Not to be cited withaout

permission of the authors'

Canadian Atlantic Fisheries
Scientific Advisory Cammittee

CAFSAC Research Document 91/15

Ne pas citer sans
autorisation des auteurs'

Comité scientifique consultatif des
péches canadiennes dans 1'Atlantique

CSCPCA Document de recherche 91/ 15

FORECASTING PRESEASON AND INSEASON ATLANTIC
SAIMON RETURNS TO THE MIRAMICHI RIVER:
PARAMETRIC AND NON-PARAMETRIC APPROACHES

R.R. Claytor, R.G. Randall, and G.J. Chaput
Department of Fisheries & Oceans
Science Branch, Gulf Region

p.o.

Box 5030

Moncton, New Brunswick
E1C 9B6

'This series documents the scientific
basis for fisheries management advice
in Atlantic Canada. As such, it
addresses the issues of the day in
the time frames required and the
Research Documents it contains are
not intended as definitive statements
on the subjects addressed but rather
as progress reports on angoing
investigatians.

Research Documents are produced in
the official language in which they
are provided to the Secretariat by
the author.

Cette série documente les bases’
scientifiques des conseils de gestion
des péches sur la cote atlantique du
Canada. Comme telle, elle couvre les
problémes actuels selon les
échéanciers voulus et les Documents
de recherche qu'elle contient ne
doivent pas étre considérés camme des
énoncés finals sur les sujets traités
mais plutét camme des rapports
d'étape sur les études en cours.

les Documents de recherche sont
publiés dans la langue officielle
utilisée par les autewrs dans le
manuscrit envoyé au secrétariat.



-2-
Abstract

Three model types, linear regression, time-series, and non-
parametric probability distribution models, were compared for their
ability to accurately forecast pre-season returns of multi-sea-
winter returns of Atlantic salmon (Salmo salar) to the Miramichi
River. A jackknife procedure and the number of years the forecast
was within *30% were the criteria used to provide an objective
method of judging a model's accuracy. Probability models were
judged to be the most effective for pre-season forecasts. A
procedure based on probability distribution models was proposed for
in-season forecasting.

Résumé

On a comparé trois types de modéle (a régression linéaire, a
séries chronologiques et & répartition non paramétrique des
probabilités) dans le but de déterminer lequel était susceptible de
fournir des prévisions exactes des remontées pré-saisonnieres de
saumons 1'Atlantique (Salmo salar) redibermarins dans la riviere
Miramichi, La méthode de rééchantillonnage (jackknife) et 1le
nombre d'années durant lesquelles la prévision était exacte a +
30 $ prés ont été les critéres utilisés pour la sélection d'une
méthode objective d'évaluation de 1l'exactitude d'un modéle. Les
modéles fondés sur les probabilités se sont avérés les plus
efficaces pour les prévisions pré-saisonniéres. En ce qui concerne
les prévisions de remontées durant la saison, on a proposé
1'adoption d'une méthode reposant sur des modéles de répartition
des probabilités.
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Introduction

Forecasting returns of multi-sea-winter (MSW) Atlantic salmon
(Salmo salar) one year in advance is an important part of the
annual assessment of Atlantic salmon in the Miramichi River.
Forecasts of MSW salmon are important because the principal
management objective is for egg requirements to be met from these
fish and approximately 70% of the egg deposition in the Miramichi
River comes from MSW salmon (Randall 1989). If managers know in
advance what returns of MSW salmon to expect, and have accompanying
estimates of uncertainty, they can set harvest and/or effort levels
that have the greatest chance of permitting escapement that will
meet spawning requirements. In past assessments (Randall and
Schofield 1987; 1988; and Randall et al. 1989a; 1990) linear
regression models have been used to forecast MSW returns to the
Miramichi River. Unfortunately, models developed in one year were
not always applicable in subsequent years and ensuing changes in
the models eroded their utility for forecasting returns.

The first part of this document examines two alternatives to
linear regression models for preseason forecasting, time series and
probability distribution models. Time series modelling has been
applied to stock recruitment dquestions (Noakes et al. 1987),
forecasting fishery harvests (Stergiou 1989, Mendelssohn and Cury
1989), species interactions (Stone and Cohen 1990) and
environmental effects on Pacific salmon catches (Quinn and Marshall
1989). The two probability distribution models considered have had
previous applications in forecasting using the Cauchy (Evans and
Rice 1988; Rice and Evans 1988) and the Gaussian kernel estimators
(Noakes 1989).

This first section begins by reviewing the results from
previous regression models, followed by the results from time
series and probability distribution models. This section concludes
with a proposed framework of objective criteria for determining
which of the possible models is the most appropriate.

The second section discusses a possible model for providing
inseason forecasts. This method, outlined by Noakes (1989), uses
the Gaussian kernel estimator. This method may allow managers to
judge the inherent risk in adhering to preseason management
decisions as a season progresses. Inseason forecasts would provide
managers with additional opportunities for adjusting preseason
regulations that could hedge against unexpected low returns or take
advantage of higher than expected returns.
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1. PRESEASON MODELS

Data Description.-Preseason models forecast MSW salmon (year
i) returns using the numbers of 1SW salmon (year i-1l). Returning
1SW salmon provide the first measure, although indirect, of
survival from the smolt class which will produce the expected MSW
returns. Estimates of these returns to the Miramichi River are
obtained from Millbank trap counts made from 1971-1989 (Randall et
al. 1990). The data used in the models are trap counts, catch per
unit effort, and total returns estimated from trap catch
efficiencies (Tables 1,2). Other variables have also been used to
explain residuals from the 1SW - MSW models to improve forecasts.
These variables are: the proportion of 1SW salmon which were
females (Table 1); the commercial catches of small salmon (year i-
1) in Salmon Fishing Areas 2 and 4 (SFA2 and SFA4) of the
Newfoundland commercial fishery (O'Connell et al. 1990); and the
numbers of North American salmon of river age 3 or less caught in
the Greenland commerical fishery (year i-1) (GREEN) (Table 1).
Tag returns and scale analyses indicate that these fisheries
harvest salmon of Miramichi origin (Saunders 1969; Ruggles and
Ritter 1980; Pippy 1982). As a result, catches in these fisheries
may be expected to influence returns to the Miramichi River. The
proportion of female 1SW salmon was used as an indirect measure of
the proportion of each smolt class that matured after one year at
sea (and assumed age at maturity was environmentally determined)
(Marshall et al. 1982).

Regression Models

The original forecast model.-The original forecast model used
for predicting MSW salmon returns included two independent
variables:

(1) Mgw‘” Es) =1SW(yz. 1-1) "‘PF‘" 1-1)

where MSW was the number of MSW salmon returns in year i, 1SW was
the number of 1SW salmon returns in year i-1, and PF was the
proportion of 1SW salmon (year i-1) which were females (arcsin
transformed).

Total MSW and 1SW returns were estimated by dividing Millbank
trap counts by trap efficiencies and adding harvests below Millbank
(Table 1). Trap catch efficiencies were estimated using mark-
recapture data from 1973 (Turner 1983) and from 1985 to 1987
(Randall et al. 1989a). Efficiencies from 1981 to 1984 were
estimated by Randall et al. (1989a). Trap efficiencies were
different in these years because of habitat disruption from major
dredging activities in the Miramichi estuary beginning in 1981
(Marshall et al. 1982).



-5=

Returns in 1987 and 1988 (shown below) were substantially less
than returns predicted from equation (1) and refinements to the
forecast model were subsequently made.

Forecast Returns
1987 54170 19421
1988 36378 21745

Refinements fo the Forecast Model.-The first refinement was to
make adjustments for annual variations in fishing effort at the
Millbank trap. Because of reductions in personnel, Millbank trap
was operated for a shorter period of time and was checked less
frequently since 1985 compared to earlier years (Table 2). Prior
to 1987, the trap was installed as soon as possible after ice-out
in spring (early May) and was operated until early to late
November. Beginning in 1987, the period of operation was
standardized from May 15 to October 15; counts of salmon before and
after these dates usually accounted for less than 1% of the total
run (Randall and Schofield 1987). Between 1971 and 1989, the
number of operating days ranged between 178 (1975) and 144 (1987).

Under normal working conditions, the trap was visited and
hauled once daily or possibly twice daily if two slack tides
occurred during regular working hours and if weather permitted.
Nevertheless, there was a significant reduction in the number of
two-visit days in recent years, from an average of about 60 from
1971 to 1982, to an average of about 20 from 1983 to 1989. This
change reduced the number of visits per season for the same periods
by about 23%. Number of visits per season has ranged between 268
(1977) and 158 (1989).

The number of salmon captured each year was a direct function
of the number of trap visits. Catch per visit was similar for one
or two visit days and also similar between the first and second
visits on two visit days. For all years combined, there was no
significant difference between the number of fish caught during the
first and second visits for either 1SW or MSW salmon (t-test,
p>0.61 and p>0.85, respectively). Therefore, to standardize
Millbank data, counts were divided by visits per year to calculate
an annual catch per unit of effort (CPUE) as an index of abundance.
For 1SW salmon, annual CPUE ranged between 4.0 (1983) and 22.2
(1976), and for MSW salmon annual CPUE ranged between 0.8 (1981)
and 7.8 (1974).

Regression Model 2.-In addition to using CPUE rather than
total returns two additional changes were made to the model.
First, the data point for 1974 (year of MSW salmon returns) was
removed because it was a significant outlier (studentized residual
>3; Wilkinson 1989; Neter et al. 1983). Second, 1SW salmon were
divided into male and female components which were entered into the
regression model seperately. Only male 1SW salmon were
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significantly correlated to MSW salmon returns and therefore
females were removed from the model. The resulting regression
model was:

(2) cp Wm(yz 0 =CP: Wm(yz 1-3})

where CPUE,q ., iy Was the CPUE of MSW salmon at Millbank trap in year
i, and CPUE,qyr i-1y. WaS the CPUE of 1SW male salmon in year i-l.
This regression model was significant (F=16.36, p<0.001); however,
the coefficient of determination was only 52% (Figure 1). It is
also important to note that one data value (1977 MSW salmon) had a
very high leverage value (Fig. 1).

Regression Model 3.-Residuals plotted against time (year) in
Model 2 above indicated that MSW salmon returned in lower numbers
than expected in recent years, particularly in 1981, 1983, 1987,
and 1989 (Fig. 1). As noted previously, dredging activities in the
estuary below Millbank may have caused a change in the migration
routes of salmon in the vicinity of the trap beginning in 1981. To
test this hypothesis, an indicator (qualitative) variable was
introduced into the model, whereby a value of 0 was used for years
prior to 1981, and value of 1 was applied to years since 1981. The
resulting model had a higher coefficient of determination (0.78)
than the simple model (Equation 2). However, further analysis
indicated that this was not an appropriate forecast model.
Incorporating the indicator variable into the regression resulted
in a two-slope model; the correlation between 1SW and MSW salmon
was positive and significant for the earlier years (1971-1980), but
there was no correlation in later years. Thus, although this model
fitted the data well, it did not have any predictive power for MSW
salmon in recent years (a similar prediction would be obtained by
using average MSW salmon returns since 1980).

Regression Model 4.-Salmon landings of small and large salmon
from all Newfoundland and Labrador areas (Salmon Fishing Areas
(SFAs) 1 to 14) for years 1974 and 1988 (0'Connell et al. 1990)
were compared to residuals from the 1SW-MSW salmon regression
(Equation 2). Significant negative correlations were observed
between Miramichi residuals and small salmon landings in SFA 2 and
SFA 4 from the 1SW-MSW model (Equation 2) (Table 3, Fig. 2).
Landings in SFA 2 and SFA 4 were significantly and positively
correlated, which explained the similar results for these two
variables when compared to the Miramichi residuals (Table 3).
Landings from SFA 2 were significantly correlated to Miramichi
residuals even if the last three years of data were dropped from
the regression while correlations with SFA 4 were not significant
if 1989 was left out of the data set. Most correlations between
the Miramichi residuals and large salmon landings from the
different areas were not significant; the exceptions were SFAs 11
and 13 which were significant but the correlations were positive
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(Table 3). As a result landings of small salmon from SFA 2 was
used as a second independent regressor in the forecast model:

(3) CPUE gy (y, 1)=CPUB, gy(y; 1-1) *BAB 5y 4.4)

where LAB. ;,, wWas the landings in metric tons of small salmon at
SFA 2 in year i-1. Other variables in equation 3 are as in
equation 2. Data used in this model are given in Table 4. The
multiple regression was significant (R®=0.69; F=13.58, p<0.001),
and coefficients for both independent variables were significant
(1SW salmon: positive, p<0.001; 1LAB: negative, p<0.04). Residual
and leverage plots for this regression are given in Fig. 3.

The suitability of using Equation 3 to forecast MSW salmon
returns to the Miramichi River was evaluated by comparing forecasts
to returns from 1986 to 1989. The 90% confidence interval for each
forecast was large, and returns differed from forecasts by -59% to
+48% (Table 5).

Time Series Models

Time series modelling and forecasting can be used to analyze
data which meet the following conditions (Hoff 1983): a)
measurements are taken at equally spaced intervals; b) there are no
missing values in the series being modelled; c¢) the method of
measurement and the event being measured are consistent over time;
d) enough data is present; e) short to medium term forecasts are
required; and f) the time series is stationary in both the mean and
the variance.

The following analysis used Box-Jenkins time series methods to
model returns of MSW salmon to the Millbank trapnet based
exclusively upon returns of MSW salmon in previous years. Counts
of 1SW salmon were also modelled based upon patterns of 1SW returns
in previous years.

