Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 90/79

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 90/79

Assessment of Atlantic Salmon of the Saint John River, N.B., above Mactaquac, 1989
by

T.L. Marshall
Biological Sciences Branch Department of Fisheries and Oceans
P.O. Box 550
Halifax, N.S.
B3J 2S7

${ }^{1}$ This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

ABSTRACT

Estimated river returns destined for Mactaquac, Saint John River, 1989, were 10,861 lSW and 4,541 MSW salmon. Homewater removals/losses of about 3,600 15 SW and $1,400 \mathrm{MSW}$ fish led to an estimated spawning escapement above Mactaquac of 72 percent of the target number of MSW spawners. Wild and hatchery lSW returns were within 6% of the forecast but for the third year in succession, MSW returns were significantly less (36\%) than forecast.

The forecast of 1990 homewater returns destined for Mactaquac is about 10,100 1SW fish (6,900 more than the target escapement) and 7,075 MSW salmon (2,675 fish more than the target escapement). However, allocation of the MSW forecast surplus in 1990, (and later) would be imprudent given both the shortfall of egg depositions since 1986 and recent over-predicting of the returns.

Résumé

Les estimations de remontées de saumons allant à Mactaquac, fleuve Saint-Jean, en 1989 étaient de 10861 unibermarins et de 4541 redibermarins. Compte tenu de retraits/pertes dans les eaux d'origine d'environ 3600 unibermarins et 1400 redibermarins, 1^{\prime} échappée estimée de reproducteurs en amont de Mactaquc était d'environ 72% du nombre-cible de géniteurs redibermarins. Les remontées d'unibermarins sauvages et d'écloserie étaient conformes à la prévision, à 6% près, mais pour la troisième année de suite, les remontées de redibermarins étaient bien inférieures (36%) a la prévision.

On prévoit que les remontées dans les eaux d'origine pour Mactaquac en 1990 s'établiront approximativement à 10100 unibermarins (6900 de plus que 1'échappée-cible) et de 7075 redibermarins (2675 de plus que l'échappéecible). Toutefois, il serait imprudent d'attribuer le surplus prévu de redibermarins en 1990 (et dans les années subséquentes) en raison, d'une part, du déficit constaté dans le dépôt d'oeufs depuis 1986 et, d'autre part, de la surestimation récente des remontées.

INTRODUCTION

This document is background to the management of Atlantic salmon stocks of the Saint John River above Mactaquac, New Brunswick, and, as such, documents data and analyses available to early November 1989 relevant to stock status in 1989 and forecasts for 1990.

BACKGROUND

Physical attributes of the Saint John River drainage, salmon production area, barriers to migration, fish collection and distribution systems, the role of fish culture operations and status of the salmon stocks since 1970 have previously been described by Marshall (MS 1989).

Forecasts made in 1988 suggested that 1989 homewater returns to both above and below Mactaquac portions of the river would number approximately $19,00015 W$ and $12,100 \mathrm{MSW}$ salmon. CAFSAC advised managers (CAFSAC Advisory Document $88 / 26$) that for 1989 there would in total be $11,40015 W$ and $2,000 \mathrm{MSW}$ salmon surplus to spawning requirements, including a surplus of $2,700 \mathrm{MSW}$ salmon originating at/above Mactaquac.

The Management Plan for 1989 was identical to that of 1988 in that there was a total ban on homewater commercial fisheries, a prohibition on the retention of MSW salmon captured in the sport fisheries and the same open seasons for sport fishing. The Kingsclear Indian Band guided a sport fishery and the Oromocto Band did not fish. In contrast, the Tobique Indian Band conducted an unsanctioned fishery between early-July and mid-September which, by various reports netted about 800 salmon. Summer discharges were sporadic with extensive flooding occurring in Victoria County on two occasions in August.

Unlike the 1988 assessment, the 1989 assessment is of returns, removals and a forecast for only those fish originating at/above Mactaquac Dam. Assessment of stocks below Mactaquac Dam had, since 1986 been based on the premise that wild returns to tributaries below Mactaquac were equal to the average proportion that wild downriver stocks were of the total river returns 1970-1983. This was necessary because catch statistics for lower river tributaries, which were used prior to 1986 to estimate returns independent of count data from Mactaquac Dam, became increasingly difficult to obtain by early November and to interpret. CAFSAC expressed concern over the constant proportion method as it allowed for neither a greater contribution by hatchery returns to recruitment of "wild" stocks above Mactaquac Dam, nor differential distant exploitation on the earlier-run stock components from above Mactaquac and later-run stock components from tributaries below Mactaquac. Thus, stock status and forecasts for tributaries below Mactaquac were discontinued.

METHODS

Returns destined for Mactaquac

Total returns of $1 S W$ and MSW salmon of both wild and hatchery origin from and above Mactaquac Dam consist of the summation of Mactaquac counts, estimated angling catches in the mainstem area immediately below the Mactaquac Dam (including Kingsclear) and estimated by-catch in downriver shad, gaspereau and "other" species fisheries.

Mactaquac counts consist of those fish captured at the fish collection facilities at the Mactaquac Dam and at the smolt migration channel at the Mactaquac Fish Culture Station. Because the facility was closed on Oct. 20 rather than at the end of October a 1984-1988 average of the proportion of the total run in the last $10-12$ days of the run was used to adjust the 'count' to that of a full season. The identification of $1 S W$ and MSW returns from l-year smolts released at Mactaquac and juveniles released above Mactaquac were dependent on fin erosion (principally dorsal fin). By-catch was estimated to be 2% of the $1 S W$ and 5% of the MSW river returns - values which approximate the mean estimates for the years 1981-1984. Both the by-catch and sport catch were assumed to consist of fish of hatchery and wild origins in the same proportion as those counted at Mactaquac.

