Not to be cited without
permission of the authors ${ }^{1}$
Canadian Atlantic Fisheries
Scientific Advisory Committee
CAFSAC Research Document 88/69

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche $88 / 69$

Assessment of the 1987 4WX herring fishery

by

R. L. Stephenson and M. J. Power

Marine Fish Division
Department of Fisheries and Oceans
Biological Station
St. Andrews, New Brunswick EOG 2×0
${ }^{1}$ This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

ABSTRACT

The 1987 4WX herring fishery was predominantly a purse seine fishery and, as in recent years, was dominated by the Japanese roe market. Recorded landings for the stock in 1987 were $101,157 \mathrm{t}$, approximately 25% higher than in 1986. Purse seine logbook analysis showed higher effort and increased catch rates over 1986. The 1983 year-class (age 4) dominated the 4WX stock in numbers and weight caught while the 1985 year-class (age 2) was the largest component in the non-stock (mostly 4Xs) fisheries.

A revised Tarval abundance index based upon 79 stations instead of the traditional 115 was presented. This was calibrated against mature biomass as in previous years. Additional calibration undertaken using the Adaptive Framework Method indicated a high variance in the estimate of population size.

RÉSUMÉ

En 1987, la pêcherie de harengs de 4WX a surtout ētē exploitēe à l'aide de la senne coulissante et, comme dans les dernières annēes, elle a été dominēe par le marchē japonais de la roguē. Les débarquements enregistrēs pour le stock en 1987 ont été de 101157 t, soit environ 25% de plus qu'en 1986. L'analyse des journaux de bord des navires senneurs a rēvēlē un effort de pêche accru et une augmentation des taux de prise par rapport à 1986. La classe d'âge 1983 (âge 4) a dominé les poissons du stock de 4WX en nombre et en poids capturēs, tandis que la classe d'âge 1985 (âge 2) a ēté l'élément le plus important de la pêcherie hors-stock (surtout 4Xs).

Un indice d'abondance larvaire rēvisē fondē sur 79 stations, plutōt que les 115 habituelles, a ētē prēsenté. L'ētalonnage s'est fait par rapport à la biomasse de poissons matures comme dans les annēes antērieures. Un ētalonnage additionnel entrepris à l'aide de la méthode dite "Adaptive Framework" a rēvēlē une variance élevēe dans l'estimation de la taille de la population.

INTRODUCTION

The 1987 herring fishery in NAFO Div. 4WX was similar to that in recent years. The major fishery took place on pre-spawning and spawning aggregations off southwest Nova Scotia (4Xqr; May-October), with smaller fisheries off southern New Brunswick (4Xs; June-January) and off Cape Breton (4W Chedabucto Bay; October-January) (Fig. 1). Purse seine was the major gear type, followed in importance by weir, gillnet, trap, shutoff and midwater trawl (Table 1). The fishery continued to be influenced strongly by markets, and was dominated by the Japanese roe market.

1987 Management Plan

The 1987 Scotia-Fundy Region Herring Management Plan (Appendix 1) established a quota for the purse seine fleet of $117,600 t$ which was allocated among temporal and spatial components of the fishery in the traditional manner (see Table 1 of Appendix 1). In addition, an allowance of 8900 was made for catches by "inshore components" (gillnets, traps and N.S. weirs) of the summer fishery - for a TAC of $126,500 \mathrm{t}$. As in previous years, the N.B. weir and shutoff fishery, considered to rely on non-stock fish (i.e. from the Gulf of Maine), was excluded from the TAC. In a change from recent years, all of the fall $4 X$ purse seine fishery catches (around Grand Manan) were included in the quota.

In a continuing effort to decrease the fishing pressure on the Trinity Ledge spawning component, the plan instituted the closure of a 100 sq mi area around the Ledge (Fig. 2) for 3 d per week during the period Aug. 15Sept. 15.

