Canadian Translation of Fisheries and Aquatic Sciences

No. 5518

Feeding attractants for aquatic animals - VI file Attractant structure - activity and application to fisher yields

K. Harada

Original title: Suisan Dobutsu no Setsuji Yu-in Busshitsu - VI. Setsuji Yu-in Busshitsu no Kozo to Kassei narabini Suisangyo eno Oyo.

In: Seitai Kagaku/Ecol. Chem. 9(4): 55-68, 1989.

Original language: Japanese

Available from:
Canada Institute for Scientific and Technical Information
National Research Council
Ottawa, Ontario, Canada KlA 0S2

1990

${\tt MULTILINGUAL} \stackrel{.}{{\tt SERVICES}} \, {\tt DIVISION} \, - {\tt DIVISION} \, {\tt DES} \, {\tt SERVICES} \, {\tt MULTILINGUES}$

TRANSLATION BUREAU

BUREAU DES TRADUCTIONS

LIBRARY IDENTIFICATION - FICHE SIGNALÉTIQUE

Translated from - Tradu	uction de	Into - En			
Japanese		Englis	sh		
Author - Auteur Katsuhiko	HARADA				
Title in English or French	ch - Titre anglais ou français				
Feeding At	tractants for Aquatic Anim	nals - VI			
Attractant	Structure - Activity and	Application	on to Fis	hery	
Title in foreign language Titre en langue étrangèr	e (Transliterate foreign characters) re (Transcrire en caractères romains)				
	utsu no Setsuji Yu-in Buss -in Busshitsu no Kozo to K			sangyo end	о Оуо
Reference in foreign lar Référence en langue étr	nguage (Name of book or publication) in full angère (Nom du livre ou publication), au co	l, transliterate fo mplet, transcrire	reign character en caractères r	s. omains.	
Seitai Kag	aku				
Reference in English or	French - Référence en anglais ou français				
Ecological	Chemistry				
Publisher - Editeur			TE OF PUBLIC		Page Numbers in original Numéros des pages dans l'original
		Year		Issue No.	55 - 68
Place of Publication Lieu de publication		Année	Volume	Numéro	Number of typed pages Nombre de pages dactylographiées
Japan		1989	9	4	43
Requesting Department Ministère-Client	Dept. of Fisheries & Ocea	ans		slation Bureau N e dossier n ^o	o. 3850518
Branch or Division Direction ou Division	Halifax Research Lab P.O. Box 550, Halifax, N	.S. B3J 2S	7 Tran	slator (Initials) ucteur (Initiales)	H.N. PS
Person requesting Demandé par	Dr. John D. Castell	,			1 (99)
Your Number Votre dossier no					THE SECTION
Date of Request Date de la demande	Oct. 3/90				The de of the revides
				i signita	Con souloment

MULTILINGUAL SERVICES DIVISION - DIVISION DES SERVICES MULTILINGUES TRANSLATION BUREAU BUREAU DES TRADUCTIONS

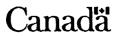
Client's No.—No du client	Department — Ministère	Division/Branch — Division/Direction	City - Ville
	Dept. of Fisheries and Oceans	Scientific Pub./Communications	Ottawa, Ont.
Bureau No,—Nº du bureau	Language — Langue	Translator (Initials) — Traducteur (Initiales)	700
3850518	Japanese to English	H.N.	la sur el v

Seitai Kagaku (Ecological Chemistry), 9, 4 (1989)

FEEDING ATTRACTANTS FOR AQUATIC ANIMALS - VI

ATTRACTANT STRUCTURE - ACTIVITY AND APPLICATION TO FISHERY

Katsuhiko HARADA*


The feeding attractants for aquatic animals were compiled in previous reports²²², ²³². Those studies pointed out that an attractant that is common to aquatic animals is the amino acid, with a possibility that nucleic acid related compounds might also be a candidate. Furthermore, it was also stated in these reports that, in the case of the mollusks, the gastropods, in particular, besides these attractants the glucides also play a major role. In addition to these findings, it was made apparent that the attraction activities can be increased by the effective combination of compounds, thus resulting in a synergistic effect.

In this article, which forms the conclusion of the series, the relationship of the structure of the attraction

^{*} Laboratory of Biochemistry, Department of Food Science and Technology, University of Fisheries, 759-65.

1944 Yoshimi Nagata-honmachi, Shimonoseki City, Yamaguchi Prefecture, Japan.

UNEDITED TRANSMITTION

SEC 5-25 (Rev. 82/11)

compounds to their activity will be outlined followed by their application to the fishery.

7. THE STRUCTURE AND THE ACTIVITY OF FEEDING ATTRACTANTS

In order to uncover the activity site of attraction compounds, the attraction activities of the derivatives, isomers or homologues of these compounds have been examined from the standpoint of behavioural science as well as that of electrophysiology. They were roughly classified into the results of either behavioural science or physiology, and then the test animals were compiled according to taxonomy. As given in Table 15, the aquatic animals examined from the standpoint of behavioural science and physiology numbered 14 species and 9 species, respectively, for a total of 22 species. A report in which the study is conducted using the methods of both behavioural science and physiology is only found in the study of attraction properties of the glycine isotopes for a species of white trout Coregonus clupeaformis233). On the other hand, with regard to the attractants studied, many are on the amino acid related compounds, reflecting the results of the past studies222,6232) and this trend is especially pronounced with the research in the field of electrophysiology. However, in the field of behavioural science, examples of research on the diversity of related compounds such as nucleic acids, fatty acids including organic acids, and glucides are found in addition to the studies of amino acids, though they are limited in number.

The lefeth of the WARM

The lefeth of the WARM

TOUGHOUSE WON RECIDES

Alies, ration seedsmont

The first study that uncovered the relationship between the structure and the activity of the compounds that are effective as feeding attractants is found in the research that examined the effects of the homologues of amino acids and other compounds on a species of goby Gobiosoma bosci³²). As a result, it was demonstrated that only amino acids having a short normal chain and 2 to 5 carbons are effective. relationship between the structure and activity repellents, in contrast to the attractants, was demonstrated in a study conducted previous to the one just mentioned on salmonids Oncorhynchus kistch and Oncorhynchus tshawtscha 238) 2239). In other words, it was observed that the water that was used to rinse such things as a person's hands caused a repellent reaction in salmon that were in the act of ascending the river in their regular course, forcing them to stop the river ascending behaviour temporarily. As a result of chemical analysis, it was ascertained that L-Ser was the effective compound whereas D-Ser and other L-amino acids were noneffective, and it is considered to be the first report that proved the presence of the chemical specificity using optical isomers. As is apparent in Table 15, there was a historical development that took place after this in which the activities of the optical isomers of amino acids were demonstrated by studies in electrophysiology for a species of rainbow trout Salmo salar 173) and a species of catfish Ictalurus catus 174).

It is the intention of the author to explain the relationship of the structure of feeding attraction compounds to their attraction activities in detail from the standpoint of behavioural science around the findings 217, of this author. This relationship concerning amino acids was investigated for oriental weatherfish Misgurnus anguillicaudatus, yellowtail Seriola guinqueradiata and black abalone Haliotis discus. results of the study are summarized in Table 16. There are three things to note as demonstrated in the table: both functional groups of the α -amino radical and carboxyl radical, as well as carbons having short normal chains, are responsible for the manifestation of the attraction activities with the carboxyl radical more so than the α -amino radical. that both functional groups are essential is also apparent from the results of the behavioural study conducted on red sea bream Chrysophyrys major102) as well as those of the studies in electrophysiology conducted on rainbow trout Salmo <u>qairdneri</u> 181,6237). Although the importance of the carboxyl radical, that is the knowledge that the α -carboxyl radical is more important to the attraction activities than the α -amino radical, is not found in the existing research examples in the field of behavioural science, the importance of the α carboxyl radical has been confirmed in studies in electrophysiology conducted on rainbow trout Salmo gairdneri 181) 8237). Furthermore, there is an evidence that the \alpha-carboxyl radical also contributes greatly to the activities

of acidic amino acids, which are the repellent, in contrast to the attractant²⁹⁹. However, the findings of the study obtained with a species of catfish <u>Ictalurus punctatus</u>¹⁸⁴ do not demonstrate the importance of the α-carboxyl radical. This is a problem likely arising from the fact that the amino acid derivatives have not been studied systematically. The fact that amino acids having a short normal chain carbon are effective attractants has been agreed upon by the findings of numerous studies in the field of both behavioural science and physiology.

With the isomers of amino acids, although the attraction activities are observed with the L-isomers, the Disomers either exhibit no activities or else very weak activities. These are findings that are consistent among studies in the field of behavioural science as well as in that of electrophysiology¹⁰², 119), 173), 174), 186), 189) &234). However, according to the results of the study in electrophysiology conducted on a wide range of concentrations, the above findings are not applicable at high concentrations 173). These findings indicate that the concentration dependency is a major characteristic of the Land D-type isomers. In addition, there are some interesting research that examined the attraction activities of ¹H-Gly and ²H-Gly (deuterated) for a species of white trout <u>Coregonus</u> clupeaformis from the standpoint of physiology and behavioural science233). Whereas in the electrophysiology fairly similar

UMEDITED TRANSLATION

OF Information enty

TO DESIGN STURBINGSE

Join Continue Septembris

concentration-response curves can be obtained at 10-8 to 10-4 for both substances, contrasting behaviour that is reciprocal at 10-7 to 10-5 is observed in behavioural science studies, showing an attraction effect with the non-deuterated Gly and repellent effect with the deuterated Gly. The reason for the manifestation of this behaviour is presumed to be the involvement of the molecular properties of these compounds.