Removals of fish originating at/above Mactaquac

Removals include estimates of fish taken by the Tobique Indian Band, preliminary provincial, federal and native estimates of sport catch on the mainstem below Mactaquac, mainstem above Mactaquac (incl. Salmon River, Victoria Co.,) the Tobique River and a by-catch in the estuary. An estimate of the catch at Tobique Indian Reserve was obtained by a synthesis of information given on site and during negotiations for a Food Fishery Agreement. Additional removals include some fish; captured in the Mactaquac collection facilities and transferred to the Aroostook River, monitored through the newly operational fish-lift at Tinker Dam on the Aroostook River, retained at Mactaquac for broodstock, mortalities encountered during collection-handling operations and sacrificed for analysis. Losses of MSW fish to hook-and-release mortality were estimated at 2% of the run placed above Mactaquac, i.e., similar to a previously used 10\% loss on estimated MSW sport catch. Losses to poaching and disease ascribed in the 1988 assessments were used in 1989, i.e., 4% of $15 W$ and 10% of MSW fish placed above Mactaquac (exclusive of those estimated to have been taken by the Tobique Indians). For the most part, losses were apportioned to hatchery/wild components on the basis of estimated stock composition.

Required Spawners

An accessible salmon-producing substrate of $12,261,000 \mathrm{~m}^{2}$ above Mactaquac, an assumed requirement of $2.4 \mathrm{egg} / \mathrm{m}^{2}$, a length-fecundity relationship ($\log _{e}$ Eggs $=6.06423+0.03605$ Fork Length) applied to MSW and lSW fish, 1972-1982, and the 1 SW:MSW ratios in those years suggest that, on average, approximately 4,400 MSW fish are required above Mactaquac (Marshall and Penney MS 1983). Because 1 SW fish normally contribute so few eggs (usually fewer than 5\% females) a management philosophy limits lSW
requirements to that number which provides males for MSW females unaccompanied by MSW males, i.e., 3,200 fish (Marshall and Penney op. cit.).

Stock Forecasts

1SW Wild

The forecast of wild lSW returns originating above Mactaquac was derived from a regression of total wild 1 SW fish returning to the Saint John River which were produced above Mactaquac, 1973-1987, on adjusted (method in Penney and Marshall MS 1984, with data updates, App. 1, 2 and 3 this paper) egg depositions in the Tobique River, 1968-1969 to 1982-1983.

Egg depositions for the period 1982-1983 were adjusted in the same manner as Penney and Marshall (MS 1984) using freshwater age composition from 475 wild lSW fish sampled at Mactaquac in 1989 (one-third of scales was unread at time of assessment). Adjustment of the 1985 and 1986 egg depositions, principal contributors to 1SW returns in 1990, was done with the use of angular-transformed mean proportions for age 2:1 and age 3:1 lSW fish in the 1969 to 1983 year-classes.

To make multiplicative effects of environment, competition, variability in recruits etc. amenable to linear regression analysis, the natural logarithms of the observed values were used (Ricker 1975). The geometric mean (GM) Y resultant of the logarithmic relationship was converted to an arithmetic mean (AM) by the formula $\log _{10}(A M / G M)=0.2172 \mathrm{~s}^{2}(\mathrm{~N}-1) / \mathrm{N}$, where s is the standard deviation from the regression line of the normally-distributed natural logarithms of the variates (Ricker 1975, p. 274).

MSW Wild

A forecast of MSW returns to homewaters in 1990 which originated above Mactaquac was again examined through the regression of the estimated MSW returns destined for Mactaquac, 1971-1989, on the estimated numbers of 1SW fish originating above Mactaquac and returning to Saint John River in the previous year. Analysis included the use of natural logarithms and conversion of the GM to AM. Because the prediction from the regression had been very different from returns, 1987-88, the forecast for 1989, and again for 1990 is estimated as the product of wild 1SW returns destined for Mactaquac 1989, and the mean of $7 \mathrm{MSW} / 1 \mathrm{SW}$ ratios < 1.0 since 1980 .

1SW Hatchery

The release since 1985, of l-year smolts, as opposed to principally 2year smolts 1967-1984, prevented the forecasting of lSW or MSW hatchery returns by either the product of the long-term return rates and the number of smolts released or by regression technique. Instead, the return rate for age 1.1 fish returning to Mactaquac in 1990 was assumed to be the same as the mean (arcsine) of the 1986-1989 'adjusted' return rates (App.4). Age 1.1 returns were adjusted by removal of the estimated returns to Mactaquac from smolts released in tributaries below Mactaquac. Tag returns at Mactaquac were used to derive a mean (arcsine) proportion of adults that would return to Mactaquac from smolts released in tributaries below (App.5).

Additional lSW returns of age $3: 1$ and age $2: 1$ are expected at Mactaquac in 1990 from fall fingerlings (age 0^{+}) culled from the l-year smolt program and released in tributaries above Mactaquac in 1986 and 1987. Returns were calculated as the product of return rates to Mactaquac of releases of fall fingerlings above Mactaquac in 1985 and 1986 and the numbers released (App. 6). Release of unfed fry were accorded one-tenth the return rate of fall fingerlings.

MSW Hatchery

Returns as MSW fish from 1-year smolts released at Mactaquac in 1988 were estimated as the product of their number and adjusted mean (arcsine) return rate for l-year smolts released from Mactaquac 1985-1987 (App.4). As with 1 SW hatchery returns, MSW fish destined for Mactaquac from releases below were proportioned on the basis of tag returns 1985-1989 (App. 5).

As well, MSW returns of age $3: 2$ and age $2: 2$ were expected from fall fingerlings released above Mactaquac in 1985 and 1986. Returns of age 2:2 salmon were calculated as the product of their numbers and a return rate to Mactaquac of the 1984 and 1985 releases above Mactaquac (App. 6).

