approaches nearest to the observing station. When the storm moves inland 
from the sea, the maximum surge is found to the right of the track. The dynamic 
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Parameter Tropical system Extratropical system 

Usually not required. 
Standard weather reports 
usually adequate unless 
mesoscale systems are 
embedded 

Smaller surges of amplitudes 
up to 5 m can occur 
infrequently 

Long (usually 2-5 d). 
Severe erosion of coastline 
can occur 

Little 
Several hundred kilometres 

TABLE 7.23. Differences between hurricane-generated and extratropical storm generated surges. 

Size of storm 
Representation on weather 

charts 

Requirement of specialized 
observations such as 
satellite, weather 
reconnaissance, radar, 
aircraft 

Amplitude of surges 

Duration of surge 

Inland inundation 
Length of coastline affected 

by the surge 
Geometry of the storm 

Speed of movement of the 
storm 

Pressure gradients and 
wind stress associated 
with the storm 

Small 	 , 	Large 
Sometimes difficult to position 	Easier 

on weather charts using 
ordinary weather reports. 
The vigorous portion of the 
storm may lie between two 
observing stations 

Needed 

Greater. 
The maximum surge 
generated in the United 
States was at Gulfport, MS, 
following Hurricane Camille 
in August 1969: 7.5 m 

Short (several hours to d) 

Large 
Less (usually <160 km) 

Compact and nearly 	 Ill-defined and sprawling 
symmetrical 	 geometry 

Variable 	 Slow motion generally along 
a regular track 

Easy to model the driving 	Difficult to model the driving 
forces. Could be represented 	fields 
analytically 

amplification of the surge is maximum when the track is parallel to the coast and the 
amplification depends on the duration of the storm as well as V/c. 

Actual data of hurricane-generated surges along the Atlantic coast showed that 
significant surges (up to one third of the maximum surge) occur within 70 nautical miles 
(130 km) to the left and 110 nautical miles (204 km) to the right of the storm track. The 
maximum surge usually occurs about 25 nautical miles (46 km) to the right of the track. 
Unless the storm center is very close to the station, usually the water levels are greater 
south of Sandy Hook than on the New England coast. 

ANALYTICAL — EMPIRICAL MODEL FOR STORM SURGE AMPLIFICATION ON A CONTINENTAL 
SHELF 

Following Kajiura (1959) some simple formulae will be developed to calculate 
amplification of storm surges on a continental shelf due to resonance, and the results will 
be applied to actual situations on the east coast of the United States. Kajiura wrote the 
vertically integrated form of the equation of motion in a vectorial form as follows: 

av 	 1 (7.6) —

at 

+ gVg — 	+ K x (fV) = Tl eis  — -7 b ) 
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TABLE 7.24. Hurricane parameters in the bathystrophic storm surge study. (Pararas-Carayannis 
1975) 

Hurricane 

Radius of 	 Maximum 
Central 	Peripheral 	maximum 	Speed of 	gradient 
pressure 	pressure 	winds 	movement 	wind speed 

(mb) 	(mb) 	(km) 	(km •11 -1 ) 	(km • Ill 

Hurricane of 
Oct. 3-4, 
1949 	 963.4 	1014.2 	27.8 	20.4 	141.6 

Carol of 
Aug. 30-31, 
1954 	 971.6 	1013.2 	46.3 	61.7 	152.9 

Audrey of 
June 26-27, 
1957 	 946.5 	1005.8 	35.2 	24.1 	152.9 

Carla of 
Sept. 7-12, 
1961 	 936.0 	1013.2 	85.2 	5.6 	160.9 

Camille of 
Aug. 15-16, 
1969 	 905.2 	1013.2 	25.9 	24.1 	201.2 

where fl is the horizontal velocity vector, K is the vertical unit vector, f is the Coriolis 
parameter, h is the water depth, is the water level deviation, and is the atmospheric 
pressure deficit expressed as water level. The continuity equation is 

(7.7) 	V • (h. V)  = — —a t 

The wind stress 'is  is given by 

(7.8) 	fr7s = KP' I Ult7  

where p' is air density, ti is the wind velocity at 10 m of height, and K is a numerical 
coefficient that depends on air stability and wind velocity. For the bottom stress -1= 1, the 
following linear form is used: 

(7.9) 	P'fb = prV 

where r is a friction coefficient with a value of about 0.2 cm • s -1  in shallow water. 
Taking the y-axis parallel to the coast and the x-axis pointing towards the sea, the 

boundary condition at the coast is 

(7.10) 	h = 0 at x = 0 

where V, is the x component of V. This condition can be written in terms of as 
a2 	 0 	 (aT, 

(7.11) 	g — V) + f — g — 	 + f T,) at x 0 a 	t ax  ay 	= 	— 
c- at 

where c 2  = gh and T r  and Tr  are the x and y components of 'is . It can be seen from 
eq. 7.10 that the slope of the water level perpendicular to the coast is related to the integral 
effect of the longshore wind in contrast with the effect of the on- and off-shore wind, which 
is instantaneous. 
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'Y = T T 

If x =  L represents the edge of the shelf and assuming that the water depth is co beyond 
this edge, then the condition at x = L is 

	

(7.12) 	— V1' = 0 at x = L 

However, this is not a very realistic condition. On the other hand, one can assume a 
semi-infinite sea and assume that the waves are divergent at large distances from the 
source. 

The above equations can be nondimensionalized through the following scheme: 

L , 
x = Lx' 	= T g 

— T L — y = Ly' 	V = —H —V V' 

f L 

	

(7.13) 	h 	Hh'  V 

t = t
,r L p = 

V 2  
gH 

Parameters L I  and L2 are the scales of the continental shelf and the storm, respectively, 
which are appropriate for the free and forced waves. The representative velocities would 
be 

(7.14) 	VI  =  c and V2 = V 

where V is the speed of movement of the storm. 
To understand the relative roles played by inertia terms, Coriolis terms, and friction, 

define 

f L I  
a l  = —

c 

f L2 
a2 7".  

(7.15) 
r 

31  TI 
r L2 
Ti 

Further, define 

(7.16) 	—c X 

The scale defined by X -I  is important in determining the influence of the Coriolis term, 
which is obvious from earlier discussion. 

An examination of the terms a 2  and 13 2  shows that for a rapidly moving small-scale 
storm, Coriolis terms as well as frictional terms are not important. On the other hand, for 
a slowly moving storm both are important and should be included. For free and forced 
waves 

V 	H V R 
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FIG. 7.41. Maximum response of water level at the coast using a one-dimensional model. L I , width of the 
shelf; L2, scale of the storm; C = N.K7-/ (g  = gravity; H = water depth);  V',  speed of the storm centre; r, 
amplification factor. (Kajiura 1959) 

'Y1 = I and -y 2  = 
C

2 

Here, -y2  is related to the dynamic amplification of the forced waves in the ocean. The 
maximum amplification due to resonance will occur for 

L, 	4L, 

	

(7.18) 	—

c V 
which is the period of the fundamental shelf oscillation. Hence, for this case 

V2 	( L2 ) 2  

	

(7.19) 	),
2 

For small values of L 2 /L I  , the maximum amplification occurs for 'y2 =  I, and for large 
values of L2 /L, the maximum amplification can be calculated from eq. 7.19. The max-
imum response of the water level at the coast as a function of L2 /LI is shown in Fig. 7.41. 
The curve for the amplification factor shown on the right side is taken from Reid (1956). 
It can be seen that for the one-dimensional case the amplification is between 1.5 and 2 for 
realistic L I  and L2. For the two-dimensional case, the amplification will be somewhat less. 

(7.17) 
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Tx = 	—2 sin (cot) 

Ty  = 	(1 — cos CO 0 
(7.20) for t 	0 

with 

and 

(7.23) 

Next, following Kajiura (1959), consider a slowly moving large-scale cyclonic sys-
tem. Then, the wind field can be assumed to be spatially uniform and commences at t = 
0. The following form of the wind stress was taken: 

Initially the water is at rest. Hence 

(7.21) 	= —at = 0 at t = 0 

At the coast (x = 0) the surge is given by (see Kajiura 1959 for details) 

(7.22) T L f 
t)  

+ (1 

tanh (XL) 	2 + 	
f  sin (v„t) 

E 
(CL) L2 „=, 	+ x2) 

[ tan  ('L) 
 sin (o)t) + 2 E  co 	sin (v„t) 11 

(I)) L 	(X' L) 	 r 	V» ot;, - 

l 	11 7r 
"11  = 	L' 

y 	c 2  (X 2  + 
(0)2 _ f 2 ) / c 2 

taking 

c = 20 m • s - ' 

f=  10-4 . 

L = 140 km 

n = 1, 2, 3, . 

—(1) 	0.9, 0.6, and 0.3 v l  

Here, y 1  is the frequency of the fundamental mode of shelf oscillation. If the wind field 
changes rapidly, the contribution from the free oscillations is significant, and this is 
consistent with the observation of resurgences. However, if the wind field varies slowly, 
the Coriolis terms become important (geostrophic response). The abruptness with which 
the wind field varies appears to generate certain type of resurgences. The maximum surge 
appears to occur when the wind blows more or less parallel to the coastline. 

Next, following Kajiura (1959), the two-dimensional aspects will be considered. If 
the scale of the storm is small compared with the shelf width, then the amplitude of the 
surge is determined by the scale of the storm rather than the shelf width. 1f the scale of 
the wind field is greater than the shelf width, then there is significant contribution from 
the free oscillations of the shelf. If the scale of the storm is small, then the Coriolis terms 
are not significant. 
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Consider a symmetric wind field with respect to the center and assume that its 
divergence is zero. Hence, the surge varies mostly because of the distortion of the circular 
pattern in the water near the boundary due to the wind stress curl. The tangential com-
ponent To and the radial component Tr  of the wind stress in the model hurricane are assumed 
to be of the following form: 

Tr  = 0 
(7.24) 

[ 1  + (K012 

Here, r is the radial distance from the center of the hurricane and T and K are defined with 
reference to the maximum wind stress Ton, a, and the distance r„,ax  from the center to the 
maximum wind zone: 

T = 	 
3 V-3. T° '"ax 

11 
K = — — 

Vj rmax 

The simplified equation for the water level is 
a2 

(7.26) c,2172 = 0 
-i — 

At the coast (x = 0) 

a 	T., 

ax 	c 2 

At Vx2  + y 2  —› co, should represent a divergent wave. The solution for eq. 7.26 under 
these conditions is 

Kr 
To = T 

16 

(7.25) 

( -FE 

(7.27) 	y, t) = — fo 
I. 

 

[ T, 
-+;G(x, )' , t Ix° , yo , to )] 	dyodto  
c - 	 ,0=0 

where the Green function G is def.  lied by 

	

(7.28) 	G(x, y, tlxo , yo , to )  =  G (x, y, fix° , y o , to ) +  G' (x, y, tl-4, y o , to ) 

with 
1  

	

(7.29) 	G' (x, y, tlx0 , )'o, to) = 
21-r VC 2 ( t 	t0 )2 	

( x 	x0 )2 	( y 	yo  )2 

for 

c(t 	to ) 	 V(x — x0 ) 2 	(y — yo ) 

and 

(7.30) 	G'(x, y, tixo, Yo, to) = 0 

for 

c(t — to ) < V(x — 4) 2  + (y — y 0 ) 2  

The subscript 0 denotes the values of the parameters at the source. 
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For the steady state, assuming that the center of the storm is located on the coast, it 
can be shown that the maximum surge is given by 

4 Toms„ (7.31) 	max = rmax 
3  c2  

and this maximum occurs at a distance of Vj r ina, from the center (note that I-max  is the 
distance of the maximum winds from the center). This result is quite similar to the 
one-dimensional case. 

For the case of a moving hurricane, taking the origin of the coordinate system at the 
observing station for the water level, solutions can be written in terms of Green's functions 
(see Kajiura 1959 for details). This solution shows that the water level responds almost 
instantaneously to the wind stress when the storm track is perpendicular to the coastline. 
The time interval between the occurrence of the maximum surge and the passage of the 
storm center over the station is short. 

However, if the storm track is parallel to the coast and if the speed of movement of 
the storm is close to c (i.e. of the long gravity wave in the water) then the surge will be 
dynamically amplified. In this situation, unlike in the other case (perpendicular track), the 
storm duration (i.e. the distance traveled by the, storm along the coast) plays an important 
role because the maximum surge takes considerable time to build up. Thus, the orientation 
of the storm track is very important in determining the surge. The maximum surge can 
occur either before or after the nearest approach of the storm center to the observing 
station. The time interval between the nearest approach of the storm center and the 
maximum surge depends on the distance of the station from the storm track as well as the 
orientation of the track. 

Kajiura (1959) showed that the dynamic amplifications for the one-dimensional and 
two-dimensional cases are respectively given by 

1 

(1 - 

and 
1  1 

(1 — -2-  
v 2

)
I /2 

C 

For a hurricane moving parallel to the coast the amplification is maximum, and it is 
negligible for a storm moving perpendicular to the coast. 

Kajiura (1959) also analyzed the pertinent hurricane-generated storm surge data. The 
hurricanes that were studied by Kajiura are listed in Table 7.25. In this table, parameter 
Ap* is defined as follows. It is the difference in the pressure at 180 nautical miles 
(333 km) to the right of the hurricane center and the pressure at the center. The maximum 
observed surge amplitudes at various stations in the three regions are listed in Table 7.26. 
The identification number for the hurricanes is the same as in Table 7.25. 

Other hurricane surge data (not shown in Tables 7.25 and 7.26) indicate that for the 
hurricane of August 1933, the surge was 6.2 ft (1.9 m) at Hampton Roads and 7.0 ft 
(2.1 m) at Baltimore. For the September 1938 hurricane, the surge was 9.4 ft (2.9 m) at 
Willets Points. Along the coast of the Gulf of Mexico greater surges are possible because 
of the shallow and wide continental shelf to the south of the Louisiana and Texas coasts. 
The surge following Hurricane Audrey of May 1956 was 12 ft (3.7 m) near Cameron 
(Louisiana). 
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TABLE 7.25. Hurricanes used in the study by Kajiura (1959). 

Intensity (mb) 
3iP* 

Identity 
No. 	 Date 	 Name 	Region III 	Regions I and II 

1 	Sept. 13-16, 1944 	 18 	 27 
2 	Oct. 17-22, 1944 	 27 	 12 
3 	June 23-28, 1945 	 20 	 23 
4 	Sept. 15-20, 1945 	 21 	 13 
5 	Aug. 25-30, 1949 	 19 	 18 
6 	Aug. 12-16, 1953 	Barbara 	23 	 16 
7 	Aug. 28—Sept. 1, 1954 	Carol 	 30 	 31 
8 	Sept. 9-12, 1954 	Edna 	 25 	 43 
9 	Oct. 13-17, 1954 	Hazel 	22 	 21 

10 	Aug. 10-14, 1955 	Connie 	24 	 22 
11 	Aug. 16-20, 1955 	Diane 	26 	 12 
12 	Sept. 17-21, 1955 	Ione 	 35 	 25 
13 	Sept. 22-29, 1956 	Flossy 	12 	 16 

Kajiura (1959) plotted positions of storm centers when the surge reached its max-
imum value or minimum value at a given station (e.g. Wilmington). This diagram 
(Fig. 7.42) reveals that the time of maximum surge is related to the position of the storm 
center relative to the observing station in a regular manner for hurricanes. However, if a 
frontal system exists within the hurricane, or if there is great asymmetry of the pressure 
field, then the positions of the storms (at the time of peak surge) are distributed irregularly. 

To the north of Cape Hatteras, the maximum surge occurs within  1-2 h before or 
after the time of nearest approach of the storm center if the storm is reasonably symmetric. 
South of Cape Hatteras, the time intervals vary widely up to 10 h. However, generally, 
the time of maximum surge appears to be ahead of the time of the nearest approach of the 
storm center (this is particularly true if the storm track is over land). 

Kajiura (1959) calculated the surge heights from the following relation: 

	

(7.32) 	= 	Ap' = ra 
Pg 

where àp* is the storm intensity defined above, a' is a numerical coefficient (varies from 
station to station), and r is the dynamic amplification. If is in feet and 3.p* is in millibars, 
then a has values in the range of 0.14-0.2. Usually 1.5  < r < 2 if we take 

	

(7.33) 	àp* = 0.55 (1015 — po ) 

where po  is the minimum pressure (millibars). These agree reasonably well with calculated 
values by Hoover (1957), Conner et al. (1957), and Harris (1957). 

SPLASH MODELS 

SPLASH is an acronym for "special program to list amplitudes of surges from 
hurricanes." SPLASH I deals with landfalling hurricanes and SPLASH II takes care of 
situations in which the hurricane need not go over land. These models were developed at 
the Technics Development Laboratory of the U.S. National Weather Service (Jelesnianski 
1972, 1974, 1976; Jelesnianski and Barrientos 1975; Barrientos and Jelesnianski 1976, 
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TABLE 7.26. Observed maximum surges (m) on the east coast of the United States (hurricane identity number same as in Table 7.25). (Kajiura 1959) 

Region I 	 Region II  Region III 	 Region III (smoothed) 

Identity 	Woods 	 New 	 Sandy 	Atlantic 	 Fort 	 Fort 
No. 	Hole 	Newport 	London 	Montauk 	Hook 	City 	Charleston 	Pulaski 	Fernandina 	Charleston 	Pulaski 	Femandina 

1 	2.04 	2.32 	1.62 	- 	1.62 	1.55 	0.15 	- 	- 	0.15 	- 	- 
2 	0.43 	0.37 	0.46 	- 	0.79 	0.52 	1.16 	1.83 	1.89 	1.04 	1.43 	1.62 
3 	0.27 	0.30 	0.34 	- 	0.34 	0.40 	0.85 	0.94 	0.64 	0.70 	0.73 	0.61 
4 	0.43 	0.27 	0.30 	- 	0.70 	0.58 	1.28 	1.19 	1.19 	1.13 	1.10 	1.16 
5 	0.43 	0.40 	0.30 	0.21 	0.34 	0.30 	0.52 	1.22 	0.88 	0.40 	0.79 	0.55 
6 	0.24 	0.21 	0.24 	0.30 	0.30 	0.43 	0.18 	- 	- 	0.15 	0.12 	0.15 
7 	2.68 	2.50 	2.07 	1.86 	0.98 	0.76 	0.64 	0.61 	- 	0.49 	0.43 
8 	1.43 	- 	0.79 	1.16 	0.49 	0.55 	- 	- 	- 	0.27 	0.27 	- 
9 	0.40 	- 	0.76 	0.52 	0.64 	0.88 	0.55 	0.64 	0.64 	0.37 	0.40 	- 

0.37 	0.46 	0.91 
10 	- 	- 	0.21 	0.15 	0.82 	0.64 	0.55 	0.52 	- 	0.40 	0.27 	- 
11 	0.27 	0.18 	0.15 	0.15 	0.18 	0.18 	0.46 	0.52 	0.52 	0.34 	0.24 	- 
12 	0.24 	0.21 	0.18 	0.21 	0.24 	0.21 	0.37 	0.46 	0.82 	0.18 	0.15 	- 
13 	0.21 	0.27 	0.34 	0.34 	0.70 	0.79 	0.40 	0.46 	0.30 	0.40 	0.40 	0.30 



0 Maximum water level 

• Minimum water level 

WILMINGTON 

200 km 

FIG. 7.42. Positions of hurricane centre at the time of maximum (open circle) surge and at the time of minimum 
(solid circle) surge at Wilmington, North Carolina, for eight different hurricanes. (Kajiura 1959) 

1978). This computer program is operationally used at the National Hurricane Center in 
Miami and is applied to the Atlantic coast and the Gulf of Mexico coast of the United 
States. The stretch of coast for which these models are used extends about 3000 mi 
(4827 km) from Brownsville, Texas, to Long Island, New York. Along this coastal 
stretch, reference stations (for use in hurricane landfall determination) are established with 
an approximate spacing of 100 mi (161 km). 

SPLASH is a numerical storm surge model that involves a linearized version of the 
transport equations. The geometry of the model is idealized into a rectangle with variable 
depth. One side of the rectangle is the coast and the other three sides are open boundaries. 
At the coast the normal transport is zero and at the deepwater open boundary static height 
is prescribed (this height is zero in the absence of an atmospheric pressure gradient). On 
the two lateral open boundaries the normal derivative of transport is prescribed to be zero. 
Depth contours are analyzed on overlapping 600 mi x 72 mi (965 x 116 km) basins. The 
basins are centered 50 mi apart. 

In SPLASH I, which applies to landfalling hurricanes only, the following mete-
orological input is required: (1) pressure drop 3,/, = p. — p o  where p. is the ambient 
pressure outside the storm and po  is the central pressure of the hurricane, (2) the radius R 
of maximum winds, (3) the vector storm motion Us /0 where Us  is the storm speed and 
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TABLE 7.27. Comparaison of observed maximum surges (m) in the United States 
with those computed from the nomograms using SPLASH. (Based on Jelesnianski 
1972) 

Location of 	Computed 	Observed 
peak surge 	peak surge 	peak surge Date 

Oct. 2, 1893 
Sept. 27, 1894 
Sept. 8, 1900 
Aug. 14, 1901 
July 21, 1909 
Sept. 13, 1912 
Aug. 16, 1915 
Sept. 29, 1915 
Oct. 18, 1916 
Sept. 28, 1917 
Sept. 9, 1919 
Oct. 25, 1921 
Aug. 26, 1926 
Sept. 18, 1926 
Sept. 20, 1926 
Sept. 16, 1928 
Sept. 28, 1929 
Sept. 7, 1933 
July 25, 1934 
Nov. 4, 1935 
July 31, 1936 
Aug. 7, 1940 
Aug. 11, 1940 
Sept. 23, 1941 
Oct. 7, 1941 
Aug. 30, 1942 
July 27, 1943 
Oct. 19, 1944 
Oct. 20, 1944 
Aug. 27, 1945 
Aug. 24, 1947 
Aug. 17, 1947 
Sept. 19, 1947 
Oct. 15, 1947 
Sept. 4, 1948 
Aug. 26, 1949 
Oct. 4, 1949 
Aug. 30, 1950 
Sept. 5, 1950 
Oct. 15, 1954 
Aug. 17, 1955 
Sept. 24, 1956 
June 27, 1957 

Mobile, AL 
Charleston, NC 
Galveston, TX 
Mobile, AL 
Galveston, TX 
Mobile, AL 
High Island, TX 
Grand Isle, LA 
Pensacola, FL 
Fort Barrancas, FL 
Key West, FL 
Punta Rassa, FL 
Timbalier Island, LA 
Miami Beach, FL 
Pensacola, FL 
West Palm Beach, EL 
Key Largo, FL 
Brownsville, TX 
Galveston, TX 
Miami Beach, FL 
Panama City, FL 
Colcasieu Pass, LA 
Beaufort, SC 
Sargent, TX 
St. Marks, FL 
Matagorda, TX 
Galveston, TX 
Naples, FL 
Charleston, FL 
Matagorda, TX 
Safine Pass, LA 
Hillsboro Beach, FL 
Biloxi, MS 
Quarantine Station, GA 
Biloxi, MS 
New Jupiter In., FL 
Freepo rt , TX 
Pensacola, FL 
St. Petersburg, FL 
Southport, NC 
Holden Beach, NC 
Laguna Beach, FL 
Calcasieu Pass, LA 

	

3.32 	2.83 

	

1.59 	1.62 

	

4.60 	4.45 

	

2.07 	2.26 

	

3.54 	3.05 

	

0.91 	1.34 

	

3.60 	4.24 

	

3.41 	2.74 

	

1.59 	0.91 

	

1.77 	2.16 

	

2.23 	1.98 

	

3.29 	3.32 

	

3.02 	2.99 

	

3.57 	3.17 

	

2.19 	2.74 

	

2.74 	2.96 

	

2.23 	2.68 

	

3.02 	3.96 

	

2.07 	1.80 

	

2.01 	2.74 

	

1.71 	1.83 

	

1.62 	1.62 

	

2.44 	2.44 

	

2.35 	2.59 

	

3.08 	1.86 

	

2.90 	4.27 

	

1.77 	1.10 

	

3.26 	3.23 

	

1.22 	1.22 

	

1.89 	1.95 

	

0.87 	0.76 

	

1.95 	2.90 

	

3.41 	3.32 

	

2.13 	1.77 

	

1.59 	1.55 

	

1.65 	1.25 

	

3.17 	2.74 

	

1.16 	1.55 

	

2.10 	1.92 

	

3.81 	3.90 

	

1.62 	1.65 

	

1.43 	2.16 

	

4.82 	3.81 

0 is the storm direction of motion, and (4) point of landfall. This program assumes that 
the conditions are steady state, i.e. the size, intensity, and speed of movement are 
constants. 

SPLASH II deals with an unsteady storm. The storm track could have any orientation 
and the storm need not landfall. The input data consist of (among other things) a 24-h track 
segment, which is defined by latitude and longitude for five points on the track staggered 
6 h apart for a 24-h period. These latitude and longitude data not only define the track but 
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FIG. 7.43. Qualitative illustration showing the varying positions of peak surge on the coast as compared with 
two-dimensional bathymetry. 0, location of peak surge; A, landfall point; R, radius of maximum winds; D, , 
distance to peak surge. (Jelesnianski 1972) 

also the speed of movement of the storm. Other input data are the radius of maximum 
winds and pressure drop, which can vary with time. 

One very important component in SPLASH is a normalized shoaling correction, 
which is used to correct the computed surge along the coast if the landfall point is shifted. 
Shoaling corrections were prepared for the Atlantic and the Gulf coasts by using landfall 
storms normal to the coast at 16-mi (25.8 km) intervals using a storm speed of 15 mi • 
(24 km • 	). 

The SPLASH models were verified generally against data from 43 hurricanes during 
five hurricane seasons. These cases, the dates of occurrence, location of the peak surge, 
and computed and observed peak surges are listed in Table 7.27. The varying location 
of the peak surge, depending on the nature of the bathymetry, is shown quantitatively 
in Fig. 7.43. 

Whereas SPLASH I can deal with landfalling hurricanes only, SPLASH II can be 
applied to a general storm track. Especially the following three types of tracks are 
considered: (1) landfall storm with its track perpendicular to a straightline coast, (2) an 
alongshore moving storm (i.e. constant abeam distance of the track from the coast), and 
(3) a recurving storm (nonlandfall). Slow-moving storms are treated as a special case and 
a hypothetical storm with the following properties is used: (1) the storm traverses the 
continental shelf with a speed of less than 8 mi • h -1  (12.9 km h -1 ), (2) the storm's closest 
approach to the coast occurs near Miami where there is hardly any continental shelf, and 
(3) the storm's strength and size (Ap = 100 mb, R = 15 mi II (24 km • h -1 )) do not 
change along the track. 

Calculations using SPLASH II gave the following results. The maximum surge is not 
highly sensitive to storm size for landfall storms. However, for nonlandfall storms, the 
storm size is important because the surge is a function of distance from the coast relative 
to storm size. When the storm is on the shelf, if the component of the track on the coast 
is large, the length of the coastline affected by the surge could be very long. For a storm 
traveling perpendicular to the coast, the component of the track on the coast degenerates 
to a point, and surges occur only along a small length of the coastline. 

One of the main drawbacks of SPLASH II (although it is an improvement over 
SPLASH I) is that it treats the coast as a straight line and cannot include the curvature of 
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the coastline. To remove this restriction, Jelesnianski (1976) developed a sheared coordi-
nate system. In this model, a mildly curving coastline (which does not include bays, 
estuaries, sounds, deltas, capes, spits, etc.) is sheared into a straight line. A surface plane, 
beginning at the ocean shelf and containing the curved coast as one of the boundaries, is 
fitted with a curved, nonorthogonal grid. The plane with curved boundaries is then 
transformed via a sheared coordinate system onto an image rectangle. In this transformed 
system, one deals with a Cartesian, orthogonal, equally spaced grid in which the coast 
coincides with grid lines. Jelesnianski (1976) used such a model incorporating the linear-
ized storm surge equations for a 3000-mi (4827 km) coastline beginning at the United 
States—Mexico border in the Gulf of Mexico to the eastern tip of Long Island in New 
York. The storm tracks could be curved and the intensity, the size of the storm, and its 
speed of movement could be variable. 

The somewhat idealized SPLASH models are being replaced with a new generation 
of models referred to as SLOSH (sea, lake, and overland surges from hurricanes). These 
models are being developed for the east and gulf coasts of the United States. Specifically, 
the following coastal stretches are being modeled: New Orleans area, Lake Okeechobee, 
Tampa Bay, Mobile Bay, Galveston area, Charlotte Harbor (Florida), Florida 
Bay—Biscayne Bay—Florida Keys, Long Island Sound, Chesapeake Bay, Charleston 
Harbor (South Carolina), Narragansett Bay, Buzzards Bay, Delaware Bay, Pamlico 
Sound, Massachusetts Bay, Corpus Christi (Texas), Lower Laguna Madre (Texas), 
Matagorda Bay (Texas), Lake Sabine (Texas), and Pensacola (Florida). Some testing of 
the SLOSH model during Hurricane Bob in July 1979 showed that the results are quite 
satisfactory. 

STRETCHED COORDINATE MODELS 

Earlier, reference was made to the stretched coordinate models of Birchfield and 
Murty (1974) and Reid et al. (1977a, 1977b). Wanstrath et al. (1976) used stretched 
coordinate models for storm surge studies. Three regions of the continental shelf of the 
Gulf of Mexico and two regions of the east coast of the United States were mapped. These 
five regions are as follows: (1) western gulf coast: Laguna Madre, Mexico, to Marsh 
Island, Louisiana; (2) central gulf coast: Matagorda Bay, Texas, to Timbalier Bay, 
Louisiana; (3) eastern gulf coast: Atchafalaya Bay, Louisiana, to Apalachee Bay, Florida; 
(4) lower east coast: Cape Kennedy, Florida, to Pamlico Sound, North Carolina; (5) upper 
east coast: Pamlico Sound, North Caroline,  to Penobscot Bay, Maine. 

The grid system for the gulf coast is shown in Fig. 7.44. The computed and observed 
surges at three locations due to Hurricane Camille are compared in Fig. 7.45 and the 
computed and observed surges at three other locations due to Hurricane Gracie are 
compared in Fig. 7.46. Reference was already made to the stretched coordinate model of 
Butler (1979) in which he simulated the surge in Galveston Bay due to Hurricane Carla. 

STORM SURGES ON THE GULF OF MEXICO COAST (EXCLUDING THE FLORIDA COAST) 

Up to this point, storm surges along the Atlantic coast and the Gulf of Mexico coast 
have been studied. The gulf coast will now be considered in some detail. Cline (1920) 
discussed the storm surges in the Gulf of Mexico due to hurricanes during the 20-yr period 
1900-19. The pertinent information for these hurricanes and the storm surges generated 
is given in Table 7.28. 
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Hurricane 
Date(s) of 
hurricane Storm surge 

Surge of 4.6  mat  Galveston on Sept. 8; over 6000 people killed; 
$30 million damage (in 1920 currency) 

Surge of 1.4 m at Galveston; no damage 

Surge of 1.3  mat Port Eads, 1.7  mat New Orleans, and 2.5 m 
at Mobile; 10 persons killed; $1 million damage 

TABLE 7.28. Hurricanes and storm surges in the Gulf of Mexico during 1900-19. 

Sept. 1-12,  1900 	Hurricane reached Florida Straits on Sept. 5 and moved in a northwesterly 
direction across the gulf a distance of about 1600 km. Maximum winds 
observed were 193 lcm -11 - ' 

July 5-10, 1901 	Storm of small extent and moderate intensity moved through the Yucatan 
channel into the Gulf of Mexico on July 7 and reached the Texas coast 
west of Galveston on July 10 

Aug. 9-15, 1901 	Hurricane first appeared to the north of Cuba on Aug. 9. It moved across 
southern Florida and into the Gulf of Mexico on the morning of Aug. 11, 
continued its course westward to 90°W when, during Aug. 14, it re-
curved and on the morning of Aug. 15 passed northeastward between 
New Orleans and Port Eads. Hurricane had small diameter but great 
intensity and its track was unusual 

Sept. 23-27, 1906 	Disturbance passed through the Yucatan channel on the morning of Sept. 
24, traveled roughly in a straight line, and moved in on the Mississippi 
coast on the moming of Sept. 27. Hurricane was of large extent and of 
unusual intensity 

July 18-21, 1909 	Hurricane moved from the Caribbean Sea though the Yucatan channel on 
July 18 and moved inland on the Texas coast with its center near Velasco 

Sept. 12-21, 1909 	Storm of great extent and unusual intensity. Its effect was felt from east of 
Pensacola to the west of Galveston. Hurricane passed through the Yuca-
tan channel during Sept. 17 and moved inland on the Louisiana coast on 
Sept. 20 

Oct. 13-18, 1910 	Disturbance moved into the Florida Straits on Oct. 14, moved towards the 
northwest during Oct. 15, southward during Oct. 16, and then eastward 
to the Florida Straits by the morning of Oct. 17 after which it moved 
northward over Florida on Oct. 18 

Aug.  13-17,  1915 	Storm moved across the western end of Cuba into the Gulf of Mexico during 
the morning of Aug. 14, traveled in a direct line, and passed inland on 
the Texas coast a short distance to the left of Galveston on the moming 
of Aug. 17 

Sept. 2-4, 1915 	Disturbance of considerable intensity crossed western Cuba, moved into the 
east Gulf, and, recurving slowly, moved inland near the mouth of the 
Apalachicola River during early moming of Sept. 4 

Surge of 1.2 m at Port Eads, 3.3 m at Pensacola. At Pensacola 
32 people killed and near Mobile 31 killed (it is not known 
whether some of these deaths were due to the hurricane and 
not the surge) 

Surges (amplitudes not lcnown) occurred to the right of the storm 
center up to Galveston; 4 people killed 

353 people killed; $6.4 million damage 

Negative surge of 2 m at Tampa 

$21 million damage 

Surge of at least 1.5 m at St. Petersburg 



Date(s) of 
hurricane Hurricane Storm surge 

275 persons killed; $13 million damage. Surge heights up to 3.7 
m on the coast of Lake Pontchartrain and 3-3.4 m on the 
Louisiana and Mississippi coasts. Inside Lake Pontchartrain, 
surges up to 4 m 

Damage at Mobile and along the Alabama coast of $2.5 million; 
12 people killed. Damage at Pensacola of $1 million. Max-
imum surge up to 3.5 m 

15 people killed; $1.8 million damage. Surges greater than 
2.1 m at Mobile 

-Surge of 0.86 mat  Pensacola. Surge of 1.77 mat Fort Barancas. 
Negative surge of 1.52 m at Mobile 

$5 million damage and 34 people killed due to the hurricane. 
Surge of 0.91 m at Morgan City. Surge of 0.86 at Johnson 
Bayou 

284 people killed; more than $20 million damage. Surges of up 
to 3.7 m occurred 

TABLE 7.28. (Concluded) 

Sept. 22-30, 1915 	One of the most intense hurricanes in the history of the Gulf coast. Hurri- 
cane moved through the Yucatan channel during the night of Sept. 27 
and, traveling northwestward, moved inland on the Louisiana coast to the 
left of and near Grand Isle during Sept. 29. Disturbance recurved slowly 
after crossing latitude 27°N and moved slowly northward 

July 1-6, 1916 	Disturbance first appeared in the Caribbean Sea on the afternoon of July 1, 
moved almost in a straight line through the Yucatan channel on July 3, 
and reached the Mississippi coast late in the afternoon of July 5. Storm 
covered considerable area and was of great intensity 

Aug. 12-19, 1916 	Disturbance passed through the Yucatan channel into the Gulf during the 
night of Aug. 16, advanced northwesterly in nearly a straight line, and 
moved inland on the Texas coast midway between Corpus Cristi and 
Brownsville during the afternoon of Aug. 18 

Sept. 21-29, 1917 	Disturbance moved through the Yucatan channel into the Gulf during the 
night of Sept. 25 and advanced in a direction a little west of north toward 
the mouth of the Mississippi River. When within about 80 km of Port 
Eads the storm began recurving to the right and center, passing about 80 
km to the right of Port Eads, and moved inland to the right of Pensacola 

Aug. 1-6, 1918 	Disturbance moved through the Yucatan channel into the Gulf of Mexico 
during the night of Aug. 4, traveled in a northwesterly direction, and 
passed inland over Lake Charles during Aug. 6. Hurricane was small but 
of marked intensity 

Sept. 6-14, 1919 	Storm moved through the Yucatan channel into the Gulf during the night of 
Sept. 25 and advanced in a direction a little west of north toward the 
mouth of the Mississippi River. When within about 80 km of Port Eads, 
the storm began recurving to the right and center, passing about 80 km 
to the right of Port Eads, and moved inland to the right of Pensacola. 
Storm moved more or less parallel to the coast 
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FIG. 7.44. Shelf coordinate system and grid for the Hurricane Carla storm surge simulation. Units ---, 219 km 
on the ordinate and abcissa. (Wanstrath et al. 1976) 

Following are some results of the study by Cline (1920). During 1900-19, about 
7225 people were killed and about $106 million in property damage occurred as a result 
of hurricanes in the Gulf of Mexico. The storm surge need not be symmetric about the 
hurricane track because the wind velocities to the left side of the track are much smaller 
(and less persistent) than on the right side. Peak surges occur a few kilometres to the right 
and at about the time of the passage of the center of the hurricane. The high water extends 
for only a short distance to the left of the point where the center of the storm moves inland. 
High water, however, occurs to the right of the center for a distance of 100-200 mi 
(161-322 km). 

Conner et al. (1957) gave a table of hurricanes and associated surges during the period 
1893-1950. This table is reproduced here as Table 7.29. Although this table bears some 
resemblance to an earlier table (Table 7.27), certain entries are different. Also, in 
Table 7.29, only the observed surge is included (there is no calculated surge). In addition, 
the lowest pressure in the hurricane is also listed. Two empirical relations best fit these 
data. One is 

	

(7.34) 	h. = 0.867 (1005 — por.618 

where hr,„, is the surge height (feet) and Pa  is the lowest central pressure (millibars). The 
correlation coefficient between li,„„x  calculated and po  is 0.66. Another is 

	

(7.35) 	hmax = 0.154 (1019 — Po) 

In this case the correlation coefficient is 0.68. The differences in the values for the 
observed surges for the same storms listed in Tables 7.27 and 7.29 are mainly due to 
different sources. 

Hurricane Audrey of 1957 was the first hurricane that caused major storm surges 
since the organization of the National Hurricane Research Project by the U.S. Weather 
Bureau. This hurricane crossed the shore near the Texas—Louisiana border on the morning 
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FIG. 7.45. Computed surge (curve) and observed surge (circles) for Hurricane Camille of 1969 at three 
locations in the United States. (Wanstrath et al. 1976) 
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FIG. 7.46. Computed surge (curve) and observed surge (circles) for Hurricane Gracie at three locations 
in the United States. (Wanstrath et al. 1976) 
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TABLE 7.29. Lowest central pressures and highest surges of Gulf 
of Mexico hurricanes. (Connor et al. 1957) 

Location of 	Lowest 	Peak 
highest surge 	pressure 	surge 
on open coast 	(mb) 	(m) 

Oct. 2, 1893 	Mobile, AL 	 956 	2.56 
Sept. 8, 1900 	Galveston, TX 	 936 	4.42 
Aug. 14, 1901 	Mobile, AL 	 973 	2.26 
Sept. 27, 1906 	Fort Barrancas, FL 	965 	3.29 
July 21, 1909 	Galveston, TX 	 959 	3.05 
Sept. 20, 1909 	Mobile, AL 	 980 	2.38 
Sept. 13, 1912 	Mobile, AL 	 993 	1.34 
Aug. 16, 1915 	High Island, TX 	953 	4.24 
Sept. 29, 1915 	Grande Isle, LA 	944 	2.74 
July 5, 1916 	Fort Morgan, AL 	961 	1.43 
Sept. 28, 1917 	Fort Barrancas, FL 	964 	2.16 
Sept. 14, 1919 	Port Aransas, TX 	948 	3.38 
Oct. 25, 1921 	St. Petersburg, FL 	958 	2.38 
Aug. 25, 1926 	Timbalier Bay, LA 	959 	3.05 
Sept. 20, 1926 	Pensacola, FL 	 955 	2.32 
Sept. 5, 1933 	Brownsville, TX 	949 	3.96 
July 25, 1934 	Galveston, TX 	 975 	1.80 
July 31, 1936 	Panama City, FL 	964 	1.83 
Aug. 7, 1940 	Calcasieu Pass, LA 	974 	1.46 
Sept. 23, 1941 	Sargent, TX 	 959 	3.02 
Oct. 7, 1941 	St. Marks, FL 	 981 	2.44 
Aug. 30, 1942 	Matagorda, TX 	951 	4.51 
July 27, 1943 	Galveston, TX 	 975 	1.22 
Aug. 27, 1945 	Matagorda, TX 	968 	2.23 
Aug. 24, 1947 	Sabine Pass, LA 	992 	1.10 
Sept. 19, 1947 	Biloxi, MS 	 968 	3.38 
Sept. 4, 1948 	Biloxi, MS 	 987 	1.71 
Oct. 4, 1949 	Freeport, TX 	 978 	3.17 
Aug. 30, 1950 	Pensacola, FL 	 979 	1.68 
Sept. 5, 1950 	Cedar Key, FL 	958 	1.55 

of June 27, 1957. Harris (1958a, 1958b) studied the storm surges associated with this 
hurricane and gave detailed diagrams of the surge height distribution along the coast. 

Marinos and Woodward (1968) used the bathystrophic theory to compute storm 
surges on the Texas—Louisiana coast. They made use of three storms to calibrate their 
model and checked it against several other storms. Using several synthetic hurricanes, 
100-yr surge hydrographs were also constructed. 

Miyazaki (1965) computed the storm surge in the Gulf of Mexico due to Hurricane 
Carla of September 7-11, 1961, using a time-dependent linearized two-dimensional 
model. He first used a coarse grid of 48 nautical miles (89 km) for the entire Gulf and then 
developed a fine-grid model (grid spacing of 9.6 nautical miles or 17.8 km) for the 
northwestern part where the storm surge was the most significant. In the coarse-mesh 
model, bottom friction was ignored whereas quadratic bottom friction was used in the 
fine-mesh model. 

