Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 88/75

Ne pas citer sans autorisation des auteurs¹

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA document de recherche 88/75

Assessment of Atlantic Salmon, (<u>Salmo salar</u>), in the Margaree River, 1988

by

R.R. Claytor, and G.J. Chaput, Department of Fisheries & Oceans Science Branch, Gulf Region P.O. Box 5030, Moncton, NB E1C 9B6

1This series documents the scientific basis for fisheries management advice in Atlantic As such, it addresses the Canada. day issues of the in the time frames required and the Research contains Documents it are not intended as definitive statements the subjects addressed on but rather progress as reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat by the author. ¹Cette série documente les bases scientifiques des conseils de gestion des pêches SUL la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents au'elle de recherche doivent pas contient ne être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

ABSTRACT

Sport catch of 1SW salmon in 1988 as estimated by DFO fisheries officers and Nova Scotia license stub returns exceeded the catch in 1987. DFO estimates were the greatest since 1947 with the exception of 1979, 1981, and 1982. MSW salmon sport catch in 1988 as estimated by DFO fisheries officers and Nova Scotia license stub returns were greater than 1987.

A creel survey of Forks Pool suggested that DFO underestimated and stub returns overestimated 1SW sport catch as in 1987. DFO and stub return estimates of MSW hooked and released were an over estimate of those which would correspond to historical catch/kill records. This result was opposite to that obtained in 1987.

DFO angling statistics adjusted by the creel survey (595 1SW, 368 MSW) were judged to be the most appropriate statistics to use in estimating spawning escapement by angling statistics. This conclusion was supported by population estimates and exploitation rates determined from a mark-recapture experiment. Total returns to the Margaree River in 1988 were estimated as 3673 1SW and 2996 MSW salmon. Exploitation rates were 16% for 1SW and 8% for MSW salmon returning in the fall. These numbers minus removals suggest that spawning requirements were met in 1988.

The contribution of hatchery 1SW and MSW salmon to river returns was less in 1988 than 1987.

MSW salmon returns slightly above 1988 are forecast for 1989.

RESUME

Selon les estimations des agents des pêches du MPO et les talons de permis de pêche de la Nouvelle-Ecosse qui ont été retournés, les prises sportives de saumons unibermarins en 1988 ont dépassé celles de l'année antérieure. En fait, les estimations du MPO étaient les plus élevées depuis 1947, si l'on fait exception de 1979, 1981 et 1982. Par ailleurs, selon les estimations du MPO et les talons des permis de pêche de la Nouvelle-Ecosse retournés, les prises sportives de saumons pluribermarins de 1988 ont également été supérieures à celles de 1987.

D'après les résultats d'un sondage des pêcheurs, effectué au trou à saumon Forks, il apparaît que le MPO a sous-estimé les prises sportives de saumons unibermarins tandis que les évaluations fondées sur les talons retournés les ont surestimées, comme en 1987. En ce qui concerne les pluribermarins capturés et libérés, les évaluations du MPO et celles fondées sur les talons retournés en ont aussi surestimé le nombre par rapport à celui qui correspondrait aux statistiques historiques de saumons capturés et conservés. Le résultat était ici l'inverse de celui de 1987.

Les statistiques de pêche à la ligne du MPO, modifées d'après les résultats du sondage des pêcheurs (595 unibermarins et 368 pluribermarins), sont apparues les plus adéquates pour l'estimation des échappées de Cela a été confirmé par les estimations de population et reproducteurs. à partir les taux d'exploitation établis d'une expérience de On a estimé à 3 673 unibermarins et 2 996 marguage-recapture. pluribermarins les remontées totales dans la rivière Margaree en 1988. Les taux d'exploitation étaient de 16 % pour les unibermarins et de 8 % pour les pluribermarins des remontées d'automne. Ces chiffres, diminués des retraits, permettent de conclure que les besoins de reproducteurs ont été satisfaits en 1988.

En 1988, l'apport des unibermarins et pluribermarins d'élevage dans les remontées a été inférieur à ce qu'il avait été l'année précédente.

On prévoit pour 1989 des remontées d'pluribermarins légèrement supérieures à celles de 1988.

INTRODUCTION

OBJECTIVES

The purpose of this paper is to provide an assessment of the Margaree River Atlantic salmon stock in 1988. Past assessments have relied exclusively on DFO angling statistics and fixed exploitation rates to determine spawning escapement and forecast returns (Claytor and Chadwick 1985: Claytor and Léger 1986). As a result, these assessments have raised several issues requiring additional information to resolve. These issues include, resolving the difference between angling catch statistics collected by DFO fisheries officers and those from Nova Scotia license stub returns, ensuring that hook-and-release estimates of MSW salmon can be interpreted relative to historical catch-kill records, evaluating the relative contribution of hatchery released salmon to river returns, and finding a reliable method of forecasting returns. In addition, recent information on size-at-age and previous spawners has been deficient for the Margaree River.

In 1988, three programs begun in 1987 were expanded to address the above concerns. Firstly, a creel survey at Forks Pool, the major angling pool, was conducted for the summer as well as fall season, and secondly, the number of voluntary angling logbooks was increased to provide a more representative sample of anglers than was obtained in 1987. Thirdly, a mark-recapture program to estimate fall population size, exploitation rate and biological characteristics using estuarine trapnets was conducted. The development of these programs and their use in resolving the above issues are described in the following sections.

BACKGROUND

The Margaree River is located on Cape Breton Island, Inverness County, Nova Scotia. Two principal branches, the Northeast Margaree and Southwest Margaree, meet at Margaree Forks to form the Main Margaree which flows into the Gulf of St. Lawrence. Most of the Atlantic salmon angling occurs in the Main Margaree and Northeast Margaree rivers. Margaree River salmon stocks are composed of two runs: the summer run enters the river up to the end of August; and the fall run, after September 1.

Since 1979, efforts to increase the summer component of the Atlantic salmon stock have consisted of regulatory restrictions and introduction of hatchery-reared progeny from early-run fish. Anglers have been required to release MSW salmon during the early-run (before September 1) since 1979. From 1985-1988, all MSW salmon were released regardless of date caught. In 1984, there was a reduction in the Salmon Fishing Area 18 commercial fishery from eight to three weeks. There was no Salmon Fishing Area 18 commercial fishery from 1985-1988.

METHODS

LANDINGS

Angling records from 1947-1988 were provided by fishery officers, Department of Fisheries and Oceans, Margaree Forks, Nova Scotia. These records are subsequently referred to as DFO statistics. Sport catches for 1984-1986 were also obtained from Nova Scotia license stub returns (O'Neil et al. 1985, 1986, 1987). Final 1987, and preliminary 1988 as of November 7, Nova Scotia license stub returns were obtained from S. O'Neil, DFO Halifax, Nova Scotia. Commercial landings for Salmon Fishing Area 18 (1967-1984) are also reported (Claytor and Chadwick 1985).

FORKS POOL CREEL SURVEY

A creel survey was conducted at Forks Pool (Fig. 1) from June 1 -October 15 to estimate catch and effort for this portion of the sports fishery. Creel periods were stratified into AM (0600-1330) and PM (1330-2100) and weekday and weekend (including holidays) periods. Weekdays sampled were 63/94 available days (67%) and 29/43 (67%) of the available weekend days. Each day within a weekday-weekend stratum was assigned a consecutive number and was selected for the creel using a random number table. Once these days were selected, a random number table was used to determine whether a day would be an AM or PM creel. An odd number selected AM and even PM. Days and time periods are given in Fig. 2.

During the creel period numbers of 1SW salmon kept, and 1SW and MSW salmon hooked and released, as well as method of release were noted (Fig. 3). The release methods were defined as:

- 1) remove hook (RH), fish was handled by angler and hook removed by hand;
- 2) cut line (CL), fish was not handled but leader was intentionally cut or broken by angler;
- 3) lost (LO), fish took fly, but dislodged hook and broke line before it could be intentionally released.

As anglers left the pool they were interviewed to obtain the time they started and completed fishing, numbers and types of fish kept or released, and method of release. Forms used for interview are provided in Fig. 3. Sampling from all 1SW kept included fork length (nearest cm), scales, sex, and presence or absence of adipose clips and wire nose tags. Sex was determined internally from kept fish.

The observed catch and effort data from each stratum was used to estimate total catch and effort at Forks Pool from June 1 - October 15 in the following manner. Total effort at Forks Pool was estimated by calculating mean effort in hours/day and rod-days/day (rod-day is one angler

fishing for any portion of one day) and multiplying by the number of These estimates of effort were then available days in each stratum. multiplied by observed catch/effort to determine estimated catch in each Estimated catches were divided into 1SW and MSW salmon on a stratum. proportional basis within each stratum. The estimated catches and efforts were then summed to determine the overall estimated catch/effort. Confidence limits were calculated using the method described by Jessop (1980). Estimates of 1SW and MSW salmon catches for the entire Margaree River were calculated using the percentage of total summer and fall 1SW and MSW salmon catch taken at Forks Pool, based on DFO statistics, as an adjustment factor.

The Forks Pool creel provides two comparisons to DFO sport catch statistics, 1) estimates of total Forks Pool catch by creel and DFO, and 2) estimates of total river catch based on Forks Pool creel and DFO. In 1987 it was suggested that DFO underestimated sport catch (Claytor et al. 1988). The creel survey conducted in 1988, provides comparisons to DFO statistics for both summer and fall periods. This complete coverage of the angling season allows the consistency of the creel methodology to be tested.