Maiden hatchery fish in 1988 and 1989 are also expected to contribute to repeat spawning MSW fish in 1990. This return was approximated by applying return rates of 0.05 (1SW) and 0.146 (MSW), for combined consecutive and alternate-year spawners (Marshall and MacPhail MS 1987) to 1989 adults of hatchery origin which were estimated to have spawned. This assumes that appropriate numbers of alternates would originate from the 1988 escapement.

RESULTS

Returns destined for Mactaquac

Estimated homewater returns in 1989 totalled 10,861 1SW and 4,541 MSW fish (Table l). The removal by anglers in the mainstem immediately below Mactaquac is provisionally estimated at 1,005 lSW fish. Hatchery returns comprised 12% and 10% of the total 1 SW and MSW returns, respectively.

Removals

Provisional sport lSW removals additional to those in the main stem consist of 1,299 fish above Mactaquac (Table 2). The Tobique Indian Band harvested an estimated 800 salmon. Fishing was conducted below the Dam (2-3 nets) and in the Headpond (6-8 nets) with gill nets of 38 m length and a mesh size of 102 mm . The catch was assumed to consist of hatchery and wild 1 SW and MSW fish in proportions similar to those placed in the Tobique Headpond and passed through the Tobique fishway.

MSW losses above Mactaquac to poaching and disease combined were set at 10% (exclusive of those taken by the Tobique Indians). ISW losses to poaching and disease were set at 4%. Included in these losses are the dozen or so mostly MSW mortalities noted, heard-of or observed by provincial/federal officials working on the Tobique River and the 30 or so fish lost due to handling fish in the Tobique fishway. Fish sampled mostly from within the

Half-Mile barrier pool by NBDNRE personnel and submitted to analyses for viral and bacterial pathogens again revealed furunculosis. Losses were, however, few compared to 1988.

Removals by all factions were estimated at 3,618 1SW fish of which 165 made their way over Tinker Dam on the Aroostook River and 1,371 MSW salmon of which 55 were transferred over the Tinker Dam and 425 retained as broodfish at Mactaquac.

Spawning Escapement

Collation of the total returns (Table 1), total removals (Table 2) and numbers of fish required on average to meet an egg deposition of $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ indicate that 72% of the required MSW spawners were attained above Mactaquac, (Table 3). For lSW fish, 225\% of requirements were met above Mactaquac. An estimated 8% of wild and 2% of hatchery ISW fish were female and had the potential to deposit about 1.8 milli on eggs, $\left(0.15 / \mathrm{m}^{2}\right)$ or the equivalent of about 240 MSW females.

Stock Forecasts

1SW Wild

The 1990 forecast of wild lSW fish returning to Mactaquac in the absence of homewater removals was based on the regression of returns to homewaters of 1SW fish which originated above Mactaquac on estimated Tobique River egg depositions adjusted for smolt age. The AM estimate for lSW returns in 1990 is 7,393 lSW fish (95% C.L. $5,601-9,757$) (Table 4). The method forecast 8,197 ($5,846-11,493$) $15 W$ fish for $1989 ; 9,522$ fish were estimated to have returned.

MSW Wild

A forecast of wild MSW fish destined for Mactaquac in 1990 was provided by the product of the mean ratio (0.664) MSW/1SW 1980-1981 through 1988-1989, exclusive of the high ratios, 1983-1984, 1984-1985, and 9,522 1SW returns in 1989. The method suggests that MSW returns to Mactaquac in 1990 should be 6,325 fish. The same approach in 1989 suggested that 6,232 MSW would return in 1989-4,072 (65\%) were actually accounted for. However, low sea-surface temperatures in the Labrador Sea in the winter of 1988-89 and unusual drift ice in W. Greenland in Aug-Sept of 1989 may foretell of at least an average to above average MSW:1SW ratio for 1990. Low sea temperatures of 1983-1984 coincided with high MSW:ISW ratios for 1984 and 1985. The regression $\log _{\mathrm{e}} \mathrm{Y}=$ $5.721+0.341 \log _{\mathrm{e}} \mathrm{X}\left(\mathrm{n}=19 ; \mathrm{r}^{2}=0.22 ; \mathrm{p}<0.05\right.$; Table 4) which has, since 1986, forecast MSW returns of double the actual and the 9,522 1SW returns to Mactaquac in 1989 provided an AM estimate of 7,530 MSW fish.

1SW Hatchery

The forecast of hatchery 1SW fish destined for Mactaquac in 1990 was in part calculated as the product of an estimated 238,2041 - and 2 -year smolts released at Mactaquac and an adjusted 0.00940 return rate (Table 5), i.e., 2,239 fish. Another 235 and 89 would return from smolts placed above and below Mactaquac, respectively. In addition, it was estimated that fall
fingerlings released above Mactaquac in 1986 and 1987 would contribute another 147 lSW fish (Table 5). The total forecast of hatchery $1 S W$ returns to Mactaquac is 2,710 lSW fish. The 1989 forecast, by these methods exceeded returns by about 35%. A lower average return rate for this forecast and the release in 1989 of more larger smolts would likely suggest that the forecast for 1990 is conservative.

MSW Hatchery

MSW returns destined for Mactaquac in 1990 were calculated as the sum of the product of an estimated return rate of 0.0038 and 142,195 smolts released at Mactaquac (540 fish) and 0.26 of returns from 71,812 smolts released below Mactaquac in 1988 (71 fish). Additional returns are expected from fall fingerlings released in 1985 and 1986 and a 0.0001 survival/return rate (Table 5). The forecast of total hatchery MSW returns to Mactaquac, including repeat spawners is 750 MSW fish (Table 5).