Description of the Fishery
4W (Chedabucto Bay, Winter) Purse Seine Fishery
The 1987 Management Plan allowed for a fishery of 23,000 t between Nov. 7 (1986) and March 1. The reported catch of 8780 t was considerably lower than the quota because of market limitation. The annual winter acoustic survey of the area (U. Buerkle, pers. comm.) showed a large and persistent group of fish, and purse seine catch rates were high.

4Xs (Bay of Fundy) Fall and Winter Purse Seine Fishery
The Bay of Fundy "fall and winter" fisheries were open from 0ct. 15, 1986 to Mar. 31, 1987. A total of $10,500 \mathrm{t}$ was assigned in two segments: 9000 t before Dec. 31, 1986 and 1500 t after Jan. 1, 1976. A total of 3771 t was recorded from the fall fishery and 1368 from the winter fishery after Jan. 1. The total (5139 t) was higher than in the previous year (3365 t), but similar to that in 1984 and 1985 (Table 3).

4Xgr (Southwest Nova Scotia) Summer Fishery
a) Purse seine

The 1987 Management Plan allowed a fishery between May 1 and Oct. 14, 1987, with a quota of $81,500 t$ plus any uncaught quota from the fall, winter and Chedabucto Bay fisheries. Recorded landings totalled 77,706 t, an increase of approximately $20,000 \mathrm{t}$ over 1986. Approximately 6500 t went to foreign vessels in the 0ver-the-Side Sales (OSS) program but the fishery was again dominated by the roe market. Logbook analysis indicated higher effort than in the previous year and that catch rates increased (Fig. 3).
b) Gilinet

The gillnet segment of this fishery took only 2289 t , continuing a trend (since 1980) of declining landings. Again, the fishery was hampered by a lack of domestic market.
c) Weirs

Nova Scotia weirs recorded 6786 t, approximately three times the 1986 catch and the highest since 1979. This was due to high catch rates combined with favorable market conditions.

4Xs (New Brunswick) Weir and Shutoff Fishery
The New Brunswick weir and shutoff fisheries recorded $27,320 t$, almost what was taken in 1985 and in 1986. Again the weirs of Grand Manan Island dominated and few fish were taken in "inner" weirs (Passamaquoddy Bay, Campobello and Deer Islands and along the shore to Saint John). Fish were generally larger than desirable for the canned sardine market.

Catch Statistics

Reported landings for the 1987 fishery (DFO, Scotia-Fundy Region, Statistics Div. records) are listed by month and gear segment in Table 2 and Fig. 1. Long-term trends in landings by the major gear segments are shown in Table 3 and Fig. 4. Recorded landings for the stock in 1987 were 101, 157 t, approximately 25% higher than in 1986 (Table 4).

ASSESSMENT INPUT DATA

Stock Components

As in previous assessments (e.g. Sinclair and Iles 1981; Stephenson et al. 1987), the $4 W X$ fishery is divided into "stock" and "non-stock" components (Table 2). "Stock" fish are considered to belong primarily to the major SW Nova Scotia spawning groups, but this unit also encompases smaller local stocks (e.g. Grand Manan, Scotts Bay). The "non-stock" component is comprised of:

4Xs (N.B.) weirs) - considered for assessment purposes to be migrants from Division 5 stocks
4Xs (N.B.) shutoffs)
4X miscellaneous - small localized Nova Scotia South Shore stocks caught in $4 \times \mathrm{m}$ gill, $4 \times \mathrm{m}$ trap and bycatches in handline and longline fisheries

4W miscellaneous - 4W fish taken in gear other than purse seine, on the assumption that the fish are from local stocks.

Also, as in previous assessments, those segments of the fishery which span the winter months ($4 W$ and 4 Xs purse seine) are considered on a quota year basis (October 15, 1986-0ctober 14, 1987). All other segments are considered for the calendar year 1987.

