Not to be cited without permission of the authors ${ }^{1}$
Canadian Atlantic Fisheries Scientific Advisory Committee
CAFSAC Research Document 89/51

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des péches canadiennes dans 1'Atlantique

CSCPCA Document de recherche $89 / 51$

Assessment of the 4 T and 4 Vn (Jan. Apr.) Cod Stock for 1989

by
G. A. Chouinard and A. F. Sinclair

Science Branch, Gulf Region
Department of Fisheries and Oceans
P.O. Box 5030

Moncton, New Brunswick
E1C 9B6

$1_{\text {This }}$ series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.	${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pêches sur la cóte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutor come des rapports d'étape sur les études en cours.
Research documents are produced in the official language in which they are provided to the Secretariat by the author.	Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoye au secrétariat.

Abstract

The 1988 provisional nominal catch was $51,795 t$, an increase of approximately $1,000 \mathrm{t}$ over 1987 but more than $2,000 \mathrm{t}$ less than the TAC. Landings by fixed gears ($8,436 \mathrm{t}$) were the lowest since 1976. The mobile gears accounted for 84% of the landings. Several management measures (vessel allocations, trip limits and weekly closures)in addition to the fleet-period allocations were in place in 1988. The 1980 and 1982 year-classes represented approximately 25% and 23% of the numbers caught. Weights for ages 8 and 9 in 1988 were the lowest observed in the series. The standardized catch rate decreased from $2.777 \mathrm{t} / \mathrm{h}$ to $2.240 \mathrm{t} / \mathrm{h}$ in 1988. Discard estimates indicate a higher proportion of cod were discarded in 1988 than observed in previous years. Mean numbers per tow (age 5+) from the 1988 research surveys were approximately 50% higher than in 1987. An analysis of research survey data over the period 1971-1988 revealed that young fish (ages 23) are usually found in shallow areas and older fish in deeper areas. SPA, calibrated with the adaptive framework, implied a Ft of 0.246. Yield per recruit analysis that Fo.l is 0.2023 for this stock. Population numbers have been stable since 1983 and are at their highest level. Population biomass in recent years is the largest since the fifties. If the 1989 TAC of 54,000 tis caught, the Fo. 1 and $F 50 \%$ catches in 1990 would be $47,602 \mathrm{t}$ and $52,841 \mathrm{t}$ respectively.

RESUME

Les prises nominales provisoires en 1988 se sont chiffré à 51,795 t soit une augmentation d'environ $1,000 \mathrm{t}$ sur l^{\prime} année précédente mais $2,000 \mathrm{t}$ de moins que le TPA. Les débarquements des engins fixes (8,436 t) sont les moins élevés depuis 1976. Les captures des engins mobiles ont constitué 84% des prises. Plusieurs mesures de gestion (allocations par navire, limite par voyage et fermetures hebdomadaires), en plus des allocations par flotte et saison, étaient en vigueur en 1988. Les classes d'âges de 1980 et 1982 représentaient 25% et 23% des captures en nombre. Les poids moyens des morues de 8 et 9 ans en 1988 sont les plus bas depuis 1971. Le taux de capture standardisé des chalutiers est passé de $2.777 \mathrm{t} / \mathrm{h}$ en 1987 à $2.240 \mathrm{t} / \mathrm{h}$ en 1988. Les estimés de rejets ont démontré que le pourcentage de rejet de morue est plus élevé qu'auparavant. Les nombres moyens (áges 5 et plus) par trait lors du relevé sont approximativement 50% plus élevé qu'en 1987. Une analyse des données des relevés effectués entre 1971 et 1988 a révélé que les jeunes morues (âge 2 et 3) se retrouvent dans les eaux moins profondes alors que les morues âgees se retrouvent dans les eaux plus profondes. La calibration de $l^{\prime} A S P$ à l^{\prime} aide du cadre adaptif a donné lieu a un Ft de 0.246 . Une analyse de rendement par recrue a indiqué que Fo. 1 est de 0.2023 pour ce stock. L'abondance de la population est stable et à son niveau le plus élevé depuis 1983. La biomasse de la population dans les années récentes est à son niveau le plus élevé depuis les années cinquante. Si le TPA de 54,000 t pour 1989 est capturé alors les captures aux niveaux Fo. 1 et $F 50 \%$ se chiffreront à $47,602 \mathrm{t}$ et $52,841 \mathrm{t}$ respectivement.

INTRODUCTION

The cod stock in NAFO Division 4 T and Sub-division 4 Vn (Jan. -Apr.) is an important groundfish resource in the Gulf of St. Lawrence. Landings from this stock in recent years have only been surpassed by those from the cod stock in the northern Gulf (4RS, 3Pn). Except in Northumberland Strait, where cod are not present in large numbers, this species is sought by fishermen of many communities bordering the southern Gulf. In the late fall, an extensive migration occurs and by January a significant portion of the population is found in the Sydney Bight area (4Vn) (Halliday and Pinhorn, 1982). Cod return to the waters of the southern Gulf in the spring.

As many other stocks on the Canadian Atlantic coast, the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.- Apr.) cod stock was depleted and attained its lowest level of abundance in the mid-1970s. Since then, the stock has increased in abundance and is at the highest level observed since the fifties.

Since 1977, the fishery in 4 T is conducted entirely by Canadian fishermen, mostly between April and December. In order of importance, the fishing gears used are otter trawls, Danish and Scottish seines, gillnets, longlines and handlines. The winter fishery in 4 Vn is prosecuted almost entirely by otter trawlers.

Nominal catches of cod in $4 \mathrm{~T}-\mathrm{Vn}$ (Jan. - Apr) have varied from less than $40,000 t$ prior to the introduction of the otter trawler in the early fifties to a high of $104,000 \mathrm{t}$ in 1956 and a low of $22,000 \mathrm{t}$ in 1977 (Table 1). Between 1977 and $1980, \therefore$ nominal catches increased then fluctuated around an average of $60,000 \mathrm{t}$. In 1987, the TAC was reduced to $45,200 \mathrm{t}$. but was exceeded by approximately $5,000 \mathrm{t}$. Initially, the TAC for 1988 was set at 49,000 t. In mid- 1988 the TAC was revised to 54,000. This value represented the Fo. 1 catch for 1988 from the May 1988 assessment (Chouinard and Sinclair, 1988). The nominal catch for 1988 ($51,795 \mathrm{t}$) was approximately $2,000 \mathrm{t}$ lower than the TAC but over $1,000 \mathrm{t}$ more than in 1987.

A) Nominal Catches and Description of the Fishery

Initial allocations of the TAC to the various sectors involved in the fishery generally followed the same proportions established in previous years (i.e. $76 \%-24 \%$ for mobile and fixed gears respectively) but transfers occurred later in the year. France was allocated 1,200 t in 4 Vn (Table 2) as in 1987.

Several new management measures were put in place in 1988. A system of individual vessel allocation for vessels $>6^{\prime}$ was instituted. Trip limits which were imposed in the fall of 1987 were in effect from April to December for vessels less than 65^{\prime}. The limits were 20,000 lbs for vessel less than 45° in length and 45,000 lbs for vessels 45° to 65'. In the period of August 22 to October 13, the trip limit for vessels less than 45° was reduced to $5,000 \mathrm{lbs}$. In addition to trip limits. the fishery for vessels 45'-65' was open only on weekends (Friday to Sunday) from August 26 to September 29; from Friday to Monday from September 30 to October 13 and 7 days a week thereafter. Vessels
less than 45^{\prime} were not subjected to any weekly closures. The weekly closures were put in place to reduce glut problems at processing plants.

Nominal catch for 1988 was calculated using the provisional data supplied by the the Statistics Branches of the Scotia-Fundy, Newfoundland, Québec and Gulf regions of the Department of Fisheries and Oceans. Breakdowns of nominal catches by month, gear and country are presented in Table 3 and 4.

The fishery conducted in $4 T$ (summer fishery) represented approximately 86% of the total nominal catch on the stock, a value comparable to 1987. The proportion taken by Quebec and Newfoundland decreased slightly over the previous year. Breakdown of catches by gear (Table 5, Figure 1) indicate that the proportion taken by Danish, Scottish and pair seiners increased from approximately 19% of the total catch in 1987 to 23% in 1988 . The proportion taken by trawlers increased marginally. Landings by fixed gears are among the lowest recorded since 1965; they represented only 16% of the total landings (Table 5, Figure 1).

The reduction in the proportion of the catch by mobile gears in June is due to the closure of the fishery. The greater proportion taken in the fall (Sept. to Dec.) compared to 1987 can be attributed to an additional $5,000 \mathrm{t}$ which was allocated to all fleets proportionally in mid-summer (Table 3, Figure 2). There were no closures due to overabundance of fish less than 43 cm . in 1988.

Landings in the winter fishery (4 Vn) were almost exclusively from trawlers. France did not participate in the fishery in 1988.

INPUT DATA

A) Commercial Fishery Data

i) Catch and weight at age

In 1988, sampling intensity of the commercial fishery was comparable to previous years. Most gear and quarter components were sampled with a total of nearly 67,000 fish measured and 6,400 aged (Table 6). The results of age determination comparisons (Table 7) indicated that the level of agreement in age determination between readers, and between readers and a reference collection exceeded 70%. There was no evidence of bias with respect to the differences between readers.

Quarterly age-length keys were constructed as described in Table 8. The length frequencies by gear and quarter adjusted to the corresponding landings were used with the apppropriate age-length key to obtain the catch at age by gear and quarter. Unsampled landings were estimated by multiplying the catch at age for sampled gears by the ratio of unsampled to sampled landings.

In 1988, the 1980 (age 8) and 1982 (age 6) year-classes were the most important in the mobile gears catch at age (Table 9). The 1980
year-class was also dominant in 1987 for these gears. For the fixed gears, the 1980 year-class is the most important in the catch at age. As anticipated from their selection patterns, fixed gears caught a larger proportion of fish 10 years and older than the mobile gears. There was good agreement between the predicted catch at age for 1988 from the previous assessment (Chouinard and Sinclair, 1988) and that observed (Figure 3). The catch of young fish (ages 3-6) was generally underestimated while the older age groups were overestimated in the previous assessment.