On the basis of the attraction effects of phospholipids, the derivatives of phosphatidylcholine (lecithin) in particular, the relationship of their structure to their activities is given in Table 17217). It is apparent from this table that, in general, the greater attraction activities seem to be observed with the increase in the number of carbons that are present in fatty acids that are bonded in the manner of lecithin. On the other hand, with the amine related compounds that are bonded to the phosphate radical of the phosphatidic acid, it is clear that the lecithin type amine having bonded choline exhibits a strong activity. Since no other research examples on the relationship of the structure and activity of phospholipids are found, no comparison can be made with the above mentioned results obtained by this author. However, concerning fatty acids, which are the lipid related compounds, behavioural studies have been conducted on the invertebrates 52), 55) \$62). Since strong attraction activities have been observed with oleic acid (Cleri) 52) for a species of sea hare Aplysia kurodai, with octanonic acid (C10:0)55, for a

species of oishinomigai* <u>Bulinus rohlfsi</u> and with propionic acid (C_{3:0})⁶² for a species of kawanejigai* <u>Biomphalaria</u> <u>glabrata</u>, it is assumed that these activities vary greatly depending on the species of the gastropods concerned, these results are due to the high attraction activities exhibited by the fatty acids having the highest number of carbons among those fatty acids examined. These findings indicate a possibility that an increase in the activity will be observed with an increase in the number of carbons.

Nucleic acid related compounds, whose importance as the feeding attractants is next to the amino acids will be discussed now. Just as was done in the case of amino acids, the author has examined the attraction activities of nucleic acid related compounds for oriental weatherfish Misqurnus anguillicaudatus, yellowtail Seriola quinqueradiata and black abalone Haliotis discus²¹⁶. On the basis of the findings of this study, it was decided to use the nucleotide adenylic acid (AMP) as the basic type and the relationship between the structure and activity thus obtained is given in Table 18. It was inferred that this relationship is involved mainly with three requirements. In other words, it is thought that the purine base is essential and the maintenance of one phosphate bond and ribose are important. Before this author's study, detailed studies were conducted on this subject using a species

^{*} Translator's note: Japanese names transliterated.

59

Besides these behavioural science studies, there are physiological studies examining the structure and activities of nucleic acid related compounds for a species of spiny lobster Panulirus argus by the olfactory receptors 128,6202). There are the P_1 - and P_2 -type purine acceptors, and whereas the response of the former type is in the order of AMP>ADP>ATP≥adenosine the latter type has the response that is in total contrast to the former in the order of ATP>ADP>AMP. With regard to the former type of acceptor, these findings have been confirmed by studies in the behavioural science as well. On the other hand, besides the receptors of nucleic acid related compounds, the fact that a number of varieties exist for the receptors of amino acids, which are feeding attractants, has been reported by physiological studies conduced with rainbow trout Salmo gairdneri²⁴⁰, ~242) and crucian carp <u>Cyprinus</u> <u>carpio</u>²⁴³. was demonstrated that the receptors that bond Thr, Ser and Ala, as well as the receptors that bond the Lys, both associated with the olfactory chamber and cilia of rainbow trout, produce competitive inhibition with other amino acids242). As demonstrated by these findings, it is becoming clear that the receptors of attractants are many from the physiological standpoint, however, we will have to wait for future studies to find out what roles they are playing in the manifestations observed by behavioural studies. Although there are many

PRISONTED TO MICH ATION

FOR FOR A CONTROL PREVIOUS

Information Confirmant

instances in which the increase in the attraction effect can be observed for oriental weatherfish, yellowtail and abalone by combining feeding attractant compounds, in some instances a decrease in this effect has been observed²¹⁵). It seems that the decrease in this attraction effect can also be explained if we were to assume that the behavioural manifestations are regulated by a number of receptors.

The relationship between the structure and the activity of attraction compounds, and to some extent the receptors, have been explained so far, but it seems that in a general way the whole picture is starting to emerge as far as this relationship is concerned with regard to the related compounds of amino acids and nucleic acids. However, there are not many studies of this subject concerning phospholipids, and this is also true for the studies of proteins, glucides and other attractants that bear relation to the invertebrates. For this reason, there is a need to examine in a systematic way the activities of these chemical compounds as well as their derivatives, isomers and homologues in order to clarify the relationship between their structure and activity.

8. APPLICATION TO FISHERY

The application of this relationship in fisheries is for the purpose of artificial feed in the roughly divided categories of use in angling, the fishing industry and culturing. In any case, when the importance of olfaction is considered, the first thing that is needed is the addition of

60

feeding attractants, or feeding activators. It is obvious that the development of this artificial feed will bring about a great benefit of practical as well as economic value. Furthermore, it will probably be possible to anticipate a wave effect of keeping environmental pollution to a minimum by the use of this feed.

Although this involves only a small sector of fisheries, the subject of the artificial feed for angling is discussed here. Although the artificial feed is being used at present by the anglers at large, it is hardly being used by professional fishermen using single rods or longline. The reason for this is the use of live and fresh natural feed such as shrimps among the rod fishing operators in the entire area of the Western Japan 244). The investigation of commercially available artificial feed that is designed for fishing revealed nearly 50 varieties, including similar products. Representative products were selected from these and listed in Table 19. The display stating that the product possessed attraction effect was found on some of these products, and, though not indicated in the table, there are some products that has a feeding attractant or feeding promotor added to them. The presence of such displays is a phenomenon that was not observed in the past and seems to be proof that the outcome of basic research is being reflected indirectly. However, the contents of these products are industry secrets and it is difficult to find out what they are. It is assumed that their

main ingredients are probably the powdered or extracts of natural feed that have been proven in practice to be greatly effective in catching fish or as feeding attractants or the chemically or enzymatically treated materials of such natural feed. Moreover, in addition to these products, in some of the stores that sell fishing bait their own fishing bait or ground bait are being prepared. In other countries, too, the feed is being developed by the addition of feeding attractants in baits for sports fishing. As demonstrated in Table 19, fishing bait tends to be frozen products whereas ground bait tends to be products stored at room temperature. The presence of several companies in the industry that are manufacturing these products with consideration given to environmental pollution is desirable commercial ethics and it seems to demonstrate the stand that should be taken by the industry in the future.

The subject of artificial feed intended for use in the fishing industry will be discussed next. Although the utilization of the knowledge gained on the relationship between the structure of feeding attractants and their activities in the preparation of such artificial feed is the most desired of the applications of this knowledge to the field of fisheries, this is lagging behind. The results of research on this subject are compiled in Table 20. Of the literature that we were able to obtain, all, with the exception of two cases, were the findings of Japanese investigators. Although the number of species of aquatic animals studied was small when compared to

the one studied in the investigation of feeding attractants²²², ²³², many cases of research can be found on the subject of the relationship between oil and the feed materials, either as attractants or as the activator. Furthermore, in many reports, the effectiveness (of oil) has been confirmed. This seems to reflect the historical background in which the bait preserved in oil had been developed independently in Japan¹⁶, from long ago.

The improvement made on the trap fishing method of a invertebrate qastropod conch Babylonia japonica will be introduced. This research 245) was conducted by focusing on the two aspects of improvement, the physical improvement of the cage and the improvement of the bait. The results thus obtained were compiled in Table 21. As demonstrated by this table, it was found that more fish entered the traps baited with fresh mackerel preserved in the oil of the sand launce, rather than conventionally used fresh mackerel, and that even more fish entered the traps baited with komai (a species of small cod) preserved in the same oil. From the consideration of the cost, too, it was discovered that good results are obtained at half of the previous cost. The following three points have been cited as the advantages of the oil-preserved komai samples: whereas the smell of the fresh bait preserved in oil changes, the smell of komai does not change; because its skin is tough, the bait does not fall off; and because dried komai is used, it absorbs oil well and keeps the smell so that

UNEDITAD TRANSLATION

F - Bileman Fan Andy

TOLAG - CARD R SPORT REVISEE

Asiama of an Ru delmant

€ 2

it can be reused 2 or 3 times. In this manner, it is obvious that this bait has the advantage of not only obtaining a better trap entry rate of fish than the conventional bait but also excellent incidental characteristics. On the other hand, the results of the similar experiments conducted on <u>Charybdis miles</u> and <u>Ovalipes punctatus</u>²⁴⁶, indicate that the number that enter the traps becomes reversed depending on the living density of these species of crabs.

The results of the development of artificial feed for the vertebrate selachian sharks are introduced here. This research as was conducted with the aim of developing artificial feed intended for longline fishing that is readily obtainable, easy to store and is highly functional in catching fish, with the attention focused on two senses, the olfactory and the visual, in regard to the function of the bait to attract the fish being studied to the fishing hook. Using the five varieties of feed to be tested, the average fishing rate was obtained from the experiment conducted seven times. The results thus obtained are given in Table 22. The total number of fishes caught was 493 comprising of 22 species, with 389 sharks accounting for 79% of the total. As demonstrated in the table, the catching rate was extremely poor when only soaked in feed oil (a mixture of cod liver oil and squid oil) but the bait made of this with squid slices and fluorescence added to it is most appropriate. From this it was concluded that the fluorescence and smell were responsible in raising the rate of catch. Since the uptake of urethane into the mouth cavity and subsequent physical stage of consumption differ from those of squid slices, further investigation is required on this matter. In cases such as this where artificial material is used as the feed base, it is thought that the physical factor plays a major role in the stage of consumption. In fact, when fishing for tuna, the use of sponge gives inferior results to those obtained using saury²⁵⁴. Concerning these relations, it is thought that the development of artificial feed intended for use in the fishing industry, in longline fishing in particular, must proceed in a comprehensive manner with consideration given to the involvement of the tactile sensation in addition to the attraction capacity.