Model Development.-Returns of 1SW and MSW salmon to the
Millbank trapnet between 1971 and 1988 were analyzed. Suggested
practical minima for data series are 40 to 50 periods of data or 4
to 5 seasons for seasonal data (Hoff 1983).

Consequently, daily counts were aggregated into the following
periods for each year: 1) counts from start of fishing to June 15;
2) counts for June 16 to July 15; 3) counts for July 16 to Aug. 15;
4) counts for Aug. 16 to Sept. 15; and 5) counts for Sept. 16 to
end of fishing. This aggregation produced five data points per
year, for a total of 90 data values (Figs. 4,5). Seasonal patterns
of returns could also be examined and used to advantage in
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providing inseason forecasts of returns.

The stationarity of the variance of the 1SW and MSW salmon
time series was examined using mean/range plot analysis (Hoff
1983).

The Box-Jenkins modelling was performed using SAS time series
procedures (ETS, procedure ARIMA) (SAS 1986). Identification
procedures and model diagnostics are those suggested by Box and
Jenkins (1970) and others (Hoff 1983, Wei 1990).

When the original series was transformed to a log-series prior
to modelling, the forecasts were back transformed to the original
values using the following procedure (SAS 1986):

(4) back~-transformed value=exp (forecast + 2 x standard error)

The data aggregations satisfied the requirements of time
series models. The mean/range plot of returns of 1SW and MSW
salmon indicated that the variance was not stationary for either
1SW or MSW salmon, the straight line trend indicating that the
logarithmic transformation was appropriate for stabilizing the
variance (Figs. 4,5).

Only one seasonal differencing (period 5) was required to
transform the natural logs into a stationary series. By computing
the difference between every fifth value successive, the overall
trending behaviour was removed for 1SW and MSW salmon was removed.

Model identification procedures and diagnostics suggested the
following models for MSW and 1SW salmon returns at Millbank
trapnet using the 1971 to 1988 data series.

(5) I1nMSW.=1nMSW, .+S,+(1-6,p-S,p2) (1-S,p%) e,

where 1nMSW.=ln of MSW counts at time i
g,=trend parameter (mean of the differenced
series)
e,=regular moving average parameter
o,=seasonal moving average parameter
B=backshift operater
e,~residual, €~N(0,s?)



(6) lnGrilse,=lnGrilse, ;+$-(d ,B-$,B*-$,B) (1-¢,B%) InGrilse,) +e,

¢;=regular autoregressive parameter
¢;—seasona1 autoregressive parameter

The model diagnostics for the MSW salmon counts using 1971 to
1988 data were suitable (Table 6). All parameters estimated had
coefficients which were significantly different from 0, including
the trend parameter. The parameters were uncorrelated thus the
model was not overspecified. The residuals were not autocorrelated
(Table 6, Fig. 6), thus the model was able to account for the
serial correlation. Residuals were also normally distributed (Fig.
7), although the residuals tended to have a larger scatter at
smaller predicted values. The index of determination (R? ) for the
model was very low, suggesting that the serial variation of the MSW
salmon counts between 1971 and 1988 was small compared to the
random variation. The significant trend parameter suggested that
the counts of MSW salmon were decreasing over time and subsequent
overall forecasts (by year) would always be less than the previous
forecast.

For 1SW salmon, the 1971 to 1988 data series model diagnostics
were similar to those from the MSW salmon model. All estimated
parameter coefficients were significantly different from 0O and
parameters were uncorrelated. Not all the autocorrelation of the
residuals was removed, although attempts to account for the larger
autocorrelation value at lag 16 were not successful (Fig. 8). The
residuals were normally distributed with a similarly larger scatter
at smaller predicted values (Fig. 9). The index of determination
for the model was substantially higher than that for MSW salmon
although the random error component was large and forecasts
unreliable (Table 7).

Suitability of time series models for forecasts.- The models
for MSW and 1SW salmon were run sequentially to provide forecasts
of returns for 1986 to 1989 using only the previous years in the
estimation of the parameter coefficients. In general, the
forecasts for MSW salmon were larger than returns although not in
all periods. The forecasts for MSW salmon decreased between 1986
and 1989, a result of a significant decreasing trend parameter in
the data series. Absolute percent errors for all four estimates
were 23%, indicating that the fitted series differed from the
observed series by 23%, although the backtransformed values
differed by 117% to 582% of forecasts. Forecasts summed for all
periods were 140% to 208% of returns. The confidence intervals
were excessively wide and provide no reassurance whatsoever in the
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forecasting ability of the models. The forecast of MSW salmon
counts at Millbank using the overall mean (average count in each
time period) gave forecasts which had smaller percent errors than
the model forecasts and were 111% to 167% of returns (Table 8).

The residual analysis by period indicates those periods for
which the unaccounted variation was large. Periods 3 and 4 had
high residuals and also displayed decreasing trends since 1971
(Fig. 7). A sinusoidal trend in period 5 indicated that returns to
Millbank between mid-September to the end of the trap season were
lower than expected between 1975 and 1982, whereas the 1971 to 1973
and 1983 to 1987 returns were equal to forecast or higher than
expected (Fig. 7). These trends in the residuals illustrate the
extent of the inefficiency of the models to forecast returns.

In spite of the apparently high proportion of explained serial
autocorrelation of the 1SW models, the error associated with the
forecast relative to the actual values were 4 times that of the MSW
salmon models, ranging between 76% and 85%. Backtransformed
percent errors were 81% to 579% from 1986 to 1988. Forecasts of 1SW
salmon were larger than returns in all years, ranging between 133%
to 240% of returns. Forecasts using the overall mean count of 1SW
since 1971 underforecasted the total counts, representing between
45% and 67% of actual (Table 9). Trends in the residuals were
prevalent in periods 1 and 4 (Fig. 9). Returns of 1SW salmon were
not efficiently simulated with the above Box-Jenkins models.

Probability Distribution Models

Two probability distribution models were compared to determine
their ability to provide accurate forecasts and useable measures of
uncertainty for managers. These models were those based on the
Cauchy distribution in the manner described by (Evans and Rice
1988; Rice and Evans 1988) and the Gaussian distribution in the
manner described by Noakes (1989).

A major difference between parametric regression and non-
parametric probability distribution models 1is that parametric
models require certain assumptions, for example normally
distributed errors, to be met for the derived estimates to be
robust. In contrast, non-parametric models allow the data to
determine the distribution to be analyzed. The probability
distribution models we employed require an initial assumption
regarding the distribution of the kernel density estimator, but
this does not affect the probability distribution determined from
the data.
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Model Development.- The Cauchy kernel estimator described by
Evans and Rice (1988) is provided below:

(1) £(x)=1/ :1+(§)‘1

where x is the difference between the stock size being estimated
and each previously observed stock size and h is the smoothing
parameter.

The multivariate Gaussian kernel estimator used in this paper
is that given by Noakes (1989) and is given below:

n d 2

(8) f(x)== 3 OXP[-—-{-———— ]

g 3. 2 h
ng b...h (27) 72 H Y

where d=the number of variables

x=vector of length d which is composed of the
reference values for the variables from which the
forecasts are made, in our case these are 1SW (year
i-1) and MSW (year i) returns

matrix x;;.the previously observed values for the
variables entering the model

h=the vector of smoothing parameters, if the
smoothing parameters in each model are identical or
if one smoothing parameter is used, this vector is
a single value.

The differences in the algorithms used to determine these
distributions are that the Cauchy algorithm cannot predict
recruitments other than those which have been previously observed
and so the cummulative distribution or ogive is described by a step
function. A second difference is that recruitment or MSW forecast
from the Cauchy distribution is determined from the recruitment
value that corresponds to 50% of the cummulative probability
distribtuion from the step function (Evans and Rice 1988). The
forecast value from the Gaussian distribution corresponds to the
point of maximum probability in the distribution with stock size or
both stock size and commercial catch held constant.

A number of points must be considered in developing these
probability distribution models. First, the number of dimensions
or data sets that can be included in the model must be considered.
This number depends on two factors, the sample size and the
importance of tails in the distributions. The sample size required
to ensure that the relative mean square error is <0.1 increases
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dramatically with the number of dimensions. Silverman (1986; pages
93-94) indicates that with one dimension a sample of 4 is required,
two dimensions requires 19, and three requires 67. Additionally,
as dimensions are added, the importance of the tails of the
distributions also increases (Silverman 1986, page 92). In this
evaluation we have restricted our models to two dimensions. With
this restriction we meet the minimum required sample number of 19
using years 1971-1989.

A second consideration is pre-scaling the 'data prior to
multivariate analyses to avoid extreme differences in spread among
the data sets examined. Silverman (1986, page 77) recommends
normalizing the data to zero mean and unit covariance to achieve
this effect. When this procedure is followed, it is generally not
necessary to consider models with more than one smoothing
parameter.

A third consideration occurs if the distribution includes non-
zero values when these are not possible because of the nature of
the data (Silverman 1986, page 29). In these cases it would be
better if no weight were given to negative values. One possible
solution to this problem is to truncate the distribution; the
problem with this solution is that the probability function will no
longer integrate to unity and points near zero will not receive
sufficient weight (Silverman 1986, page 29). Another solution is
to take the logarithm of the data (Noakes 1989). If only the
forecast is required, backtransforming by the antilog will suffice.
If the distribution is also required the backtransformation should
be done as suggested by Silverman (1986, page 30) as follows:

£(x) =(-§) (g(log(x)) for x>0

A fourth problem to consider is the selection of the smoothing
parameter. The smoothing parameter is important because it
determines the weight given to surrounding data for any given
point, x,. If h is very large, infinity, equal weight will be
given to all values of x and the distribution will be over-smoothed
(too flat) to provide an accurate description of the distribution.
If h is very small, only x values very close to x' will receive
weight and the resulting contribution of the kernel estimators will
be very narrow curves and multiple peak distribtuions will occur,
the distribution will be under-smoothed.

Two methods, previously used with fisheries data for
estimating smoothing paramters were employed, maximum likelihood
(Noakes 1989) and least squares validation (Evans and Rice 1988;
Rice and Evans 1988). These two methods were used because the
likelihood method may be more sensitive to outliers (Silverman
1986, page 54) but has the advantage of quicker calculation than
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the least squares methoeod.

A fifth matter to consider is the choice of kernel estimator;
two estimators, the Cauchy and Gaussian, are compared in this
paper.

Model Development.-Given the above criteria to consider in
developing a probability model we used the following procedures to
make the necessary comparisons in choosing the most appropriate
forecast model. With the Gaussian estimator all data were
normalized whether raw untransformed or logged data were used.
With the Cauchy estimator the raw untransformed data, was used, as
described by Evans and Rice (1988). We compared single smoothing
parameters to individual smoothing parameters (a separate smoothing
parameter for each variable in the model). 1Individual smoothing
parameters were chosen with both data sets in the model. They were
chosen by fixing one parameter and varying the second until the
maximum probability was found using the likelihood method, or the
minimum probability found using the least squares method. Then the
second parameter was fixed and the first allowed to vary until the
appropriate criteria were met. This procedure was repeated until
the best set of smoothing parameters was found. These models were
compared to the Cauchy model algorithm described by Evans and Rice
(1988) and Rice and Evans (1988). This algorithm does not use
normalized or logged data. Each of the models used 1SW salmon,
year i-1, to forecast MSW salmon, year i.

The most appropriate model was selected by examining the
residual sum of squares (residual=forecast-returns) and the number
of years where the forecast was >:30% of returns. Residuals were
calculated after forecasts based on log transformations were
backcalculated to arithmetic wvalues. Thus, all residuals were
calculated on the same scale. All models were tested using a
jackknife approach. That is, a forecast was determined for each
year by leaving that year out of the data set, putting it back in
taking out the next year.

Two additional data sets were examined to determine if they
could explain or improve the initial 1SW -~ MSW forecast. These
data sets were; catch of small salmon in the SFA 4 Newfoundland
commercial fishery, year i~1, (SFA4) ( O'Connell et al. 1990) and
the number of 1SW salmon of river age 3 or less caught in the
Greenland fishery, year i-1, (GREEN) (D. Reddin, DFO, St. John's,
Nfld) (Table 1). SFA4 was chosen because in a preliminary analysis
it was the only area that produced a smoothing parameter that
reduced the variance in the Cauchy model. GREEN was chosen because
of the large number of North American salmon that are exploited in
Greenland.

After the best 1SW-MSW forecast model was determined, based on
least residual sum of squares. New forecasts using the SFA4 and
GREEN data sets were obtained using this model. These forecasts
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were obtained by subtracting SFA4 or GREEN forecasted residuals
from the initial forecast. These new forecasts were examined using
the criteria described above to determine the best model. Data for
these sets were available only from 1974 to 1989 and comparisons to
mean and Cauchy models were restricted to those years.

Suitability for forecasting.-Probability models provided
useful forecasts. All models produced better estimates than the
mean. Residual sum of squares and number of years when forecasts
were >*30% from returns were less with all probability models when
compared to the mean (Table 1). Raw data models using least square
smoothing parameters were better than those using the likelihood
method. The 1log normalized model using individual smoothing
parameters selected by the likelihood method was the worst of the
log models; there was no difference in the other log models (Table
10) . The Cauchy model was the best in terms of least residual sum
of squares, while the log normalized model with a single likelihood
smoothing parameter was the best in terms of fewest years >*30% of
forecast (Table 10).