Length at age by gear and quarter indicated that the mobile gears tend to catch smaller fish at age than the fixed gears (Table 10).

Average weights at age (Table 11) (kg) were calculated using a length-weight relationship derived from the 1988 research survey data. The parameters of the power curve were $a=0.000006196$ and $b=3.0977$ with a correlation coefficient of $0.98 \quad(n=3099)$.

Catch at age for the years 1971-1988 is presented in Table 12 with the corresponding weights at age in Table 13. The 1980 year-class which had appeared in high numbers in 1985 , 1986 and 1987 accounts for almost 25% of the numbers caught in 1988 . The catch of the 1982 year-class represented 23% of the catch numbers. The remainder of the catch at age matrix is the same reported in Chouinard and Sinclair (1988) except for 1982 which was recalculated because some records had been duplicated in the data file.

Weights at age for 1988 are generally higher than in 1987. The weights at age for ages 8 and 9 (1980 and 1979 year-classes) are the lowest observed in the series.

ii) Comercial Catch Rates

As in the previous assessment, a catch rate index was calculated for otter trawls only given the uncertainties about how effort is recorded for seiners. Investigation of data files had previously indicated that handling and searching time was likely included in the reported number of hours fished for these gears. It was suggested that catch per set be used but the information is only available for the most recent years. The years 1966-1988 were used. Provisional data for 1987 were obtained from DFO Statistics Branches. Observations with less than 10 units of catch or effort were removed. A multiplicative model was used to calculate a standardized catch rate index for each gear (Gavaris, 1980).

Observations . were allocated to categories of gear/tonnage class/region, Division, month and year. Gears with less than 10 observations for the time series were arbitrarily eliminated from the analysis. Data for Canada (Maritimes-Quebec), Canada (Maritimes) and Canada (Quebec) were grouped for each Division, month and year because the same vessels are involved. Examination of the residuals distribution from an initial analysis indicated that weighing was not necessary.

The analysis of variance and regression coefficients from the final run are given in Table 14 . The model explained 71% of the variation and each category was significant.

The overall trend is for decreasing catch rates from 1968-74 followed by increases to 1983 and a decrease in 1984. Catch rates then increased to 1987 but decreased in 1988 (Table 15, Figure 4). The observation for 1988 is consistent with the perception of the industry; trip limits were often not reached especially in the late summer and fall.

iii) Discarding practices

Observer estimates of discards of cod in 4 T were available from the Quebec and the Gulf regions observer programs. The observations were made in the period of April to November. The estimates of discard rates by weight are comparable between the two programs (see summary table below). These estimates are much higher than those reported by Chouinard and Metuzals (1985) for 1984.(6\%), Cliche (1981) for 1980 (4\%) or from an unpublished DFO study conducted in 1976 (6\%). It should be noted that a minimum size regulation of 43 cm for cod has been in effect since.

Program	Number of trips	Number of sets	Catch observed	\% discard by weight	\% discard by numbers
Quebec	21	185	245	14.6	19.2^{*}
Gulf	14	94	109	17.5	n/a

[^0]The discard ogive derived from the data indicates a size of 50% discarding of approximately 43 cm (Figure 5); the regulated minimum size. Chouinard and Metuzals (1985) reported a size at 50% discarding of 41 cm for 1984 . It would appear that the minimum size regulation has resulted in an increase in discarding.

B) Research Survey Data

Abundance estimates

Mean numbers per tow at age 5+ estimated from the 1988 survey are approximately 50% higher than in 1987 (Table 16). The 1985 and 1986 estimates were high due to a few unusually large sets. This is reflected in the high coefficients of variation for these surveys (25\% to 50\%). Coefficients of variation for 1988 ranged from 10 to 30% for the most abundant age classes (Table 17).

The 1988 survey indicates that the 1979 and 1980 year-class are still present in large numbers. These age-classes are the largest observed in the series. The 1982 and 1984 year-classes appear to be
above average. The estimate of 0 -group in 1986 , which was the highest observed in the time series, did not translate in high numbers of 2 year-olds in 1988 .

Strata 22 and 23 (Shediac Valley and Bradelle Bank areas) (Figure 6) accounted for 20% and 12% of the 1988 estimate; these two strata combined have historically accounted for 20% to 50% of the estimates. The largest set ($745 \mathrm{~kg}, 1600$ fish) occurred in stratum 22 . Length frequencies from the RV survey from 1985 to 1988 are presented in Figure 7. The bulk of the population is found in the 30 to 50 cm range which corresponds approximately to ages 4 to 8.

Nursery Areas

Catch-at-age and by stratum from the 1971-88 September groundfish surveys in Div. 4 T was analysed to determine possible nursery areas for this cod stock. A multiplicative analysis was used to determine if age groups were segregated. The model tested included year-class (YC), age (A), and stratum (S) effects as well as an age*stratum interaction.
$\ln U=Y C+A+S+A * S$

```
where \(U=\) catch per tow
    \(\mathrm{YC}=\) year-class
    \(A=a g e\)
    \(S=s t r a t a\)
    \(A * S=\) age-stratum interaction.
```

Input data consisted of mean catch per tow at age and stratum. The data were transformed as $\ln (U+5)$. Strata with large numbers of null sets (ie: 15,25 , and 39) and ages 0,1 , and $8+$ were eliminated from the analysis to reduce the number of zero observations to less than 10%.

The analysis of variance results indicated all terms were significant with a relatively weak interaction term (Table 18). The model explained 60% of the total variance. Residuals were normally distributed.

The highest concentrations of young cod (ages 2-3) were found in stratum 22 (Figure 8 and Table 19a). Strata 28, 18, and 29 also had high numbers of these age groups. These are relatively shallow, inshore strata. The age composition of catches in other strata were older, the oldest fish found in the deepest strata (16, 26, and 38). The deepest strata (15,25 and 39) were nearly void of all ages included in the analysis. The analysis was repeated for $1980-84$ and $1985-88$ and resulted in similar patterns. Although ages $0-1$ were not included in the analysis it is apparent from Table $19 b$ and 19 c that strata 420,421 , and 428 have high numbers of these ages. Age 9 and older cod were very generally distributed (Table 19d). This pattern is also apparent in the analysis of Tremblay and Sinclair (1985).

Relative year-class estimates from the analysis are presented in Figure 9. These indicate very low recruitment in the 1960^{\prime} s, increases in the 1970^{\prime} s and declines in the recent past. The correlation between
these estimates and year-class estimates from last year's assessment was high ($r^{2}=.91$) (Figure 10) and this index may be useful in predicting recruitment for catch projections.

ESTIMATION OF STOCK PARAMETERS

C) SPA calibration - Adaptive framework

SPA was calibrated using the same formulation of the adaptive framework (Gavaris, 1988) used in the previous assessment of this stock (Chouinard and Sinclair, 1988) (Table 20). Although other formulations of the adaptive framework for this stock may give a more consistent retrospective analysis, they imply either the presence of older fish in the population not sampled by the commercial fishery or the surveys, or a constant change in catchability. The comparison of the observed and predicted catch at age (Figure 3) indicated close agreement which may indicate that although the present formulation may not be the best, it performed reasonably well.

The parameters estimated were 1) the size of age-classes 3 to 11 in 1989,2) the slopes of the lines relating RV mean numbers per tow at age 3 to 9 and $10+$ and, 3) the catchability coefficient. Constraints on the parameters were placed on the initial analysis but were removed for the final run. Parameter estimates and their standard errors are presented in Table 21. Examination of the correlation matrix of the parameters did not indicate high correlation between parameters (Table 22). The table of weighted residuals is presented in Table 23. The plots of the observed and predicted RV mean numbers per tow and OTB-CPUE derived from the analysis are in Figure 11. Plots of the weighted residuals (Figure 12) indicate that the observations for ages 9, 10 and 11 have the largest residuals. Except for the estimate of the 1985 year-class at age 4 , coefficient of variations on the population estimates at age for 1989 ranged from approximately 20% to 40%.

B) Partial Recruitment (PR)

Analysis of fishing mortalities derived from the SPA for the 19841987 period for ages 3 to 15 using a two-way analysis of variance (APL function MULTPR) indicated full recruitment at age 9. The resulting age effect vector was standardized to the mean of ages 9 to 15 and resulted in the following partial recruitment vector (Figure 13):

Age	3	4	5	6	7	8	9	10	\ldots
PR	0.002	0.033	0.161	0.486	0.688	0.733	1.000	1.000	\ldots

C) Yield per recruit

Yield per recruit calculation was conducted using parameters from the 1982-1988 period. This period was considered more appropriate since the regulated cod-end mesh size was gradually increased from 114 mm prior to 1977 to 130 mm in 1981. Over 75% of the landings can be
attributed to gears covered by these regulations (otter trawls and Danish and Scottish seines) and consequently data for the period after the transition is considered to represent better a " steady state " with the current conditions.

The average weight at age was calculated from the 1982 to 1988 average weights. The partial recruitment vector was derived from analysis of fishing mortalities in the period 1982-1987. Input data and the results of the calculation are presented in Table 24. The implied Fo. 1 and $\mathrm{F}_{\text {MAX }}$ from the analysis are 0.2023 and 0.4401 slightly higher than values of 0.2 and 0.4 used previously.

ASSESSMENT RESULTS

A) Recruitment

The estimate of the 1985 year-class was 346 million fish, approximately 1.5 times the largest year-class observed (1980 yearclass). Due to the relatively high coefficient of variation on the estimate, this year-class size was set to the geometric mean recruitment (age 3 numbers) from the 1968-1983 year-classes of 106 million fish. The 1984 year-class, which had been estimated to be large in the previous assessment (Chouinard and Sinclair, 1988), is again estimated to be the second largest observed. The 1979-1982 year-classes are all estimated to be above the mean (Table 25, Figure 14a).

B) Fishing Mortality and Stock Size

The fishing mortality on ages 8 and older in 1988 is estimated to be 0.246 (Table 26). It appears that the 1980 year-class is being targetted by the fishery as indicated by the higher fishing mortalities on this cohort. Total population abundance has been relatively stable since 1983 (Table 25). The proportion of fish older than 8 years of age has been increasing since 1977 from approximately 1.4% to 17.2% of the population (ages $3+$) in 1988. The mean population biomass has also been relatively stable in recent years (Table 27).