Hurricane Carla is an exceptional hurricane in the sense that it moved very slowly 
(about 7 knots or 13 km •11 -1 ). The maximum wind speed was 85-95 knots (137 —176 
km • h-1 ) and the radius of maximum winds was about 50 nautical miles (93 km). Another 
remarkable feature of this hurricane is in the generated surge. Along the Texas—Louisiana 

Date 
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FIG. 7.47. Distribution of the water levels (storm surge wih  a 0.25-m tide superimposed) along parts of the 
coasts of Louisiana, Mississippi, and Alabama due to Hurricane Camille of 1969. (Pearce 1972) 

coast the storm surge occuiTed for almost a 6-d period (September 7-12, 1961). Max-
imum surge height of about 10 ft. (3.1 m) was estimated on September 10 at Galveston. 
The calculated surge was compared with the observed surge by Miyazaki (1965) at the 
following stations: Port Isabel (Texas), Port Aransas (Texas), Freeport (Texas), Pier 21 
and Pleasure Pier (both in the Galveston area), Fort Point (Texas), Sabine Pass (Texas), 
Bayou Rigaud (Louisiana), Humble Oil Platform A (Louisiana), and Pensacola (Florida). 

Hurricane Betsy struck the southeastern Louisiana coast on September 9, 1965. It was 
the most destructive (economically) ever to hit the United States coast up to that time 
(Goudeau and Conner 1968). Winds reaching up to 125 mi • IC' (201 km •11 -1 ) caused a 
great storm surge resulting in extensive flooding in the Metropolitan area of New Orleans. 
Goudeau and Connor (1968) also gave detailed diagrams for the storm surge height 
distribution and flooded areas on the Mississippi River and also in Lake Pontchartrain. 

Pearce (1972) developed a two-dimensinal, time-dependent numerical model for 
studying storm surges in the Gulf of Mexico. He used two different mesh sizes: 16 nautical 
miles (29.6 km) and 6 nautical miles (11.1 km). These were applied to the surge generated 
by Hurricane Camille of August  17-22,  1969. There was no significant difference in the 
results between the smaller grid and larger grid models. Inclusion of the nonlinear ad-
vective terms made only a difference of 2% in the surge heights. The model results were 
insensitive to bottom friction coefficients between 0.005 and 0.02. Pearce (1972) also used 
a one-dimensional model as well as an analytical model. The distribution of surge heights 
computed for August 17 at 23:40 is shown in Fig. 7.47. Although in this subsection the 
Gulf of Mexico was considered as a whole, later subsections will consider parts of this 
system such as Galveston Bay, Mobile Bay, etc., in detail. 

STORM SURGES ALONG THE COAST OF FLORIDA 

In this subsection, storm surges along the Gulf of Mexico coast and the Atlantic coast 
of Florida will be considered. Storm surges in Lake Okeechobee will be considered in the 
next subsection. Damsgaard and Dinsmore (1975) used a two-dimensional numerical 
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model to study storm surges in Biscayne Bay, Florida. Their model allows for overtopping 
of low-lying barrier islands as well as inundation of flood plains. They tested their model 
against the storm surge generated by Hurricane Betsy of September 8, 1965. 

Verma and Dean (1969) also used a two-dimensional model to study storm surges in 
Biscayne Bay. Their model allows for the inclusion of rainfall. Ross and Jerkins (1977) 
used two different models to study storm surges in Tampa Bay, Florida. The first model 
(referred to as USF) was developed at the University of South Florida and is based on the 
explicit model by Reid and Bodine (1968). The second model is based on the Rand model 
(Leendertse 1967) and makes use of an implicit—explicit scheme. Based on calculations 
for Tampa Bay, these authors concluded that the USF model provides a more accurate 
simulation than the Rand model. 

By far the most comprehensive study of storm surges on the Florida coast (which this 
author could find) is one by Bruun et al. (1962), in which they studied the storm surges 
in relation to coastal topography. Forty hurricanes during the period 1900-60 that caused 
significant storm surges along Florida coast are listed in Table 7.30. 

STORM SURGES IN LAKE OKEECHOBEE 

In an earlier section a storm surge study by Reid et al. (1977a, 1977b) was consid-
ered, which treated the extensive vegetation areas of Lake Okeechobee as a canopy. Myers 
(1954) studied in detail the data from the hurricanes that were pertinent for levee design 
for this lake (this study was considered in Chapter 6). Here, some studies on storm surges 
in this lake will be considered. Kivisild (1954) made an extensive study of storm surges 
in shallow bodies of water and applied this to Lake Okeechobee storm surges. 

During the period 1886-1950, the average number of hurricanes reaching Florida 
was 1.28 per year. The probability that the Okeechobee area would be subjected to winds 
greater than 75 mi •h (121 km • IC' ) in any given year is 1 in 7. Several tide gauges were 
located during the Lake Okeechobee project that was organized during the early 1950's. 
The north—south extent (maximum) of the lake is 30 mi (48 km), the east—west extent 
(maximum) is 25 mi (40 km), and the total area is 730 mi 2  (1891 km 2 ). Extensive marsh 
and vegetation covers the western portion of the lake. The south shore of the lake from 
St. Lucie Canal to Fisheating Creek is enclosed by levees constructed to an average crown 
height of 32.5 ft (9.8 m) above mean sea level. On the north shore a levee of the same 
height extends from 2 mi (3.2 km) southeast of Taylor Creek to Kissimmee River, and this 
levee protects the town of Okeechobee. The northwest portion of the lake, bordering low, 
sawgrass marshes, and the northeast shore, bordering comparatively high ground, are 
unprotected. Ritta, Kreamer, and Torry islands at the southern end of the lake are partially 
protected by levees but these are insufficient against storm surges such as the hurricane 
of August 26-27, 1949. 

Kivisild (1954) used simple analytical formulae to calculate the surges in Lake 
Okeechobee. However, for better resolution of the geometry of the lake, he divided it into 
triangular elements. The pertinent information of the five hurricanes studied by Kivisild 
(1954) and the related surges is summarized in Table 7.31. 

Langhaar (1951) calculated the storm surges in Lake Okeechobee using simple 
anayltical formulae. These values agreed well with observed surges, which ranged from 
3.5 to 10.2 ft (1.1-3.1 m). In this calculation, Langhaar considered the surge at the 
leeward end of the lake as a superposition of the surge due to seiches and a statical surge 
that the wind would maintain if it persisted indefinitely. The surge due to the seiche is 
referred to as the "dynamical surge" and the total surge is the sum of the dynamical and 
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TABLE 7.30. Major hurricanes affecting Florida, 1903-65. The last four entries are taken from Tetra Tech Inc. 
(1978) coastal flooding storm surge model, Part 1. Methodology prepared by Tetra Tech Inc. for U.S. Dep. of 
Insurance Administration, Washington, DC, May 1978. (Bruun et al. 1962) 

Index 
No. Date of occurrence Coastal area affected 

Florida Peninsula 

1 	Sept. 10-16, 1903 
2 	Oct. 10-23, 1904 
3 	Oct. 11-20, 1906 
4 	Oct. 6-15, 1909 
5 	Oct. 11-13, 1910 
6 	Sept. 2-14, 1919 
7 	Sept. 27-Oct. 1, 1920 
8 	Oct. 21-23, 1921 
9 	July 22-Aug. 2, 1926 

10 	Sept. 6-22, 1926 
11 	Aug. 7-10, 1928 
12 	Sept. 6-20, 1928 
13 	Sept. 22-Oct. 4, 1929 
14 	Aug. 31-Sept. 7, 1933 
15 	Aug. 31-Sept. 8, 1935 
16 	Oct. 30-Nov. 8, 1935 
17 	July 27-Aug. 1, 1936 
18 	Oct. 4-12, 1941 
19 	Oct. 13-21, 1944 
20 	Sept. 12-19, 1945 
21 	Oct. 7-9, 1946 
22 	Sept. 11-19, 1947 
23 	Oct. 9-15, 1947 
24 	Sept. 19-25, 1948 
25 	Oct. 4-8, 1948 
26 	Aug. 24-29, 1949 
27 	Sept. 1-7, 1950 
28 	Oct. 15-19, 1950 
29 	Sept. 30-Oct. 7, 1951 
30 	Oct. 8-10, 1953 

31 	Sept. 10-30, 1906 
32 	Aug. 9-14, 1911 
33 	Sept. 11-23, 1912 
34 	Sept. 4, 1915 
35 	July 5, 1916 
36 	Oct. 12-21, 1916 
37 	Sept. 21-29, 1917 
38 	Sept. 13-20, 1924 
39 	Sept. 24-26, 1953 
40 	Sept. 9- 11, 1960 (Donna) 
41 	Aug. 26-29, 1964 (Cleo) 
42 	Sept. 7-11, 1964 (Dora) 
43 	Oct. 8-16, 1964 (Isabel]) 
44 	Sept. 6-9, 1965 (Betsy) 

Fort Lauderdale and Tampa Bay 
West Palm Beach 
Florida Keys and Miami 
Florida Keys and Miami 
Key West to Tampa Bay and Jacksonville 
Florida Keys 
Cedar Key and St. Augustine 
Tampa Bay and Daytona Beach 
Entire east coast 
Miami and Everglades to Tampa Bay 
Fort Pierce and Cedar Key 
West Palm Beach to Jacksonville 
Florida Keys to Tampa Bay 
West Palm Beach and Cedar Key 
Florida Keys to Cedar Key 
West Palm Beach to Miami and Key West to Fort Myers 
Miami and Everglades to Tampa Bay 
Miami to Florida Keys and Everglades to Cedar Key 
Key West to Tampa Bay and Jacksonville 
Florida Keys to Miami and northeast coast 
Fort Myers to Cedar Key and Jacksonville 
Fort Lauderdale and Fort Myers 
Key West to Miami 
Key West to Fort Myers and Fort Pierce 
Florida Keys to Fort Lauderdale 
West Palm Beach and Cedar Key 
Key West to Cedar Key 
Entire east coast 
Fort Myers and Fort Pierce 
Fort Myers and Fort Pierce 

Florida Panhandle 

Pensacola 
Key West to Pensacola 
Tampa Bay to Pensacola 
Key West to Apalachicola 
Pensacola 
Pensacola 
Pensacola 
Panama City ot Apalachicola 
Pensacola to Panama City 
Florida Keys and South Gulf Coast 
Southeast Florida 
Northeast Florida 
Southern Florida 
Southern tip of Florida 
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FIG. 7.48. Storm surge height (metres) distribution at three different times in Lake Okeechobee, Florida, due 
to the hurricane of August 26-27, 1949.  (Faner 1958) 

statical surges. Farrer (1958) also used simple analytical formulae to compute storm surges 
in Lake Okeechobee for the hurricane of August 26, 1949. The water level distribution in 
the lake at three different times is shown in Fig. 7.48. The shaded area represents the 
marsh. The irregular triangular grid model of Thacker et al. (1980) was discussed in 
Chapter 3. 

STORM SURGES IN GALVESTON BAY 

Reid and Bodine (1968) developed a two-dimensional numerical model for com-
puting storm surges in Galveston Bay. They also allowed for rainfall by including it in the 
continuity equation. The observed and computed surges at different locations for two 
different hurricanes are compared in Fig. 7.49 and 7.50. 

Butler (1979) also developed a two-dimensional numerical model for storm surge 
computations in Galveston Bay. The time dependence is treated implicitly in this model. 
Spatially varying and time-dependent wind fields and rainfall are included. Flooding of 
low-lying areas is simulated by treating the location of the land— water boundary as a 
function of the time-varying local water depth. Subgrid barrier effects are also included. 
Exposed, submerged, and overtopping barriers can be represented in the mesh system; 
thus, one can allow for the surge waters breaching narrow barriers such as elevated 
highways, control structures, etc. 

One special feature of this model is the employment of a coordinate transformation 
in the form of a piecewise exponential stretch. This transformation maps prototype space, 
discretized with a smoothly varying grid, into computational space with a regularly spaced 
grid, and in the computational space all the derivatives are centered. Through this trans-
formation one can simulate a complex domain by locally increasing grid resolution and 
also by aligning coordinates along physical boundaries. A smoothly varying grid with 
continuous first derivatives eliminates the problems usually associated with variable grids. 
Indeed, Butler (1979) used expansions of grid length in prototype space by a factor of 10. 

Butler (1979) wrote the vertically integrated two-dimensional equations of motion 
and continuity as follows: 
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Maximum positive surge of about 
2.13 manda  maximum negative 
surge of 1.22 m 

Calculated values much bigger be-
cause the bottom friction due to 
the marsh grass was not taken in-
to account 

TABLE 7.31. Five hurricanes and storm surges in Lake Okeechobee studied by Kivisild (1954). 

Date(s) of hurricane Meteorological information 	 Storm surge information 

Sept. 15-16, 1945 

	

Storm first noted east of the Leeward Islands on Sept. 11; it passed north of Puerto Rico on Sept. 	Maximum surge recorded was 

	

13 and near Turks Island on the night of Sept. 13-14. It began a slow curvature over the great 	about 1.8 m in range 
Bahama Banks during the night of Sept. 14-15 and struck Florida with its cen-
ter passing over the northern end of Key Largo. Highest measured wind velocity was 
222 km -11 -1  at Carysfort Reef, at the southern tip of Florida. Path of the hurricane-intensity 
winds was only 32-48 km wide, so that only the southwestern  shores of Lake Okeechobee 
received winds of a velocity greater than 121 km • h -1 . Storm was, in general, of moderate 
intensity 

Sept. 16-18, 1947 

Sept. 21-22, 1948 

Hurricane center developed on Sept. 5 in the vicinity of Dakar (French West Africa). It moved 
about 27 km • h -1  on a west—northwest course to the Bahamas where on Sept. 15 it became 
almost stationary for about 24 h. Center reached the Florida coast at Fort Lauderdale on Sept. 
17. Highest recorded wind velocity in Florida was 250 km- h -1  at Hillsboro Light near Pom-
pano. Center moved westward across the state at about 16 km • 11 -1  and entered the Gulf of 
Mexico just north of Naples. Hurricane-force winds were experienced along about 386 km of 
the Florida east coast, while winds of 160 km • h -1  were recorded in a I13-km stretch between 
Miami and Palm Beach. Hurricane was one of the great storms. Lowest barometric pressure 
recorded in the Lake Okeechobee area was about 985 mb at Moore Haven 

Hurricane center developed on Sept. 18 between Jamaica and Grand Cayman Islands and moved 
slowly in a northerly direction passing over Cuba on Sept. 20 with winds greater than 160 
km • h -1 . When the storm center passed over Florida on Sept. 21-22 there appeared to have 
been several centers, with lulls reported from 64 to 129 km apart normal to the path of the 
storm. Speed of movement of the storm was 13-16 km - h -1 . Strongest wind recorded was in 
gusts of 196 km • h -1  at Boca airport near Key West. By the time the Lake Okeechobee region 
was reached, wind velocities diminished to gusts of about 145 km • h -1 . Lowest barometric 
pressure recorded in the Lake Okeechobee area was 962.8 mb 



Meteorological information 	 Storm surge information Date(s) of hurricane 

Aug. 26-27, 1949 

Oct. 17—F8, 1950 

TABLE 7.31. (Concluded) 

Storm surges with ranges up to 4.27 
m were recorded 

Storm was noticed on Aug. 23 in its formative stage, 201 km northeast of Leeward Islands. Center 
was well organized by the time it passed North Nassau on Aug. 26 and it intensified as it 
approached the Florida coast. Strongest winds occurred some distance to the right of the center 
near Jupiter, FL, where the anemometer failed after reaching an extreme of 246 km . Center 
passed the northern part of Lake Okeechobee during the early part of the evening of Aug. 26 
with wind velocities ranging from 160 to 203 km • h". In the Lake Okeechobee section it was 
the worst hurricane felt since the great disastrous hurricane of September 1928 

Storm formed over the northweste rn  Caribbean Sea on Oct. 15 and moved northeastward and then 
northward across Cuba as a small hurricane. Center of the hurricane, about 8 km in diameter, 
passed directly over Miami on the midnight of Oct. 17-18. Highest recorded wind speed was 
201 km • Center crossed northward over Lake Okeechobee during the morning of Oct. 18 
with wind gusts up to 153 km • h". In general, the diameter of this storm was smaller than that 
of most hurricanes, and sustained wind velocities were barely above the minimum hurricane 
intensity 

Surges with a maximum range of 
2.74 m were recorded 
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FIG. 7.49. Comparison of observed and computed surges at four different locations in 
Galveston Bay due to Hurricane Carla of September 9-12, 1961. (Reid and Bodine 1968) 
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FIG. 7.50. Comparison of computed and observed surges at four lo-
cations in Galveston Bay due to Hurricane Cindy of September 16-18, 
1963. (Reid and Bodine 1968) 

Here, h is the still-water elevation, d = h + 1 is the total water depth, c is the Chézy 
friction coefficient, e is a generalized eddy viscosity coefficient, R is the rate at which 
additional water is introduced into or taken out of the water body (rainfall, evaporation), 
F„ and F, represent external forcing functions such as wind stress, 1 is the water surface 
elevation. , and 'go  is the hydrostatic elevation corresponding to the atmospheric pressure 
anomaly. 

For each direction a piecewise reversible transformation is independently used to map 
prototype into computational space. The transformation is of the form 

(7.39) 	x = a + bet` 
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The parameters II I  and  IL2  define the stretching of the regular grid into a-space to approx-
imate the study area of real space. The terms T, and T2 represent the transformed flux terms 
(which are not included in the application to Galveston Bay). 

The above model is applied to storm surge computation in Galveston Bay (which is 
a large shallow bay of area greater than 1000 km 2) due to Hurricane Carla of 1961. The 
model was calibrated by reproducing the tides. The observed and computed surges at 
26 different locations are compared in Table 7.32. 

STORM SURGES IN PAMLICO SOUND AND CAPE FEAR ESTUARY 

Two important water bodies along the coast of North Carolina are Pamlico Sound in 
the north and Cape Fear Estuary in the south. In Pamlico Sound the astronomical tides are 
small (5-cm range) but storm surges could be significant. Roelofs and Bumpus (1953) 
calculated the surges in this water body using the following simple relation of Keulegan 
(1951): 

(7.44) 	—L = 3.3 x 10-6  [1 + 63 (
11 )

1/21  
L 	_I gH 

where S is the setup (i.e. /12 —  h,,  where h2  and h, are the windward and leeward 
displacements of the water level), L is the length of the water body, V is the wind velocity, 
and H is the mean depth of the water body. From this formula it was calculated that a 
southwest wind of about 13 knots (24 km .11 - ') is needed to generate a setup of about 
1 ft (0.3 m) and a 40-knot (74 km h') wind could produce a surge of 9.8 ft (3 m). This 
result does not include the funneling effect due to the geometry of the Sound. North-
easterly winds will cause a similar rise along the southwest shore. 

Overland and Myers (1976) used a one-dimensional numerical model to calculate the 
storm surges in Cape Fear Estuary. Some recent dredging operations increased the tidal 
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TABLE 7.32. Comparison of computed and observed surges (m) at sever-
al locations in Galveston Bay due to Hurricane Carla of 1961 (mean 
absolute error = 0.18 m). (Butler 1979) 

Gauge Location 	 Observed 	Computed 	Difference 

Oyster Creek 	 3.11 	3.29 	+0.18 
San Luis Pass 	 3.29 	3.05 	-0.24 
Sea Isle Beach 	 3.69 	3.05 	-0.64 
Bermuda Beach 	 3.20 	2.99 	-0.21 
Scholes Field 	 2.59 	2.93 	+0.33 
Bolivar Beach 	 2.83 	2.83 	+0.00 
Crystal Beach 	 2.68 	2.87 	+0.18 
Rollover Beach 	 2.93 	2.83 	-0.09 
Halls Bayou 	 4.36 	4.30 	-0.06 
Highway Six 	 3.84 	3.87 	+0.03 
Sievers Cove 	 3.23 	2.83 	-0.39 
Dickinson Bayou 	 3.47 	3.60 	+0.12 
Carbide Docks 	 3.35 	3.17 	-0.18 
Kemah 	 4.33 	3.90 	-0.43 
Smith Point 	 2.99 	3.17 	+0.18 
Oyster Bayou 	 3.20 	3.35 	+0.15 
Scott Bay 	 4.33 	4.30 	-0.03 
Humble Docks 	 4.18 	3.84 	-0.34 
Ananuac 	 3.78 	3.87 	+0.09 
Wallisville 	 4.27 	4.26 	+0.00 
Pleasure Pier 	 2.83 	2.87 	+0.03 
Fort Point 	 2.74 	2.90 	+0.15 
Pier 21 	 2.68 	2.90 	+0.21 
Pelican Bridge 	 2.74 	2.87 	+0.12 
Texas City Dyke (south) 	2.90 	3.05 	+0.15 
Texas City Dyke (north) 	2.96 	3.05 	+0.09 

TABLE 7.33. Meteorological data for Hurricanes Hazel of 1954, Diane of 
1955, and Helene of 1958. (Overland and Meyers 1976) 

Central 	Radius of 	 Maximum 
pressure 	maximum 	Speed of 	wind 

depression 	winds 	movement 	speed 
Hurricane 	(mb) 	(km) 	(km • h') 	(km • h -l ) 

Hazel 	66 	38.9 	53.2 	166.7 
Diane 	30 	31.5 	22.8 	110.4 
Helene 	65 	38.9 	24.1 	165.9 

range at Wilmington, North Carolina. Hence, they used two different depth profiles: the 
first corresponding to the early 1950's and the second corresponding to the present depths. 
They generated time histories of the open coast surge from the SPLASH II model for an 
ensemble of hurricanes, each storm being related to a frequency of occurrence. These time 
histories are linearly combined with appropriate phases of the astronomical tide at the 
entrance to Cape Fear River. Three hurricanes were selected: Hazel of 1954, Diane of 
1955, and Helene of 1958. The pertinent information for these hurricanes is listed in 
Table 7.33. 
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Just west of 	Just west of 
Chesapeake Bay's Chesapeake Bay's 

west coast 	east coast 

About 160 km 
west of 

Chesapeake Bay's 
west coast 

About 160 km 
west of 

Chesapeake  Bay's 
west coast 

Track 

57.9 

56.2 

101.9 

66.6 

148.1 

112.7 

0.55 

0.88 

0.85 

1.28 

1.46 

TABLE 7.34. Pertinent information about selected hurricanes affecting Chesapeake Bay. (Bretschneider 1959) 

Parameter 

Hurricane of 	Connie of 	Diane of 	 Hazel of 
Aug. 22-24, 	Aug. 11-13, 	Aug. 15-18, 	Oct. 14-17, 

1933 	 1955 	 1955 	 1957 

Radius of maximum 
winds (km•h- ') 	86.9 	 72.4 	 72.4 

Central pressure 
anomaly (mb) 	 28.8 	 46.4 	 24.0 

Speed of movement 
over ocean (km•h -t ) 	46.2 	 22.2 	 38.9 

Speed of movement 
over Chesapeake Bay 
(km • II') 	 24.1 	 18.5 	 22.2 

Maximum wind speed 
over ocean (km•h- ') 	98.2 	 115.9 	 86.9 

Maximum wind speed 
over Chesapeake Bay 
(km •11 - 1 ) 	 80.5 	 72.4 	 56.3 

Peak surge (m) at 
Hampton Roads, VA 	2.01 	 1.34 	 0.18 

Peak surge (m) at 
Gloucester Point, VA 	 1.37 	 0.70 

Peak surge (m) at 
Solomon's Island, MD 	 1.28 	 0.67 

Peak surge (m) at 
Annapolis, MD 	 1.77 	 1.49 	 0.98 

Peak surge (m) at 
Baltimore, MD 	 2.20 	 1.59 	 1.13 

STORM SURGES IN CHESAPEAKE BAY 

Hurricane-generated storm surges in this water body were studied by Bretschneider 
(1959). Of all the hurricanes that generated surges in Chesapeake Bay up to 1959, only 
four are sufficiently well documented: August 22-24, 1933, August 11-13, 1955 
(Connie), August 15-18, 1955 (Diane), and October 14-17, 1954 (Hazel). 

The pertinent information for the meteorological aspects of these hurricanes as well 
as the storm surges recorded is given in Table 7.34. Some typical surge profiles in 
Chesapeake Bay are illustrated in Fig. 7.51 and 7.52. 

For computing the surges outside Chesapeake Bay on the open coast, two model 
hurricanes were selected. The first (referred to as A) is the September 14, 1944, hurricane 
transposed to the Chesapeake Bay area but not adjusted for filling. For this hurricane, the 
radius R of maximum winds is 33.5 nautical miles (62 km), the atmospheric pressure 
anomaly at the center is 2.2 in.Hg (74.5 mb), and the maximum sustained wind speed at 
R is 105 mi • It (169 km .11). The path of movement over the open ocean was as-
sumed to be perpendicular to the coast and the speed of travel was 15-25 mi •11 -1  
(24-40 km •11 -1 ). After crossing the coast, the path of movement curves and proceeds 
northward along the west side of Chesapeake Bay, and the speed of movement reduces to 
12-15 mi • h -1  (19-24 km • h -1 ). The second storm (referred to as B) is exactly the same 
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(Bretschneider 1959) 

TABLE 7.35. Computed storm surges in Chesapeake Bay due to hurri-
canes A and B. These values have an uncertainty of 0.12 m. (Based on 
Bretschneider 1959) 

Maximum surge (m) due to 

Location 

Hampton Roads, VA 
Mouth of York River 
Mouth of Rappahanock River 
Mouth of Potomac River 
Mouth of Severn River 
Mouth of Patapaco River 

Hurricane A 

3.29 
3.14 
2.99 
2.77 
2.53 
2.87 

Hurricane B 

3.57 
3.44 
3.26 
3.05 
2.77 
3.11 

as A, except that all wind speeds are 5 mi .11 -1 (8 km h -  ) larger. The results for the surges 
due to hurricanes A and B are summarized in Table 7.35. The prediction curves for 
hurricane surges at Washington, DC, are given in Fig. 7.53. 

Bodine (1971) used the bathystrophic theory to compute storm surges on an open 
coast and applied this to the Chesapeake Bay area. In this connection, he pointed to the 
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FIG. 7.52. Storm surges at four locations in Chesapeake Bay due to Hurricane Connie of August  11-13,  1955. 
(Bretschneider 1959) 

important effect of interaction between tide and surge, especially when it is recognized that 
the tidal range can vary from 18.2 ft (5.5 ni) at East Port, Maine, to 1.3 ft (0.4 ni) at Key 
West, Florida, and that, generally, the tides along the Atlantic coast of the United States 
are semidiurnal whereas along the Gulf of Mexico coast they are mainly diurnal. 

To give the most probable degree of protection required for any given area, the 
standard practice is to select a hurricane with a given set of characteristics for the particular 
geographical location. This will be called a "hypothetical" or "hypohurricane." Also, for 
such a hurricane the characteristics are taken as invariant and the track is assumed to follow 
a prescribed path. The U.S. Weather Bureau and the U.S. Army Corps of Engineers 
jointly established two design storms (which depend on the geographical location) for 
practical use for coastal engineering purposes. These are the Standard Project Hurricane 
(SPH) and the Probable Maximum Hurricane (PMH). 

Graham and Nunn (1959) defined the SPH as a hypohurricane that is intended to 
represent the most severe combination of hurricane parameters that is reasonably charac-
teristic of a region, excluding extremely rare combinations. The maximum gradient wind 
speed in the belt of maximum winds (miles per hour) was determined by the following 
formulae: 

Vg, = K(P„ Po)in  — R (0.575f) 
(7.45) 

= 0.8651/g, + 0.5 Vr 

where K = 73, p„ and po  are the peripheral and central pressures in inches of mercury, R 
is the radius of maximum winds in nautical miles, f is the Coriolis parameter in units per 
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FIG. 7.53. Storm surge prediction curves for hurricane-generated storm surges at Washington, DC. (Bret-
schneider 1959) 

hour, VF is the speed of movement of the hurricane in miles per hour, and V, is the 
maximum wind speed 30 ft (9.1 m) above the water. 

For protection of the nuclear power plants, the U.S. Atomic Energy Commission 
concluded that adequate safety would be provided if the plant site would not be flooded 
by the surge and surface waves associated with a probable maximum hurricane (PMH). 
The U.S. Weather Bureau developed the characteristics of the PMH, which is much more 
severe than the SPH. The PMH was defined as a hypothetical hurricane having that 
combination of characteristics that will make it the most severe storm that can probably 
occur in the particular region involved. The hurricane should approach the point under 
study along a critical path and at an optimum rate of movement. Development of the isovel 
fields is basically the same for the PMH as for the SPH. The difference essentially is that 
whereas p„ is taken as the standard sea level pressure of 29.92 in.Hg (1013.2 mb) for the 
SPH, it is treated as a function of the latitude for the PMH. Also, K is treated as a function 
of latitude for the PMH whereas it is a constant for SPH. At times it may be desirable to 
select a design storm other than the SPH or PMH based on the risk or economy factors 
for a particular location or coastal structure. Using bathystrophic theory, Bretschneider 
(1959) estimated the peak surge (for a selected storm) at the mouth of Chesapeake Bay to 
be 13.4 ft (4.1 m). 

Pore (1965) studied hurricane-generated storm surges in Chesapeake Bay. He made 
a distinction between western-type (i.e. hurricanes passing west of the bay) and eastern-
type (hurricanes traveling east of the bay) storms. His study showed that the western-type 
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TABLE 7.36. Storm surge data for western type storms in the Chesapeake Bay region. (Pore 1965) 

Storm 

	

Surge amplitudes (m) at 	 Time lag 	movement 
(h) from 	(km) 

	

Solomon's 	Gloucester 	Hampton 	Norfolk to 	northward 
Date 	Baltimore 	Annapolis 	Cambridge 	Point 	Point 	Roads 	Baltimore 	in 12 h 

Oct. 2, 1929 	1.19 	1.10 	- 	' 	- 	- 	0.73 	 18 	 352 
Aug. 23, 1933 	2.13 	1.68 	- 	 - 	- 	1.86 	 18 	 315 
June 19, 1934 	- 	- 	- 	 - 	- 	0.24 	- 	 148 
Sept. 18, 1945 	0.82 	0.73 	0.70 	0.64 	- 	0.73 	 17 	 389 
Aug. 29, 1949 	0.52 	0.43 	0.46 	0.24 	- 	-0.06 	- 	 519 
Sept. 1, 1952 	1.04 	0.88 	- 	0.49 	0.15 	0.12 	 13 	 241 
Oct. 15, 1954 	1.40 	1.19 	- 	0.85 	0.34 	0.46 	 14 	 945 
Aug. 18, 1955 	1.88 	0.73 	- 	0.52 	0.52 	0.30 	 21 	 241 

TABLE 7.37. Storm surge amplitudes (m) for eastern type storms in the Chesapeake Bay region. For certain cases, maximum positive and 
negative surges are listed. (Pore 1965) 

Solomon's 	Gloucester 	Hampton 
Date 	Baltimore 	Annapolis 	Cambridge 	Point 	Point 	Roads 	Portsmouth 

Sept. 16, 1933 	0.27 	 0.30 	 - 	 - 	 - 	 1.55 	 - 
Sept. 8, 1934 	- 	 - 	 - 	 - 	 - 	0.24 	 - 
Sept. 18, 1936 	-1.74, 0.40 	-1.28, 0.37 	- 	 - 	 - 	 1.49 	 - 
Sept. 21, 1938 	-0.98, 0.06 	-0.67, 0.03 	- 	 -0.43 	 - 	 - 	 0.55 
Oct. 24, 1938 	0.21 	 0.21 	 - 	 1.8 	 - 	 - 	 0.21 
Sept. I, 1940 	0.06 	 0.06 	 - 	 0.06 	 - 	 - 	 0.09 
Sept. 14, 1944 	-0.64, 0.27 	-0.49, 0.21 	-0.27, 0.24 	-0.18, 0.18 	- 	 1.13 	 - 
June 26, 1945 	-0.34, 0.18 	-0.24, 0.24 	-0.18, 0.27 	0.15 	 - 	0.79 
Aug. 20, 1950 	0.21 	 0.21 	 0.15 	 0.18 	 - 	0.24 
Aug. 14, 1953 	-0.79, 0.40 	-0.73, 0.34 	- 	-0.46, 0.34 	0.94 	1.13 
Aug. 31, 1954 	-0.18, 0.21 	0.24 	 - 	 0.24 	 0.49 	0.79 
Sept. 11, 1954 	-0.43, 0.15 	-0.30, 0.12 	- 	-0.12, 0.15 	0.67 	0.88 
Sept. 27, 1956 	0.34 	 0.58 	 - 	 0.64 	 - 	 1.13 
Aug. 28, 1958 	-0.37, 0.18 	- 	 - 	 0.18 	 - 	0.34 



TABLE 7.38. Storm surge amplitudes (m) as a function of time on the Massachusetts-New York-New Jersey 
coast during Sept. 21-22, 1938. Time is local time. (Paulsen et al. 1940) 

Sandy Hook, NJ 	The Battery, NY 	 Boston, MA 	Mill Neck, 
NY, 

Hour 	Sept. 21 	Sept. 22 	Sept. 21 	Sept. 22 	Sept. 21 	Sept. 22 	Sept. 21 

01 	0.40 	-0.49 	0.27 	-0.21 	0.30 	0.85 	- 
02 	0.85 	-0.37 	0.73 	-0.18 	-0.18 	-0.03 	- 
03 	1.19 	-0.03 	1.13 	-0.12 	-0.03 	-0.49 	- 
04 	1.55 	0.58 	1.46 	0.64 	0.49 	-0.12 	- 
05 	1.71 	1.52 	1.59 	1.34 	1.16 	0.24 
06 	1.62 	1.74 	1.62 	1.71 	1.92 	0.91 	- 
07 	1.34 	1.59 	1.46 	1.71 	2.65 	1.89 	- 
08 	1.04 	1.16 	1.22 	1.43 	3.14 	2.80 	- 
09 	0.76 	0.76 	0.88 	1.10 	3.20 	3.23 	- 
10 	0.49 	0.34 	0.61 	0.61 	2.80 	2.23 	- 
11 	0.30 	0.09 	0.37 	0.34 	2.19 	2.80 	- 
12 	0.30 	0 	0.15 	0.09 	1.55 	2.16 	- 
13 	0.55 	-0.03 	0.18 	0 	0.79 	1.34 	- 
14 	1.07 	0.12 	0.55 	0 	0.21 	0.43 	- 
15 	1.80 	0.55 	1.34 	0.30 	0.18 	-0.24 	- 
16 	2.38 	1.01 	2.47 	0.91 	0.91 	-0.37 	- 
17 	1.55 	1.46 	2.04 	1.37 	1.62 	0.15 	- 
18 	0.91 	1.74 	1.16 	1.65 	2.13 	0.82 	- 
19 	0.24 	1.77 	1.01 	1.74 	2.68 	1.71 	3.54 
20 	0.09 	1.43 	0.73 	1.65 	3.23 	2.53 	4.60 
21 	0.76 	0.98 	0.70 	1.34 	3.35 	3.17 	4.02 
22 	0.79 	0.58 	1.22 	0.91 	3.05 	3.35 	3.78 
23 	0.24 	0.24 	0.49 	0.52 	2.50 	3.05 	3.69 
24 	-0.37 	0 	-0.03 	0.21 	1.86 	2.44 	3.66 

storms create greater surges in the northem part of the bay whereas the eastern-type storms 
generate greater surges in the southern portion of the bay. The storm surges resulting from 
these two types of hurricanes are listed in Tables 7.36 and 7.37. 

STORM SURGES ON THE COAST OF NEW JERSEY 

The greatest loss of life and property damage on the coast of New England occurred 
during September 21-22, 1938, as a result of a storm surge generated by a West Indian 
hurricane coupled with river flooding (due to excessive rainfall). The storm surge ampli-
tude was maximum in Rhode Island with values exceeding 17 ft (5.2 m), and the ampli-
tudes reached record levels all along the coast between New York City and Cape Cod. 
More than 500 people died (Paulsen et al. 1940) and the property damage exceeded $0.3 
billion (at 1938 prices). 

The storm surge amplitudes at Sandy Hook on the coast of New Jersey and at three 
other locations are listed as a function of time in Table 7.38. The surge profiles at Forest 
Hills and Rockaway Park, both in New York State, are shown in Fig. 1.2 and 1.3. 

Pagenkopf and Pearce (1975) developed several storm surge models and applied these 
to the New Jersey coast. In particular, these authors compared two-dimensional finite-
difference and finite-element methods and concluded that, at least for storm surge calcu-
lations, there is no particular advantage to preferring one over the other. They also 
compared their results with bathystrophic storm surge calculations. All these calculations 
were made for the hurricane of September 14, 1974. The results from the bathystrophic 
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August 30-31, 1954. The arrow shows the hurricane track. (Pore and Barrientos 1976) 

calculations are not satisfactory in certain circumstances. The horizontal distributions of 
storm surge heights computed by the finite-difference and finite-element models are 
compared in Fig. 7.54. 

STORM SURGES IN THE NEW YORK BIGHT 

Pore and Barrientos (1976) studied storm surges in the New York Bight due to 
hurricanes and extratropical cyclones. This subsection will be confined to only hurricane-
generated storm surges (extratropical cyclone generated surges will be discussed later). 
Pore and Barrientos (1976) selected five major hurricanes that affected the New York 
Bight area: September 21-22, 1938, September 13-15, 1955, August 30-31, 1954 
(Carol), September 10-12, 1954 (Edna), and September 12, 1960 (Donna). The storm 
surge height distributions for the third and fifth hurricanes are given in Fig. 7.55 and 7.56, 
respectively. 

Sethuraman (1979) studied the storm surge due to Hurricane Belle of August 8-10, 
1976. The surge at Shinnecock Inlet (Long Island) is shown in Fig. 7.57. This surge 
occurred near the time of low tide; hence, damage was minimal. The storm surge records 
showed the three stages discussed earlier, namely, forerunner, surge, and resurgence. 

STORM SURGES IN NEW YORK BAY 

Kussman (1957) examined the storm surge problem for New York City and sur-
rounding area. The storm surge amplitudes at several locations due to nine hurricanes are 
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listed in Table 7.39. Wilson (1959, 1961) did a comprehensive study of the hurricane-
generated storm surge problem in New York Bay. The technique of this study was as 
follows (Wilson 1961, p. 548): 

A recursion formula is evolved, using the method of finite differences for time in-
crements of 1 /3 hour, which relates tide elevation at the bay-mouth with two values of 
the elevation at 1 /3 and 2/3 hour earlier and with values of wind-stress and pressure-
gradient driving-force components (directed towards New York Bay from several 
remote two dimensionally spaced offshore-stations on the continental shelf) at times 
earlier by the periods taken for free long gravity waves to travel from the stations to 
the bay-mouth. The formula includes a cumulative forcing function term which allows 
for the geostrophic influence of the earth's rotation and also for an "edge wave" effect 
northward along the eastern seaboard. Moreover it takes into account the observed 
tendencies of hurricane storm tides in New York Bay to develop resurgences at periods 
of 7 hours with decay rates of 50% amplitude decrease per cycle. The coefficients of 
the "forcing functions," determined by correlation, tend to represent the storm size and 
speed and also the dynamic augmentation of the forced wave. 

The predicted surge curves at selected locations for a design storm moving with a 
speed of 35 knots (65 km •11 -1 ) are shown in Fig. 7.58. The maximum storm surge 
amplitude and resurgence amplitude at several locations, due to a designed hurricane, are 
given in Table 7.40. 
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TABLE 7.39. Maximum storm surge amplitudes (m) in the New York City area and vicinity due to hurricanes during the period 1938-55. (Kussman 
1957) 

Location 

Aug. 	Oct. 
Sept. 21 	Sept. 15, 	Nov. 25, 	Nov. 7, 	Aug. 31, 	Sept. 11, 	Oct. 15, 	12-13, 	14-16, 

1938 	1944 	1950 	1953 	1954 	1954 	1954 	1955 	1955 

Fort Hamilton, NY 	 1.95 	2.04 	2.29 	2.35 	1.80 	1.31 	- 	1.37 	1.95 
Perth Amboy, NJ 	 2.01 	2.26 	2.90 	2.68 	1.77 	1.46 	1.68 	1.62 	2.35 
Spuyten Duyvil, NY 	 1.62 	1.83 	2.13 	2.04 	1.59- 	1.22 	1.28 	1.34 	1.80 
Lawrence Point, NY 	 - 	- 	3.05 	3.17 	3.32 	1.89 	1.80 	1.59 	2.26 
The Battery, NY 	 1.95 	1.95 	2.26 	2.32 	1.71 	1.16 	1.37 	1.28 	1.80 
Sandy Hook, NJ 	 1.80 	2.56 	- 	2.41 	1.86 	1.34 	1.40 	1.25 	1.89 
Willets Point, NY 	 3.66 	- 	- 	2.65 	3.47 	1.95 	1.86 	1.62 	2.38 
Montaulc (Fort Pond Bay), NY 	4.82 	2.41 	- 	1.65 	2.41 	1.10 	0.94 	0.64 	1.19 
New London, CT 	 2.99 	1.86 	2.19 	1.80 	2.65 	0.91 	1.22 	0.76 	1.28 
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FIG. 7.57. Storm surge and predicted tide at Shinnecock Inlet on Long Island, New York. 
(Sethuraman 1979) 

TABLE 7.40. Predicted maximum storm surge heights due to hurricanes in New York Bay. 
(Wilson 1959) 

Maximum storm surge 	 Maximum first 
height (m) 	 resurgence height (m) 

Probable error 
(90% confidence 

Station 	Surge 	limits) Resurgence 

Probable error 
(90% confidence 

limits) 

Sandy Hook 
Fort Hamilton 
Perth Amboy 
Elm Park 
Whitehall (Battery) 

East Newark 
Spuyten Duyvil 
Mill Rock 

'The 90% confidence limits are probably better than these for the main surge. 
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Fin. 7.58. Predicted storm surge heights at various locations in New York Bay for a design hurricane moving 
with a speed of 65 km• V'. (Wilson 1959) 

STORM SURGES IN NARRAGANSETT BAY 

McAleer (1964) studied hurricane-generated storm surges in Narragansett Bay and 
particularly examined the role of barriers in reducing storm surge levels. The results were 
arrived at through hydraulic model investigations. Storm surges of up to 10-14 ft 
(3.0-4.3 m) in amplitude have been observed in Narragansett Bay. A hurricane storm 
surge in September of 1938 caused $100 million damage and killed 110 people. Ten 
people were killed in another storm surge during 1954. For some of the major hurricane 
tracks, Narragansett Bay lies in the dangerous northeast quadrant of the storm. 