Each of these models presents a slightly different perspective
of the data. The least squares approach produced the most stable
smoothing parameter estimates whether dealing with raw or logged
data. There was the least difference between individual and
combined smoothing parameter estimates with this approach compared
to the 1likelihood approach (Table 11). The raw normalized
distribution appears multimodal (Fig. 10) while the log normalized
distribution is multimodal and has a long tail (Fig. 11). The
Cauchy distribution is typically presented as a cumulative
distribution (Evans and Rice 1988) and thus it is difficult to
comment on its modality; however, it is generally steep around the
median, suggesting a sharply peaked unimodal distribution (Fig.
12). The raw normalized least square, the 1log normalized
likelihood, and the Cauchy models were given a closer examination
to determine the most appropriate forecast model.

Probability models provide superior forecasts to the mean
because of their tendency to detect changes in MSW returns at
extreme 1SW levels (Fig. 13). Examination of combined residual sum
of squares at various stock sizes demonstrates the superiority of
probability models at extreme stock sizes (Fig. 14). There is
little difference in MSW forecasts between mean and probability
models at intermediate stock levels (Fig. 14).

Annual trends in residuals were similar for all models. There
were no apparent positive or negative trends over time and
variability was less since 1981 relative to previous years (Fig.
15).

The Cauchy model provides the most appropriate forecasting
model. It had the lowest residual sum of squares (Table 10) and
was the best at forecasting the extremes (Figs. 13,14). Therefore,



-15-

residuals from the Cauchy model (Table 12) were examined against
SFA4 and GREEN data sets to determine if using these data sets
would improve the forecast.

The number of 1SW salmon of river age 3 or less caught at
Greenland were better at explaining the residuals in the model than
the small salmon catch in SFA4. There was almost no improvement in
1SW-MSW Cauchy residuals with SFA4 compared to a 22% improvement
using the GREEN data set. The GREEN data set in the model improved
the forecast 44% over that obtained for the mean in the 1974-1989
period (Table 10). The improvement using the GREEN data set comes
from both the extreme 1SW values and intermediate stock sizes (Fig.
16).

Forecast for 1991.-A 1991 forecast of 26,000 MSW salmon was
derived using the Cauchy model this forecast is equal to mean
returns from 1971-1990. This model also suggests there is a 30%
probability of returns less than spawning requirements (23,000 MSW)
in 1991 and a 50% probability that returns will be between 23,000
and 34,000 MSW salmon (Fig. 17). Returns of 34,000 MSW salmon
would be 30% greater than the 26,000 forecast.

2. INSEASON FORECASTS

The procedure described by Noakes (1989) for inseason
forecasting were those followed, with a few exceptions, in this
analysis. Cumulative returns to date (weekly) and numbers of
salmon yet to return were used to derive probability distributions
using Gaussian kernel estimators to forecast returns expected to
arrive. In this analysis, the first exception to Noakes's (1989)
methodology was that instead of using the mean and 95% confidence
interval of historical returns as the preseason forecast, the
forecast derived using the Gaussian 1SW - MSW model and its
associated 95% confidence interval, was used as the preseason
forecast. An additional exception was that it was not necessary to
transform the data to natural logarithms in order to ensure that
total forecasted run size and the lower confidence limit would be
at least equal to returns to date. This transformation was not
necessary because no confidence intervals of the preseason
forecasts included values less than zero. Although this
transformation would be necessary before proceeding with the
analysis of any additional weeks as the lower 1limit of the
confidence intervals approached, or reached zero for most of the
years examined by week 25 (Table 13).

The smoothing parameters for these models were calculated as
described previously. Preseason and inseason forecasts were
combined according to the weighting scheme proposed by Noakes
(1989) to produce a total combined forecast. The weighting scheme
is described below:
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(9) Total forecast-(w x inseason forecast) + (1-w) x preseason fore

where w, the weight, is calculated based on the 95% confidence
intervals of the inseason and preseason forecasts as below:

(7) w=A/A+B

where A is the length of the 95% confidence interval for the
preseason forecast and B is the length of the 95% confidence
interval of the inseason yet to return forecast. Thus, as the
season progresses B will become smaller than A and the inseason
returns will have more weight than the preseason forecast in
determining total forecast.

Model Development.-Our purpose is to demonstrate a potential
application of Noakes (1989) methodology for managing Miramichi
River salmon stocks. As a result, we provide a detailed analysis
of the first five weeks of each season for four years. The weeks
analyzed begin with standardized week 22 which begins May 28 and
end with week 25 which finishes June 24. Recreational seasons, for
bright salmon, have historically begun around June 1 and ended
September 30. Commercial seasons usually began between June 1 or
June 15 and continued to the end of July. Thus, any major
management adjustments suggested by inseason returns to the end of
June could still have an effect on returns for a large part of the
season.

The four years chosen were 1977 and 1979, the two worst years
for preseason forecasts, and 1983 and 1986, two of the better years
for preseason forecasts (Table 12). Although 1983 was not the best
year for preseason forecasts, it was chosen because of the high
proportion of early returns in that year, with the hope that it
might prove to be a good example of a year when the confidence
limit of the inseason forecast would relatively quickly surpass
that of the preseason forecast.

Suitability for forecasting.-For each year, there was a
reduction in the 95% confidence interval from week 22 to week 25
(Table 13). For 1983, the confidence interval of the preseason
forecast was less than the preseason forecast in the first week
analyzed (Table 13). Thus, the inseason forecast reduced the
preseason forecast residual by half in the first week of the
season. For 1986, the inseason forecast 95% confidence interval
was reduced below the preseason interval by week 25 (Table 13).

The forecasts for 1977 and 1979 did not improve during the
weeks examined in this model. Although the residuals improved
slightly for 1979, it was not an appreciable change that would
induce management changes (Table 13).
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We conclude that inseason forecasting is a promising technique
for improving the use of forecasts in salmon management.
Probability distributions provide an efficient means of providing
these forecasts. Additional analyses need to be conducted to
determine if inseason forecasts for years such as 1977 and 1979 can
be improved.

Discussion

Probability distribution models provided forecasts that were
closer to returns than either regression or time series models. The
original regression model for preseason forecasting of Atlantic
salmon in the Miramichi River (Equation 1 and Fig.l) explained only
52% of the interannual variation in MSW salmon returns. The final
regression model improved forecasts but these were still not
satisfactory for management. For example, the 90% prediction
interval was 187% of the predicted value (Table 5).

Several factors may account for the poor forecasts using the
Box-Jenkins time series models: 1) the general decreasing trend in
numbers of large salmon at Millbank from 1971 to 1988, 2) the small
proportion of the serially correlated variance which could be
explained by the models, and 3) the commercial fisheries in
Miramichi Bay from 1981 to 1983 which undoubtedly impacted on the
counts at Millbank, as shown by the low residuals for large salmon
for those years in period 3, July 16 to August 15.

Time series modelling may, nevertheless, be useful for
removing serial correlation prior to further analysis. An example
that became apparent through residual analysis was the effect of
the commercial fishery in Miramichi Bay from 1981 to 1983 on
returns at Millbank. Another example was the lower than expected
returns of large salmon in all periods and the lower returns of
grilse in 4 of 5 periods in 1981, which may be partly attributable
to the extensive dredging in the Miramichi estuary that year.

Probability models will be most useful for forecasting at
extreme 1SW levels or if additional data sets can be included in
the model. This second condition may be difficult to satisfy. The
Greenland catches, which were most useful, may not always be
available in time for preseason forecasts. However, other data
sets may prove equally as useful and may be available in time.
These include total Greenland catch, Newfoundland commercial catch
in other SFAs, and size distribution of 1SW salmon. These will be
examined in future analyses.

While probability models are useful, it is important to have
a framework for evaluating their appropriateness. A potential
framework for doing this has been suggested in this paper. The
jackknife approach is important for reducing bias in the forecast
estimates and residual sum of squares is a useful measure of the
overall performance of the model. The number of years >+30% may be
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a useful measure for managers. If one model has lower residuals
and another fewer years >%30%, a manager could choose between a
model which provides forecasts which overall performs better or one
in which returns are more likely to be within some critical range.
Finally, it will be useful to view predicted versus residual plots
and annual residual plots to determine precisely how the model is
performing. This procedure would be similar to the diagnostics
commonly employed in regression analyses.

One method for employing inseason forecasting in management
may be to proceed with management plans based on preseason
forecasts until the confidence interval of the inseason forecast
becomes less than the preseason forecast. For the examples
presented here this would have resulted in improved forecasts by
week 22, the beginning of the season, for 1983 and by week 25 for
1986, about midway through the summer recreational and commercial
seasons. Additional analyses will determine the general
applicability of this model for use in developing Atlantic salmon
management plans.

Recommendations.-Additional analyses which may improve the
forecasts of probability distributions and that will be
investigated in future analyses include the following:

1. Discount outliers greater than one standard deviation from
the mean by the inverse of the distance from the mean. This

procedure dampens the effect of outliers on the smoothing parameter
estimate.

2. Use standardized residuals (residuals/standard deviation)
to determine the residual sum of squares. This procedure will
dampen the effect of years with very high residuals.

3. Leave the year with high residuals out of the model to
determine its effect on model selection.

4. When using log transformed values, plot the forecast
versus predicted values to determine if there is any bias in the
log estimates and force the line through zero.

5. Put GREEN and SFA4 data in the model first to determine if
they are better predictors of MSW salmon returns than 1SW salmon.

6. Examine the effect the increase in proportion of repeat
spawners may have on the forecast.
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Table 1. Estimated total returns of Atlantic salmon to Miramichi River. Returns are calculated as: Millbank trap
count/trap efficiency + harvest in the estuary below Millbank. The proportion of 15W salmon which were femeles
each year is also indicated (PF). These data were used in Equation 1 (see text) for predicting MSW salmon
returns one year in edvance,

Residual
1SW Salmon NSW Salmon variables
Year Estuary Trap Efficieny Returns Estuary Trap Efficiency Returns PF GREEN
1971 0 1962 0.055 35,673 15128 399 0.043 24,407 0.110 n/a
1972 39 2562 0.055 46,275 2282 1151 0.043 29,049 0.220 n/a
1973 0 2450 0.055 44,545 866 1132 0.043 27,192 0.169 n/a
1974 0 4038 0.055 73,418 941 1M1 0.043 42,592  0.302 162130
1975 393 3548 0.055 64,902 724 1208 0.043 28,817 0.274 182080
1976 1780 4939 0.055 91,580 87 943 0.043 22,801 0.241 115210
1977 379 1505 0.055 27,743 6865 1934 0.043 51,842 0.228 143040
1978 1232 1268 0.055 24,287 8377 693 0.043 24,493  0.374 92230
1979 5510 2500 0.055 50,965 1659 318 0.043 9,054 0.274 169450
1980 2697 2139 0.055 41,588 10899 1093 0.043 36,318 0.193 141190
1981 1332 2174 0.034 65,273 7137 199 0.022 16,182  0.251 165330
1982 1997 2665 0.034 80,379 12213 408 0.022 30,758 0.295 150710
1983 1360 810 0.034 25,184 16788 245 0.022 27,924 0.292 27490
1984 1 1010 0.034 29,707 1 333 0.022 15,137 0.217 33230
1985 0 912 0.015 60,800 5 31 0.015 20,738 0.228 113890
1986 16 1763 0.015 117,549 18 469 0.015 31,285 0.220 129320
1987 16 1272 0.015 84,816 21 291 0.015 19,421  0.35% 133910
1988 52 1828 0.015 121,919 78 325 0.015 21,745 0,218 78580

1989 3 1128 0.015 75,231 78 257 0.015 17,211 0.220 46730
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Table 2. Fishing effort for Atlantic salmon at Millbank trap.
Effort is given as days of trap operation and numbers of visits
(trap hauls) per year.

Effort Catch per unit effort
Visits per day 1sw MSW
Both '
Year Days 1 2 3 Total sexes Males

1971 155 107 46
1972 151 76 74
1973 159 84 73
1974 173 117 55
1975 178 106 72
1976 174 126 48
1977 164 62 100
1978 167 110 54
1979 170 128 40
1980 177 128 49
1981 174 111 63
1982 164 110 53
1983 168 135 33
1984 152 120 32
1985 164 161 3
1986 158 140 18
1987 144 124 20
1988 148 126 21
1989 147 136 11

205 9.57 8.52 1.95
227 11.20 8.74 5.07
236 10.38 8.63 4.80
230 17.56 12.25 7.79
250 14.19 10.30 4.83
222 22.25 16.87 4.25
268 5.62 4.34 7.22
229 5.54 3.47 3.03
214 11.68 8.48 1.49
226 9.47 7.64 4,84
237 9.17 6.87 0.84
219 12.17 8.58 1.86
201 4.03 2.85 1.22
184 5.49 4.30 1.81
167 5.46 4.22 1.86
176 10.02 7.81 2.66
164 7.76 5.01 1.77
171 10.69 8.36 1.90
158 7.14 5.57 1.63

OFROOQOLOOROONWNOOKRNEN
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Table 3. Correlations coefficients for comparisons between
residuals in the Miramichi forecast model (Equation 2 in text) and
small and large salmon landings in Labrador, Newfoundland, and
Greenland. NS is not significant.