VOLUNTEER LOGBOOKS

Sixty anglers were contacted to keep a logbook of each fishing trip on the Margaree River. As of Nov. 3, 1988, 22 of these anglers had returned their logbooks. Anglers contacted were chosen randomly from groups fishing <10 rod-days, 10-30 rod-days, and >30 rod-days as indicated by license stub returns in 1987. This method was used to try and obtain a representative sample of all anglers fishing the Margaree River. Anglers were requested to note the start and finish times for each fishing trip, pools fished, numbers kept, hooked and released, and method of release (Fig. 4). In addition, they collected scale samples, determined sex, and collected noses or heads from all hatchery fish kept for wire nose tag detection. It was assumed that catch is reported accurately and that tag returns are 100% reported in this angling group.

FALL POPULATION ESTIMATE (MARK-RECAPTURE)

Two trapnets were used in this experiment. The first was located 0.75 km upstream from the Margaree Harbour Bridge and was placed in the channel on the eastern side of the river. The first trap was a box trapnet with two leaders, one tied to shore 90 m (300') long, the second 30 m (100') long extended into the channel. The trap portion was 15.24 m (50') long X 3.65 m (12') wide X 3.65 m (12') deep with an apron in front extending to the bottom of the river. The trap portion was divided into two compartments the first 3 m (10') long and the second 12 m (40') long. The trap was made from 3.49 cm (1 3/8") knotless nylon mesh and the leader was 7.62 cm (3") knotted nylon mesh. The trap and leader were supported by pickets. This trap was fished from September 2 - October 22, 1988.

The second trap was located in the channel 1.5 km upstream from the first with the leader tied to the western shore (Fig. 1). It was the same design as a commercial salmon Miramichi box trapnet. Its dimensions and materials have been described in Claytor et al. 1987, except this year a 5.72 cm $(2\frac{1}{4}")$ knotless nylon mesh leader was used and it was 45 m (150') long. This trap was fished from August 30 - October 22, 1988.

A numbered carlin tag was attached to all fish captured in each trap with the exception of mortalities and weak fish. Fork length (nearest cm) was measured and a scale sample removed from all fish captured. Sex was determined externally. All hatchery released fish have the adipose fin removed. Wild were distinguished from hatchery returns by the presence of the adipose fin.

A population estimate of salmon returning to the Margaree River was obtained using Schaefer's method for stratified populations (Ricker 1975) based on fish tagged in the lower net and tag recoveries and catch in the upper net. A second estimate using this method was made using tags applied at both nets and tag recoveries and catch from logbook anglers. Data from logbook anglers were used because it can be assumed that catch of these anglers is reported without bias and tag reporting would be 100%. Catch from logbook anglers was determined from numbers reported for 1SW salmon kept and released by hand or cutting line and MSW salmon released by hand or cutting line.

Because tag returns from 1SW and MSW salmon were not sufficient for separate estimates, returns from these groups were combined. Numbers of 1SW and MSW salmon were then determined using the proportion of each age group caught in the trapnets.

Tagging and recovery periods were divided into two equal strata covering the time period both nets were fishing. Smaller strata led to periods with zero recoveries. The period from September 2 - October 15 was divided in half producing two tagging periods from September 2 - September 23 and September 24 - October 14. Recovery periods were lagged one day September 3 - September 24 and September 25 - October 15 because one day was the minimum time period between tagging and recovery from these fishing methods.

Removal of tags from those available to be recovered may occur from tag loss, mortality, or fish leaving the river system. An estimate of tag removal from the angling fishery was made by comparing the ratios of recaptures/total captures from the lower to upper net, and from lower net to logbook anglers. Because logbook anglers and trap recoveries have a 100% reporting rate the ratio of these values should represent tags removed from those available to anglers. The calculation is described below:

Tagging-Recovery Locations	Recaptures	Captures	R/C
Lower-Upper Nets	7	133	0.053
Lower Net – Logbook Anglers	3	77	0.039

Hence, 0.039/0.053 = 0.736, 1-0.736 = 0.264 or proportion of tags removed = 26%.

If tag removals are assumed to be related to days available then the rates of the average number of days between tagging and recapture in the angling and upper trap can be used to provide a factor for tag removal between the lower and upper traps. The average length of time between tagging and recapture from the lower to upper trap was 8.7 days and 15.0 days from lower trap to anglers. Hence, 8.7/15 = 0.58; $26\% \times 0.58 = 15.08$. Therefore the tag removal rate between lower to upper trap is 15%.

A non-reporting rate for tags was calculated using tag returns during Forks Creel periods and those returned from Forks Pool when creels were not conducted. It is assumed that tags recovered during creel/observed creel catch = total tags recovered forks pool/estimated forks catch. That is, 1/14 = X/43; X = 43/14 = 3. Two tags in total were returned. Therefore reporting rate is 2/3 or 67% and non-reporting rate is 33%.

Finally the estimate obtained from the Schaefer method was compared to a Peterson estimate (Ricker 1975) using trapnet and logbook returns.

SPAWNING REQUIREMENTS

The required number of spawners was calculated using the method (Method 2) recommended by Randall (1985) for the Miramichi River. The number of spawners required to meet egg deposition requirements was calculated presuming that all egg deposition came from MSW salmon. The numbers of 1SW salmon required were calculated assuming that at least one male spawner was needed for each female MSW salmon.

The characteristics used to determine the spawning requirements were essentially those given by Gray and Chadwick (1984) and are repeated below:

Egg deposition rate =	2.4 eggs/m ² (Elson 1975)
Rearing area =	2,797,600 m ² (Marshall 1982)
Fecundity MSW =	1,764 eggs/kg (Elson 1975)
1SW =	1,764 eggs/kg (Elson 1975)
Mean weight MSW =	4.9 kg (Marshall 1982)
1SW =	1.7 kg (Marshall 1982)
Sex ratio male/female MSW =	25:75 (Marshall 1982)
1SW =	89:11 (Marshall 1982)
Eggs per MSW =	6,482 eggs = 1,764 X 4.9 X .75
1SW =	330 eggs = 1,764 X 1.7 X .11

EGG DEPOSITION

In previous assessments (Claytor and Chadwick 1985; Claytor and Leger 1986; Claytor et al. 1987). Total egg deposition from 1SW and MSW salmon was calculated as described below:

 $\frac{\text{Sport catch (SC)}}{\text{Sport catch (SC) + Spawners}} = \text{Exploitation rate (ER)}$ $\frac{\text{SC (1 - ER)}}{\text{ER}} = \text{Spawners}$ with the part of the set of MSW column 20 (and 37 0% or the set of the

Exploitation rates for 1SW and MSW salmon 20.6 and 37.9%, were those determined by Hayes (1949).

For years in which there were hook-and-release regulations, 1979-1988, the MSW salmon caught and released were added to the number of spawners calculated as above. This factor assumes there is no mortality as a result of hook and release.

For all years, egg deposition was calculated as the number of 1SW or MSW spawners times the eggs per 1SW or MSW fish (see above). The eggs obtained from broodstock collections were subtracted from the above egg deposition values.

In 1988, egg deposition can also be estimated from returns estimated from the mark-recapture experiment.

HATCHERY RETURNS

Proportions of hatchery and wild fish returning to the Margaree River were determined from angler logbooks, Forks Pool creel, angler spot checks, broodstock collections (Hatchery and McKenzie pools, Fig. 1), and trapnet captures. All hatchery fish released to the Margaree River were adipose fin clipped, allowing hatchery or wild origin to be readily identified.

FORECAST

The number of 1SW and MSW salmon, both hatchery and wild, caught in the fall segment of the season since 1983 were used in an attempt to forecast returns in 1989. A regression of 1SW year (i) against MSW year (i+1) was attempted for this purpose. Considering years since 1983 has the advantage of using only data collected after the implementation of hook and release requirements to calculate forecasts. Data collected before 1983 indicated a significant correlation between 1SW and MSW returns but the r-squared value was very low.

RESULTS AND DISCUSSION

LANDINGS

Commercial landings for Salmon Fishing Area 18 (1967-1984) are presented in Table 1, DFO Sport catch statistics (1947-1988) in Table 2, and Nova Scotia license stubs (1984-1988) in Table 3. 1SW salmon sport catch based on license stub estimates was 1.5-2.5 times DFO statistics from 1984-1987. MSW salmon sport catch based on license stub estimates was 2.5-4.5 times DFO statistics from 1984-1987 (Tables 2, 3). 1SW salmon sport catch in 1988 (DFO) was the greatest since 1947, with the exceptions of 1979, 1981, and 1982. MSW salmon sport catch in 1988 (DFO) was the third highest since 1947 and 42% greater than 1987 (Table 2).

MSW salmon catch was equally divided between summer and fall. This high proportion of summer caught MSW salmon is unusual but has occurred previously (Chaput and Claytor 1988). Since 1947 the mean percentage of MSW salmon caught in the fall has been 64% ranging from 27-99% (Table 4). In contrast, the percentage of 1SW salmon caught in the summer (66%) is within the range reported since 1984, (Table 4).

Observed catch, effort and catch per unit effort used to calculate estimated values for Forks Pool are given in Table 5. In general catch per unit effort was slightly higher in the summer than fall as was catch of both 1SW and MSW salmon. Catch per unit effort in fall 1988 was half that of 1987 (Table 5).

Estimated catch, rod-days, and hours are provided in Table 6. The MSW:1SW ratio was very different in fall 1988 (0.59) compared to fall 1987 (7.87) (Table 6).

The percentages of total catch taken at Forks Pool, DFO statistics, (Table 7) were used to adjust Forks creel estimates to total river catches (Table 8).