The feeding attractants were discussed in previous reports 222) 5232, however, it seems that hardly any of the findings of these reports are being utilized in the development of artificial feed intended for the fishing industry. There is a particular need to work on the utilization and application of amino acid and nucleic acid related compounds. In fact, the effectiveness of the amino acids has been proven by the field experiment 247). By releasing a variety of amino acid solutions into the ocean water, the species as well as the number of fishes that collect around the opening of the release are studied by television camera. As a result, the following results were uncovered: Gly>Ala>Met>Aspn>Cys>Glu>Leu for a species of flatfish Pseudopleuronectes americanus; Y-butyl

6.5

butyric acid (GABA)>Ala=His>Gly for a species of medaka

Fundulus heteroclitus; and Ala>Met>β-Ala>Thr for a species of togoro iwashi* Menidia menidia. The author and his colleagues have also demonstrated the ability of amino acid rich krill extract to attract fish in a preliminary experiment using vertical sonar³⁰⁰.

On the subject of artificial feed for fish culture, the research has been limited to the study of useful aquatic animals, as in the case of feed for the fishing industry, and most of the findings are those made by Japanese investigators. The existing studies were compiled and shown in Table 23.

Abalone, Penaeus, Japanese common eel, yellowtail and red sea bream account for the majority of studies. For the materials used as bait, many of the old studies were concerned with natural feed or feed based on fish powder, as well as substitute protein materials, however, in recent years, some studies concerned with the involvement of chemical stimulants, i.e. feeding attractants or feeding activators, are appearing.

Of the studies 265), 271), 272), 277), 283), 284), 287), 289) 5290) dealing with the chemical involvement of attractants or activators, the effect of the addition of amino acid and UMP on Japanese common eel Anguilla japonica 272) and yellowtail Seriola guingueradiata 287) will be introduced here. Feed (the

^{*} Translator's note: Japanese name transliterated, found in coastal waters of Southern Japan.

sample specimen) prepared by adding feeding activators* (Ala, Gly, His, Pro and UMP) to whitefish meal based feed (the control specimen) was given to Japanese common eel for a duration of 25 days and the changes in the body weight thus obtained were given in Table 24. On the basis of findings showing that the weight gain obtained with the sample specimen was twice that obtained with the control specimen, as demonstrated in the table, it is possible to state that amino acids and UMP play a major role. Furthermore, an increase in the physiological activities is suggested by these activators. Such findings were substantiated by similar results obtained with yellowtail. In addition, it was found that Met265 was effective for <u>Penaeus japonicus</u> and basic amino acids²⁷⁷ for silver salmon Oncorhynchus kisutch. On the other hand, there are reports that are in contrast to them demonstrating that 19 varieties of amino acid mixtures are not effective for carp Cyprinus carpio282) and bullhead Silurus asotus?282). Although the composition is unknown, the effect of the addition of oil has been confirmed to be similar to what was obtained with the study of baits for the fishing industry 266), 273), 288), 289) & 291).

As demonstrated by the above, the results of feeding attractants or feeding activators are being reflected in the studies concerning feed for culturing, as compared with those

^{*} Although these were entered as feeding promoter in the original article, as it was explained in the previous report¹⁶, it should be noted that they manifested themselves to be activators.

concerned with baits for angling and the fishing industry, but it still is not sufficient. It is necessary to conduct the research and development further focusing on the substitute protein materials and chemical stimulants while consulting the results of the studies mentioned above. The basic research concerning the ingredients of feed is also important in addition to this for the breeding and rearing of healthy fishes and shellfishes.

In concluding this article, the summary of feeding attractants will be presented. When feeding attractants are viewed as a whole, there is a possibility that the amino acid and nucleic acid related compounds play the main role in the attraction activities while lipids, basic amines or proteins play a supporting role.

The subject of feeding attractants was considered from both scientific and practical perspectives since they have a close correlation.

promote further research concerning aquatic animals other than the mollusks, gastropods and vertebrates. There is a possibility that such research might lead to the discovery of new physiological activators. Since we are at a stage where receptors having specificity are being uncovered by physiological studies, it is important to examine the synergistic effect of these with respect to their involvement in a systematic manner from the standpoint of physiology and

Contained TD2 MOINT ON Contained TD2 MOINT REVISES TO MOINT REVISES TO MOINT REVISES

6 €

behavioural science in order to uncover their relationship. In addition, the relationship between the structure of attractants and their receptors is extremely important.

From the practical standpoint, the development of baits for the fishing industry including angling and of feed for culture is lagging, this being especially true in the case of the former, consequently, the findings of the basic research are not being reflected in this area sufficiently. In addition, the research findings that contribute to the cultivation of seaweed beds and marine pasture will also be desirable.

Of the 83 million tons of fish caught in the world, the Japanese catch is 12 million tons, accounting for about 15% of the world catch, whereas the population of Japan is 120 million, which accounts for only about 2.5% of the world total population of 480 millions. It is not possible to think that the rest of the world will allow such allocation of exploitation to continue indefinitely. Of the 12 million tons of catch, 3.8 million tons, about 32%, are being used for domestic consumption as feed and bait, and sardines are largely being relied on to fill this purpose. From the global perspective, there is a need to consider their value as food, especially as the source of protein. In order to accomplish this, it is my belief that importance must be placed on the development of feed by treating this subject in a comprehensive manner by searching for material among not yet utilized aquatic

animals or land-produced protein sources and by adding feeding attractants as well as viewing the matter from the perspective of physiological and nutritional science, while consulting the findings of basic scientific research.

表15 水産動物における摂餌誘引化合物の誘導体・異性体・同族体

1、水度動物*1	2. 試験小	· 3.代表尺度 5	使用個的	本数 5研究法	6,誘引物質**	7.濃度 (M
8 (行動学)			• • •			
9,無脊椎動物						
lo.クロアワビ Haliotis discus ²¹⁶⁾	门海太	12散長2.8	50	13、探索行動	14アミノ散誘導体	10-2
ヷ゚オオイシノミガイの一種 Bulinus rohlfsi ⁶²⁾	16 液水	八体重0,002 一ù,005	100	13.探索行動	¹⁸ 有機酸・脂肪酸同族体	10-1
月 アメフラシ Aplysia kurodai ⁵²⁾	们海水	门体重5-70	32	20.摂餌量	21,脂肪酸间族体 [†]	101
22 カワネジガイの一種 Biomphalaria glabrata (**)	16淡水	り体重0.01 -0.015		13探索行動	23. アミノ酸・有機酸・アミド・ ン・アルコール・テトロース同!	アミ 族体 10 ⁻¹
n 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16淡水	17体纸0,05 0,35		i3.探索行動	ス(脂肪酸同族体	10-1
,, 0.65	以 液水	门体重0,25 -0,35		24索餌行動	25,特質異性体	10-2
A テナガエビの一種 Palaemonetes pugio 10)	海水		18	(3 探索行動	27.タンパク質同族体	·(0, 1 - 1, 3
p 101)	日海水	28体長1.5 3.0	18	13探索行動	29.核酸誘導体	10.2 10.
30.アステリアスの一種 Marthasterias glacialis ¹¹⁰	,【海水			13探索行動	3]。 アミノ酸誘導体・異性体。 有機酸異性体	10 n - 10
2、脊椎動物						
33. シロマスの一種 Coregonus clupeaformis ^{2 1}	3 :			34,滞留時間	35 ,グリシン同位体	10 * 10 °
& ドジョウ Misgurnus angillicaudatus	16.	28. 体長10.1	60	13 探索行動	14.アミノ酸誘導体	10 ^{- a}
7 ブリ Seriola quinqueradiata ²¹⁷	, II.梅水。	38 _{尾叉長5.4}	< 126	13 探索行動	37.アミノ酸・脂質誘導体	10-1
Dicentrarchus labrax ²³⁴⁾			•	20摂餌量	41.アミノ酸異性体†	,
れ、マダイ Chrysophyrys major ¹⁰²⁾	11.海水			13探索行動	43 _{アミノ酸誘導体・異性体}	10-2
44ハゼの一種 Gobiosoma bosci ^{3 2)}	儿海水		14 - 20	24素銀行動	45アミノ酸同族体	
は ,カレイの種 Scophthalmus maximus ^{"0}	几海水	体長6-10	10	20.摂餌量	29. 核酸誘導体	(10 ⁶ M ≥ 'g'
7. カの幼虫 Culex pipens	16.淡水	48幼虫		24.索餌行動	29 核酸誘導体	10" 5 - 10" 3
49 (生理学)						
9、無脊椎動物						
50,イセエビの一種 Panulirus argus ***	11 海水		;	51.スパイク	52核酸同族体	10-3

2. 試験水	3.代表尺度 华 (cm、 g)	1個体数 研究法	6. 誘引物質*2	7. 濃度 (M
**1八海水		53インパルス	29、核酸誘導体	10-4
是空景		56 単位	57アミン・脂肪酸同族体	10-2
•				
16 淡水	17 体重200 -700	EOG. NT R. MNR	59グルタミン異性体	10-4
川海水	・ 体長18−22	61 嗅球応答	14. アミノ散誘導体	10-4-10-4
川海水	体長18-22	6]嗅球応答	14.アミノ酸誘導体	10-3
儿淡水	体長15-18	51スパイク	41.アミノ酸異性体	10-4
:33)		61.嗅球吃答	35、ゲリシン同位体	10-7-10-
11 海水		51 スパイク	41.アミノ酸異性体	
16淡水	7. 体重70-200	EOG	14、アミノ酸誘導体	10~4.
日海水口	体重75-250	EOG	41.アミノ酸異性体。	10-4
	11/1 海水 11/1 海水 11/1 海水 11/1 11/1 海水 11/1 11/1 海水 11/1 11/1 11/1	17 17 17 17 17 17 17 17 17 17	53インバルス 56 単位 11 淡水 11 本重200 EOG, NT R, MNR 11 海水 体長18-22 61 嗅球応答 11 海水 体長18-22 61 嗅球応答 11 海水 体長15-18 51スパイク 61 嗅球応答 11 海水 51スパイク 16 淡水 17 体重70-200 EOG	11

Table 15: The derivatives, isomers and isotopes of feeding attractant compounds for aquatic animals.