Small salmon Large salmon

(year i-1) (year 1i)
Labrador SFAl ~-0.21 NS +0.14 NS
Labrador SFA2 -0.55 P<0.05 +0.05 NS
Newfoundland SFA3 -0.02 NS -0.05 NS
Newfoundland SFA4 -0.57 P<0.05 -0.05 NS
Newfoundland SFAS -0.38 NS +0.16 NS
Newfoundland SFA6 +0.06 NS +0.18 NS
Newfoundland SFA7 -0.02 NS +0.16 NS
Newfoundland SFAS8 -0.07 NS +0.29 NS
Newfoundland SFA9 -0.10 NS +0.10 NS
Newfoundland SFAl0 -0.30 NS +0.54 P<0.05
Newfoundland SFAll -0.15 NS +0.07 NS
Newfoundland SFAl3 -0.45 NS +0.54 P<0.05
Newfoundland SFAl4 -0.09 NS +0.17 NS
Labrador (Gulf) +0.06 NS +0.18 NS

Greenland -0.15 NS -0.15 NS
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Table 4. Data used in Equation 3 (see text) to predict MSW salmon
returns. CPUE is catch per unit effort of effort of salmon at
Millbank trap (MSW or 1SW) and LAB is landings (t) in SFA 2 of
Labrador.

————

Year CPUE CPUE LAB
(1) (MSW,year i) (1SW,year i-1) (year i-1)
1975 4.83 12.25 82
1976 4.25 10.30 134
1977 7.22 16.87 107
1978 3.03 4,34 92
1979 1.49 3.47 28
1980 4.84 8.48 65
1981 0.84 7.64 168
1982 1.86 6.87 204
1983 1.22 8.58 126
1984 1.81 2.85 71
1885 1.86 4.30 32
1986 2.66 4.22 54
1987 1.77 7.81 102
1988 1.90 5.01 143
1989 1.63 8.36 123
1990 . 5.857 79

Table 5. Comparison between predicted and actual MSW salmon returns to Miramichi River, 1986 to 1989. Predicted
returns were calculated using Equation 3 (see text), CPUE is the catch per trap visit (haul) of MSW salmon at
Millbank. Trap count was calculated assuming an average number of visits per year of 170. Predicted returns were
calculated as the trap count divided by a trap efficiency of 0.015. Actual returns are from Randall et al. 1990.

Predicted (90% prediction interval)

Year R2 (df) CPUE Trap count Forecast Returns
1986 0.76 ¢ 8 2.1 ¢0.0,4.4> 357 ( 0,748) 23800 ( 0,49867) 31267 (-31)
1987 0.75 ¢ 9) 3.1 ¢1.0,5.1) 527 (170,867 35133 (11333,57800) 19400 (+45)
1988 0.73 (10) 1.2 ¢0.0,3.3) 204 ( 0,561) 13600 ¢ 0,37400) 21667 (-59)
1989 0.72 (11) 2.9 (1.0,4.9) 493 (170,833) 32867 (11333,55533) 17133 (+48)
1990 0.69 (12) 2.3 (0.3,4.3) 391 ( 51,731) 26067 ( 3400,48733) n/a
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Table 6. Sample diagnostic statistics for the MSW salmon
model, 1971 to 1988,

Approx.
Parameter Estimate Std Error T Ratic Lag

MU -0.04093 0.07528 -0.54 o
MAl,1 -0.29930 0.10885 -2.75 1
MAl,2 ~0.24629 0.11472 -2.15 2
Ma2,1 0.62549 0.10969 5.70 5
Constant Estimate = -0.0409289
Variance Estimate = 1.187975
Std Error Estimate = 1.08994266
AIC = 259,343928
SBC = 269,.067195
Number of Residuals= 84
Correlations of the Estimates
Parameter MU MAl,1 MAl,2 MA2,1
MU 1.000 0.027 -0.014 -0.044
MAl,1 0.027 1.000 0.221 -0.225
MAl,2 -0.014 0.221 1.000 -0.123
MA2,1 ~0.044 ~0.225 -0.123 1.000
Autocorrelation Check of Residuals
To Chi Autocorrelations

- - — " - — - - - — O Y T W T W T " - — O T " - S W o B WO o A T BB S S W S W o D R S W RO 0 S W O S O

] 3.78 3 0.287 -0.004 0.013 0.018 0.161 0.028 0.120
12 13.81 9 0.129 0.005 -0.062 0.212 0.196 0.099 -0.079
18 19.21 15 0.204 0.131 0.040 0.058 ~-0.052 0.108 -0.120
24 24.58 21 0.266 0.159 -0.071 -0.082 -0.003 0.066 0.077
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Table 7. Sample diagnostic statistics for the 1SW salmon model, 1971
to 1988.
Approx.
Parameter Estimate Std Error T Ratic Lag
MU 0.05249 0.15492 0.34 o]
AR1,1 0.18677 0.11120 1.68 2
AR1,2 0.09603 0.11088 0.87 3
AR1,3 0.27893 0.11240 2.48 4
AR2,1 -0.67521 0.08354 -8.08 5
Constant Estimate = 0.03853889
Variance Estimate = 1.18747215
Std Error Estimate = 1.08971196
AIC = 261.169519
SBC = 273.323603
Number of Residuals= 84
Correlations of the Estimates
Parameter MU AR1,1 AR1,2 BAR1,3 ARZ2,1
MU 1.000 0.018 ~0.001 -0.017 ~0.000
AR1,1 0.018 1.000 -0.190 ~0.2851 -0.096
AR1,2 -0.001 -0.190 1.000 -0.204 -0.008
AR1,3 -0.017 -0.251 -0.204 1.000 -0.089
AR2,1 -0.000 -0.096 -0.008 -0.089 1.000
Autocorrelation Check of Residuals
To Chi Autocorrelations
Lag Sguare DF Prob
6 1.78 2 0.411 0.110 0.024 0.025 0.047 -0.055 0.040
12 4.85 8 0.774 0.032 0.062 0.007 ~0.061 -0.059 -0.137
18 20.33 14 0.120 0.128 -0.069 -0.049 ~0.,263 -0.050 -0.223
24 22.09 20 0.336 -0.081 -0.054 0.040 0.010 0.015 -0.063
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Box-Jenkins forecast models of MSW salmon counts at Millbank trapnet.

1971 to 1985
forecast 1986

1971 to 1986
forecast 1987

1971 to 1987
forecast 1988

1971 to 1988
forecast 1989

Parameters *

Trend -0.07123
RMA(T) -0.38375
RMA(2) ~0.30906
SMA(5) 0.61096
Overall Mean 4.62
Residual

Mean 0.092
Mean %

Error -5.25
Absolute %

Error 22.75
Index of
Determination 0.17

Forecast
using models
Period 1 95 (137>
Period 2 180 ¢102)
Period 3 211 ( 9B
Period 4 115 ¢ 28)
Period 5 37 ¢
Total 640 (456)
Confidence Int.
95%

Period 1 2 - 557
Period 2 4 - 1064
Period 3 5 - 1248
Period 4 3 - 682
Period 5 1 - 221
Using Overall

Mean 507

-0.04245
-0.40421%
-0.28315
-0.65242

4.61

0.093

-4.96

22.88

163 ( 5
216 ( 66)
155 ¢ 7D
45 ( 33)
44 ( 67)

623 (300)

- 930
1237
889
256
252

P s LY. |
it L] L] L}

502

-0.04542
-0.41498
-0.27378

0.67694

4,57

0.093

-4.57

22.25

6.13

145 ( 85)
204 ( 57
150 ¢ &
36 (146)
52 ( 25

586 (319)

797
1124
828
199
288

N v
1] . * 1] ]

483

=0.04093
-0.29930
-0.24629

0.62549

4.52

0.086

~5.45

23.73

0.07

94

263

154

24
46

581

laXaXe¥aXal
W Nt Nt St S

”~~
g

- 541
- 1526
897
- 14
- 265

N L)
.

459

* Trend equals mean of series after differencing
RMA({ ) equals regular moving average term of lag ( )
SMA( ) equals seassonal moving average term of lag ( )
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Table $. Box-Jenkins forecast models of 1SW salmon counts at Millbark trapnet.

1971 to 1985 1971 to 1986 1971 to 1987 1971 to 1988
forecast 1986 forecast 1987 forecast 1988 forecast 1989
Parameters *
Trend -0.07795 0.05222 0.07540 0.05249
RAR(1) 0.22468 0.21598 0.19096 0.18677
RAR(2) 0.14679 0.15470 0.13843 0.09603
RAR(3) 0.18812 0.23150 0.25597 0.27893
SAR(5) ~0.633N ~0.74278 ~0.67657 -0.67521
Overall Mean 5.06 5.09 5.08 5.09
Residual
Mean 0.001 -0.002 0.000 -0.002
Mean X
Error -69.28 -64.95 -62.97 -59.03
Absolute %X
Error 85.15 81.68 80.05 76.24
Index of
Determination 0.69 0.64 0.63 0.60
Forecast
using models
Period 1 104 ¢ 124) 29 ¢ 32) 43 ¢ 60) 8¢ )
Period 2 3395 ( 746) 1566 ( 663) 2511 (¢ 619} 2087 ¢ )
Period 3 1910 ¢ 409) 1034 ¢ 366) 2068 ¢ 88) T76 ( )
Period 4 437 ¢ 95) 62 ( I 134 ( 905) 4 ()
Period $ 142 ¢ 386) 122 ¢ 105) 412 ¢ 127) 75¢C )
Total 5989 (1760) 2812 (1205) 5168 (179%) 2990 ¢ )
Confidence Int.
95%
Period 1 1 - 672 1 - 189 0 - 287 - 52
Period 2 36 -21971 12 -10384 19 -~16664 16 -13905
Period 3 20 -12415 8 - 6875 15 -13761 6 - 5167
Period 4 4 - 2850 0 - 413 1- 893 0 - 296
Period 5 1- 931 1 - 81 3 - 2756 1 - 503
Using Overall
Mean 788 812 804 812

* Trend equals mean of series after differencing
RAR( ) equals regular auto-regressive term of lag ( )
SAR( ) equals seasonal auto-regressive term of lag ( )
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Table 10. Summary of residuals and number of years when forecast
was >*30% of returns using Gaussian and Cauchy estimators and the
likelihood and 1least squares approaches to smoothing parameter
selection. Single, refers to a single smoothing parameter. Ind.
refers to a model in which a smoothing parameter was calculated for
each variable in the model.

s P s
o — -

Number of
years
Model Residual >30%
1971-1989
Mean 2064 8
Likelihood
Raw Normal (Single) 1601 7
Raw Normal (Ind) 1714 6
Ln Normal (Single) 1623 5
In Normal (Ind) 1649 7
Least Squares
Raw Normal (Single) 1562 7
Raw Normal (Ind) 1551 7
Ln Normal (Single) 1623 5
In Normal (Ind) 1623 5
Cauchy 1523 6
1974-1989
Mean 1730 7
Cauchy 1250 5
Cauchy (GREEN) 970 5
Cauchy (SFA4) 1191 5
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Table 11. Smoothing parameters chosen for Gaussian and Cauchy
models using maximum 1likelihood and 1least squares validation
approaches.

Raw-normal : Ln-normal
Individual Single Individual Single
Procedure 18W MSsW 18W MSw
Likelihood 0.30 0.85 0.65 0.45 0.85 0.70
Least Sq. 0.5% 0.50 0.50 0.70 0.70 0.70

Cauchy (Raw MSW) 17
Cauchy (GREEN) 10,000

Cauchy (SFa4) 50
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Table 12. Residuals (forecast-returns) for Cauchy distribution
model using 1SW year i~1 to forecast MSW year i returns from 1972
to 1990,

MSW Year Residual

72 =5
73 2
74 ~16
75 -1
76 6
77 -24
78 3
79 15
80 -9
81 12
82 -3
83 0
84 9
85 3
86 -3
87 3
88 6
89 5
90 0
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Table 13. Inseason forecasts of MSW sslmon returns to the Miramichi River for standardized weeks 22 and 25. Inseason total

forecast is the sum of cumulative return to date + MSW salmon to return forecast.

forecast) + ({1-w) x preseason forecast).

Total forecast is (w x inseason totsl

Total

MSW Salmon Inseason Inseason
to Return
Year Forecast

5% C.1.

Preseason
95% C.1.
forecast Width (B) Width (A} Weight {w) Forecast

Total

Resdiual

Standardized Week 22

1977
1979
1983
1986

20
20
22
21

22
21
27
23

Standardized Week 25

1977
1979
1983
1986

15
14
H
17

21
16
29
30

46
45
29
45

43
42
22
30

25
Ly
40
34

25
31
40
34

0.352
0.408
0.580
0.430

0.368
0.425
0.645
0.531

26
20
26
28

25
16
27
31

-26
-11
-2
-3

-27
-7
-1
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Figure 1. Correlation between abundance of 1Sw salmon (year i-l,

expressed as CPUE) and MSW salmon (year i) at Millbank,

1971 to 1989 (upper left figure). See regression equation (2)
in text. Residual and leverage plots are also shown (lower

4 figures).
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Figure 2. Relationship between residuals from the 1SW to MSW salmon
regression {equation (2) in text) and landings of small salmon
in SFA 2 (Labrador). The regression coefficient was significant
at P0.05.
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Figure 3, Residual and leverage plots for the multiple regression equation
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salmon and Labrador landings (LAB) as the independent variables.
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MSW salmon counts at Millbank, 1971 to 1988
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Counts of MSW salmon at Millbank, 1971-1988, for each monthly
period and ranges versus mean scatterplot for each year.
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1SW salmon counts at Millbank, 1971 to 1988
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Figure 5. Counts of 1SW salmon at Millbank, 1971-1988, for each monthly
period and ranges versus mean scatterplot for each year.



_39_

Fig. 6. Autocorrelation plot of the residuals of the MSW salmon
model, 1971 to 1988.