The longer term outlook indicates that the average population biomass (ages 3+) declined from a high of $500,000 \mathrm{t}$ in 1955 to approximately $100,000 \mathrm{t}$ in 1975. Good recruitment and lower fishing mortalities since 1977 resulted in an increase of biomass to the present levels (Figure 14b). Fishing mortalities on the stock in 1987 and 1988 were the lowest since the early 1950's (Figure 14c). Although recent biomass estimates are similar to the biomass levels of the early 1950's, the total population numbers since 1980 are substantially higher (Figure 14d). This is attributed to a decrease in the average weights at age in recent years and a population age structure which is younger than in the early period when trawlers and other gears with a lower selectivity were being introduced in the fishery.

C) Stock Production

Production calculations (Rivard, 1982) indicated that the large catches of the mid-1950's and 1960's were well above the surplus production resulting in a reduction in the biomass of the standing stock (Figure 15a). With the recruitment of some large year-classes and the reduction of fishing mortality since the late seventies, the biomass increased. The recruitment component of production has become relatively more important in recent years (Figure 15b).

PROGNOSIS

Catch projections to 1990 were made using the 1989 beginning of the year population numbers from the non-linear least squares analysis, average weights at age from $1986-87$ and a PR derived from fishing mortalities in the period $1984-87$ assuming full recruitment at age 9. Input data are given below.

Age	1989 Population	Weights at	age (kg)
4	106000	0.358	$\frac{\mathrm{PR}}{0.002}$
5	86696	0.555	0.033
6	143755	0.760	0.161
7	58787	1.931	0.486
8	60366	1.379	0.688
9	38605	1.681	0.733
10	33627	2.019	1.000
11	22249	2.423	1.000
12	5033	2.830	1.000
13	2951	3.542	1.000
14	1489	4.637	1.000
15	661	12.028	1.000

Age 3 recruitment in $1988-1989$ was set at the geometric mean of the 1968-82 year-classes of 106 million.

The results indicate that if the 1989 TAC of $54,000 \mathrm{t}$ is caught, this will result in a terminal fishing mortality of 0.248 and a Fo. 1 (0.2) catch in 1990 of $47,602 \mathrm{t}$. Fishing at Fo. 1 in $1989-90$ would give catches of $44,246 \mathrm{t}$ and $49,154 \mathrm{t}$, respectively. The catch for 1990 using the 50% rule (i.e. fishing at $F_{t}=0.224$) and assuming that the 1989 TAC is caught would be $52,841 \mathrm{t}$.

TAC's are commonly split among gear sectors as a fixed percentage of the TAC. For this stock the mobile and fixed gear sectors share the TAC as 74% - 26% respectively. Earlier work by Fréchet and Chouinard (1987) indicated that the two sectors had different PR. Given the initial population and the expected quotas for the two sectors it is possible to split the projected catch at age as:

$$
C_{i, k}=\frac{N_{i}\left(1-e^{-\left(M+\sum_{k} S_{i, k} F_{k}\right)}\right) s_{i, k} F_{k}}{M+\sum_{k} S_{i, k} F_{k}}
$$

where $C_{i, k}=$ the catch at age i by gear k
$N_{i}=$ the population at age i
$S_{i, k}=P R$ at age i for gear k
$\mathrm{F}_{\mathrm{k}},=$ the fully recruited F for the gear
$M^{k}=$ natural mortality
Begining with initial values of F_{k} and weights at age for the gears $\left(W_{i}, k\right)$ the values of F_{k} that satisfy

$$
T A C=\frac{\sum_{i} W_{i} N_{i}\left(1-e^{Z_{i}}\right) F_{i}}{Z_{i}}
$$

may be found.
Partial F's for the gears were calculated (Sinclair, 1986) from the catch at age by gear for 1983-88 and the fishing mortalities given in Table 26. The PR's were found as the age effects in a multiplicative analysis of the partial F's. Year and year-class effects were tested, and while significant ($p<.05$) they did not affect the patterns. Consequently they were left out of the analysis.

The resulting PR's are shown in Figure 16 . The mobile gear PR was standardized to ages $8-10$, while the fixed gear $P R$ was standardized to ages 12-15.These partial recruitments were used with observed and projected biomass estimates for the stock to investigate trends in fishable biomass and fishing mortalities for the two gear sectors.

The results (Figure $17 a$ and 17 b) indicate that fishable biomass has been increasing steadily over the time period and that it will continue to increase to 1990. Thus both gear sectors may experience increased catch rates in the next two years. At the same time fishing mortalities exerted by the two sectors have decreased. The shortfall in catch (relative to the allocation) by the fixed gear in 1988 resulted a 1988 F of approximately the level required to take the 1989 and 1990 quotas. These results also suggest that the shortfall in fixed gear catches are the result of reductions in fishing effort and/or the availability of cod to these gears.

Mobile gear effort will have to decline by 40% over the next two years. With projected increases in catch rates for this gear sector and the required reduction in fishing effort it may be expected that the 1989-90 fishing seasons may be of short duration unless measures are taken to shift effort to times of lower availability (i.e. summer months).

ACKNOKLEDGEIENT

J. Murphy and L. Currie conducted the age determinations. J. Murphy also assisted in the preparation of tables and graphs.

REFERENCES

Chouinard, G. A. and A. F. Sinclair. 1988. Assessment of the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.-Apr.) cod stock for 1988. CAFSAC Res. Doc. 88/28, 47 p.

Chouinard, G. A. and K. I. Metuzals. 1985. Discards of cod (Gadus morhua) and American plaice (Hippoglossoides platessoides) in NAFO Division 4 T during 1984. CAFSAC Res. Doc. 85/84, 20 p .

Cliche, G. 1981. Rejets a la mer en 1980 des chalutiers québécois pêchant en 4 T . CSCPCA Doc. Rech. 81/67

Fréchet, A. et G.A. Chouinard. 1987. Recrutements partiels, biomasses exploitables et rendements observés des diverses flottes de pêche à la morue du golfe du Saint Laurent ($3 \mathrm{Pn}, 4 \mathrm{RS}$ et 4 TVn (jan.-avr.) CSCPCA Doc. Rech. 87/98, 22p.

Gavaris, S. 1980. Use of the multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci., 37:2272-2275

Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res. Doc 88/29, 12 p.

Halliday, R. G. and A. T. Pinhorn. 1982. The groundfish resource in the Gulf of St. Lawrence. Can. Tech. Rep. Fish Aquat. Sci., No 1086, 16 p.

Rivard, D. 1982. APL programs for stock assessment (Revised). Can. Tech. Rep. Fish. Aquat. Sci., No. 1091,146 p.

Sinclair, A. F. 1986. Longliner-otter trawler interactions in cod fisheries on the Scotian Shelf: Implications of differences in partial recruitment. CAFSAC Res. Doc. 86/94, 27 p.

Tremblay, M. J. and M. Sinclair. 1985. Gulf of St. Lawrence cod: agespecific geographic distributions and environmental occurences from 1971 to 1981. Can. Tech. Rep. Fish. Aquat. Sci. 1387, 43 p.

Table 1: Nominal 4TVn (Jan-Apr) cod catch and total allowable catch (TAC) for 1950 to 1988. Sources: a. 1950-1964 from Lett, b. 1965-1985 from NAFO statistics; c. 1986 to 1988 provisional from Department of Fisheries and Oceans, Statistics Branches.

YEAR | NOMINAL | | | NOMINAL | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| CATCH | TAC | YEAR | CATCH | TAC | |
| | (t) | (t) | | (t) | (t) |

1950	44023	-	69	47819	-
51	34827	-	1970	64465	-
52	41956	-	71	56375	-
53	58911	-	72	65291	-
54	63901	-	73	50635	-
1955	65227	-	74	48747	63000
56	104469	-	1975	42471	50000
57	89131	-	76	33415	30000
58	86582	-	77	22219	15000
59	70720	-	78	37892	38000
1960	66013	-	79	55996	46000
61	65583	-	1980	54634	54000
62	66664	-	81	65177	53000
63	70202	-	82	58193	60000
64	60547	-	83	61295	62000
1965	63027	-	84	55364	67000
66	54851	-	1985	C	67000
67	41316	-	86	63441	60000
1968	46551	-	87	50596	45200
			88	51795	54000

Table 2 : Resource allocation achene for $c o d$ in Division at and Subdiviaion 4 Vn (Jan. - Apr.) for 1988.

Notes: ${ }^{1}$ prelielnary Canadian Atiantic quota report
2 45,000 1bs trip 11ait
3 20,000 1be trip 1init
4 meason opened Augugt 22
M.G. - Mob1le Gear
Y.G. - Plxed Gear

Table 3 : Provisional 4 T cod catches (t round weight) during 1988 by gear type and month in Maritime Provinces, Newfoundland and Quebec.