While some of the major hurricanes move relatively slowly along the southern part 
of the east coast of the United States, they may move faster when they approach the 
northern part of the coast. Hence, some storms that were reported as having stalled (or as 
moving slowly) along the southern east coast suddenly accelerated and caused surges in 
Narragansett Bay some 8-10 h later. 

Numerical and hydraulic models have been used to study the effects of barders on 
storm surge amplitudes. The barriers are envisaged as rockfill barriers with large ungated 
navigation openings across the three entrances to Narragansett Bay. The results indicated 
that the barriers would reduce the surge amplitudes by 6-7 ft (1.83-2.13 m) over the 
120-mi2  (311 km') bay. These barriers will also decrease the mean tidal range somewhat. 
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FIG. 7.59. Computed and observed surges at Narragansett Pier due to Hurricane Carol of 1954. 
(Pararas-Carayannis 1975) 

Pararas-Carayannis (1975) used the bathystrophic model to compute the surges at 
Narragansett Pier, Rhode Island, generated by Hurricane Carol of 1954. This hurricane 
had a radius of maximum winds of 25 nautical miles (46.3 km) and moved with an average 
speed of over 33 knots (61 km • h -1 ). Hurricane Carol arrived over Rhode Island at about 
10:30 EST on August 31, 1954, with sustained wind speeds up to 90 mi • h -1  (145 km • h -1 ) 

and gusts up to 105 mi • h -1  (169 km • h -1 ). At Block Island, gusts up to 130 mi • h -1  (209 
km • h -1 ) were measured. 

Because of its intensity, speed of movement, and arrival at the time of high tide, 
exceptionally large surges and great destruction occurred. About a third of the city of 
Providence was under 8-10 ft  (2.4-3.0 m) of water for several hours. Pararas-
Carayannis (1975) mentioned waves up to 40 ft (12.2 m) in height. Maximum surge at 
Narragansett Pier was about 12.8 ft (3.9 m). Observed and computed surge profiles at 
Narragansett Pier are compared in Fig. 7.59. 

EXTRATROPICAL STORM SURGES ON THE EAST COAST OF THE UNITED STATES 

In Chapter 6 it was mentioned that at times hurricanes can transform themselves into 
extratropical cyclones. The circumstances under which this can happen, along with some 
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examples, were given. The track of Hurricane Gracie of September 1959 is illustrated in 
Fig. 7.60. Before September 22 the tropical depression stage and the tropical storm stage 
are also shown in the diagram. Slightly northwest of Charleston, the hurricane transformed 
itself into an extratropical cyclone on September 29. 

According to O'Brien and Johnson (1963) one of the worst storm surges on the east 
coast of the United States occurred during March 6-8, 1962. Although it was not called 
an extratropical cyclone, it really was one and had a diameter of about 1500 mi (2414 km). 
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TABLE 7.41. Maximum storm surge amplitudes (m) on the east coast of the United States during the 
storm of Mar. 6-9, 1962. Times given are local times at 75°W. All water levels are with reference to 
the mean low water. (O'Brien and Johnson 1963) 

Location 

Highest 
Maximum 	 water 

water 	 level on 	Date 
level 	 record 	highest 

(surge + 	Surge 	 until 	level 
tide) 	only 	Date 	Time 	1962 	occurred 

New Rochelle, NY 	3.66 	1.01 	6 	11:00 
Montauk, NY 	 1.74 	0.94 	7 	09:36 
Eatons Neck, NY 	3.54 	1.04 	6 	23:36 
Port Jeffersen, NY 	3.32 	1.01 	6 	23:30 
Willets Point, NY 	3.69 	1.10 	6 	11:18 
New York (Battery) 	2.83 	1.25 	6 	20:54 	3.17 	Sept. 12, 1960 
Sandy Hook, NJ 	3.02 	1.37 	6 	20:24 	3.23 	Sept. 12, 1960 
Atlantic City, NJ 	2.77 	1.19 	6 	07:06 	2.90 	Sept. 14, 1944 
Fort Miles, DE 	2.96 	1.49 	6 	21 : 00 
Reedy Point, DE 	2.87 	1.01 	8 	00:06 
Philadelphia, PA 	2.90 	0.98 	8 	03:12 	3.23 	Nov. 25, 1950 
Washington, DC 	1.95 	0.94 	8 	08:54 	3.51 	Oct. 17, 1942 
Sewelles Point, VA 	2.44 	1.52 	7 	10:00 
Portsmouth, VA 	2.62 	1.62 	7 	10:24 
Wilmington, NC 	1.89 	0.67 	8 	23:54 
Myrtle Beach, SC 	2.50 	0.67 	8 	21 : 24 
Charleston, SC 	 2.50 	0.67 	8 	22 : 00 	3.26 	Aug. 11, 1940 
Fort Pulaski, CA 	2.99 	0.52 	8 	22:06 	3.47 	Oct. 15, 1947 
Femandina, FL 	2.56 	0.49 	8 	23:18 	4.24 	Oct. 2, 1948 
Jacksonville, FL 	0.98 	0.27 	9 	00:24 
Mayport, FL 	 1.98 	0.40 	8 	22:30 
Miami, FL 	 1.31 	0.43 	8 	22:00 	1.95 	Oct. 18, 1950 

The damage due to the storm surge occurred all the way from Florida to southern New 
England. Another novel feature associated with this surge (unlike with hurricane-
generated surges) was the duration of the surge. Whereas the duration of hurricane-
generated surges on the same coastal area is usually one to two high tides, this particular 
surge lasted four to five high tides. 

The surge heights and other pertinent information are listed in Table 7.41. This storm, 
which is referred to as the "Ash Wednesday" east coast storm, was studied in detail by 
Bretschneider (1964). He cited the occurrence of the surge at the time of the spring tide 
as partly responsible for the high water level. 

The U.S. National Weather Service provides a prediction service for extratropical 
storm surges (the prediction service for hurricane-generated surges was discussed pre-
viously) on the east coast, based on statistical regression models (Pore 1976, 1977). A set 
of regression equations is derived that relates the surge to atmospheric pressure. A separate 
regression equation is developed for each tide gauge location. Pore et al. (1975) used 68 
historical storms during the period 1956-69. Using sea level weather charts at 6-h 
intervals, storm surge regression equations were derived for 6-h intervals for 
11 locations. Astronomical tide is assumed random in phase. The atmospheric pressure 
data at these points are used in real time for storm surge prediction. 

Pore (1965) developed regression equations for predicting extratropical storm surges 
in Chesapeake Bay at two locations: Hampton Roads and Baltimore. Wang (1979) studied 
surges in this water body for the extratropical cyclones of December 1-4, 1974, and April 
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3-6, 1975. Atmospheric pressure and wind data were used as input. Pore (1964) derived 
regression relations for extratropical storm surges at Atlantic City. He related the onshore 
wind components, alongshore wind components, and atmospheric pressure fields with 
various time lags to the storm surge. In general, the alongshore wind component is found 
to be more important than the onshore component. Computations using as predictors the 
components of both wind speed and wind speed squared show both techniques to be about 
equally satisfactory for practical predictions. Comparison is also made between a one-
station model that made use of the meteorological information at Atlantic City alone and 
a three-station model that included mmeorological parameters from Nantucket and Norfolk 
as well. 

The storm surge prediction equation for Atlantic City with the one-station model is 

	

(7.46) 	S = 13.66 + 0.10V_, — 0.26(p_ 6  — 1000) + 0.30V_ 6  +  0.13V_ 30  

where S is the surge in tenths of feet, V is the alongshore component of wind in knots, p 
is the station pressure in millibars, and the subscripts show the time lag in hours. 

For the three-station model, the prediction equation is 

	

(7.47) 	S = 10.60 + 0.36(p_ 6  — 1000)AcK 

+  0.24 ( V_6  + V_ 1 I8,ACK 	0.14(U_ 1 10,ORF 

where U is the onshore component of wind in knots and ACK and ORF designate the 
stations Nantucket (Massachusetts) and Norfolk (Virginia), respectively. 

Some of the important deductions from this study are as follows: (1) there is no 
significant difference in the predictability using a linear wind stress law and a quadratic 
wind stress law, (2) there is a time lag of several hours between the wind and the resulting 
surge, and (3) the alongshore component of wind is much more important than the onshore 
component at Atlantic City for generation of extratropical storm surges. 

Wilson (1959) studied extratropical storm surges in New York Bay. The distribution 
of surge heights due to the storm of November 6, 1953, is shown in Fig. 7.61. Pore and 
Barrientos (1976) studied extratropical storm surges in the New York Bight area. The 
pertinent information for the six storm surges studied by them is given in Table 7.42. The 
distribution of surge heights due to the storm of March 1962 is shown in Fig. 7.62. 

Donn (1958) developed an empirical prediction scheme for extratropical storm surges 
on the northen part of the east coast at six locations. The input meteorological data 
consisted of eight extratropical storms during the period 1952-56. The following are the 
dates of these storms: January 7, 1952, February 27, 1952, December 22, 1952, January 
22, 1953, November 7, 1953, March 16-17, 1956, March 19, 1956, and April 7-8, 
1956. 

The average lag of the maximum storm surge relative to the time of occurrence of 
maximum wind at various stations are shown in Table 7.43A and the average lag for each 
of the storms is given in Table 7.43B. The detailed lags are listed in Table 7.44. It can 
be seen that, whereas at Willett's Point the maximum surge coincided with the low tide 
for these cases, at Montauk the maximum surge occurred at the time of high tide. At 
Atlantic City, Battery, Boston, and Sandy Hook, maximum surges occurred more fre-
quently at the time of low tide than high tide. 

Tancreto (1958) used regression techniques to relate maximum value of storm surge 
at Boston (due to extratropical cyclones) to significant height of wind-generated waves 
offshore (Fig. 7.63). It can be seen that when the surge height was about 4 ft (1.2 m) the 
wind wave height was about 34 ft (10.4 m). 

0.69(p_6  — 1000)oRF 
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FIG. 7.61. Storm surge heights (metres) in New York Bay at 19:30 (Eastern Standard Time) on November 6 
1953. (Wilson 1959) 

STORM SURGES IN THE GREAT LAKES 

Storm surges on the Canadian shores of the Great Lakes were considered in section 
7.1. The United States part of the Great Lakes will be considered here. The Bulletin of 
the Beach Erosion Board (1953, special issue No. 2, Corps of Engineers) mentioned that 
on November 28, 1905, a storm surge of amplitude 2.3 ft (0.7 m) occurred in Duluth 
Harbor (Lake Superior). In June 1939, a storm surge of 7.4 ft (2.3 m) was noted at 
Marquette. This bulletin also mentioned that the largest surges in the Great Lakes occur 
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Meteorological information Water level information Date 

Mar. 8-9, 1957 

Mar. 5-8, 1962 

TABLE 7.42. Episodes of extratropical storm surges in the New York Bight area. Times are EST. (Based on 
Pore and Barrientos 1976) 

Feb. 18-20, 1972 

Nov. 25-26, 1950 

Nov. 6-7, 1953 

Front of a low pressure system cen-
tered over the Great Lakes at 07:00 
on Feb. 18, extended southward 
over eastern Tennessee, Georgia, 
Alabama, and into the Gulf of Mex-
ico. By 13:00 on Feb. 18 a closed 
low had formed over Georgia. Fur-
ther deepening occurred and the 
storm moved rapidly toward 
north—northeast to north of Cape 
Cod at  01:0000  Feb. 20 

Worst storm on record for the eastern 
United States up to that time. Storm 
first appeared as a low on a cold 
front over North Carolina and Vir-
ginia. The low deepened consid-
erably before a new low formation 
became evident at Erie, PA, at 10:30 
on Nov. 25. This new center became 
the main storm and at 19:30 it was 
near Cleveland with a central pres-
sure of 983 mb. Lowest pressure of 
978 mb was reached at 01:30 on 
Nov. 26. Storm subsequently moved 
northward 

A low had formed in the northeastern 
Gulf of Mexico. It moved to off the 
Georgia—Florida coast by 01:30 on 
Nov. 6, to Cape Hatteras area by 
13:30, and to the Delaware area by 
01:30 on Nov. 7. A pressure gra-
dient between the storm's low pres-
sure and a strong high over the Great 
Lakes brought on extremely high 
winds north of the storm center 

Storm closely followed the coast north 
of Cape Hatteras 

At 07:00 on Mar. 5, there was an ill-
defined low pressure area with a 
frontal wave northeast of the Ba-
hamas. Low pressure also extended 
northwestward through the Caroli-
nas and Virginia. By 07:00 on Mar. 
6, the entire low pressure area 
had deepened, resulting in a long 
easterly fetch over the western 
Atlantic north of Cape Hatteras. 
Storm continued to intensify into an 
elongated low with a strong north-
east wind over a very long fetch 

Storm surge coincided with one of the 
high tides (two per day). However, 
it coincided with the lower one. 
Otherwise, the total water level 
would have been 0.3 m higher. Ex-
tensive damage to coast and region 

Storm surge occurred during spring 
tide. Maximum surge at Battery 
(New York City) was 8.1 ft (2.5 m). 
Significant interaction between tide 
and surge 

Great storm surges with considerable 
flooding and flood damage along the 
mid-Atlantic and New England 
coasts. Maximum surge at Battery 
was 5.4 ft (1.6 m) 

Maximum surges of 2.2 ft (0.7 ni) at 
Battery and Atlantic 

$200 million damage on the coastal 
areas from southern New England to 
Florida. Surge coincided with the 
high tide and also occurred at the 
time of spring tide. Perigean spring 
tide also occurred. Variations in 
maximum water levels of 2-4 ft 
(0.6-1.2 m) were found within a 
distance of 0.5 mi. This vas the first 
extratropical storm in which high 
water marks were observed suf-
ficiently close together to show this 
variation. Maximum surge values 
are 6.3 ft (1.9 ni) at Breakwater 
Harbor, DE. Duration of the surge 
here  vas  over five tidal cycles 
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TABLE 7.42. (Concluded) 

Meteorological information 	 Water level information Date 

Jan. 23-24, 1966 

Nov. 9-12, 1968 

Feb. 3-4, 1972 

	

The low developed in the eastern Gulf 	Large surges and considerable damage 

	

of Mexico, moved northeast, and 	along the northern  part of the east 

	

was near Cape Hatteras at 01:00 on 	coast 
Jan 23. Later, it moved northeast 
away from the coast 

Two storms together created surges. 
The first developed in the Gulf of 
Mexico and moved northeast along 
the coast. On Nov. 11 the second 
storm developed and followed a sim-
ilar path. Peak wind gusts registered 
62 mi •11 -I  (52 knots) at New York 

	

Storm developed near the South Caro- 	Moderate surges in the New York 

	

lina coast and moved rapidly 	Bight area 
northeastward 

TABLE 7.43. Average lag of storm surge at different stations and 
average lag of storm surge for different storms. (Donn 1958) 

Average 	 Average 
Station 	lag (h) 	Storm 	 lag (h) 

Atlantic City 	5 	Jan. 7, 1952 	 8 
Batterry 	 2 	Feb. 27, 1952 	1 
Boston 	 4 	Dec. 22, 1952 	5 
Montauk 	 3 	Jan. 21, 1953 	1 
Sandy Hook 	1 	Nov. 7, 1953 	4 
Willets Point 	3 	Mar. 16, 1956 	1 

Mar. 19, 1956 	2 
Apr. 8, 1956 	 1 

in Lake Erie (mainly due to its shallowness), especially at Sandusky, Toledo, and Buffalo. 
An extreme range of 13.7 ft (4.2 m)at Buffalo was mentioned. The highest positive surge 
at Buffalo observed (up to 1953) was 9.5 ft (2.9 m) on April 1, 1929, and the greatest 
negative surge was 4.2 ft (1.3 m) on January 30, 1939. 

Earlier, the storm surge in the southern part of Lake Michigan due to a squall line on 
June 25, 1954, was considered. Seven people drowned in Chicago. The storm surge 
amplitudes at various locations are listed in Table 7.45. This surge was explained as due 
to resonant coupling between a moving pressure jumpline and the water level in the lake 
(Harris 1957a, 1957b; Platzman 1958a). 

Reference has already been made to the storm surges in Lake Huron. Donn (1959) 
studied the role of edge waves in the storm surges on Lakes Huron and Erie due to the 
storm of May 5, 1952. Freeman and Murty (1972) and Murty and Freeman (1973) studied 
the storm surge in Lake Huron due to the storm of August 22, 1971. Murty and Polavarapu 
(1975) studied the storm surges in the Great Lakes due to the storms of November 1913, 
October 1916, and November 1940. Although their study was restricted to the Canadian 
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TABLE 7.44. Storm surge lags at various locations for different 
storms. (Donn 1958) 

Stage of 	Surge 
astronomic 	lag 

Date 	 tide 	(h) 

Atlantic City 	Jan. 7, 1952 	Low 	 14 
Feb. 27, 1952 	Low 	 5 
Dec. 22, 1952 	Low 	 6 
Jan. 22, 1953 	Low 	 4 
Nov. 7, 1953 	Low 	 2 
Mar. 17, 1956 	Low 	 10 
Mar. 19, 1956 	Low to high 	0 
Apr. 7, 1956 	Low 	 0 

Battery 	Jan. 7, 1952 	Low 	 8 
Feb. 27, 1952 	Low 	 3 
Dec. 22, 1952 	Low 	 7 
Jan. 22, 1953 	Low 	 -4 
Nov. 7, 1953 	High 	 7 
Mar. 17, 1956 	Low 	 -3 
Mar. 19, 1956 	High 	 0 
Apr. 8, 1956 	Low 	 -2 

Boston 	Jan. 7, 1952 	Low 	 10 
Feb. 27, 1952 	High 	 5 
Dec. 22, 1952 	Low 	 0 
Jan. 22, 1953 	Low 	 3 
Nov. 7, 1053 	Low 	 2 
Mar. 17, 1956 	Low 	 0 
Mar. 19, 1956 	High 	 10 
Apr. 8, 1956 	High 	 2 

Montauk 	Jan. 7, 1952 	High 	 5 
Feb. 27, 1952 	High 	 0 
Dec. 22, 1952 	High 	 0 
Jan. 22, 1953 	High 	 6 
Nov. 7, 1953 	High 	 4 
Mar. 17, 1956 	High 	 4 
Mar. 19, 1956 	High 	 2 
Apr. 8, 1956 	High 	 0 

Sandy Hook 	Jan. 7, 1952 	Low 	 7 
Feb. 27, 1952 	Low 	 -1 
Dec. 22, 1952 	Low 	 6 
Jan. 22, 1953 	High 	 -5 
Nov. 7, 1953 	Low 	 1 
Mar. 17, 1956 	Low 	 -3 
Mar. 19, 1956 	High 	 0 
Apr. 8, 1956 	Low 	 0 

Willets Point 	Jan. 7, 1952 	Low 	 4 
Feb. 27, 1952 	Low 	 -8 
Dec. 22, 1952 	Low 	 10 
Jan. 22, 1953 	Low 	 -3 
Nov. 7, 1953 	Low 	 6 
Mar. 17, 1956 	Low 	 -3 
Mar. 19, 1956 	Low 	 -1 
Apr. 8, 1956 	Low 	 4 

Station 
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Location 

Waukegan, IL 
Wilmette, IL 
Rogers Park Beach, Chicago, IL 
Foster Ave. Beach, Chicago, IL 
Wilson Ave. Crib, Chicago, IL 
Montrose Harbor, Chicago, IL 
Belmont Harbor, Chicago, IL 

Amplitude 

0.73 
0.98 
1.83 
1.77 
1.01 
2.07' 
2.13 

Location 

North Avenue, Chicago, IL 
Chicago River 
Chicago University campus 
79th Street South 
Calumet Harbor 
Gary, IN 
Michigan City, IN 

Amplitude 

2.44" 
0.82 
0.46 
0.73 
0.58 
0.67 

0.91-1.83 

14.6 2.4 3.6 4.8 6.0 7.3 8.5 9.8 10.9 12.0 13.4 
COMPUTED SIGNIFICANT WAVE HEIGHTS (m) 

FIG. 7.63. Maximum surge at Boston, Massachusetts, as a function of 
the computed offshore wind wave heights. The dependent data are plotted 
as dots and the independent data are plotted as encircled dots. (Tancreto 
1958) 

TABLE 7.45. Storm surge amplitudes (In) along the south shore of Lake Michigan on June 26, 1954. 
(Harris 1957a) 

'May be 2.44. 
b Estimated. 

part of the Great Lakes, these storms were extensive and undoubtedly caused significant 
surges on the United States shoreline of the Great Lakes also. These storms were extensive 
enough to affect all five Great Lakes. 

Discussion will now concentrate on the storm surges in the United States part of Lake 
Erie where the most significant surges in the United States part of the Great Lakes occur. 
One of the earliest studies appears to be by Keulegan (1953). The 22 storm surges on Lake 
Erie during the period 1900-50 studied by Keulegan (1953) are listed in Table 7.46. A 
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TABLE 7.46. Storm surges in Lake Erie during the period 
1900-50. (Keulegan 1953) 

àH (setup, i.e. 
Wind 	surge at Buffalo, 

speed, V 	surge at Toledo) 
No. 	Date 	(km • h-l ) 	(m) 

1 	Nov. 21, 1900 	81.3 	 3.99 
2 	Oct. 20, 1905 	50.5 	 2.04 
3 	Oct. 20, 1906 	61.6 	 2.99 
4 	Jan. 20, 1907 	77.4 	 3.66 
5 	Dec. 7, 1909 	64.5 	 3.20 
6 	Dec. 31, 1911 	62.6 	 2.90 
7 	Jan. 31, 1914 	55.8 	 2.44 
8 	Dec. 9, 1917 	69.5 	 3.11 
9' 	Dec. 9, 1917 	53.3 	 1.40 

10 	Dec. 10, 1917 	55.2 	 2.32 
11 	Dec. 18, 1921 	72.6 	 3.75 
12 	Dec. 8, 1927 	76.3 	 4.02 
13 	Dec. 9, 1927 	43.8 	 1.25 
14 	Dec. 9, 1927 	42.0 	 1.04 
15° 	Dec. 9, 1927 	35.6 	 0.52 
16 	Apr. I, 1929 	82.6 	 4.05 
17 	Jan. 22, 1939 	62.4 	 2.87 
18 	Sept. 25, 1941 	57.5 	 2.77 
19 	Jan. 2, 1942 	65.0 	 3.81 
20 	Jan. 3, 1942 	31.4 	 0.73 
21 	Nov. 22, 1946 	55.0 	 2.56 
22 	Mar. 25, 1947 	57.5 	 2.53 

'Second peak. 

plot of the setup àH (difference between the water level at Buffalo and at Toledo) and V2  
(wind speed) as a function of time for the storm of December 31, 1911, is given in 
Fig. 7.64. Correlation of storm surges at Toledo with those at Amherstburg and Gibraltar 
was reasonably satisfactory. Based on these data, Keulegan (1953) developed a re-
lationship between àH and V2  and used it to compute storm surges for the storms of 
October 29, 1892, October 14, 1893, September 25, 1941, January 2, 1942, and January 
3, 1942. The agreement between observed and computed storm surges for these cases is 
quite satisfactory. 

Hunt (1959) performed a very comprehensive study of the storm surges on Lake Erie. 
In particular, he paid attention to the role of atmospheric stability in the overwater wind 
speeds and to the influence of Pelee Point and the islands in the western part of the lake. 
Finally, he gave a simple method for predicting the surges at Buffalo. The meteorological 
aspects of this study were considered in Chapter 6. 

Hunt (1959) used a stepwise integration by dividing the lake into segments. He drew 
fetch lines parallel to the wind direction. For most of the southwest storms on Lake Erie, 
the wind direction is more or less uniform. Thus, the fetch lines will be along the lake's 
major axis. The lake was then divided into segments, the criterion being that the water 
depth is more or less uniform in each segment. 

The time lag between the wind and the water surface displacement is taken as 1 h. 
The method of computation is discussed in Anonymous (1955) and Hunt (1954). The 
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Fic. 7.64. Storm surge setup (AH) in Lake Erie and square of wind speed ( V) as a 
function of time for the storm of December 31, 1911. (Keulegan 1953) 

computation makes use of the fact that the nodal point is located towards the end from the 
center of gravity of the lake. It so happens that for lake Erie, for a given wind direction, 
the position of this nodal point does not depend on the strength of the wind. 

The locations of the nodal point and the water level in each segment are determined 
using the equation 

dh 	ours 
 (7.48) 	= 	= 1.22 x 

 10_ 7 [U — 2 + 0.35(TA  — T)]2  
dx pg(D + h) 	 (D + h) 

where h is the water level, D is the water depth, Uw  is the overwater wind, TA and Tw  are 
the air and water temperatures, p is water density, g is gravity, x is along the axis of the 
lake, Ts  is the wind stress, and a is defined as 

Ts + TB 
(7.49) a = 

Ts 

where TB  is the bottom stress. From the above equation a contour map of the water level 
is made. Then, the volume of the setup is compared with the volume of the drawdown. 
If they do not agree, the nodal point is moved slightly and the computation is repeated. 
The Pelee Point topography was included by a 50% reduction of the drawdown in the 
segment containing the islands. Another interesting result is that, during major storms, the 
water level at Toledo can be predicted by subtracting 3 ft (0.9 m) from the computed level 
at Pelee Point. 

For the storm of November 8, 1957, the positive surge at Buffalo was 6.5 ft (2.0 m) 
and the negative surge at Monroe was 5.0 ft (1.5 m). During this storm and several other 
major west—southwest storms the gauges at the western end of the lake went dry. In the 
late 1950's the gauge at Toledo was deepened to correct this state. During the storm of 
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FIG. 7.65. A seiche in Lake Erie resulting from the storm of November 3, 1955. (Hunt 1959) 

November 3, 1955, the maximum setup (i.e. water level difference between Buffalo and 
Toledo) was about 13.2 ft (4.0 m), which consisted of an 8.5-ft (2.6 m) positive surge at 
Buffalo. Hunt (1959) attributed part of this to seiche action between Long Point and the 
eastern end of the Lake. 

The surge profiles at selected stations for the storm of November 1957 are shown in 
Fig. 1.4. The seiche that was excited between Buffalo and Toledo by this storm is shown 
in Fig. 7.65. 

Hunt (1959) mentioned that wind setup in Lake Erie causes large surges in the 
Niagara River. During the storm of November 8, 1957, the water level in the Niagara 
River rose by 17 ft (5.2 m) in 12 h, and during the same time the flow increased from 
118 000 to 253 000 fe• s' (3341-7163 m'• s' ). The method of segment computations 
outlined above appears to work better for Buffalo than for Toledo or Monroe mainly 
because the Buffalo gauge measures the open water levels and does not respond to the local 
disturbances. Also, Buffalo is located on the axis of the lake and is not offset, as are 
Toledo and Monroe. Also, the Pelee Point restriction is too far from Buffalo to have any 
significant influence. The average error in the calculated maximum setup at Buffalo is only 
0.29 ft (0.09 m). A nomogram for computing the positive surge at Buffalo as a function 
of the wind speed is given in Fig. 7.66. 

Harris and Angelo (1963) used statistical regression methods for calculating storm 
surges on Lake Erie. They mentioned that large storm surges occur at Buffalo more 
frequently than at any other location in the United States. According to Irish and Platzman 
(1962) the water level at Buffalo exceeded that at Toledo by at least 6 ft (1.83 m) on 76 
separate occasions during the period January 1940 —December 1959. 

The equation used by Harris and Angelo (1963) is 

173 .1 

24 	12 	24 
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(7.50) 	h(xo, Yo, t) = Eaij,k(xo, Yo)Fi,k( - iàt) 

where At is the time interval between the meteorological observations, i is the number of 
intervals between the observation and time t, j is an index of the observation station, k is 
an index indicating the type of observation, F À (t - àt) is the meteorological factor of 
type k from station j at time (t - iàt), a,j, k (xo , yo ) are coefficients that depend on the 
position (x0 , y o ) for which predictions are desired, and h(xo , A, t) is the predicted surge 
at time t and location (x0 , yo ). According to these authors, eq. 7.50 contains essentially 
all the information that is contained in the usual storm surge equations. 

The dependent data, i.e. the input data for the regession model for storm surges at 
Buffalo, consisted of storms on the following dates: November 24, 1942, November 20, 
1945, February 12, 1946, December 15, 1946, November 14, 1948, January 17, 1949, 
January 8, 1950, January 12, 1950, November 14, 1950, March 22, 1951, October 5, 
1951, November 2, 1951, December 20, 1951, January 20, 1952, November 24, 1952, 
February 19, 1953, November 1, 1955, November 15, 1955, and November 3, 1958. 

The independent data, i.e. the storms for which the storm surges were computed, 
were November 30, 1942, December 10, 1943, November 20, 1946, January 19, 1947, 
November 22, 1947, December 30, 1947, March 1, 1954, September 19, 1954, March 
20, 1955, November 14, 1956, and November 19, 1956. 

The highest and lowest correlations between observed and predicted surges found 
were 0.87 and 0.69, respectively. There was no significant difference between the results 
when a quadratic wind stress law was used instead of a linear stress law. The positive 
surges at Buffalo were almost always accompanied by negative surges at Toledo. Hence, 
a similar procedure with some modifications was used for Toledo. 

In Chapter 2, the important monograph on Lake Erie storm surges by Platzman (1963) 
was considered and the works of Richardson (1972) and Richardson and Pore (1969, 1972) 
were discussed. Pore et al. (1975) deduced that the water level at Buffalo exceeded the 
monthly mean level by at least 1.4 ni once a year and the water level at Toledo dropped 
by the same amount with the sanie frequency. This deduction is based on data for the 
period of 1940-72. Schwab (1978) used a numerical model based on the impulse response 
function method because this method appears to be more efficient than direct numerical 
integration of the dynamic equations, if storm surge results are needed at only a few grid 
points. For hindcast cases, wind observations from the following stations were used: 
Toledo, Cleveland, Erie, Buffalo, Simcoe, London, and Windsor. Water level data were 
taken from gauges located at Toledo, Marblehead, Cleveland, Erie, Barcelona, Sturgeon 
Point, and Stony Point. For actual prediction purposes, wind forecasts at West Erie and 
East Erie stations issued by the U.S. National Weather Service were used. The surges 
appear to depend on the two-dimensional structure of the wind field and also on the 
stability of the atmospheric boundary layer over the lake. For fifteen 5-d hindcast cases 
at eight water level stations, the overall correlation coefficient between the observed and 
computed surges was found to be 0.83. 

Because water level values are needed only at selected locations for storm surge 
simulations (not at all the grid points) and since transport components are not really 
needed, one can use an impulse response method in preference to numerical integration. 
Also, unlike in numerical integration, no calculation is needed using small time steps. In 
this method, one represents the components of the meteorological forcing terni  T by delta 
function impulses. Let ,g'(x, y, t) and g'(x, y, t) denote the water level fluctuation 
resulting from an x impulse and a y impulse, respectively. For the linear case, the water 
level deviation for arbitrary uniform forcing T(t) is given by the convolution integral 
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FIG. 7.67. Response functions for 1 dyne • cm' (1 dyne 
= 10 N) impulsive wind stress of 1-h duration. (a) Eastward 
impulse; (b) northward impulse. (Schwab 1978) 

(7.51) 	h(x, y, t) = 	g(x, y, t — ti)T(e)cle 

where g = (gx, gY) is the Green function for the water level. 
In practice, in the discretized system, the Green functions can be calculated by 

permitting the individual stress components to be one unit for the first time step only, 
integrating forward in time with no forcing and noting the g functions at selected locations. 
For the time-dependent problem, all one has to do is calculate the discrete analogue of 
eq . 7.51. 

Since the meteorological forcing terms are available at time intervals longer than the 
time resolution of the impulse response function, the procedure can be somewhat sim-
plified by presumming the discrete g over that period. The response functions due to a 
spatially uniform wind stress impulse of 1 dyne • cm -2 , summed over 1-h periods at 
Buffalo and Toledo, are given in Fig. 7.67. 

To allow for spatial dependence of the wind field, one can follow Platzman (1963) 
and assign a weighting factor W 1  to the m discrete forcing terms: 

(7.52) 	T(x, y, t) = 	wi (x, y ) Ti ( t) 

where 
In 

E wr(x, y) = 1 

Here, W, is taken proportional to the inverse square of the distance from station i. Thus, 
for the seven meteorological stations used here in the hindcasts, seven response functions 
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TABLE 7.47. Average monthly and annual frequencies of positive storm 

surge cases at Buffalo during the period 1940-72. Frequencies are expressed 

in cases per year. (Pore et al. 1975) 

Storm surge heights (m) 

Month 	0.61 	 1.83 	2.13 

Jan. 	2.31 	1.06 	0.41 	0.16 	0.09 
Feb. 	1.25 	0.31 	0.09 	0.09 	0.03 	0.03 
Mar. 	1.16 	0.47 	0.37 	0.12 	0.06 
Apr. 	0.72 	0.22 
May 	0.15 	0.06 	0.03 
June 	0.27 	0.03 
July 	0.18 
Aug. 	0.18 
Sept. 	0.70 	0.21 	0.09 	0.03 
Oct. 	0.91 	0.27 	0.09 	0.06 	0.03 
Nov. 	2.85 	1.33 	0.48 	0.21 	0.03 
Dec. 	2.30 	1.12 	0.42 	0.12 	0.03 

Annual 	12.98 	5.08 	1.98 	0.79 	0.27 	0.03 

g, must be calculated for each water level station of interest. Note that the wind-weighting 
functions Wi  are used only for the calculation of g,. Thus, the water level response for a 
spatially dependent wind field is 

(7.53) 	h(x, y, t) = E f  gi (x, y, t') T i(e)dt' 
i=1 

Hamblin (1979) studied the storm surges in Lake Erie due to the storm of April 6, 
1979, which was extensive enough to cause surges at many locations in the Great Lakes. 
The setup of 4.5 m between Buffalo and Toledo could be the largest ever recorded in Lake 
Erie. This value can be compared with 4.1 m, which is the maximum setup according to 
Keulegan (1953) during the period 1900-47, and with 3.9 m according to Irish and 
Platzman (1962) for the period 1940-59. Maximum wind speeds up to 38 m.sH  were 
recorded during this storm (April, 1979). This storm also caused surges in Lake St. Clair 
and Lake Ontario. Schwab (1975) applied the normal mode method to compute storm 
surges in Lakes Erie and Ontario for the storm of July 22-24, 1972. 

Pore et al. (1975) provided statistics on the storm surges of Lake Erie. The average 
monthly frequencies of positive and negative storm surges at Buffalo and Toledo for the 
period 1940-72 are listed in Tables 7.47-7.50. 

Raney et al. (1979) developed a three-dimensional model from storm surges in Lake 
Erie and applied it to the possible influence of storm surges on a proposed offshore jet port 
in Lake Erie. 

STORM SURGES ON THE WEST COAST OF UNITED STATES 

The west coast has no serious storm surge problems in the strict sense.' There are 
problems associated with wind waves and swell (Todd and Wiegel 1952). In addition, 

6However, in the months of January and February 1983, major storm surges occurred on the 
California coast. About 25 people were killed and hundreds of millions of dollars worth of damage 
to property occurred. 
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TABLE 7.48. Average monthly and annual frequencies of negative storm 
surge cases at Buffalo during the period 1940-72. Frequencies are expressed 
in cases per year. (Pore et al. 1975) 

Storm surge heights (m) 

Month 	50.61 	50.91 	51.22 	51.52 	51.83 	52.13 

Jan. 	0.41 	0.16 	0.03 
Feb. 	0.16 	0.03 
Mar. 	0.44 	0.06 	0.03 
Apr. 	0.12 
May 	0.03 
June 	0.21 
July 	0.03 
Aug. 	0.03 
Sept. 	0.12 
Oct. 	0.12 
Nov. 	0.18 	0.03 	0.03 
Dec. 	0.45 	0.06 

Annual 	2.30 	0.34 	0.09 

TABLE 7.49. Average monthly and annual frequencies of positive storm 
surge cases at Toledo during the period 1940-72. Frequencies are expressed 
in cases per year. (Pore et al. 1975) 

Storm surge heights (m) 

Month 	.0.61 

Jan. 	0.50 	0.22 	0.06 
Feb. 	0.34 	0.03 
Mar. 	0.94 	0.31 	0.03 
Apr. 	0.47 	0.09 	0.03 	0.03 
May 	0.18 	0.03 
June 	0.21 
July 	0.03 
Aug. 
Sept. 	0.09 	0.03 
Oct. 	0.36 	0.03 
Nov. 	0.48 	0.03 
Dec. 	0.88 	0.12 

Annual 	4.48 	0.89 	0.12 	0.03 

seiches and Helmholtz mode could be excited in the bays and harbors due to mete-
orological causes. Vanoni and Can (1950) mentioned that wave motion with periods 
between 1 and 60 min occurs along the entire Pacific coast of the United States. The 
so-called surging is a serious problem in Long Beach Harbor, California (Herr 1945), and 
in Depoe Bay, Oregon (Bascom 1950). Wilson (1972) described one such surging case in 
Long Beach Harbor during August 26-September 14, 1967. 

Humphrey and Dorratcague (1976) numerically simulated the storm surges on the 
northwest coast of the United States. Along the open coast of Clatsop County, Oregon, 
according to these authors, the maximum levels (estimated for a 100-yr probability) will 
be a storm surge of 1.2 m, an astronomical tide of 1.4 m, and sea and swell of 3.3 m. One 
of the largest storm surges on the Pacific northwest coast during the twentieth century 
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TABLE 7.50. Average monthly and annual frequencies of negative storm 
surges at Toledo during the period 1940-72. Frequencies are expressed in 
cases per year. (Pore et al. 1975) 

Storm surge heights (m) 

Month 	.0.61 	5_0.91 	5_1.22 	..1.52 

Jan. 	1.62 	0.75 	0.28 	0.09 	0.09 
Feb. 	1.25 	0.31 	0.06 	0.06 	0.03 
Mar. 	1.50 	0.62 	0.37 	0.16 	0.09 	0.03 
Apr. 	1.09 	0.41 	0.03 
May 	0.39 	0.03 
June 
July 	0.03 	0.03 
Aug. 	0.06 
Sept. 	0.45 	0.09 	0.06 	0.03 
Oct. 	1.18 	0.18 	0.06 	0.03 
Nov. 	2.79 	1.21 	0.63 	0.21 	0.06 	0.03 
Dec. 	2.24 	0.91 	0.27 	0.09 	0.06 

Annual 	12.60 	4.54 	1.76 	0.67 	0.33 	0.06 

occurred (not counting the one during January 10-11, 1978) on December 17, 1961. 
However, this maximum surge of 1.6 m occurred at low tide and, hence, no significant 
damage was caused. 

During the period October 1942- April 1975, there were a total of 200 extratropical 
cyclones in this area with winds greater than 30 knots (55.6 km • h - ' ) (from directions 165 
to 30°S for 4 h or longer). These produced only small surges, if at all. Based on these 
statistics, Humphrey and Dorratcague (1976) classified the extratropical cyclones on the 
Pacific northwest coast of the United States as follows (in this classification, the cyclones 
that generated surges with amplitudes greater than 0.5 m only were considered). 

About 50% of these surges are associated with gale force south to southwest winds 
ahead of cold or occluded fronts of moderate to strong intensity. Usually, the surface low 
pressure center traveled towards northeast and stalled near Vancouver Island. 
Occasionally, a blocking Arctic high over the land intensifies the pressure gradient ahead 
of the front. 

Roughly 40% of the surges are associated with strong southwest to west winds south 
of deep, almost stationary lows on the coast. One of the largest surges ever produced in 
this area was associated with the storm of December 17, 1961. A simplified version of the 
surface weather map is shown in Fig. 7.68. The remaining 10% of the surges were 
associated with complex multiple wave systems. 

Storms that did not generate significant surges are the rapidly intensifying deep lows 
that form just offshore and travel towards the northeast at great speed (e.g. Columbus Day 
storm of 1962). Although the high winds of these storms cause considerable damage, no 
significant surges are generated. Even the wind wave action is small due to short wind 
duration and fetch. 

STORM SURGES IN ALASKA 

Schafer (1966) used a numerical model to study the storm surge on the northern 
Alaska coast due to the storm of October 3, 1963, which caused considerable damage and 
erosion at Barrow. It appears that this was the first major surge since 1901 in this area. 
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FIG. 7.68. Simplified surface weather chart at 12:00 (GMT) on 
December 17, 1961, near Vancouver Island on the west coast of 
Canada. (Humphrey and Dorratcague 1976) 

FIG. 7.69. Grid for storm surge computation for the northern coast of Alaska. The broken line 
represents the boundary of pack ice. (Schafer 1966) 

The extratropical cyclone that produced this storm surge had wind speeds of up to 
65 m • h -  (105 km • h - I ). The geography of the area and the pack ice boundary are shown 
in Fig. 7.69. The open sea boundaries were taken far enough so that the entire fetch for 
the westerly winds upstream from Barrow is included. Also note that the region of 
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FIG. 7.70. Storm surge at grid point 10,8 (see Fig. 7.69) and at Barrow, Alaska. Curve 1, surge 
at grid point 10,8 when the observed wind stress was multiplied by 2.0 and used in the calculation; 
curve 2, same as curve 1 except that the multiplication factor vas 1.4; curve 3, same as curve 1 
except that the multiplication factor was 1.0; curves 4, 5, and 6, similar to curves 1, 2, and 3 
except that these are for Barrow, Alaska. (Schafer 1966) 

computation includes parts of the Beaufort Sea and the Chukchi Sea. The western part of 
the computational region is a shallow shelf, which contributes significantly to the surge. 
The broken line in Fig. 7.69 shows the edge of the pack ice. It can be seen that there is 
a wide stretch of open water between the pack ice and the coast. 

The calculated storm surge as a function of time at two grid points identified in 
Fig. 7.69 is given in Fig. 7.70. Curves 3 and 6 indicate that the wind stress, as determined 
from the weather charts, was used as it was. However, Schafer (1966) had to increase the 
wind stress (through multiplication factors) to obtain agreement between the computed and 
observed storm surges. These multiplication factors were 1.4 and 2.0. He justified this 
multiplication by suggesting that, since the meteorological data in the Arctic are scarce, 
the analysis from the scanty information obtained from the weather charts could be in 
error. Note that earlier it was mentioned that numerical modelers generally must increase 
the wind stress, as obtained from the meteorological observations, to obtain agreement 
between computed and observed surges. 