Forecast Summary

The forecast of total homewater returns to Mactaquac, Saint John River in 1990 is 10,103 1SW (7,393 of wild and 2,710 hatchery origin) and 7,075 MSW fish (6,325 of wild and 750 of hatchery origin). Forecast returns minus the spawning requirements of 3,2001 SW and $4,400 \mathrm{MSW}$ salmon result in potential surpluses of $6,903 \mathrm{lSW}$ and $2,675 \mathrm{MSW}$ salmon.

DISCUSSION

Estimated returns in 1989 of 10,861 wild and hatchery $1 S W$ and 4,541 wild and hatchery MSW salmon were 106% and 64% of predicted returns. Comparisons of predicted and actual (estimated) returns for each of wild and hatchery fish since 1984 are as follows:

| Sea-age | Returns | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Wild

1SW	Predicted	6,616	7,063	5,075	4,989	6,054	8,197
	Returned	8,311	6,526	7,904	5,909	8,930	9,522
	Ret/Pred	1.26	0.92	1.56	1.18	1.48	1.16
MSW	Predicted	4,896	8,413	7,702	8,327	6,983	6,232
	Returned	9,779	10,436	6,128	4,352	2,625	4,072
	Ret/Pred	2.00	1.24	0.80	0.52	0.38	0.65

| Sea-age | Returns | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Hatchery

1SW	Predicted	3,106	4,292	117	2,319	2,165	2,080
	Returned	1,451	2,018	862	3,328	1,250	1,339
	Ret/Pred	0.47	0.47	7.37 a	1.44	0.58	0.64
	MSW	Predicted	1,342	873	1,134	2,654	1,023
	Returned	1,115	875	797	480	912	469
	Ret/Pred	0.83	1.00	0.70	0.18 a	0.89	0.53

a First returns from 1-year smolts.

MSW returns, including fish of hatchery origin are the fourth lowest of a 15-year data set (Table 6). Returns of wild lSW fish above Mactaquac were 116% of predicted; wild MSW fish above were 65% of predicted values. Hatchery 1SW and MSW returns were 64% and 53% of forecasts. Despite the, lowest harvest of MSW fish in two decades (Table 7), and equally low losses (Table 2), spawning escapement of MSW fish was only 72% of requirement. Deficits in spawning escapement, 1986-1988 (82, 64, and 35\% of requirements, respectively), together with that of 1989 should deter managers from allocating predicted MSW surpluses during the next several years.

For the third year in a row, wild MSW returns have been low relative to both the period of record and those predicted. In contrast, wild lSW returns over the last few years have been high both with respect to the period of record and those predicted. Potential reasons for the resultant low MSW/1SW ratios (Table 4) including early (lSW) maturation of salmon which might otherwise have matured after two winters at sea and higher than normal natural mortality of those fish at sea during the second winter were discussed by Marshall (MS 1989). Early maturation/crossover to lSW fish is unlikely to be evident in sex ratio data for lSW fish (Marshall, op. cit.). However, the results have stimulated examination of other potential indices of marine survival/growth useful in a new/revised MSW forecast model. Until revised, predicted MSW values must be viewed with caution.

Predicted returns of hatchery-origin fish have had little reliability in most of the last six years. However, their predicted contributions to the run of hatchery and wild fish have in general been low (20% of 1 SW and 12% of MSW in 1989), just as have been the estimated returns (12% of 1 SW and 10% of MSW for 1989). Predictive capabilities for hatchery-origin fish are not only potentially impeded by the same operands affecting returns of wild fish but as well by the limited data set for returns from l-year smolts (1986-1989), fish that have not been hi-graded to support the building of the aquaculture industry (1989) and on-going efforts to improve smolt quality. Hence, improvements in predicting hatchery returns may benefit from investigations that would allow normalization of the survivability of all smolts released from Mactaquac over the last two decades.

ACKNOWLEDGEMENTS

Compilation and synthesis of this assessment has been made possible only with the support of provincial and federal co-workers. Interpretation of scales was carried out by D.K. MacPhail, DFO, Halifax. Fish count and removal information was provided by the staff at Mactaquac FCS and Fishery Officers in Fredericton and Plaster Rock. Fish count and removal information was also provided by NBDNRE staff, P. Cronin and W. Hooper, Fredericton, and E. LeBlanc, Edmundston.

LITERATURE CITED

Marshall, T.L. MS 1989. Assessment of Atlantic salmon of the Saint John River, N.B. 1988. CAFSAC Res. Doc. 89/77:vii + 29p.

Marshall, T.L., and D.K. MacPhail. MS 1987. Black salmon fishery and repeat spawning salmon of the Saint John River, N.B. CAFSAC Res. Doc 87/100:14p.

Marshall, T.L., and G.H. Penney. MS 1983. Spawning and river escapement requirements for Atlantic salmon of the Saint John River, New Brunswick. CAFSAC Res. Doc. 83/66:iii + 17p.

Penney, G.H., and T.L. Marshall. MS 1984. Status of Saint John River, N.B., Atlantic salmon in 1983 and forecast of returns in 1984. CAFSAC Res. Doc. 84/47:34p.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board Can., Bull. 191:382p.

Table 1. Estimated total returns of wild and hatchery lSW and MSW salmon destined for Mactaquac Dam on the Saint John River, N.B., 1989.

Seaage	Components	Wild	Hatch.	Total
1SW				
	Mactaquac counts	8,417	1,170	9,587
	Adj. to Nov. closea	8,451	1,188	9,639
	Angled MS below Mact	881	124	1,005
	By-catch ${ }^{\text {b }}$	190	27	217
	Totals	9,522	1,339	10,861
MSW				
	Mactaquac counts	3,854	437	4,291
	Adj. to Nov. closea	3,868	446	4,314
	By-catch ${ }^{\text {b }}$	204	23	227
	Totals	4,072	469	4,541

a Fishway closed oct. 20, 10-12 days earlier than usual; 1984-88 proportions of run $0.004,0.0155,0.0035,0.0201$ used for $15 W$, wild, hatch \& MSW wild and hatch., respectively.
b Proportions of 2% total lSW returns and 5\% total MSW returns.