The ratio of Forks Creel 1SW catch:DFO Forks 1SW catch for the summer was 69/54 = 1.3:1, while for the fall it was 27/18 = 1.5:1 (Table 8). This 1988 fall value was similar to the fall 1987 Creel:DFO 1SW salmon ratio (1.2:1) (Claytor et al. 1987). The similarity among these ratios suggests that DFO is consistently underestimating 1SW catch by a factor of 1.2 - 1.5.

The ratio of Forks Creel MSW:DFO Forks MSW catch was similar for summer 28/43 (0.65:1) and fall 16/26 (0.62:1) (Table 8). However, these values are very different from the 1987 fall ratio of 2:1 (Claytor et al. 1987). While the 1987 ratio suggested that DFO was underestimating MSW catch, the 1988 ratios suggests overestimation.

In 1988, 22 logbook anglers responded with completed forms. The catch per unit effort was greater in the fall than summer for these anglers. This catch per unit effort relationship was opposite to the Forks Pool Creel Survey (Tables 5, 9). These data may differ because logbook returns include reports from all areas of the river, rather than a single pool.

ADJUSTMENTS TO SPORT CATCH

Ratios of MSW:15W salmon caught from angling logbooks were used to adjust MSW catch reported on stub returns in 1987. This adjustment was made assuming 1SW stub return catches were correct and that logbook anglers were representative of the sport fishery. We suggest that the logbook ratio was not the most appropriate. In 1987, the logbook ratio was 4:1. However the MSW:1SW salmon ratio in the trapnet for the fall was 6.6:1 (Table 10). The closest catch ratio to the trap was that from the river creel estimate, 5.74:1 (Table 10). In 1988, the river creel estimate was also the nearest to the fall trap ratio (Table 10).

Assuming the trapnet catch is the most representative sample of MSW:1SW ratio entering the river, then the consistency in agreement of MSW:1SW between the trapnet and river creel estimates strongly suggest that the river creel estimate is the best ratio to use in adjusting catch by the MSW:1SW ratio method. This ratio can be applied to DFO 1SW salmon catch adjusted for underestimations and license stub returns taken at face value. MSW salmon catches adjusted by this ratio are given in Table 11.

These adjusted values can be compared with adjusted MSW catch values made by using the Forks creel adjustment value. For 1987 this was 2:1 and 1988 0.62:1 for fall and 0.65:1 for summer. These values are given in Table 11 and suggest close agreement between catches adjusted by creel correction factors and creel MSW:1SW ratio.

As a result, DFO 1SW and MSW statistics adjusted by creel correction factors most accurately reflect 1SW removals, and MSW catch that most closely corresponds to historical catch/kill records. 1SW removals are 595 salmon and MSW catch equivalent to catch/kill records is 368 salmon. This conclusion is tested below using population estimates and exploitation rates determined from the mark-recapture experiment.

1SW salmon statistics collected by DFO and stub returns represent kept fish. The relationship between creel estimates and DFO statistics was consistent for 1987 and 1988. Similarly, 1SW catch estimated from stub returns is similar to creel corrected removals. This consistency suggests that DFO statistics and license stub returns are good indices of abundance from year to year for kept fish. However, it should be noted that DFO statistics will consistently underestimate while stub returns overestimate actual abundance.

Thus historical catch/kill records or hooked and released values which are equivalent to these records may be used to determine returns if exploitation rates do not vary significantly among years. This assumption will be evaluated by an additional year of a mark-recapture experiment.

MSW salmon statistics, since 1984, represent hooked and released fish. The relationship between creel estimates and DFO statistics was inconsistent for 1987 and 1988. Similarily, license stub MSW hooked and released estimates were 80% above creel corrected catch/kill values. Thus, DFO and stub returns hooked and released statistics may not be a reliable index of abundance. However, DFO MSW statistics collected prior to 1984 are based on kept fish. Hence, this problem may only apply since the requirement to

release MSW salmon came into effect in 1984. An expanded creel design is necessary to obtain catch statistics for hooked and released MSW salmon which is equivalent to historical catch/kill records.

POPULATION ESTIMATES, MARK-RECAPTURE

Fall population estimates based on Schaefers method applied to trapnet recaptures is 2797 fish. Peterson's estimate for trapnet data is 2529 (1405-7226;99% C.I). Estimates based on recaptures by logbook anglers is 2560 with a Peterson estimate of 2440 (1303-7765;99% C.I.) (Table 12). That fewer fish are estimated from angling returns than trapnet indicates that dilution of fish from summer season may be small.

Applying appropriate proportions of 1SW:MSW salmon to these estimates provides a 1SW estimate of 1359 and a MSW estimate of 1438 for the fall period (Table 13).

Applying appropriate tag loss rates to (26%) angling fishery and non-reporting rate (33%) to tags returned from non-logbook anglers indicates that exploitation rate on fish entering the river from August 30 -October 14 varies from 3 to 29% for 1SW and 1 to 21% for MSW salmon. Higher exploitation rates applied to those entering earliest in the fall. The overall exploitation rate for 1SW salmon is 16% and 8% for MSW salmon returning during the fall (Table 14,15).

In contrast exploitation rates for 1SW and MSW salmon calculated using these tag removal rates and non-reporting rates for 1987 were 19% for each. Tag returns from 1987 included fish from the summer run and may account for the higher exploitation rate.

Applying 16% exploitation rate to the 1SW salmon estimate would give a fall 1SW angling catch of 217 (1359 X 0.16). Applying 8% to MSW salmon estimate would give a fall MSW angling catch of 115. Of all catch statistics available these figures are closest to DFO statistics adjusted by creel (Table 11).

DFO catches adjusted by creel are most similar to catches calculated from fall population estimates and exploitation rates from tag recaptures. This agreement provides further support for the acceptance of creel adjusted DFO statistics as catch figures for 1988. DFO statistics adjusted by creel correction factors rather than ratio are favored because they are derived independently and do not depend on MSW:1SW ratios.

A further check on these values can be made by calculating total returns based on proportions of DFO adjusted 1SW and MSW statistics by summer and fall periods and calculating exploitation rates.

Using adjusted DFO statistics to determine total MSW returns from the fall estimate produces a value of 1438/0.48 = 2996 MSW salmon and 1SW total return of 1359/0.37 = 3673. This method assumes equal exploitation rates for summer and fall runs. If exploitation rate on summer run is much higher than the fall, then the summer run could be over-estimated by this method.

	DFO		STUB	TAG RETURNS
	NON ADJUSTED	ADJUSTED	NON-ADJUSTED	
1SW	11.8	16.2	19.21	16
MSW	19.4	12.3	58.3	8

Applying non-adjusted and adjusted DFO catches to these population estimates provides the following exploitation rates for the entire season.

Adjusted DFO catches provide exploitation rates more similar to those calculated from tag returns than non-adjusted DFO and stub return statistics.

SPAWNING REQUIREMENTS

Spawning requirements for the Margaree River were found to be 1,036 MSW and 579 1SW salmon. These figures were derived as given below:

(1)	egg requirements	1	2.4 eq 6,714,	ggs m-2 X 2,797,600 m2 ,600 eggs
(2)	eggs/MSW salmon	=	8,643	eggs/MSW X .75 (females)
(3)	required number of	MSW	=	6,714,600 ÷ 6,482 1,036
	number of female M	5W	=	1,036 X .75 776
	number of male MSW		=	260 = 1,036 - 776
	number of male 1SW		=	516 = 776 - 260
	number of 1SW		=	579 = 516 + . 89

Using these values, MSW salmon account for 100% of the egg deposition requirements and 97% of the total egg deposition.

SPAWNING ESCAPEMENT, EGG DEPOSITION AND EXPLOITATION RATE

In 1987, DFO catch was adjusted by a creel factor of 2.0. This factor was applied to years since hook and release was implemented in 1984. This factor is now shown to be inadequate for application each year. Hence adjustements to catches applied to 1984-1986 are not valid. Determinations of egg deposition are presented using non-adjusted DFO statistics for all years and adjusted DFO statistics by creel for 1987 and 1988. Because exploitation rate for the entire season based on tag returns in 1987 was 19% and is similar to Hayes (1949) 20%, only 20 and 40% will be used here (Table 16).

Egg deposition may also be calculated from total salmon returns estimated by mark-recapture experiment weighted by seasonal angling catches, as above, minus removals.

		1SW		MSW	
		NON-ADJUSTED CATCH	ADJUSTED CATCH	NON-ADJUSTED CATCH	ADJUSTED CATCH
Total	returns	3673	3673	2996	2996
Removal	ls Angling	435	595	29*	29*
Broods	tock	10	10	62	62
Spawne	rs	3228	3068	2905	2915
*	Hook	and	release	mortality	5%

These figures based on mark-recapture experiment are likely the most accurate reflection of egg deposition in the Margaree River for 1988. The egg deposition from these figures is shown in Table 16 and suggest that egg deposition exceeds spawning requirements by nearly 3 times.

FORECAST

The fall MSW salmon angling catch (DFO) was predicted using fall 1SW angling catch (DFO) from the previous year since 1983 (Fig. 5). This relationship predicted a fall catch of 273 for 1988, actual DFO catch was 287. For 1989 a fall MSW catch of 518 is predicted. If this figure accounted for 60% the catch as in 1988, the total catch would be 863 MSW salmon. Adjusting by creel factors 0.62 and 2.0 (determined over the past two years), and an exploitation rate of 20% (as indicated by the upper range of tag returns) produces a total MSW return between 2658 and 8630. Either of these numbers would satisfy spawning requirements.