- 1. aquatic animals*
- 2. water tested
- 3. typical length or weight (cm. or g.)
- 4. number of individuals used
- 5. research method
- 6. attractants**
- 7. concentration (M)
- 8. (behavioural science)
- 9. invertebrates
- 10. black abalone
- 11. sea water
- 12. shell length
- 13. exploratory behaviour
- 14. amino acid derivatives
- 15. a species of oishinomigai
- 16. fresh water
- 17. body weight
- 18. homologues of organic acids and fatty acids
- 19. sea hare

^{*} Investigators mentioned in the article.

^{**} Active substances including attractants.

- 20. the amount of feed consumed
- 21. fatty acid homologues
- 22. a species of kawanejigai
- 23. homologues of amino acids, organic acids, amides, amines, alcohols and tetrose
- 24. feeding behaviour
- 25. glucide isomers
- 26. a species of prawn
- 27. protein homologues
- 28. body length
- 29. nucleic acid derivatives
- 30. a species of Asteridae
- amino acid derivatives and isomers, and organic acid isomers
- 32. vertebrates
- 33. a species of white trout
- 34. stopping time
- 35. glycine isotopes
- 36. oriental weatherfish
- 37. yellowtail
 38. length to the fork of the tail
- 39. amino acid and lipid derivatives
- 40. a species of sea bass
- 41. amino acid isomers
- 42. red sea bream
- 43. amino acid derivatives and isomers
- 44. a species of goby
- 45. amino acid homologues
- 46. a species of flatfish
- 47. mosquito larva
- 48. larva
- 49. (physiology)
- 50. a species of spiny lobster
- 51. spike
- 52. nucleic acid homologues
- 53. impulse
- 54. a species of sow bug
- 55. air
- 56. electrical potential
- 57. amine and fatty acid homologues
- 58. a species of common eel
- 59. glutamine isomers
- 60. rainbow trout
- 61. olfactory bulb response
- 62. a species of rainbow trout
- 63. a species of catfish

表16 アミノ酸の構造と誘引活性

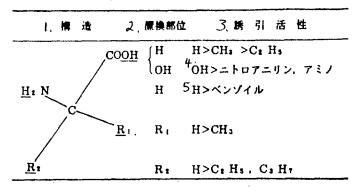


Table 16: The structure and attraction activities of amino acids.

- 1. structure
- 2. substitution site
- 3. attraction activities
- 4. H > nitroaniline and amino
- 5. H > benzoyl

表17 リン脂質の構造と誘引活性

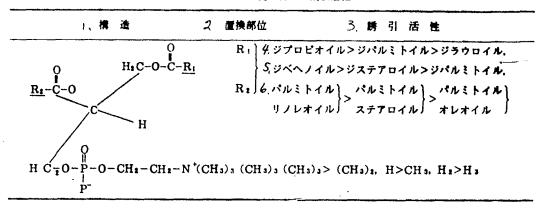


Table 17: The structure and attraction activities of phospholipids.

- 1. structure
- 2. substitution site
- 3. attraction activities
- 4. dipropioyl > dipalmitoyl > dilauroyl
- 5. dibehenoyl > distearoyl > dipalmitoyl
- 6. palmitoyl > palmitoyl > palmitoyl > palmitoyl > oleoyl }

表18 核酸関連化合物の構造と誘引活性

j、構 造	2、運換部位	3.蔫引活性
NH ₂	••	アデニン>グ ア ニン
CH₂-O-P-OH OH	6 _. リン酸 A	AMP>ADP>ATP
OH OH	7, D-ライボース	7. ライボーズ>デオキシライボース

Table 18: The structure and attraction activities of nucleic acid related compounds.
1. structure

- 2. substitution site
- 3. attraction activities
- 4. purine
- 5. adenine > guanine6. phosphate
- 7. D-ribose
- 8. ribose > dioxyribose

EL CONTROL OF LOCATE Children Constant Const

表19 約9用市販人工餌料

•	4 2.素 材		4. 対 象 魚	5、備 考
			. チヌ・メジナ・タイ・イサ: ラ・アジ・タナゴ	
11 生ミック	12.生きたエサをす つぶしてミック	-り 8. -	く く く く く く く く く く く く く く く く く く く	・イサ <i>I4.</i> ド・コ - 徐凛,防腐剤添加無 し
パエース	/6.生エビ他魚の好 をミックス	*物 /7 /5 寄せ(釣り・散餌)	[}] チヌ・メジナ・バリ・ボラ・ ・タイ・タナゴ	<i>19.</i> ・アジ 冷凍、生ニンニク・ 酒粕入り
JOサナギ粉	214+4	22.誘引(撤餌) 23	³ クロダイ・ボラ・コイ・ハ ⁴	ヤ 24 室道
25 酵母荒びき	みを報母	27集魚(撒餌) 28	チヌ・メジナ・コイ・ヤマ ^ヘ ヤ	く・ハ タ4 室道
â9 巣魚ロック		27集魚(撤餌) 30.	すべての魚種	24室溫
	32オキアミ・エビ	粉		* :
31 ウミッコ		サ 27 集魚(撒餌) 33	タイ・チヌ	34,室温、海洋汚染なし
35 <u>ジャンボマ</u> =	キエ 36.麦	27集魚 (撤餌) 37	クロ・チヌ・イサキ・ボラ	. 24 室道

Table 19: Commercially available artificial bait for angling.

- 1. product name
- 2. material
- 3. effect
- 4. intended fish
- 5. notes
- 6. Tsuri Dango (anglers' dumpling)
- 7. specially prepared
- 8. collects fish (angling and ground bait)
- 9. black porgy, opaleye, sea bream, grunt, mullet, saurel and bitterling
- 10. frozen, contains fresh sea urchin and garlic
- 11. Nama Mikku (fresh mix)
- 12. ground and mixed fresh baits
- 13. black porgy, opaleye, aigo*, grunt, flatfish, dace, freshwater smelt and carp
- 14. frozen, no preservatives added
- 15. Ace
- 16. mixture of fresh shrimps and other feed favoured by fish
- 17. to attract (angling and ground bait)
- 18. black porgy, opaleye, bari**, mullet, saurel, sea bream and bitterling.
- 19. frozen, contains fresh garlic and sake lees

^{*} Translator's note: Japanese name transliterated.
Possibly a species of Siganus. Siganus fuscescens (Houttoyn)

^{** &}lt;u>Translator's note</u>: Japanese name transliterated. English name unknown.

- 20. Sanagi-ko (chrysalis powder)
- 21. chrysalises
- 22. attractant (ground bait)
- 23. black porgy, mullet, carp and dace
- 24. room temperature
- 25. Kobo Arabiki (coarsely ground yeast)
- 26. yeast
- 27. collects fish (ground bait)
- 28. black porgy, opaleye, carp, yamabe* and dace
- 29. Shugyo Rokku (fish collecting rock)
- 30. all species of fishes
- 31. Umikko
- 32. krill, shrimp powder, the innards of squid, short-necked clam and ten other species
- 33. sea bream and black porgy
- 34. room temperature, free of ocean pollutants
- 35. Janbo Makie (jumbo ground bait)
- 36. wheat
- 37. black porgy, grunt and mullet

^{*} Translator's note: Japanese name transliterated. A dialect meaning either a species of masu trout or a species of carp, depending on the region of Japan.