Lag Covariance Correlation -1 98 7 6 54 32 1012345678291
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RAutocorrelation plot of the residuals of the 1SW salmon
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Figure 10. Gaussian distribution for Miramichi salmon based on raw normalized data
with least squares smoothing parameter selection. 1SW (SS) and
MSW (recruits).
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Figure 1l. Gaussian distribution for Miramichi salmon using transformed logged
data with maximum likelihood smoothing parameter selection. 18W (SS)
and MSW (recruits).
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Appendix 1. Programs to calculate smoothing parameters and probability distributions used in preseason forecasts_. The programs
used for the time series analysis require run to date and run yet to return data as inputs for stock and recruitment.

A. Estimetes smoothing parameter for Cauchy kernel estimator.

* ki.sas;
ttititt*tti**tttttttﬁt*tiiﬁtt*t*tt:
title MIRAMICHI MSW FORECAST’;
TITLE2 MSW H, SFA4 - CAUCHY’;
TITLEZ /1SW YEARS 1974-19897;
**i*ttittttitttttt*tﬁ**'ttttt***tt:
* Estimates kernel estimater for pdf forecast model
using cross-validation leave-one-out procedure.
See Evans and Rice. 1988. Predicting recruitment
from stock size ... J. Cons. Explor. Mer. 44: 111-122,
Rice and Evans. 1988. Tools for embracing uncertainty
in the management of the cod .. J. Cons. Explor. Mer. 45:73-81. For details regarding methodology.;
*kkkhkadk yglue for D, Data step RC2, is determined by iteration.
A lower value for D is chosen in each run until the variance in
50% recruitment is minimized. Variance in this case is the sum of squared residuals. The last value for NEWVAR
in data set RC3,;
dwkkkarsadddd ERASE OLD K.OUT FILE BEFORE NEW RUNS;
whRAkAARE New value for d, data step RCZ must be entered
in each run;
wrdwdbiaaanhdd® The first run through use PROC MEANS to get sumnary
statistics for data set. Comment it out for subseguent runs.;
*options linesize=132;

data a(KEEP=GRYEAR YEAR $$ RECRUITS);
FERE AR RRRRARRRERENE AR RN

tttﬁQittﬁ*ttﬁ***ttttt***ttt:

infile 7dual:[claytor. forecastlRESMIR.dat’ missover;
ttt*iﬁttti*ﬁ*t!!t***ttt«t***;
ttttiiﬁ*tt*t**ittttti**tttﬁ*:

*INPUT FOR RESMIR.DAT;
INPUT GRYEAR GR] MSW CAUCHY LS LK MEAN GREEN SFA4;
1F GRYEAR LE 73 THEN DELETE;
SS=SFA4;
RECRUJITS=CAUCHY;
YEAR=GRYEAR;
RUN;
* input for mir.dat;
* input year ss recgr recsal;
* recruits=sum(recgr,recsal);
;ﬁ
*INPUT FOR MIRTSW.DAT;
* INPUT GRYEAR GR SAL sfa2 sfa3 sfaé RESIDUAL;
* input for miram.dat;
input gryear gr sal sfa2 sfa3 sfaé residual sfa5 sfab sfa?
sfa8 sfal0 sfal2 res86/ res87 RES88 RESS9;
$S=GR/1000;
RECRUITS=$SAL/1000;
*SS=SFAL;
*RECRUITS=RESIDUAL ;
YEAR=GRYEAR;
* TO MAKE DATA CONSISTENT WITH NEWFOUNDLAND CATCH DATA
DELETE ALL YEARS UP TO 1974;
*IF YEAR LE 73 THEN DELETE:
*DELETE YEAR-1 TRYINGO PREDICT, I1.E. for MSW 1989
DELETE YEAR 88 GE GRYR 88
if using all years up to year trying to predict.
i.e. 1971-1987 THEN MUST USE GE;
tiiQt*ﬁ**i***t**i****ttitiﬁ:

¥ if year ge 83 then delete;
**t***ftt*ttt*t****i*t**tt*tt:
*MUST DELETE YEAR=90 BECAUSE NO RECRUITS 1.E. NO 1990 RECRUITS
YET;
IF YEAR=90 THEN DELETE;



*/
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*INPUT FOR MIRCOUNT.DAT;

INPUT GRYEAR E1SW EMSW L1SW LMSW LAB;
TASW=SUMCE 1SW,L15W);
THSW=SUM(EMSW, LMSW) ;
$S=T15W/100;

RECRUITS=TMSW;

YEAR=GRYEAR;

IF YEAR=80 OR YEAR=B4 THEN DELETE;

*DELETE YEAR TRYING TO PREDICT, I.E. 19B9 MSW COUNTS;

1F YEAR=88 OR YEAR=BY THEN DELETE;
*/

*input for jake.dat;
* input year ss recruits;

*input for dempenv.det;
*  input year ss recruits;
* year=label ss=temp recruits=smolt count;
run;
It
DATA A;
INFILE *DUA1: [CLAYTOR.FORECAST) FAKE.DAT’ MISSOVER;
INPUT GRYEAR GR] SFA4 MSW;
YEAR=GRYEAR;
$S=GR1;
RECRUITS=MSW;
N=4;
RUN;

PROC MEANS DATA=A N MEAN STD MIN MAX;
10 N;
VAR GRI SFA4 NSW;
OUTPUT OUT=B
N=NGR1]
MEAN=MEANGR1 MEANSFA4 MEANMSW
STD=STDGRI STDSFAL STDMSW;
RUN;
PROC PRINT DATA=A; TITLES *FAKE.DAT’; RUN;
PROC PRINT DATA=B; TITLES fDATA=B MEANS'; RUN;
*/
proc print deta=a;
TITLES ‘Miramichi total returns mirlsw.dat’;
TITLES ‘data=a original data set’;
run; *

proc means data=a;
var ss recruits;
run;

proc sort data=a out=rc;
by recruits;
run;

proc print data=rc;
TITLES ’data=rc sorted data set’;
run;
proc sort data=a out=ss;
by ss;
run;
proc print deata=ss;
title ‘data=ss’;
run;

t*ﬁi**t*t**t**t;

*ﬁiﬂ*t*tittttttt;

data rc2(DROP=SUMF) totf(drop=recruits f);
set rc;

-52=-
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REFYR=year;
REFSS=ss;
REFREC=recruits;

dhdhhhdikddhdd .

D=5S; *KERNEL ESTIMATER;

**iti*'**ti*":

cumf=0;
* relate each observation to all the others;
do i=1 to count;
set rc point=i nobs=count;
if i=_n_ then go to nexti;
=REFSS-ss; f=1/ (1 + (x/d)**2 );
cumf+f;
output re2;
nexti: end;
sunf=cumf; output totf;
run;
jt
proc print data=zrcZ; TITLES ‘data set rc2/; rum;

proc print dats=totf; TITLES ‘data set totf’; run;
*/

proc sort data=rc2; by REFREC refyr; run;

proc sort data=ztotf; by REFREC refyr; run;

data rcx3; merge rc2 totf(drop=refyr); by REFREC; rum;

proc sort dats=rex3 out=srex3;
by refyr;
run;
data rc3;
set srex3;
by refyr:
retain flag;
if first.REFyr then DO;
flag=0;
CPCT=0;
ERND;
FPCT=100%F /SUMF ;
CPCT+FPCT;
if flag=0 and CPCT ge 50 then do;
flag=1;
y=(REFREC-recruits)**2;
NEWVAR+y;
* output; * OUTPUT IN ALL CASES;
end;
run;
f*
proc print; TITLES ‘data set re3/; run;
*/
OPTIONS LINESIZE=79;
data look(keep=d YEAR SS RECRUITS REFYR REFSS REFREC NEWVAR oldvar
set rc3;
if y=. then delete;
!*
**QQ*****ttiiti****;

OLDVAR=100;

****ﬁtt’**t**’ttt**ﬁ;

vardif=NEWVAR-oldvar;
per=({vardif/oldvar)*100;
*/
run;

proc print data=look;
TITLES ‘deta=look variance estimates for each stock level’;

per);
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run;

* find last line of look.ssd and append it to a summery data set;

,ﬁ

FILENAME OUTFIL *DUAT: [CLAYTOR.FORECASTIKERKEL.OUT?;

data _NULL_; set look nobs=count; file OUTFIL MOD;

if _n_scount then put D 12.6 NEWVAR 20.;

run;

*/

FILENAME OUTFIL “DUA1: [CLAYTOR.FORECASTIK1.QUT!;
DATA _NULL_; SET LOOK NOBS=COUNT; FILE OUTFIL MOD;
IF _N_=COUNT THEN PUT D 12.6 NEWVAR 20.;

RUN;

DATA X;
INFILE *DUAT: [CLAYTOR.FORECASTIK1.0UT! MISSOVER;
input d variance;

RUN;

PROC SORT DATA=X QUT=SX:
BY DESCENDING D;

RUN;

PROC PRINT DATA=sx;

var d variance;

FORMAT D 9.2;

TITLES 7DATA=SX SUMMARY OF KERNEL ITERATIONS’;
RUN;

data _null_; set sx; file 'k.out’;

put d 12.6 verience 20.;
run;
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B. Program for estimating smoothing parameter for Gaussian kernel estimator using the least square validation procedure.

*LSHC.SAS;

**itt'*****ﬁ'ﬁﬁtt*tiit**ﬁt:

TITLE fLEAST SQUARE VALIDATION SMOOTHING PARAMETER’;
TITLE2 *MULTIVARIATE SINGLE H TWO VARIABLES IN MODEL?:

AR PARERREAN AR R RS ARARAA NN
/*

CALCULATES SMOOTHING PARAMETER (H) USING LEAST
SQUARES VALIDATION APPROACH. FINDS H WITH THE
LEAST SUM OF SQUARES ERROR IN RECRUITMENT
FORECASTS. ANALOGOUS TO EVANS AND RICE APPROACH
FOR CAUCHY ALGORITHM EXCEPT IT IS APPLIED TO
GAUSSIAN KERNEL.

ITEMS TO ENTER BY HAND ARE IN DATA STEP V, DO I, AND
DO J. AND H OR SMOOTHING PARAMETER VECTOR ON THE
LINE AFTER PROC IML. THESE ARE MARKED BY A
DOUBLE LINE OF #a#wwaud

*/

DATA A(KEEP=N $S REC REFYR YEAR);
INFILE ‘DUA1: [CLAYTOR,FORECASTIMIRAM.DAT’ MISSOVER;
INPUT GRYEAR GR SAL SFA2 SFA3 SFA4L RESIDUAL SFAS SFAS SFAT7
SFAB SFA10 SFA12 RESB6/RES87 RESB8 RESSE9;
GRI=GR/1000;
MSW=SAL/1000;

*Q*****tﬁ"i.'*'i*;

1F GRYEAR=90 THEN DELETE;
**'t*ttiiii**tt*tttttﬁ:
REFYR=GRYEAR;
YEAR=GRYEAR;
$8=GR1;
REC=MSW;
N=19;
RUN;
;i
DATA A;
INFILE ‘DUA1: [CLAYTOR.FORECAST]FAKE .DAT! MISSOVER;
INPUT GRYEAR GRI SFA4 MSW;
REFYR=GRYEAR;
YEAR=GRYEAR;
N=4;
§S=GRI;
REC=MSW;
RUN;
*/
DATA NA;
SET A;
IF YEAR=71 THEN DELETE;
RUN;
PROC MEANS DATA=NA N MEAN STD MIN MAX;
1D N;
VAR SS REC;
OUTPUT OUT=B
MEAN=MEANGRI MEANMSW
STD=STDGR1 STDMSW;
RUN;
PROC SORT DATA=NA; BY N; RUN;
PROC SORT DATA=B; BY N; RUN;
DATA MEAN; MERGE NA B; BY N; RUN;
DATA STREC;
SET MEAN;
NORMGR1=(SS-MEANGRI }/STDGRI;
NORMMSW=(REC-MEANMSW) /STDMSW;
RUN;
PROC PRINT DATA=A; TITLE3 ’DATA=A7; RUN;
PROC PRINT DATA=NA; TITLE3 ’DATA=NA’; RUN:
PROC PRINT DATA=STREC;
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TITLES ‘DATA=STREC’;

RUN;

*akadt DATA STEP TO CREATE RANGE OF RECRUITMENTS FOR
OBSERVED STOCK SIZES. MUST ENTER STOCK
SIZES AS DO I=...., RANGE OF RECRUITMENTS
IS DO J=.... THESE SHOULD INCLUDE ENOUGH
OF A RANGE TO BRING THE PROBABILITIES
TO ZERO OR CLOSE TO 1T. THE PREC=J-1 LINE
IN INCLUDED TO HAVE THE RECRUITMENTS BEGIN
AT ZERO.;

t*iﬁttﬁ;

DATA V;

L2 s st a2 232222222222 23]

**ttttﬁttﬁtttt**tt*ttitt*ti;

DO 1=35.673,46.275,44.545,73.418,64.902,91.580,
27.743,24.287,50.965,41.588,65.273,80.379,
25.184,29.707,60.800,117,549,84.816,121.919,
75.231;

DO J=1 TO 100;

*bo 1<3,6,9,12;
* po J=1 T0 20;
AhR Rk dddd ki diidbdktktddidkid
tQ*****ﬁttttt********tttitti*:
§8=1; PREC=J-1;
QUTRUT V;
END;
END;
RUN;

PROC IML;
*C***itht'ti*t'.ﬁ*'ii;