Table 2. Estimated homewater removals of 1 SW and MSW salmon destined for Mactaquac Dam on the Saint John River, N.B., 1989.

Components	1SW			MSW		
	Wild	Hatch	Total	Wild	Hatch	Total
Kingsclear Indians	0	0	0	0	0	0
Tobique Indians ${ }^{\text {b }}$	491	69	560	219	21	240
Angled						
Tobique River	806	113	919	-	-	-
Mainstem above Mact.	333	47	380	-	-	-
Mainstem below Mact.	881	124	1,005	64	-	70
Hook-release mort. ${ }^{\text {c }}$	0	0	0	64	6	70
Trucked/passed to Aroost.	145	20	165	52	5	55 425
Hatchery broodfish	32	-	32	348	77	425 8
mortalities, etc.	-	-	-	7	1	8
Poaching/disease ${ }^{\text {d }}$	298	42	340	313	31	344
By-catch	190	27	217	$\underline{204}$	$\frac{23}{164}$	$\underline{227}$
Totals	3,176	442	3,618	1,207	164	1,371

a Previous to significant federal and provincial input; wild:hatchery composition per estimated returns.
b Estimated at 800 fish, (approx. 10% exploit); 1 SW:MSW ratio similar to that of available fish,i.e., 0.70: 0.30.
c Estimated at 2% of MSW of salmon released above Mactaquac (exclusive of those to Tobique Indians).
d Estimated at 4% of all 1 SW and 10% of all MSW fish placed above Mactaquac (exclusive of those to Tobique Indians).

Table 3. Estimated homewater returns, removals and spawning escapement of 1 SW and MSW salmon destined for and above Mactaquac Dam, Saint John River, 1989.

$\begin{aligned} & \text { Sea- } \\ & \text { age } \end{aligned}$	Components	Wild	Hatch.	Total
1SW				
	Homewater returns	9,522	1,339	10,861
	Homewater removalsa	3,176	442	3,618
	Retained below Mact.	34	18	52
	Spawners	6,312	879	7,191
	Target spawners ${ }^{\text {b }}$			3,200
	\% of target spawners			225
MSW				
	Homewater returns	4,072	469	4,541
	Homewater removalsa	1,207	164	1,371
	Retained below Mact.	14	9	23
	Spawners	2,851	296	3,147
	Target spawners ${ }^{\text {b }}$			4,400
	\% of target spawners			72

a Includes broodfish for Mactaquac FCS (Table 2).
b Excludes broodfish for Mactaquac FCS (Table 2).

Table 4. Adjusted Tobique River egg deposition $/ 100 \mathrm{~m}^{2}$ (yr i \& i+1) recruiting to total wild ISW and MSW salmon which would have returned to Mactaquac in the absence of homewater removals in yr $i+5$ and $i+6$, resultant MSW:ISW salmon ratios, and forecast numbers of 1 SW and MSW fish to Mactaquac in the absence of homewater removals in 1990.

Eggs/100 m²		Recruits				
		1SW		MSW		$\begin{aligned} & \text { MSW/ } \\ & 1 \text { 1SW } \\ & (5) \end{aligned}$
Years (1)	Number (2)	Year	Number (3)	Year	Number (4)	
1965-66		1970	3,057	1971	4,715	1.54
1966-67		71	1,709	72	4,899	2.87
1967-68		72	908	73	2,518	2.77
1968-69	23.95	73	2,070	74	5,811	2.81
1969-70	40.58	74	3,656	75	7,441	2.04
1970-71	74.35	75	6,858	76	8,177	1.19
1971-72	122.34	76	8,147	77	9,712	1.19
1972-73	85.39	77	3,977	78	4,021	1.01
1973-74	81.66	78	1,902	79	2,754	1.45
1974-75	371.61	79	6,828	1980	10,924	1.60
1975-76	330.50	1980	8,482	81	5,991	0.71
1976-77	244.80	81	5,782	82	5,001	0.86
1977-78	288.96	82	4,958	83	3,447	0.69
1978-79	167.00	83	4,309	84	9,779	2.27
1979-80	239.74	84	8,311	85	10,436	1.26
1980-81	219.60	85	6,526	86	6,128	0.94
1981-82	167.64	86	7,904	87	4,352	0.55
1982-83	88.97	87	5,909	88	2,625	0.44
1983-84		88	8,930	89	4,072	0.46
1984-85		89	9,522	1990	7,530c.	$6,325^{\text {d }}$
1985-86	270.65	1990	7,393b			

a See App. 1, 2 and 3 for derivation.
b Based on regression of lSW returns to Mactaquac, 1973-1987, (col. 3) on adjusted egg deposition in Tobique River, 1968-1969 to 1982-1983, (col. 2):
$\log _{e} Y=6.596+0.402 \log _{e} X ; n=15, r^{2}=0.45, p=0.008$
$Y_{1990}=7,393$ (AM); 95\% C.L. $=5,601$ to 9,757.
c Based on regression of MSW returns to Mactaquac, 1971-1989, (col. 4) on 1SW returns to Mactaquac 1970-1988 (col. 3):
$\log _{\mathrm{e}} \mathrm{Y}=5.7209+0.3409 \log _{8} \mathrm{X} ; \mathrm{n}=19, \mathrm{r}^{2}=0.22(\mathrm{p}<0.05)$
$Y_{1990}=7,530$ (AM).
d Product of mean ratio (0.664) MSW/lSW, 1980-1981 to 1988-1989, excl. of 1983-1984 and 1984-1985 and 9,522 returns in 1989.