It should be noted that this relationship is based on non-adjusted DFO statistics. Because DFO estimates of MSW hooked and released salmon may not reflect historical catch/kill records, this relationship may not be applicable in 1989.

HATCHERY CONTRIBUTION

The proportion of hatchery and wild 1SW and MSW salmon in the Margaree River are indicated in Tables 17,18. The proportion of hatchery return 1SW and MSW salmon in the summer is approximately 30%. This percentage is much lower than in 1987. The proportion of wild 1SW salmon in the fall is 97% compared to 69% in 1987. The proportion of wild MSW salmon in the fall is greater than 95% as it was in 1987 (Table 18). This change in proportion of early run 1SW hatchery released fish may have resulted from the decision not to use Rocky Brook, Miramichi progency as an egg source (Table 19).

BIOLOGICAL CHARACTERISTICS

The average 1SW salmon fork length in 1988 was 55.4 cm compared to 54.4 cm in 1987. While 1988 scales have not yet been aged, data from 1987 indicate that 65% of wild 1SW salmon were 2+ smolts, and 71% of wild MSW salmon were 2+ smolts. Repeat spawners accounted for 1.7% of 1SW and 5% of MSW samples in 1987 (Tables 20, 21, 22).

DISTANT FISHERIES

Fish tagged since 1986 as part of Margaree assessment and enhancement projects have been recovered in distant fisheries in Quebec, Labrador, Newfoundland and Greenland (Table 23).

REFERENCES

- Chaput, G.J. and R.R. Claytor. 1988. Sport catch of Atlantic salmon from Margaree River, Nova Scotia, 1947 to 1987. Can. Data Rep. Fish. Aquat. Sci. No. 678. iv + 50 p.
- Claytor, R.R. and E.M.P. Chadwick. 1985. Assessment of Atlantic Salmon, Salmo salar, in the Margaree River, Nova Scotia, 1985. CAFSAC Research Document 85/103. 25 pp.
- Claytor, R.R. and C. Léger. 1986. Assessment of Atlantic salmon, <u>Salmo</u> salar, in the Margaree River, Nova Scotia, 1986. CAFSAC Res. Doc. 86/93. 21 p.
- Claytor, R.R., G.J. Chaput, and T.G. Lutzac. 1987. Assessment of Atlantic salmon (<u>Salmo</u> <u>salar</u>), in the Margaree River, 1987. CAFSAC Res. Doc. 87/105. <u>36</u>p.
- Elson, P.F. 1975. Atlantic salmon rivers. Smolt production and optimal spawning - an overview of natural production. Int. Atlantic Sal. Found. Spec. Public Ser. 6:96-119.
- Gray, R.W. and E.M.P. Chadwick. 1984. Assessment of Margaree River salmon stocks in 1983. CAFSAC Research Document 84/36. 11 pp.

- Hayes, F.R. 1949. Report of the Director of Fisheries. App. 1, pt. II. Margaree River Ann. Rept. Dep. Trade and Industry, Nova Scotia. pp. 119-130.
- Jessop, B.M. 1980. Creel survey and biological study of the striped bass fishery of the Annapolis River, 1978. Can. Man. Rep. Fish. Aquat. Sci No. 1566. ix + 20 p.
- Marshall, T.L. 1982. Background and management alternatives for salmon of the Margaree River: a working document for the selection of stock enhancement strategies. Fisheries and Oceans, Halifax N.S. Mimeo. 117 pp.
- O'Neil, S.F., M. Bernard, P. Gallop and R. Pickard. 1987. 1986 Atlantic salmon sport catch statistics, Maritime Provinces. Can. Data Rep. Fish. Aquat. Sci. No. 663. v + 69 p.
- O'Neil, S.F., M. Bernard and J. Singer. 1985. 1984 Atlantic salmon sport catch statistics, Maritime Provinces (Redbook). Can. Data Rep. Fish. Aquat. Sci. No. 530. v + 71 p.
- O'Neil, S.F., M. Bernard and J. Singer. 1986. 1985 Atlantic salmon sport catch statistics, Maritime Provinces. Can. Data Rep. Fish. Aquat. Sci. No. 600. v + 71 p.
- Randall, R.G. 1985. Spawning potential and spawning requirements of Atlantic salmon in the Miramichi River, New Brunswick. CAFSAC Res. Doc. 85/68. 19 pp.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. No. 191. 382 p.

-16-

			MSW		
Year	1SW	Retained	Released	Total	Total
1947	37	363			400
1948	106	704			810
1949	50	332			382
1950	119	320			439
1951	46	424			470
1952	87	204			291
1953	57	291			348
1954	78	298			376
1955	53	258			311
1956	29	90			119
1957	36	136			172
19582	N/A	N/A			334
19592	N/A	N/A			235
19602	N/A	N/A			140
1961	40	49			89
1962	46	410			456
1963	87	212			299
1964	120	289			409
1965	86	254			340
1966	92	165			257
1967	92	210			302
1968	63	197			260
1969	204	136			200
1970	200	21/			299
1971	21	92			113
1972	21 /11	106			147
1973	165	116			281
197/	59	107			166
1975	36	6/1			100
1976	95	82			177
1977	68	1/n			208
1978	25	140			183
1979	605	62	19	81	686
1980	169	130	2	140	309
1991	000	105	2	140	1 039
1201	202	103	74	170	071
1702	074 70	102	/0 //7	1/2	0/1
1707 1007	1/2	100	4 <i>2</i> 100	147	2/1
1704	140	12	107	121	207
1707	222	U	212	212	222
1906	27) 757	U	/ 54	/ 54	1,049
170/))) 475	U	4U8 500	408	101
1700	422	U	280	280	1,015

Table 2. Salmon angling catch on Margaree River (1947-1988) as compiled by Department of Fisheries and Oceans fisheries officers (DFO statistics).

 $\overline{2}$ Information regarding 1SW and MSW salmon for 1958-1960 are not available.

.sc	8888	
stut		
cense		
ia li		
Scot		
Nova		
uo pi		
base		
1988,		
1984-	11 11 11	
/er,		
e Riv		
rgare		
e Ma		
atch	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ing c		
angli		
laon	11 11 11 11	
• Sa		
ble 3		
Ta	ü	

No. of Inglers Ion Retain Rot Retain Rot Rot 733 191 50 241 9 294 30 4 5,956 0.089 44% 56% 7131 520 110 509 0 1,130 3 7,824 0.219 30% 70% 1,131 622 126 1,215 1,215 1,215 3 7,824 0.219 30% 70% 1,441 826 152 748 0 2,436 0.334 23% 77% 1,44			507			NCH			Effc	ort	Doorod	4 000 0
Olders Retain Retain Retain Retain Retain Retain Retain Unknown down do	ų.		¥()			MCM			Bod-		rercer	ađen
678 184 4.8 232 9 285 294 4 5,956 0.089 44% 56% 793 371 102 247 9 294 4 5,659 0.089 44% 56% 793 371 102 473 0 1,130 1,130 3 7,324 0.219 30% 70% 7131 622 126 748 0 1,215 1,215 3 7,324 0.219 30% 70% ,131 622 132 782 0 1,215 1,215 30% 70% 70% ,41< 826 132 782 0 2,656 2,656 2,656 0.334 23% 77% ,41< 826 151 977 1,857 1,857 0 34% 66% ,441 826 1,969 0.163 0.163 0.163 23% 77% ,441 826 1,969	u. u nglers	Retain	Release	Total	Retain	Release	Total	Unknown	days1	CUE	1SW	MSM
191 50 241 9 294 303 4 6,669 0.082 44% 56% 793 371 102 473 0 1,130 1,130 3 7,324 0.219 30% 70% 713 539 110 509 0 1,215 1,215 3 7,324 0.219 30% 70% ,131 622 126 748 0 1,215 3 7,824 0.231 30% 70% ,131 622 126 748 0 2,556 2,556 2,556 2,536 23% 77% ,441 826 151 977 0 1,857 1,857 0 334 23% 77% ,441 826 151 977 0 1,857 1,857 0 34% 66% ,441 826 151 977 0 12,887 0.234 23% 75% ,441 <td< td=""><td>678</td><td>184</td><td>48</td><td>232</td><td>6</td><td>285</td><td>294</td><td>4</td><td>5,956</td><td>0.089</td><td></td><td></td></td<>	678	184	48	232	6	285	294	4	5,956	0.089		
793 371 102 473 0 1,130 1,130 3 7,324 0.219 30% 70% 399 110 509 0 1,215 1,215 1,215 3 7,324 0.219 30% 70% ,131 622 126 748 0 2,522 2,536 2 9,724 0.336 23% 77% ,41 650 132 782 0 2,636 2,636 2,636 2,636 2,636 2,334 23% 77% ,44 826 151 977 0 1,857 1,857 0 34% 66% ,44 826 151 977 0 1,857 1,857 0 34% 66% ,44 826 151 974 0 1,857 0 23% 66% ,44 826 1,857 0 1,857 0 134% 66% ,44 74		191	50	241	6	294	303	4	6,669	0.082	44%	56%
399 110 509 0 1,215 1,215 1,215 30% 70% ,131 622 126 748 0 2,522 2,522 2,522 2,536 2356 77% ,41 650 132 71 0 2,636 2,636 2 0.336 23% 77% ,441 826 151 977 0 1,857 1,857 0 34% 66% ,441 826 151 977 0 1,857 1,857 0 34% 66% ,441 826 151 977 0 1,857 0 12,887 0.220 34% 66% ,441 826 151 977 0 1,857 0 12,887 0.220 34% 66% ,1<	793	371	102	473	0	1,130	1,130	٣	7,324	0.219		
131 622 126 748 0 2,522 2,522 2,522 2,524 0.336 778 650 132 782 0 2,636 2,636 2,636 2,634 23% 778 441 826 151 977 0 1,857 1,857 1,857 0 34% 66% ,441 826 151 977 0 1,857 1,857 1,857 0 32,887 66% ,441 826 151 977 0 1,857 1,857 0 12,887 0.220 34% 66% ,44 826 151 977 0 1,746 1,746 N/A 15,080 0.163 29% 71%		399	110	509	0	1,215	1,215	3	7,824	0.221	30%	70%
650 132 782 0 2,636 2,636 2 10,232 0.334 23% 77% ,441 826 151 977 0 1,857 1,857 0 12,887 0.220 34% 66% ,441 826 151 977 0 1,857 1,857 0 12,887 0.220 34% 66% N/A 704 N/A 1,746 1,746 1,746 N/A 15,080 0.163 29% 71%	, 131	622	126	748	0	2,522	2,522	7	9,724	0.336		
,441 826 151 977 0 1,857 1,857 0 12,887 0.220 34% 66% N/A 704 N/A N/A 0 1,746 1,746 N/A 15,080 0.163 29% 71%		650	132	782	0	2,636	2,636	2	10,232	0.334	23%	77%
N/A 704 N/A N/A 0 1,746 1,746 N/A 15,080 0.163 29% 71%	1,441	826	151	776	0	1,857	1,857	0	12,887	0.220	34%	66%
	N/A	704	N/A	N/A	0	1,746	1,746	N/A	15,080	0.163	29%	71%