MARITIMES
2 OF 4 TV n
(Jan-Apr)
CATCH

Otter trawl (side)	58	67		679	1068	6	2	13	73	416	414	71	2867	5.54
Otter trawl (stern)	1120			579	3018	33	72	303	588	680	1490	1051	8934	17.25
Midw trawl (stern)		1											1	0.00
Shrimp trawl				30	14			12	1	24	3		84	0.16
Danish seine	16			1148	3382	172	170	259	309	841	2355	107	8759	16.91
Scottish seine				209	609	10	9	17	3	32	271		1160	2.24
Pair seine				78	382	16	34	21	5	1	190		727	1.40
Gillnets (set)				17	158	235	433	292	186	114	83		1518	2. 93
Set lines				20	72	29	89	151	99	180	236	109	985	1.90
Eandlines					1	49	53	35	11	7			156	0.30
Baited handlines					13	48	68	57	54	20	6		266	0.51
Misc.						1			20	13			34	0.07
TOTAL	1194	68	0	2760	8717	599	930	1160	1349	2328	5048	1338	25491	49.22

NEWFOUNDLAND

Otter trawl (side)	21	642	404	40	37	34	16	237	34	0.07
Otter trawl (stern)						69			1466	2.83
TOTAL	21	642	404	40	37	103	16	237	1500	2.90

QUEBEC

Otter trawl (side)				335	1643	10	4	216	584	559	78		3429	6.62
Otter trawl (stern)	40			583	3116	48	24	574	1107	1260	428	218	7398	14.28
Midw trawl (stern)	48	4	4		21								77	0.15
Bottom pair trawl				6	64	22	17	22	6	8	4		149	0.29
Shrimp trawl				56	3	1	1						61	0.12
Danish seine					211	1		1					213	0.41
Scottish seine				30	318	26	32	37	29	102	95		669	1.29
Gillnets (set)				9	811	569	400	341	156	95	2		2383	4. 60
Set lines				30	455	317	450	305	224	338	13	10	2142	4.14
Handlines					1	17	25			4			47	0.09
Baited handlines					32	76	161	160	236	141	18		824	1.59
Misc.	-				4	21	7						32	0.06
Total	88	4	4	1049	6679	1108	1121	1656	2342	2507	638	228	17424	33.64
Total 4 T	1282	72	25	. 4451	15800	1707	2091	2853	3794	4835	5702	1803	44415	85.75

Table 4 : Provisional 4 Vn (Jan.-Apr.) cod catches (t round weight) during 1988 by gear type and month in Maritime Provinces, Newfoundland and Quebec.

MARITIMES						
			ONTH			$\begin{aligned} & \text { \% OF } 4 \mathrm{TVn} \\ & \text { (Jan-Apr) } \end{aligned}$
GEAR TYPE	J	F	M	A	TOTAL	CATCH
Otter trawl (side)	1072	704		3	1779	3.43
Otter trawl (stern)	1161	404	638	626	2829	5.46
Midw trawl (stern)		6	26	8	40	0.08
Bottom pair trawl				102	102	0.20
Danish seine	17			191	208	0.40
Scottish seine				87	87	0.17
Gillnet (set)				1	1	0.00
Set lines	3			45	48	0.09
TOTAL	2253	1114	664	1063	5094	9.83

NEWFOUNDLAND

Otter trawl (side)			105	105	0.20	
Otter trawl (stern)	357	774	727	201	2059	3.98
TOTAL	357	774	727	306	2164	4.18

QUEBEC

Otter trawl (side)	15			15	0.03	
Otter trawl (stern)	107			107	0.21	
Total		122			122	0.24
TOTAL 4Vn		2732	1888	1391	1369	7380

Table 5 : Cod catch (t) by gear in 4TVn (Jan-Apr) 1965-1988

	GEAR					Misc.	TOTAL
YEAR	Otter trawl	Seines	Gillnets	Longlines	Handlines		
1965	48371	2673	3571	3189	-	5223	63027
1966	36684	2391	9414	1302	-	5060	54851
1967	23971	2225	9942	1579	2371	1228	41316
1968	28205	994	12933	395	2883	1141	46551
1969	27048	1228	9578	3710	5020	1235	47819
1970	43059	1793	9786	5490	3191	1146	64465
1971	35463	2255	9676	3008	3985	1988	56375
1972	46462	2115	7854	995	2100	5765	65291
1973	35798	2106	8129	420	2127	2055	50635
1974	34565	1741	6070	906	1266	4199	48747
1975	28408	1972	6327	139	3527	2098	42471
1976	25170	1354	4449	55	1169	1218	33415
1977	10964	3058	5931	207	1114	945	22219
1978	22539	4474	8929	155	1342	453	37892
1979	31576	8767	12022	615	1781	1235	55996
1980	32473	9977	4260	1443	723	5758	54634
1981	33963	12327	4053	5839	1055	7940	65177
1982	30627	11273	4175	3781	872	7465	58193
1983	31979	13763	3010	3070	1270	8203	61295
1984	31593	10616	6891	3738	1862	664	55364
1985	39524	11822	5287	3208	2062	235	62138
1986	35570	17594	4360	4024	1862	31	63441
1987	29618	9383	4760	4790	1999	46	50596
1988	31536	11823	3902	3175	1293	66	51795

Table 6 : Number of fish sampled from the 4 TVn (Jan. -Apr.). cod fishery (Number measured/number aged)

MONTH													
Gear	J	F	M	A	M	J	J	A	S	0	N	D	Total
Otter Trawl	1737	1290	781	3649	7251	168	599	3052	4775	2192	4214	259	29967
	158	106	79	346	595	16	29	201	388	178	365	29	2490
Seines				1485	5085	1839	1092	2964	2314	1810	3653		20242
				200	295	230	97	225	210	175	336		1768
Gillnets				184	163	2425	2505	1014	154	40	62		6547
				35	52	414	268	77	41	22	19		928
Longlines						1359	2301	1510	1963	1102	712		8947
						222	239	122	203	152	57		995
Handlines							320	488	576	411			1785
							85	41	47	50			223
Total	1737	1290	781	5318	12499	5791	6817	9028	9782	5555	8641	259	67498
	158	106	79	581	942	882	718	666	889	577	777	29	6404

Feb 23,1989

AGE-KEY \#	FIS		SAMPLES	SAMPLES SIZE	CATCE (t)
1	OTB	JAN. -MAR.	L.E.: JAN.-MAR. OTB A.L.K.: JAN.-MAR. OTB	LENGTES 3808 AGES 343	7354
2	OTB	APR.-JUNE	L.F.: APR.-JUNE OTB A.L.K.: APR.-JNE OTB	LENGTES 11068 AGES 857	13426
3	OTB	JULY-SEPT.	L.F.: JULY-SEPT.OTB A.L.K.: JULY-SEPT. OTB	LENGTES 8426 AGES 618	3799
4	OTB	OT.-DEC.	L.F.: OCT.-DEC. OTB A.L.K.: \propto ©T.-DEC. OTB	Lengtes 6665 AGES 572	6957
5	SNU	APR.-JUNE	L.F.: APR.-JJNE SNU A.L.K.: APR.-JUNE SNU	LENGTES 8409 AGES 725	6903
6	SNU	JULY-SEPT.	L.F.: JULY-SEPT. SNU A.L.K.: JULY-SEPT. SNU	LENGTES 6370 AGES 532	926
7	SNU	OCT.-DEC.	L.F.: $O C T .-D E C$. SNU A.L.K.: OCT.-DEC. SNU	LENGTHS 5463 AGES 511	3994
8	GNS	APR.-JUNE	L.F.: APR.-JUNE GNS A.L.K.: APR.-JUNE GNS	LENGTHS 2772 AGES 501	1800
9	GNS	JULY- DEC.	L.F.: JULY-DEC. GNS A.L.K.: JULY-DEC. GNS	LENGTHS 3775 AGES 427	2102
10	LLS	APR.-JUNE	L.F.: APR.-JUNE LLS A.L.K.: APR.-JUNE GNS AFR. -JUNE LLS APR.-JUNE LEP	LENGTHS 1359 AGES 723	968
11	LLS	JULY-SEPT.	```L.F.: JULY-SEPT. A.L.K.: JULY-SEPT. LLS JULY-SEPT. LHP```	LENGTES 5774 AGES 737	1318
12	LLS	OCT.-DEC.		LENGTES 3777 AGES 300	886
13	LHP	JULY-SEPT.	$\begin{aligned} & \text { L.F.: JULY-SEPT. LAP } \\ & \text { A.L.K. : JULY-SEPT. LAP } \\ & \text { JULY-SEPT. LLS } \end{aligned}$	LENGTHS 1384 AGES 737	860
. 14	LHP	OT.-DEC.	$\begin{aligned} & \text { L.F.: } \propto \text { CT.-DEC. LHP } \\ & \text { A.L.K.: } \propto C T .-D E C . \text { GNS } \\ & \propto C T .-D E C . ~ L H P ~ \\ & \text { } \end{aligned}$	LENGTES 987 AGES 300	196

Table 12: 4T-Vn (Jan.-Apr.) cod catch at age ('000) for the period 19711988.

	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
3	6	3177	1337	2731	1556	466	546	538	142	314
4	2040	22152	6888	4980	8781	3460	3357	9854	4959	2019
5	7082	11824	14327	4774	6761	8930	4115	10627	15531	15000
6	9018	6541	5242	9404	2487	6563	2865	4463	10956	14152
7	5746	7422	3648	2986	3237	1592	1686	2589	3391	9541
8	2276	3467	2736	1795	1293	1138	406	1065	1670	1274
g	1225	919	1803	1702	1104	446	291	237	835	699
10	510	529	540	1035	791	265	180	241	291	320
11	129	354	328	266	671	135	124	104	247	124
12	346	114	97	194	150	140	55	72	64	24
13	73	49	67	85	53	45	59	44	33	16
14	117	14	46	26	74	14	11	5	15	8
15	151	46	11		7	10	4	13	15	11
16	61	36	23	15	66	9	5		8	26
$3+$	28780	56644	37093	29999	27031	23213	13704	29858	38157	43528
	1981	1982	1983	1984	1985	1986	1987	1988		
3	96	395	33	25	165	129	67	99		
4	3762	1400	1073	1198	1476	3400	880	1474		
5	7277	9782	6031	3899	9915	7639	6815	4414		
6	18841	8291	11662	7040	16666	21623	10065	10156		
7	12863	11859	11328	8828	8148	9280	17891	7908		
8	6026	7238	7223	6736	5975	3697	6540	10968		
9	867	2467	5067	5062	3928	2718	1997	6066		
10	432	442	2478	2871	2226	2191	1520	1636		
11	190	142	105	931	942	1067	664	965		
12	64	77	40	154	347	753	379	487		
13	81	5	15	52	22	159	136	216		
14	2	2	7	7	7	17	108	54		
15	14	3	4	5	8	3	14	64		
16	3	1	2	8	4	2	12	18		
$3+$	50518	42104	45068	36816	49829	52678	47088	44525		

Table 13: 4T-Vn (Jan.-Apr.) cod average weight at age (kg) for the period 1971-1987.