Table 5. Forecasts of hatchery $1 S W$ and MSW returns to Mactaquac Saint John River, 1990, as estimated from numbers of various juveniles released at (At) or above (Abv) Mactaquac and estimated return rates.

Release				Returns in 1990			
Year	Loc.	Stage	Number	Rate	Age	1SW	MSW
1989	At	1-,2-yr smolt	238,204	0.00940°	1-,2.1	2,239	
1989	Bl	1-,2-yr smolt	47,389	$0.00940{ }^{\text {a }}$ @o.2b	1-.2.1	2, 89	
1989	Abv	1-,2-yr smolt	50,000	$0.00940^{\text {a }} \times 0.5$	1-,2.1	235	
1987	Abv	Fall fing.	145,428	0.00050^{c}	- 2.1	73	
1987	Abv	Unfed fry	266,257	$0.00050 \mathrm{c} \times 0.1$	2.1	13	
1986	Abv	Fall fing.	220,176	$0.00028{ }^{\text {c }}$	3.1	61	
1988	At	1-yr smolt	142,195	0.0038 a	1.2		540
1988	Bl	l-yr smolt	71,812	$0.0038^{\text {a }}$ @ $0.26{ }^{\text {b }}$	1.2		71
1986	Abv	Fall fing.	220,176	0.00010^{c}	2.2		22
1985	Abv	Fall fing.	289,000	0.00010°	3.2		29
		Adults 1989d		0.05 (1SW) 0.146	(MSW) various		88
Totals						$\overline{2,710}$	750

a Arcsine mean 1986-1989 adjusted return rate; proportions above and below (App. 4).
b App. 5.
c App. 6.
d Rates (Marshall and MacPhail MS 1987) applied to est. hatchery spawners (1989) i.e., 879 lSW and 296 MSW fish above Mactaquac.
-16-
Table 6. Estimated river returns of Saint John wild and hatchery lSW and MSW salmon destined for Mactaquac Dam, 1970-1989.

Year	Wild		Hatchery		Total	
	1SW	MSW	1SW	MSW	1SW	MSW
1970	3057	5712				
1971	1709	4715				
1972	908	4899				
1973	2070	2518				
1974	3656	5811				
1975	6858	7441	6374	2210	13232	9651
1976	8147	8177	9074	2302	17221	10479
1977	3977	9712	6992	2725	10969	12437
1978	1902	4021	3044	2534	4946	6555
1979	6828	2754	3827	1188	10655	3942
1980	8482	10924	10793	2992	19275	13916
1981	5782	5991	4730	2612	10512	8603
1982	4958	5001	2846	1531	7804	6532
1983	4309	3447	1445	581	5754	4028
1984	8311	9779	1451	1115	9762	10894
1985	6526	10436	2018	875	8544	11311
1986	7904	6128	862	797	8766	6925
1987	5909	4352	3328	480	9237	4832
1988	8930	2625	1250	912	10180	3537
1989a	9522	4072	1339	469	10861	4541

a Preliminary

Table 7. Estimated landings (numbers) of Native, sport, commercial and by-catch of $1 S W$ and MSW salmon originating at or above Mactaquac on the Saint John River, 1970-1989.

Year	Native ${ }^{\text {a }}$		Sport ${ }^{\text {b }}$		Commercial		By-catch ${ }^{\text {c }}$		Total	
	ISW	MSW	1SW	MSW	1SW	MSW	1SW	MSW	1SW	MSW
1970			392	333	105	3204			497	3537
1971			319	357	57	2391			376	2748
1972			311	770			41	6	352	776
1973			704	420			37	60	741	480
1974	27	569	2034	2080			26	8	2087	2657
1975	73	739	3490	1474			70	56	3633	2269
1976	526	2038	3580	2134			61	90	4167	4262
1977	64	1070	2540	3125			109	156	2713	4351
1978	92	1013	1151	899			114	129	1357	1429
1979	328	771	2456	589			55	69	2839	5195
1980	713	2575	3260	2409			105	211	4078	3195
1981	361	891	2425	1085	855	1228	165	485	3835	3689 3690
1982	235	2088	1880	921	554	469	58	212	2727	2539
1983	203	588	1453	637	378	1152	438888	162	2515	3031
1984	353	2135	1824				338	896 1771	3943	4297
1985	471	2526	3060				175	1771	2467	2746
1986	600	2400	1692				175	346 242	2115	1362
1987	280	1120	1650				185	177	2259	1377
1988	300	1200	1755				217	227	3081	467
1989	560	240	2304				217	227		

a Kingsclear, 1974-88, Tobique 1988-89.
b DNRE and DFO sources, + calculated estimates (exploitation rates on known releases) for mainstem above Mactaquac.
c Guesstimates from various sources or assumed proportions of the run.

App. 1. Number of eggs/ $100 \mathrm{~m}^{2}$ deposited in the Tobique River, 1968-1986, and derivation of weighted number of eggs contributing to annual returns of wild lSW fish at Mactaquac, 1973-1987 and 1990 (explanation in Penney and Marshall MS 1984).