¹ Rod-days are defined as one angler fishing for any portion of one day.

2 Preliminary

-18-

Year	Summer	Fall	Total	% Summer
194 7 –1978				
Mean MSW	87	137	223	39
1 SW	37	35	71	51
%MSW	70	80	76	
1979–1983				
Mean MSW	32	105	137	23
1SW	400	422	822	49
%MSW	7	20	14	
1984 MSW	27	94	121	22
1SW	81	67	148	55
%MSW	25	58	45	
1985 MSW	144	168	312	46
1 SW	116	107	223	52
%MSW	55	61	58	
1986 MSW	297	457	754	39
1500 1150	196	99	295	66
%MSW	58	81	72	
1987 MSW	123	285	408	30
15W	268	85	353	76
%MSW	32	77	54	70
1988 MSW	293	287	580	51
1SW	287	148	<u>4</u> 35	66
%MSW	51	66	57	50
<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2,	

Table 4. Number of 1SW and MSW salmon caught in summer and fall components of the Margaree River sports fishery (DFO statistics).¹

1 Detail for all years may be found in Chaput and Claytor (1988).

Table 5. (Ubservec Mas lost MSM rele	d salmon cal t. K/RH, ci tased by all	tch, effort, atch is sum methods inc	, and catch pe of kept 15W a cluding lost.	r unit effort nd MSW relea: Numbers in p	: for Forks Pc sed by removir arentheses ar	ol cree ng hook l e standa	l survey. by hand. rd errors.	RH, K/ALL	removed , catch	hook by is sum o	hand; LO if kept 1	, fish SW and
t t t t t t t t t t t t t t t t t t t	1) 4) 4) 4) 4) 4) 4) 4) 4)	97 49 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40	5 F F F F F F F F F F F F F F F F F F F		Forks Pool	Creel	48 49 49 49 49 49 49	r	1) 11 11 11 11		e 41 41 41 41 41 41 41 41 41 41 41 41 41	1) 1) 1) 1) 1) 1) 1) 1) 1)	
					Effor	ų	1SW	MSW		Fish/Ro	d-day	Fish	/Hour
Season		Availabie days	vo. creeu days	No. anglers interviewed	Rod-days	Hours	Kept	R	F0	K/RH	K/ALL	K/RH	K/ALL
SUMMER													
June 1 - Aı	ugust 31												
Weekday	AM	64	20	169	169(1.07)	420(4.25)	4	3	~	0.041	0.047	0.017	0.019
	Md	64	21	201	198(1.30)	488(3.90)	13	4	9	0.086	0,116	0.035	0.047
Weekend	AM	28	10	95	95(2.39)	225(7.01)	~	2	0	0.053	0.053	0.022	0.022
	Md	28	10	<i>1</i> 9	78(1.74)	248(8.18)	~	0	0	0.038	0,038	0.012	0.012
Total		92	61	544	540(0.73)	1380(2.55)	23	6	7	0.059	0.072	0.023	0.028
FALL													
September (1 - Octo	ber 15											
Weekday	AM	30	11	122	122(1.22)	329(4.25)	5	-	-	0.049	0.057	0.018	0.021
	М	30	11	80	80(1.64)	217(4.99)	~	<i>وب</i>	6	0.025	0.038	0.009	0.014
Weekend	AM	15	4	85	85(2.56)	221(3.46)	~	2	ŕ	0.059	0.094	0.023	0.036
	M	15	ŝ	54	54(4.72)	129(10.03)	0	-	0	0.019	0.019	0,008	0.008
	TOTAL	45	31	341	341(1.29)	896(3.38)	6	5	2	0.041	0,056	0.016	0.021
1987 FALL		45	30	284	284	676	~	20	13	0.081	0.127	0.034	0.053

-20-

=======================================		ites 95% c =======	ontide =======	nce in	terval.	*****	=====			
				EST	IMATED				Catch	
				Ef	fort				MS	5W
Season		Rod-	days		Hour	S		1SW Kept	RH	LO
SUMMER										
June 1 -	August	31								
Weekday	am Pm	541(603(539–1 600–1	,543) ,606)	344(1 487(1	,335-1 ,479-1	,353) ,495)	13 40	10 12	3 18
Weekend	am Pm	266(221(261– 217–	271) 225)	630(694(614- 675-	646) 713)	8 8	6 0	0 0
Summer To	tal	1,631(1	, 630–1	,632)	4 , 155(4	, 150–4	, 160)	69	28	21
FALL										
September	1 - Oc	tober 15								
Weekday	am Pm	333(218(330- 214-	336) 222)	897(592(888- 581-	906) 603)	13 3	3 3	3 3
Weekend	am Pm	319(162(311- 149-	327) 175)	829(387(818- 359-	840) 415)	11 0	7 3	11 0
Fall Tota	1	1,032(1	,029-1	,035)	2,705(2	. , 698–2	,712)	27	16	17
1987 FALL		887			2,086			8	63	44

Table 6. Estimated effort and salmon catch at Forks Pool, June 1 - October 15, 1988 using creel data (Table 5). Number in parentheses indicates 95% confidence interval.

	1SW		MSW	
YEAR	Summer	Fall	Summer	Fall
1947–1983	26.0(6.3-69.8)	18.7(4.3-50.0)	21.7(0.0-66.7)	14.3(3.8-31.6)
1984	12.3	3.0	33.3	0.0
1985	18.1	2.8	27.1	3.6
1986	15.3	7.1	17.5	11.6
1987	17.2	8.2	30.1	11.2
1988	18.8	12.2	14.7	9.1
Mean 1984-1988	16.3	6.7	24.5	7.1

Table 7. Contribution of Forks Pool to total summer and fall river catch from 1947-1988. Based on DFO statistics. Numbers in parentheses indicate range.

¹ Mean value is given, details for each year found in Chaput and Claytor (1988).

Table 8. Estimated salmo at Forks Pool a catch for 15W 1 including lost. values.	n catch nd total kept MSM See Tal	at Forks Pool river catch. released by h ble 6 for fig	and total river (usi K, 15M salmon kept; F mand; K/ALL, applies t ures used to derive th	ng creel c M, release to 15W kept nis table.	lata), compa d by removi and MSM re Numbers ir	rred to DFO ng hook by h eleased by a parenthese	statistics and; K/RH, 11 methods 3 are 1987
		Forks Pool		Ţ	otal river		
	Cree	el		Creel		L L L	
	K/RH	K/ALL	D T	K/RH	<th></th> <th>canic</th>		canic
June 1 - August 31							
15W MSW	69 28	N/A 49	54(46) 43(37)	367 190	N/A 333	287(268) 293(123)	465 (628) 890 (557)
September 1 - October 15							
15W MSW	27(8) 16(63)	N/A 33(107)	18(7) 26(32)	221(98) 176(563)	N/A 363(955)	148(85) 287(285)	239 (198) 855(1300)

-23-

Observed salmon catch, effort, and catch per unit effort for anglers returning logbooks. RH, removed hook by hand; CL, cut line release; LO, fish was lost. K/RH, CL catch is sum of kept 15M and MSM released by removing hook by hand and cutting line. K/ALL, catch is sum of kept 15M and MSM released by all methods including lost. Table 9.