From the numerical model results, Schafer (1966) concluded that the maximum surge 
must have occuned near grid point (10,8), which lies in an uninhabited area, and hence, 
no corroboration is possible. At Wainright, the surge was reported to be 3-3.5 m, which 
agrees with the calculations. This value is greater than the surge at Barrow. 

Hunkins (1965) studied tides and storm surges in the Chukchi Sea. Water level was 
recorded with a tide gauge at Fletcher's Ice Island (T-3) while it was aground in the 
Chukchi Sea at 71°55'N and 160°20'W. Here, the mean spring tidal range was 12.5 cm. 
Storm surges here have a range of about 40 cm. During stationary atmospheric conditions, 
the storm surge amplitudes agreed with the inverse barometer effect. For moving pressure 
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FIG. 7.71. Grounded position of Fletcher's Ice Island (T-3) on the Chuckchi Shelf. Depth contours are in 
metres. (Hunkins 1965) 

systems, however, there was asymmetry in the surge heights, which caused a deviation 
from the inverse barometer effect. 

The Chukchi Sea and Fletcher's Ice Island (T-3) are shown in Fig. 7.71. Hunkins 
(1965) mentioned that the effect of the pack ice is to increase slightly the wind stress. The 
storm surge curves obtained after removing the tide from the recorded water level for May 
15—June 7, 1961, and for June 11—July 7, 1961, are given in Fig. 7.72. Hunkins 
explained the asymmetries in the storm surge curves by using a one-dimensional flow 
model, which has properties similar to a profile through the storm. 

Matthews (1971) studied the storm surges on the Arctic Ocean continental shelf. He 
suggested that storm surges up to 1.5 m in amplitude could occur (here, the mean spring 
tidal range is 13.6 cm). In winter the enhanced ice cover reduces the wind setup and 
increases the inverse barometer effect. An intense low pressure system moved north from 
Siberia and later moved eastwards north of Alaska during October 25-27, 1969, and 
caused a surge of about 1.3 m at Eluikak Pass on the northernmost point of Alaska. 

STORM SURGES IN HAWAII 

The Hawaiian Islands are not frequently subjected to storm surges. However, in 
November 1982, the storm surge caused by Hurricane Eva resulted in extensive damage 
to the islands of Kaui and Oahu and a few people died. Another major surge occurred in 
February 1983. Prior to these two surges, major surges occurred in the mid-1950's and 
so.  me minor ones occurred in the 1970's. 
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FIG. 7.72. (a) Storm surge heights at Fletcher's Ice Island (T-3) from June 11 to July 7, 1961 (heavy line). 
The light line is the inverted barometer effect. The two arrows indicate the closest passage of T-3 to two low 
pressure centres. (b) Storm surge heights at Fletcher's Ice Island (T-3) from May 15 to June 7, 1961 (heavy line). 
The light line is the inverted barometer effect. The two arrows indicate the closest passage of T-3 to two high 
pressure centres. (Hunkins 1965) 

PLANNING FOR PROTECTION AGAINST STORM SURGES 

The number of times destruction was caused by hurricanes on the Gulf Coast and east 
coast of the United States during the period 1901-55 is given in Fig. 7.73. Simpson and 
Riehl (1981) discussed hurricane preparedness and plans for protection against hurricanes. 
Witten (1982) mentioned that the U.S. National Weather Service hopes to compile by 
1986 a total of 167 maps covering the entire Gulf of Mexico coast and the east coast of 
the United States affected by hurricane-generated storm surges. These maps, referred to 
as "storm evacuation maps," contain information on lake and river basin configuration and 
water levels, levee systems, roads, evacuation routes, flood-prone zones, high fronts or 
havens of refuge, populations of cities and towns, etc. Mogolesko (1976) determined the 
probability of occurrence of a maximum hurricane and its storm surge potential for safety 
related requirements for nuclear power plants. Earlier, it was seen that the probable 
maximum hurricane (PMH) is a hypothetical hurricane with the greatest destructive 
consequences for the locations under question. Seventeen years of tidal data were available 
at Fort Jefferson, New York (1957-73). Based on high correlations of these data with the 
data fron3 two nearby Long Island Sound tidal stations, the data are extended to a total of 
36 yr by including the years 1938-56. Based on these data, it was estimated that the 
probability of the occurrence of a PMH is 4 x 10- ' 2 . In other words, the return period is 
2.5 x 10 H  yr. 

Using Gumbels' theory (Gumbel 1958) the return period was determined to be about 
10 12  yr. Mogolesko (1978) felt that 10' 2-yr return period requirement was too stringent. He 
felt that a return period of 107  yr was more realistic as far as nuclear power plant safety 
was concerned. Balloffet et al. (1982) performed a joint probability analysis of storm 
surges and tides in New York Harbor and Newark Bay. 

Richardson (1978) studied shore erosion due to extratropical cyclone generated storm 
surges on the east coast of the United States. The five cyclones considered by him were 
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FIG. 7.73. Number of times destruction was caused by hurricanes during the period 1901-55. (Harris 
1958a) 

(1) March 6-9, 1962, (2) February 19-20, 1972, (3) February 9-11, 1973, (4) March 
17-18, 1976, and (5) December 18-19, 1977. Of these, the storms of 1972 and 1976 
followed a northeasterly course along the New England coast (path I in Table 7.51) and 
the other three storms moved off the Carolina coasts in an east—northeasterly direction 
(path II). 

Caldwell (1959) studied shore erosion by storm surges on the Atlantic and Gulf 
coasts. The results are summarized in Table 7.52. Dolan et al. (1978a, 1978b) studied 
storm surge erosicrn along the coast of New Jersey making use of photogrammatic 
methods. They stated (1978a, p. 21): 

. . . a common scale mapping method was developed using historical aerial pho-
tography as the data base. Aerial photography of the southern New Jersey coast 
covering four decades is used to demonstrate the methodology and to provide long-term 
baseline information on shore dynamics. The data sets include mean erosion rates and 
variance at 100 meter intervals along the coast. Shore line recession rates along the 
New Jersey coast are generally less than one meter per year, but for several locations, 
the rates exceeded 5 meters per year and they vary considerably both within and 
between the island segments of the New Jersey coast. 

705 



Storm 

Path I Path II 

Feb. 19-20, 
State 	 1972 

Mar. 17-18, 
1976 

Mar. 6-9, 	Feb. 9— 1 1, 	Dec. 18-19, 
1962 	1973 	 1977' 

Maine 	 Severe 
New Hampshire 	Minor 
Massachusetts 	Severe 
Connecticut 	Minor 
Rhode Island 	Severe 
New York 	 Minor 
New Jersey 	None 
Delaware 	 None 
Maryland 	 None 
Virginia 	 None 
North Carolina 	None 
South Carolina 	None 
Georgia 	 None 
Florida 	 None 

Minor 
Minor 
Minor 
Moderate 
Major 
Severe 
Severe 
Severe 
Severe 
Severe 
Severe 
Minor 
None 
Major 

None 	 None 
None 	 None 
None 	 None 
None 	 None 
None 	 None 
None 	 Minor 
None 	 Minor 
None 	 Major 
Major 	Severe 
Severe 	Minor 
Major 	None 
None 	 None 
None 	 None 
None 	 None 

Major 
None 
Major 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 

'Preliminary estimates. 

TABLE 7.52. Shore erosion due to storm surges. (Based on Caldwell 1959) 

Nov. 6-7, 1953 New Jersey 1.83 	<2 d 	Maximum erosion of the 
3-m depth contour was 55 m 

Sept. 5, 1950 

Oct. 4-5, 1948 
Sept. 21, 1938 
June 27, 1957 

(Hurricane Audrey) 
Aug. 26-27, 1949 

Florida 
(Pinellas County) 

Virginia 
Long Island 
Louisiana coast 

(south of St. Charles) 
Lake Okeechobee 

	

1.52 	>1 d 

	

2.07 	—3 d 
2.74 

3,05 
2.07 	2.6 h 

>100 ft (30.5 m) 
30.5 m 
37 m 

38m 
18.3 m 

Location of 
eroded coast 

1 ine 

Maximum 
surge 	Duration 
(m) 	of surge 

Erosion 
characteristics Date 

TABLE 7.51. Qualitative estimates of beach erosion associated with five extratropical storms. (Richardson 
1978) 

These authors designed the OGAS (orthogonal grid address system) for the rapid and 
systematic acquisition of shoreline and storm penetration information from historical aerial 
photographs at 100-m intervals along the coast. From these photographs, the movement 
of the high water line (HWL) is studied statistically. In these studies the shoreline is 
defined for operational purposes as the high water line and the storm surge penetration line 
is defined as the line that separates the active, nonvegetated sand areas from the areas of 
continuous strands of grass and shrub. The mean rate of change in the storm surge 
penetration line and shoreline for the southern New Jersey coast during the period 
1930-71 is given in Fig. 7.74. 

Yang et al. (1970) studied the probability of hurricane-generated storm surges at 
Breakwater Harbor, Lewes, Delaware, making use of Gumbel's theory (Gumbel 1958) 
and Wemelsfelder's theory (Wemelsfelder 1961). First, results obtained using Gumbel's 
theory will be considered. From mean sea level records, monthly maximum levels were 
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Flo. 7.74. Mean rate of change (metres per year) in storm surge penetration line and shoreline for the southern 
New Jersey coast from 1930 to 1971. (Dolan et al. 1978b) 

obtained at Breakwater Harbor for the period 1953-69. The goal is to predict the proba-
bility of occurrence of high water levels based on these data. From the data, the maximum 
height in each year (365 d) was noted. This is treated as a random variable and is denoted 
by X. The probability that X is less than or equal to a certain quantity x is the same as the 
probability that all 365 daily water levels are less than or equal to x. Next, assume that 
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the random daily levels are independent of each other and have a common probability 
distribution. Then 

	

(7.54) 	F(x) 	[Fx0 (x)r 
where X0  denotes the random daily level and n = 365. Thus, if the probability distribution 
F 0 (x) of the random daily level X is known, then using eq. 7.54, the probability distribu-
tion of the annual maxima can be determined. Gumbel's theory shows that 

	

(7.55) 	F(x)  

provided the number of random daily levels is great, i.e. provided n is a large number. 
Here, parameters a and p, can be determined by plotting all the data on an extreme 
probability graph and then fitting a straight line to these data. 

The basic difference between Gumbel's theory and Wemelsfelder's theory is in the 
initial treatment of the data and in the presentation of the results. In the latter theory, 
instead of selecting the annual maximum out of 365 daily values, one counts the number 
of exceedances of high water levels in the total period for which observations are available. 
Thus, unlike in Gumbel's theory (in which there is only one value for each year), in 
Wemelsfelder's theory, there could be several values in any given year exceeding a 
specified water level. In Wemelsfelder's theory, one plots this number y per year against 
the corresponding water level H, and this plot is referred to as a frequency curve. Then 
one can use the Poisson probability distribution, according to which the probability p of 
no exceedance of a level in a given period T is 

	

(7.56) 	p = e - "T 

where y is now the average rate of exceedance that can be obtained from the frequency 
curve. The probability of exceeding the specified level is 

	

(7.57) 	q = 1 — e'r  

Since this probability implies a chance of failure, it is defined as risk. Thus, a relation is 
obtained between the risk q, the design period T, and the design water level H. The mean 
rate y is a function of H through the frequency curve. In Wemelsfelder's theory, the results 
are presented in a two-dimensional plot, i.e. the abcissa is T, the ordinate is H, and the 
curves are for various risks q. 

The results from Gumbel's theory for Breakwater Harbor and Atlantic City are shown 
in Fig. 7.75 and 7.76, respectively. In these diagrams the ordinate is the water level and 
the bottom abcissa is the probability distribution of the asymptote of the annual extremes 
(i.e Fx (x)). The top abcissa is the return period in years. The plotted points are data points. 
The line in the center is the prediction based on Gumbel's theory. For example, for 
Breakwater Harbor, the height of 11 ft (3.4 m) has a probability of 0.9 of not being 
exceeded in any one future year, and on an average it will be exceeded once every 10 yr. 
Similarly, a height of 12.2 ft (3.7 m) has a chance of 0.98 of not being exceeded in any 
given year, and on an average it will be exceeded once every 50 yr. The two curves on 
either side of the central curve are referred to as "control curves" and they form a band. 
These curves denote the allowable deviation of data points from the central line. If all data 
points fall within the band, then Gumbel's theory is supposed to be valid. 

The frequency curves for Breakwater Harbor and Atlantic City are shown in Fig. 7.77 
and 7.78, respectively. The results from Wemelsfelder's theory for Breakwater Harbor are 
given in Fig. 7.79. In Fig. 7.79, the ordinate is the water level and the abcissa is the design 
period in years. For example, at Breakwater Harbor, in 50 yr the level of 13.5 ft (4.1 ni) 
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Fm. 7.75. Storm surge probability curves for Breakwater Harbor, Delaware. (Yang et al. 1970) 

will be exceeded with a probability (or risk) of 10%, 15.3 ft (4.7 m) with a risk of 1%, 
and 17.2 ft (5.2 m) with a risk of 0.1%. 

Yang et al. (1970), based on their study, concluded that there are certain short-
comings in Wemelsfelder's theory. They stated (1970, p. 2016): 

... we could not find a clear ground ru le for making the count of exceedances. Suppose 
that a severe hurricane hits a coastal area for three days with highest water levels on 
the first and third day. Such an event may be counted as two if the unit of time intervals 
is a day, counted as 1 if it is a month, or counted as 1 if the entire hurricane unit is 
counted as a unit. 

Another drawback that both theories share is that neither one can take into account 
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FIG. 7.76. Storm surge probability curves for Atlantic City, New Jersey. (Yang et al. 1970) 

the duration of occurrence of the high water levels, which is a very significant parameter 
for coastal damage. As has been seen in the above study, the total water level is considered 
(i.e. tide + surge) rather than the surge alone. It might be better to consider the surge alone 
but one must consider in detail the (nonlinear) interaction between the tide and the surge. 

Fallah et al. (1977) extended the earlier study of Yang et al. (1970) to determine the 
storm surge probability at Breakwater Harbor, Delaware. In this study they recognized the 
fact that since long-term water level data are not available, one can deduce this from 
long-term meteorological data through the use of a hydrodynamic model. Thus, a com- 
bined statistical (for the meteorological part) and hydrodynamic model is developed. 
These authors mentioned that Bretschneider (1959) was the first one to use a similar model 
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Fm. 7.79. Wemelsfelder risk curves for Breakwater Harbor, Delaware. (Yang et al. 1970) 

for Delaware Bay and Chesapeake Bay. 
The statistical model used is based on Monte Carlo simulation and consists of the 

following six steps: (1) estimate the statistical distribution of historical hurricanes and 
hurricane parameters; (2) generate artificial hurricanes associated with the set of random 
hurricane parameters; (3) compute the surge heights associated with each artificial hurri-
cane by a suitable hydrodynamic model; (4) combine the hurricane surge with astro-
nomical tide; (5) generate a random total water level (surge + tide); (6) construct extreme 
value distribution based on yearly maxima. 

Bretschneider (1972) gave hurricane data for the Delaware coast for 70 yr. This was 
used along with the tidal data from Myers (1970). Storm surge data are taken for the period 
1953-74 from the U.S. Geological Survey. The hydrodynamic model used was SPLASH 
II (discussed earlier). There are a total of 792 sample years in this simulation from which 
important data on the surge + tide and their frequency of occurrence are extracted. These 
values are plotted on extreme value probability paper (Fig. 7.80). The bottom abcissa is 
the probability distribution function, i.e. the probability that the yearly extreme is equal 
to or less than the indicated value. The top abcissa is the return period in years. 

In Fig. 7.80 comparison is made among the results obtained by Yang et al. (1970) 
for Breakwater Harbor, by Myers (1970) for Atlantic City, by the Corps of Engineers 
(1972) for Rehoboth Beach, Delaware, and the present results. The results from the Corps 
of Engineers and by Myers appear to be overly conservative. 

Myers (1975) studied storm tide frequencies due to hurricanes along the coast of 
Carolina. The technique that was used in this study has been used by NOAA for similar 
studies for other parts of the east coast and Gulf Coast of the United States with the aim 
of providing technical information for the Federal Insurance Agency. Specifically, storm 
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FIG. 7.80. Maximum storm surge heights, their probability of occurrence, and return 
periods for Breakwater Harbor, Delaware. •, Urban Development (1976) simulation 
(792 yr); D, Myers (1970) model for Atlantic City; 0, Yang et al. (1970);  X,  Corps of 
Engineers model (1972). (Fallah et al. 1977) 

tide (here, storm tide refers to storm surge plus astronomical tide) levels with return 
periods (or recurrence intervals) of 10-500 yr are examined. The so-called "joint proba-
bility method of tide-frequency analysis" used here consists of three steps: (1) deter-
mination of the climatology of hurricane characteristics; (2) development of a hydro-
dynamic model to calculate storm tide levels on the coast due to hurricanes; (3) syn-
thesizing this information into storm tide frequency analysis. 

In this study the astronomical tide and the storm surge are simply added and the 
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(nonlinear) interactions are not considered. The time of occurrence of the surge relative 
to the tide is very important. Hurricane Gracie of September 29, 1959, produced a 
maximum surge of 8.3 ft (2.5 m), which occurred at the time of low tide on the lower 
South Carolina coast. Hence, the total storm tide was only 5.6 ft (1.7 m) at Charleston, 
South Carolina. Had the surge occurred some 6 h later, the total storm tide would have 
been 11.2 ft (3.4 m). Hurricane Hazel of October 15, 1954, struck Myrtle Beach and 
produced a surge at the time of high tide. Had the surge occurred at the time of low tide, 
the storm tide would have been 6 ft (1.83 m) smaller. In this joint probability method, it 
is assumed that the hurricane arrival time is independent of the state of the tide. 

The climatological data used are central pressure of the hurricane, radius of maximum 
winds, directional approach to the coast, and forward speed. Some of the major hurricanes 
used in this study and the relevant information are listed in Table 7.53. Based on the 
hurricane data, probability distribution functions were derived for radius of maximum 
winds, hurricane forward speed, and direction of forward motion. The hydrodynamic 
model used is SPLASH II. The maximum storm surges for 17 cases at Charleston are given 
in Table 7.54. 

Next, the Florida coast will be considered. It is only affected by hurricanes and not 
extratropical cyclones. Bruun et al. (1962) related Florida's coastal topography to its storm 
surges and stated (p. 1): 

Practically all of the East Coast of Florida consists of a barrier island chain broken 
occasionally by inlets. At Cape Canaveral the ocean beach is the greatest distance from 
the mainland — about 15 miles [24 km] . . . South of Miami Beach, Keys extend 
southwestward to Key West and small islands continue to Dry Tortugas . . . Mangrove 
swamps comprise the coastline from Cape Sable to Cape Romano on the lower west 
peninsula. From Cape Romano to Anclote Keys the outer shore of the Gulf is formed 
of barrier islands, mostly low and without sand dunes. North of Anclote Keys the Gulf 
shoreline consists of tidal flats through Apalachee Bay . . . A barrier island system 
continues on the northwest of Apalachee Bay. However, between St. Andrew Bay and 
Choctawhatchee Bay the Gulf Beach is on the mainland for approximately 80 kilome-
ters, an unusual but not unique feature in Florida's coastal topography. 

Bruun et al. (1962) mentioned that hydraulic models for studying storm surges have 
been constructed for Sarasota Bay, Bakers Haulover Inlet (near Miami), Lake Worth Inlet, 
and Boca Raton Inlet. Based on these hydraulic studies, diagrams for return periods of 
storm surges (5- to 100-yr range) were developed for 15 coastal sections. A statistical 
analysis was performed of all available data. The frequency curves for six locations on the 
east coast of Florida are shown in Fig. 7.81 and the frequency curves for four locations 
on the west coast of Florida are shown in Fig. 7.82. 

Mariner's Weather Log (Vol. 22, No. 5, Sept. 1978, p. 345-346) reported the 
results of a survey on the effectiveness of hurricane warnings: "When Hurricane Eloise hit 
the Florida panhandle in 1975, 100 000 Gulf Coast residents left their homes, fleeing 
inland in the face of 125 mph [201 kph] winds and 18 foot [5.5 m] storm tides. But many 
thousands either would not or could not move . . 

A few days after the storm, a cooperative study between the U.S. National Weather 
Service and the Social Science Research Center at Mississippi State University put a 
survey team into the area to learn more about the perceptions and reactions of persons to 
a hurricane threat and weather warning messages. This was a followup to a similar effort 
conducted by these two groups following Hurricane Camille in 1969. Three of the im-
portant findings were as follows. ( I) Newcomers are more likely to evacuate when faced 
with a hurricane warning than are residents of the area for 5 yr or more. (2) There is a lack 
of understanding by coastal residents of the nature of a hurricane and its dangers. Hurri- 
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Date Meteorological information Oceanographical information 

TABLE 7.53. Some of the important storm surges on the coast of South Carolina up to 1959. (Based on Myers 1975) 

Sept. 4-5, 1686 

Sept. 16-17, 1713 

Aug. 13, 1728 

Sept. 15, 1757 

Sept. 30—Oct. 1, 1752 

Oct. 7-8, 1783 

Sept. 19, 1787 

Oct. 19-20, 1797 

Sept. 7, 1804 

A hurricane struck the Charleston area 

A tropical cyclone 

Most intense hurricane in the Charleston area during colonial 
times (i.e. before 1776) 

A severe tropical cyclone 

A major storm on the South Carolina coast 

A tropical cyclone 

A severe hurricane moved inland between Savannah and 
Charleston and caused great damage to the coasts of Georgia 
and South Carolina and then moved to sea again 

Severe destruction. An interesting historical aspect is given by 
Ludlam (1963): "A hurricane struck the Charleston area 
causing severe destruction to the new colony, but it also ben-
efitted the colony by disrupting a Spanish attack on the lower 
Carolina settlements. The Spanish landed near North Edisto 
Island and struck toward Stuart Town near Beaufort on Sep-
tember 4th. That evening the wind picked up to a gale, driving 
two of the Spanish galleys so high on land that they had to be 
abandoned and the attack called off" 

Streets were flooded in Charleston 

70 people drowned north of Charleston 

Great damage; 23 ships were driven ashore in Charleston Harbor 

Several people killed 

Damage along the South Carolina coast 

Great damage to shipping 

A great storm surge drowned 23 people at Charleston 

Flooding in Charleston 

More than 500 people drowned in South Carolina 

Sept. 16 (or 14), 1700 	A hurricane wrecked the ship Rising Sun in Charleston Harbor 
with the loss of all onboard 

Aug. 27, 1813 	 A tropical storm near Charleston. Exceptionally high winds Very large storm surges 



Date Meteorological information Oceanographical information 

Sept. 4, 1834 Record storm surges at Georgetown. Duration was about 12 h 

Aug. 27, 1881 

Aug. 25, 1885 

Aug. 27-28, 1893 

Aug. 28, 1911 

Aug. 11, 1940 

TABLE 7.53. (Continued) 
C 

Sept. 10, 1820 A destructive hurricane passed inland just north of Georgetown A storrn surge of 1.22 m at Georgetown 

Sept. 27, 1822 A srnall but severe hurricane entered the coast between 
Georgetown and Charleston 

Great storm surge at Georgetown. Several hundred people 
drowned 

Aug. 7-8, 1854 Hurricane approached the United States from the 
south—southeast after moving through the northern  Bahamas 

Edisto Island, near Charleston, suffered severely, as did Port 
Royal and Beaufort to the south. The massive extent of the 
disturbance can be guessed from the vast inundations that took 
place in the Winyah Bay area of Georgetown county 

A major hurricane. Winds up to 87 km 

Hurricane moved inland near Savannah on a northerly course and 
passed to the west of Wilmington. As a result of this destruc-
tive storm, it was proposed that a weather reporting system be 
set up in the West Indies and Mexico 

A severe hurricane passed over the coasts of Georgia and lower 
South Carolina. The storm moved through central South 
Carolina on a northerly course passing from about Savannah to 
a little west of Charlotte 

A severe hurricane moved inland between Savannah and 
Charleston. Winds up to 130 km -11- ' at Charleston 

Storm entered the coast from the southeast striking between 
Savannah and Beaufort 

More than 700 people killed by storm surge. Surges up to 5 m 

South Carolina coast severely damaged. About 90% of the 
houses in Charleston destroyed; 21 people killed in Charleston 

About 2000 people killed. Maximum surge of 6 m at Savannah 
Beach, GA. Surges of 3.3 m at Edisto Beach, 2.6 m at 
Charleston 

Surges up to 2.2 m at Charleston; 17 people killed 

34 people killed in the storm surges. Surge of 4.3  mat Beaufort. 
Storm surges of up to 3 m at the outlying islands of St. Helena, 
Hilton Head, Doufuskie, and Pinckney. Surge of 4.1 m at the 
southern tip of Edisto Island. Surge of 2.6 m on Folly Island. 
Surge of 2.7 m at Charleston 



Date Meteorological information Oceanographical information 

TABLE 7.53. (Concluded) 

Oct. 15, 1954 

Sept. 29, 1959 

Hurricane Hazel entered the coast just north of Myrtle Beach and 
was one of the most destructive hurricanes in terms of property 
damage. Hurricane winds hit the coast between Georgetown 
and Cape Lookout. Highest wind gust at Myrtle Beach was 
171 km •11-  '. After devastating the coast, the hurricane moved 
across North Carolina with diminishing winds, passing 
through Virginia and heading northward toward Lake Ontario 
and Canada. Lowest recorded barometric pressure of 938 mb 
was at Little River Inlet on the South Carolina—North Carolina 
border 

Hurricane Gracie entered the Beaufort County coast at about 
11:30 a.m. on Sept. 29 and the eye of the hurricane passed 
over St. Helena about 16 km north of Beaufort. Lowest pres-
sure of 950 mb at Beaufort. Hurricane followed a path 
north— mirthwest to Bamberg and then changed to west 
and passed west of Columbia 

Advance warnings enabled people to evacuate the threatened 
areas and only one person was killed in South Carolina. Every 
fishing pier from Myrtle Beach to Cedar Island (a distance of 
274 km) was destroyed. Surges of 5 mat  Holden Beach Bridge 
and Calabash. Surge of 5.2 m at Cherry Grove Beach. Surge 
of 4.7 m at Myrtle Beach. Surges greater than 4 m at Surfside 
and Garden City. Surges of 3 m on Pawleys Island 

Storm surge coincided with low tide at Charleston. Even then, 
considerable damage occurred 



Date 

Aug. 28, 1893 
Aug. 11, 1940 
Aug. 27-28, 1911 
Sept. 27-28, 1894 
Sept. 29, 1959 (Gracie) 
Oct. 15, 1947 
July 14, 1916 
Oct. 20, 1944 
Sept. 18, 1928 

Maximum 
storm surge 

(m) 

2.72 
2.44 
2.41 
2.13 
1.83 
1.83 
1.80 
1.77 
1.71 

Date 

Aug. 17, 1955 (Diane) 
Sept. 11, 1960 (Donna) 
Sept. 18-19, 1955 (Ione) 
Aug. 11, 1955 (Corrine) 
Oct. 15, 1954 (Hazel) 
Aug. 29-30, 1954 (Carol) 
Aug. 30, 1952 (Able) 
Sept. 27, 1958 (Helen) 

Maximum 
storm surge 

(m) 

1.59 
1.52 
1.34 
1.31 
1.28 
1.28 
1.22 
1.19 

TABLE 7.54. Storm surges due to hurricanes affecting Charleston, SC, during 1893-1964. (Meyers 
1975) 

cane winds were by far the most feared element of the storm, and this was the reason given 
by most people for evacuating, mentioned about three times as often as fear of water. This 
lack of understanding of, and respect for, storm surges is particularly significant in that 
90% of all hurricane deaths are from drowning. (3) The majority of those interviewed in 
the Eloise Survey were satisfied with the U.S. National Weather Service's warnings and 
their distribution by public safety agencies and the news media. 

White and Haas (1975) assessed the storm surge risk in Florida from the point of view 
of evacuation, a portion of which is presented (p. 30): 

[It] . . . is a large, slow-moving, wet hurricane making a landfall south of Miami. 
Specifically , , it is a hurricane with a central pressure of 925 mb and radius of maximum 
winds of 15 miles [24 km]. This is equivalent to Donna (1960), Carla (1961) and Betsy 
(1965) and much less severe than the Keys storm of 1935, which drowned 730 people 
in that area. It passes just south of Key Biscayne and moves onshore at 15 mph [24 kph] 
at the new residential community of Saga Bay .. . Under these conditions, the National 
Hurricane Center in Coral Gables issues a warn ing for residents of Key Biscayne, 
Virginia Key and South Miami to evacuate. Such a warning is normally made with at 
least 12 hours of daylight remaining before the predicted landfall of the hurricane . . . 
Not all of the 12 hours of warning are available for evacuation. As much as 6 hours 
prior to a slow-moving hurricane's landfall, storm surge may cause tides to begin 
rising, thereby flooding some low points on roadways used for evacuation, and 
bringing automobile traffic to a halt. Even before the storm surge hits its peak at the 
coast, traffic is snarled by a combination of congestion, weather, flat tires, and 
automobile accidents . . . The drawbridge' represents another weak link in the escape 
route . . . Severing of the causeway for any reason means large fatalities from storm 
surge in the trapped population. The five to ten foot land elevations afford minimal 
shelter from the wind-driven storm surge waves of 10-15 ft. along the right side of the 
hurricane. Mainlanders also experience severe difficulties in their attempts to evacuate. 
A storm surge 6 hours in advance of the hunicane's center catches many residents still 
preparing to leave . . . Saga Bay is an excellent example of how the hurricane disaster 
potential is exacerbated by coastal development. Elevation of the Saga Bay area varies 
from sea level to 5 ft. above mean sea level. In order to meet Federal housing 

'Key Biscayne and Virginia Key are about 5 mi (8 km) off the coast of South Miami. The 
elevations of these areas above mean sea level range from 2 to 3 ft, with an average of approximately 
10 ft. Rickenbacker Causeway, a 2-mi bridge across Biscayne Bay bisected by a drawbridge, 
connects Key Biscayne and Virginia Key with the mainland. 
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FIG. 7.82. Storm surge frequency curves for the west coast of Florida. See Fig. 7.81 for explanation.(Bruun 
et al. 1962) 

regulations, houses are elevated 5 ft. above m.s.l. on fill dug from nearby manmade 
lakes. The developers also tore out the mangroves along the coast, which are unsightly 
and ill-smelling. These mangroves formerly provided one of the few effective barriers 
to storm surge, and the smooth cleared beaches that are being built invite the un-
restrained sweep of storm surge across the entire area. 

The south and east coasts of the United States are illustrated in Fig. 7.83. The small 
numbers 1-58 refer to 58 segments of the coast, each 50 mi (80 km) wide. The numbers 
in the top belt give the percentage probability of hurricane winds (i.e. winds exceeding 
73 m•11 -1  or 33 m • s-I ) occurring in any year. The numbers in the bottom belt give the 
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probability that winds will exceed 125 mi • h -1  (56 m • s'). The cost of damage for the 
period 1934-70 is given in Fig. 7.84. For other useful information, see Friedman (1975, 
1977) and Tubbesing (1979). 

The Bulletin of the American Meteorological Society (Vol. 60, No. 6, June 1979, 
p. 683) says that five storm evacuation maps designed to facilitate evacuation of persons 
from endangered areas along the coast of Florida from Jacksonville to Cape Canaveral 
have been recently prepared by NOAA. These maps show emergency evacuation routes, 
areas subject to flooding from hurricanes and other storms, and areas that might f rovide 
safety for evacuees. More details can be found in Witted (1982). 
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the United States. (White and Haas 1975) 

In 1971 the Florida State Legislature enacted a law and set up guidelines for beach 
front construction in Florida (Collier 1978). It is desirable to have similar guidelines for 
all coastal areas in the world vulnerable to storm surges. The Florida Sea Grant Marine 
Advisory Program (FMAP) recently expanded the scope of marine advisory services to 
include natural disaster preparedness (Leahy 1979). Leahy (1979) stated some of the 
problems peculiar to Florida from the point of view of storm surges (p. 18): 

Florida with 1,350 miles (2,173 km) of coastline and a shoreline of nearly 8,500 miles 
(13,680 km) 50 estuaries, 50 inlets and a lengthy inter-coastal water way . . . 

There were 54 hurricanes between 1900 and 1975, the last one hitting the north coast 
between Fort Walton Beach and Panama City in September 1975. But since that time the 
state's population has increased by 1.8 million, with an estimated 1979 population of over 
9 million, many of whom never experienced a hurricane. There is no point in the state of 
Florida that is more than 70 mi (113 km) from salt water. It is estimated that 78% of all 
residents live on or near the coast. 

Tetra Tech. Inc. (1978) evaluated storm surge risk to the coast of Florida with the 
goal of determination of coastal flood levels having recurrence intervals of 10, 50, 100, 
and 500 yr with an accuracy of ± 0.5 ft (0.15 m). They recognized two classes of 
methodology: historical and synthetic. In the first approach, either the worst case on record 
or a statistical analysis of all historical events is used. This approach is satisfactory 
provided the length of the data record is large. For engineering design purposes, a typical 
historical storm may be used to determine design criteria. This storm may be given 
different landfall locations, different arrival times with reference to the tide, etc., and one 
can use a synthetic or joint probability method. In these methods, historical data of 
individual storm parameters (and not just the storm surge amplitude) are used. The 
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statistical distributions of the storm parameters that determine the surge amplitudes are 
examined c011ectively as well as individually. From these distributions, a large sample of 
synthetic storms can be created that resemble the historical storms. Through this procedure 
one can simulate several thousand years of storms and then estimate the storm surge 
récurrence  intervals. 

In this study the basic data consisted of 44 hurricanes during the period 1903 — 65 
(see Table 7.30). The storm parameters used are the central pressure, the radius of 
maximum winds, the forward speed of the storm, its direction of travel, and the point at 
which it crosses the coast (or the distance offshore if its track is parallel to the coast). Each 
of these parameters is subjected to statistical analysis to determine its probability of 
occurrence. Several hundred storms are synthesized from these statistical distributions and 
the corresponding  pressure and wind fields are determined, and the storm surge is com-
puted using a model that allows for coastal flooding. The astronomical tide is then 
statistically combined (with random phase) with the computed surge. The influence of 
rainfall was also considered. This effect is significant inland in the rivers and inlets. The 
results of this study are summarized in Fig. 7.85. Further results can be found in Taylor 
(1980). 

Next to be considered is the coast of Louisiana. Shàw (1929) discussed the storm 
surge hazard to New Orleans. New Orleans missed great destruction from the storm surges 
of September 20, 1909, August 17, 1915, and September 29, 1915, mainly because of its 
location relative to the storm tracks. However, if the tracks had slightly shifted to the east, 
great destruction would have occurred. The levees are 10 ft (3 m) high, whereas a storm 
surge height of 13 ft (4 m) occurred only a few kilometres away from New Orleans. 

Crawford (1979) described the results of storm surge calculations for the southeast 
coast of Louisiana using the model SLOSH (Jelesnianski and Chen 1979). This section of 
the coast is vulnerable to severe storm surges. Recent examples are Hurricane Betsy of 
1965 and Hurricane Camille of 1969. This model calculates the sea, lake, and overland 
surges and includes the complex levee systems and the water bodies Lake Maurepas, Lake 
Pontchartrain, Lake Borgne, Lake Salvador, Breton Sound, and Barataria Bay. In 
the results, flooding (F) was referred to as water levels less than 3 ft (0.91 m) above 
average ground levels, major flooding (MF) as between 3 and 7 ft (0.91-2.1 m) 
above average ground levels, and catastrophic flooding (CF) as more than 7 ft 
(2.1 m) above average ground levels. A total of nine tracks were simulated over three 
directions: south—southwest, south, and southeast. 

The results form the numerical model were summarized by Crawford (1979) in great 
detail for each geographic location. For example, for storms from the south— southwest 
he stated: 

CF is possible on the western side of the Mississippi River Levee System from near 
Buras northwest to the storm track . . . MF is possible west and north of Lake Maurepas 
. . . There is strong evidence that the Mississippi River Levee System may increase 
flood potentials at locations on the upwind or stormside while lessening the potentials 
downwind of the river levees . . . 

This paper is very useful from a practical point of view. 
Next, storm surge risk on the Texas coast will be considered beginning with 

Galveston where more than 6000 people were killed by a storm surge in 1906, which to 
date is the biggest single natural disaster in United States history. Galveston Island is a 
long, narrow barrier beach that runs parallel to the Texas coast some 2 mi (3.2 km) away 
across Galveston Bay. The city of Galveston occupies the eastern end of the island 
(Hughes 1979). In most of the residential areas, the average height of the street above sea 
level ranged from 4 to 7 ft (1.2-2.1 m). A hurricane that originated in the tropical Atlantic 

723 



	  Surge Alone (No Tides) 

— • — Surge Plus Tide (Simulation) 

1.8 0.6 1.2 3.6 2.4 3.0 4.2 

Id  >- 
Id 

Id  

cr 

w _ 1  
1 0 

Id 

Id 
Id  

Id 

-2 
10 

0 

PEAK WATER LEVEL (m) 

FIG. 7.85. Flood level exceedance rates due to storm surges along the coast of Florida. (Tetra Tech. Inc. 1978) 

724 



west of Cape Verde Islands on August 27, 1906, moved on to the Galveston area by 
September 8 and caused a great storm surge. The waters from Galveston Bay (to the north 
of the city) and the waters from the Gulf of Mexico (to the south of the city) converged 
and submerged the entire city. Storm surges of up to at least 10 ft (3 m) invaded the city. 

Davis (1963) studied the problem of design of hurricane flood protection works near 
Texas City, located on Galveston Bay. The design hurricane for a given coastal area is 
defined as a hurricane with a recurrence interval of 100 yr. For the Gulf of Mexico coast, 
in the Galveston area, the design hurricane has the following characteristics: maximum 
wind velocity (30 ft above the water surface) = 101 mi • h -1  (162.5 km • h -I  ); radius from 
the center to the region of maximum winds = 14 nautical miles (25.9 km); forward speed 
of the hurricane = 11 knots (20.4 km • h-I  ); central barometric pressure = 27.52 in.Hg 
(931.94 mb); asymptotic barometric pressure = 29.92 in.Hg (101.32 mb). This design 
hurricane would generate a storm surge of amplitude 15 ft at Galveston. 

The following formula was used for the computation of the storm surge: 
T  (di  )o 25 2  

(7.58) 	=  K— 	W , „S c i  do  

where Nm  is the maximum rise in water level (feet) caused by the wind stress, d, is the 
mean water depth at the seaward edge of the continental shelf just landward of the sharp 
increase in slope on the continental shelf (feet), do  is the mean water depth at the shoreward 
edge of the continental shelf just seaward of the sharp increase in slope near shore zone 
(feet), K is a wind stress parameter whose value is taken as 3.0 X 10 -6 ,T = BIE, where 
B is the breadth (feet) of the continental shelf between d1  and do , and E =- (co  +  c 1 )  (feet 
per second), where co  = V gdo  and c i  = W,.  is the maximum sustained wind speed 
(feet per second) 30 ft above the water surface, and S is a response factor depending on 
the ratio of fetch length to breadth of continental shelf and the ratio of the forward speed 
of the hurricane to the propagational speed of the free wave. 

In computing the surge at Galveston, the following values are used: do  = 36 ft 
(10.9 m),  d1  = 180 ft (54.9 m),B = 110 nautical miles (203 km), and T = 3.39 h. These 
give from eq. 7.58 

(7.59) N„, = 1.55 x 10 e„,S 

where W„, is in miles per hour. Calibration against two storm surges (one in 1900 and 
another in 1915) gave a better formula: 

(7.60) 	N„, = 1.69 x 10-3 W„,2  S 

In formula 7.60, Wm  was taken as 99 mi • h -  I  and S as 0.82 to give N„, = 13.5 ft (4.1 m). 
The rise in water level Np  (feet) due to reduction in atmospheric pressure is computed 

from 

(7.61) 	Np  = 1 . 14 p x 0.63 

where 1.14 is a factor to convert inches of mercury to feet of water, Ap is the difference 
between atmospheric pressure at the center of the storm and the asymptotic pressure, and 
0.63 is a factor to reduce the pressure difference to a difference at the zone of maximum 
wind. For the design storm, àp = 29.92 — 27.54 = 2.38. Using eq. 7.61 gives Np  = 
1.7 ft. The tidal range at Galveston is only 1.5 ft (0.5 m). 

The design storm surge at Texas City was estimated to have about the same amplitude 
as at Galveston (about 15 ft or 4.9 m) but with a slight time lag. The following amplitudes 
for storm surges were actually observed at Texas City: 14.5 ft (4.42 m) for the storm in 
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TABLE 7.55. Characteristics of the full hurricanes for the Texas coast during 1900-49. Parameters P and E 
are storm surge potential and wind wave energy index, respectively. Parameter E is the product of the radius of 
maximum winds and the central pressure deficit and is in units of kin•mb -1 . The storm surge potential was 
estimated by the authors (Reid and Wilson 1954) in F.P.S. units. In C.G.S. units some multiplicative factors 
occur. Since the absolute value of this potential is not important (it is only the relative values that are relevant), 
the original values as given by the authors are retained here. (Reid and Wilson 1954) 

Radius of 	Central pressure 	Storm surge 	Wave energy 
Nearest place 	maximum winds, 	deficit, 	potential, 	index, 

Date 	of landfall 	R (km) 	 AP (mb) 	 P 	 E 

Sept. 7, 1900 	Galveston 	 25.9 
July 21, 1909 	Bay City 	 34.3 
Aug. 16, 1915 	Freeport 	 57.1 
Aug. 18, 1916 	Santa 	 64.4 
Sept. 14, 1919 	Santa 	 139.1 
June 22, 1921 	Port Lavaca 	31.5 
June 28, 1929 	Port Lavaca 	24.1 
Aug. 13, 1932 	Freeport 	 21.2 
Aug. 4, 1933 	Brownsville 	44.6 
Sept. 4, 1933 	Brownsville 	54.7 
Aug. 7, 1940 	Port Arthur 	20.4 
Sept. 23, 1941 	Freeport 	 38.9 
Aug. 30, 1942 	Port Lavaca 	33.5 
July 27, 1943 	Port Bolivar 	30.6 
Aug. 27, 1945 	Port Aransas 	32.5 
Oct. 4, 1949 	Freeport 	 51.5 

76.9 	 3.64 	1991.7 
50.8 	 2.83 	1742.4 
62.0 	 3.73 	3540.2 
64.7 	 3.96 	4166.7 
42.7 	 3.47 	5939.6 
58.9 	 3.11 	1855.4 
43.7 	 2.33 	1053.2 
70.4 	 3.20 	1492.5 
37.6 	 1.96 	1677.0 
64.0 	 3.78 	3500.8 
38.9 	 2.04 	 793.6 
42.3 	 2.55 	1645.5 
62.3 	 3.29 	2087.1 
38.3 	 2.23 	1172.0 
45.4 	 2.58 	1475.5 
34.9 	 2.38 	1797.4 

1900, 12.7 ft (3.87 m) for the storm of 1915, and 11.7 ft (3.57 m) for the storm of 1961. 
Reid and Wilson (1954) performed a comprehensive study on the storm surges and 

wind-generated waves for the Texas coast. According to these authors, hurricane statistics 
are fairly accurate since the year 1866, and prior to that, statistics were available only on 
the significant hurricanes. During the period 1886-1954, there were 50 hurricanes that 
were significant. Thus, a rate of 50 hurricanes in 89 yr or one hurricane every 1.78 yr is 
a typical rate for the Texas coast. Based on more accurate data for the period 1900-49, 
it was deduced that the frequency of occurrence of fully developed hurricanes on the Texas 
coast is 16/30 of the rate given above, i.e. the modified rate is one hurricane per 15 yr 
for 100 statute miles (161 km) of the coast. 