Rk R,

H={,45); *SMOOTHING PARAMETER MUST BE ENTERED;
s
RERRA AR AN RERARRERRRRR +

¥
*wksks NEXT LINES READ IN OBSERVED STOCK
AND RCRUITMENTS AND A VECTOR OF YEARS;
***ﬁtt;
USE A VAR {SS REC);
READ ALL INTO M;
USE A VAR {YEAR);
READ ALL INTO YEAR;
PRINT M YEAR;
MEAN=J (NROW(YEAR),NCOL(M),0);
wkkkdddd | 00P TO CALCULATE MEAN STOCK SIZE AND
RECRUITS, LEAVING OUT EACH YEAR IN
TURN, (CROSS-VALIDATION);
ttti****t:
DO 1=1 TO NROW(YEAR);
N=(NROW(YEAR))-1;
IM=J (1, (NROW(YEAR)) 1);
IN[11=0;
TIN=T(IM);
TH=T(M);
MN=(T(M)*T(IM))/N;
MEANII,]1=T(MN);
END;
*PRINT IM TIM TM MN;
PRINT MEAN;
STD=J(NROW(YEAR) ,NCOL(M),0);
VI=J(N,NCOL(MEAN),0);
V2=J(1,NCOL(MEAN),0);
V3=J4(1,NCOL(MEAK),0);
*kdkdddkkdkdd [ O0P TO CALCULATE STANDARD
DEVIATION;
tttttttt*tttttﬁ;
DO I=1 TO NROW(YEAR);
DO J=1 TO N;
IF 1=1 THEN MM=M[(1+1):NROW(YEAR),];
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IF 1 > 1 &1 < NROW(YEAR) THEN
MM=M{(1:(1-1)),1//MTCCI+13:NROW(YEAR) ), 1;
IF I=NROM(YEAR) THEN MM=M[{1:(NROW(YEAR)-1)),1;
VAL, I=(C(MMLJ, 1 -MEANTT, 1 )#(MM[J, T -HEAN(],1));
END;
*PRINT I J MM V1;

V2I,1=V1[+,1;

V3L,1=Ve/(N-1);

STOL1,1=V3##.5;

END;

*PRINT 1 J V1 V2 V3 STD;
NM1=J(NROW(MM) ,NCOL(MM),0);
wawakwerses | 00P TO NORMALIZE RAW DATA;

RURERRRREEEE
t***tt*tttt*;

DO I=1 TO NROW(MEAN);
DO J=1 TO NROW(MM):
IF I=1 THEN MM=M[{1+1):NROW(YEAR),];
IF 1> 1 &1 < NROW(YEAR) THEN
MM=MIC1:(1-13),1//MICCI+1):NROM(YEAR)) ,1;
IF 1=NROW(YEAR) THEN MM=M[(1:(NROW(YEAR)-1)),};
NMTJ,I=(MM[J,1-MEANTT,))/(STDI1,1);
END;
*PRINT MM NM1;
IF 1=1 THEN NORM=NM1;
IF I > 1 THEN NORM=NORM//NM1;
*PRINT NORM;
END;
waakakersas DEADS IN DATA FILE FOR OBSERVED
STOCK SIZE AND RANGE OF RECRUITS;
***tt***t***;
USE V VAR (SS PREC);
READ ALL INTO v;
*PRINT V;
NR=NROW(V)/NROW(YEAR);
NV1=J(NR,NCOL(V),0);
YVI=J(NR,1,0);
whkhdERRsRARRE [ OOP TO NORMALIZE OBSERVED STOCK
SIZES AND RANGE OF RECRUITS BASED
ON MEANS AND STDS WHEN A GIVEN
STOCK SIZE WAS LEFT OUT OF DATA
SET;
bidi 2222, 12112 ] H
DO I=1 TO NROW(MEAN);
NV=VI(T+(NR#CT-1)) ) s (NR+(NR#(I-1))),);
DO J=1 10 NR;
NVI[J,I=(NVIJ,1-MEANTI,T)/STDIL,];
END;
IF I=1 THEN NORMY=NV1;
IF I > 1 THEN NORMV=NORMV//NV1;
*PRINT NV;
END;
*PRINT NORMV;
E=J(N,NCOL(V),0);
ENV=J(NR NCOL(Y),0);
EN=J(N,NCOL(NORM),0);
F=J(NROW(ENV),1,0);
whkakkkeantdn LOOF TO CALCULATE PROBABILITIES ON
NORMALIZED DATA. ENV= NORMALIZED DATA
FROM EACH OBSERVED SS AND RANGE OF
RECRUITS, WITH GIVEN YEAR LEFT OUT
OF CALCULATIONS.

DO I=1 TO NROW(MEAN);
ENV=NORMV [(1+(NR#(1-1))): (NR+(NR#(1-1))),1;
EN=NORM [C1+(N#(1-1))) 1 (N#1),1;
*PRINT ENV EN;
DO J=1 TO NROWCENV);
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DO K=1 TO NROW(EN);

E[K,I=EXP({-.5)#C((ENVLJ,I-ENIK,T)/HIT, 0 )#482));

END;
*PRINT E2;
IF J=1 THEN EX=E;
IF J > 1 THEN EX=EX//E;
*PRINT E3;
P=E[,¥1;
PS=SUM(P);
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CON=1/((NROW(EN) ) #( (2#3. 14159265 ) #H#( (NCOL(M) ) /2) Y#(HL,1));

Q=CON#PS;
F[J,1=CON#PS;
*PRINT E P PS CON Q;
END;
*PRINT F;
1F $=1 THEN F2=F;
1F 1 > 1 THEN F2=F2//F;:
END;
*PRINT F2;
HR=REPEAT(H,NROW(F2),1);
YVi=J(NR,1,0);
DO I=1 TO NROM(MEAN);
DO J=1 10 NR;
YV1[J,1=YEARII,];
END;
1F I=1 THEN Yv=YVi;
1F 1 > 1 THEN YV=YV/7YV1;
END;
PRINT YV;
Ls=F2||v||vv]|HR;
*PRINT LS;

FNAME={'F’ 7SS’ PREC’' 'REFYR’ 7H');
CREATE F2V FROM LSICOLNAME=FNAME];

APPEND FROM LS;

QUIT;

PROC PRINT DATA=F2V;
TITLE3 ‘DATA=F2V/;

RUN;

PROC SORT DATA=F2V; BY REFYR SS; RUN;
PROC SORT DATA=A; BY REFYR SS; RUN;

PROC MEANS DATA=F2V NOPRINT;
BY REFYR;
1D S5;
VAR F;
OQUTPUT OUT=MAX
MAX=MF;
RUN;

PROC PRINT DATA=MAX; TITLE3 ‘DATA=MAX’; RUN;
PROC SORT DATA=MAX; BY REFYR S$5; RUN;

DATA CALC:

MERGE F2V MAX A;

BY REFYR S§;

IF F=MF THEN DO;
Y=(PREC-REC)**2;
VAR+Y;

END;

ELSE DELETE;

RUN;
PROC PRINT DATA=CALC;

VAR H F MF REFYR SS PREC REC Y VAR;

TITLE3 fDATA=CALC’;
RUN;

FILENAME QUTFIL ‘DUA1:[CLAYTOR.FORECASTIKI.OUT’;
DATA _NULL_; SET CALC NOBS=COUNT; FILE OUTFIL MOD;
IF _N_=COUNT THEN PUT H 7.2 VAR 30.5;

RUN;
DATA X;

INFILE fDUAT: [CLAYTOR.FORECASTIK1.0UT/ MISSOVER;

INPUT H VARIANCE;



RUN;
PROC SORT DATA=X OUT=SX;
BY DESCENDING H;
RUN;
PROC PRINT DATA=SX;
VAR H VARIANCE;
FORMAT H 7.2 VARIANCE 30.5;
RUN;
DATA _NULL_; SET SX; FILE 'K.OUT/;
PUT H 7.2 VARIANCE 30.5;
RUN;

-59-
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C. Program for estimating smoothing parameters for each dimension simultaneously using the Geussian kernel estimator,

* MULTIH.sas;
tﬁt*tt*****tt***t***tttt’**ttkttt*;
title 'MULTIH.SAS MULTIVARIATE H, 1SW-MSW (TOGETHER)’;
TITLE2 MIRAMICHI 1SW YEARS 1971-1989’;
** SEE T END FOR ADDING TITLE2 LINE TO FINAL OUTPUT;

t*‘ti*******’*************i"*****;
*
ititkﬁtiﬂﬁt****’*ti******t**ﬁtttt**

ONE SMODTHING PARAMETER CALCULATED WITH BOTH VARIABLES
IN THE MODEL.

CALCULATES MULTIVARIATE SMOOTHING PARAMETER USING THE MODIFIED
LIKLIKOOD APPROACH IDENTIFIED IN NOAKES 1989: CJFAS
46:2046.

IN DATA STEP RC2 AN EXTRA EXPONENT STEP MUST BE ADDED
FOR EACH VARIABLE INCLUDED.

VALUE FOR D, DATA STEP RC2 1S DETERMINED BY ITERATION.
BEGIN WITH HIGH VALUE OF D THAT APPROACHES INFINITY.
DECREASE D WITH EACH ITERATION UNTIL VALUE OF D THAT
MAXIMIZES LIKLIHOOD VARIABLE IS FOUND.

THE VALUES OF D AND LIKLIHOOD CAN BE SEEN AT THE END
OF EACH RUN BY TYPING H,.O0UT.

AT THE END OF THE JOB A PRINT OF LAST DATA SET DATA=SX
PROVIDES A RECORD OF ITERATIONS WITH TITLES OF RUN.

DELETE OLD H.OUT FILES BEFORE BEGINNING A SET OF ITERATIONS
WITH NEW YEARS OR DATA. OTHERWISE NEW RESULTS WILL MIX WITH
OoLD.

CHECK DROP STATEMENT FOR DATA STEP RC TO MAKE SURE YOU ARE
NOT DROPPING A VARIABLE THAT IS NECESSARY TO KEEP FOR THE
MODEL YOU ARE EXAMINING.

CHANGE VALUE OF N FOR EACH RUN IF NECESSARY.

CHANGE DGR AND DMSW ETC. TO APPROPRIATE VARIABLE FOR
SMOOTHING PARAMETERS.

*/

*normall.sas;
libname a ‘dual:[claytor.forecastl)’;

data a;
infile ‘dual:[claytor.forecastimiram.dat’ missover;
*input for miram.dat;
input GRYEAR GR SAL SFA2 SFA3 SFA4 RESIDUAL SFA5S SFAS SFA7
SFAB SFA10 SFA12 RESB6/ RESB7 RESBB RESH9;
GRI=GR/1000;
MSW=SAL/1000;
COMB=SUM{ SFAS5,SFAG,SFA7,SFAB,SFA10);
YEAR=GRYEAR;
LGRI=LOG(GRI);
LMSW=LOG(MSW) ;
*TO MAKE DATA CONSISTENT WITH NEWFOUNDLAND CATCH DATA DELETE ALL
YEARS UP TO 1973;
*]F YEAR LE 73 THEN DELETE;
*DELETE YEAR=%0 BECAUSE NO RECRUIT ESTIMATES ARE AVAILABLE FOR
FOR 1991 AS YET;
1F YEAR=90 THEN DELETE;
*DELETE MSW YEAR-1 FOR YEAR TRYING TO PREDICT. IF WANT TO

FORECAST FOR MSW [N 1989 THEN DELETE YEAR=88;
BRRRRARERAARRARARE I AR RERRRN

t.it&**ﬁtt***t*tt*tt*i*t'ittt**;

*IF YEAR=T6 THEN DELETE;
*IF YEAR GE 85 THEN DELETE;
N=19;
run;
proc means data=a n meen std MIN MAX;
10 N;
var LGR] LMSW SFAS;
output out=B
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n=ngri
wmean=MEANGRI MEANNSW MEANSFA4
std=STDGR] STDMSW STDSFA4;
run;
,t
proc print data=B;
title3 ‘mean and std for input data, data=B’;
run;
*/
PROC SORT DATA=A OUT=SA(DROP=RESIDUAL SFAS SFAS SFA7 SFA8 SFA10
SFA12 RES86 RES87 RESB8 RES89);
B8Y N;
RUN;
ft
data a;
infile ‘dual:(claytor.forecast] fake.dat’ missover;
input gryear gri sfaé msw;
yearsgryear;
n=b;
run;

proc means data=a n mean std min max;
idn;
var gri sfaé msw;
output outzb
n=ngri
mean=meangri meansfaé mearmsw
std=stdgri stdsfaé stdmsw;
run;
*/
* .
proc print date=a; titled ‘data=a‘; rum;
proc print data=zb; title3 ‘data=b’; run;

proc sort date=a out=sa;
by n;

run;

PROC SORT DATA=B OUT=SB;
BY N;
RUN;
DATA MEAN;
MERGE SA SB;
BY N;
RUN;
DATA STREC;
SET MEAN;

ekl de ol o e b de sk e sk s ek ko
****t****tﬁt*'*itt****t*;

NORMGRI=(LGRI-MEANGRI )/STDGRI;
NORMMSW=(LMSW-MEANMSYW ) /STDMSW;
NORMSFAL=(SFAL-MEANSFAL ) /STDSFAL:
Dgri=NORMgri ;

dmsw=normmsw;
a3 2222323 222323223222 21

t***ii*t*ﬁ*ttttt*t***itt:

PROC PRINT DATA=MEAN;
TITLEZ DATA=MEAN’;

RUN;

*/

/*

proc print dataza;

title3 'Miramichi miram.dat’;
title4 ‘dataza original data set?;
VAR GR SAL GRI MSW SFA4 LGRI LMSW;

run;

*/
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,*

proc means data=STREC;
var Dgri dmsw;

run;

DATA DA(DROP=GRI SAL SFAZ SFA4 RESIDUAL SFAS SFAS SFA7 SFA8
SFA9 SFA10 SFA12 RESB6 RESB7 RESBB RES89
MEANGR! STDGRI MEANMSW STDMSW NORMGRI NORMMSW
MEANSFA4L STDSFA4L NORMMSW);
SET STREC;
RUN;
*/
;*
data da;
set strec;
run;
*proc print data=da; title3 ‘data=da’; run;
*/
DATA DA;
SET A;
DGRI=LGRI;
DMSW=LMSW;
RUN;

ittt't***ﬁ**itt;
Qt**t**ﬁﬁ*tttt'*;

data rc2(DROP=SUMF) totf(drop=recruits f);
*set rc;
SET DA;

REFYR=year;
AARCEURICRRIARRN RN NN b .