},水產動物*	2、研究法	3. 餌料素材及び効果
4. 無脊椎動物		
5. (腹足類)	o	
6. バイ Babylonia japonica ²⁴	5) 7 入施数 潰>	・イのコウナゴ油漬 >生サバのコウナゴ油 生サバ
9、(甲殼類)	.,	
10.イセエビの一種 Panulirus interruptus	1560 【八龍数 アワ	ビ・サバ筋肉 ・
IQ ウミザリガニの一種 Homarus gammarus	1910 7.入植数 化合	ノ酸・4級アンモニウム塩 基・核酸関連 物・乳酸・TMAの練り石こう>塩漬サバ
牛アカイシガニ Charybdis miles ^{2 (6)}	7 人簡数 /55パ 性剤	をイカナゴ油・アネトール・非イオン活 浸漬>サバ(生棲密度の大きい場合)。
ルトラツノガニ Ovalipes punctatus ²⁴	. 177	をイカナゴ油・アネトール・非イオン活 浸漬<サバ(生棲密度の小さい場合)
门 _・ ベニズワイガニ Chinoeceptes japonicu	18プワ s ²⁴⁷⁾ 7人能数 エス 凍サ	イガニエキス固形化、魚類・ズワイガニ キ固形化あるいは魚類エキス固形化<冷 バ
19.脊椎動物		
20タロウザメ Centrophorus acus ²⁺⁸	1.00.1	
は この この この この この この この この この この この この この	2 2 (8) 約獲数 3 オイ	にフィードオイル含浸蛍光ウレタン装着 カに蛍光ウレタン装着>イカにフィード ル合設サウレタン装着>イカ>フィードオ
Centroscymnus owstor	31,248) 釣獲数)	含浸蛍光ウレタン
257 i) Seriola quinqueradiate	219) 2/ メラフュ 219) 釣獲数 豆レ	シ肉にサツマイモ 澱粉滓・イカ肝油・大 シチン添加の練餌>イワシ(繊 餌)
Choerodon azuri ²⁵⁰⁾	2 約褒数 29	
く 多ササノハベラ Psuedolabrus japonicu	15 ²⁵⁰¹ 的獲数 15	ソメ>生イカ>フイッシュソルブル・ア 餌(釣餌)
30キュウセン Halichoeres poecilepte	rus of 约獲数	·
引マダイ Chrysophyrys major?	ター 251) 対接数 シ・ カナ	ナゴ油にミリン添加>イカデゴ袖/イワ イカナゴ油混合>イワシ油>サメ油/イ ゴ・サメ油混合/イワシ・サメ油混合
33マサバ Scomber japonicus?!	2) 対接数 豆レ	シ油にサツマイモ澱粉滓・イカ肝油・大 シチン添加の練餌>イワシ(搬餌)
33マサバ Scomber japonicus? ²		魚腸・冷凍イワシ・粉末飼料の練餌=冷 ワシ(撒餌)
33マサバ 2: Scomber japonicus?		ッシュソルブル・乳タレ油・大豆レシチ 小麦粉の練餌(フイッシュソルブルの質 なる)(撤餌)
57マグロ 254) (学名不明)	_	口肉・小麦粉の練餌<サンマ
3 <i>1</i> マグロ 254) (学名不明)		含浸スポンジ くサンマ 。
5 7 マグロ (学名不明)	みし 対接数 ンマ	マ肉・ポリビニルアルコールの練餌与サ
*1 文献に記載された学名		

UNIDERS TO THE AMEDIA Tree to be started THE REPORT OF THE PROPERTY OF The content contents of

Table 20: Artificial feed for the fishing industry.

- 1. aquatic animals*
- 2. study methods
- 3. feed materials and their effects
- 4. invertebrates
- 5. (gastropods)
- 6. conch
- 7. number of fish entering the cage
- 8. komai preserved in the oil of sand launce > fresh mackerel preserved in the oil of sand launce > fresh mackerel
- 9. (crustaceans)
- 10. a species of spiny lobster
- 11. abalone and mackerel meat
- 12. lobster
- 13. the kneaded plaster of amino acid, quaternary ammonium base, nucleic related compounds, lactic acid and TMA > mackerel pickled in salt
- 14. Akaishi** crab
- 15. mackerel impregnated with the oil of sand launce, anethole and non-ionic activator > mackerel (when the living density is high); mackerel impregnated with the oil of sand launce, anethole and non-ionic activator < mackerel (when the living density is low)
- 16. hiratsuno** crab
- 17. beni-zuwai*** crab Chionoecetes opilio (O.FABRICIUS)
- 18. solidified extract of zuwai*** crab; solidified extract of zuwai crab or that of fishes < frozen mackerel
- 19. vertebrates
- 20. taro** shark
- 21. number caught
- 22. squid with fluorescent urethane device containing feed oil > squid with fluorescent urethane device > squid with urethane device containing feed oil > squid > fluorescent urethane containing feed oil
- 23. momiji** shark
- 24. yume** shark
- 25. yellowtail
- 26. sardine meat kneaded with sweet potato starch dregs, squid liver oil, and soybean lecithin > sardine (ground bait)
- 27. ira****
- 28. sasanoha bera****

^{*} Scientific names given in articles.

^{**} Translator's note: Japanese name transliterated.

^{***} Translator's note: Japanese name transliterated. a species of spider crab.

^{****} Translator's note: Japanese name transliterated. A species of wrasse.

- 29. fresh <u>Lumbriconereis</u> <u>heteropoda</u> > fresh squid > kneaded fish solubles and mysid (angling bait)
- 30. puddingwife
- 31. red sea bream
- 32. oil of sand launce with the addition of mirin (sweet sake) oil of sand launce and the mixture of sardine oil and oil of sand launce > sardine oil > shark oil, the mixture of the oil of sand launce and shark oil and the mixture of sardine oil and shark oil
- 33. mackerel
- 34. sardine oil kneaded with sweet potato starch dregs, squid liver oil and soybean lecithin > sardine (ground bait)
- 35. bait made by kneading together frozen fish intestines, frozen sardines and powdered feed = frozen sardine (ground bait)
- 36. bait made by kneading together fish solubles, Nyutare* oil, soybean lecithin and wheat flour (differs depending on the quality of fish solubles used) (ground bait)
- 37. tuna (scientific name unknown)
- 38. bait made by kneading tuna meat with wheat flour < mackerel
- 39. sponge soaked impregnated with fish oil < sardine
- 40. bait made by kneading mackerel meat with polyvinyl alcohol = mackerel

The first area seed smooth

^{* &}lt;u>Translator's note</u>: Japanese word transliterated. Meaning uncertain.

表21 龍及び人工飼料の種類によるバイの平均入龍潭量(g)

- Ann:			2, 餌 料	
1. 雅	3.人工臭*	4生サバ	5コウナゴ油漬生サ	パーコウナゴ油漬コマイ
7.2方入口	0	500	600	650
8.3方入口	1 0	650	700	800
9、4方入口	0	800	900	1000

*バター状で鉛色をした魚臭をつけた製品で成分不明。

Table 21: Average trap entry weight (g) of conch and the trap and artificial bait varieties.

- 1. trap
- 2. bait
- artificial scent*
- 4. fresh mackerel
- 5. fresh mackerel preserved in the oil of sand launce
- 6. komai preserved in the oil of sand launce
- 7. entrances on two sides
- 8. entrances on tree sides
- 9. entrances on four sides
- * a product having fish odour, of a caramel colour, having the consistency of butter, and of unknown composition.

妻22 延縄魚における人工飼料のサメ釣獲率

, 1 - brits	2. 実 験* 3.						相対値	
/、人工資料	I	П	m iv		V	VI	VI	苹"玛
4 イカ切身	13.3	21, 1	7. 5	10, 3	13, 6	8, 1	20.0	
4 1 11 91 91	(1,0)	(1.0)	(1.0)	(1,0)	(1,0)	(1,0)	(1,0)	(1.0)
ち イカ切身にフィードオイル含浸蛍	26, 7	48. 9	23. 3					
光ウレタン装着	(2,0)	(2, 3)	(3, 1)					(2.5)
6. イカ切身にフィードオイル含浸ウ			13. 9	11, 3	20, 0	8, 8	32, 0	
レタン装着			(1,9)	(1,1)	(1,5)	(1,1)	(1,6)	(1,4)
グーラエ Den de se alekske A. L. Ar S. Merde			16. 9	24, 0	38. 6	10, 0	55, 0	
7. イカ切身に蛍光ウレタン装着			(2, 3)	(2, 3)	(2, 8)	(1, 2)	(2, 8)	(2, 3)
<i>8</i> フィードオイル含浸ウレタン			2, 5	1.7				
O. フィードオイル音使サレダン			(0, 2)	(0, 1)				(0,1)

^{*}括弧内はイカ切身の釣獲数を1とした相対値である。原報²⁴⁸⁾では小数第3位まで記載されているが、四捨五入して小数第1位まで求めた。

Table 22: Catch rate of shark using artificial bait and longline.

- 1. artificial bait
- 2. experiments*
- 3. mean relative value
- 4. squid slices
- 5. squid slices with feed oil impregnated fluorescent urethane device
- 6. squid slices with feed oil impregnated urethane device
- 7. squid slices with fluorescent urethane device
- 8. urethane impregnated with feed oil
- * The relative value obtained by setting the number of fish caught with squid slices as 1 is given in the parenthesis. Although the values were given to the third decimal place in the original article 240, they are rounded up to the first decimal place here.