A hurricane index is developed for classifying hurricanes. The two parameters used 
are R, the radial distance from the storm center to the region of maximum wind speed, and 
4, the anomaly of pressure from normal at the storm center (i.e. normal pressure minus 
central pressure). Since both these parameters together determine the storm surge ampli-
tude, a single index could be constructed through some combination of these. 

A storm tide potential p is defined as 

(7.62) p =  

where n depends on the slope of the shelf and the range of values of Ap and R. Basically, 
p is proportional to the maximum surge generated by a hurricane, provided the shelf 
topography can be approximated by a uniform slope, at least to a depth where the wind 
effect becomes negligible. Until it is calibrated, the absolute value of p has no meaning; 
only relative values of p for two storms describe the relative potential for generating storm 
surges. The values of R, 4, and the index p for various hurricanes on the Texas coast 
during the period 1900-49 are listed in Table 7.55. In the last column is listed a wave 
energy index E, which represents the potential for generating wind-generated waves. 
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TABLE 7.56. Summary of the characteristics of synthetic hurricanes on the coast 
of Texas. So , initial storm surge (m); T,, retum period of storm (yr); CPI, central 
pressure index or the estimated minimum pressure for a particular hurricane (mb); 
R, distance from storm center to the region of maximum wind speed (km); V„, 
maximum cyclostrophic wind speed (km • h - '); Vg.„ maximum gradient wind speed 
(km •11 - '); V.„ estimated maximum overwater wind speed at 10-m height. (Masch 
et al. 1970) 

So 	T, 	CPI 	R 	V,„ 	V„ 	V.  

	

0.61 	100 	929.2 	22.2 	185.9 	182.9 	168.9 

	

0.61 	75 	931.3 	23.2 	182.6 	179.5 	166.2 

	

0.61 	50 	934.6 	24.1 	180.9 	177.7 	164.5 

	

0.61 	30 	939.0 	25.0 	174.1 	170.9 	158.6 

	

0.46 	20 	944.1 	25.9 	167.3 	164.0 	152.8 

	

0.46 	15 	946.2 	26.9 	164.0 	160.6 	149.3 

	

0.46 	10 	953.6 	27.8 	155.5 	152.1 	142.3 

	

0.30 	5 	967.2 	28.7 	138.6 	135.1 	127.3 

	

0.30 	3.3 	976.6 	29.6 	114.9 	111.4 	107.0 

Again, the absolute values have no meaning until they are calibrated. This index is defined 
as 
(7.63) E = (Ap)R 

Masch et al. (1970) analyzed the hurricane-generated storm surges at Padre Island, 
Texas. They developed a set of synthetic hurricanes with specified sizes, rates of travel, 
wind fields, and pressure fields. Using numerical models the offshore form of the surge 
was first computed and then the profile of the surge at Padre Island was determined for 
each synthetic hurricane. The results are summarized in Table 7.56. 

Earlier, classification of storms by storm tide and wave energy indices was discussed. 
Reid (1957a) extended the earlier study of Reid and Wilson (1954) and showed that the 
logarithms of these indices have approximately a Gaussian distribution. The results for the 
storm tide potential are summarized in Fig. 7.86. 

Bodine (1969), based on 19 hurricanes since the year 1900, derived storm surge 
frequencies for the entire coast of Texas. He also made use of synthetic hurricanes that he 
generated based on prescribed values of central pressure index, forward speed, and radius 
of maximum winds. He also considered the surge frequency, not only on the open coast, 
but also in inland bays. His basic data are given in Table 7.57. Surge height versus distance 
along the open coast is plotted in Fig. 7.87. The terms left and right in the figure are the 
directions as seen from the ocean. These surge profiles will not apply for hurricanes 
approaching and crossing the coast at a small angle to the coastline. 

The results of the analysis for the entire Texas coast are shown in Fig. 7.88. Here, 
H is the surge height for the particular hurricane and Hp is the surge height for a beta-
hurricane, which is derived by the parameters in Table 7.58. Simpson and Freeman (1976) 
studied the coastal hazard potentials for Texas. They identified hazard zones as a function 
of anticipated flood stages inland, and they described methods for routing the storm surge 
flood waters. 

TIDE- SURGE INTERACTION 

It was mentioned earlier that the astronomical tide is quite significant in the northern 
parts of the east coast of the United States and it becomes less and less important as we 
proceed south and also along the Gulf coast. It was also mentioned that in the storm surge 
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FIG. 7.86. Storm tide potential P versus percentage of hurricanes with indicated P value or greater and 
occurrence for 100 nautical miles (185 km) of coastline in years. (Reid 1957b) 

studies in the United States, the problem of tide—surge interaction has not received 
adequate attention, as, for example, in the North Sea. Either the tide and surge are linearly 
added or added with random phases. However, it does not necessarily mean that these 
studies are inaccurate. All one can say is that it is better to show at first that nonlinear 
interactions between tide and surge are not important in a given coastal region before using 
simple linear superposition. 

Earlier, a study by Myers (1970) was referred to in which a joint probability method 
of analysis for Atlantic City and Long Island was used. One result that followed from this 
study is shown in Fig. 7.89 giving the return periods for storm tides of different amplitudes 
due to different types of storms. 

Tayfun (1979) studied the problem of joint occurrences of a tide with a rare phenom-
enon such as a storm surge or a tsunami. He also assumed that the two events (i.e tide and 
surge) are independent (and thus did not allow for mutual interaction). He took into 
account the transient nature of the primary event (i.e. the storm surge) by defining an 
equivalent magnitude in terms of an average over the duration of the primary event. 

At a given coastal location, during a period of t yr, let z 1 ,  z2, , z„ denote the 
maximum water levels (here i = 1, 2, . . . , N) due to the joint occurrence of a storm surge 
and the astronomical tide. Our goal is to determine the probability distribution of the 
largest intensity: 
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TABLE 7.57. Parameters for Texas hurricanes used in the study by Bodine (1969). 

Radius of 	Speed of 	Open coast 	Return period 
Approximate 	Central maximum movement of peak surge 	between events of 

Date of 	location of 	pressure 	winds 	hurricane 	estimated 	this surge amplitude 
landfall 	landfall 	(mb) 	(km) 	(km • h -I ) 	(m) 	 (yr) 

724 

(7.65) 

Sept. 8, 1900 	Galveston 	936.0 	25.9 
July 21, 1909 	Freeport 	958.7 	35.2 
Aug. 16, 1915 Galveston 	952.9 	59.3 
Aug. 18, 1916 Mustang Island 	948.2 	64.8 
Sept. 14, 1919 Port Aransas 	948.2 	37.0 
June 22, 1921 	Port O'Connor 	953.9 	31.5 
June 28, 1929 	Port O'Connor 	969.2 	24.1 
Aug. 13, 1932 Freeport 	942.4 	22.2 
Aug. 4, 1933 	Port Isabel 	975.3 	46.3 
Sept. 5, 1933 	Port Isabel 	948.9 	37.0 

>Aug. 7, 1940 	Galveston 	973.9 	20.4 
Sept. 23, 1941 Freeport 	958.7 	38.9 
Aug. 30, 1942 Port O'Connor 	950.6 	33.3 
July 27, 1943 	Port Bolivar 	974.6 	29.6 
Aug. 27, 1945 Port Aransas 	967.5 	33.3 
Oct. 4, 1949 	Freeport 	978.0 	51.9 
June 25, 1959 	Galveston 	984.4 	31.5 
Sept. 11, 1961 Port O'Connor 	936.0 	48.2 
Sept. 17, 1963 High Island 	995.9 	55.6 

563 	402 	241 	80 0 80 	241 	402 	563 
DISTANCE ALONG OPEN COAST (km) 

Fin. 7.87. Surge height versus distance along the Gulf of Mexico and coast of Texas. (Bodine 1969) 

(7.64) 	2 = max (z 1 ; i = 1, . . . , N) 
where N is a random variable, which is assumed to be governed by the Poisson distribu-
tion: 

piv
(

11
; 	= 

(GI)" 
	  exp (-crt) 

n! 
where 
(7.66) 	Piv (n; t) = prob [N = n in (0, 0] 
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FIG. 7.88. Generalized storm surge frequency curve for the coast of Texas. (Bodine 1969) 

TABLE 7.58. Parameters for the 13 hurricane. (Bodine 1969) 

Radius of maximum 
winds (km) 

Forward speed of 
movement of hurricane 

(km•11 -1 ) 
Central pressure 

Location in Texas 	of hurricane (mb) 	Small 	Medium 	Large 	Slow 	Medium 	Large 

Port Arthur 	 932.6 	13.0 	25.9 	50.0 	7.4 	20.4 	51.9 
Galveston 	 931.9 	13.0 	25.9 	48.2 	7.4 	20.4 	51.9 
Bay City 	 930.9 	11.1 	24.1 	46.3 	7.4 	20.4 	51.9 
San Antonio Bay 	929.6 	11.1 	24.1 	44.4 	7.4 	20.4 	51.9 
Sarita 	 927.2 	11.1 	22.2 	42.6 	7.4 	20.4 	51.9 
Brownsville 	 923.8 	11.1 	20.4 	37.0 	7.4 	20.4 	51.9 

and a.  is the mean occurrence rate of storm surges with the assumption that z,(i = 1, . . 
N) are independent observations from a population with the probability law 

	

(7.67) 	prob (z, 	z) = P,(z); i = 1, . 	N 

One can show that the cumulative distribution of the largest intensity  1  has the form 

	

(7.68) 	Pi (z) = exp  {-Œt[1 - Pz (z)]} 

Define the time interval between the exceedances of a value z as the waiting time W1 (z) 
for the level z. The mean value of 1,17,.,(z) is 

	

(7.69) 	I(z) = {o- [1 - 

is referred to as the return period. The inverse of the return period 

	

(7.70) 	R 2 (z) = cr[l - P,(z)] 
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FIG. 7.89. Storm surge height versus return period for Atlantic City, New Jersey. (Myers 1970) 

is the recurrence rate, i.e. the number of times the largest intensity 2 exceeds the level z 
per unit time. 

The input data consist of the mean occurrence rate o -  of the primary event (for the 
location under consideration) and the parent distribution 13, for the peak flood levels 

(7.71) 	z = max [A (t) + S(t)] 

where A(t) is the astronomical tide and S(t) is the storm surge. Thus, the goal is to 
estimate 13, in terms of the probability distributions of A and S. This is done in a two-step 
procedure: (1) the distribution is estimated through a synthetic simulation technique (such 
as the joint probability method, see Ho 1976a, 1976b, 1977) and (2) the resulting distri-
butions are modified to include the effects of the local astronomical tide. Tayfun (1979) 
developed an analytical procedure for this second step. 

WEST COAST AND ALASKA SURGES 

Storm surges are a rare phenomenon on the Pacific coast of the United States. 
However, there are instances when great damage is done by them on the west coast. 

Two intense storms moved into the Gulf of Alaska during October 20-31, 1977, and 
produced extreme damage on the Pacific northwest coast of the United States. Wind waves 
and swell up to 33 ft (10 m) in height occurred. Storm tides (tide + surge) up to 9.2 ft 
(2.8 m) occurred at South Beach, Newport, on the Oregon coast. 

During 1977-78, four major storms occurred over southern California doing great 

100 000 1000 000 
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damage (Pappas 1978). During the storm of January 10-11, 1978, storm tides of up to 
7 ft (2.1 m) in height occurred at Redondo Beach. Part of the damage during the storm 
of February 9-10, 1978, was caused by a squall line. Mudslides, flooding, and surges 
occurred during the storm of February 28—March 6, 1978, in southern California. The 
rock slides and mudslides continued to May 1978 because of weakened mountain slopes. 
The towns of Tijuana and Ensenada in northern Baja California were also heavily 
damaged. 

This section will conclude with a discussiorion storm surges in the United States with 
the findings from three important recent reports. The first is published by the National 
Academy of Sciences (1975) and examines the question of "how best to estimate the height 
of coastal surges from hurricanes." The second report is prepared by the Hydrology 
Committee of the U.S. Water Resources Council's storm surge assessment work group. 
The third report is the proceedings of a storm surge workshop organized by the National 
Weather Service in 1978. The results from the National Academy of Sciences report are 
considered first. 

The National Academy of Sciences report specifically examines the following fea-
tures: (1) reviews hurricane parameters and surge and coastal water characteristics, in 
addition to height, that can influence the height and areal extent of inland flooding; (2) 
describes various methods available for use in estimating the characteristics of hurricane-
induced coastal surges; (3) recommends methods for estimating the characteristics of 
coastal surges from hurricanes to be used for the purposes of the National Flood Insurance 
Program during the immediate future; (4) identifies fundamental areas in need of further 
study and research to improve the adequacy of the recommended methods for predicting 
the characteristics of coastal surges from hurricanes. 

This report concludes that the current approach to determining the height and areal 
extent of inland flooding having probabilities of annual occurrence of 0.1, 0.02, etc., on 
the coastline and of projecting these results inland is inadequate. It suggests that the 
SPLASH models of NOAA currently provide the soundest basis for determining the 
temporal and spatial characteristics of hurricane surges along open, unbroken coastlines 
of the Atlantic and Gulf coasts. According to this report, the method of joint probabilities 
provides the soundest basis for assigning a probability of occurrence to the temporal and 
spatial characteristics of a surge produced by a hurricane and to the total height of the 
resulting storm waters (surge + tide). 

It also suggests that the ability to model and predict hurricane surge heights within 
estuaries, bays, lagoons, and other semi-enclosed tidal waters and in adjacent low-lying 
lands must be improved. Required are not only general models but specific ones for each 
separate body of water for which such a model would be needed. 

The report lists the following four areas that require the attention of researchers: (1) 
the assumption of independence among storm parameters, (2) the assumption of indepen-
dence among surge, astronomical tide, and other initial water conditions, (3) the feedback 
effect of flooding of low-lying coastal areas on surge height and growth rate at shore, and 
(4) the effect of the presence of bays and estuaries on the surge at points along the coast 
away from the entrance to the bays and estuaries. 

The Hydrology Committee of the U.S. Water Resources Council examined the 
state-of-the-art storm surge modeling. This committee examined the following models: (1) 
SPLASH of NOAA, (2) SSURGE developed at Texas A & M University, (3) the FIA 
(Federal Insurance Agency) model developed by Tetra Tech. Inc., and (4) the bathy-
strophic model. This report concludes that, whereas adequate meteorological input data 
exist, sufficient surge data do not exist to both calibrate and verify surge simulations. 
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The recommendations from the proceedings of the NOAA' s storm surge workshop 
are too detailed to list here; however, this important document is recommended for further 
study. 

Before closing this section on storm surges in the United States, it is worth reiterating 
that in the twentieth century alone, hurricanes (and accompanying storm surges) killed 
more than 45 000 people in the regions surrounding the Caribbean Sea and the Gulf of 
Mexico (about 15 000 killed in the United States) and caused more than $12 billion worth 
of damage in the United States. Although the number of deaths directly attributable to 
hurricanes has decreased recently (due to better warning systems and awareness), the 
amount of damage is not on the decline. For example, Hurricanes Betsy (1965) and 
Camille (1969) each did more than $1.4 billion damage in the United States. For com-
parison, it may be pointed out that in the 18 nations of the Economic and Social 
Commission for Asia and the Pacific region (ESCAP), during  1961-75, the damage was 
estimated to be upwards of $36 billion (at 1975 price levels), which amounts to about 
$3 billion annually. Of this $36 billion damage, $21 billion damage occurred in Japan, 
more than $7 billion damage in India, and about $4.5 billion damage in Bangladesh 
(Sen 1978). 

In the United States, during 1900-80, three catastrophic hurricanes occurred 
(ranking 5 on the Saffir— Simpson scale). These are the 1935 Labor Day storm (that 
destroyed the Florida Keys), Hurricane Camille in 1969, and Hurricane Allen in 1980. The 
storms that originate in August and September have longer lives (2 wk) compared with 
those originating in June—July and October—November. These latter ones originate in the 
Caribbean Sea and the Gulf of Mexico and do not live longer than 7 d due to the shorter 
distance traveled before landfall. 

7.3 Storm Surges in Europe 

In section 6.9, the meteorological problems associated with storm surges in European 
waters were introduced. Here, case studies of storm surges in several water bodies in 
Europe and environs will be considered. 

STORM SURGES IN THE NORTH SEA (INCLUDING THE THAMES ESTUARY) 

In this subsection, the surges before 1953 will be considered. The disastrous surge 
of January 31—February 2, 1953, will be considered separately. In Chapter 6, storm 
surges in the Thames Estuary were listed (Table 6.64) as well as the meteorological 
situations associated with these. The storm surge at Southend (near the mouth of the 
Thames Estuary) during January 12-16, 1916, is shown in Fig. 7.90a. For comparison, 
the surge at Dunbar (which is located farther north on the east coast of the United 
Kingdom) is also shown. The surge profiles at Southend and Dunbar during November 
24-28, 1917, are given in Fig. 7.90b. The reason for showing surges at Southend and 
Dunbar together is to make the point that, in the early literature (before the computer era) 
on North Sea surges, predictions along the east coast of the United Kingdom were made 
using correlations of the surges at these two locations. Similar results for two other storms 
are shown in Fig. 7.90c and 7.90d. 

Douglas (1929) mentioned a storm surge in the English channel due to a squall line 
on July 20, 1929. A simple analytic theory gave an amplitude comparable with the 
observed. Bowden (1957) mentioned that, in the southern part of the North Sea, the 
greatest elevation tends to occur along a line from Harwich to Flushing. The surface then 
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FIG. 7.90. Storm surges at Southend and Dunbar, U.K., during (a) January 12-16, 1916, (b) Novembei 
24-28, 1917, (c) December 30, 1921— January 2, 1922, and (d) January 5-8, 1928. (Doodson 1929) 

slopes downward towards the Strait of Dover due to the flow of water into the English 
Channel. 

The surge profiles along the western side of the North Sea during January 6-10, 
1949, are shown in Fig. 7.91A, beginning at Aberdeen and ending at Newhaven. The 
surge profiles along the eastern boundary of the North Sea during the same period are 
given in Fig. 7.91B. One can see a counterclockwise progression of the disturbance with 
about the same travel speed as that of the diurnal tide (Fig. 7.92). The interaction between 
the tide and surge appears to be small (note that in the Thames Estuary the tide—surge 
interaction is significant). 

Rossiter (1959) developed empirical relationships for prediction of storm surges at 
Aberdeen, Immingham, Southend, River Tyne entrance, Lowestoft, King's Lynn, and 
Newhaven. The observed and computed surges at Immingham for one storm are compared 
in Fig. 7.93. It can be seen that there is reasonably good agreement. 

NEGATIVE SURGES IN THE NORTH SEA 

Rossiter (1971a, 1971b) drew attention to the navigational hazard posed to large ships 
in the southern North Sea due to negative storm surges. Doodson (1947) mentioned that 
negative surges occurred at Dunbar and Southend during the storms of November  10-13, 
1929, January 1-3, 1928, and October 17-21, 1935. 

Geelhoed (1973) studied negative storm surges in the southern part of the North Sea, 
with particular attention to the Sandettie Bank and the Brand Ridge areas because of the 
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storm surges at Immingham, U.K., during January 31— 
February 2, 1953. (Rossiter 1959b) 

TABLE 7.59. Frequency of negative storm surges in the southern  part of the 
North Sea. (Geelhoed 1973) 

Amplitude (cm) of 
negative surge that 
can occur (at the 

time of low water) 
with the frequency 

per year of 

Amplitude (cm) of 
negative surge that 
can occur (at the 

time of high water) 
with the frequency 

per year of 

Location 10 	1 	 10 	1 

Hook of Holland 	50 	83 	117 	50 	80 	111  
Flushing 	 46 	75 	103 	47 	80 	113 
Dunkerque 	 44 	68 	92 	46 	75 	105 
Dover 	 43 	69 	96 	47 	79 	111 

shallow water depths there. The data source consisted of 50 yr of data for the stations of 
Hook of Holland and Flushing, 4.7 yr of data for Dunkerque, and 20.1 yr of data for 
Dover. The results of a frequency analysis are summarized in Table 7.59. This table must 
be interpreted as follows. For example, at Hook of Holland, negative surges of amplitudes 
up to 50 cm occur on the average about 10 times per year; negative surges with amplitudes 
up to 83 cm occur once a year and negative surges of amplitudes up to 117 cm occur only 
once in 10 yr. The differences between the negative surges at low and at high waters are 
not significant. 

Negative surges predominantly occur in winter. Southerly to westerly winds produce 
negative surges at Dover whereas at Hook of Holland, southerly to easterly winds cause 
negative surges. Largest negative surges occur at Southend (up to 2.3 m) and at Tilbury 
(up to 2.8 m). At other stations, negative surges with amplitudes of 1.0-1.5 m occur. 
Geelhoed (1973) attributed the differences in the amplitudes of the negative surges at 
various locations to topographic differences. 
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TABLE 7.60. Calculated amplitudes (m) of storm surges at three locations in the 
southern  part of the North Sea for three different wind fields. (Based on Geelhoed 
1973) 

FIG. 7.94. Storm surges at various locations around the North Sea during January 30—February 3, 1953. 
(Rossiter 1954) 

Westerly winds appear to cause negative surges exclusiVely on the east coast of the 
United Kingdom whereas easterly winds could cause negative surges exclusively on the 
coast of the Netherlands. On the other hand, southerly winds can cause negative surges 
on both coasts simultaneously (and indeed in the whole southern part of the North Sea). 
The calculated negative surges at three locations for three different wind fields are sum-
marized in Table 7.60. 

THE STORM SURGE OF JANUARY 31 — FEBRUARY 2, 1953 

The track of the storm that produced this major surge is shown in Fig. 6.107. In 
Fig. 7.93 the surge at Immingham is shown and compared with the calculated surge. The 
observed surges at various locations around the North Sea are shown in Fig. 7.94. The 
propagation of the surge through the English Channel from the North Sea is shown in 
Fig. 7.95. 
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FIG. 7.96. Influence of 90% closing of the barrage on storm surges in the Thames Estuary. Solid line, observed 
surge during January 30—February 1, 1953; broken line, barrage closed 2 h before high water; dotted line, 
barrage closed 4 h before high water. (Allen et al. 1955) 

Allen et al. (1955) performed hydraulic model studies to simulate this surge in the 
Thames Estuary. The model had the following features: horizontal linear scale, 1/3000; 
vertical linear scale, 1/120; vertical exaggeration, 25; time scale, 1/273.8; velocity scale, 
1/10.95; discharge scale, 1/(3.943 x 10 e ). In the model the tides were generated by an 
electronically controlled pneumatic displacer. 

Tests were also run on the effect of a surge-reducing barrage, located near Purfleet 
in Long Reach. The barrage was lowered at 1, 2, 3, 4, and 5 h before the occurrence of 
high water at the site of the barrage. The amount of closure was varied from 50 to 90% 
of the cross-sectional area of the estuary at mean tide level. Other tests were run with 
80 and 100% closures. The effects of the barrage for 90 and 100% closures at four different 
locations are illustrated in Fig. 7.96 and 7.97, respectively. Results are shown for two 
closure times (2 and 4 h before high water). For comparison, the observed surge during 
the January—February 1953 case is also shown. These results appear to indicate that the 
barrage would have some effect in reducing storm surge levels. 

STORM SURGES IN THE NORTH SEA AFTER 1953 

Following the disastrous storm surge of January 30—February 2, 1953, in the North 
Sea, the storm surge warning service for the east coast of the United Kingdom was 
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in the Thames Estuary. Solid line, 
closed 2 h before high water; dotted 

improved further. Hunt (1972) discussed the activities of the storm surge warning service. 
The following eight stations are treated as reference ports: Stornoway, Wick, Aberdeen, 
Tyne entrance, Immingham (on the Humber station), Lowestoft, Harwich (after 1970, this 
was replaced by Walton in Essex), and Southend. The storm surge at these locations 
during September 28-29, 1969, is shown in Fig. 7.98. One can see the propagation of 
a negative surge southward along the east coast of the United Kingdom. This was followed 
by a positive surge with peak values of 2.2 ft (0.67 m) at Stornoway and 7.4 ft (2.26 m) 
at Southend. 

Multiregression techniques were used to determine the significant storm surge gener-
ating parameters at the above ports. At Stornoway, the atmospheric pressure gradient must 
be considered to predict the surge generated northwest of Scotland. At all the other ports, 
the wind stress and the southward propagation of the surge were important. 

Prediction formulae were developed for 12- and 4-h predictions. For the 4-h predic-
tion the rms error was 0.4 ft (0.12 m) (a little less than 0.4 ft for the stations on the northern 
port and slightly greater than 0.4 ft for the southern stations). For example, the 4-h 
prediction formula for Southend is 

(7.72) S =  0.29 + 73SL  +  0.38S1  — 0.57SL_ 3  + 0.007V 

where S is the peak surge at Southend (feet), S L  and S, are the peak surges at Lowestoft 
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FIG. 7.98. Storm surge at the reference ports (of the U.K. Storm Surge Warning Service) during September 

28-29, 1969. (Hunt 1972) 

and Immingham (note that high water occurs at Lowestoft and Immingham some 3 and 
7 h before it occurs at Southend), SL-3 is the surge at Lowestoft some 3 h before high water 
at Lowestoft (this is a parameterization for the tide — surge interaction), and 1/75  is the 333° 
component of the geostrophic wind (knots) in an area off Immingham and Lowestoft. 

Following the 1953 disastrous storm surge, several numerical models for the North 
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FIG. 7.99. Comparison of observed and computed surges at Southend, U.K., during 
February 16-17, 1962. Solid line, observed surge; broken line, computed surge using 
a linear model; dashed—dotted line, computed surge using a nonlinear model. 
(Rossiter 1971) 

Sea and Thames Estuary were developed. Results from a linear model and a nonlinear 
model are compared with the observed surge of February 16-17, 1962, at Southend in 
Fig. 7.99. 

A major storm surge occurred in the southern  part of the North Sea and in the Thames 
Estuary during January 31—February 1, 1983, exactly 30 yr after the major surge of 1953. 
The meteorological conditions were somewhat different in these two cases. The surge of 
1983 was potentially as destructive as the one of 1953. However, because of considerable 
improvement in storm surge warning services and the development of coastal protection 
works and the Thames Estuary barrier, loss of life and damage to property were con-
siderably less than in 1953. 

MODELING OF STORM SURGES IN THE NORTH SEA (INCLUDING THE THAMES ESTUARY) 

Certain models have already been considered for the North Sea in different sections. 
Ishiguro (1976a) showed through electronic analog models that atmospheric pressure 
gradient generated surges are important in the North Sea (Table 7.61). Ishiguro (1976b) 
gave diagrams of estimated peak surges for different wind speeds. Contours of surge 
height for a wind speed of 36 m •'s -1  are illustrated in Fig. 7.100. 

Davies and Flather (1977) computed the storm surge in the North Sea for the case of 
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TABLE 7.61. Comparison of the amplitudes of pressure gradient generated and wind stress generated surges 
in the North Sea. (Ishiguro 1976a) 

Pressure- 	Wind- 
Wind 	Wind 	Wind 	Pressure 	generated 	generated 

direction 	duration 	speed 	gradient 	surge, Y, 	surge, Y„, 	Y/ Y. 
(degrees) 	(h) 	(ms) 	(mb • 100 km-I ) 	(cm) 	(cm) 	(%) 

22 	30 	10 	 2.3 	 8 	 33 	24 
20 	 4.5 	 16 	130 	12 
30 	 6.7 	 23 	293 	8 
40 	 9.0 	 32 	520 	6 

112 	10 	10 	 2.3 	 10 	 15 	67 
20 	 4.5 	 20 	 60 	33 
30 	 6.4 	 30 	135 	22 
40 	 9.0 	 40 	240 	17 

April 1-6, 1973, using several different numerical models. The features of these models 
are summarized in Table 7.62 and the rms errors at various locations for these models are 
listed in Table 7.63. 

Prandle and Wolf (1978a, 1978b) used parallel ntimerical models to study the mod-
ification of the tide due to surge and vice versa in the southern part of the North Sea. The 
tide and the surge before and after interaction for the case of October 19, 1970, are shown 
in Fig. 7.101. The interactions at Lowestoft and Southend for the event of January 
31—February 1, 1953, are shown in Fig. 7.102 and 7.103, respectively. The contours of 
the interaction in the southern  part of the North Sea are shown in Fig. 7.104. 

Flather (1980) summarized the status of a real-time storm surge prediction scheme for 
the North Sea. In this scheme, the meteorological forcing terms are obtained in real time 
as output of a 10-level primitive equation atmospheric model. In the storm surge model, 
a coarse model covers the whole of the Northwest European continental shelf. Models with 
finer resolution for the southern bight, eastern part of the English Channel, and the Thames 
Estuary are being developed. The contours of the surge at 03:00 GMT on January 12, 
1978, are shown in Fig. 7.105. Hamilton (1979) used a conformal coordinate stretched 
model for storm surge propagation through the English Channel. For some recent works, 
see Peregrise (1981), Townsend (1981), Golding (1981), Flather (1981), Davies (1981), 
Wolf (1981), Horner (1981), and Walden (1982). 

STORM SURGES IN THE IRISH SEA 

In section 6.9, the meteorological situations leading to storm surges in the Irish Sea 
were discussed. The storm surge at Liverpool during December 29, 1921, to January 2, 
1922, and the pressure data are shown in Fig. 7.106. Creswell (1929) gave storm surge 
amplitudes at Holyhead, Belfast, Fleetwood, and Preston for the surge of October 20-24, 
1928. These range from 1 ft 7 in. (48 cm) to 4 ft 7 in. (140 cm). However, a surge 
on October 29, 1927, had amplitudes of 7 ft 8 in. (2.34 m) at Fleetwood and 
10 ft 2 in. (3.1 m) at Preston. For this event, the amplitudes at Holyhead and Belfast were 
3 ft 4 in. (1.04 m) and 3 ft 2 in. (0.97 m), respectively. 

During the storm surge event of January 31, 1957, the surge amplitude at Liverpool 
reached a peak value of 3 ft whereas another event on February 4, 1957, produced a surge 
with • an amplitude of 5.8 ft (1.76 m). Another surge event of January 11-12, 1962, 
produced surges up to 5.5 ft (1.68 m) at Liverpool and up to 6.5 ft (1.98 m) at Avonmouth. 
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FIG. 7.100. Storm surge heights in the North Sea for a wind speed of 36 ms  -I  blowing for 10 h. (Ishiguro 
19766) 

The surges at Milfordhaven and Avonmouth during November 29-30, 1954, are shown 
in Fig. 7.107. 

Corkan (1952) mentioned that localized northerly winds over the Irish Sea will lower 
the water level everywhere in this waterbody, with the minimum lowering occurring at 
Liverpool. Strong southerly winds near the southern entrance to the Georges Channel will 
produce only small surges at locations such as Cork and Newlyn. After several hours, the 
general level rises in the Irish Sea. On the other hand, when a depression exists south of 
Ireland (with strong southerly winds blowing steadily) over the Bay of Biscay, surges up 
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Wick 	 18.1 
Aberdeen 	20.3 
North Shields 	22.5 
Inner Dowsing 	26.9 
Immingham 	26.6 
Lowestoft 	29.8 
Walton-on-Naze 	34.3 
Southend 	 42.9 
Ostende 	 36.1 
Ijmuiden 	42.3 
Terschelling 	32.3 
Cuxhaven 	48.0 
Esbjerg 	 32.6 

12.6 	13.5 	12.6 	0.0 
13.7 	15.9 	13.3 	10.9 
17.7 	17.0 	16.6 	16.3 
27.5 	21.2 	27.1 	25.2 
25.6 	19.5 	20.8 	18.2 
28.5 	25.0 	27.5 	25.3 
31.2 	27.2 	29.0 	26.8 
38.6 	33.9 	35.1 	33.0 
34.0 	25.1 	30.3 	26.7 
40.6 	34.6 	35.4 	33.3 
31.8 	27.2 	27.3 	26.4 
45.0 	37.4 	40.2 	38.4 
29.0 	23.3 	24.1 	21.2 

Port a d 

TABLE 7.62. Features of the different models for the North Sea used in the simulation of the 
storm surge of Apr. 1-6, 1973. (Davies and Flather 1977) 

Calculation 	Model 

a 	Shelf 
North Sea 
Shelf 

d 	North Sea 
North Sea 

Open boundary 
condition 

Radiation 
Elevation specified 
Radiation 
Elevation specified 
Elevation specified 

Surge input 

Hydrostatic 
Hydrostatic 
Hydrostatic 
Hydrostatic 

From calculation c 
+ observations 
from Wick 

Tidal input 

None 
None 

M2 + S2 
M2 + S2 
M2 + S2 

TABLE 7.63. Root-mean-square errors (cm) for calculations using 
models a to e (see Table 7.62) for the storm surge of Apr. 2-6, 1973. 
(Davies and Flather 1977) 

to 1-2 ft (0.3-0.6 m) could occur inside the region bordered by a hypothetical line 
joining Cork to Newlyn. 

Heaps and Jones (1975) simulated the storm surge in the Irish Sea for the event of 
January 10-18, 1965, using a two-and-a-half-dimensional model. The surge profiles at 
several locations in the Irish Sea (observed and computed) are shown in Fig. 7.108. The 
horizontal distribution of the storm surge heights at two different times is given in 
Fig. 7.109. 

Heaps and Jones (1979) simulated the storm surges in the Irish Sea for the events of 
November 11-15, 1977, and January 2-3, 1976, and compared these with the event of 
January 13-17, 1965. They paid particular attention to the time of occurrence of the peak 
surge relative to the times of high and low water. The tide and surge (computed and 
observed) at Liverpool and at Workington are shown in Fig. 7.110 and 7.111, 
respectively. McIntyre (1979) used an analytical model to simulate the storm surge of 
January 1-3, 1976, in the Celtic Sea (south of Ireland). Amin (1982) modeled the tides 
and surges on the west coast of the United Kingdom. 

STORM SURGES IN BELGIUM, THE NETHERLANDS, GERMANY, AND DENMARK 

Up to this point, the storm surges in the western and southwesten part of the North 
Sea have been considered. Now, the surges along the southern and eastern coasts will be 

745 



12:09 	18:0Cq 

/OCTOBER 19,197 

W 1.0 

2 

- 1.0 

3.0b (a) 	 3.0 

20h 	 T 	 2.0 

0  1 o w 
i— w 

1200 	18: 

OCTOBER 19,1970 

-1.0 

-2.0 h 	 -2.0 

Flo. 7.101. Tide—surge interaction at (a) Walton—Margate (mouth of the model) and (b) Tower Pier. T, tide; 
S, surge; T', tide modified due to interaction with surge. S', surge modified due to interaction with tide. (Prandle 
and Wolf 1978) 

considered. The horizontal distribution of the storm surge amplitudes at three different 
times during January 31—February 2, 1953, in the North Sea is given in Fig. 7.112. 
Maximum amplitudes up to 3 m occurred on the 13elgian and Netherlands coasts. Ampli-
tudes up to 2.5 m occurred on the coast of France, whereas amplitudes up to 2 m were 
found in the German Bight. On the Danish coast the maximum amplitudes were about 
1 m. Calculated (Davies and Flather 1977) and observed surges at five locations along the 
south and west coasts of the North Sea for the surge of April 2-6, 1973, are compared 
in Fig. 7.113. 

Adam (1979) described the real-time storm surge forecasting system for the coast of 
Belgium. The meteorological aspects of this model were considered in section 6.9. The 
surges that are significant on the coast of Belgium originate from the northwest. A surge 
wave travels from North Shields to Ostend in approximately 12 h. Thus, using the 
forecasted value of the surge at North Shields, one can provide an 18- to 24-h advance 
warning for the Belgium coast. One of the deficiencies of the model is its overestimation 
of the amplitudes of positive surges and underestimation of the amplitudes of negative 
surges. 

STORM SURGES ON THE COAST OF THE NETHERLANDS 

In section 6.9, the works of Gallé (1915) and Schalkwijk (1947) were discussed. The 
storm surge amplitudes along the coast of the Netherlands during the major storm surge 
of January 31—February 1, 1953, were greater than those on the east coast of the United 
Kingdom (Ufford 1953). Surge amplitudes up to 9 ft (2.74 m) occurred along the coasts 
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FIG. 7.102. Tide—surge interaction at Lowestoft, U.K. See Fig. 7.101 for explanation. (Prandle and Wolf 
1978) 

of the provinces of Zeeland and Zuid-Holland, with a peak surge of 9.6 ft (2.93 m) 
occurring at Hellevoetsluis. In the Scheldt Estuary the amplitudes were even greater. At 
Berger op Zoom the amplitude was about 11 ft (3.35 m). 

The water level rose above the dykes, and about 50 dykes collapsed and at least 1800 
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Fin. 7.103. Tide—surge interaction at Southend, U.K. See Fig. 7.101 for explanation. (Prandle and Wolf 
1978) 

people died. The damage exceeded £100 million (at 1953 prices). Ufford (1953) men- 
tioned that this was the biggest surge since the one on November 18, 1421, when at least 
10 000 people died. Since the time tide gauges were set up in 1890, the surge of 1953 was 
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FIG. 7.104. Tide—surge interaction distribution (centimetres) in the southern part of the North Sea. (Prandle 
and Wolf 1978) 

2 ft greater on the average than any other surge during the period 1890-1953. The extent 
of the flooding on the coast of the Netherlands is shown in Fig. 7.114. 

Weenink (1956) studied the so-called twin storm surges that occurred on December 
21 and 24, 1954. The observed surge and that computed through an equilibrium wind 
assumption are shown in Fig. 7.115. 

Timmerman (1971) showed that moving cold fronts over the southern part of the 
North Sea can produce a sudden increase of water level on the Netherlands coast (he uses 
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FIG. 7.105. Spatial distribution of surge elevation (centimetres) at 03:00 (GMT) 
on January 12, 1978, in the northwest continental shelf of Europe. (Flather 1980) 

the rather inappropriate term "gust bump" to refer to these water level increases). These 
increases in the water level occur only when the speed of propagation of the cold front lies 
between 29 and 36 knots (54-67 km •11 - '). This suggests resonance between the traveling 
atmospheric disturbance and the long surface gravity waves in the water body. He numer-
ically simulated the event of December 13, 1956. 

One can obtain some idea of the time scale and amplitudes of the gust bumps from 
Fig. 7.116. One can clearly see the bump at Katwuk at 11 a.m. on March 27, 1966. The 
locations of these stations can be seen in Fig. 7.117. Similar sudden water level increases 
for the event of December 13, 1956, are shown in Fig. 7.118. 

Dronkers (1961) discussed the plan of the Delta works project to reduce storm surge 
amplitudes in the southwest part of the Netherlands. He stated (p. 603): 

... this entails the closure of three large sea arms situated between western Scheldt and 
Rotterdam waterway and will bring about radical changes in the tidal movement and 
storm flood levels of the estuaries and tidal rivers . . . Three big dams to be built [see 
Fig. 7.119] in the mouths of eastern Scheldt, Brouwershavense Gat and Haringvliet, 
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FIG. 7.106. (a) Storm surge at Liverpool, U.K., during December 29, 1921—January 2, 1922. (b) Curve 
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as well as two smaller ones to be constructed further inland ... The waters of the delta 
will then be divided into two separate basins by means of a dam in the Yolkerak. The 
southern basin will be entirely cut off from the sea, becoming a fresh water lake. The 
northern, comprising the mouths of the Rhine and the Meuse, will remain in commu-
nication with the sea, because the Rotterdam waterway must stay open for shipping. 
Consequently, the tides and storm surges will still be able to penetrate inland via this 
mouth, but they can cause high water levels in the waterway only; in the rest of the 
basin their effect will be considerably weakened ... 
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FIG. 7.107. Storm surges at Milford Haven and Avonmouth, U.K., 
during November 29-30, 1954. (Heaps 1967) 

The projected influence of the Delta works on the high water and low water levels 
is shown in Fig. 7.120. The storm surge amplitudes are expected to be reduced by several 
feet. The possible modification of the frequency of high water levels at Dordrecht is shown 
in Fig. 7.121. 

Langerak et al. (1979) discussed the status of this project as existed in 1978. They 
stated (p. 1049): 

In the mid-1950's the Netherlands government embarked on a massive construction 
program, called the delta plan. Its purpose was to enhance protection from floods 
caused by the North Sea in the estuaries of the Rhine, Meuse and Scheldt. According 
to the plan, all connections to the sea were to be closed by dams, except the New 
waterway to Rotterdam and the western Scheldt. In 1974 all dams and dikes were 
complete except the dam closing off the eastern Scheldt from the sea. In view of 
growing opposition to a complete closure, plans were revised in 1976, and instead of 
the dam, a storm surge barrier will be constructed. This barrier will reduce the tidal 
range in the eastern Scheldt and will be closed during storm surges. 