Egg deposition		Proportion age at smoltification ${ }^{\text {a }}$		Eggs/100 m² contributing to lSW fish		```Total \\ wt'd egg contrib/ \(100 \mathrm{~m}^{2}\) to 1SW fish Q Mact. (yr)```
Year	Number	Age 2	$\text { Age } 3$	Yr i	$\text { Yr } i+1$	
1968	5.7	0.207				
			0.793		4.55	
1969	43.6	0.445		19.40		23.95 (1973)
1970	60.9	0.269	0.555	16.38	24.20	40.58 (1974)
			0.731		44.52	
1971	71.2	0.419		29.83		74.35 (1975)
			0.581		41.37	
	130.8	0.619	0.381	80.96	49.84	122.33 (1976)
1973	86.5	0.411		35.55		85.39 (1977)
			0.589		50.95	
1974	269.4	0.114	0.886	30.71	238.69	81.66 (1978)
1975	368.2	0.361		132.92		371.61 (1979)
			0.639		235.28	
1976	245.4	0.388		95.22		330.50 (1980)
1977	309.2	0.306	0.612	94.62	150.18	244.80 (1981)
			0.694		214.58	
1978	193.2	0.385		74.38		288.96 (1982)
			0.615		118.82	
	112.3	0.42	0.571		64.12	167.00 (1983)
1980	362.1	0.485		175.62		239.74 (1984)
1981	118.7	0.279		33.12		219.60 (1985)
			0.721		85.58	
1982	139.8	0.587		82.06		167.64 (1986)
			0.413		57.74	
1983	69.4	0.450		31.23		88.97 (1987)
1984	385.5					
1985	301.7					
1986	220.0	$0.380{ }^{\text {b }}$	$\underline{0.620}$	83.60	187.05	270.65 (1990)

a Derived from App. 2 and 3.
b Mean ($\mathrm{n}=16$) calculated with angular transformation.

App. 2. Number of wild 1SW salmon and proportion of age 2:1's of the total that would have returned to Mactaquac for the 1969-1984 year-classes.

Year- class (i)	Number at age of $15 W$ returns to Mactaquac				Prop. 2:1's of total
	2:1 (i+3)	$3: 1(i+4)$	4:1 (i+5)	Total	
1968		690	41		
1969	127	451	37	615	0.207
1970	1,578	1,901	68	3,547	0.445
1971	1,718	4,465	212	6,395	0.269
1972	2,325	3,186	44	5,555	0.419
1973	4,749	2,887	40	7,676	0.619
1974	1,046	1,393	103	2,542	0.411
1975	469	3,257	398	4,124	0.114
1976	3,468	5,598	544	9,610	0.361
1977	2,486	3,619	298	6,403	0.388
1978	1,619	3,659	13+6	5,296	0.306
1979	1,001	1,503	91+6	2,601	0.385
1980	2,793	3,540	176	6,509	0.429
1981	4,679	4,790	187	9,656	0.485
1982	1,548	3,737	270	5,555	0.279
1983	3,980	2,724	73	6,777	0.587
1984	2,915	3,245	323	6,483	0.450
1985	5,612	4,990			
1986	4,209				

App. 3. Freshwater age and number of wild lSW fish (A) counted at Mactaquac fish passage facilities, Saint John River, 1976 -1989, and (B) that would have returned to Mactaquac had they not been exploited/within the river, $1976-1989$.

Freshwater	Number of 1SW fish													
age	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	19898
A														
2	3,962	922	391	3,166	2,214	1,280	794	2,348	4,140	1,264	3,196	2,513	5,066	3,720
3	2,658	2,545	1,160	2,974	4,986	2,861	2,902	1,264	3,132	3,913	3,001	2,349	2,930	4,411
4	-177	- 39	133	-94	355	430	236	11	81	144	150	233	66	286
5										5				
6										5				
Total	6,797	3,506	1,584	6,234	7,555	4,571	3,932	3,623	7,353	5,331	6,347	5,095	8,062	8,417
B														
2	4,749	1,046	469	3,468	2,486	1,619	1,001	2,793	4,679	1,548	3,980	2,915	5,612	4,209
3	3,186	2,887	1,393	3,257	5,598	3,619	3,659	1,503	3,540	4,790	3,737	2,724	3,245	4,990
	212	44	1,40	103	- 398	544	298	13	91	176	187	270	73	323
5										6				
							4,958	4309	8,311	6,526 ${ }_{6}$	7,904	5,909	8,930	9,522
Total	8,147	3,977	1,902	6,828	8,482	5,782	4,958				7,904			

a Preliminary

App. 4. Estimated total number of $1 S W$ and MSW returns to the Saint John River from hatchery-reared smolts released at Mactaquac, 1974-1989.

Releases			Returns (1SW/MSW)										
		$\begin{aligned} & \text { Prop } \\ & 1-\mathrm{yr} \end{aligned}$		Mactaquac		Kingsclear	Angled main SJ	$\begin{gathered} \mathrm{By} \\ \text { catch } \end{gathered}$	$\begin{gathered} \text { Commer- } \\ \text { cial } \end{gathered}$	\% return			
Year	Smolts		Year	Mig ch	Dam					Totala	Unadj	Adj	
1974	337,281	0.00	1975	1,771	3,564	28	977	34		6,374	1.890		
75	324,186	0.06	76	2,863	4,831	219	1,129	32		9,074	2.799		
76	297,350	0.14	77	1,645	4,533	36	708	70		6,992	2.351		
77	293,132	0.26	78	777	1,779	49	369	70		3,044	1.038		
78	196,196	0.16	79	799	2,722	100	186	20		3,827	1.951		
79	244,012	0.09	80	3,072	6,687	335	640	59		10,793	4.423		
80	232,258	0.12	81	921	2,861	139	350	74	385	4,730	2.037		
81	189,090	0.08	82	828	1,464	64	267	21	202	2,846	1.505	1.445	
82	172,231	0.06	83	374	857	39	69	11	95	1,445	0.839	0.776	
83	144,549	0.22	84	476	828	36	63	48		1,451	1.004	0.976	
84	206,462	0.28	85	454	1,288	82	128	66		2,018	0.977	0.920	
74-84	2,636,747									52,594	1.995		
85	89,051	1.00	86	64	635	53	93	17		862	0.968	0.868	
86	191,495	1.00	87	198	2,679	96	288	67		3,328	1.738	1.570	
87	113,439	1.00	88			15	46	16		794	0.700	0.672	
88	142,195	1.00	89b		018)	0	107	23		1,148	0.807	0.763	
89	238,204	0.98											
1974	337,281		1976	310	1,313	392	267	20		2,302	0.683		
75	324,186		77	341	1,727	206	417	34		2,725	0.841		
76	297,350		78	223	1,728	368	165	50		2,534	0.852		
77	293,132		79	145	747	210	65	21		1,188	0.405		
78	196,196		80	302	1,992	506	146	46		2,992	1.525		
79	244,012		81	126	963	252	125	147	999	2,612	1.070		
80	232,258		82	88	640	462	181	50	110	1,531	0.659		
81	189,090		83	44	255	76	17	23	166	, 581	0.307	0.285	
82	172,231		84	84	722	201	5	103		1,115	0.647	0.559	
83	144,549		85	73	492	189	5	116		875	0.605	0.553	
84	206,462		86	16	471	266	4	40		797	0.386	0.346	
74-84	2,636,747									19,252	0.730		
85	89,051		87	4	338	110	4	24		480	0.539	0.453	
86	191,495		88			150	0	35		696	0.364	0.354	
87	113,439		896			0	0	20		399	0.352	0.330	
88	142,195												
89	238,204												