	1	1971	1972	1973	1974	1975	1976	1977	1978	1979
3		. 760	. 352	. 456	. 601	. 481	. 649	. 533	. 400	505
4		. 815	. 560	. 667	. 778	. 737	. 745	. 758	. 681	706
5		1.115	. 916	. 920	1.078	1.142	1.071	1.249	1.030	1.004
6	1	1.402	1.331	1.274	1.485	1.763	1.505	1.809	1.651	1.414
$?$	1	2.146	1.516	1.683	1.959	2.363	2.170	2.437	2.261	2.213
8	1	3.681	2. 542	2.301	2.677	2.752	2.835	3.513	2.815	3.299
9	1	3.836	4.922	3.574	2.893	3.221	3.220	4.242	4.354	4.064
10	1	5.253	5.929	5.507	4.178	3.699	3.867	4.290	4.657	7.134
11	1	6.010	7.117	6.004	6.065	4.457	4.750	5.074	6.495	7.021
12	1	4.775	8.051	7.904	7.260	6.961	5.058	5.492	6.551	6.701
13	1	6.821	8.830	6.150	8.290	9.202	6.238	6.743	6.250	4.698
14	1	7.457	10.124	6.707	6.600	6.319	10.343	8.977	5.090	8.713
15	1	7.914	5.599	8.918	9.122	8.390	11.472	10.795	11.566	15.415
16	1	17.897	11.185	6.047	11.748	6.175	14.301	9.258	10.195	17.396
	1	1980	1981	1982	1983	1984	1985	1986	1987	1988
3	1	. 564	. 503	. 746	. 324	. 448	. 442	. 437	. 254	38
4	1	. 688	. 674	. 747	. 612	. 655	. 575	. 602	. 481	583
5	1	. 919	. 848	. 960	. 884	. 786	. 762	. 816	. 703	760
6	1	1.206	1.132	1.155	1.138	1.082	. 991	1.014	. 856	. 923
7	1	1.472	1.382	1.451	1.296	1.369	1.422	1.283	. 991	1.045
8	1	2.643	1.832	1.736	1.557	1.613	1.666	1.743	1.256	1.139
9	1	2.895	3.150	2.283	1.717	2.058	1.822	1.956	1.766	1.322
10	1	3.566	4.122	3.270	1.946	2.266	2.122	1.866	2.159	2.032
11	1	7.958	4.456	4.005	4.947	3.043	2.378	2.585	2.226	2.457
12	1	5.805	5.603	4.142	7.462	4.880	2.810	2.223	3.112	3.156
13	1	10.316	6.032	6.455	8.465	5.653	8.435	3.081	3.613	3.931
14	1	5.813	7.080	6.924	11.358	8.619	5.844	4.409	4.023	5.480
15	1	9.770	3.490	4.177	12.820	11.736	11.406	15.363	12.131	8.591
16	1	9.355	6.760	11.099	14.760	12.808	13.547	13.531	12.628	12.106

Table 14: ANOVA and coefficient estimates from the otter trawl catch rate analysis.

REGRSSION OP MOITIPLICATIVE MODEL
Molfiple R.
MUTIPLE R SQURRED..... . 710
AMALYSIS OP VARIANCE

SOURCR OP VRRIATION	DF	SDIS OR SODRRES	$\begin{aligned} & \text { YRAN } \\ & \text { SOORRES } \end{aligned}$	P-7atas
IMTRRCPPT	1	6.66780002	6.66780002	
REGRESSION	43	7.76180002	1.80580001	71.527
TYPE 1	9	1.39580002	1.55080001	61.420
TTPR 2	1	4.5008000	4.50080000	17.835
TTPE 3	11	1.19580002	1.08780001	43.060
TYPR 4	22	1.73980002	7.904E0000	31.326
RESIDUALS	1256	3.16980002	2.52380001	
TORAL	1300	1.76080003		

CATECORY
1 Region/Cear/Monnage Class
Region 2 - Raritines and Quebec
Region 3 - Hevfoundland
Gear 11 - Side travler
12 - Stern traviler
Tomage class
2-25-49.9 t
3-50-149.9 t
4-150-499.9 t
5-500-999.9t
2 Division
43-47
$44-4 V n$
3 Month
1-12-(Jan.-Dec.)
Year
66-88-(1966-1988)

SID. No.
CATRCORY COOR VARRIBBLE COBPPICIRTY RRROR OBS.

1	3125	INTERCEPT	-0.516	0.127	1300	4	67	22	-0.090	0.130	37
2	44						68	23	0.239	0.130	37
3	12						69	24	0.145	0.119	55
4	66						70	25	0.036	0.118	60
1	2112	1	-1.358	0.076	167		71	26	-0.163	0.116	68
	2113	2	-0.948	0.071	272		72	27	0.018	0.116	65
	2114	3	-0.174	0.069	172		73	28	-0.204	0.119	57
	2122	4	-0.616	0.091	63		74	29	-0.322	0.117	63
	2123	5	-0.662	0.073	204		75	30	-0.351	0.120	55
	2124	6	-0.344	0.072	134		76	31	-0.297	0.120	54
	2125	7	-0.037	0.075	106		77	32	-0.170	0.128	40
	3113	8	-0.067	0.513	1		78	33	0.170	0.128	40
	3114	9	-0.316	0.076	98		79	34	0.434	0.117	67
2	43	10	0.191	0.045	925		80	35	0.400	0.120	61
3	1	11	0.658	0.071	170		81	36	0.453	0.122	54
	2	12	0.722	0.079	122		82	37	0.538	0.119	62
	3	13	0.411	0.086	80		83	38	0.761	0.119	67
	4	14	0.006	0.068	187		84	39	0.549	0.120	61
	5	15	-0.223	. 0.068	152		85	40	0.789	0.121	58
	6	16	-0.379	0.077	93		86	41	0.821	0.120	61
	7	17	-0.367	0.086	66		87	42	0.931	0.120	65
	8	18	-0.582	0.083	74		88	43	0.716	0.115	86
	9	19	-0.559	0.082	76						
	10	20	-0.508	0.080	82						
	11	21	-0.288	0.073	110						

Table 15: Standardized catch rate for otter trawlers for the 4 TVn (Jan. -Apr.) cod stock.

PREDICTED CATCH RATE

STANDARDS USED \quad VARIABLE NUMBERS: 21141

TOTAL CATCH RATE

YEAR	CATCH	PROP.	MEAN	S.E.	EFFORT
1966	54851	0.194	1.092	0.123	50244
1967	41316	0.322	0.999	0.096	41359
1968	46551	0.389	1.389	0.133	33523
1969	47819	0.462	1.265	0.110	37809
1970	64465	0.355	1.134	0.096	56824
1971	56375	0.427	0.930	0.076	60621
1972	65291	0.458	1.115	0.091	58574
1973	50635	0.339	0.892	0.076	56749
1974	48747	0.310	0.793	0.066	61455
1975	42471	0.355	0.771	0.067	55097
1976	33415	0.504	0.813	0.070	41087
1977	22219	0.428	0.923	0.088	24072
1978	37892	0.439	1.296	0.121	29235
1979	55996	0.470	1.690	0.139	33137
1980	54634	0.399	1.634	0.137	33442
1981	65177	0.351	1.721	0.149	37868
1982	58193	0.372	1.875	0.155	31033
1983	61295	0.396	2.344	0.191	26147
1984	55364	0.325	1.895	0.158	29212
1985	62138	0.369	2.410	0.205	25782
1986	63441	0.316	2.489	0.211	25493
1987	50596	0.317	2.777	0.230	18221
1988	51000	0.377	2.240	0.174	22765

AVERAGE C.V. FOR THE MEAN: 0.087

Table 16: Research vessel survey mean numbers per tow at age (19711988) for the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.-Apr.) cod stock.

1	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
1	. 00	. 00	. 02	. 00	. 00	. 00	. 01	. 00	. 14	. 24	. 19	. 21	. 01
1	. 06	. 73	. 07	. 08	. 40	2.99	. 55	1.24	. 17	. 98	4.72	3.04	5.94
21	. 57	2.07	4.69	2.31	5.42	7.33	10.19	5.11	21.67	4.61	20.50	25.17	19.66
31	6.18	4.54	9.30	10.10	4.08	31.73	15.12	23.12	22.00	31.99	19.03	16.10	42.39
41	7.48	12.13	4.31	7.08	6.18	7.98	12.75	24.91	46.65	24.03	56.76	20.63	36.50
51	7.10	5.02	6.86	2.74	5.18	5.34	4.99	14.08	28.46	41.83	47.03	23.94	19.46
61	5.52	4.18	3.23	3.31	1.82	2.25	2.65	4.28	11.60	20.53	45.89	38.14	14.04
1	3.49	2.85	2.29	1.43	1.30	. 60	1.51	2.42	3.03	7.41	19.31	19.67	12.16
1	. 85	1.65	1.73	1.01	. 87	. 44	. 65	. 83	1.24	1.23	10.40	9.35	8.36
91	. 16	. 31	1.09	1.01	. 40	. 25	. 48	. 33	. 62	. 60	1.38	2.89	3.98
10	. 19	. 23	. 31	. 44	. 30	. 23	. 31	. 41	. 17	. 25	. 57	. 32	2.62
111	. 11	. 20	. 07	. 18	. 35	. 21	. 25	. 48	. 18	. 06	. 25	. 12	. 56
121	. 09	. 06	. 21	. 09	. 08	. 06	. 20	. 06	. 15	. 01	. 10	. 10	. 11
131	. 00	. 03	. 03	. 19	. 04	. 06	. 24	. 00	. 05	. 01	. 06	. 05	. 32
14	. 08	. 02	. 05	. 00	. 00	. 02	. 00	. 13	. 04	. 05	. 05	. 02	. 04
. 151	. 07	. 03	. 01	. 04	. 00	. 00	. 04	. 03	. 04	. 01	. 06	. 00	. 06
161	.16	. 04	. 16	. 11	. 00	. 02	. 07	.00	. 02	. 01	. 08	. 05	. 00
$0+1$	32.10	34.09	34.44	30.11	26.44	59.51	50.01	77.42	136.23	133.84	226.39	159.80	166.20
1+1	32.10	34.09	34.42	30.11	26.44	59.51	50.00	77.42	136.10	133.60	226.20	159.59	166.19
$2+1$	32.04	33.36	34.34	30.03	26.04	56.52	49.45	76.17	135.93	132.62	221.48	156.54	160.25
$3+1$	31.47	31.29	29.65	27.72	20.62	49.19	39.26	71.06	114.26	128.02	200.97	131.37	140.59
$4+1$	25.29	26.75	20.36	17.62	16.54	17.45	24.14	47.95	92.26	96.02	181.94	115.27	98.20
$5+1$	17.82	14.62	16.04	10.54	10.36	9.48	11.39	23.04	45.61	72.00	125.19	94.64	61.70
$6+1$	10.71	9.59	9.18	7.80	5.18	4.14	6.40	8.96	17.15	30.17	78.16	70.70	42.24