Some recent information on the status of this project can be seen in Anonymous (1982). 
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FIG. 7.109. Distribution of storm surge heights (centimetres) in the Irish Sea on January 14, 1965, at 
(A) 00:00 and (B) 04:00. (Heaps and Jones 1975) 

Langerak et al. (1979) developed a numerical model for computing tides and storm 
surges for this area. The semidiurnal tide propagates along the coast of the Netherlands 
in a northeasterly direction and the amplitude reduces from 1.90 m at Blankenberghe to 
about 0.85 m at Scheveningen. 

STORM SURGES IN THE GERMAN BIGHT 

Tomczak (1950) discussed the storm surge of February 9-10, 1949, in the North 
Sea. The greatest effect of the surge was on the coast of North Friesland. One interesting 
feature was that the storm center remained almost stationary off the island of Sylt on the 
9th and blocked the outflow of water northwards from the German Bight. The maximum 
amplitudes of the water level at several locations are listed in Table 7.64. 

Siefert (1968, 1978) studied storm surges in the Elbe River. His study involved a total 
of 130 surges since 1900, and he developed a technique with which the shape of the surge 
curve can be predicted 6 h in advance to an accuracy of -10.2 m. He used the results from 
hydraulic model studies, and his scheme can predict surges at Hamburg 6-8 h in advance 
to an accuracy of -±0.25 m and the time of the peak surge to within  ±30  min. He also 
considered tide—surge interaction in the Elbe River and showed how the surge modifies 
the tide. Another important point made was that, following improvements (for navigation) 
in the Ems, Weser, and Elbe rivers, the amplitudes of storm surges have increased in 
general. 

Engel (1979) described the status of the operational storm surge prediction system for 
West Germany as existed in 1978. Using numerical models for the meteorological forcing 
terms as well as for storm surges  in the North Sea, the surge of January 3, 1978, was 
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FIG. 7.110. Top: observed (solid line) and computed (broken line) tide at Liverpool during November 
11-12, 1977. Bottom: observed (solid line) and computed (broken line) surge at Liverpool for the same 
period. (Heaps and Jones 1980) 

reasonably well simulated. The agreement between observed and hindcasted surges was 
better than the agreement between observed and predicted surges. Maximum errors oc-
curred in the German bight. These errors are attributed to the errors in the predicted 
geostrophic winds due to underestimating the atmospheric pressure gradients. 
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FIG. 7.111. Tide and storm surge at Workington, U.K. See Fig. 7.110 for explanation. (Heaps and Jones 
1980) 

Garen (1976) studied currents in the tidal flats in the German Bight. Note that these 
tidal flats could be as wide as 20 km. He showed that the currents can increase from the 
normal 30 cm • s to as much as 120 cm • s' during storm surges. The destructive storm 
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FIG. 7.112. Distribution of storm surge amplitudes (metres) in the North Sea during January 31—February 1, 
1953, at (a) 18:00 (GMT) on January 31, (b) 00:00 (GMT) on February 1, and (c) 06:00 (GMT) on February 

I. (Groen and Groves 1962) 

surges on the North Sea coast of Germany during February 16-17, 1962, December 6-7, 
1973, and January 3, 1976, prompted Zschau et al. (1978) to develop a storm surge 
forecasting technique by measuring the inland crustal tilt and the deflection of the local 
vertical due to the buildup of the surge. These authors, using a vertical pendulum, 
measured such tilts with precision and according to them there is advance information 
about the storm surge in these tilt measurements. The rationale for this is explained below. 

There is an indirect effect of tides on tidal gravity, tilt, and strain measurements. 
Since this effect depends on the elasticity of the crust and the upper mantle, this effect has 
been used to determine their elastic properties. However, in the regions where the elastic 
properties are known better than the tides, the inverse problem of determining the tides 
from measurements of tidal gravity on the land has been used. Zschau et al. (1978) used 
this inverse approach of determining the storm surge from tilt measurements made inland. 
According to them, the additional water mass of the surge has three different effects on 
these measurements: (1) the deflection of the vertical due to the gravitational attraction of 
the water mass, called the Newtonian tilt; (2) the tilt of the surface due to the loading, and 
unloading of the sea floor, called the primary loading tilt; (3) the secondary deflection of 
the vertical due to the redistributions of mass caused by the loading and unloading, called 
the secondary loading tilt. 

The secondary loading tilt, generally, is small compared with the primary tilt and it 
can be combined with the loading tilt. Note that the Newtonian tilt and the primary tilt 
cause a deflection of a vertical pendulum tiltmeter and also tilt its casing. 

The storm surge of December 6-7, 1973, at Büsum on the west coast of Schleswig-
Holstein is shown in Fig. 7.122. A maximum amplitude of about 3 m was attained. The 
measured tilt at Kiel-Rehmsberg and also the astronomical tide are shown. It can be seen 
that the tilt curve matches the storm surge curve except for a 12-h phase advance. This 
phase advance is explained as due to the amphidromic component of the North Sea surge, 
which takes roughly a day to propagate in a counterclockwise direction from Scotland 
along the coasts of the United Kingdom, Belgium, the Netherlands, Germany, and 
Denmark to Norway. 

This same technique was used to simulate four major, two moderate, and three minor 
surges during November—December 1973. The predictions (Fig. 7.123) 9, 6, and 3 h 
ahead had average errors of 29, 18, and 11 cm, respectively, in the maximum storm surge 
amplitudes. 
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FIG. 7.113. Computed (solid line) and observed (dots) storm surges at five 
locations on the south and west coasts of the North Sea during April 2-6, 1973. 
(Davies and Falther 1977) 

STORM SURGES IN DENMARK 

Egedal (1957) examined the storm surges at Randers on the east coast of Jutland. 
Depressions traveling over Jutland from the west cause north—northeasterly winds, which 
generate surges on the east coast of Jutland. Another area where surges are generated by 
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FIG. 7.115. Twin surges of the North Sea in December 1954 as recorded at the Hook of 
Holland (solid line). Broken line shows the computed surge using the equilibrium wind effect. 
(Weenink 1956) 

such a weather system is the Island of Funen (Fyn). Egedal remarked that as far as storm 
surges are concerned, there are similarities between the east coast of Jutland and the east 
coast of the United Kingdom. 

Ringe-JOrgensen (1958) studied the storm surges along the North Sea coast of 
Denmark. The tidal amplitude varies from about 1.5 m near the Danish—German bound- 
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FIG. 7.117. Netherlands coast showing the locations of the tide gauge stations used in the storm surge study. 
1, Den Helder; 2, Oostoever; 3, Den ()ever; 4, Petten; 5, Umuiden; 6, Katwuk aan Zee; 7, Scheveningen; 8, 
Hoek van Holland; 9, Maassluis; 10, Vlaardingen; 11, Rotterdam; 12, Krimpen aan den Lek; 13, Spukenisse; 
14, Ouddorp; 15, Hellevoetssluis; 16, Dordrecht; 17, Brouwershaven; 18, Burghsluis; 19, Vrouwenpolder; 20, 
Westkapelle; 21, Wemeldinge; 22, Vlissingen; 23, Hansweert; 24, Terneuzen. (Timmerman 1971) 

ary to about 0.4 m at Thyborôn. This study suggested that a meteorological situation 
similar to that of the January 31—February 2, 1953, event could cause surges with 
amplitudes up to 3.4 m at Harlingen (Holland) and only about 1 m at Hanstholm (50 km 
north of Thyborôn). The influence of the Norwegian Ditch appears to prevent the occur-
rence of very large amplitude surges at Thyborôn but permits the occurrence of a large 
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FIG. 7.118. Sudden water level changes (gust bumps) at several locations on the Netherlands coast on 
December 13, 1956. (Timmerman 1971) 

number of moderate surges. 
Lundbak (1956) studied the storm surge of January 31—February 2, 1953, on the 

coast of Denmark. The surge at Esbjerg is shown in Fig. 7.124. He mentioned that one 
of the worst storm surges on the Danish coast occurred November 12-14, 1872, in which 
there was great damage and loss of life on the island of Lolland. The storm surge of 
October 10-11, 1634, was supposed to have killed more than 6000 people. This surge 
cut the German island, Nordstrand, into two separate islands, which were later named 
Pellworm and Nordstrand. 

LaCour (1917a) studied the storm surge of January 15-16, 1916. He gave tables of 
the surge amplitudes at 46 locations at every hour from 12:00 on the 15th to 00:00 on the 
17th. He also gave several diagrams showing the winds, currents, and the water level at 
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various times. Peak surges up to 1.9 m occurred. The distribution of the storm surge 
heights at 06:00 January 16, 1916, is given in Fig. 7.125. 

STORM SURGES IN NORWAY 

Gjevik and Red (1974) mentioned that catastrophic surges occurred at the island of 
Grip (a small island on the west coast of Norway), which were discussed by Helland 
(1911). Major surges occur also at the Island of Ona. Johansen (1959) studied the surge 
along the southeast coast of Norway. Gjevik and Roed (1974) studied the following three 
surges on the Norwegian west coast: November 2, 1971, December 30, 1972, and 
December 31, 1972. The surge curves at three locations for the three cases together are 
shown in Fig. 7.126 and 7.127, respectively. The peak surge amplitudes at six locations 
for the first case are given in Table 7.65. 

Martinsen et al. (1979) developed a numerical model to simulate storm surges on the 
west coast of Norway. The observed surges at five locations and those calculated from the 
numerical model including bottom stress are compared in Table 7.66. 

STORM SURGES IN SWEDEN 

Bergsten (1955) studied the relationship between winds and the water levels on the 
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coasts of Sweden. He stated (p. 132-133): 
Generally, the water level in the South Baltic rises when the winds are northerly, and 
falls when they are southerly . .. The consequence is that on the south coasts of Skane 
and Blekinge offshore winds will raise the water level, and winds from the sea will 
reduce it . .. Another consequence is that the water level in the Sound and the Belts 
will be greatly changed in height; e.g., SW gales are blowing, as these will lower the 
water level in the South Baltic, and raise it on the west coast. The difference between 
the levels in the South Baltic and the west coast may in extreme cases be as much as 
a couple of meters. As far as the Sound is concerned, the difference is concentrated to 
the very short distance from Limhamn to Klagshamn, where a submarine bank runs 
from the Swedish to the Danish side, constituting the boundary between the Baltic and 
the western seas. Northeasterly gales reverse these conditions. 

The surges at five locations on the Baltic coast of Sweden for the storm surge of 
January 2-5, 1954, are shown in Fig. 7.128. This surge was generated by a northerly 
gale. The surge at Bjôrn on January 3 is particularly interesting because it shows that the 
Aland archipelago acts as a strong barrier to the southward flow of water. 

Welander (1961) simulated the storm surge at Ystad using the so-called influence 
method and compared it with the observed surge for the case of the September 15-20, 
1948, event. The observed and computed surges are shown in Fig. 7.129. Svansson (1958) 
compared observed and calculated surges at Varberg for the event of December 5-12, 
1932 (Fig. 7.130). 

1- 	0  

uj  -0.3 
cc 
1— 
w -0.6 __ .. / 

H
O

O
K

 O
F

 H
O

L
L

A
N

D
  

764 



I 	i 	\ \ 1 \ 	I 	I 	i 	_I 

_ 
DORDRECHT 

_2 L  present situation 

after the Deltaproject 
-3 

10 

HOOK OF HOLLAND 

-5 	 . 	■ 	. 

10 

10 

\\ 

10 

10-4  

Station 	Amplitude (m) Station 	 Amplitude (m) 

Borkum 	 2.4 
Nodemey 	 3.0 
Emden 	 3.3 
Wilhelmshaven 	3.4 

Bremerhaven 	 3.9 
Cuxhaven 	 4.2 
Büsum 	 4.8 
Husum 	 5.6 

5.4 3.6 4.5 0.9 	0 	0.9 	1.8 	2.7 

METRES 

FIG. 7.121. Frequency of excess of high water levels on the coast of the Netherlands. 
(Dronkers 1961) 

TABLE 7.64. Maximum water levels during the storm surge of Feb. 9-10, 1949, 
on the coast of Germany. (Tomczak 1950) 

STORM SURGES IN THE BALTIC SEA 

In Chapter 3, the one-dimensional model of Svansson and Szaron (1975) for the 
Baltic Sea was discussed. Observed and computed surges at several locations for the storm 
surge event of August 1-5, 1964, are compared in Fig. 7.131. 

Henning (1962) numerically simulated the surge of January 3-4, 1954, in the Baltic 
Sea. This surge caused maximum elevations up to 1.7 m in the western part of the 
Baltic Sea. The surface weather chart at 06:00 GMT on January 5, 1954, is given in 

F
R

E
Q

U
E

N
C

Y
 O

F
 E

X
C

E
S

S
 

765 



+ 1 

0 

-1 

tu +4 

+3 

+2 

+1 

0 

- I 

-2 

9-HOUR 
PREDICT ION 

2 

0 

6-HOUR 
PREDICTION 

3-HOUR 
PREDICTION 

10 	20 	DEC. 20 30 
1973 

TIDE 

9 5 	 7 
DEC. 1973 

FIG. 7.122. Tide and surge on the coast of Germany during December 6-7, 
1973. Top: ide  at Büsum; bottom: solid curve shows the surge at Büsum and 
the broken curve shows the tilt at Kiel-Rehmsberg. (Zschau 1977) 

cn 2  
cr  

l•- 1 

0 

Fia.  7.123. Hindcast of storm surges for Büsum from tilt measurements at Keil-Rehmsberg 9, 6, 
and 3 h in advance. Solid line: observed surge; broken line: hindcasted surge. (Zschau and Kumpel 
1979) 

766 



cm 

19 53 

Fin. 7.124. Water level at Esberg on the North Sea during January 31—February 2, 1953. Solid line: total 
water level (surge plus tide); broken line: storm surge only. (Lundbak 1956) 

Fig. 7.132. The distributions of the surge heights at two different times are shown in 
Fig. 7.133 and 7.134. Observed and computed surges at five locations are compared in 
Fig. 7.135. Some relevant data on this surge are given in Table 7.67. 

Wroblewski (1978) used stochastic techniques to simulate the following surges at 
Nowyport (on the Poland coast of the Baltic Sea): January 17, 1955, February 15, 1962, 
February 18, 1962, and February 21, 1962. Demel (1934) studied the surges of 1930 and 
1931 on the Baltic coast of Poland. 

For the literature on storm surges in the early part of this century in the Baltic, see 
Krüger (1910). Lisitzin (1974) examined the influence of ice cover on storm surges in the 
Baltic Sea (discussed earlier). 

STORM SURGES IN FRANCE 

The North Sea coast of France was discussed earlier. Here, the Atlantic and 
Mediterranean sea coasts of France will be considered. LaCour (1917b) studied the storm 
surges at Brest (on the Atlantic coast of France) for the period 1861-1905. It appears that 
no significant surges occurred. 

Fabry (1909) studied the surge near Marseille (on the Mediterranean Sea coast of 
France) of June 15, 1909. The surge amplitude was between 0.4 and 0.8 m and an 
earthquake might have caused this, making this water level oscillation a tsunami rather 
than a storm surge. Some water level oscillations can occur in this region due to landslides. 

Crepon (1974) studied water level oscillations on the Mediterranean coast of France. 
Note that in this area, the tidal range is rather small (less than 1 m). Crepon applied his 
analytical theory to study the water levels at Sète located on the Mediterranean coast of 
France. Here, the continental shelf is about 100 km wide and 90 m deep and there are no 
significant orographie influences on the wind field. The observed and computed water 
levels at this location for the period January—March 1969 are compared in Fig. 7.136. 
Some storm surge effects could be seen around the following dates: January 3-4, 
February 17-22, February 27, and March 21-23. It is interesting to note that the 
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FIG. 7.125. Storm surge amplitudes along the east coast of Denmark at 06:00 on January 16, 1916. (LaCour 
1932) 

calculated water levels are systematically lower than the observed values. Also, the 
observed maximum values were about 0.5 m. One may conclude that storm surges are 
probably not significant in France except on the North Sea coast. 

768 



r11 
100 

KRISTIANSUND 

60 

20 

24 	12 	24 	12 	24 	12h 

•■• 140 

100 

60 

20 

RORVIK 

,1■■ 

12 	24 	12 	24 	12 	24 	12h 

NARVIK 
100 

60 

■••■• 

20 

1 	 I 	 I 	 I 	 I 	v 	I. 	I  
12 	24 	12 	24 	12 	24 	12h 

I 	I 	2 	I 	3 	I 	4 
NOV. 1971 

FIG. 7.126. Observed storm surges on the west coast of Norway during November 1-4, 1971. Dots denote 
missing observations. Broken curve represents the theoretical surge due to the atmospheric pressure gradient 
only. (Gjevik and Red 1974) 

769 



24 
30 	I 

DEC. 1972 

12 	24 	12h 
31 	I 	1 d 

JAN. 1973 

24 	12 
I 

cm  
100 ^ 

KRISTIANSUND 

60 

20 

- 

- 

----- ---"--"N 	■--__ 
1 	 1 	.-- -- — 1-- --- — — — 4 — — — ---1..- -----. 	1 ‘ 	1  

12 ......----" --f2(-. 	12 	24 	12 	24 \.---I2 h 

100 - 

RORVIK 

60 

20 ----/ .-- .--- ------- 	............./  
1 	_1.-- ------ 	I 	 1  

12 	24 	12 	24 	12 	24 .."---. 12 h 

FIG. 7.127. Observed storrn surges on the west coast of Norway during December 29, I972—January I, 1973 
(solid line). Broken line shows the theoretical surge due to the atmospheric pressure gradient only. (Gjevik and 
Red 1974) 

770 



TABLE 7.65. Peak storm surge am-
plitudes at certain locations on the 
west coast of Norway for the surge of 
Nov. 2, 1971. (Gjevik and Red 
1974) 

Observed 
Location 	peak surge (m) 

Alesund 	 0.40 
Heimsj0 	 0.75' 
Trondheim 	 1.00 
SandnessjOen 	 1.20 
Hammerfest 	 0.40 
Troms0 	 0.50 

TABLE 7.66. Comparison of observed and cal-
culated peak surge amplitudes on the west coast 
of Norway for the surge of Nov. 2, 1971. (Mar-
tinsen et al. 1979) 

Peak surge (m) 

Location 	Observed 	Computed 

Kristiansund 	0.7 	0.98 
Heimsj0 	 1.0 	 1.08 
120rvik 	 1.4 	 1.40 
SandnessjOen 	1.2 	 1.47 
Troms0 	 0.5 	0.65 
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FIG. 7.128. Observed storm surges on the Baltic Sea coast of Sweden during Jan-
uary 2-5, 1954. (Bergsten 1955) 
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FIG. 7.129. Observed (solid line) and computed (broken line) storm 
surges at Ystad (Sweden) during September 15-20, 1948. (Welander 
1961) 

FIG. 7.130. Observed (solid line) and computed (broken line) 
storm surges at Varberg (Sweden) during December 5-12, 
1932. (Welander 1961) 

STORM SURGES IN PORTUGAL 

Storm surges can occur on the northen part of the Atlantic coast of Portugal (Morais 
and Abecasis 1975). A surge during January 16-17, 1973, did considerable damage in 
the Leixoes Harbor. The damage was severe because the surge occurred at the time of 
spring tide. The center of a low pressure system passed over Leixoes and its exceptionally 
long duration of 24 h generated very large wind waves. 

In the surge record, waves with periods between 4 and 40 min attained significant 
amplitudes. Leixoes Harbor exhibits a seiche with a 4-min period, which was amplified 
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FIG. 7.131. Observed (solid line) and computed (broken line) storm surges at various locations along the Baltic 
Sea. (Svansson and Szaron 1975) 

by resonance. There is evidence of the occurrence of a Helmholtz mode type motion also. 
Storm surges occurred again in January and February 1974 but the damage was 

minimal. Hydraulic model tests were run to simulate these. 
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F o.  7.132. Simplified surface weather 
chart at 06:00 (GMT) on January 5, 1954, for 
the Baltic Sea area. (Henning 1962) 

STORM SURGES IN ITALY 

In Italy, storm surges occur along the Ligurian Sea coast, the Tyrrhenian Sea coast, 
and the Adriatic Sea coast. On February 18, 1955, a cyclone caused great damage to the 
breakwater in Genoa Harbor (Grimaldi 1955; D'AiTigo 1955). Strong winds from the 
southwest generated wind waves with greater than 7-m amplitudes and possibly also a 
storm surge. Some of the water level problems in the Ligurian Sea associated with weather 
systems were discussed in section 6.9. 

In section 6.9, some of the storm surge problems at Venice were considered. Tomasin 
and Frasetto (1979) studied the surge of April 21-22, 1967 (Fig. 7.137). What makes the 
problem more complicated is a seiche with a period of about 1 d that can be excited by 
weather systems. Such a seiche during February 16-20, 1967, is shown in Fig. 7.138. 
Observed and computed surges at Venice for February 12, 1972, are shown in Fig. 7.139. 
In the fall of 1982, major storm surges occuiTed at Venice and Trieste causing considerable 
damage. 

In 1975 the Italian government devised a plan to reduce the effects of tides and storm 
surges at Venice by constructing barriers to narrow the entrances to the lagoon on which 
Venice lies (Vittori and Tampieri 1979). 

STORM SURGES IN THE ADRIATIC SEA 

Stravisi (1972) used a one-dimensional numerical model to simulate hypothetical 
storm surges in the Adriatic Sea. Storm surge amplitudes at two different times are shown 
in Fig. 7.140. Tebaldi (1973) studied the nonlinear aspects of storm surge generation in 
a rectangular bay of the dimensions of the Adriatic Sea. Zore (1955) stuided the seiches 
and water level oscillations due to weather systems in the Bay of Kastela. Surges and 
seiches wth amplitudes from 20 to 60 cm occurred on the following dates: September 
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FIG. 7.133. Distribution of storm surge amplitudes (centimetres) in the Baltic Sea at 20:00 (GMT) on January 
3, 1954. (Henning 1962) 

14-15, 1949, November 24-25, 1949, December 14-15, 1949, January 18-19, 1951, 
April 17, 1952, and May 8-9, 1952. 

STORM SURGES IN THE AEGEAN SEA 

Wilding et al. (1980) studied tides and storm surges in the northwestern part of the 
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FIG. 7.134. Distribution of storm surge amplitudes (centimetres) in the Baltic Sea at 14:00 (GMT) on January 
4, 1954. (Henning 1962) 

Aegean Sea. The geography of this area is shown in Fig. 7.141. The tides are rather small 
in this water body, as can be seen from Table 7.68. The surges during August 20-23, 
1975, at three locations are shown in Fig. 7.142. The power spectrum of half-hourly water 
level records is given in Fig. 7.143. Predominant periods of 2.68 and 2.40 h can be seen. 

776 



200 r STRANDE 

0 

-60 

•••• 

60 F0  0 

•••"" 

KEMI 

HANKO 

YSTAD 

CM 

-100L 

60 — 
0 

-60 

140 r  
•••••■•••••/...-. .... 

HERINGSDORF 

0 	 
-60 

••••■ 

100 

° -60 
160 r- 

•■-• 

Oh 0 0 0 	12 

JAN. 3,1954 

12 

JAN.5, 1954 

12 

JAN.4, 1954 

Time of maximum 
elevation 

(observed) Surge (cm) 

FIG. 7.135. Observed (solid line) and computed (broken line) storm surges in the Baltic Sea during 
January 3-5, 1954. (Henning 1962) 

TABLE 7.67. Comparison between observed and computed storm surges in the Baltic 
Sea for the event of Jan. 3-4, 1954. (Henning 1962) 

Water level 
gauge 	Day 	Time (GMT) 	Observed 	Computed 

Degerby 	 3 	 8:00 	 47 	 52 
Landsort 	 4 	 0:00 	 51 	 77 
Kungholmsfort 	4 	 8:00 	 100 	 105 
Ystad 	 4 	 5:00 	 171 	 164 
Heringsdorf 	4 	11:00 	 195 	 197 
SaBnitz 	 4 	11:00 	 183 	 171 
Kap Arkona 	4 	10:00 	 187 	 193 
DarBer Ort 	4 	12:00 	 190 	 195 
Wamemünde 	4 	13:00 	 224 	 192 
Wismar 	 4 	14:00 	 291 	 192 
Travemünde 	4 	15:00 	 283 	 192 
Gedser 	 4 	12:00 	 231 	 186 
Langballigau 	4 	12:00 	 236 	262 
Strande 	 4 	15:00 	 239 	 236 

777 



40 

30 

20 

10 

JANUARY 1969 

cm 
120 

100 
80 

60 

40 

20 

0 

1 
6 	12 	18 	0 	6 

20 

1 
12 18 
21 

1 	1 	I  
6 	12 	18 	0 h  

22 d 

1 1 1 1- 

-50 

cm 
100 

50 

1 	 1 	 I 	 1 
16 	17 	18 	19 	20 

DAYS 

C m  

50 

f 	
..,OBSERVED 

A 

I I 	il 
r I
i I

I 	 CALCULATED 	 / I 	I 
,i tr%, 	

r
---, A  

e• -.. \ l . . i1 	s, 	 Af 	1 V 	i i 	IturV i.i i)‘A , 11 \ 
\j' 	‘..y‘,/ 	vi 	1 r  , 	 v v .,, 1   

FEBRUARY 1969 	

vs./ 	I 

MARCH 1969  

t
v

I 

FIG. 7.136. Observed and calculated water levels at Séte (on the Mediterranean coast of France) for the period 
January—March 1969. (Crepon 1974) 

OBSERVED 

FEBRUARY 1969 

111. 

APRIL 1967 

FIG. 7.137. Recorded water level (tide plus surge) at Venice, Italy, during April 20-22, 1967. Time is 
GMT — 1. (Tomasin and Frasetto 1980) 
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Fin. 7.138. Seiche at Venice, Italy, with a period of approximately 24 h. (Tomasin and Frasetto 1979) 
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FIG. 7.139. Computed (broken line) and observed (solid line) surges at Venice during February 12-15, 1972. 
Time is hours from the starting time of 03:00 (GMT) on February 12, 1972. (Tomasin and Frasetto 1979) 

PLANNING FOR PROTECTION AGAINST STORM SURGES IN EUROPE 

The background and the considerations that went into planning for protection against 
storm surges in the United Kingdom, the Netherlands, and Germany will be discussed in 
this subsection. 

In the United Kingdom serious consideration was given to protection against storm 
surges following the disastrous event of January 31—February 2, 1953. In these floods at 
least 309 people died, 24 000 houses were destroyed, 200 large industrial premises were 
flooded and damaged, and 16 000 acres (1 acre = 0.405 ha) of land was inundated. In this 
event, the maximum surge was about 9 ft (2.74 m) and this was compounded by high-
amplitude wind waves. The flooded areas on part of the east coast of the United Kingdom 
are illustrated in Fig. 7.144. 

Following this event, a recommendation was made to provide storm surge warnings 
each season beginning on September 15 and ending on April 30. The storm surge hazard 
is assumed to be on the increase because the southeast coast of the United Kingdom is 
estimated to be sinking (with reference to the mean sea level) by as much as 1 ft 
(0.305 m) per century. However, there are long stretches of natural protection against 
storm surges on the east coast of the United Kingdom such as dunes and shingle ridges. 
Over the years, about 1270 mi (2044 km) of manmade earthen and other types of barriers 
were also added. 

Flooding in the Thames Estuary is also a serious problem. For example, in the 1953 
event, at least 30 000 acres of land was inundated. Following this event, several runs were 
made in a hydraulic model on the effect of increasing the heights of barriers in Kent and 
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Fin. 7.140. Distribution of the amplitudes (centimetres) of a hypothetical storm surge in the Adriatic Sea at 
(a) 10 h and (b) 11 h after the start of wind stress application. (Stravisi 1972) 

Essex by 3-4 ft (0.91-1.22 m). The results showed that this might increase the water 
level, for example, in central London. Two alternate possibilities were considered. 

One scheme calls for the construction of a barrier across the estuary, leaving gaps for 
ships to pass through. The disadvantage of this is the belief that this will deteriorate the 
estuary as an ecosystem. A second and possibly better scheme calls for the construction 
of a suitable structure across Long Reach (between Purfleet and Greenhithe). This struc-
ture will be provided with gates that can be closed during high floods. 

Jensen (1953a, 1953b) discussed qualitatively the changes in the North Sea coastline 
going back to 2000 B.C. He also discussed the dykes that were built during the last several 
centuries against flooding. 

Farquharson (1953) studied the storm surges at Shee rness and Southend going back 
to 1820 (when tide gauges were put in). The records were more or less complete except 
for a break from 1858 to 1867. He made the point that the frequency of occurrence of 
major surges gradually increased during the period 1820-1953. Regarding their monthly 
distribution, November—January (Table 7.69) had the highest frequency. 

Pugh and Vassie (1979) studied the statistics of extreme sea levels in the North Sea 
and Irish Sea, making use of the probabilities of tide and surge occurrences. This technique 
enables one to estimate the probability of occurrence of extreme levels, using the proba-
bility of tide and surges separately based on a few years of data. Let the total water level 

be the sum of a tidal component x, a surge component y, and a mean sea level zo . Then 

(7.73) 	(t) = x(t) + y(t) + zo 
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FIG. 7.141. Geography of the Aegean Sea. (Wilding et al. 1980) 

TABLE 7.68. Tides in the Aegean Sea. (Wilding et al. 1980) 

Mean spring range 	Mean neap range 
Location 	 (cm) 	 (cm) 

Port Salonica 	 32.4 	 9.6 
Saint Trias 	 29.0 	 6.6 
Krini 	 29.6 	 4.4 
Mihaniona 	 29.4 	 5.0 
Kavoura 	 29.0 	 4.6 

The tidal part can be expressed as 

(7.74) 	x(t) = E H,, cos (o-„t + V„ — g„) 
n=1 

where H„ is the amplitude of each tidal constituent, a .„ is the frequency of the tidal 
constituent, 17„ is the equilibrium phase, and g„ is the phase lag of the constituent on the 
equilibrium tide. 

It is assumed that tides and surges can occur independently, and the total probability 
p() for the tide and surge together can be written as 
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(7.75) 	= 	 Y)Ps(y)dy 

where pt (x) is the probability density function for the tide and ps (y) is the probability 
density function for the surge. 
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Month 

October 
November 
December 

No. of occurrences 

3 
12 
11 

Month 	No. of occurrences 

January 	 10 
February 	 6 
March 	 7 

TABLE 7.69. Monthly distribution of the 49 major storm surges (with amplitudes 
in excess of 3.35 m at Sheerness, U.K.) during the period 1934-53 on the east 
coast of the United Kingdom. (Farquharson 1953) 

TABLE 7.70. Return periods (yr) for positive storm surges at selected stations in the British Isles. Note that 
Lerwick has been offset relative to the mean level by 1 m to fit in the table. (Pugh and Vassie 1979) 

Level 
above MSL (m) 	Newlyn 	Fishguard 	Malin Head 	Stomoway 	Lerwick° 	Aberdeen 

3.6 	1670 
3.5 	311 	926 
3.4 	 74 	261 
3.3 	 20 	81 	 762 
3.2 	 5.9 	26 	 182 
3.1 	 1.9 	8.7 	 50 	 863 
3.0 	 0.7 	3.1 	1520 	15 	 248 
2.9 	 1.1 	392 	 4.9 	 80 
2.8 	 109 	 1.7 	1520 	27 
2.7 	 35 	 0.6 	199 	9.8 
2.6 	 12 	 27 	3.6 
2.5 	 4.4 	 4.8 	1.4 
2.4 	 1.7 	 1.0 

'Lerwick levels are relatéd to mean sea level + 1 m. 

TABLE 7.71. Retum periods (yr) for negative storm surges at selected stations in the British Isles. Note that 
Lerwick has been offset relative to the mean level by 1 m to fit in the table. (Pugh and Vassie 1979) 

Level 
above MSL (m) 	Newlyn 	Fishguard 	Malin Head 	Stornoway 	Lerwick 	Aberdeen 

-2.3 	 1.3 
-2.4 	 5.6 	 1.1 
-2.5 	 0.8 	28 	 7.2 
- 2.6 	 3.4 	178 	 56 	 0.7 
- 2.7 	 18 	1655 	 641 	 2.6 
- 2.8 	 101 	 12.4 
-2.9 	 584 	 0.6 	 64 
- 3.0 	 1.3 	 2.0 	 316 
-3.1 	 6.6 	 7.0 	 1590 
- 3.2 	 42 	 28 
-3.3 	335 	 120 
- 3.4 	 560 
- 3.5 
- 3.5 

'Lerwick levels are related to mean sea level -1 m. 
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TABLE 7.72. Positive and negative maximum sea levels (m) due to surge and tide 
that can occur at six locations in the United Kingdom during 50- and 100-yr return 
periods. (Pugh and Vassie 1979) 

50 yr 	 100 yr 

(7.79) 	SH x + 0.5 
5.48 5.48 

Location 

Newlyn 
Fishguard 
Malin Head 
Stornoway 
Lerwick 
Aberdeen 

Maximum 	Maximum 
positive 	negative 

level 	level 

	

3.38 	 3.32 	 3.43 	 3.37 

	

3.27 	 2.78 	 3.33 	 2.80 

	

2.75 	 2.55 	 2.80 	 2.59 

	

3.10 	 3.31 	 3.18 	 3.34 

	

1.65 	 1.60 	 1.68 	 1.65 

	

2.87 	 2.89 	 2.93 	 2.94 

Maximum 
positive 

level 

Maximum 
negative 

level 

The probablity of a particular level can be obtained from the cumulative distribution 
function  F (1): 

(7.76) F (1) = 

The return period for the level is 1/F (1) provided the time series that represents the 
surge is not autocorrelated. For a negative surge (exposure of low levels), rather than 
eq. 7.76, one can write 

(7  .77) 	F(1) = j 19 ()d 

Using this technique, Pugh and Vassie (1979) determined the return periods for 
positive and negative extreme levels for six locations on the United Kingdom coast 
(Tables 7.70 and 7.71). 

The maximum positive and negative levels that can occur at these six stations during 
a 50- and a 100-yr period are given in Table 7.72. 

Mantz and Wakeling (1979) studied the probability of extreme levels on the coast of 
Norfolk due to the combined action of rainfall and storm surges to obtain design heights 
for safe riverbank crest levels. They gave the following simple relations for the Yare 
Basin: 

IrRA(1) 1  

(7  ' 78) 	?ifi 	5.48 	x + 0.5 

where QR /A is the short-term areal discharge for any extreme value reduced variate x. The 
constant 0.5 m' • km' is the mean daily base flow (x = 0) for the total catchment and the 
constant 5.48 represents the x value for a return period of 242 d (a surge year). 

Similarly, a short-term (less than 1 yr) surge level prediction is needed for the joint 
occurrence analysis. This is given by 

[

SH (1)  - 0.5 ]  

where SH  denotes the short-term surge level for any extreme value reduced variate x. The 
constant of 0.5 m is a daily height that could be exceeded (x = 0) and the constant 5.48 
represents the x value for a return period of 242 d. 
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If TQ  is the return period for the rain flood and TR is the return  period for the surge 
flood, then the joint retu rn  period is 

242 ,7, (7 . 80) 	TQR = -, À Q. z 
,T, 

R  
JT 

where JT is the average duration during which a flood could occur. Note that 

(7 . 81 ) JT = OT + OR 

where OT and OR are the average durations of rain floods and surge floods. The maximum 
water levels that can occur from rainfall and surges together in three basins on the 
southeast coast of the United Kingdom within periods of 525 and 100 yr are given in 
Fig. 7.145A. The return periods for storm surges on the Essex coast are given in Fig. 
7.145B. 

Ackers and Ruxton (1975) studied the probability of extreme water levels due to tides 
and surges on the Essex coast including the effect of wind waves. The results for return 
periods for up to 5000 yr (using the year 1971 as a base year) are summarized in 
Fig. 7.146. One has to be very careful in using results of this nature where the extrapo-
lation is thousands of years. . 

Graff and Blackman (1979) analyzed the water level data for the south coast of 
England. The data for 10 locations varied from 16 to 125 yr. They used the so-called 
Jenkinson (1955) method in which the return period T of a given water level h can be 
written as 

(7.82)  T= — —ln
1
p or ln T = — ln (— ln p) =x 

where p is the probability that the annual maxima are less than h. The curve between h 
and x can be approximately represented by 

1  

	

(7.83) 	x = ln 	 
K (1 — a) 

where K, hc , and a are constants to be determined from the data. The parameter K is a 
measure of the type of data distribution: 

/ 
< 0, curve bends upwards: 	type I 

	

(7.84) 	K = = 0, curve is a straight line: 	type II 
>0,  curve bends downwards: 	type III 

The results show that along the south coast of the United Kingdom beginning in the west 
and proceeding towards the east, the curve changes from type III to type II and then to type 
I (Fig. 7.146). 

Prandle (1980) used the analogy between AC circuit theory and hydrodynamics to 
study the influence of barriers on the tidal regimes. He showed that for the Thames 
Estuary, barriers located between North Woolwich and Chelsea Bridge will slightly 
increase the M2 tidal range. On the other hand, in the Bristol Channel, barriers downstream 
of Newport will slightly reduce the M2 tidal range. 

Lindstrôna (1979) used the word "turbation" to denote an interesting feature in the 
sand ridges along the coast of northern Brittany. He stated: 

Sand ridges ... contain alternating beds of coarse and fine to medium sand 4 to 10 
meters above normal reach of highest spring tides. They were deposited in the Holo-
cene, largely during the last centuries, by sand charged storm surges ... 
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FIG. 7.146. Return period versus extreme water level for 
selected stations along the south coast of the United 
Kingdom. (Graff and Blackman 1979) 

Regarding the storm surge flooding problem in the Netherlands, the highest point in 
the extreme southeastern part of the country is about 1000 ft (305 m) above mean sea level 
whereas the western and northern parts of the country (constituting 40% of the area of the 
Netherlands) would be submerged due to tides but for the protection afforded by dykes. 
The lakes and bays that were reclaimed by pumping out water are all below sea level by 
19-23  ft. 

Storm surges in 1825, 1894, 1906, 1916, and 1953, with amplitudes up to 3 m, 
caused terrible destruction. The event of January 31—February 2, 1953, flooded 400 000 
acres (Edwards 1953) and affected a population of 665 000 in the Netherlands, as well as 
destroying thousands of houses and killing thousands of animals. Earlier, the so-called 
"delta plan" that was put into operation in the Netherlands as protection against storm 
surges was discussed. 

Wemelsfelder (1961) established frequency curves for storm surges in the 
Netherlands. Edelman (1972) studied the beach profiles before and after a storm surge 
event to estimate the amount of erosion. The surge profiles before and after a storm surge 
are shown in Fig. 7.147. 

The AB portion of the profile is represented by 

(7.85) y + 0.90 — 0.415 Vx + 4.70 

where y is the depth below the highest level of the storm surge and x is the distance from 
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FIG. 7.147. Hypothetical beach profile before and after a storm surge occurrence. (Edelman 
1972) 

the water line A. Note that x = 0 and y = 0 gives point A and x = 100 m and y = 
3.35 m gives point B. 

To represent the total beach profile after the storm surge, Edelman (1972) tried the 
cubic formula 

(7.86) y = ax3  — bx 2  + cx 

where a, b, and c must be determined from the data. Edelman (1972) concluded that it is 
not possible to extrapolate seaward the AB portion of the curve. 

van de Graaff (1979) studied dune erosion due to storm surges on the Netherlands 
coast. He also simulated the events in a hydraulic model. He stated that the primary 
defense against storm surges in the Netherlands are the dunes. The storm surge of 1953 
caused erosion in the width of the dunes by as much as 20-30 m. The average amount 
of erosion was 100 m3  per 1-m length of coastline. 

Based on hydraulic test results, the following form was assumed for the beach profiles 
after a storm surge: 

(7.87) 	z = 0.415(x + 4.5) 03  — 0.88 

where z is the depth (metres) below the maximum water level during the surge and x is 
the distance (metres) from the intersection of the beach profile and the maximum water 
level. The simulated dune erosion is shown as a function of time in Fig. 7.148. Based on 
these tests it was deduced that storm surges with amplitudes of up to 3.8 m could cause 
erosion at the rate of 160 m 3 • un -I  whereas for surges with amplitudes of up to 5 m, the 
rate could be about 225 m3 • m.  

Fohrboter (1979) studied the frequencies of extreme storm surges on the coast of West 
Germany and advanced the hypothesis that storm surge activity is on the increase in the 
German Bight. To support this contention he stated that after the disastrous 1953 storm 
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units). The distortion referred to is the distortion in the hydraulic mode!. In these tests, a maximum surge 
amplitude of 5 ni is assumed. (van de Graaff 1979) 

surge in the Netherlands, the next major one was in Germany in 1962. Another one in 
November 1972 did extensive damage all along the coastline from France to Poland. Then, 
six storm surges occurred in November—December 1973, and two major surges occurred 
in January 1976. 

Fohrboter (1979) suggested that the classical extrapolation techniques for return 
periods might not be applicable in this situation because the time series (representing the 
storm surge data) is not stationary but changing with time. At three locations on the North 
Sea coast of Germany, storm surge records are available for long periods: Cuxhaven 
for 1813-1976 (Fohrboter's study does not consider data subsequent to 1976), 
Wilhelmstaven for 1854-1976, and Husum for 1867-1971. Using two different models, 
he showed that there is a general increase of storm surge activity beginning in the 1950's. 

Barthel (1979) showed that significant wind wave activity can occur in the German 
Bight. One must include this in predicting the total water level. 

7.4 Storm Surges Elsewhere than in Canada, the United States, 
and Europe 

STORM SURGES IN BERMUDA 

Redfield and Miller (1957) studied hurricane-generated storm surges at Bermuda due 
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to the storm of October 7, 1948. They could account for the storm surge in terms of the 
inverse barometer effect. The surge amplitude was only 0.6 ft (0.18 m). The hurricanes 
of September 13, 1948, and September 17, 1953, produced similar surges. These low 
amplitudes for the surges are consistent with the concept of low amplitudes for long waves 
in deep water (noting that Bermuda is a small island and there is no wide shelf surrounding 
it). 

However, major surges  cari  occur occasionally. Surges of up to 6 ft (1.83 na) in 
amplitude occurred at St. George's due to the hurricanes of September 12-13, 1899, 
September 21, 1922, and October 22, 1926. 