47 49 89 89 89 89 89 89 89 89 89 89 89 89 89	17 42 42 43 43 43 43 43 43 43 43 43 43 43 43		11 81 83 83 83 83 83 83 83 83 83 83	1 F 1 F 1 F 1 F 1 F 1 F 1 F 1 F	4) 4) 4) 4)	Cato	r L		1 93 93 93 93 93 93 93 93		53 53 59 59 59 59 59 59 59 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	to to to to to to to to to to to to to t	40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	11 61 61 61 61 61 61
		Effor	ب	1St	-			MSI	2		Fish/Roc	J-day	Fish/I	hour
Date	Responding	Rod-days	Hours	Kept	RH	[0]	표	ರ	F0	lh k	K/RH,CL	K/ALL	K/RH,CL	K/ALL
June 1 - Aug. 31	16	308	1566	27	5	14	55	5	21	2	0.300	0.419	0.059	0.082
Sept. 1 - Oct. 15	17	205	1023	16	٢	4	47	0	14	0	0.341	0.439	0.068	0.088
Total	22	513	2589	43	12	18	102	ŝ	35	2	0.316	0.427	0.063	0.085

Table 10.	Summary of ratios and creel correction factors used in adjusting
	DFO and Nova Scotia license stub return 1SW and MSW catch statistics $N/0$: Trappet not operated in summer 1988
	scalification was interesting the solution of

	======================================	22223232222	MSW		TRAPNET
	Creel:DFO correction factor	Logbook MSW:1SW	Creel river MSW:1SW	Creel:DFO correction factor	MSW:15W
1988					
Summer Fall	1.30 1.50	2.22 2.94	0.52 0.80	0.765 0.62	N/O 1.00
1987					
Fall	1.20	4.00	5.74	2.00	6.60

Table 11. Adjusted DFO and Nova Scotia license stub (STUB) return 1SW and MSW catch statistics. Values given in Table 10 have been applied to catch estimates. 1SW creel DFO: correction, logbook MSW:1SW, and Creel river MSW:1SW have been applied to 1SW catch estimates; MSW creel:DFO correction has been applied to DFO MSW catch estimates Stub values for 1988 are preliminary. Stub summer and fall catches calculated using proportions caught in summer and fall using DFO statistics.

	1	SW				MSW
Season	Catch estimate	Adjusted Creel:DFO correction factor	Adjusted Logbook MSW:1SW	Adjusted Creel river MSW:1SW	Adjusted Creel:DFO correction factor	Catch estimate
1988						
Summer DFO STUB	287 465	3731 N/A	828 1,032	194 242	190 ¹ N/A	293 890
Fall DFO STUB	148 239	2221 N/A	653 703	178 191	1781 N/A	287 856
1987						
Fall DFO STUB	98 198	118 N/A	472 792	677 1,137	570 N/A	285 1,300

¹ Adjusted sport catch determined to be most reliable.

TRAF Tag Pei	P riod T	agged `ish	Total fish			ANC Tag F	al ING Period	Tagged fish	Total fish	
923 9;	24-1014 r	recovered Rj	recovered Cj	Cj/Rj	Recovery Period	902-923	924-1014	recovered Rj	recovered Cj	Cj/Rj
	0 2	۶ 4	60 73	20.0 18.25	903- 924 925-1015	2	0	2 4	38 39	19.0 9.75
	8	7	1		Tagged fish recovered	Ri 4	7	9	;	1
	94	١	ł	1	Total fish tagged Mi	94	124	١	ł	\$ } }
41	0.0	ı	ł		Mi/Ri	23.5	62.0	ı	2	1 1 1
chaefer -923	Estimate 924-1014	TOTAL				Schaefer 902-923	r Estimate 924-1014	TOTAL		
87.66	0 1716	672 2125			903- 924 925-1015	893 458	0 1209	893 1667		
-	1716	2797			TOTAL	1351	1209	2560		
e 134/8 =	2529 95% C.I. (1	405-7226)			Peterson Es M=218 C= 77 R= 6	timate 219 X 78/7	= 2440 95% C.I. (1303-7765)		
	-923 -923 -923 -923 -923 -923	0 2 2 94 47.0 47.0 47.0 47.0 294-1014 -923 924-1014 1 1716 1 1716 1 1716 1 1716 1 34/8 = 2529 134/8 = 2529	Rj 0 3 2 4 4 - 4 - 7 - 7 - 4 4 	RJ CJ 0 3 60 2 4 73 2 4 73 2 7 94 - 94 - 94 - 94 - 47.0 - -923 924-1014 TOTAL -923 924-1014 TOTAL -923 924-1014 TOTAL -923 924-1014 TOTAL 1 1716 2125 1 1716 2125 1 1716 2797 e 1716 2797 134/B = 2529 95% C.I. (1405-7226)	RJ CJ CJ CJ/RJ 0 3 60 20.0 2 4 73 18.25 2 7 - - 2 7 - - 94 - - - 94 - - - 94 - - - -923 924-1014 TOTAL - -923 924-1014 2125 - 1 1716 2125 - - - - - - - - 134/B = 2529 - 2793 - 95% C.I. (1405-7226) - - - -	Rj Cj Cj/Rj Period 2 4 73 18.25 925-1015 2 4 73 18.25 925-1015 2 7 1agged fish 2 7 1agged fish 94 - - tagged fish 94 - - - tagged fish 10 47.0 - - - tagged fish - 47.0 - - - tagged fish - 47.0 - - - fagged fish - 47.0 - - - fagged fish - 1116 2125 903-924 903-924 1 1716 2125 903	RJ CJ CJ CJ/RJ Period 902-923 2 4 73 18.25 925-1015 2 2 4 73 18.25 925-1015 2 2 7 1agged fish 2 2 7 1agged fish 2 94 - tagged Mi 94 47.0 - tagged Mi 94 47.0 - tagged Mi 94 23.5 924-1014 101AL 23.5 902-923 924-1014 101AL 2125 903-924 893 9 1716 2125 903-924 893 9 1716 2125 925-1015 458 1 1716 2797 101AL 1351 1 1716 2795 925-1015 458 8 6 935-924 919	Rj Cj Gj/Rj Period 902-923 924-1014 2 4 73 18.25 925-1015 2 2 0 2 4 73 18.25 925-1015 2 2 0 2 7 18.25 925-1015 2 2 0 94 - - 18.25 925-1015 2 2 0 94 - - - - - 19.25 924-1014 2 47.0 - - - - 19.25 924-1014 124 -923 924-1014 101AL 23.5 62.0 0 922-923 924-1014 -923 924-1014 101AL 1351 1209 1209 1 1716 2.125 921-1015 458 1209 1 1716 2.73 925-1015 458 1209 1 1716	Rj Cj Cj/Rj Period 902-923 924-1014 Rj 2 4 73 18.25 925-1015 2 0 2 2 4 73 18.25 925-1015 2 2 4 2 4 73 18.25 925-1015 2 2 4 2 7 19.25 925-1015 2 4 2 7 - 19.25 925-1015 2 4 94 - - - - tagged fish 2 6 94 - - - tagged fish 94 124 - 47.0 - - - tagged fish 34 124 - 23 924-1014 101AL 23.5 62.0 - - 20 647 2 8 93 929 16104 1716 2155 <td< td=""><td>RJ GJ GJ/KJ Period 902-925 924-1014 RJ GJ GJ 2 4 73 18.25 925-1015 2 2 3 33 2 4 73 18.25 925-1015 2 2 4 39 2 7 18.25 925-1015 2 4 39 94 - - - 18.25 925-1015 2 6 - 94 - - - 190gd fish 94 124 - - - 94 - - - ML/Ri 23.5 62.0 - - - 923-1014 101AL 23.5 62.0 -<</td></td<>	RJ GJ GJ/KJ Period 902-925 924-1014 RJ GJ GJ 2 4 73 18.25 925-1015 2 2 3 33 2 4 73 18.25 925-1015 2 2 4 39 2 7 18.25 925-1015 2 4 39 94 - - - 18.25 925-1015 2 6 - 94 - - - 190gd fish 94 124 - - - 94 - - - ML/Ri 23.5 62.0 - - - 923-1014 101AL 23.5 62.0 -<

Table 12. Schaefer and Peterson estimates from trapnet and angling data. A 15% tag removal factor was used to reduce tags available in trannet estimate and a 26% factor was used in anotion estimate.

-26-

Table 13. Nun per	bers of 1: iod. Numb	3M and MSM salmo ers in parenthese:	n determiner s are percen	l from MSW tages of 15	and 15W per M and MSM se	centages in trapre Umon for each taggi	t; for each tagging ng period.
		Numbers	s of 15W and	MSW from 1	rapnet propc	rtions	
	LOWI	ER TRAP			ANGL	ING	
	Tagging I	beriod			Upper and Tanaina De	Lower Traps	
	902-923	924-1014	TOTAL		902-923	924-1014	TOTAL
1 SW MSW	42(63.6) 24(36.4)	43(39.1) 67(60.9)	85 91	1SW MSM	85(68.5) 39(31.5)	58(35.6) 105(64.4)	143 144
TOTAL	<u>66</u>	110		TOTAL	124	163	
	Est	cimate			Esti	mate	
	902-923	924-1014	TOTAL		902-923	924-1014	TOTAL
1SW MSW	688 393	671 1045	1359 1438	1SW MSM	925 426	430 779	1355 1205
TOTAL	1081	1716	2797	TOTAL	1351	1209	2560

-27-

Teesing	Non-lo angl 67% re	gbook ers ported	Adju tag re from o	isted Sturns Sthers	Logt ang 100% re	book lers eported	Tot estin tags re	al nated eturned
Period	15W	MSW	1 SW	MSW	1SW	MSW	1SW	MSW
830- 913	3	1	9	2	13	3	16	4
914- 929	1	0	2	3	3	4	4	4
930-1014	1	1	0	0	0	0	1	1

Table 14. Tags returned from non-logbook and logbook anglers on Margaree River, 1988.

Tagging	Fi tag	sh ged	Adju tags	sted (26%)1	Е	xploitati rate (%)	on
Period	15W	MSW	1SW	MSW	1SW	MSW	ALL
830- 913	74	26	55	19	29	21	27
914- 929	52	38	38	28	11	14	12
930-1014	47	91	35	67	3	1	2
TOTAL	173	155	128	114	16	8	12

Table	15.	Numbers	of	1SW	and	MSW	salmo	on tag	ged	in t	hree	tagging	periods.
		Exploita	atio	n rat	te d	ietern	nined	using	adj	usted	tag	s/total	estimated
		tags ret	urn	ed (T	able	14).							