表23 增養殖用人工餌料

1.	水產動物*1		2、研究法	3、餌料素材及び効果
無脊椎動物				<u> من پورون پورون سووه د در من است می در دین پاک به داد این با این با این این با این با این با این با این با ت</u>
、(腹足類)				
クロアワビ Haliotis	discus ²⁵⁶⁾		•	8 アルギン酸基本飼料にクロレラ添加>カジ
n	257)	9	日殼長伸	ノク・ 小支粉基本飼料に魚粉あるいは植物生蛋白 加与アラメ
/ エツアワビ Haliotis	discus hani			/3 ガゼイン基本飼料>アラメ>魚粉基本飼料
	"	258)	12、成長率	/ / カゼイン基本飼料>魚粉基本飼料
	"	260)	/2.成長率	/S未加熱カゼイン・魚粉基本飼料>加熱カゼン・魚粉飼料
アメフラシ ・Aplysia	kurodai ²⁸ 1)	7. 增重量	//7,寒天基本飼料に各種試料添加。アナアオサ アナアオサ成分>アミノ酸欠アナアオサ成 >寒天
アメフラシ Aplysia	の一種 dactylomele	2 6 2)	7. 增重量	1 ⁹ 炭水化物基本飼料にアミノ酸添加>アオサ
7. (甲殼類)				
クルマエビ Penaeus	japonicu s ²			23 ニホンアミ>アサリ>オキアミ>カタクチ ワシ
	,, 1			2片 カミール基本飼料にグルコサミン蒸加> サリ
	,, 1			25イカミール基本飼料にメチオニン添加>ア リ
	,, 2	66)	7 增重量	26.イカミール基本飼料にイカ肝油あるいはコ ステロール>イカミール基本飼料
ウシエビ Penaeus	monodon 2	57)	7.增重量	28. 各種配合試料<アサリ
育推動物				
)(硬骨魚類))			
ウナギ Anguilla	japonica ²⁶			32. 北洋魚粉基本飼料に加工糖添加与基本飼料
	H 27	(0)	7 增重量	³³ 北洋魚粉基本飼料に酵母添加与基本飼料
	,, t 7	1)	7增重量	升市販配合飼料にアミノ酸・UMP添加>市局 配合飼料
	"	(2)		35北洋魚粉基本飼料にアミノ酸・UMP添加> 基本飼料 - **
コーロッパ Anguilla	ウナギ anguilla ²⁷	(B)	/ / (13.5)	3 ⁷ 市販配合飼料にフィードオイル添加与市販配合飼料
	,, 17			38ホワイトワイッシュミール基本飼料に脱脂; 豆添加≤基本飼料 ・
アユ	ssus altiveri	μn		- 41。 単 魚粉基本飼料に酵母添加≤基本飼料

水産業	ስ ተካ * ¹	研究法	餌料素材及び効果
"	276)	40日間成長率 無粉	基本飼料にレシチン添加>基本飼料
3 ギンザケ Oncorhynchu	s kisutch 277)	44 增重率 45.	イン基本飼料にアミノ酸添加>基本飼
ら ニジマス Salmo gairdn	eri ¹⁷⁸⁾	7. 增重量 詞料	基本飼料にリーフプロティン添加<基
н	279)	7. 増重量 48ペル 与市	ミール基本飼料≒基本飼料に大豆粉派 阪ニジマス用飼料
9 シロマスの一種 Coregonus lat	xaretus ²⁸¹⁾	\$0.生長 5/酵母	基本飼料コアルテミア
2コイ Caprinus carp	nio ²⁸²⁾	∖ 86 ′	イン・ゼラチン基本飼料にアミノ散添 本飼料
"	280)	54北洋) 料	魚粉基本飼料>スクラップミール基本
らアメリカナマズ · Silurus asotus	²⁸²⁾	7.増重量 56カゼ <基	イン・ゼラチン基本飼料にアミノ酸派 本飼料
ヿ゚ヺリ ゚ Seriola quinqi	ueradiata ²¹³⁾	59. 57.	>人工飼料にアミノ酸添加>人工飼料
n	2 # 13	で 7.増重量 ブルi	配合飼料に冷凍イワシ・フイッシュソ 系加<冷凍イワシ
"	2#5)	7 増重量 61カゼ	イン・ゼラチン基本飼料>マサバ
IJ	286)	7増重量 (スカゼ、添加・	イン・ゼラチン基本飼料にデキストリ < 基本飼料
,,	## 7)	7.増重量 63無粉	藍本飼料にアミノ酸・IMP添加>冷凍 ナゴ
"	2 8 8)	7 增重量 出魚粉	裏本飼料にカツオ油添加≒冷凍イカナ
"	2#9)	65.カゼ/ 『増重量 カツッ 肝油	イン・ゼラチン基本飼料に各種油添加 オ油>イカ・イワシ油>ニシン油>タ
"	290)	7 増重量 しかぜっ 一	イン・ゼラチン基本飼料にアミノ 酸 系 本飼料
しかワスズメの一種 Tilapia nilotic	a 291)	7. 増重量 (8 カゼ/大豆)	イン基本飼料に各種油添加, コーン油 由>タラ肝油・牛脂・トリグリセリド
マダイ Chrysophrys 1		7.增重量 70.無粉。	E本飼料>市販配合飼料
"	293;	7. 増重量 71 市販で	フナギ用飼料にオキアミミール添加> トギ用飼料
*	294)	7.增重量72.無粉部	B本飼料にオキアミ抽出液添加>基本
"	295)		E本飼料にワカメあるいはアスコフィ □>基本飼料
"	296)		- ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
"	297)		- (ン・ゼラチン基本飼料にアナアオサ; B本飼料
ササウシノシタの Solea solea	一種		- ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

CHECKED TO ME CHOCK For Month of a 1 TRACORDOR I OF REALISE Information of the conTable 23: Artificial feed designed for culturing.

- 1. aquatic animals*
- 2. study method
- 3. feed material and their effectiveness
- 4. invertebrates
- 5. (gastropods)
- 6. black abalone
- 7. weight gain
- 8. the addition of chlorella to the feed of alginic acid base > kajime**
- 9. daily growth in shell length
- 10. the addition of fish powder or vegetable protein to the wheat flour based feed = arame**
- 11. Ezo*** abalone
- 12. growth rate
- 13. casein based feed > arame > fish powder based feed
- 14. casein based feed > fish powder based feed
- 15. feed based on unheated casein and fish powder > heated casein and fish powder feed
- 16. sea hare
- 17. agar based feed with the addition of various samples, and ana-aosa**** > ana-aosa constituents > ana-aosa constituents lacking amino acids > agar
- 18. a species of sea hare
- 19. carbohydrate based feed with amino acid added > aosa****
- 20. (crustaceans)
- 21. prawn
- 22. the amount of feed consumed
- 23. Japanese mysid > short-necked clam > krill > anchovy
- 24. squid meal based feed with glucosamine added > short-necked clam
- 25. squid meal based feed with methionine added > short-necked clam
- 26. squid meal based feed with squid liver oil or cholesterol
 > squid meal based feed
- 27. ushi-ebi***
- 28. various blended samples < short-necked clam
- 29. vertebrates
- 30. (teleost)
- 31. Japanese common eel

^{*} Scientific names given in the reference articles.

^{**} Translator's note: Japanese word transliterated. A kind of kelp, possibly <u>Eisenia bicyclis</u>.

^{***} Translator's note: Japanese name transliterated.

^{****} Translator's note: Japanese name transliterated. A species of sea lettuce.

- 32. north-sea fish powder based feed with processed sugar added a base feed
- 33. north-sea fish powder based feed with yeast added = base feed
- 34. north-sea fish powder based feed with amino acid and UMP added > commercially available blended feed
- 35. north-sea fish powder based feed with amino acid and UMP added > base feed
- 36. European eel
- 37. commercially available blended feed with feed oil added = commercially available blended feed
- 38. whitefish meal based feed with the de-fatted soybeans added \$ base feed
- 39. ayu
- 40. daily growth rate
- 41. fish powder based feed with yeast added \$ base feed
- 42. fish powder based feed with lecithin added > base feed
- 43. silver salmon
- 44. the rate of weight gain
- 45. casein based feed with amino acid added > base feed
- 46. rainbow trout
- 47. fish powder based feed with leaf protein added < base feed
- 48. permeal based feed = base feed with soybean flour added = commercially available feed for rainbow trout
- 49. a species of white trout
- 50. growth
- 51. yeast based feed = artemia
- 52. carp
- 53. casein and gelatine based feed with amino acid added < base feed
- 54. north-sea fish powder based feed > scrap meal based feed
- 55. bullhead
- 56. casein and gelatine based feed with amino acid added < base feed
- 57. yellowtail
- 58, organoleptic test
- 59. mysid > artificial feed with amino acid added > artificial feed
- 60. commercially available blended feed with frozen sardine and fish solubles added < frozen sardine
- 61. casein and gelatine based feed > mackerel
- 62. casein and gelatine based feed with dextrin added < base feed
- 63. fish powder based feed with amino acid and IMP added > frozen sand launce
- 64. fish powder based feed with bonito oil added : frozen sand launce
- 65. casein and gelatine based feed with various oils added and bonito oil > squid and sardine oils > herring oil > cod liver oil
- 66. casein and gelatine based feed with amino acid added > base feed

- 67. a species of tilapia
- 68. casein based feed with various oils added, corn oil and soybean oil > cod liver oil, beef tallow and triglycerides
- 69. red sea bream
- 70. fish powder base feed > commercial blended feed
- 71. commercial eel feed with krill meal added > commercial eel feed
- 72. fish powder based feed with krill extract added > base feed
- 73. fish powder based feed with wakame seaweed or asukofirumu* added > base feed
- 74. fish powder and steam cooked fermented sardine scraps > fermented sardine scraps > sardine scraps
- 75. casein and gelatine based feed with ana-aosa added = base feed
- 76. a species of sole
- 77. casein based feed with constituent substances of hardshelled mussel added > base feed with muscles of hardshelled mussel added

The Control of the Co

^{*} Translator's note: Transliteration of the Japanese rendition of a foreign word. Meaning uncertain.