STORM SURGES IN THE CARIBBEAN SEA REGION 

Hurricanes and storm surges cause significant death and damage in the nations of the 
Caribbean Sea region. Of the four nations Haiti, Cuba, The Dominican Republic, and 
Honduras, maximum effects occurred in Haiti (Funk 1980) where about 8400 people were 
killed in the twentieth century. In 1963 alone, Hurricane Flora caused 5000 deaths. 
Hurricane David of August 29, 1979, killed 56 people in Dominica. 

Hurricanes originating in the Caribbean Sea south of 15°N, especially in the month 
of August, are a potential threat to Jamaica. Hurricane Allen of August 4-7, 1980, 
produced major storm surges that caused great devastation in Jamaica (Blake 1981). 
Winds of up to 45 m • s -1  generated storm surges with amplitudes up to 12 m at 
Manchioneal and Galina. Most of the northern coast of Jamaica was struck by surges of 
amplitudes between 4 and 8 m. There is evidence that the surge penetrated several 
kilometres inland. The damage was estimated to be about $126 million. About 75% of the 
banana crop, 95% of the fishing industry equipment on the north coast, and more than 800 
houses were destroyed. 

The storm surge of June 12, 1979, made poeple aware of what to expect and this 
helped in the safe evacuation of people during the 1980 surge. 

STORM SURGES IN MEXICO 

Mexico is affected by storm surges on its Gulf of Mexico coast. Usually, the 
hurricane tracks over the Gulf of Mexico are such that they strike the United States rather 
than Mexico. However, on rare occasions, storm surges do occur on the Mexican coast 
also. On the Pacific coast of Mexico, also, storm surges occur rather infrequently. The 
storm surge due to Hurricane Paul of September 30, 1982, killed 24 people and caused 
considerable damage on the Baja California coast. In this hurricane, winds up to 240 
km •11 -1  were reported. 

STORM SURGES IN BARBADOS 

Barbados and other islands of the Lesser Antilles are not usually subjected to storm 
surges, but they do have severe problems from swell and wind waves. There is a broad 
reef shelf surrounding Barbados and this makes the problem worse. The swell action is not 
associated with local storms from the Caribbean Sea but is due to intense extratropical 
cyclones in the North Atlantic Ocean (Donn and McGuinness 1959). 

Swell with amplitudes up to 20 ft (6.1 m) can occur quite frequently. Between 
December 1957 and October 1958, at least four occasions of major swell activity occurred. 
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FIG. 7.149. Observed and computed storm surges at Palermo (Buenos Aires) during July 26-29, 1958. 
(Alvarez 1973) 

FIG. 7.150. Observed and computed storm surges at Martin Garcia during July 26-29, 1958. (Alvarez 1973) 
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FIG. 7.151. Observed and computed storm surges at Montevideo during July 26-29, 1958. (Alvarez 1973) 

FIG. 7.152. Observed and computed storm surges at San Clemente (Argentina) during July 26-29, 1958. 
(Alvarez 1973) 

STORM SURGES IN SOUTH AMERICA 

Alvarez (1973) studied storm surges in Rio de la Plata, which is a water body 
bordering the South Atlantic Ocean between the south coast of Uruguay and the east coast 
of Argentina (Buenos Aires is situated on the south coast of this water body and 
Montevideo is on its north coast). The observed and computed surges during July 25-29, 
1958, at Palermo (near Buenos Aires) are compared in Fig. 7.149 and similar data are 
shown for Martin Garcia in Fig. 7.150. The computed and observed surges at Montevideo 
and San Clemente for the same dates are shown in Fig. 7.151 and 7.152. It can be seen 
that the computed values are systematically smaller than the observed values. The differ- 
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FIG. 7.153. Observed and computed storm surges at Palermo (Buenos Aires) during October 9— I I, 
1967. (Alvarez 1973) 

ences are somewhat severe at Montevideo and San Clemente. 
Alvarez (1973) also simulated the storm surge of October 10-12, 1967. The com-

puted and observed surges at Palermo, Martin Garcia, Montevideo, and Torre Oyarvide 
are compared in Fig. 7.153-7.156, respectively. In this case the agreement between 
computed and observed surges is somewhat better, especially at Martin Garcia. Also, the 
computed surges are generally smaller than the observed surges. 
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FIG. 7.15.5. Observed and computed storm surges at Montevideo during October 9-1  I, 1967. 
(Alvarez 1973) 

STORM SURGES IN MARIANAS, AMERICAN SAMOA, SOLOMON ISLANDS, AND TONGA 

Redfield and Miller (1957) mentioned that near the island of Mille in the Marianas, 
a storm surge of 12-15 m occurred in 1905 due to a buildup of the surge in a lagoon 
25 nautical miles (46 km) long. 

Gallagher (1973) studied the nonlinear distortion produced to the tidal regime due to 
openings of restricted depth. He showed that the tides in the Pala Lagoon in American 
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FIG. 7.156. Observed and computed storm surges at Torre Oyarvide during October 9-11, 1967. 
(Alvarez 1973) 

Samoa and the Main Lagoon on Christmas Island (in the latter case, very severely) are 
distorted. Similar behavior is expected for other long waves such as storm surges and 
tsunamis. 

Grover (1967) studied storm surges in the Solomon Islands, which is a rare phenom-
enon there. Cyclones forming in the Coral Sea region and intensifying in the area south 
and east of the Solomons could cause surges occasionally. The storm surge of January 
1952 caused some destruction on the west coast of Guadalcanal and at Malaita. The 
amplitude of the surge (at the time of low tide) at Honiara was about 3.5 ft (1.07 m). Winds 
greater than 85 mi •11 -1  (137 km • IC' ) were recorded there during this event. 

The surge caused serious erosion in a swath 60 m wide. Interesting topographic 
changes took place in the coastal waters. Grover (1967) mentioned that some villages that 
withstood severe tsunamis during a half-century period were obliterated by this surge. 

A major storm surge occurred during March 3-4, 1982, in Tonga Island in the South 
Pacific (which is located about 4025 km northeast of Sydney, Australia), and the surge 
amplitude was at least 1.3 m (The Citizen, March 4, 1982, Ottawa, Ont.). Winds up to 
276 km • h -1  coupled with the surge caused great devastation and killed several people. 

STORM SURGES IN NEW ZEALAND 

Severe storm surges generally do not occur on the coasts of New Zealand. Gilmour 
(1963) reported a surge of 0.78 m at Bluff Harbour; Agnew (1966) found surges of up to 
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FIG. 7.157. Tidal range R (metres) along the Australian coast. (Easton 1970) 

0.8 m on the west coast of the North Island during July 1965. Two cyclones in April 1972 
produced surges up to 0.3 m on the east coast of New Zealand (Pickrill 1972). Heath 
(1979) mentioned that due to the windy climate of New Zealand, departures from isostatic 
equilibrium are quite common. 

Although storm surge amplitudes are small on the New Zealand coast, they cause 
considerable erosion (Gibb 1976, 1977), e.g. in the Bay of Plenty on the west coast of the 
North Island and all along the east coast of the North Island (north of Auckland). 

Heath (1979) studied three storm surges: April 9-10, 1968, on the east coast of the 
North Island, July 30—August 1, 1975, on the east coast of the South Island, and 
September 11-13, 1976, on the west coast of the North Island. These three are the major 
storm surge events in New Zealand during the period 1968-78. The maximum surge in 
these events was about 0.6 m. 

STORM SURGES IN AUSTRALIA 

Since tide—surge interaction could be important, some tidal information will be 
presented for the coasts of Australia. The tidal range around the Australian coast is shown 
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in Fig. 7.157 and the types of tides are shown in Fig. 7.158. 
Hopley and Harvey (1979) studied storm surges in Australia. They questioned the 

accuracy of the 12.2-m surge in Bathurst Bay in 1899 (Whittingham 1958) and the 7.01-m 
surge at Groote Eylandt in 1923 (Whittingham 1958). However, they mentioned that 
several surges with amplitudes greater than 3 ni occur in eastern Queensland, Gulf of 
Carpentaria, and western Australia. These authors used the Jelesnianski (1972) scheme to 
compute the amplitudes of the surges. The maximum surge height he  was calculated from 

V 
(7.88) 	h. = hs 	F 87 D  

where hs  is the precomputed surge height based on cyclone parameters (see the SPLASH 
model of Jelesnianski 1972), Vp  is a correction factor based on maximum wind field and 
pressure drop, and FD is a depth correction factor for local bathymetry. 

Surge amplitudes are generally small on the Australian coastline, with the highest 
levels usually occurring on the Queensland coast, particularly south of Fraser Island. 
Storms moving parallel to the west and east coasts of Australia produce edge waves. It is 
observed that these edge waves tend to amplify the crest of the surge waves on the west 
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coast of Australia, whereas on the coast of Queensland, they tend to amplify the trough. 
Negative surges also predominantly occur on the Queensland coast. 

Storm surge profiles at several locations along the Australian coast are shown in 
Fig. 7.159. The maximum surge (3 m) in this diagram was at Townsville due to Cyclone 
Althea during December 22-25, 1976. Hopley and Harvey (1979) analyzed the con-
tributions from the forerunner, effects of wind stress and pressure gradients, and semi-
diurnal and diurnal tides to the total water level during storm surge events for six regions 
of Australia. These results are summarized in Table 7.73. 

These authors also calculated the peak surge occurrence probability curves for 19 
locations around the northern coast of Australia. Brisbane and Noosa have the lowest surge 
risk. Two locations with the greatest surge risk are Townsville and Karumba. These 
results, however, change somewhat when one superimposes the tide on the surge. The 
greatest risk will then be at Milner Bay, followed by Carnarvon, Townsville, and Centre 
Island. These surge risk results are summarized in Table 7.74. 

Nelson (1975) listed 30 major tropical cyclones that caused surges of amplitudes of 
at least 0.5 m on the north coast of Australia during the period 1880-1970. Hurricane 
Tracey of December 25, 1974, did great damage near Darwin. Das et al. (1978) pointed 
out that although the central pressure was as low as 955 mb and wind gusts attained 
200 km • h-  ' , the peak surge was only 1.6 m. Russell (1898) reported that storm surges 
occurred at Sydney and Newcastle on the coast of New South Wales from storms passing 
over the Bass Strait. These surges contained waves with periods of about 26 min. Similar 
phenomena occurred in Lake George. In Chapter 4, the statistical models developed by 
Tronson and Noye (1973) for the Adelaide area were considered. 

Mackey and Whittingham (1956) studied the storm surges at Port Hedland on the 
northwest coast of Australia for the events of November 14-20, 1955, and February 
24—March 2, 1956. The observed and predicted tides and the observed surge for the latter 
case are shown in Fig. 7.160. 

STORM SURGES IN JAPAN 

Storm surges in the bays on the coast of Japan are slightly less severe than, for 
example, in the Bay of Bengal and the Gulf of Mexico but they cause great damage and 
loss of life when they strike the densely populated coasts of Tokyo Bay, Osaka Bay, Ise 
Bay, etc. Tables 6.71 and 6.72 list the important storm surges in Japan. Miyazaki (1975) 
mentioned that storm surge records in Japan generally exhibit three features: the fore-
runner, the main surge, and the resurgence. The surge profiles at Nagoya and Toba along 
the coast of Ise Bay due to the typhoon of September 26-27, 1959, are given in 
Fig. 7.161. Forerunners with amplitudes of 20-30 cm can be seen. Resurgences with 
periods of about 7 h can also be seen. Miyazaki (1975) also estimated the return periods 
of surges with different maximum amplitudes at six locations in Japan. These results are 
summarized in Table 7.75. 

Unusual storm tracks can occur in the Japan area. The track of Typhoon Orchid of 
September 1980 is illustrated in Fig. 7.162. This track is remarkable because it shows 
three loops. Nakayama (1972) described the telemetering system for the tsunami and storm 
surge warning service provided by the Japan Meteorological Agency. As of 1972 there 
were a total of 60 coastal tide gauge stations in this system. Next, storm surge events will 
be considered in several different bays along the coast of Japan, beginning with Tokyo Bay 
and proceeding southwest. Note that the storm surge problem on the west coast of Japan 
(facing the Sea of Japan) is less severe than along the Pacific coast of Japan. 
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TABLE 7.73. Percentage contribution of various factors to the total water level during storm surge events in 
Australia. (Hopley and Harvey 1979) 

No. of 	 24-h 
surges 	 Wind and 	Semidiurnal 	diurnal 	Other 

analyzed 	Forerunner 	pressure 	tide 	tide 	sources 

South Queensland 	 22 	40.4 	31.5 	14.1 	10.0 	4.0 
North Queensland 	 28 	27.1 	29.1 	23.8 	10.9 	9.1 
Gulf of Carpentaria 	 15 	29.1 	44.1 	3.9' 	23.8 	- 
Northwest 

(Broome-Darwin) 	 4 	15.7 	31.4 	37.2 	4.7 	9.0 
Central Western Australia 

(Port Hedland- 
Camarvon) 	 8 	50.3 	25.5 	9.7 	5.8 	8.7 

Southwest Australia 	 7 	74.5 	14.7 	1.3 	3.2 	6.3 

'Without Melville Bay. 

TABLE 7.74. Maximum surge heights (m) that can 
occur in 10, 100, and 1000 yr at any point along a 
100-km coastline centered at specific locations on 
the coast of Australia. (Hopley and Harvey 1979) 

Station 	10 yr 	100 yr 	1000 yr 

Brisbane 	 0.15 	0.43 	0.73 
Noosa 	 0.20 	0.50 	0.83 
Bundaberg 	1.40 	2.80 	4.15 
Gladstone 	1.30 	2.50 	3.78 
MacKay 	 1.40 	2.40 	3.40 
Townsville 	1.45 	3.25 	4.90 
Cairns 	 1.03 	1.78 	2.55 
Thursday Island 	1.25 	2.50 	3.70 
Weipa 	 0.60 	1.30 	2.00 
Karumba 	2.25 	3.20 	4.15 
Centre Island 	1.41 	2.22 	3.00 
Milner Bay 	1.40 	2.25 	3.15 
Melville Bay 	1.50 	2.40 	3.30 
Darwin 	 1.65 	2.30 	2.90 
Wyndham 	1.50 	2.73 	3.60 
Broome 	 1.10 	1.75 	2.38 
Port Hedland 	1.50 	2.78 	3.70 
Carnarvon 	0.80 	1.46 	2.10 
Geraldton 	0.60 	1.15 	1.64 

Miyazaki et al. (1961) used numerical models to compute the storm surges in Tokyo 
Bay, Ise Bay, and Osaka Bay. They reconstructed the meteorological forcing terms for the 
Ise Bay typhoon of September 1959. The pressure-distance and wind-distance relations 
are shown in Fig. 7.163 and 7.164, respectively. 

Simulations were made for the following cases: (1) surges in Ise Bay due to the Ise 
Bay typhoon of September 1959, (2) surges in Tokyo Bay due to the typhoon of 
October 1, 1917, and Typhoon Kitty of September 1949, and (3) surges in Osaka Bay due 
to the Muroto typhoon of September 1934 and Typhoon Jane of September 1950. 

The horizontal distribution of the storm surge amplitudes in Tokyo Bay due to the 
typhoon of October 1917 is given in Fig. 7.165. Computed and observed surges at 
Kishiwada and Osaka due to Typhoon Jane are compared in Fig. 7.166. The spectrum of 
the storm surge at Kobe due to Typhoon Jane is shown in Fig. 7.167. 

Region 
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Fia. 7.160. Observed surge (top) and observed and predicted tides (bottom) at Port Hedland on the northwest 
coast of Australia during February 24—March 2, 1956. (Mackey and Whittingham 1956) 

Ito et al. (1965) developed a two-dimensional numerical model for storm surges 
in Tokyo Bay and the outer shelf using multiple grids. They also studied the problem of 
tide— surge interaction and the influence of a dyke (with an opening) in Tokyo Bay (north 
of a line connecting Kawasaki and Kisarazu) on the storm surges in the bay. They 
simulated the surges due to the October 1, 1917, typhoon and also due to the Ise Bay 
typhoon of September 1959. 

They found the following empirical relation for the maximum water level 11„.„ in that 
part of the bay protected by the dyke: 

(7.89) 	Tima. = a + in log A 

where A is the cross-sectional area of the opening, a is a constant that depends on the point 
of observation, and in is another constant almost independent of location. 

Runs were made with the numerical model for openings with widths of 20 m to 2 km 
and also for a case of two openings, each 0.5 km wide. The results tend to show that the 
maximum surge amplitudes in the inner bay (i.e. protected by the dyke) decrease when 
a dyke is present. Also, the maximum surge amplitude decreases for smaller widths of the 
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FIG. 7.161. Storm surges at Nagoya and Toba on Ise Bay, Japan, due to the typhoon of September 26-27, 
1959. Note the forerunners and the resurgences in addition to the main surge. (Miyazaki 1975) 

opening (Fig. 7.168). Several runs were made to compute the tide—surge interaction. A 
linear superposition of the tide and surge tends to overestimate the total water level, as can 
be seen from Fig. 7.169. 

Kawahara et al. (1980) used a finite-element model to compute storm surges in 
Surugawan Bay due to the typhoon (No. 6626) of September 24, 1966. The maximum 
surge produced was about 1 m. After the disastrous storm surge of September 1959 in Ise 
Bay, a breakwater was constructed in the inner part of the bay to protect the Nagoya district 
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Maximum 
surge 

observed 
(in) 

Return period (yr) for surges 
with peak amplitude of at least 

10m 	20m Location 0.5 in 

TABLE 7.75. Return periods of storm surges in Japan. (Miyazaki 1975) 

Tokyo 	 2.1 	1.0 	8 	35 
Yokohama 	 1.1 	1.4 	19 	— 
Nagoya 	 3.4 	0.6 	3 	15 
Osaka 	 3.1 	0.7 	3 	10 
Kobe 	 2.2 	1.0 	6 	30 
Beniya 

(on the Ariake 
Sea) 	 2.5 	— 	7 	17 

(Nakamura et al. 1964). These authors also performed hydraulic model tests. The tests 
showed that the breakwater will not significantly alter the tide but will reduce the surge 
considerably in the inner part of the bay. 

The Muroto typhoon of September 21, 1934, caused major storm surges in Lake Biwa 
(northeast of Osaka). The southern portion of this lake is very shallow with an average 
depth of only 3.4 m. Surges up to 2.4 m in amplitude were generated (Nomitsu 1935). 

Miyazaki (1955) studied storm surges in the Kobe Harbor. During the period 
1925-54, a total of at least 34 storm surges occurred in this harbor. The Muroto typhoon 
of September 21, 1934, produced a surge of amplitude 2.2 m. Typhoon Jane of September 
3, 1950, produced a surge of 1.7 m; the Makurazaki typhoon of September 18, 1945, as 
well as another typhoon on September 26, 1954, produced surges up to 1.5 m. 

Miyazaki (1955) gave the following return periods for surges of amplitude 1.0, 1.5, 
2.0, and 2.0 m in Kobe harbor: 5, 24, 105, and 455 yr. The frequency distribution of storm' 
surges (with amplitudes greater than or equal to 0.5 m) in Kobe Harbor by month is given 
in Fig. 7.170. Of a total of 32 storm surges studied, 22 were caused by tropical cyclones 
and the remaining 10 were caused by extratropical cyclones. Further, any surges with 
amplitudes greater than 0.8 m were exclusively produced by tropical cyclones. 

Osaka Bay is frequently subjected to severe storm surges. The Muroto typhoon of 
September 21, 1934, killed 2593 people and 110 000 houses were destroyed in Osaka 
alone. The central pressure of this typhoon was the lowest ever recorded at a land station 
(912 mb). Wind velocities of up to 60 m • s -1  created maximum water levels of 4.6 m, and 
surges with amplitudes of up to 2.3 m inundated large areas (Matsuo 1934). Osaka Harbor 
(and several others) was heavily damaged and individual ships of up to 3145 t in weight 
were carried ashore by the surge. The total weight of the ships carried ashore in Osaka 
Harbor was about 23 000 t. The envelope of maximum surge amplitude at several lo-
cations along Osaka Bay due to Typhobn Nancy of 1961 is shown in Fig. 7.171. 

Hayami et al. (1955) performed hydraulic model experiments to study the propaga-
tion of a storm surge as a bore in the rivers and canals near Osaka City and concluded that 
the embankment under construction (1955) would provide some protection but not total 
protection from storm surges. Murota (1963) also performed hydraulic model studies for 
Osaka Bay and concluded that construction of a breakwater would actually increase the 
amplitudes of storm surges due to increased seiche action. Ueno (1981) used SPLASH and 
also a numerical model to simulate the storm surge of August 21, 1970, in Tosa Bay, 
which produced surges up to 2 m in amplitude. He also used a two-layer model to include 
the effect of stratification. 
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FIG. 7.162. Track of Typhoon Orchid during October 9-10, 1980. (Joint Typhoon Warn-
ing Center 1981) 

STORM SURGES IN KOREA 

Storm surges are not a serious problem in the Sea of Japan. Hence, the west coast 
of Japan and the east coast of Korea are not prone to major storm surges. However, storm 
surges occur in the Yellow Sea and the Po Hai Sea. Thus, storm surges on the west coast 
of Korea deserve attention. 

On the southern part of the Korean peninsula, the tidal range in the Yellow Sea is 
about 4 m and it increases to about 10 m in the northern part (An 1980). The typhoons 
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FIG. 7.163. Atmospheric pressure versus distance from the typhoon center for 
the Ise Bay typhoon of September 1959. Solid curve is obtained using Fujita's 
formula and the broken curve is from Takahasi's formula. (Miyazaki et al. 19611 
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FIG. 7.164. Wind speed versus distance from the typhoon center for the Ise 
Bay typhoon of September, 1959. Solid curve is from Fujita's formula and the 
broken curve is from Takahasi's formula. (Miyazaki et al. 1961) 
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FIG. 7.165. Distribution of storm surge heights (cen i-
metres) in Tokyo Bay at 04:00 on October 1, 1917. 
(Miyazaki et al. 1961) 

that pass over Korea are usually less severe than those that affect Japan. 
The observed storm surge at Inchon (tidal range here is about 7 m) during August 

30-31, 1970, due to Typhoon Billie is shown in Fig. 7.172. The track of this typhoon 
is shown in Fig. 7.173. An (1980) used a two-dimensional numerical model to simulate 
this storm surge. The range (trough to crest) of the storm surge at Inchon was about 
1.4 m. At Mokpo and Kunsan, the range was only about 0.4 m. On July 29, 1965, a storm 
that struck the west coast of Korea generated an unusually large surge of 5.2 m (Das et 
al. 1978). 

STORM SURGES IN CHINA 

Storm surges up to 6 m can occur occasionally on the coast of China, with surges up 
to 2-3 m occurring quite frequently. Tseng-Hao and Shih-Zao (1975) used a numerical 
model to compute storm surges in the Po Hai Sea. Jin-Chuan and Guang (1979) developed 
empirical techniques for hourly predictions of surges due to typhoons on the southeastern 
coast of China. Their study involved predictions for the following tidal stations: Shacheng, 
Sansha, Xiamen, Dongshan, Shantou, and Shanwei. The total number of surges con-
sidered by them was more than 1000. They used the empirical formulae thus developed 
operationally since 1977. The hourly predicted and observed surges at three locations due 
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FIG. 7.166. Observed (solid line) and computed (broken line) storm surges at Kishiwada and Osaka due 
to Typhoon Jane of September 1950. (Miyazaki et al. 1962) 

to typhoon 7908 of August 2, 1979, are compared in Table 7.76. Jin-Chuan and Guang 
(1979) gave surge profiles for the 24 most important storm surges on the southeastern coast 
of China during the 1970's. Five of these profiles are given in Fig. 7.174-7.178.  
C. Tseng-Hao and F. Shih-Zao (unpublished data) developed numerical models for storm 
surge prediction on the east coast of China. 

STORM SURGES IN HONG KONG 

Storm surges are reasonably severein Hong Kong (see section 6.10). In section 6.10, 
the three different types of surges and the empirical formulae for predicting them (Chan 
and Walker 1979) were discussed. The retum periods for surges of different amplitudes 
(Bell 1961), computed using Gumbel's methods and using data from maximum hourly 
winds, are listed in Table 7.77. Silvester (1971) studied storm surges in Hong Kong and 
developed empirical relations. The pressure deficits and observed storm surges at North 
Point, Hong Kong Harbor, for seven different typhoons are listed in Table 7.78. 

Lau (1980b) used the SPLASH model to compute storm surges at North Point and 
in Tolo Harbor for events of tropical cyclone passages across the northern part of the South 
China Sea. This study used 93 historical storms during the period September 1906—June 

SEPTEMBER 3,1950 
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FIG. 7.167. Power spectrum of the storm surge at Kobe due 
to Typhoon Jane of September 3, 1950. (Das et al. 1978) 

1976 that generated storm surges in Hong Kong. The standard storm of the SPLASH 
model gives an open-coast peak surge of 1.92 m at North Point. Nomograms for the surge 
height at North Point are given in Fig. 7.179-7.183, respectively, as a function of the 
central pressure of the storm, storm direction, storm speed, radius of maximum winds, and 
distance of nearest approach of storm. 

Lau (1980a) mentioned that the storm surge problem is getting worse in Hong Kong 
with more and more people crammed into reclaimed low-lying areas. A typhoon surge on 
September 2, 1937, killed 11 000 people, and several villages around Tolo Harbor were 
destroyed. Typhoon Wanda of September 1, 1962, killed 127 people. Lau (1980a, 1980b) 
summarized the empirical relations developed by Cheng (1967) and Chan (1976). He also 
included a table from Peterson (1975) in which joint probabilities for certain combinations 
of tides and surges at Tolo Harbor and North Point were listed. Finally, Lau (1980a) 
developed a series of numerical models for computing surges in different areas of Hong 
Kong and environs. Observed and computed water levels at Tai Po Kau due to Typhoon 
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Fin. 7.168. Computed envelope of peak storm surge in Tokyo Bay after the construction of a 
dyke. Solid line: without dyke; broken line: with dyke having an opening of 2 km width; dotted 
line: with dyke having an opening of 0.5 km width. Stations: 1, Kurihama; 2, Yokosuka; 
3, Yokohama; 4, Kawasaki South; 5, Kawasaki North; 6, Tokyo; 7, Urayasu; 8, Funabashi; 
9, Chiba; 10, Goi; 11, Anegasaki; 12, Narawa; 13, Kisarazu; 14, Futtsu; 15, lsone; 16, 
Kaiho II. (Ito et al. 1965) 

Elaine of October 29-30, 1974, are compared in Fig. 7.184. Computed and observed 
water levels at Tai Po Kau due to Typhoon Elsie of October 14-15, 1975, are compared 
in Fig. 7.185. 

Das et al. (1978) mentioned that storm surges occur at the rate of three to four per 
year in Hong Kong Harbor. Thirty-five surges with amplitudes from 0.2 to 1.8 m occurred 
there during 1954-64 (Cheng 1967). Typhoon Wanda of September 1962 produced a 
surge of about 3.2  mat Tai Po Kau (farther inland from Hong Kong Harbor), whereas the 
peak surge in Hong Kong Harbor was 1.8 m. 

STORM SURGES IN THE PHILIPPINES 

During the period 1907-31, there were 43 significant storm surges in the Philippines 
(Das et al. 1978). A storm of October 15-16, 1912, struck the towns of Leyte and Cebu 
and apparently caused 9-m surges at Sogod Norte in the Lisayan Islands (Barrientos 1978). 
Typhoon Irma of October 24-26, 1981, caused major surges and destroyed one village. 
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Fio. 7.169. Calculated envelope of total water level (surge plus tide) in Tokyo Bay. 
Solid line: without dyke; broken line: with dyke having an opening of 1 km width and tide 
and surge linearly superimposed; dotted line: with dyke having an opening of 1 km width 
with nonlinear interaction between tide and surge included. See Fig. 7.168 for station 
names. (Ito et al. 1965) 

Storm surges occur in the Sulu Sea, which is a water body on the southeastern  corner 
of the South China Sea. Surges up to 1.22 m in amplitude and with periods of up to 
75 min occur in this water body (Haight 1928). 

STORM SURGES IN VIETNAM 

Storm surges occur on the east coast of North Vietnam and on the east and south 
coasts of South Vietnam. Nickerson (1971) used SPLASH models to study these surges. 
One of the worst storm surges in human history occurred in 1881 in which about 300 000 
people were killed in the area surrounding Haiphong (LaCour 1917c). 

STORM SURGES IN THE BAY OF BENGAL 

As mentioned earlier, storm surges are an extremely serious hazard along the coast 
of the Bay of Bengal, particularly for Bangladesh and India and, to a lesser extent, Burma, 
Thailand, and Sri Lanka. Except for certain oral statements to the effect that a given storm 
would produce a surge of about half the amplitude in the Gulf of Thailand compared with 
a surge in the Bay of Bengal, this author has not been able to find any related literature. 
Das et al. (1978) stated that peak surges of up to 4 m have been reported on the coast of 
Thailand. They also stated that Thailand experiences one to two major surges per year. 

Similarly, although storm surges have occurred occasionally in Sri Lanka (the most 
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FIG. 7.172. Storm surge at Inchon, South Korea, during August 30-31, 1970, due to Typhoon Billie. Time 
is Korean Standard Time. (An 1980) 
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FIG. 7.173. Track of Typhoon Billie during August 30—September 1, 1970. Time is Korean Standard Time. 
Numbers in the parentheses are the dates. (An 1980) 

recent one being in November 1978, which killed 373 people and caused extensive damage 
(80 000 houses destroyed) on the northeast coast of Sri Lanka), this author could not find 
any pertinent literature. Hence, the storm surge problem on the Bay of Bengal coasts of 
Thailand and Sri Lanka will not be considered. Discussion in the following subsections 
will concentrate on the surges on the Bay of Bengal coasts of Burma, Bangladesh, and 
India. 

STORM SURGES IN BURMA 

During May 16-18, 1967, a severe storm surge struck the Rangoon area and killed 
about 100 people and destroyed 800 villages. In the 1970's, four severe cyclones struck 
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TABLE 7.76. Predicted and observed storm surges at three locations in China due to Typhoon 7908 
of August 2, 1979. (Jin-Chuan and Guang 1974) 

Storm surges (cm) at 

Time (h) 
GMT 	Observed 	Predicted 	Observed 	Predicted 	Observed 	Predicted 

05 	 95 
08 	158 
10 	201 
11 	 187 
14 	 66 

106 	84 	105 	78 	 99 
163 	88 	107 	61 	 75 
223 	91 	 95 	47 	 65 
199 	92 	 87 	35 	 60 
100 	27 	 43 	21 	 40 

JULY• 1979 

FIG. 7.174. Observed (solid line) and computed (broken line) surges at Shantow, China, during July 26-29, 
1979. (Jin-Chuan and Guang 1979) 

the Burmese coast and caused storm surges. Storm surge generating cyclones usually 
develop in the Bay of Bengal during the premonsoon (e.g. the May 1968 and May 1975 
cyclones that caused surges on the Burmese coast) or during the postmonsoon season 
(November—December). The storm surge due to the May 1975 cyclone killed 303 people 
and thousands of cattle and destroyed about 28 000 houses in Burma (Cho 1980). 

In Burma, tidal and storm surge data are available at about 10 stations beginning with 
the 1960's. The peak surge envelope for the cyclone of May 1968 is shown in Fig. 7.186. 
The distribution of the maximum surge along the Irrawaddy River for the cyclone of May 
1975 is given in Fig. 7.187. The duration of the surge is given as a function of distance 
(Fig. 7.188) in the Irrawaddy River for the May 1975 event. The storm surge problem in 
Burma is important in the shallow-water areas of the Arakan coast. The storm surge due 
to the May 1975 event penetrated at least 60 mi (100 km) into the river systems and also 

815 



160 

140 

120 

100 

g 80 

60 

40 

20 

0 

XIAMEN, CHINA 

22 

140 

120 

100 

80 

E 60 

40 

20 

0 

-20 
21 

/
ii 

23 

120 

100 

80 

E 60 

40 

r DONGSHAN, CHINA 

28 

JULY 1979 

Fin. 7.175. Observed (solid line) and computed (broken line) surges at Dongshan, China, during July 27-28, 
1979. (Jin-Chuan and Guang 1979) 
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FIG. 7.176. Observed (solid line) and computed (broken line) surges at Xiamen, China, during August 21-23, 
1979. (Jin-Chuan and Guang 1979) 
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FIG. 7.177. Observed (solid line) and computed (broken line) surges at Sansha, China, during August 
16-17, 1979. (Jin-Chuan and Guang 1979) 
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FIG. 7.178. Observed (solid line) and computed (broken line) surges at Shacheng, China, during September 
5-7, 1979. (Jin-Chuan and Guang 1979) 

TABLE 7.77. Return periods for extreme storm surges in Hong Kong. (Bell 1961) 

TABLE 7.78. Observed storm surge amplitudes and pressure 
deficits in typhoons that affected Hong Kong (North Point). 
(Silvester 1971) 

Observed surge 
Pressure deficit 	amplitude 

Typhoon 	Date 	 (mb) 	 (m) 

Wanda 	Sept. 1962 	61 	 0.62 
Faye 	Sept. 1963 	17 	 0.17 
Viola 	May 1964 	21 	 0.21 
Ida 	Aug. 1964 	38 	 0.39 
Ruby 	Sept. 1964 	45 	 0.46 
Sally 	Sept. 1964 	24 	 0.24 
Shirley 	Aug. 1968 	44 	 0.45 

caused inland flooding (Lwin 1980). 
Odd (1980) studied the storm surges in the Irrawaddy Delta area of Burma making 

use of hydraulic and numerical models. In this connection, he questioned the validity of 
the tide and surge data at Elephant Point. The surge time histories at several stations during 
May 5-8, 1975, are shown in Fig. 7.189. The distribution of the surge is given as a 
function of distance (Fig. 7.190) along the coast from the Bassein River entrance. Odd 
concluded that the surge amplitudes as well as the amplitude of the semidiurnal tide 
increase rapidly east of the China Bakir because of the shallowness and funnel shape of 
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Hong Kong Harbor. (Lau 19806) 
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FIG. 7.183. Storm surge amplitude (ordinate) versus distance from the nearest approach of storm for North 
Point in Hong Kong Harbor. (Lau 1980b) 

FIG. 7.184. Computed (solid line) and observed (broken line) water levels at Tai Po Kau due to Typhoon 
Elaine of October 29-30, 1974. Time is Hong Kong Standard Time. (Lau I980a) 

the Gulf of Martaban. The maximum expected surge levels from a hypothetical storm (one 
in a 100-yr event) are shown in Fig. 7.191. 

Regarding protection from storm surges, Odd (1980) mentioned that it would be 
impractical to build embankments high enough to contain the waters from a peak surge 
occurring with spring tides. Instead, he proposed that each polder should contain special 
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of October 14-15, 1975. Time is Hong Kong Standard Time. (Lau 1980a) 
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FIG. 7.186. Peak surge envelope on the Burmese Coast for the storm of May 1968. The ordinate is surge 
amplitude and the abcissa is distance along the coast. (Cho 1980) 

20 10 	10 20 30 40 50 60 70 80 90 100 110 120 

KILOMETRES 

FIG. 7.187. Distribution of the maximum surge along the Irrawaddy River for the storm of May 5-8, 1975. 
The ordinate is the surge amplitude and the abcissa is distance along the river. (Cho 1980) 
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FIG. 7.188. Surge duration versus distance along the Irrawaddy River for the storm of May 5-8, 1975. (Cho 
1980) 

FIG. 7.189. Storm surge amplitude versus time for the storm of May 5-8, 1975, along the Burmese coast. 
(Odd 1980) 
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FIG. 7.190. Peak surge amplitude (ordinate) versus distance along the coast from the Bassein River entrance 
for the storm of May 6, 1975, on the Burmese coast. (Odd 1980) 

low lengths of embankments, which could be allowed to spill waters into the polders so 
that minimum damage is caused. 

In the villages prone to storm surges on the Arakan coast of Burma, artificial earthem 
mounds have already been constructed. 

STORM SURGES IN BANGLADESH 

It is probably not incorrect to say that Bangladesh suffered more from storm surges 
than any other country. Ali (1980d) summarized the main factors contributing to the 
disastrous storm surges on the coast of Bangladesh: (1) shallow water, (2) convergence of 
the bay, (3) high astronomical tide, (4) thickly populated low-lying islands, (5) favorable 
cyclone track, and (6) innumerable number of inlets and a few large estuaries and rivers. 
Except in the eastern and southeastern parts of the country (where there are hills) most of 
the land is flat. Many places, although 100 mi (160 km) from the sea, are not more than 
30 ft (9.1 m) above sea level. A rise of a few feet in sea level can bring large areas of land 
under water (Gill 1975). 

Another peculiar problem is the topographical changes that appear to occur in decadal 
periods in the courses of the rivers and tributaries. The storm surge problem became worse 
after the Assam earthquake of August 1950 because millions of tons of material from the 
mountains was dislodged by the earthquake, which ultimately found its way into the river 
systems and caused raising of the bottom by as much as 14 ft (4.3 m) in certain locations. 

The approximate number of people killed in Bangladesh because of storm surges is 
listed in Table 7.79. For comparison, a storm surge in 1881 in China supposedly killed 
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FIG. 7.191. Peak surge amplitude versus time for a hypothetical 100-yr design storm on the Burmese coast. 
(Odd 1980) 

TABLE 7.79. 7.79. Number of people killed 
in Bangladesh due to storm surges. Only 
those cases in which the number is more 
than 5000 are included. 

Estimated approximate No. 
Year 	 of deaths 

TABLE 7.80. Damage in Bangladesh (in addition to 
human death toll) due to the November 1970 cyclone 
and storm surge. (Frank and Hussain 1971) 

Damage 	 Toll 

Population affected 	 4.7 million 
1822 	 40 000 	 Crop loss 	 U.S.$63 million 
1876 	 100 000 	 Loss of cattle 	 280 000 
1897 	 175 000 	 Loss of poultry 	 500 000 
1912 	 40 000 	 Houses damaged 	 400 000 
1919 	 40 000 	 Schools damaged 	 3 500 
1960 	 15 000 	 Fishing boats (marine) 
1963 	 11 520 	 destroyed 	 9 000 
1965 	 19 279 	 Fishing boats (inland waters) 
1970 	 >200 000 	 destroyed 	 90 000 
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8.8 
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7.6 
6.9 

9.6 
8.8 
7.6 
4.6 
7.3 
4.9 
9.1 

88.5 
128.8 
209.2 
148.1 
144.8 
201.2 
160 

144.8 
144.8 

22.1 

TABLE 7.81. Partial list of storm surges in Bangladesh during the period 
1876-1970. Values listed are total water levels. 

Date of cyclone 

Observed 
Maximum 	Pressure 	maximum 
wind speed 	drop 	water level 
(km•11-1 ) 	(mb) 	 (m) 

Oct. 27- 
Nov. 1, 1876 

Oct. 31, 1897 
Nov. 1, 1912 
Sept. 20-25, 1919 
May 1926 
May 1941 
May 1942 
Oct. 21-24, 1958 
Oct. 7-10, 1960 
Oct. 30-31, 1960 
May 6-9, 1961 
May 27-30, 1961 
May 25-29, 1963 
May 10-12, 1965 
May 31- 

June 1, 1965 
Dec. 11-15, 1965 
Sept. 27- 

Oct. 1, 1967 
Oct. 10-11, 1967 
Oct. 22-24, 1967 
May 8-10, 1968 
Oct. 10, 1969 
May 5-7, 1970 
Nov. 13, 1970 

13.7 

TABLE 7.82. Observed water levels (tide + surge) in metres at six locations in Bangladesh. (Ali 1980d) 

Date 	Khulna 	Barisal 	Sandwip 	Chittagong 	Chandpur 	Companigonj 

May 12, 1965 	- 	2.84 	2.90 	 2.53 	2.21 
May 31, 1965 	2.25 	2.44 	3.73 	- 	3.80 	7.13 
Oct. 11, 1967 	2.59 	- 	- 	2.92 	- 	 8.75 
Oct. 24, 1967 	2.44 	- 	- 	1.89 	 7.61 
May 10, 1968 	- 	- 	2.78 	3.38 	- 	 4.74 
Oct. 10, 1969 	2.61 	- 	7.21 	3.20 	4.27 	4.63 
Oct. 23, 1970 	3.02 	3.47 	- 	- 	4.74 	4.21 
Nov. 12, 1970 	- 	2.67 	3.86 	5.58 	4.09 	5.58 
Sept. 30, 1971 	3.08 	3.04 	- 	- 	5.03 	4.21 
Oct. 20, 1976 	- 	4.64 	3.00 	3.17 	3.54 	5.02 

300 000 people. A surge in Japan in 1923 killed 250 000 people. Another surge in Japan 
in 1960 killed 5000 people. A surge in 1780 in the Antilles killed 22 000 people and one 
in the Cuba-Haiti area in 1963 killed 7196 people (Frank and Hussain 1971). 

The November 13, 1970, storm surge was supposed to be the worst on record in 
Bangladesh. The death toll was initially estimated to be over a million people. Later 
estimates brought it down to 500 000, then 300 000, and finally 200 000. Whatever the 

825 



TABLE 7.83. Some pertinent details for storm surges at Chittagong, Bangladesh. (Flierl and Robinson 1972) 

Maximum 
Storm 	observed 	Astronomical 	Observed 	Maximum 
speed 	wind speed 	tide 	sea level 	surge 

Date 	 (km•11-1 ) 	(km•h-I ) 	 (m) 	 (m) 	 (m) 

Oct. 11, 1960 	20 	 161 	 1.5 	 6.0 	 4.5 
Oct. 31, 1960 	38 	 193 	 0.0 	 6.6 	 6.6 
May 9, 1961 	 38 	 161 	 1.2 	 4.8 	 3.6 
May 30, 1961 	22 	 161 	 0.6 	 — 	 — 
May 29, 1963 	40 	 209 	 0.3 	 — 	 — 
Nov. 6, 1965 	42 	 161 	 1.2 	 — 	 — 
Dec. 15, 1965 	32 	 161 	 0.3 	 — 	 — 
Nov. 13, 1970 	20 	 161 	 1.8 	 6.0-9.0 	4.2-7.2 

correct toll may be, this storm surge event created a new awareness of tropical cyclones 
in general and of storm surges in particular, not only in Bangladesh but all over the world. 
In a storm surge event of this magnitude, there is not only the human death toll but there 
are other damages as well. The damage in Bangladesh due to this storm surge is listed in 
Table 7.80. The salt water from the sea flooded the land during the surge event, leaving 
much salt on the land, which for 4-5 yr after the event affected crops until rains finally 
washed away the salt. 