Qttt*it*ﬁt**it*'tt****tt*t;
REFgri=Dgri;
refmswedmsw;

DIM=2;

4
Qtti***iitiiiit***ttt*tiii;
*ﬂ**ti*'ittt**ﬁﬂ*it*tﬁt*tt;

i i 222222 ¢3¢ ¢ 2 2

D=.35; *KERNEL ESTIMATER;

drdekdededrdrddrwordrd .
£

cunf=0;
* relate each observation to all the others;
do i=1 to count;
SET DA POINT=1 NOBS=COUNT;
if i=_n_ then go to nexti;
KRR RARTRdRe ARt b b hdd

*t*t**tt*t*t*i*t********t****tttt;
x=REFgri-Dgri; y=refmsw-dmsw;
f=(exp(- (x**2)/(2*(D**2))))*(exp(-{y**2)/(2*(d**2))));

AR ARTRERAEEEA AR AR RRRRRRI AR RAY
tt**tiﬁt*tt*t***‘*ﬁtt*'***ﬁ*i**ti;
cunf+f;
output rc2;
nexti: end;
con=( 1/ (n*(d**dim)*{(2*3.14159265)**{dim/2))));
sumfz=con*cumf;
*sunf=(1/(N*(d**DIN)*((2*3. 14159265)**(dim/2))) Y*cumf; output totf;
run;

*proc print data=zrc2; titlel ‘dsta set rc2’; run;
proc print data=ztotf; titlel ‘data set totf’; rum;

proc imi;
use totf var {sumf D);
read all into x;
PRINT X;
Y=X[,11;
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2=X[,11;
PRINT Y;
PRINT 2;
C=1;

DO I=2 TD NROM(Z);
YI1,)=(YIC,13¥C21L,));
C=C+1;

END;
PRINT Y;
LIKE=(YINROW(Z),] )#(10**30);
D=X11,23;
6K=D| |LIKE;
*PRINT LIKE;
*PRINT D;
PRINT 6K;
FILENAME QUT 'H.dat’;
FILE OUT;
DO 1=1 TO NROW(GK);
DO J=1 TO NCOL(GK);
PUT (GKLI,Jd}) 30.10 +3 @;
END;
PUT /;
END;
CLOSEFILE OUT;
QIT;
filename outfil ‘dusi:[claytor.forecastihi.out’;
data xx;

infile 'dusl:[claytor.forecastlh.dat’ missover;

input d Like;

if d=. then delete;

run;
data _null_;
set xx;
file outfil mod;
put d 12.6 +3 Like 30.;
run;
data x;
infile 'dual: [claytor.forecastlhi.out’ missover;
input d Like;
run;
proc sort data=x out=sx;
by descending d;
run;
proc print data=sx;
var d like;
FORMAT D 9.2 LIKE 30.;
TITLEZ 'MIRAM.dat’;
TITLES 'DATA=SX';

L T e T s )
REEAREEAREEAREARERR AR AR S
titled 'Dgri=NORMgri, DMSW=NORMMSW';
TITLES ‘LN NORMALIZED’;

RERFEERARATEEERERERARARRR
i****“****iiiit*tti****t;
run;
data _null_;

set sx;

file *h.out’;

put d 12.6 +3 Llike 30.;
run;
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D. Program to calculate Cauchy step function distribution.

* pdf.ses;
t*ttt'ti*ﬁ**tt*tttﬁt*tiit*ttt:
title 'MIRAMICHI MSW FORECAST 1991¢;
TITLE2 'CAUCHY DISTRIBUTION - 1SW x MSW';
TITLE3 #1SW YEAR=1990, 1SW YEARS 1971-1990¢;
TITLES 'H=177;
***Q*tt**it**ii***t****t*it*t:
* Calculates pdf using D estimated from kernal.sas;
* See Evans and Rice. 1988. Predicting recruitment
from stock size ... J. Cons. Explor. Mer. 44: 111-122.
Rice and Evans, 1988, Tools for embracing uncertainty
in the management of the cod .. J. Cons. Explor. Mer. 45: 73-81.
For details regarding methodology.:
srkkaskkdaat Must add D value determined from Kernel.sas and
REFSSzreference stock, spawning stock for
which you are trying to predict recruits.
In data rc2 and proc print for data rc3 AND TITLE OF GRAPH;
t*t*tt*****iti*t;
options linesize=79;
Libname a ‘dual:[claytor.forecast]l’;
filename pdf ’dual:(claytor.forecastimir.gsf/;
data a(KEEP=GRYEAR YEAR SS RECRUITS);
infile ‘dual:[claytor.forecastIRESMIR.dat’ missover;
*INPUT FOR RESMIR.DAT;
INPUT GRYEAR GR1 MSW CAUCHY LS LK MEAN GREEN SFA4;
*IF GRYEAR LE 73 THEN DELETE;
*IF GRYEAR=89 THEN DELEYE;
$S=GR1/1000;
RECRUITS=MSW/1000;
YEAR=GRYEAR;
/t
*INPUT FOR MIR.DAT;
*input year ss recgr recsal;
*recrui ts=sum(recgr,recsal);

*INPUT FOR MIR1SW.DAT;
* INPUT GRYEAR GR SAL SFAZ SFA3 SFA4;
*input for miram.dat;

input gryear gr sal sfa2 sfa3 sfaé4 residual sfa5 sfaé

sfa? sfa8 sfal0 sfal2 RESBS/RESB7 RESB8 RESEY;

*1F GRYEAR LE 73 THEN DELETE;
*1F GRYEAR GE 85 THEN DELETE;

$$=GR/1000;

RECRUITS=SAL/1000;

YEAR=GRYEAR;

*DELETE YEAR-1 YO PREDICY, 1.E.for 1988 delete ge 87

if trying to predict a year based on all years
to that year MUST USE GE;

**ttiii***t*ittttt*****ﬁ**'tiﬁttﬁ***;

* if year ge 83 then delete;
**tit*tt*tttt*itt*tt*t**t***t*t*#it*;
*if trying to predict 8 year i.e. 1983 based on all years
except previous year i.e 1982 then delete year-1 FOR 83 DELETE
82 THE GRILSE YEAR;

t*t*ﬁ**ttt"iﬁ****&*ii*ii*i*t**t*t**ttttt*it;

if year eq 89 then delete;
*tttt'****t**tt*tt**********tttt********t***t;
*MUST DELETE YEAR=90 BECAUSE RECRUITS ARE UKKNOWN;
IF YEAR=90 THEN DELETE;
*/
/t
*INPUT FOR MIRCOUNT.DAT;
INPUT GRYEAR E1SW EMSW L1SW LMSW LAB;
T1SW=SUMCE1SW, L1SW);
TMSW=SUM(EMSW, LMSW) ;
$S=T15W/100;
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RECRUITS=TMSW/15;

YEAR=GRYEAR;

IF YEAR=BO OR YEAR=84 THEN DELETE;

* DELETE YEAR TRYING TO PREDICT, I.E. 1989 COUNTS;
. IF YEAR=88 OR YEAR=89 THEN DELETE;
/

*INPUT FOR JAKE.DAT;
* INPUT YEAR SS RECRUITS;

*input for dempenv.dat
year=label ss=temperature recruits=smolt counts;
* f{nput year ss recruits;
run;

proc print data=s;
titleS ‘data=a original data set’;
run;

proc sort data=a out=rc;
by recruits;

run;

,i

proc print data=rc;
titleS ’data=rc sorted data set by recruits’;
run;

*/

LAl i a2 2 22t

Whkkdkbhhh b bhkiy ;

data rc2;
set r¢;

*i***iiti**tﬁi;

D=17; * D, kernel estimater ;
REFss=9053371000; *STOCK SIZE WISH TO PREDICT RECRUITS;
*YEAR-1 STOCK SIZE 1.E. FOR 1983 USE 1982;

Iitttﬁ*tiit"ﬁ*;

x=REFSS-ss;
=17 (1 + (x/d)**2 );
cumf+f;

run;

proc summary data=rc2;
var f;
id d;
output out=b

sumzsumf ;

run;

proc sort data=b out=sb;
by d;

run;

proc sort data=rc2 out=srcz;
by d;

run;

data re3(drop=_type_ _freq_ x d refss); merge src2 sb;

*

FPCT=100*CUMF /SUMF ;

run;

f*

proc print; titled ’‘data set rc3‘;
run;

*/
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DATA X(KEEP=RECRUITS Y);
SET RC3;
Y=LAG(FPCT);
IF Y=, THEN Y=0;
IF RECRUITS=. THEN DELETE;
RUN;
DATA Y(KEEP=RECRUITS Y);
SET RC3;
YSFPCT;
RUN;
DATA Z;
SET X ¥;
RUN;
PROC SORT DATA=Z OUT=SZ:
BY Y RECRUITS;
RUN;
/*
*PROC PRINT DATA=X; TITLES ‘DATA=X’; RUN;
*PROC PRINT DATA=Y; TITLES /DATA=Y?; RUN;
*PROC PRINT DATA=Z; TITLES ’DATA=Z’; RUN;
*/
PROC PRINT DATA=SZ;
TITLES /BDATA=SZ PROBABILITIES’:
RUN;

*goptions device=tek4010;
Rinclude ‘dual:[claytorlgoptisr.sas’;
goptions gsfname=mirpdf;

data prob;

set rc3;

symbol1 v='K’ F=SPECIAL;
run;

DATA STEP;
SET §2;
LENGTH FUNCTION $8.;
XsYs=127;
YSYS=/2/;
LINE=1;
IF Y=0 THEN FUNCTION=’MOVE’;
ELSE
FUNCTION=/DRAW’ ;
X=RECRUITS;
RUN;
PROC PRINT DATA=STEP; TITLES ’data=step’; RUN;

proc gplot data=prob GOUT=A.mirfore;
TITLES '7;

AXIS1 LABEL=(A=90 ’CUMMULATIVE PROBABILITY')
ORDER=0 TO 100 BY 10
MINOR=NONE ;

AX1S2 LABEL=(’RECRUITS x 1000')
ORDER=0 TO 60 by 5
MINOR=NONE;

PLOT FPCT*RECRUITS/

VAX1S=AX1$1
HAX]1S=AX182
NAME=’ FOREQ1/
DES=/MSW MIRAM FORE 91 1SW, Msy’
ANNO=STEP;
RUN;

PROC PRINT DATA=RC2; TITLES ’DATA=RC2’; RUN;
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E. Program to calculate probability distribution function using Gaussian kernel estimator.

*odf2C.sas;

TITLE 'MIRAMICH] MSW FORECAST 1991/;

TITLE2 ’LEAST SQUARES H(COMB), RAW NORMALIZED’;
TITLES 715W YEAR=Q0, 1SW YEARS 1971-19907;
*TITLEZ f1SW YEARS 1971-19897;

TITLE4 718W - MSW H=0,5';

LIBNAME A ‘DUAT: [CLAYTOR,FORECAST]?;
;t
PLOTS THREE DIMENSIONAL PROBABILITY DISTRIBUTIONS, TwO
DIMENSIONAL PROBABILITIES FOR COMSTANT STOCK SIZE, AND
CUMMULATIVE PROBABILITY DISTRIBUTIONS FOR CONSTANT
STOCK SIZE TO PREDICT RECRUITMENT OR OTHER DEPENDENT
VARIABLES.
THE D VALUE IS DETERMINED USING E.G MULTIH.SAS AS DESCRIBED IN
NOAKES 89: CJFAS 46:2046.
PLACES WHERE VARIABLES OR STEPS MUST BE CHANGED ARE MARKED
BY A DOUBLE ROMW OF wewwswkidssa
ENTER APPROPRIATE VALUES FOR STOCKS AND RECRUITS IN DATA STEP
A.
DATA V STEP MUST BE CHANGED TO FIT EXPECTED STOCK AND
RECRUITMENTS SO THAT PROBABILITIES WILL GO TO ZERO
AT EXTREMES.
VECTOR H MUST BE CHANGED TO THAT APPROPRIATE SMOOTHING
PARAMETERS FROM GKA,.SAS ARE INPUT, Hs MUST BE ENTERED
IN SAME ORDER AS THEIR VARIABLES IN THE DATA SET.
IN THIS EXAMPLE STOCK SIZE(GRI) IS IN THE FIRST COLUMN
SO ITS H COMES FIRST. RECRUITS(MSW) ARE IN THE SECOND
COLUMN SO ITS H COMES SECOND.
STOCK SIZE IN DATA YPDF MUST BE CHANGED TO THE STOCK
SIZE THAT IS BEING HELD CONSTANT.
A SET OF COMMANDS FOR PLOTTING MULTIPLE LINES ON ONE
GRAPH IS ALSO AVAILABLE.
*/
*FROM NORMAL1.SAS;
data a;
infile *dual:(claytor.forecastImiram.dat’ missover;
*input for miram.dat;
input GRYEAR GR SAL SFA2 SFA3 SFAG RESIDUAL SFAS SFAS SFA7
SFAB SFA10 SFA12 RESBS/ RESB7 RES88 RESBY;
GRI=GR/1000;
MSW=SAL/1000;
COMM=SFA4;
YEAR=GRYEAR;
*T0 MAKE DATA CONSISTENT WITH NEWFOUNDLAND CATCH DATA DELETE ALL
YEARS UP T0 1973;
*IF YEAR LE 73 THEN DELETE;
*DELETE YEAR=90 BECAUSE NO RECRUIT ESTIMATES ARE AVAILABLE FOR
FOR 1991 AS YET;
1F YEAR=90 THEN DELETE;
*DELETE MSW YEAR-1 FOR YEAR TRYING TO PREDICT. IF WANT TO