表24 摂餌活性物質添加によるウナギの 体重の変化

T-4.	35,10					
1 =	**	2.活性物質				
(, 網	料 3	、添	מול	华無添加		
5,使用	電数	3	0	30		
6 平均体重(g	7· √開始時	77	. 6	77, 7		
P,平均体量(g	(25日間後	93	3	80, 6		
9、全增重量	t (g)	489	9. 0	201, 2		

Table 24: Changes in the body weight of eels obtained by the addition of feeding attractants.

- 1. feed
- 2. activators
- 3. added
- 4. not added
- 5. number of fish used
- 6. mean body weight (g)
- 7. at the start
- 8. after 25 days9. total weight gain

BIBLIOGRAPHY

- 232) 原田勝彦: 生態化学, 9 (4), 45-54 (1989).
- 233) Hara, T. J.: Experientia, 33, 618 619 (1977).
- 234) Mackie, A. M. and A. I. Mitchell: Pub.

 Cent. Natl. Exploit. Oceans. Actes Colloq.

 (Fr.), 11-24 (1982).
- 235) Dadd, R. H. and J. E. Kleinja: Physiol. Entomol., 10, 37-44 (1985).
- 236) Seelinger, G.: J. Comp. Physiol., 152, 219
 -229 (1983).
- 237) Hara, T. J.: Comp. Biochem. Physiol., 56 A, 559-565 (1977).
 - 238) Brett, J. R. and D. Mackinnon: Fish Res. Bd. Can. Prog. Rep. Pacific Stat. No. 90. pp. 21-23 (1952).
 - 239) Idler, D. R., U. H. M. Fagerlund, and H. Mayoh: J. Gen. Physiol., 39, 589 892 (1958).
 - 240) Hara, T. J.: Chemoreception in Fishes (ed., by T. J. Hara), Elsevier Sci. Pub. Co., Amsterdam, 1982, pp. 135-157.
 - 241) Rhein, L. D. and R. H. Cagan: Proc. Natl. Acad. Sci. USA, 77, 4412-4416 (1980).
 - 242) Rhein, L. D. and R. H. Cagan : J. Neurochem., 41, 589-577 (1983) .
 - 243) Fesenko, E. E., V. I. Novoselov, L. D. Krapivinskaya, N. F. Mjasoedov, and J. A. Zolotarev: Biochim. Biophy. Acta, 759, 250 +256 (1983).

- 244) 九州・山口ブロック水試漁業分科会舗:西日本海 域における一本的漁業(大島豪雄・宮崎千博監 修),恒里社厚生間,東京,1977,pp. 1-250.
- 245) 庭熊徳雄:全国龍漁具漁法集(第2編),全魚連, 東京, 1979. pp. 49-53.
- 246) 宮崎千博・矢島信一・小山武夫・三次信輔:東海 区水研報, No. 49, 99~103 (1987)
- 247) 山田稔一:昭和42·43年度富山水試事業報告書。 66-71 (1970).
- 248) 山口裕一郎・野々田得郎・小林 裕・伊沢邦彦・ 陣野哲朗・石倉 男・内田 誠・外海政治:日水 誌,49,1819-1824 (1983)。
- 249) 金田尚志·小山武夫·石井清之勒:日水誌. 28. 610-613 (1960).
- 250) 小倉通男:東水大研報、射点11-15(1975)。
- 251) 川越仙一: 水產增殖要報。2, 21-22 (1958).
- 252) 五十嵐正治・杉山有司・中野書代志・拓植書代司: 静岡水試研報, 1, 1-7 (1968).
- 253) 小倉通男・今村 豊・井上 実:昭和42年度日本 水産学会秋季大会講演要旨集, p. 6 - 7 (1967).
- 254) 原田昌幸·小長谷輝夫: **养問水**慈研報, 4, 1 ~ 18 (1971).
- 255) 小山武夫・猿谷 倫・御園晶邦・井上大成・芝田 孝人:東海区水研報, No. 67, 89-96 (1971).
- 256) 相良順一郎·酒井幸一:東海区水研報, No. 77. 1-5 (1974),

- 257) 真岡東雄・中村 烈: 茨城水站研報, 21, 1-8 (1977),
- 258) 浮 永久·煙山 彰·渡辺 武:日水誌, 51, 1825 -1833 (1985).
- 259) 浮 永久・煙山 彰・渡辺 武:日水誌. 52. 1005-1012 (1986).
- 260) 浮 永久·渡辺 武:日水誌, 52. 1199-1204 (1986).
- 261) Carefoot, T. H.: Can. J. Zool., 59, 445-454 (1981).
- 262) Carefoot, T. H. : J. exp. mar. Biol. Ecol.,
 42, 241-252 (1980) .
- 263) 弟子丸 修:昭和42年度鹿児島水試事業報告書。 383-392(1968)。
- 264) 北林邦次・倉田 博・首藤勝夫・中村邦典・石川 * 宣次:東海区水研報, No. 65, 91-107 (1971).
- 265) 北林邦次・首藤勝夫・中村邦典・石川宣次:東海 区水研報, No. 65. 119-127 (1971).
- 266) 首藤勝夫・中村邦典・石川宣次・北林邦次:東海 区水研報, No. **65**, 129-137 (1971).
- 267) Deshimaru, O., K. Kuroki, M. A. Mazid, and S. Kitamura: Nippon Suisan Gakkaishi.
 51, 1037-1044 (1985).
- 268) 幡谷雅之:静岡水試研報, 5, 65-70 (1972).
- 269) 輔谷雅之・大上皓久:静岡水試研報. 6,33-44 (1973),
- 270) 帽谷雅之·大上皓久:静岡水試研報。7.71-77 (1972).
- 271) 港井健二·竹田正彦·中尾善弘:日水誌, 50. 1039-1043 (1984).
- 272) Takii, K., S. Shimeno, M. Takeda, and S. Kamekawa: Nippon Suisan Gakkaishi, 52. 1449-1454 (1986).
- 273) 鈴木克宏・阿井敬雄・牛山宗弘・山下一臣・原田 雄四郎:静岡水試研報、8,43~50(1974).
- 274) 阿井敬雄·山下一臣:静岡水試研報. 11. 33-41 (1977),
- 275) 伏木省三·松本清進:滋賀水試研報, 23, 1-13 (1969),
- 276) 平岡政弘·伊勢田弘志·竹田健一:熊本水試研報. 4, 9-13 (1985).

- 277) Arai, S.: Nippon Suisan Gahkaishi, 47, 547
 -550 (1981).
- 278) Gwiazda, S., A. Noguchi, S. Kitamura, and K. Saio: Agric, Biol. Chem., 47, 623-625 (1983).
- 279) Tacon, A. G. J., J. V. Haaster, P. B. Featherstone, K. Kerr, and A. J. Jackson: Nippon Suisan Gahhaishi, 49, 1437-1443 (1983).
- 280) 佐藤秀一・竹内俊郎・渡辺 武・星 昌和・外山 健三:日水誌, 52, 2077-2083 (1984).
- 281) Dabrowski, K., F. Takashima, C. Strüssmann, and T. Yamazaki : Nippon Suisan Gakkaishi, 52, 23-30 (1986) .
- 282) Marui, T., T. Akiyama, and T. Nose: Nippon Suisan Gakkaishi, 48, 787-792 (1982).
- 283; 九万田一己·弟子丸修:昭和42年度鹿児島水試事 業報告書,379~393(1968).
- 284) 大岡 一・上西栄三郎・見奈美輝彦・竹中浩二: 昭和48年度和歌山県水産増殖試験場事業報告書. 6, 1-23(1974)
- 285) Sakamoto, S., A. Eto, M. Furuichi, and Y. Yone: Nippon Suisan Gakkaishi, 45, 1179-1183 (1979).
- 286) Furuichi, M. and Y. Yone: Nippon Suisan Gakkaishi, 46. 225-229 (1980).
- 287) 谷口道子·示野貞夫·竹田正彦·梶山英俊:昭和 56年度日本水産学会春季大会講演要旨集。p. 41 (1981),
- 288) 竹田正彦・示野貞夫・細川秀毅・窪田三郎・谷口 道子・梶山英俊・小野俊和:昭和56年度日本水産 学会秋季大会講演要旨集, p. 97 (1981).
- 289 弟子丸修·黑木克宣·米 康雄:日水誌, 48, 1155-1157 (1982).
- 290) 第子丸修・黑木克宣・米 康雄:日水誌, 48, 1151-1154 (1982).
- 291' 竹内俊郎·佐藤秀一·渡辺 武:日水誌, 49. 1361-1365(1983).
- 293 伊奈和夫・大須賀補作・鈴木雄策:水産増殖、31、 111--114 1983。
- 293 Allahpichay, I, and C. Shimizu: Nippon

MARIO DE TRANSPORMI FRANCISCO DE LA COMPANIO TRANSPORMINA DE LA COMPANIO MARIO MARIO MARIO DE LA COMPANIO MARIO MARIO MARIO DE LA COMPANIO MARIO MARIO MARIO MARIO DE LA COMPANIO MARIO MA

- Suisan Gakhaishi, 50, 815-820 (1984) .
- 294) Allahpichay, I. and C. Shimizu: Nippon Suisan Gakkaishi, 50. 821-826 (1984).
- 295) Yone, Y., M. Furuichi, and K. Urano: Nippon Suisan Gahkaishi, 52, 1465 - 1468 (1986).
- 296) Yone, Y., M. A. Hossain, M. Furuichi, and F. Kato: Nippon Suisan Gakhaishi, 52.