There are at least 36 known cases of storm surges in Bangladesh during the period 
1800-1979. A partial list is given in Table 7.81 for the period 1876-1970. It is quite 
probable that some of the entries in the table are wrong. Also, sometimes the total water 
level (i.e. tide + surge) is reported as surge.The observed water levels during storm surge 
events at six different locations in Bangladesh during the period 1965-76 are listed in 
Table 7.82. The storm surges and the pertinent meteorological and tidal information at 
Chittagong for the period 1960-70 are given in Table 7.83. Ali (1980d) summarized the 
numerical models that have been developed for storm surges on the coast of Bangladesh. 
Probably the first model is by Das (1972) for the coasts of India and Bangladesh, and he 
simulated the surge due to the November 1970 cyclone. This was extended by Das et al. 
(1974). They investigated the effect of the central pressure drop and the speed of move-
ment of the cyclone. Nomograms were given for the peak surge for three different tracks. 
This work will be considered under the subsection Storm Surges in India. Flierl and 
Robinson (1972) also developed a linear model specifically for the coast of Bangladesh. 
A nomogram for practical purposes was also prepared. 

In Chapter 3, the nonlinear model of Johns and Ali (1980) was considered. The area 
modeled is shown in Fig. 3.7 and the track of the November 1970 cyclone is shown in 
Fig. 6.63. Das (1980) used a nonlinear model to study the tide—surge interaction in the 
Meghna Estuary. 

Ali (1980) stated that about one third of the area of Bangladesh is penetrated by tides 
(through estuaries and rivers). Maximum tidal range (up to 20 ft or 6.1 m) and surges are 
found in the Meghna Estuary (see Table 7.82). 

Tide—surge interactions during the November 1970 event are shown in 
Fig. 7.192-7.194. It can be seen that at Patenga, maximum surge occurred at the time 
of high tide whereas at Amtali the peak surge occurred after the occurrence of high tide. 
However, at Kaikhali the peak water level elevation is smaller than due to the tide alone. 
Ali (1980d) ascribed this to the effect of the offshore wind component, which drives the 
water from the rivers located to the west of the cyclone track. The two small peaks in the 
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total elevation near the time of high tide are probably due to the tide—surge interaction. 
Murty and Henry (1982) and Henry and Murty (1982) developed a series of numerical 

models for tides and surges in the Bay of Bengal. The regions covered by the various 
regular grid models are shown in Fig. 7.195. The irregular triangular grid that has also 
been used is shown in Fig. 7.196. The computed water level (tide + surge) at Sagar Island 
and the Pussur River entrance is shown in Fig. 7.197. The contours of the computed surge 
are shown in Fig. 7.198. 

Islam (1971) discussed the storm surge protection problem in Bangladesh. He men-
tioned the construction of various types of raised platforms (Machan, Killa, etc.) for 
people and animals. Kibria (1980) discussed the planned delta works to protect the 
Bangladesh coast from storm surges. 

STORM SURGES ON THE BAY OF BENGAL COAST OF INDIA 

Like Australia, India is also prone to storm surges on both its east and west coasts, 
although the frequency and severity of surges is greater on the east coast. Some important 
storm surges (from the point of view of loss of life) on the Bay of Bengal coast of India 
are listed in Table 7.84. This list, which is based on various sources, might not be totally 
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entrance in the Bay of Bengal for a hypothetical 
storm modeled after the November 1970 storm. 

correct. Also, in this list, several minor surges in which less than 100 people were killed 
are excluded. 

Some pertinent information on six storm surges at Saugor Island (in the northwestern 
part of the Bay of Bengal) during the period 1948-55 is given in Table 7.85. This table 
also compares the observed surges with those computed using simple empirical formulae 
(Janardhan 1967). 

Rao and Mazumdar (1966) and Rao (1968) used empirical relations to calculate storm 
surges on the east coast of India, south of 17°N. Topography near the shore and wind 
waves were also included in the calculations. Based on these calculations, Rao (1968) 
classified the east coast of India (and the coasts of Bangladesh and Burma for comparison) 
into three types. These results are summarized in Table 7.86. In this table, the values listed 
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FIG. 7.198. Storm surge heights in the northern part of the Bay of Bengal from a hypothetical storm modeled 
after the November 1970 storm. 

under "storm surge amplitude" pertain to a storm with winds up to 40 m • s -1 . The values 
listed under "total water level" include the peak surge plus the wind waves. 

Classification of types A, B, and C is as follows. For a type A coastline, the 
maximum total water level is less than or equal to 2 m during storm surge events, for type 
B the amplitude is between 2 and 5 m, and for type C the amplitude is greater than 5 m. 
This classification is shown in Fig. 7.199 for the east and west coasts of India (the west 
coast of India will be considered in the next subsection). The storm surge considered here 
is the piling up of the water due to wind stress. The inverse barometer effect is not included 
here, since according to Rao (1968), it does not exceed 0.5 m anywhere on the east coast 
of India. 

This classification into types A, B, and C has been verified to a certain extent by 
comparison with actual data (Table 7.87). Thus, type C belts are the most prone to major 
storm surges. It can be seen from Fig. 7.199 that there are four such belts on the coasts 
of the Indian subcontinent (Rao 1968). Two are as follows. 

1) The coastal belt around the head of the Bay of Bengal, approximately to the north 
of 20°N. The frequency of cyclones is high here and the storm tracks are usually favorable 
for generating maximum surges, especially in the Sunderbans. 

2) South Coromandel coast around the Palk Bay. Although the frequency of storms 
striking this region is somewhat smaller than for the first belt, the major storms that strike 
this coast usually produce major surges. 
The other two belts are on the west coast of the subcontinent and will be considered in the 
next subsection. 
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Area affected 
by storm 

surges 
Peak surge 	Loss of 

(m) 	 life 

Calcutta and 
surroundings 

Masulipatnam 
and surroundings 

North Orissa 

Andhra 
West Bengal 

12 

7 

5 ni at Midnapore 
(64 km inland 
on a river) 

50 000 

40 000 
Several 

thousand 
300 

40 000 

South Coromandel 
coast and 
northern shores 
of Palk Bay 

South Coromandel 
coast and west 
shores of 
Palk Bay 

Andhra 
Orissa 
Divi and 

surroundings 

Few 
3 	 thousand 

6 	 1 000 
200 

10 000 

20 000 5 

12 300 000 
20 000 
50 000 
20 000 

Sunderbans 

Distance of 
storm center 

to Saugor 
Date 	Island (km) 

Aug. 14, 1948 	306 
Aug. 15, 1948 	402 
July 25, 1951 	306 
July 05, 1952 	418 
Aug. 03, 1953 	306 
Sept. 30, 1955 	217 

Observed peak 
surge (m) 

0.34 
0.43 
0.85 
0.34 
0.46 
0.46 

Computed peak 
surge (m) 

0.43 
0.40 
0.98 
0.34 
0.46 
0.46 

State of 
tide at 
time of 

peak surge 

High 
Low 
Low 
High 
High 
High 

TABLE 7.84. Storm surges on the Bay of Bengal coast of India. 

Location 
where storm 
crossed the 

Year 	Month 	Day 	coast 

1737 	Oct. 	7-11 	Mouth of 
Hoogly 

1789 Dec. Kakinada 
1833 
1839 
1864 	Oct. 	 Mouth of 

Hoogly 
1864 	Nov. 	 Masulipatnam 

1885 	Sept. 	 False Point 

1927 	 Nellore 
1942 	Oct. 	 West Sunderbans 

1952 	Nov. 	 Negapottinam 

1964 	Dec. 	 Adirampatnam 

1969 	Nov. 	 Andhra 
1971 	Oct. 	 Orissa 
1977 	Nov. 	 Chitala 

TABLE 7.85. Storm surges at Saugor Island, India, during 1948-55. (Janardham 1967) 

There is a short, type C belt near Nizampatnam Bay. (For interest, it might be 
mentioned that this author was bom in a small village about 8 km from here and spent the 
first 14 yr of his life here.) The Andhra cyclone of November 1977 produced major surges 
in this general area and killed several thousand people. The east coast of India, between 
14 and 16.5°N, is in the type B category. Also , the Coromandel coast between Point 
Calimere and Karikal falls into this category. 

Ghosh (1977) used the SPLASH model (Jelesnianski 1972) for the east coast of India. 
He prepared nomograms for calculating peak surges based on pressure drop, radius of 
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TABLE 7.86. Maximum possible storm surge amplitudes and total water levels (surge + wind 
waves) at selected locations on the east coast of India. The hypothetical storm has a wind speed 
of 40 ms. A, total water level <2 m; B, 2-5 m; C, >5 m. A few locations in Bangladesh 
and one in Burma are included for comparison. (Rao 1968) 

Location 

Storm surge + 
Favorable 	Storm surge 	wind wave 

wind 	amplitude 	(total water 
direction 	(m) 	level) (m) 	Classification 

Dhanushkodi 	 NNE 	4.8 	 8.2 	 C 
Rameswaram 	 SE 	 6.8 	 11.3 	 C 
Pamban 	 NNW 	4.4 	 7.3 	 C 
Devipatnam 	 E 	 4.5 	 7.5 	 C 
Adirampatnam 	 SSE 	 5.1 	 8.5 	 C 
Point Calimere 	 SSE 	 4.2 	 7.0 	 C 
Nagapattinam 	 E 	 1.5 	 2.5 	 B 
Karikal 	 E 	 0.3 	 1.3 	 A 
Madras 	 ENE 	1.5 	 2.5 	 B 
Nizampatnam 	 SW 	 4.5 	 7.4 	 C 
Mouth of Krishna 

River 	 SE 	 1.6 	 2.7 	 B 
Narasapur 	 S 	 1.7 	 2.9 	 B 
Sacromento Shoals 

(outer sand banks) 	SSE 	 1.4 	 2.3 	 B 
Kakinada (outer 

sand banks) 	 E 	 0.6 	 1.0 	 A 
Visakhapatnam 	 SE 	 0.7 	 1.2 	 A 
Kalingapatnam 	 E 	 1.1 	 1.8 	 A 
Gopalpur 	 SE 	 0.9 	• 	1.5 	 A 
Mouth of Devi River 	SE 	 0.8 	 1.3 	 A 
False Point 	 SE 	 1.9 	 3.2 	 B 
Balasore 	 SE 	 3.0 	 5.0 	 C 
Mouth of Hoogly 

River 	 S 	 6.5 	 10.8 	 C 
Mouth of Matla 

River 	 S 	 5.0 	 8.4 	 C 
Mouth of Baleswar 

River (Bangladesh) 	S 	 6.9 	 11.5 	 C 
Mouth of Meghna 

River (Lakhichar 
Island, Bangladesh) 	SSE 	 8.0 	 13.4 	 C 

Cox Bazar 
(Bangladesh) 	 WSW 	3.2 	 6.3 	 C 

Mouth of Faaf 
River (Burma) 	SW 	 3.2 	 5.3 	 C 

maximum winds, vector motion of the storm, and bathymetry offshore. The nomograms 
were prepared separately for the northern part (where the slope of the shelf is small) and 
for the remaining part of the coast (where the slope is large). A separate nomogram is 
presented to include the tidal effects on the northern part of the coast where the tidal range 
is large. Two typical nomograms prepared in this manner are shown in Fig. 7.200. Some 
of the tropical cyclones that generated storm surges on the Bay of Bengal coast of India 
during the period  1967-74 are listed in Table 7.88. 

Das (1972) used a numerical model to compute storm surges in the Bay of Bengal, 
which is probably the first numerical model developed for this area. Das et al. (1974) 
extended this model to simulate the storm surge due to the cyclone of November 13, 1970, 
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TABLE 7.87. Relationship between type of coastline and occurrence of 
storm surges on the coast of India. A, surge + wind wave amplitudes 
<2 m; B, 2-5 m; C, >5 m. Data are mainly for the period  1949-66.  (Rao 
1968) 

Type of coast 

No. of storms 
No. of storms 	that caused 

Intensity of 	that affected 	major storm 
storm 	the coast 	surges 

A 	 Moderate 	 13 	 — 
Severe 	 12 	 — 

B 	 Moderate 	 19 	 — 
Severe 	 6 	 4 

C 	 Moderate 	 1 	 — 
Severe 	 3 	 3 

which caused great loss of life and destruction in Bangladesh. They used a two-
dimensional linear model and telescoping grids. The grid scheme used for three different 
types of tracks is illustrated in Fig. 7.201. Nomograms for the storm surge as a function 
of the storm intensity and the speed of movement of the storm are given (for the three 
tracks shown in Fig. 7.201) in Fig. 7.202. 

The relationship between the storm surge amplitude and the storm intensity Ap and 
speed of movement of storm c was expressed as 
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FIG. 7.200. Nomogram of peak storm surge as a function of pressure drop and radius of maximum winds for 
the (A) northem part and the (B) southern part of the east coast of India, (Ghosh 1977) 

TABLE 7.88. Tropical cyclones striking India during 1967-74 that generated major storm surges. Estimated 
tide listed is the amplitude of the tide at the time of peak surge. However, the peak elevation listed in the last 
column (which is a combination of tide and surge) need not have occurred at the time of peak surge. (Das 1980) 

Maximum 
Central 	Pressure 	wind 	Computed Estimated 	Peak 

Location of 	pressure 	deficit 	speed 	surge 	tide 	elevation 
landfall 	(mb) 	(mb) 	(km• h-1 ) 	(m) 	(m) 	(m) 

Oct. 9, 1967 	Puri 	 970 	40 	167 	2.5 	0 	3.1 
Nov. 7, 1969 	Kakinada 	968 	42 	176 	2.6 	0 	3.1 
Oct. 30, 1971 	Paradeep 	970 	40 	167 	2.5 	0.9 	6.0 
Setp. 10, 1972 Baruva 	945 	65 	204 	3.8 	-0.8 	3.4 
Sept. 11, 1976 	Contai 	 972 	38 	148 	2.0 	1.4 	3.0 
Nov. 19, 1977 	Chirala 	909 	101 	259 	4.0 	0.3 	5.0 
May 12, 1979 	Kavali 	 954 	56 	189 	2.7 	0.6 	3.0 
May 7, 1970 	Cox's Bazar 

(Bangladesh) 	977 	33 	148 	2.3 	0.2 	3.4 
Nov. 12, 1970 	Hatia 

(Bangladesh) 	940 	70 	222 	4.1 	2.0 	5.5 
Nov. 28, 1974 Chittagong 

(Bangladesh) 	974 	36 	161 	3.1 	0.2 	4.0 

Date 
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TABLE 7.89. Numerical values of the con-
stants A O ,  A,, and A 2  of eq. 7.90 for the three 
different tracks shown in Fig. 7.201. (Das et al. 
1974) 

Ao 	A, 	A2 

Track 	(x102) 	(x104) 	(x102) 

Northeast 	9.59 	—0.91 	—4.60 
North 	2.88 	3.08 	—1.20 
Northwest 	8.24 	—1.60 	—5.15 

(7.90) 1 = Ao Ap + A I  (4)2  + A2 c 

The numerical values of the constants A o , A 1 , and A2 are listed for the three different tracks 
(shown in Fig. 7.201) in Table 7.89. These authors concluded that linear superposition of 
tide and surge would overestimate the water level by about 1 m. 

Das (1980) included nonlinear advective terms and improved the model of Das et al. 
(1974), and the computational area was also enlarged. This model, which includes the 
tide—surge interaction in a more realistic manner, gave water levels that agreed better with 
observed levels. Natarajan and Ramanathan (1980) developed a nonlinear finite-element 
model and used the same computational area and storm tracks as in Das et al. (1974). Johns 
et al. (1981) and Dube et al. (1981) simulated the November 1977 storm surge on the 
Andhra coast of India. 

STORM SURGES IN THE ARABIAN SEA 

Rao (1968) studied the storm surges on the Arabian Sea coast of India (and Pakistan). 
Classification of this coast into types A, B, and C is given in Fig. 7.199. Previously, it 
was mentioned that on the Bay of Bengal coast of the subcontinent, there are two 
dangerous zones (type C). On the Arabian coast, also, there are two dangerous zones. The 
first one includes the Konkan coast to the north of 18°N and the coastal belt around the 
Gulf of Cambay. 

In this belt, the frequency of storms striking the coast is low (over a 75-yr period, only 
four storms struck the coast between 18 and 19°N and only three storms struck between 
19 and 21°N). Here, the tidal range is quite large (e.g. 8 m at Bombay and 11 m at 
Cambay). Unless peak surge occurs close to the time of high tide, no major water level 
oscillations may occur in this belt. It should be emphasized that, even though the Arabian 
Sea coast experiences major storm surges much less frequently than the Bay of Bengal 
coast, the reason there are two dangerous belts is the manner of the classification into types 
A, B, and C. This classification does not include the frequency of occurrence. It only deals 
with the maximum water level to be expected in the event of major storms, however 
infrequently they may occur. 

The second dangerous belt stretches from Dwarka (India) to Karachi (Pakistan). This 
region includes the extensive marshy areas (mostly unpopulated) known as the "Rann of 
Kutch." In this belt, also, the frequency of storms is low and the tracks are not usually 
favorable for major surge development. However, on the rare occasion when they do 
occur, storm surges several metres in amplitude could result. 

Rao (1968) mentioned that the extensive marshlands of the Rann of Kutch are subject 
to large storm surges with the onset of the strong westerlies of the southwest monsoon 
season. The entire west coast of India south of 18°N falls into the type B category. In this 
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TABLE 7.90. Peak surge amplitude and maximum water level (surge + wind wave) that can 
occur for a storm with maximum winds of 40 m • s' on the Arabian Sea coast of the Indian 
subcontinent. Classification: B, total water level 2-5 m; C, >5 m. (Rao 1968) 

Location 

Maximum 
Favorable 	Peak surge 	value of 

wind 	amplitude 	total water 
direction 	(m) 	level (m) 	Classification 

Mutham Point 
(Nagercoil) 	 SW 	 1.4 	 2.3 	 B 

Cochin 	 W 	 1.6 	 2.7 	 B 
Calicut 	 WSW 	2.1 	 3.5 	 B 
Mangalore 	 WSW 	1.8 	 3.0 	 B 
Bhatkal 	 WSW 	2.7 	 4.5 	 B 
Panjim 	 WSW 	1.7 	 2.8 	 B 
Devgad 	 WSW 	1.5 	 2.5 	 B 
Ratnagiri 	 W 	 1.8 	 3.0 	 B 
Hamaf 	 WSW 	1.7 	 2.8 	 B 
Mouth of Rajpuri 

River (Murud) 	 W 	 3.1 	 5.2 	 C 
Mouth of Patel 

Ganga River 	 W 	 4.3 	 7.2 	 C 
Bombay 	 W 	 1.5 	 4.5 	 B 
Agashi Bay 	 W 	 4.2 	 7.0 	 C 
Dahapu 	 W 	 4.0 	 6.7 	 C 
Bulsar Kheri 	 W 	 4.5 	 7.5 	 C 
Suvali Point 	 WSW 	3.3 	 5.5 	 C 
Mindola 	 WSW 	5.2 	 8.7 	 C 
Mal Bank 	 S 	 4.3 	 7.2 	 C 
Mahuva Road 	 SE 	 2.0 	 3.4 	 B 
Jafarabad 	 SSE 	 3.1 	 5.2 	 C 
Diu 	 SSE 	 2.2 	 3.7 	 B 
Veeraval 	 SW 	 1.5 	 2.5 	 B 
Porbandar 	 SSW 	 1.6 	 2.7 	 B 
Dwaraka 	 SW 	 1.6 	 2.7 	 B 
Balachin 	 W 	 5.1 	 8.5 	 C 
Rann of Kutch 	 WSW 	3.9 	 6.5 	 C 
Wari Creek 	 SSW 	 4.0 	 6.7 	 C 
Mouth of Indus River 	S 	 3.0 	 5.0 	 C 
Karachi 	 S 	 3.5 	 5.8 	 C 

area, also, the frequency of storms is low (only four major storms in 75 yr). Also, the 
tracks are not generally favorable for major surge development. The coast around the 
Kathiawar Peninsula between Diu and Dwaraka belongs to the type B category. The major 
surge amplitudes that can occur here are about 1.5 m and are about half the tidal range 
here. In this area the frequency of storms is high, but usually they are not intense (not of 
hurricane strength). 

The peak storm surge amplitudes, maximum total water level (surge + wind waves), 
and the classification (into type A, B, or C) at several locations on the west coast of India 
and the coast of Pakistan are listed in Table 7.90. A partial list of major storm surges on 
the Arabian sea coast is given in Table 7.91. The track of the Kutch cyclone of June 1964 
and the areas where surges occurred are shown in Fig. 7.203. Rao (1968, p. 239) stated: 

Even though the storm moved closer to the B-type areas between Jafarabad and 
Porbander than to the C-type area between Jafarabad and Bhavanagar, damages by 
storm surges were reported from the latter strip and practically none from the former. 
Storm surges of a minor order were also reported from the B-type area between 
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TABLE 7.91. Partial list of major storm surges on the Arabian coast of the Indian subcontinent 
during 1782-1977. Only those cases in which major destruction and loss of life occurred are 
included. (Rao 1968) 

South Saurashtra 
coast 

32 km west 
of Karachi 

Veeraval 
Naliya 

Area of 
Year 	Month 	Day 	landfall 

1782 	Apr. 	20-21 

1851 	May 

1920 	June 
1964 	June 

1977 	Nov. 	22 	Karwar 

Area of 
major 
storm 
surges 

Gulf of Cambay 	Several 
thousand 

Karachi and 
environs 

Gulf of Cambay 
North and south 

shores of the 
Gulf of Kutch 

Karwar and 
environs 

No. of 
people 
killed 

Porbander and Dwaraka. The maximum damage occurred in the C-type area around the 
Gulf of Kutch at the time when the storm was crossing the coast near Naliya, when 
westerly gales swept across the area and heavy swells rolled up the Gulf. 

To summarize, although frequency of storms and storm surges is less in the Arabian 
Sea than in the Bay of Bengal, major destructive surges can occur occasionally. News-
paper reports mentioned that a major storm towards the end of October 1981 generated 
significant surges in the Kathiawar Peninsula and killed about 300 people. Note that the 
number of cyclones in the Bay of Bengal over a given period is about four times the 
number in the Arabian Sea; however, only about one quarter of the Bay of Bengal storms 
mature into severe storms, whereas about 40% of the Arabian Sea storms can become 
severe storms. 

STORM SURGES IN THE USSR 

Moderate storm surges occur in the Black Sea, the Okhotsk Sea, the Pacific coast of 
the USSR, the East Siberian Sea, and the Chukchi Sea. Large surges (up to 6 m in 
amplitude) can occur in Lake Baikal. Winds from north of this lake can produce surges 
that sometimes take only a few minutes to develop. 

In section 6.10, the work of Lappo and Rozhdestvenskiy (1977, 1979) was discussed 
in which they considered the lag of storm surges with reference to the atmospheric 
systems. Their work was for the northwest part of the Pacific Ocean in general and for the 
Pacific coast of the USSR near the Kurile Islands in particular. They considered the 
contribution of the static surge to the total water level deviation and developed the 
important concept of the hysteresis loop (Fig. 6.123). The lag between the atmospheric 
forcing and the storm surge could be anywhere between 5 and 18 h on this part of the USSR 
coast. 

Mustafin (1969) studied the storm surges in the East Siberian and Chuckchi seas with 
the particular aim of predicting the surges at Cape Schmidt. Based on 192 cases during 
the summer period (July—October) for 1951-55, in which the surges at Cape Schmidt and 
in Ambarchik Inlet exceeded 30 cm (both positive and negative surges), he prepared the 
following regression relationships: 
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FIG. 7.203. Track of the Kutch cyclone of June 1964 on the west coast of India. Single-hatched area is affected 
by minor surges; double-hatched areas are affected by major surges. (Rao 1968) 

hSchni = a l àp, cos ce, + n2 Pp 2  cos Oi2 	a3à//A mb 

R = 0.94 ± 0.001, 	/ = 21 

Ahschm = aaàhAmbbi 

r = 0.90 ±-. 0.01, 

hSchin = asAp, cos cy., + a61hAinbb2 

R =  0.93 ± 0.004, 	/ = 23 

Lihschn, = a742 cos cz2  + a8oàhA mbb3 

R = 0.92 -I-  0.007, 	=24 

= 26 



FIG. 7.204. Determination of the quantities 3,p, and Ap2  and the wind 
current direction from the isobars at points I and 2 (see eq. 7.91-7.95). a l  and 
a2  are the angles between the wind current direction (arrows) and the effective 
refluxing— fluxing direction north—northwest to south—southeast. The angles 
are acute and determine positive components (+) of Ap, and 42  at the time 
of sea level fluxing motions and negative components (—) at the time of sea 
level refluxing wind directions. (Mustafin 1969) 

àhSchm = a9API COS Cei 	a10AP2 COS Ct2 	b4 

R = 0.88 ± 0.01, 	29 

where A hsch„, is the deviation (centimetres) of the nonperiodic factor in the sea level at 
Cape Schmidt from the mean annual navigational level, precalculated with an average 
forewarning period of 12-13 h upward (+) and downward (—); 3,1t Amt, is the deviation 
(centimetres) of the actual sea level in Ambarchik Bay from the mean annual navigational 
level upward (+) and downward (—); 4, and 42  are the respective pressure differences 
(millibars) at points 1 and 2 at a distance of 600 km (6 cm on a 1: 10 000 000 scale map) 
along lines perpendicular to the isobaric trend (Fig. 7.204 of this chapter and Fig. 7 of 
Mustafin 1969); a l  and a2  are the angles between the wind direction along the isobars and 
the line running north—northwest and south—southeast (Fig. 7.204 of this chapter and Fig. 
7 of Mustafin 1969); al  , . , all)  are constants; b 1 ,. , b4  are free terms; R and r are 
multiple and partial correlation coefficients and their probable errors; and 2, is the mean 
square root error (centimetres) of the regression equation. 

Parameters n 	a a 1, —2, I, 2, etc., needed here are determined as shown in A An  
Fig. 7.204. One of the interesting features of this study is that, in contrast with the 
universally used technique of determining the atmospheric pressure gradients along con-
stant directions, here, these gradients are calculated along variable directions but at 
preselected locations in the waterbody. 

Mustafin's (1969) study was done for nine locations on the Siberian coast. Since 
knowing the water level at one location in advance might help the prediction at other 

(7.95) 
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TABLE 7.92. Correlation coefficients between the storm surges at various locations on the East Siberian  Sea and Chuckchi Sea coasts. (Mustafin 1969) 

Cape 	Ambarchik 	 Cape 	Cape 	Cape 	Kolyuchin 	Cape 
Shalaurov 	Inlet 	Rau-Chua 	Pevek 	Billings 	Schmidt 	Vankarem 	Island 	Nettan 

1 Cape Shalaurov 
Ambarchik Inlet 
Rau-Chua 
Pevek 
Cape Billings 
Cape Schmidt 
Cape Vankarem 
Kolyuchin Island 
Cape Nettan 

0.86 	0.83 	0.85 	0.82 	0.75 	0.70 	0.84 	0.77 
1 	 0.95 	0.97 	0.79 	0.80 	0.74 	0.83 	0.70 

1 	0.97 	0.88 	0.87 	0.86 	0.80 	0.74 
1 	0.85 	0.90 	0.67 	0.81 	0.85 

1 	0.86 	0.83 	0.71 	0.77 
1 	 0.84 	0.84 	0.91 

1 	 0.78 	0.81 
1 	0.85 

1 
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FIG. 7.205. Storm surges at Ashdod, Israel. Examples are shown of gradual changes in several days. Top: 
February 1-8, 1965; bottom: January 8-16, 1968. (Striem 1974) 

locations, Mustafin (1969) tabulated the correlation coefficients for the water levels 
between these stations. These are shown in Table 7.92. On this coast, the surges appear 
to lag the meteorological forcing by about 12 or 13 h. 

STORM SURGES IN ISRAEL 

Striem (1974) studied the storm surges at Ashdod on the Mediterranean coast of Israel 
using the data for a 6-yr period (1965-70). The tide here is mainly semidiurnal with a 
range of less than 1 m. 

The data for this study were selected whenever the daily mean sea level exceeded the 
average level by at least 20 cm and when there was a storm present. The storm surges at 
Ashdod for two events (February 1-8, 1965, with peak surge during the 4th and 5th and 
January 1968 with peak surge during the 14th) are shown in Fig. 7.205. 

Striem (1974) used the term "storm surge" to denote the changes in sea level at 
Ashdod during a period of several days due to storms in the eastern part of the 
Mediterranean Sea and the term "storm set-up" to denote the rapid changes in the water 
level during a few hours. Three examples of these storm setups are shown in Fig. 7.206. 

The six largest positive storm surges at Ashdod during the period of this study are 
summarized in Table 7.93. The six largest negative storm surges at Ashdod are listed in 
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FIG. 7.206. Storm surges at Ashdod, Israel. Examples are shown of rapid changes. Top left: December 
21-23, 1967; top right: December 9-10, 1963; bottom: December 19-21, 1966. (Striem 1974) 

TABLE 7.93. Six largest positive storm 
surges at Ashdod, Israel, during 
1965-70. (Striem 1974) 

TABLE 7.94. Six 	largest 	negative 
storm surges at Ashdod, Israel, during 
1965-70. (Striem 1974) 

Amplitude of surge 	 Amplitude of surge 
Date 	 (cm) 	 Date 	 (cm) 

Dec. 10, 1963 	 100 	 Jan. 29, 1964 	 51 
Dec. 22, 1967 	 93 	 Mar. 24, 1966 	 46 
Dec. 20, 1966 	 83 	 Mar. 26, 1968 	 45 
Feb. 5, 1965 	 63 	 Feb. 12, 1968 	 42 
Mar. 26, 1967 	 63 	 Oct. 16, 1970 	 41 
Jan. 14, 1968 	 63 	 Apr. 12, 1968 	 40 

Table 7.94. The factors that cause the sea level to rise and fall at Ashdod are summarized 
in Tables 7.95 and 7.96, respectively. It was found that the storm surges at Ashdod 
basically are gradual changes in the daily mean sea level and that these changes could be 
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(a) Extreme low of 
spring tides 

(b) Low of the 
seasonal fluctuation 

(c) Low of annual 
levels 

(d) Lowering due to 
daily inequality 
of the tides 

Total of effects not 
due to wind 

(e) Lowering due to 
eastern (offshore) 
winds (or 
down-surge after 
onshore storms) 

Possible lowering due 
to occurrence of 
all factors 

Vernal equinox 

End of spring 

—26 

—10 

—6 

—5 

—47 

—15 (or —30) 

—62 (or —77) 

TABLE 7.95. Factors contributing to the rise of sea level at Ashdod, 
Israel. (Striem 1974) 

Factor 

Approx. maximum 
Time of 	rise of sea level 

occurrence 	 (cm) 

(a) High of spring tides 	Vernal equinox 	+26 
(b) High of the seasonal 

fluctuation 	 Midsummer 	 +10 
(c) High annual mean sea 

level 	 +7 
(d) Rise due to daily 

inequality of the tides 	 +5 

Total of effects not 
due to wind 	 +48 

(e) Storm surges 	 Winter 	 +40 
(f) Storm setup 	 Winter 	 +40 

TABLE 7.96. Factors contributing to the lowering of sea level at 
Ashdod, Israel. (Striem 1974) 

Factor 

Approx. maximum 
Time of 	fall in sea level 

occurrence 	 (cm) 

linearly correlated with daily mean values of wind wave heights and wind velocities at the 
shore. 

STORM SURGES IN EGYPT 

Storm surges occur in the Suez Canal and also on the Mediterranean coast of Egypt. 
Murty and El-Sabh (1981) studied the storm surges at Port Said at the northern end of the 
Suez Canal and at Port Suez at the southern end of the canal using the data for 1966. 

The length of the Suez Canal is about 175 km and the average depth is 15 m. At Port 
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TABLE 7.97. Number of occasions (treating each hourly value as one case) when positive and negative storm 
surges at Port Said, Egypt, exceeded prescribed amplitudes in 1966. 

State of 
tide 	 10 	20 	30 	40 	50 	60 	70 	80 	90 	100 

Positive surges 
Low tide 	253 	189 	90 	28 	9 	5 	1 	1 	1 	I 
Rising tide 	236 	137 	51 	10 	I 	0 	0 	0 	0 	0 
High tide 	237 	131 	44 	2 	0 	0 	0 	0 	0 	0 
Falling tide 	246 	175 	82 	26 	6 	2 	I 	0 	0 	0 

Negative surges 
Low tide 	19 	7 	3 	2 	0 	0 	0 	0 	0 	0 
Rising tide 	16 	9 	3 	2 	1 	I 	0 	0 	0 	0 
High tide 	12 	5 	1 	I 	1 	1 	1 	I 	I 	1 
Falling tide 	13 	5 	0 	0 	0 	0 	0 	0 	0 	0 

Surge height (cm) 

Said the tide is cooscillating with the eastern part of the Mediterranean Sea and has an 
amplitude of 25 cm. At Port Suez the tide is from the Red Sea and has an amplitude of 
75 cm. Based on these features the Suez Canal can be classified into a long estuary, in the 
Proudman sense (discussed earlier under Tide—Surge Interaction in the North Sea and in 
the St. Lawrence Estuary). 

Treating each hourly surge value as one case, the number of occasions when positive 
and negative surges exceeded prescribed values at Port Said and Port Suez is given in 
Tables 7.97 and 7.98, respectively. Earlier, it was seen that Proudman's (1957) theory 
suggested that for a long estuary, for a tide of progressive wave type, maximum surges 
are associated predominantly with low tide (or rising tide), and for a tide of standing wave 
type, maximum surges are associated predominantly with high tide (or falling tide). 
Observations for 1966 showed that the theoretical results of Proudman, when interpreted 
for the Suez Canal, agreed with the observations at Port Said but not with those at Port 
Suez. 

STORM SURGES IN MALAGASY REPUBLIC (MADAGASCAR) 

Earlier, it was mentioned that tropical cyclones travel nearby and sometimes traverse 
Malagasy Republic. The only study this author could find on the storm surges in this 
region is by LaCour (1935). In principle, storm surges could occur along the long east and 
west coasts of this island (about 1500 km in length). However, favorable cyclone tracks 
usually generate surges on the east coast of the island, where the tidal range is small (less 
than 80 cm). 

Storm surges appear to be more frequent on the east coast than on the west coast. 
Also, surges on the east coast are more important south of Tamtave then north of it. 
Although surges are more frequent on the east coast the amplitudes usually are rather small 
(20 cm or less). However, the March 1927 event near Tamtave was a major surge and 
caused some destruction. Major surges could occur at Tuléar on the southern  part of the 
west coast (e.g. the event of January 1933). A partial list of storm surges on the east and 
west coasts of Malagasy Republic is given in Table 7.99. Das et al. (1978) stated that 
cyclonic storms in the Island of La Réunion in the South Indian Ocean often produced 
exceptionally heavy rain. Instances of heavy rain accompanied by surges of 4.6 m have 
been reported from this island. 
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STORM SURGES IN SOUTH AFRICA 

Storm surges in the strict sense of the word are rare on the coasts of South Africa. 
However, harbor surging occurs associated with the passage of weather systems (Wilson 
1954) as, for example, at Cape Town near the southern  tip on the west coast of South 
Africa. Another extremely interesting phenomenon that occurs near the east coast of South 
Africa is the so-called "giant wave." This will be considered in some detail after discussion 
of harbor surging. 

Frontal depressions from the South Atlantic Ocean create swell on the western and 
southern  coasts of South Africa, which in turn  is responsible for harbor surging. Wilson 
(1954) pointed out that in this region of the globe, prominent cold fronts stretch in crescent 
form some 1000-1500 mi (1609-2414 km) north of the depression center. 

Table Bay (near Cape Town) exhibits seiches with periodicities of 62, 51, 33-26, 
23-17, 14-12, 11-10, and 9.8 —9.4 min (Wilson 1954). Some of these periods agree 
with the higher harmonics of the oscillation of the South Atlantic Ocean lying between the 
mid-Atlantic Ridge and the west coast of South Africa. The prominent seiches in the 
quasi-basin between the breakwater and the shore are those with periods from 14 to 9.4 
min. 

Wilson (1954) considered the seiches in Duncan Basin and Victoria Basin. He made 
certain recommendations for reducing the surging problem. 

Next, the so-called giant waves (also referred to as "freak waves," "episodic waves," 
and "killer waves") that occur in several locations on the globe, but most prominently near 
the east coast of South Africa, will be considered. Smith (1976, p. 417) stated: 

During the closure of the Suez Canal a number of ships, particularly oil tankers, have 
reported extensive damage caused by giant waves off the southeast coast of South 
Africa (Mallory, 1974; Sturm, 1974; Sanderson, 1974). Two particularly unfortunate 
vessels are the "World Glory" which broke in two and sank in June 1968, and the 
"Neptune Sapphire" which lost 60 m of its bow section in August 1973. We can only 
speculate that giant waves may account for many of the ships which have been lost 
without trace off this coast. When returning from the Persian Gulf the tankers take 
advantage of the rapid Agulhas current, and all except one of the eleven incidents listed 
by Captain Mallory (1974) involved vessels riding on the current. By examining 
weather charts, Mallory showed that when the incidents occurred the dominant wind-
produced waves were opposed by the current. 

James (1974), who reported similar phenomena along the north wall of the Gulf 
Stream, offered a qualitative explanation by suggesting that the effect of an opposing 
current on the waves is to decrease their wavelength and thus increase their amplitude. 
Smith (1976) developed a mathematical theory for giant waves beginning with the non-
linear form of the Sehrtidinger equation. 

Regarding the specific location on the southeast coast of South Africa where these 
waves occur, Mallory (1974, p. 99) stated: 

... considerable damage to vessles when steaming in a southwesterly direction down 
the east coast between Durnford Point and Great Fish Point ... It is safe to say that 
many other ships must have experienced abnormal waves off the South African coast 
between Durnford Point and Cape Recife .. . 

Schumann (1980) confirmed that the giant waves are from the southwest and the most 
dangerous situations occurred when the low pressure systems were moving along the coast 
in a northeasterly direction. He suggested that the giant waves are big swells propagating 
from a southerly or southwesterly direction around South Africa and moving into the 
Agulhas current. 
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TABLE 7.98. Number of occasions (treating each hourly value as one case) when positive and negative storm surges at Port Suez, Egypt, 
exceeded prescribed amplitudes for positive surges and 10-90 cm for negative surges in 1966. 

Positive surges 
Low tide 	172 	111 	75 	44 	32 	16 	8 	3 	3 	3 	3 	3 	2 	1 	1 
Rising tide 	191 	110 	76 	38 	13 	7 	6 	6 	3 	1 	0 	0 	0 	0 	0 
High tide 	121 	57 	18 	5 	2 	1 	1 	1 	1 	0 	0 	0 	0 	0 	0 
Falling tide 	174 	107 	50 	34 	27 	23 	10 	3 	0 	0 	0 	0 	0 	0 	0 

Negative surges 
Low tide 	84 	66 	46 	32 	16 	11 	3 	0 	0 
Rising tide 	104 	69 	45 	45 	14 	21 	1 	0 	0 
High tide 	117 	69 	59 	49 	40 	24 	6 	0 	0 
Falling tide 	113 	84 	55 	27 	38 	9 	9 	2 	1 



TABLE 7.99. Partial list of storm surges in Malagasy Republic before 1935. Note 
that this study is based mainly on the data for the year 1934 and a few examples 
before that. (Based on LaCour 1935) 

Date 	 Remarks 

Feb. 21, 1893 	 Storm center passed 50 km north of Tamtave (east 
coast) at Foulpointe. Major surges at Hastie Point 
in Tamtave 

Mar. 1927 	 Cyclone passed near Tamtave. Surge south of 
Tamtave in the region of Pangalanes. Railway 
bridge collapsed at Nossi-Vé. Smaller surges 
north of Tamtave 

Jan. 1933 	 Major surge at Tuléar on the Bay of Austine (south- 
ern part of the west coast) 

Jan. 8-9, 1934 	 Cyclone made landfall on the east coast of Nosy- 
Varika and Mananjary (300 km south of 
Tamtave). Cyclone originated 200 km south of 
Réunion Island 

Jan. 13-19, 1934 	Negligible surge. Cyclone track northeast of 
Tamtave 

Jan. 29—Feb. 1, 1934 	Track 800 km southeast of Tamtave. Cyclone trav- 
eled from Réunion to Fort Dauphin (near the 
southern  end of the east coast). Small surge at 
Tamtave 

Feb. 23-27, 1934 	Cyclone in the Mozambique channel traveled from 
north to south. Passed near Cape St. Andre on the 
west coast. This generated a 200-cm positive 
surge and a 10-cm negative surge at Tamtave 

Mar. 4-8, 1934 	A 20-cm negative surge at Tamtave. Could not be 
traced to any cyclone 

Mar. 13-14, 1934 	Local cyclone of small diameter in the Bay of 
Antongil (130 km north of Tamtave). Cyclone 
crossed the island from east to west. A 10-cm 
positive surge at Tamtave 

Mar. 23-25, 1934 	Cyclone from the Indian ocean. Small surge 

Schumann (1980, p. 29) also included the official warning on the hydrographic charts 
for this region. It states in part: 

Abnormal waves of up to twenty meters in height, preceded by a deep trough, may be 
encountered in the area between the edge of the continental shelf and twenty miles to 
seaward thereof. These can occur when a strong southwesterly wind is blowing, the sea 
is rough and the barometric pressure is low.  . . . [T]he necessary evasive action is to stay 
clear of the area seaward of the edge of the continental shelf. 

Schumann stated further that this well-established rule (i.e. staying clear of the edge 
of the continental shelf) gave rise to the belief that the bottom topography plays an 
important part in generating the giant waves. He suggested that the bottom topography 
plays only a minor indirect rble. He stated (p. 29): 

The Agulhas current hugs the edge of the African continent, and since it extends to 
depths well below 1,000 meters, it generally does not intrude onto the shelf regions, 
but tends to lie just offshore of the shelf edge. Consequently the core of the current is 
usually found where the giant waves are most likely to occur. 
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