1	1984	1985	1986	1987	1988
1	. 00	1.30	2.08	. 29	64
1	2.18	3.93	6.42	. 33	2.70
1	11.06	12.65	21.43	8.34	7.17
1	15.06	33.09	38.16	20.06	35.93
41	33.86	43.45	51.50	17.74	46.89
51	42.10	78.66	51.00	24.44	42.63
61	15.67	88.85	54.89	19.19	31.40
1	8.09	21.13	35.33	26.20	15.99
81	8.54	8.32	9.28	9.95	19.42
91	3.41	5.93	1.85	2.18	11.65
10	1.56	3.06	2.64	1.61	1.91
111	. 54	2.00	. 91	. 60	. 55
121	. 13	. 68	. 58	. 49	. 36
131	. 04	. 03	. 20	. 20	34
141	. 13	. 00	. 11	. 09	. 12
151	. 02	. 00	. 00	. 01	. 18
161	. 02	. 0 ?	. 12	. 01	. 00
$0+1$	142.42	303.16	276.52	131.73	217.88
$1+1$	142.42	301.85	274.43	131.44	217.24
$2+1$	140.24	297.93	268.01	131.11	214.54
$3+1$	129.17	285.27	246.58	122.77	207.37
$4+1$	114.11	252.18	208.41	102.71	171.44
$5+1$	80.25	208.73	156.92	84.97	124.55
$6+1$	38.	130.07	105.92	60.53	81.

Table 17: 4T-Vn (Jan.-Apr.) research vessel survey coefficients of variation for ages 1 to 12 (1971-1988).

	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
1	53.2	31.9	46.7	44.1	66.2	36.6	30.5	43.5	41.2	36.0	33.6	26.4
2	24.9	46.5	21.8	24.4	46.8	24.9	16.5	19.7	25.2	19.1	42.9	29.9
3	10.9	19.7	18.6	12.9	52.0	18.9	17.8	21.1	15.6	26.5	18.4	31.6
4	14.5	15.3	18.5	9.1	29.4	13.5	17.2	35.7	13.4	19.5	20.0	23.1
5	15.7	21.0	17.5	8.9	26.2	22.2	22.2	37.4	12.2	21.3	20.5	22.8
6	16.0	20.4	16.4	7.0	31.7	27.5	28.5	27.8	9.7	22.2	19.3	23.1
7	15.8	18.0	16.2	7.8	28.3	31.4	34.0	23.6	8.5	20.5	17.7	19.6
8	15.5	17.9	15.0	7.4	27.2	28.4	31.7	25.4	10.2	21.9	16.1	17.3
9	23.3	16.7	16.2	7.1	26.2	33.2	30.8	44.0	13.3	25.2	13.0	15.5
10	25.9	22.1	20.9	12.9	29.6	29.3	36.3	39.3	36.2	29.5	14.3	21.3
11	35.5	24.4	21.3	18.4	31.0	31.7	33.5	71.8	23.4	33.5	14.2	33.3
12	24.0	27.0	39.6	25.6	34.7	37.4	32.7	65.5	25.6	37.4	27.6	48.4
	1983	1984	1985	1986	1987	1988						
1	21.7	19.2	73.9	66.0	40.0	65.3						
2	13.3	20.9	27.6	34.3	27.1	35.9						
3	15.5	18.1	22.7	34.1	18.5	30.0						
4	16.2	18.1	36.1	46.9	10.6	21.5						
5	11.9	20.2	44.9	43.5	11.0	21.2						
6	9.2	13.2	46.6	36.6	14.7	17.9						
7	9.8	9.6	45.7	26.5	20.6	17.3						
8	10.1	9.3	36.3	21.1	26.3	16.7						
9	13.1	8.9	37.1	10.5	29.1	17.8						
10	11.6	8.7	33.4	21.0	33.5	19.7						
11	15.4	8.9	33.1	17.2	33.3	28.4						
12	36.3	71.3	62.3	15.0	29.2	25.0						

Table 18: Results from the analysis of cod mean catch per tow and strata at age from the groundfish surveys.
asumen mment modets prociovirs

SOURCE	DF	SUM OF SQUARES	misan	SQuARE	F VALUE
MODEL	147	3291.36393603	22.39023086		20.96
ERROR	2072	2213.00255533	1.06805143		PR > F
CORRECTED TOTAL	2219	5504.36649136			0.0
R-SQUARE	C.v.	ROOT MSE	CATCH MEAN		
0.597955	55.9255	1.03346574	1.84793361		
SOURCE	DF	TYPE I SS	F VALUE	PR > F	
	22	1145.29144903	48.74	0.0	
YC	20	1268.27095175	59.37	0.0	
AGE	5	367.73468525	68.86	0.0	
STRAT*AGE	100	510.06685001	4.78	0.0	
SOURCE	DF	TYPE III SS	F VALUE	PR > P	
YC	22	1152.81985003	49.06	0.0	
STRAT	20	1268.20789767	59.37	0.0	
AGE	5	371.23192655	69.52	0.0 0.0	
STRAT*AGE	100	510.06685001	4.70		

Table 19a: 4T-Vn (Jan.-Apr.) cod standardized mean catch per tow at age and by strata. Last two digit of strata numbers correspond to Figure 6.

Table 19b: 4T-Vn (Jan.-Apr.) cod RV mean catch per tow by year and strata for 0-group

		Eres																	
		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88
		Ourajo	Oncajo	arajo	Carcajo	candio	carca	enscalo	carcij	jaraj	onrajo	concaj	arajo	carcajo	caralic	carcie	carci	carcij	cana
		5 LW	Stm	Sum	5 m	sum	sum	sum	Sum	Sum	sum	StM	5404	Sum	sum	sum	Stur	stm	504
E09 \|																			
1	417	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	418	0.01	0.01	0.01	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.1	0.0	0.0
	419	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.0	0.0	0.01	0.0	1.0	0.0	0.0	0.4	0.1	0.0	0.0
	420	0.01	0.0	0.0	0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.2	0.6	0.01	0.01	2.7	42.81	0.01	0.0
	421	0.0	0.0	1.31	0.0	0.01	0.0	0.0	0.0	3.0	0.51	0.01	5.71		0.0	35.81	2.21	8.91	
	422	0.0	0.01	0.01	0.0	0.01	0.0	0.0	0.01	0.01	0.01	0.0	0.0	0.0	0.01	0.7	0.1	0.01	1.8
	423	0.0	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0
	424	0.0	0.01	0.0	0.0	0.01	0.0	0.0		0.0	0.01	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.0
	427	0.0	0.01	0.01	0.0	0.0	0.0	0.0	0.01	0.0	0.01	0.0	0.01	0.01	.				0.0
	428	0.01	0.01	0.0	0.0	0.0	0.0	1.0		0.01	0.01	0.0	0.01	0.0	0.01	0.0	0.0	0.0	28.6
	429	0.01	0.01	0.0	0.0	0.01	0.0	0.0	0.01	0.01	2.31	0.4	0.01	0.0	0.01	0.0	2.0	0.01	0.0
	431	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.01	0.01	0.0	0.9	0.0	0.0	0.0	0.01	0.0	0.0	0.3
	432	0.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.2	0.4	0.01	0.0	0.11	5.71	7.81	0.9
	433	0.0	0.0	0.0	0.0	0.01	0.01	0.01	0.01	1.51	0.0	0.1	0.01	0.0	0.0	2.9	0.4	0.31	3.1
	436	0.0	0.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	10.01	0.0	0.31	0.01	0.0	0.3	0.81	0.0	0.2
	435	0.0	0.0	0.0	0.0	0.01	0.01	0.0	0.01	0.01	10.01	0.31	1.51	0.01	0.0	0.0	0.01	0.0	0.0
	436	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.01	0.01	0.5	0.01	0.01	0.0	0.0	0.01	0.01	0.0
2	618	0.0	0.01	0.0	0.01	0.01	0.01	0.0	0.01	0.01	0.0	0.0	0.01	0.01	0.0	0.01	0.01	0.0	0.0
	426	0.01	0.01	0.0	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
	437	0.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	2.01	0.01	0.0	0.01	0.0	0.01	0.01	0.3
	438	0.01	0.01	0.01	0.0	0.0	0.0	0.01	0.01	0.01	0.01	0.01	0.0	0.0	0.0	0.0	0.01	0.01	0.0
3	415	0.01	0.01	0.01	0.0	0.01	0.01	0.01	0.01	1 0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.0
	425	0.01	0.0	0.01	0.01	0.0	0.01	0.01		0.0	0.01	0.01	0.01	0.01	0.0	0.0	0.01	0.01	. 0
	1439	0.01	10.01	0.01	0.01	0.01	0.01	0.01	0.01	\| 0.01	0.01	0.01	10.01	0.01	0.0	0.0	0.01	0.01	10.0
$\underline{12}$		0.01	10.01	12.31	10.01	10.01	10.01	12.01	10.01	14.51	13.01	14.61	19.31	10.31	10.01	62.91	54.21	\| $17.0 \mid$	135.2

Table 20: Summary table for the calibration of sequential population analysis using non-linear least squares for cod in $4 \mathrm{~T}-\mathrm{Vn}$ (Jan. -Apr.).