a Includes returns from downriver stocking of smolts, 1981-1988; adjusted return rate removes downriver returns to Mactaquac (see App. 5).
b 1SW hatchery fish at Mactaquac were estimated at $0.857,0.082$ and 0.061 age 1.1, 2.l and 3.1. MSW hatchery fish at Mactaquac were estimated at $0.850,0.064,0.026$ and 0.06 age $1.2,2.2,3.2$ and 'repeats', respectively. All estimates are preliminary.

App. 5. Smolt release information background to the calculation of 'adjusted' return rates for smolts released at Mactaquac and adjustment of hatchery (1982-1989) and wild (1982-1989) returns below Mactaquac. A:-Number of tag returns, return rates and proportionate contribution to Mactaquac from smolts released at and below Mactaquac 1983-1988; B:-Total smolts released below Mactaquac which originated from Mactaquac F.C.S. (also numbers released at Mactaquac) and C: Calculation of adjusted return rate for 1988 smolts returning as lSW fish in 1989.

A. Seaage	Return year	Mactaquac tags			Below' tags			Ratio
		Ret'n	Smolts	Ret'n	$\overline{\text { Ret }} \mathrm{n}$	Smolts	Ret'n	
		Mact.	released	rate (a)	Mact.	released		
lSW	1984	64	10,000	0.00640	7	13,000	0.00054	1:0.0844
	1985	114	19,988	0.00570	26	15,996	0.00163	1:0.2860
	1986	97	15,900	0.00610	13	11,952	0.00109	1:0.1787
	1987	113	15,901	0.00711	20	4,975	0.00402	1:0.5654
	1988	59	11,550	0.00511	8	13,277	0.00060	1:0.1174
	1989	51	7,761	0.00657	6	7,938	$\underline{0.00076}$	$\frac{1: 0.1157}{1: 0.2032}$
	(arcsine)			0.00615			0.0012	1:0.20
2SW				0.00300	11	13,000	0.00085	1:0.28333
	1985	24	19,988	0.00120	10	15,996	0.00063	1:0.52500
	1987	41	15,900	0.00258	9	11,952	0.00075	1:0.29070
	1988	26	15,901	0.00164	1	4,975	0.00020	1:0.12195
	1989	14	11,550	0.00121	3	13,277	0.00023	1:0.19008
	rcsine)			0.00186			0.00049	1:0.26344

B.

	No. smolts released		
Year	Above	At	Below
1981		189,090	$44,918^{\mathrm{a}}$
1982		172,231	80,535
1983		144,549	48,706
1984		206,462	46,126
1985		89,051	56,992
1986		191,495	38,387
1987		113,439	39,445
1988		142,195	71,812
1989	$50,000 \mathrm{~b}$	$238,204^{\mathrm{b}}$	$47,389 \mathrm{~b}$

a not 'incl' 21,200 from Minto
b incl. 2-yr smolts from Saint John Hatchery
C. Calculation of adjusted return rates for smolts released at Mactaquac
l. In 1989, 1, 148 lSW fish return to Mactaquac from 142,195 smolts released at Mactaquac and some of 71,812 released below Mactaquac (App.4).
2. From A (above) smolts contributing to Mactquac were $(142,195 \times 1)+$ $(71,812 \mathrm{x} .1157)=150,504$.
3. Adjusted return rate $=1,148 / 150,504$ or 0.00763 (App. 4).

App. 6 Estimates of hatchery 1 SW and MSW returns to the Saint John River, 1989, based on various numbers of juveniles released at (At) or above (Abv) Mactaquac and returns to Mactaquac.

Release					Returns in 1989			
Year	Loc		Stage	Number	Rate	Age	1SW	MSW
1988	At	1-yr	smolt	142,195	0.00763 a	1.1	1,085	
1988	Bl	1-yr	smolt	71,812	$0.00763 ¢ 0.116^{\text {b }}$	1.1	63	
1986	Abv	Fall	fing.	220,176	0.082c $\times 1339 / 220,176$	2.1	110	
1985	Abv	Fall	fing.	289,000	0.061c $\times 1139 / 289,000$	3.1	81	
1987	At	1-yr	smolt	113,439	$0.00330{ }^{\text {a }}$	1.2		374
1987	Bl	1-yr	smolt	39,445	0.00330 @ 0.19b	1.2		25
1985	Abv	Fall	fing.	289,000	0.064c $\times 469 / 289,000$	2.2		30
1984	Abv	Fall	fing.	123,600	$0.026^{c} \times 469 / 123,600$	3.2		12
		Repeat spawners.			0.013 (28/2127 in 1988)			2889
Total							1,339	469

a See App. 4
b See App. 5
c Footnote App. 4.