1 (26%) refers to estimate of tags lost prior to recapture in angling fishery.

Table 16. Estimated Atlantic salmon egg deposition in the Margaree River A) from 1947-1988 using non-adjusted DFO statistics and from 1987-9188 for adjusted DFO statistics. Section B provides egg deposition based on spawners calculated from mark-recapture experiment. Exploitation rates (20.6 and 37.9%) used in past assessments have been used to estimate potential MSW and 1SW salmon spawners. Fecundity rates used to calculate egg deposition were 6,482 eggs/MSW and 330 eggs/1SW. Egg deposition requirements are 6,714,600 eggs. * indicates years in which spawning requirements have been met. N/C, no collection made; N/A, data not available.

A)				Eggs	X 10 ⁶			
		Collected	MSW	1SW		MSW	1SW	
	Year	for hatchery	(20.6)	(20.6)	Total	(37.9)	(37.9)	Total
	1947	5.00	9.07	0.05	4.12	3.86	0.02	-
	1948	4.50	17.58	0.13	13.21*	7.48	0.06	3.04
	1949	2.80	8.30	0.64	6.14	3.58	0.03	0.76
	1950	N/C	7.99	0.15	8.14*	3.40	0.06	3.46
	1951	N/C	10.59	0.58	11.17*	4.50	0.02	4.52
	1952	N/C	5.09	0.11	5.20	2.16	0.05	2.21
	1953	N/C	7.27	0.73	8.00*	3.09	0.03	3.12
	1954	N/C	7.45	0.99	8.44*	3.16	0.04	3.20
	1955	0.50	6.44	0.67	6.61	2.74	0.03	2.27
	1956	3.50	2.25	0.76	-	0.95	0.02	-
	1957	0.90	3.40	0.46	2.96	1.45	0.02	0.50
	1958	1.00	N/A	N/A	N/A	N/A	N/A	N/A
	1959	0.50	N/A	N/A	N/A	N/A	N/A	N/A
	1960	1.50	N/A	N/A	N/A	N/A	N/A	N/A
	1961	2.00	1.23	0.51	-	0.52	0.02	-
	1962	0.30	10.24	0.51	10.45*	4.36	0.02	4.08
	1963	1.10	5.30	0.11	4.31	2.25	0.05	1.20
	1964	0.40	7.22	0.15	6.97*	3.07	0.07	2.74
	1965	0.60	6.35	0.11	5.86	2.70	0.05	2.15
	1966	0.40	4.12	0.12	3.84	1.75	0.05	1.40
	1967	0.20	5.24	0.12	5.16	2.23	0.05	2.08
	1968	0.40	4.92	0.08	4.60	2.09	0.03	1.72
	1969	0.35	3.40	0.26	3.31	1.45	0.11	1.21
	1970	0.20	5.35	0.11	5.26	2.28	0.05	2.13
	1971	0.05	2.30	0.03	2.28	0.98	0.01	0.94
	1972	0.10	2.65	0.05	2.60	1.13	0.02	1.05
	1973	0.10	2.90	0.21	3.01	1.23	0.09	1.22
	1974	N/C	2.67	0.07	2.74	1.13	0.03	1.16
	1975	0.05	1.60	0.05	1.60	0.68	0.02	0.65
	1976	N/C	2.05	0.12	2.17	0.87	0.05	0.92
	1977	N/C	3.50	0.09	3.59	1.48	0.04	1.52
	1978	0.10	3.95	0.03	3.88	1.68	0.01	1.59
	1979	N/C	2.15	0.77	2.92	0.99	0.33	1.32
	1980	0.10	3.51	0.21	3.62	1.50	0.09	1.49
	1981	0.05	3.69	1.14	4.78	1.70	0.50	2.15
	1982	0.20	4.97	0.88	5.65	2.39	0.37	2.56
	1983	0.10	4.00	0.09	3.99	1.86	0.04	1.80

			Eggs	X 10 ⁶			
Year	Collected for hatchery	MSW (20.6)	1SW (20.6)	Total	MSW (37.9)	1SW (37.9)	Total
1984	0.10	3.73	0.19	3.82	1.99	0.08	1.97
1985	0.15	9.82	0.28	9.95*	5.34	0.12	5.31
1986	0.15	23.73	0.38	23.96*	12.89	0.15	12.89*
1987	0.15	12.84	0.45	13.14*	6.98	0.19	7.02*
1988	0.30	18.25	0.55	18.50*	9.92	0.10	9.72*
			Adjuste	d			
1987	0.15	25.68	0.53	26.06*	13.96	0.23	14.04*
1988	0.30	11.61	0.76	12.07*	6.31	0.32	6.33
		Ma	ark-Recap Spawner	ture s			
	MSW			1SW		T	OTAL
19881	18.8	3		1.07		1	9.90
19882	18.9	0		1.01		1	9.91

Table 16 (continued)

B)

Angling removals based on non-adjusted DFO catch.
2 Angling removals based on adjusted DFO catch.

		1SW		MSW
Season	Wild	Hatchery	Wild	Hatchery
SUMMER	***			
June 1 - Aug. 3	1			
Angling	44	19	33	17
Broodstock	5	5	44	18
Trapnets	18	0	2	1
Summer Total	67	24	79	36
FALL				
Sept. 1 - Oct. 3	21			
Angling	18	4	36	4
Trapnets	178	2	170	1
Fall Total	196	6	206	5

Table 17.	Numbers of wild and hatchery salmon from summer and fall sampling
	on Margaree River in 1988. Numbers in parentheses indicate
	percentages of wild and hatchery fish for each category.

		======================================		MSW
Season	Wild	Hatchery	Wild	Hatchery
1987	, , , , , , , , , , , , , , , , , , ,			
SUMMER	37	63	60	40
FALL	69	31	96	4
TOTAL ¹	45	55	85	15
1988				
SUMMER	74	26	69	31
FALL	97	3	98	2
TOTAL ¹	82	18	83	17

Table 18.	Percentage of wild and hatchery fish returning to Margaree River
	in 1987 and 1988. Percentages are based on angling, broodstock,
	and trapnet samples.

1 Total percentages calculated from angling catches in Table 4.

Table 19.	Numbers of salm COB, Cobequid; M	on smolt an ER, Mersey.	d parr relea	sed to Marg	aree River si	ince 1976.	MAR, Margar	ee; RB, Rocky	/ Brook;
			Smo.	lt				IT	
	Rearind	2+		+			+	đ	
Year	location	MAR	RB	MAR	ßB	MAR	82	MAR	RB
1976	MAR	8,971							
1977	MAR					5,022			
1978 1979	COB COB		15,250 15,927 ¹						
1980	COB		14,960						
1981	COB		15,950						
1982	MER			8,481		1,098			
1983	COB	13,486						9,853	
	MAR	3, 783							
1984	MAR				10,1952				
	MER			14,483					
	COB	11,210							
1985	MAR	· · · · · · · · · · · · · · · · · · ·		2,669	1,303	5,882	834		
1986	COB	13,660		2 105		7,820 8 75/	5,860	25 NNN	
	COB	8,820	9,684	6				6,750	
1987	MAR	6,369		8,599		5,400		40,000	
	COB	18, 337						12,429	
1988	MAR	4,136		22,313		2,201		40,000	
	COB	12, 785						6,000	

1 Millbank broodstock 2 Rocky Brook × Margaree broodstock

-34-

				Ye	ar			
Season		198	В	198	7			1986
			Sr	nolt age			Smolt age	
		Smol Age ALL	t 2	3	ALL	2	3	ALL
June 1 - Aug. 31	N MEAN STD	108 54.4 2.75	45(14) 54.3 2.96	21(15) 54.4 3.61	98 54.2 3.26		1 56.0 	
Sept. 1 - Oct. 30	N MEAN STD	195 56.0 3.01	14(12) 55.0 2.54	6(5) 55.5 4.09	20 55.2 2.98	3 59.0 2.65		
Total	N MEAN STD	303 55.4 3.01	59(26) 54.4 2.86	27(20) 54.6 3.67	118 54.4 3.22			4 58.3 2.63

Table 20.	Mean lengths and age for virgin 15W salmon sampled on Margaree
	River 1986-1988. Parentheses indicate number of wild fish
	sampled. 1988 samples have not yet been aged.

sizes.	1988	samples	have not y	et been a	ged.		,				-			-
*************	1 1 1	, 1 1 1 1 1 1 1 1	, 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1		, 1 1 1 1 1 1 1 1 1 1		Year	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					
		1988				1987						196	36	
						Sea Ag	e					Sea	Age	
					2							2		
				Smo.1	t Age			Smolt A	де		Smolt Ag	e	Smol	t Age
Season			2	×	4	ALL	5	3	ALL	7	3	ALL	2	ALL
June 1 - Aug. 31	z	21	32(25)	8(6)		45	(3)	:	~	19(4)	12(11)	34	(2)	2
	MEAN	80.3	75.0	74.1		74.6	84.3	1	84.3	76.7	76.1	76.5	79.0	79.0
	STD	8.88	3.79	3.31		3.51	8.96	1	8.96	3.27	3.03	3.05	12.73	12.73
Sept. 1 - Oct. 30	z	171	49(47)	24(23)	(1)	87	(3)	(2)	6	1 1 7	Ì	1 1 1	1 1 1	1
	MEAN	79.2	76.2	76.9	71.0	76.5	93.3	90.0	90.7		1	1		1
	STD	8.38	3.84	4.71	ļ	4.11	4.51	14.14	5.92	1 1 1	1 1 1	1	ł 1	1
Total	Z	192	81 (72)	32(29)	(1)	132	(9)	(2)	12	19	12	34	2	2
	MEAN	79.3	75.7	76.2	71.0	75.9	88.8	90.0	89.1	76.7	76.1	76.5	79.0	79.0
	STD	8.42	3.84	4.52	1	4.00	8.04	14.14	6•95	3.27	3.03	3.05	12.73	12.73