Parameters estimated:

_ Year-class estimates $\left\{\mathrm{N}_{\mathrm{i}, 1989}{ }^{(\mathrm{i}=4,11)}\right\}$

- Calibration constants for RV mean numbers per tow $\left\{k_{i}(i=3,10+)\right\}$
_ Calibration constant for CPUE \{q\}
Structure imposed:
- F on ages 11 to 15 in 1988 set equal to age 10
- F for oldest age set equal to weighted (by population) F on age 9-10
- Model did not include an intercept

Input data:

- Catch at age $\left\{C_{i, t},(i=3\right.$ to $\left.15, t=71-88)\right\}$
- $R V$ mean number per tow at age $\left\{R V_{i, t},(i=3\right.$ to $\left.10+, t=71-88)\right\}$
- Otter trawl CPUE $\left\{\right.$ CPUE $_{t}$, $\left.(t=71-88)\right\}$
- Standard errors for RV and CPUE for weighting

Objective function:

- Minimize $\sum_{i j}$ (Obs. Index ${ }_{i, t}$-Pred. Index ${ }_{i, t}$) ${ }^{2}$

SE Index ${ }_{i, t}$

Summary:

- number of observations $=162$
- number of parameters $=17$

Table 21: Parameter estimates and standard errors for the adaptive framework

ORTHOCOMALITY OFPSET. mena square residuals		$\begin{aligned} & 0.025572 \\ & 7.385261 \end{aligned}$
PAR. EST.	STD. ERR.	T-STATISTIC
2.83344E0005	$2.34432 \mathrm{E0005}$	$1.20864 \mathrm{E0000}$
1.43755E0005	$5.81673 E 0004$	2.4714080000
5.8786980004	2.79389E0004	$3.27706 E 0000$
$6.03658 E 0004$	2.8534320004	3.25697E0000
$3.86052 E 0004$	2.2596880004	3.0647080000
3.3627580004	1.1425480004	2.9432380000
2.22490E0004	8.1022480003	$2.74603 E 0000$
$5.03264 E 0003$	9.0618580002	5.5536680000
1.14430E-004	1.59012E-005	7.1963480000
2.24346E-004	2.68034E-005	8.3700480000
$2.85680 E^{-004}$	3.462178-005	8.2514980000
$2.94126 \mathrm{E}^{-004}$	2.96803E-005	9.9098080000
$3.31038 E^{-004}$	3.25437E-005	1.01721 E0001
$3.35514 \mathrm{E}^{-004}$	$3.34269 \mathrm{E}^{-005}$	1.0037280001
2.20043E-004	2.54335E-005	6.65172E0000
3.73705E-004	$2.47645 \mathrm{E}-005$	$1.50936 \mathrm{E0001}$
2.16691E-005	7.01677E-007	1.6630380001

Table 22: Correlation matrix of the parameters for the adaptive framework

					4	5	6	7	0	9	10	11	12
	1	1	2									00	00
1	1	1.00	. 04	. 00	. 00	. 02	. 00	. 01	. 00	-. 26	-. 08	-. 01	-. 01
2	1	. 04	1.00	. 03	. 01	. 04	. 01	. 02		-. 02	-. 40	-. 02	. 00
3	1	. 00	. 03	1.00	. 01	. 01	-. 01	. 03	. 02	-. 03	-. 01	-. 39	-. 06
4	1	. 00	. 01	. 01	1.00	.02 .00	. 01	. 02	. 05	-. 16	-. 02	-. 01	-. 16
5	1	. 02	. 04	. 01	-. 02	2.00	8.00	-. 33	-. 08	-. 02	-. 07	. 02	. 01
6	1	. 00	. 01	. 03	-. 01	. 01	2.00 -.33	1.00	-.08	-. 05	-. 07	-. 04	-. 02
7	1	. 01	. 02	. 03	. 02	. 01	-. 08	$\underline{1.00}$	1.00	-. 01	-. 01	-. 05	$\bigcirc .08$
8	1	. 00	. 00	-00	-. 02	. 03	-. 08	-. 05	. .01	1.00	. 03	. 02	. 03
9	1	-. 16	-. 26	-.02 -40	-. 03	16	-. 02	-. 0.07	-.01	. .03	1.00	. 01	. 01
20	1	. 00	- 08	-. 40	-01 -39	. 02	. .02	-. 04	-. 05	. 02	. 01	1.00	. 03
11	I	. 00	-. 01	. 02	. 39		. 01	$\bigcirc .02$	-.08	. 03	. 01	. 03	1.00
12	1	. 00	-. 01	. 00	06	12	-. 03	00	-. 12	. 02	. 01	. 01	. 03
23	I	. 00	-. 01	. 00	00		-.02	-. 08	-. 05	. 01	. 01	. 01	. 02
14	I	. 00	. 00	. 00	. 00	01	. 02	-. 04	-. 17	. 00	. 00	. 01	. 02
15	1	. 00	. 00	. 00	00	. 01	. 03	. 06	-. 22	. 01	. 01	. 01	. 02
16	1	. 00	00	00	1	. 01		. 25	-. 19	. 02	. 03	. 02	. 02
17	1	. 00	-. 02	. 01	. 01	. 01	1						

	1	13	24	15	16	17
1	1	. 00	$.00{ }^{\circ}$. 00	. 00	.00
2	1	-. 01	.00	. 00	. 00	. 01
3	1	. 00	. 00	. 00	. 00	-. 01
4	1	. 00	. 00	. 00	-. 01	-. 01
5	1	-. 12	. 00	-. 01	-. 01	-. 01
6	1	-. 03	-. 02	. 03	. 04	-. 13
7	1	. 00	-. 08	-. 04	-. 06	-. 15
8	1	-. 12	-. 05	-. 17	-. 22	-. 19
9	1	. 02	. 01	. 00	. 01	. 02
10	1	. 01	. 01	. 00	. 01	. 03
11	1	. 01	. 01	. 01	. 01	. 02
22	1	. 03	. 02	. 02	. 02	. 02
13	1	1.00	. 01	. 02	. 03	. 03
14	1	. 01	1.00	. 02	. 02	. 04
15	1	. 02	. 01	1.00	. 04	. 04
16	1	. 03	. 02	. 04	1.00	. 06
17	1	. 03	. 04	. 04	06	1.00

Table 23: Weighted residuals for the adaptive framework (3 to 10 refer to RV indices and 11 to OTB fishable biomass).

	1	1971	1972	2973	1974	1975	1978	1977	2978	1979	2980
							3.22	-. 78	1.23	2.73	2.25
3	1	-4.41	1.30	2. 64	3.67	-. 62	1.49	3.08	-. 18	3.16	. 85
4	1	- 23	. 00	-. 04	-1.24	. .14	2.66	-. 39	-. 83	1.20	1.86
5	1	. 08	-. 94	.93 .60	-2.16	.36	-2.08	-. 45	. 59	-. 91	. 89
6	1	-1.54	-1. 13	60	-. 214	. 68	-2.34	-. 14	. 87	3.52	-. 74
7	1	-1.99	-2,01	-.09	. 98	1.09	-2.89	. 91	-. 36	2.31	. 50
8	1	-4.18	-2.64	1.66	7.19	1.06	. 93	1.65	. 99	3.97	2.05
10	1	-9.09	2.81 -3.70	3.43	1.13	1.43	2.60	6.85	4.28	5.06	. 35
11	1	-6.17	-2. 12	2.09	1.98	. 17	3.68	1.50	2.25	2.83	2.82
	1	1981	1982	1983	1984	2985	1986	1987	1988		
3	1	2.57	-. 84	2.50	-. 33	2.05	2.01	$\because 65$. 00		
4	1	3.81	. 98	. 67	-2.25	1.09	. 97	-.75	1.20 2.59		
5	1	2.84	. 85	1.66	1.04	1.05	1.12	-1.28	2.59		
6	1	3.29	2.69	. 54	2.08	1.54	1.20	. 18	1.83		
7	1	2.41	2.28	1.63	-1.49	2.34	1.71	. 18	1.57		
8	1	3.38	1.94	2.58	3.45	.96	2.17	1.45	2.58		
9	1	5.55	2.34	3.58	4.35	1.75	-1.28	. 03	-2.68		
10	1	12.05	3.06	6.20	-2.30	2.82	2.05	2.09	-1.37		
31	1	-2.28	. 55	4.98	3.93	2.56	. 95				

Table 24: Yield per recruit for $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.-Apr.) cod

AGE	WEIGHT-AT-AGE	PARTIAL RECRUI TMEHT
.- .044	.000	
1	.173	.000
2	.433	.002
3	.608	.032
4	.810	.202
5	1.023	.501
6	1.265	.760
7	1.530	.813
8	1.846	1.000
3	2.237	1.000
10	3.092	1.000
11	3.965	1.000
12	5.662	1.000
13	6.665	1.000
14	7.600	1.000
15	6.600	1.000

```
NGTUEAL MOETALITY FATE : 0.2
FO.1 COMPUTED AS . 202S AT Y/R OF . 3199
FMAX COMFUTED AS .4401 AT Y/2 OF . 347E
```

YIELD PER RECRUIT ANALYSIS

	$\begin{aligned} & \text { FISHING } \\ & \text { MAPTALITY } \end{aligned}$	CATCH (NUMEEF)	$\begin{gathered} Y I E L D \\ (X G) \end{gathered}$	$\begin{aligned} & \text { AVG. } \mathrm{HE} 1 G H T \\ & (K G) \end{aligned}$	YIELD FEF UHIT EFFIRT
	.1000	. 108	. 241	- 2.232	1.523
	. 2000	. 169	. 319	1.887	1.008
50.1---	- .3023	.170	. 320	1.881	1.000
	. 3000	. 208	. 342	1.647	. 721
	. 4000	. 234	. 347	1.482	. 548
Imax--	-. 4401	. 243	. 347	1.431	. 499
	. 5000	. 254	. 347	1.366	. 439
	. 6000	. 269	. 346	1.284	. 364
	. 7000	. 282	. 345	1.222	. 311
	.8000	. 298	. 344	1.176	. 272
	.9000	. 301	. 343	1.139	. 241
	1.0000	. 309	. 343	1.109	. 21 ?
	1.1000	. 316	. 342	1.083	.197
	1.2000	. 322	. 342	1.062	. 180
	1.3000	. 328	. 342	1.044	. 166
	1.4000	. 3.33	. 342	1.027	. 154
	1.5000	. 337	. 341	1.013	. 144

Table 25: Population numbers (beginning of year) for the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.Apr.) cod stock from 1971 to 1989. No data are available to estimate the numbers at age 3 in 1989.