 549-552 (1986).
- 297) Nakagawa, H. and S. Kasahara: Nippon Suisan Gakkaishi, 52. 1887-1893 (1988).
- 298) Mackie, A. M., P. T. Grant, R. G. J. Shelton, B. T. Hepper, and P. R. Walne: J. Cons. Int. Explor. Mer., 39, 123-129 (1981).
- 299) 原田勝彦:昭和63年度日本水産学会春季大会講演 要旨集, p. 245 (1988).
- 300) 原田勝彦・内田和良・濱野 明:未発表.
- 232) Katsuhiko HARADA: this journal, 9, (4), 45-54 (1989).
- 244) Kyushu Yamaguchi Burokku Suishi Gyogyo Bunkakai-hen (Edited by the Kyushu Yamaguchi Block Sectional Committee of Marine Research Fishing Industry): Nishi-Nihonkai-iki ni okeru Ippon-zuri Gyogyo (Rod Fishing Industry in the Western District of the Sea of Japan) (supervised by Yasuo OSHIMA and Senhaku MIYAZAKI), Koseisha Koseikaku, Tokyo, pp. 1-250, 1977.
- 245) Tokuo SHIKAGUMA: Zenkoku Rogyogu Gyoho-shu (Dai 2-hen) (The National Collection of Trap Fishing Devices and Methods) (the second edition), Zenkoku Gyogyo Rengokai (National Fishing Industry Cooperative), Tokyo, pp. 49-53, 1979.
- 246) Senhaku MIYAZAKI, Shin-ichi YASHIMA, Takeo KOYAMA and Nobusuke MITSUJI: Tokai-ku Suiken-ho (Report of the Tokai District Marine Research Institute), No. 49, 99-103 (1967).
- 247) Toshikazu YAMADA: Showa 42- & 43-nendo Toyama Suishi Jigyo Hokoku-sho (The Report of Marine Testing Tasks of the Toyama Prefecture for the Year 1967 and 68), 66-71 (1970).
- 248) Yu-ichiro YAMAGUCHI, Tokuro NONODA, Hiroshi KOBAYASHI, Kunihiko ISAWA, Tetsuro JINYA, Isamu ISHIGURA, Makoto UCHIDA and Seiji SOTO-UMI: Nippon Suisan Gakkaishi, 49, 1819-1824 (1983).
- 249) Hisashi KANEDA, Takeo OYAMA and Shin-no-suke ISHI-I: same reference as in 248) above, 26, 610-613 (1960).
- 250) Michio OGURA: Tokyo Suisan Daigaku Kenkyu Hokoku (Research Report of the Tokyo University of Fisheries), 61, 11-15 (1975).

- 251) Sen-ichi KAWAGOE: Suisan Zoshoku Yoho (Marine Culture Summary), 2, 21-22 (1956).
- 252) Masaharu IGARASHI, Yushi SUGIYAMA, Kiyoshi NAKANO and Kiyoshi TAGA-UE: Shizuoka Suisan Shiken-jo Kenkyu Hokoku (Research Report of the Shizuoka Marine Research Station), 1, 1-7 (1968).
- 253) Michio OGURA, Minoru IMAMURA, and Minoru INOUE: Showa 42nendo Nippon Suisan Gakkai Shuki Taikai Koen Yoshi-shu (the Proceedings of the 1967 Fall General Meeting of the Japanese Society of Scientific Fisheries), p.6-7 (1967).
- 254) Atsuyuki HARADA and Teruo OBASE: same reference as in 252) above, 4, 1-48 (1971)
- 255) Takeo OYAMA, Rin SARUTANI, Kuni-atsu GYOEN, Taisei INOUE, Takahito SHIBATA: same reference as in 246) above, No. 67, 89-96 (1971).
- 256) Jun-ichiro MIYOSHI and Ko-ichi SAKAI: same reference as in 246) above, No. 77, 1-5 (1974).
- 257) Akio MAOKA and Akira NAKAMURA: Ibaraki Suisan Shikenjo Kenkyu Hokoku (Research Report of the Ibaraki Fisheries Testing Station), 21, 1-8 (1977).
- 258) Nagahisa UKABU, Akira KEMURIYAMA and Takeshi WATANABE: same reference as in 248) above, 51, 1825-1833 (1985).
- 259) Nagahisa UKABU, Akira KEMURIYAMA and Takeshi WATANABE: same reference as in 248) above, 52, 1005-1012 (1986).
- 260) Nagahisa UKABU and Takeshi WATANABE: same reference as in 248) above, 52, 1199-1204 (1986).
- 263) Osamu DESHIMARU: Showa 42-nendo Kagoshima Suisan Jigyo Hokokusho (the Report of the Fisheries Undertakings of the Kagoshima Prefecture for 1967), 383-392 (1968).
- 264) Kunitsugi KITABAYASHI, Hiroshi KURADA, Katsuo KAMIFUJI, Kuninori NAKAMURA and Senji ISHIKAWA: same reference as in 246) above, No. 65, 91-107 (1971).
- 265) Kunitsugi KITABAYASHI, Katsuo KAMIFUJI, Kuninori NAKAMURA and Senji ISHIKAWA: same reference as in 246) above, No. 65, 119-127 (1971).
- 266) Katsuo KAMIFUJI, Kuninori NAKAMURA, Senji ISHIKAWA and Kunitsugi KITABAYASHI: same reference as in 246) above, No. 65, 129-137 (1971).

- 268) Masayuki HATAYA: same reference as in 252) above, **5**, 65-70 (1972).
- 269) Masayuki HATAYA and Shirohisa OYAMA: same reference as in 252) above, 6, 33-44 (1973).
- 270) Masayuki HATAYA and Shirohisa OYAMA: same reference as in 252) above, 7, 71-77 (1972*).
- 271) Kenji TAKII, Masahiko TAKEDA and Yoshihiro NAKAO: same reference as in 248) above, 50, 1039-1043 (1984).
- 273) Yoshihiro SUZUKI, Takao KUMAI, Munehiro USHIYAMA, Tadaomi YAMASHITA and Oshiro HARADA: same reference as in 252) above, 8, 43-50 (1974).
- 274) Takao KUMAI and Tadaomi YAMASHITA: same reference as in 252) above, 11, 33-41 (1977).
- 275) Shozo FUSHIKI and Kiyokazu MATSUMOTO: Shiga Suisan Shikenjo Kenkyu Hokoku (the Report of the Shiga Fisheries Testing Station), 23, 1-10 (1969).
- 276) Masahiro HIRAOKA, Hiroshi ISEDA and Ken-ichi TAKEDA: Kumamoto Suisan Shikenjo Kenkyu Hokoku (the Report of the Kumamoto Fisheries Testing Station), 4, 9-13 (1985).
- 280) Hidekazu SATO, Toshiro TAKEUCHI, Takeshi WATANABE, Masakazu HOSHI and Kenzo TOYAMA: same reference as in 248) above, 52, 2077-2083 (1984).
- 283) Kazumi KUMADA and Osamu DESHIMARU: same reference as in 263) above, 379-393 (1968).
- 284) Hitoshi O-OKA, Eisaburo UENISHI, Teruhiko MINAMI and Koji TAKENAKA: Showa 48-nendo Wakayama-ken Suisan Zoshoku Shikenjo Jigyo Hokokusho (the 1973 Task Report of the Fisheries Breeding Station of the Wakayama Prefecture), 6, 1-23 (1974).
- 287) Michiko TANIGUCHI, Sadao SHIMENO, Masahiko TAKEDA and Hidetoshi KAJIYAMA: Showa 56-nendo Nippon Suisan Gakkai Shunki Taikai Koen Yoshishu (the Proceedings of the 1981 Spring General Meeting of the Japanese Society of Scientific Fisheries), p.41 (1981).

^{*} Translator's note: possible typographical error. probably should be 1974.

- 288) Masahiko TAKEDA, Sadao SHIMENO, Hidetaka HOSOKAWA, Saburo KUBOTA, Michiko TANIGUCHI, Hidetoshi KAJIYAMA and Toshikazu ONO: Showa 56-nendo Nippon Suisan Gakkai Shuki Taikai Koen Yoshishu (the Proceedings of the 1981 Fall General Meeting of the Japanese Society of Scientific fisheries), p.97 (1981).
- 289) Osamu DESHIMARU, Yoshinori KUROKI and Yasuo YONE: same reference as in 248) above, 48, 1155-1157 (1982).
- 290) Osamu DESHIMARU, Yoshinori KUROKI and Yasuo YONE: same reference as in 248) above, 48, 1151-1154 (1982).
- 291) Toshiro TAKEUCHI, Hidekazu SATO and Takeshi WATANABE: same reference as in 248) above, 49, 1361-1365 (1983).
- 292) Kazuo INA, Minesaku OSUGA and Osaku SUZUKI: Suisan Zoshoku (Breeding in Fisheries), 31, 111-114 (1983).
- 299) Katsuhiko HARADA: Showa 63-nendo Nippon Suisan Gakkai Shunki Taikai Koen Yoshishu (the Proceedings of the 1988 Spring General Meeting of the Japanese Society of Scientific Fisheries), p.245 (1988).
- 300) Katsuhiko HARADA, Kazuyoshi UCHIDA and Akira HAMANO: Not yet published.

CONTROL TO MICHAEL TO MARKET TO A TOTAL TO THE A TOTAL TO A TOTAL