Table 21. Mean lengths and age for virgin MSM salmon sampled on Margaree River 1986-1988. Numbers in parentheses are wild fish sample

are	at	
ses	age	
thes	sea	
ILEN	te	
о В	dice	
S	ii	
aber	bers	
Ż	5	
87.	ent	
61-1	nba	
1986	Subs	
/er	<u>.</u>	
Riv	ping	
aree	med	
arg	st s	
N	fir	
eq	at	
ampl	age	
SUC	tes	
almc	gnat	
S R	desi	
ž	ъ	
Man M	ea 9	
15I	ŝ	
ning	i.	
medi	qui	
at s	st n	
ede	Fir	
or		
ge f	size	
nd a	le	.6
З С	samp	nin
ngti	ЧS,	spar
n le	d fi	eat
Mean	will	repi
22.		
ble		
Ta		

						Year				
				19	187				1986	
					Sea Age			1	Sea Age	
Season			12	13	23	23		24	245	
				5	molt Age			Į	 Smolt Age	
		3	UNK	2	3	NNK	2	3	2	
June 1 - Aug. 31	z						(1)		(1)	
	MEAN						90.0		77.0	
	STD						}		8 9 9	
Sept. 1 - Oct. 30	Z	(1)	-	(1)	(1)	(2)	(1)	(1)	1	
	MEAN	60.0	78.0	79.0	81.0	91.0	92.0	105.0		
	STD	1 8 1	ļ	9 1 1	1	1.41	5	1	5 8 1	
TOTAL	Z	(1)	~~	(1)	(1)	(2)	(6)	(1)	(1)	
1	MEAN	60.0	78.0	79.0	81.0	91.0	91.0	105.0	77.0	
	STD	1	ł	1	8 9 1	1	1	8	8 2 2	

Stock	Stage	Number tagged	Release date	Recover y date	Recovery location	Ave. FL(cm)	wt. (Kg)	Sex M:F	Number recovered
Rocky Brook (h)	2+ smolt	13,279	May 1986	June 25,26, 1987	Twillingate, Nfld.	53.0	1.85	1:0	2
				Aug. 31 - Sept. 1 1987	Sisimiut 18, Greenland	1		ł	m
				Sept. 2,4, 1987	Nuuk 1D, Greenland		8 8 9 1	ł	m
				Aug. 29, Sept. 2 1987	Paamiut 1E, Greenland	66.0	2.99	•	٣
				Aug. 29, 1987	Narssaqif 1F, Greenland	66.0	3.18	ł	-
				Aug. 25, 1987	Makkovik, Labrador	67.0	2.72	ł	6-
Margaree	2+ smolt	006	May 1988	Aug. 29, 1987	Sisimiut 1B, Greenland	62.0	1.9	ł	~
Margaree	2SW bright	116	Oct. 1987	June 25, 1988 Aug. 8, 1988	Bull Cove, PQ St. Augustine,	0d			
				June 28, 1988	St. Juliens Nfld.	1 8 8		1 1 1	-
				Aug. 8, 1988	Cook's Harbour Nfld.	2 2 3 0	8 8 8 1	1	~

Table 23. Tagged fish from Margaree system recovered in distant fisheries from 1986~1988.

Fig. 1. Location of trapnets, Forks Pool creel, and broodstock collection sites (Hatchery and McKenzie Pools), Margaree River, 1988. Trapnet L; Lower net. Trapnet U; Upper net.

JANUARY	JANVIER	FEBRUARY	F	EVRIER	MARCH		1	MARS
ton (million, or to part option)	1 2	1 2	3 4 5	6	<u> </u>	1 1)	3 4	<u> </u>
	001 002	032 0	33 034 035 03	36 037		061 062	063 064	1:065
3 4 5 6	7 8 9	7 8 9	10 11 12	13	6 7	8 9 1	0 11	12
10 11 12 13	14 15 16	14 15 16	17 18 19	20	13 14	<u>068 069</u> 15 16 1	7 18	19
010 011 012 013	014 015 016	045 046 04	47,048,049,05	0 051	073 074	075 076	077 078	3 079
017 018 019 20	21 22 23	21 22 23	24 25 26	27	20 21	22 23 2	24 25	26
25 26 27	28 29 30	28 29	<u>, , , , , , , , , , , , , , , , , , , </u>	, 038	27 .28	29 30 3	31 : 31	000
3 025 026 027	028 029 030	059 060			087 088	089 090	091	L
APRIL	AVRIL	MAY		MAI	JUNE			NIUL
	1 2	1 2 3	4 5 6	7	in communities and	1	3	4
	092 093	122, 123 12	4 125 126 12	7 128		153	54	
3 4 5 6	7 .8 9	8 19 10 129 130 13	11 12 13	14	5 - 6		10	
10 11 12 13	14 15 16	15 16 17	18 19 20	21	2 13 1	4,15 1	6 17 /	18
101 102 103 104	105 106 107	136 137 13	8 139 140 14	1 142	64 165	266 167 1	6 18	170
108 109 110 111	112 113 114	22 23 24 143 144 14	_,25_;2627 5_146:147:148	28 8 149	71 72	173 74	75 76	25
24 25 26 27 2	28 29 30 2	29 30 31		1 12	26 29 2	8 29 3		
115,116 117,118	119 120 121	150 151 15	2	da	79	180 / 2		
	JUILLEI	AUGUST		AOUTIS	SEPTEMBER	· · · · · · · · · · · · · · · · · · ·	SEPTEN	IBRE
	1.	1 1 2	3 44 45			5 M24 H10 M18 HUA	2	
	784	214 24	2. 2. 2.	219	allandinano es		45,20	247
85 86 87 188	89 190	221 22	2223224 20		48 49	50	52 253	
10/11/12/11/1	4 15 1	15	17 18 19	203 1	1 12 11	3 14 15	6 16 1	7.
18/09/94/795	196 198	227 228 229	230 25 230	233	80 200 2	257 258	232	261
199 200 201 202	204 203	34 235 236	237 428 239	20 2	262 63 2	64 265 2	267	
	8 29 30 2	8 29		2	5* 26	29		
OCTOBER	OCTORPEIN	241 242 243	NOVE		ECEMPED	2/12/2/2/2	73-2/4 DECEM	DOC
LA SAR MON LUNITIES MAN HE VENTING	es actor statur partas		INCAE/	Tat avisa	ECEMBER		DECENT	
		1	2 3 4	5		1	2 3	
	7 48 46	7 8	<u>307 308 309</u> 9 10 11	$\frac{310}{12}$	5 6	7 8	<u>36 337 :</u> 9 1	338
276 277 278 279	80 202 3	311 312 313	314 315 316	317 3	39 340 3	41 342 34	13 344	345
9 10,11 12 13	3/14/175/11	3 14 15	16 17 18	19 11	1 12 13	3 14 15	16 1	7
16 17 18 19 20) 21 22 20	0 21 22	23 24 25	26 18	40 347 3 3 19 20	4 <u>8 349 35</u>) 21 22	23 2	4
290 291 292 293 2	94 295 296 3	25 326 327	328 329 330	331 3	53 354 3	55 356 35	7 358 3	359
: 1월 / 25 26 27 역 /행 299 300 3	/ 28 29 28	3 27 29 32 333 334	30	2	5 26 27 60 361 36	7 28 29 32 363 36	30 3	1
, 200.000_0	01 002 000 0				00 30 30	52 505 50	- 300 S	000

Fig. 2. Days and time periods for Forks Pool cree1. Upper triangle denotes AM and lower triangle PM cree1.

Angler | Begin | End | Catch | Not Kept | Adipose | Fin | Fork | Fishing|Fishing| G/S | Kept | RH | CL | LO | P/A | Lgth | Wght | Sex |

ANGLER INTERVIEW FORM Day Month

.

学习的复数是没有实现的现在分词

Fig. 3. Angler interview form used in Forks Pool creel, 1988.

,

For CATCH, code as follows: Grilse - G Salmon - S NO Catch - NC Don't Know = ?

CATCH INFORMATION

check off 'LO' column under 'NOT REPT'

Scale Sample | Tag #

Comment

Insection aust be filled each time These columns aust be filled each time Grilse Retained Salmon And Grilse Released Date Fishing Time Adipose Adipose Release Method Location Comments Date Stort Finish Location Far Sex Far Location Grilse Adipose Release Method Location Comments AV/PM AV/PM AV/PM Location Far Location Grilse Release Release Method Location Comments AV/PM AV/PM Location Far Location Grilse Grilse Release Release Location Comments Autopose Location Far Location Grilse Release Release Location Comments Location Far Location Grilse Release Release Location Comments Location Grilse Release Release Release Location Comments Location Location Grilse Release Location <t

RECORD ALL DAYS FISHING EVEN IF YOU HAD NO CATCH

.

Fig. 4. Volunteer angling forms used on Margaree River, 1988.

÷

VOLUNTEER ANGLING LOGBOOK

Fig. 5. Forecast of Fall 1989 MSW DFO sport catch. MSW salmon (i+1)= 3.82 X 1SW salmon (i) - 47.58, R²=0.88, p=0.0178.