1	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
3	88303	34352	46426	52915	42288	119961	166512	165478	121802	124620	96850	196829
41	39096	72291	25250	36801	40852	33215	97794	135834	134995	99594	101746	79207
51	31067	30163	39143	14441	25624	25501	24063	77030	102295	106038	79714	79899
61	30931	19028	13997	19084	7503	14861	12799	15978	53451	69699	73244	58680
7	18568	17164	9660	6716	7116	3893	6229	7886	9043	33848	44260	42919
81	5934	10003	7337	4608	2797	2897	1747	3574	4114	4336	19080	24598
91	3224	2799	5052	3531	2149	1120	1342	1063	1963	1857	2397	10169
101	1626	1531	1460	2505	1351	760	514	835	656	851	888	1178
111	488	870	775	707	1115	391	383	258	466	273	408	336
121	548	282	392	338	338	305	198	201	117	158	112	162
131	145	136	128	233	101	141	123	112	100	38	108	34
141	296	52	67	44	114	35	75	48	52	52	16	15
151	418	136	30	13	13	26	16	51	34	29	35	12
3+1	220643	188808	149718	141936	131360	203107	311793	408348	429087	441394	418856	494036
4+1	132340	154456	103292	89021	89072	83146	145281	242870	307285	316773	322007	297207
$5+1$	93244	82165	78041	52221	48220	49931	47487	107036	172290	217179	220260	218000
$6+1$	62176	52001	38898	37780	22596	24429	23424	30006	69995	111142	140546	138101
7+1	31245	32973	24901	18696	15093	9568.	10625	14028	16544	41443	67303	79421
$8+1$	12678	15809	15241	11979	7977	5675	4396	6142	7501.	7594	23043	36502
1	1983	1984	1985	1986	1987	1988	1989					
31	250146	159273	170806	115725	216521	106000						
41	160793	204772	130379	139695	94631	177212	86696					
51	63583	130675	166569	105410	111296	76681	143755					
61	56565	46600	103460	127404	79390	84955.	58787					
71	40541	35759	31783	69626	84744	55892	60366					
81	24408	22942	21289	18649	48608	53194	38605					
91	13590	. 13448	12688	12024	11923	33879	33627					
101	6093	6542	6430	6834.	7385	7955	22249					
111	565	2746	2758	3250	3613	4671	5033					
121	147	367	1406	1406	1696	2357	2951					
131	63	84	161	837	470	1045	1489					
141	23	38	22	112	542	261	661					
151	10	12	25	11.	76	346	165					
3+1	616525	623259	647777	600983	660894	604448	454385					
4+1	366379	463986	476970	485258	444373	498448	454384					
5+1	205587	259214	346591	345563	349743	321237	367688					
6+1	142004	128539	180022	240153	238447	244556	223933					
7+1	85440	81939	76562	112749	159056	159601	165146					
$8+1$	44899	46180	44779	43124	74312	103709	104780					

Table 26: Fishing mortality for the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.-Apr.) cod stock from 1971 to 1988.

	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	198	1982	1983	198	19
3	. 000	108	. 032	. 059	042	. 00	. 00	. 004	. 001	. 003	. 001	. 002	. 000	00	. 001
41	. 059	. 413	. 359	162	271	. 122	. 039	. 084	. 041	. 023	. 042	. 020	. 007	. 006	. 013
51	. 290	. 568	. 518	455	. 345	. 489	. 209	. 165	. 184	. 170	10	. 145	. 111	034	. 068
6	. 389	. 478	. 534	787	. 456	. 670	. 284	. 369	. 257	. 254	. 334	. 170	. 259	18	19
71	. 419	. 650	. 540	. 676	. 699	. 601	. 355	. 451	. 535	. 373	. 38	. 364	. 369	319	333
81	. 551	. 483	. 531	. 563	. 715	. 569	. 297	. 399	. 595	. 393	. 429	. 39	. 396	. 392	71
9	. 5	. 4	502	. 761	. 839	. 580	. 274	. 283	. 635	. 538	. 510	. 312	. 531	. 538	19
101	. 426	. 481	. 525	. 610	1.041	. 486	. 490	. 38	. 674	. 537	. 771	. 536	. 597	66	482
111	. 346	. 598	. 631	. 538	1.095	. 481	. 443	. 591	. 882	. 695	. 72	6	. 230	46	474
12	1.196	. 591	. 320	1.008	. 674	. 707	. 368	. 504	. 930	. 184	1.003	747	. 358	. 623	31
13	. 815	. 509	. 863	. 517	. 870	. 435	. 752	. 569	. 457	. 633	1.783	. 180	. 307	1.153	. 163
14	. 575	. 350	1.432	1.047	1.269	. 593	. 177	. 123	. 385	. 188	. 145	. 162	. 411	229	. 441
151	. 510	. 46	,	,	. 937	. 549	. 332	. 329	. 656	. 545	. 583	. 33	. 559	. 586	

Table 27: Mean population biomass for the $4 \mathrm{~T}-\mathrm{Vn}$ (Jan.-Apr.). cod stock from 1971 to 1988.

I	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
31	60823	10408	18891	28021	18071	70417	80298	59888	55714	63618	44130	132940
41	28066	30259	12903	24021	24009	21153	65945	80544	84674	61428	60918	53118
51	27382	19287	25689	11423	22562	19734	24662	66459	85297	81453	58224	64859
61	32773	18393	12632	18015	9700	14941	18352	20237	60669	67560	64226	56656
71	29715	17529	11487	8765	11093	5811	11648	13107	14171	37922	46258	47589
81	15358	18424	11975	8630	5043	5729	4836	7568	9361	8646	25941	32207
91	8720	10127	12978	6565	4304	2505	4534	3670	5408	3803	5405	18167
101	6348	6583	5718	7170	2863	2127	1591	2947	3118	2149	2342	2727
111	2258	4264	3159	3032	2786	1345	1432	1156	1999	1438	1185	915
121	1411	1572	2414	1422	1569	1016	828	946	469	762	364	433
131	620	858	485	1378	570	651	536	489	343	254	282	180
141	1535	408	221	167	377	247	559	207	343	249	98	86
151	2368	557	193	78	64	211	131	460	357	199	85	38
$3+1$	217376	138670	118746	118689	103010	145887	215353	257678	321923	329489	309459	409917
4+1	156553	128262	99855	90668	84939	75470	135055	197790	266208	265872	265329	276977
$5+1$	128487	98003	86952	66647	60930	54317	69110	117246	181535	204444	204411	223859
6+1	101105	78716	61263	55224	38368	34583	44447	50787	96237	122991	146187	159000
7+1	68333	60323	48631	37209	28668	19642	26095	30550	35569	55431	81961	102344
$8+1$	38618	42794	37144	28443	17575	13831	14448	17443	21397	17509	35703	54754
I	1983	1984	1985	1986	1987	1988						
31	73452	64666	68390	45808	49837	36601						
41	88871	121184	67535	75225	41049	93222						
51	48312	91599	111338	74898	68566	51177						
61	51630	41895	84660	106093	57314	66421						
71	40061	38197	35031	75041	67139	48819						
81	28629	27924	27018	26208	51246	48596						
91	16552	19575	17239	18614	17317	36563						
101	8173	9927	9891	9430	12791	12970						
111	2270	6092	4771	6177	6545	9202						
121	839	1221	3083.	1898	4184	5965						
131	417	260	1141	2091	1284	3295						
141	195	265	94	411	1756	1148						
151	93	101	207	136	755	2415						
$3+1$	359493	422908	430398	442029	379784	416395						
4+1	286042	358241	362008	396221	329947	379794						
$5+1$	197171	237057	294473	320996	288898	286572						
$6+1$	148858	145458	183135	246099	220332	235395						
$7+1$	97228	103563	98475	140005	.163018	168975						
$8+1$	57167	65366	63444	64964	95878	120156						

Отв
SNU $X X$
L $7 \square$
GN $\Delta \mathrm{V}$
LHP \triangle
$\operatorname{misc} \square \triangle$
(OTB - otter trawl, SNU - seines, LL - longlines, GN - gillnets, LHP - handlines, MISC - all other gears including unknowns)

Figure 1: Percent of 4T-Vn (Jan.-Apr.) cod catch by gear (1983-1988).

Figure 2 : Cumulative catches of cod in 4T-Vn (Jan.-Apr.). from 1986 to 1988. (Source: Canadian Atlantic Quota Report, DFO)

Figure 3: Age composition of observed and predicted catch at age for 1988.

Figure 4: Standardized otter trawl catch rates (+/-1 SE) for 4T-Vn (Jan.-Apr.) cod

COD - 4T

Figure 5: Discard ogive for cod in 4T from observer samples

Figure 6: Stratification scheme for the southern Gulf of St Lawrence research surveys

Figure 7: Length frequency distributions for cod in 4T from research vessel surveys

Figure 8: Standardized mean catch per tow at age for six selected strata

Figure 9: Standarcized mean catch per tow ($+/-1 \mathrm{SE}$) for the 1964-86 year-classes

Figure 10: Comparison of year-class estimates from an analysis of mean catch per tow with estimates from the previous assessment (Chouinard and Sinclair, 1988). Only RV estimates were available for the 1985-1986 year-classes

Figure 12. Weighted residuals from the calibration of SPA using the adaptive framework (3 to 10 refer to RV mean number at age; 11 to OTB CPUE).

Figure 13: Partial recruitment vector for 4T-Vn (Jan.-Apr.) cod derived from analysis of variance of fishing mortalities.

Figure 14: Recruitment (a), mean population biomass (b), fishing mortalities (c) and population numbers (d) for the 4T-Vn (Jan.-Apr.) cod stock, 1950-1988.

Figure 15: Catch and surplus production (a) and total production (b) for the 4T-Vn (Jan.-Apr.) cod stock, 1950-1988.

Figure 16: Partial recruitment vectors for the mobile and fixed gear components for 4T-Vn (Jan.-Apr.) cod

Figure 17: Trends in fishable biomass (a) and fishing mortality (b) by gear sector for cod in 4T-Vn(Jan.-Apr.)

[^0]: * based on length frequencies from 34 sets