FORECAST FOR MSW IN 1989 THEN DELETE YEAR=88;
L T )

ﬁ*********tt*tttti’t’tﬁ*t***;

* IF YEAR=B9 THEN DELETE; *to delete single years and keep rest;
* IF YEAR GE 8BS THEN DELETE; *to look at all years up to s year;
N=19;

AR EERR R T dedidddd dddkdkdk ik
**#*‘it**ﬁ*ﬁt“*ﬁt&**tttt*t*;

run;
pro:: means data=a n mean std STDERR MIN MAX;
10 N;
var GR SAL GRI MSW;
output out=B
n=ngr

mean=meangr meansal MEANGRI MEANMSW



-68~

std=stdgr stdsal STDGRI STDMSW;
run;
proc print data=a;
titled ‘original data=a’;
var gryear gri msw sfaé;
run;
/*
proc print data=B;
title5 ’‘mean and std for input data, data=B’;
run;
*/
PROC SORT DATA=A OUT=SA(DROP=RESIDUAL SFAS SFA& SFA7 SFAB SFA10
SFA12 RES86 RESB7 RESBB RESB9);
BY N;
RUN;
PROC SORT DATA=B OUT=SB;
BY N;
RUN;
DATA MEAN;
MERGE SA SB;
BY N;
RUN;
DATA STREC;
SET MEAN;

AERARRNARARRRAAEREAN RN R R RARRANAAR
i*tt****itﬂ***t*i*****itt***t*"***;

NORMGRI=(GRI-MEANGRI }/STDGRI;
NORMMSW=(MSW-MEANMSYW )/ STDMSW
SS=NORMGRI ;

RECRUITS=NORMMSY;
MEANSS=NEANGRI ;

STDSS=STDGRI;
MEANREC=MEANMS\W;

STDREC=STDOMSH;
e dede g e e e e e e e o ok o o e e e ol e e s e e de oy e e e s sk de ke

***9*1**t*t*tt**t********i********i;
RUN;
1*
PROC PRINT DATA=MEAN;
TITLES ’/DATA=MEAN’;
RUN;

proc print data=strec;
titleS ’data=strec’;

run;

*/

PROC MEANS DATA=STREC;
VAR NORMGR1 NORMMSW;

RUN;
Nhkkkhkkkhkdhfhdikikddd

HEARREREAARARRARRRANEE S

*kkwkk4ADATA STEP TO PRODUCE ALL POSSIBLE STOCK AND RECRUITS;
ERRRRUARERAIRARRRERAFARARE AR A AARAR AR R

AR RRRRR SRR LT RRRERT IR RAARAREIAARRARE s

DATA V;
*DO I=1 TO 200 BY 5;
*STOCK SIZE, LOOP NEEDED TO PRODUCE ALL POSSIBLE COMBINATIONS;

DO 1=90.533;

*STOCK SIZE FOR 1SW YEAR FORECASTING MSW YEAR+1;
DO J=1 TO 80 BY 1; *RECRUITS;
R=1; C=J-1; *FOR IND YEARS;
* R=1-1; *C=J-1;

*USE -1 FORMAT 1F STARTING VALUES OF 0 ARE NEEDED;
*Rz]: *C=J;

*USE THIS FORMAT IF START AT VALUE OTHER THAN ZERO;
PUT R 5.0 C 5.0; ™R=STOCK S12E, C=RECRUITS;
QUTPUT V;

END;

END;



-69-

RUN;
B T L

ttttﬁttittttﬁtﬁttttiﬁt;
/*
PROC PRINT DATA=V:
TITLES 7DATA=V/;
RUN;
*/
proc iml;
use STREC var {s& recruits); *NORMALIZED STOCK AND RECRUITS;
read all into m;
d=ncol(m);

n=nrow(m};
kAR rRhtddd et dhddd

tiﬁ**ﬁittﬁtt"tﬁitﬁ***t:

h=¢.5 .5); *H VALUES DETERMINED USING GKA.SAS;
* H1=STOCK, H2=RECRUITS;

ARRRRAEARERAAR AR T RRRdd
'ti.i‘****tﬁi***t*ﬁﬁﬁtﬁ;

#wa® CONSTART IN FORMULA (5) ROAKES 89;
con=1/7((nrow(m) ¥ (2#3.14159265)##(d/2) 8h [11#h (2] );

use STREC var {meanss mesnrec);

read all into nmx;

use STREC var {(stdss stdrec);

reed all into nsx;

reerex (1,13 *MEAN VALUES;

ns=nsx(1,]; *STD VALUES;
*print M nm ns;
USE V VAR (R C);
READ ALL INTO V; *RAW DATA INPUT FOR ALL POSSIBLE STOCK-REC;
VN=J(NROW(V), NCOL(V), 0);
wwk OOP TO CALCULATE NORMALIZED VALUES FOR ALL POSSIBLE STOCK-REC;
DO 1=1 TO NROW(V);

DO J=1 TO NCOL(V);

VNI, JI=CVI,J1-NMI1,d13/NS(1,4d);

END;
END;
*print V wn;

e=j(nrow{m),ncol(m),0);
F=J(NROW(VN) , 1,0);
wawe 00P TO CALCULATE PRODUCT PORTION OF FORMULA (5) NDAXES 89;
DO K=1 TO NROW(V);  "**PICKS OUT INDIVIDUAL ROWS OF NORMALIZED MATRIX DATA;
VW=VNIK,];
*PRINT WV;
do i=1 to nrow(m);
do j=1 to ncol(m);
eli,jl=exp((-.5)¥CCCWI, j1-mLi, j1)/h(j1)##2)); *PRODUCT PORTION (5);

.

end;

p=(el,11)#(e[,21); *PRODUCT OF E[1,J];
ps=sum(p); *SUM OF PRODUCT OF EL1,J];
F (K1=CON#PS;

*PRINT P PS F;

END;
PLOTHORM=WN| | F; *¥N, NORMALIZED VALUES AND F, PROBABILITIES;
PLOT=V| [F; *V, RAW DATA VALUES AND F, PROBABILITIES FOR PLOTS;

*PRINT PLOTNORM PLOT;
*print CON F;
*srintmndvh con;
*print nmx nsx nm ns vn;
wEEMAKES DATA FILE FOR PLOTTING THREE DIMENSIONAL GRAPHS FROM PLOT MATRIX;
FILENAME OUT 'PLOY.DAT?;
FILE OUT;
DO I=1 TO NROW(PLOT);
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DO J=1 TO NCOL(PLOT);
PUT (PLOTLI,J1) 9.7 +2 @;
END;
PUT /;
END;
CLOSEFILE OUT;
quit;

DATA PL;
INFILE ’DUAT: [CLAYTOR.FORECASTIPLOT.DAT/ MISSOVER;
INPUT S§S RECRUITS F;
1F $S=. THEN DELETE;

*IF $S=0 THEN F=0; *1F STOCK SIZE IS 2ERO THEN PROB OF RECRUITS IS O;

RUN;

proc print data=pl;
title5 ’data=pl’;
run;

FILENAME GDF ‘DUA1: [CLAYTOR.FORECASTIGDF.GSF’;
*GOPTIONS DEVICE=TEK4010;
XINCLUDE ‘DUAT: [CLAYTORIGOPTLSR.SAS’;

GOPTIONS GSFNAME=GDF;
ey

*Qt*ttit*ﬁ*******t*"t';

/'

*%&* THREE DIMENSIONAL PLOT;
PROC G3D DATA=PL GOUT=A.MIRFORE;
TITLES 7 *;
PLOT RECRUITS*SS=F/
TILT=45
ROTATE=~135
NAME=/LSPDF
DES=/LEAST SQUARE PDF 1SW MSW ROTATE-135/;
RUK;
PROC G3D DATA=PL GOUT=A.MIRFORE;
TITLES ¢ 7;
PLOT RECRUITS*SS=F/TILT=45
name=/LSPDF’
DES=/LEAST SQUARE PDF 1SW MSW NO ROTATE’;
RUN;
*/
SYMBOL V=NONE 1=SPLINES L=1;
PROC GPLOT DATA=PL GOUT=A.MIRFORE;
TITLES 77;
PLOT F*RECRUITS/
NAME=/1$91/
DES=/LEAST SQUARE RAW NORM FORE 91/;
RUN;

w*%®  PICKS OFF STOCK SIZE TO BE HELD CONSTANT FOR
POF AND CDF PLOTS TO FORECAST RECRUITS;
data ypdf;
set pl;
b2 l2 a2 el 12322222212 7
Q*tt’tt**t****tttt*t*ﬁ**;

/i
if 88=35 OR S$=60 OR S$S=85 OR $$=110;
IF $$=35 THEN $5=37.5;
IF SS=60 THEN §S=62.5;
IF $5=85 THEN S$S=87.5;
IF $8=110 THEN $S=112.5;

ARRRRAERK IR A AR AR R ERA R RS
ittitt'ﬁ*ti*t*tt*ttiﬁ"ﬁﬁ;

* MULTIPLE LINES;

‘.

[ Sl Y
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IF $S=37.5 THEN DO; FA=F; RA=RECRUITS; END;
IF §8=62.5 THEN DO; FB=F; RB=RECRUITS; END;
IF §5=87.5 THEN DO; FC=F; RC=RECRUITS; END;
1F $5=112.5 THEN DO; FD=F; RD=RECRUITS; END;

Lz a2 22 2222222222243

Q*ﬂ*i*t'i*itiﬁtt*t*tttit;

*/

run;

/i

PROC PRINT DATA=YPDF:
TITLES 'DATA=YPDF’;

RUN;

*/

s 3

SYMBOLY I=SPLINES L=1;

SYMBOL2 I1=SPLINES L=2;

SYMBOL3 1=SPLINES L=3;

SYMBOLA [=SPLINES L=7;

** PDF PLOT;

PROC GPLOT DATA=yPdf GOUT=A.MIRFORE;
TITLES * #;
PLOT F*RECRUITS;

Raa a2 34 22 222222222227
****&*****t***********t;

*MULTIPLE LINES;

PLOT FA*RECRUITS=1
FB*RECRUITS=2
FC*RECRUITS=3
FD*RECRUITS=4/0VERLAY
MAME='FLEVEL'

DES=/FOUR LEVEL NOAKES IND PROB';
B LT T —

*tii*tt*ﬁ****i.ttt‘§tttt;

RUN;
*/
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wkkk  CALCULATES CUMMULATIVE PROBALITY PERCENTAGES FOR CUMMULATIVE

STOCK SIZE AGAINST RECRUITS;

PROC SORT DATA=YPDF OUT=SYPDF;
BY SS;
RUN;

data acdf;
set Sypdf;
BY SS;
IF FIRST.SS THEN CUMF=0;
cumf+f;
run;
proc summary datazacdf NWAY;
CLASS SS;
var f;
output out=bcdf
sum=sumf;
run;
proc sort datazbcdf out=sbedf;
by ss;
run;
proc sort data=acdf out=sacdf;
by ss;
run;
data ycdf(drop=_type_ _freq );
merge sbedf sacdf;
by ss;
fpct=100*cumf /sumf;


http:FIRST.SS

/i
WERRFRRRXXAXRANN A AR hoRRTRRRR
RAFREEARARTEARRA N RREFR TR RRE .

’
*LINES ADDED FOR MULTIPLE LINES ON SAME GRAPH;
IF §5=37.5 THEN DO; FA=FPCT; RA=RECRUITS; END;
IF $8=62.5 THEN DO; FB=FPCT; RB=RECRUITS; END;
IF $S=87.5 THEN DO; FC=FPCT; RC=RECRUITS; END;
IF §6=112.5 THEN DO; FD=FPCT; RD=RECRUITS; END;

Rhhhikddkbddkhbhd Rt h it
*ttttt**i*tt****#******t:

*/

run;
ARRAERRRRSRRERE IS R d b h kR hh R dd

*t****t*ﬂ******t*t***!*t*ﬁ*t't:
run;
proc print datasycdf;
titledS ‘data=ycdf’;
run;
*** CDF PLOT;

/t
proc gplot data=ycdf GOUT=A.MIRFORE;
TITLES ¢ ¢,
plot fpct*recruits;  *SINGLE GRAPH LINE;

St de A st de ke e e e e g o e e e e el
***ii'iti*t**’*‘*t*tittit:

*MULTIPLE LINES;
PLOT FA*RA=1
FB*RB=2
FC*RC=3
FD*RD=4/OVERLAY

NAME=fCUMLEVEL”
DES=/FOUR LEVELS NOAKES';

b il i s 2222222222434
*tiﬁi****ttt****ii**i*ii:
run;

*/
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