Biological Sampling

As in previous years, sampling of commercial catches was stratified by area, gear segment and month (Hunt 1987) following the guidelines of:

1) obtaining as many length frequencies from individual catches as possible; and
2) stratified "detail" samples (two fish per half cm size-class above 24 cm ; one per half cm size-class below 24 cm) to a level of at least 200 fish per area, gear and month.

Sample coverage was high and resulted in 530 length frequencies (93,486 fish) and 14,995 fish analyzed in detail (including ages); however, some cells (area and gear by month) were undersampled according to the previous criteria (Table 5).

Biological samples were matched to landings by gear component on a monthly basis as in previous assessments. Numbers at age from commercial catches were generated on the St. Andrews HP 3000 in the traditional manner, using programs HERNLW02 and HERNAG09. For all gear components except 4 Xq r purse seine, length-frequency samples were applied on a monthly basis.

A correction of 2% was applied to length measurements to account for shrinkage due to freezing. This is within the range values observed in several studies in Scotia-Fundy and Gulf Regions summarized by Hunt et al. (1986).

Since the summer purse seine fishery involves several distinct fishing grounds and markets, including directed effort for ripe (roe) fish, a smaller spatial scale was considered necessary. As in the previous assessment, length frequencies were matched by individual 10^{\prime} square and month. Catches were partitioned by square on the basis of logbook information and where samples and catches did not coincide, length-frequency information from adjacent squares was used.

The age composition of the nominal catch in major gear segments of the fishery is presented in Table 6. The 1983 year-class (age 4) dominated the 4WX stock by number and dominated by weight. Age 2 fish dominated the $4 W X$ non-stock (primarily 4Xs) fishery in number.

Quality of Catch Information
Previous assessments have dealt at length with changes in the quality of catch information from this fishery. In 1984, (and a few preceeding years) misreporting was considerable and an adjusted catch biomass (1.7 times that reported) was used in assessment (Stephenson et al. 1985). In 1985, drastic measures were taken to curb misreporting including:

- an increase in the TAC (to reduce the need or incentive to misreport)
- increased monitoring including nightly verbal hails before landing, as well as collection of delivery slips, purchase slips and log records.
- fragmented (weekly) license scheme.

The result was a significant improvement in the amount and quality of statistical information on which to base the assessment, and it was considered unnecessary to adjust the 1985 catch figures (Stephenson et al. 1986).

In 1986, a monitoring structure similar to that in 1985 (including nightly verbal hails prior to landing and a fragmented license scheme) was implemented, but wharf monitoring was lower. Misreporting was higher than in 1985 (particularly early in the summer purse seine fishery) but decreased later when it was apparent that the TAC and, more importantly, individual vessel quotas would not be met. It was not considered necessary to adjust 1986 catch figures (Stephenson et a1. 1987).

The 1987 TAC was the highest in over a decade and should have eliminated the need to misreport. Still, there were reports (from Fishery Officer hails) of underreporting, particularly in New Brunswick landings. There is again evidence that misreporting decreased as the season progressed. Logbook records of catch for May and June exceeded Statistics totals.

Abundance Indices
a) Larval abundance

The 1986 larval survey of the Bay of Fundy and eastern Gulf of Maine was undertaken between 0ct. 19 and Nov. 13 (E.E. PRINCE 361). Approximately 175 sets were completed (Fig. 5).

The traditional larval abundance index was changed in two ways:
i) Stations were removed from the calculations because they were southwest of Grand Manan (and contained larvae of 5 Y origin) or were not sampled in the 1987 survey.
ii) The index was recalculated as an arithmetic mean which was considered more appropriate than the geometric mean for the survey design.

The resulting index, based upon 79 stations and the traditional one (geometric means of 115 stations) are:

1972	1973	1974	1976	1977	1978	1979	1980	1981	1982

| Arith. mean | 9.4 | 6.6 | 49.5 | 13.5 | 6.3 | 4.5 | 7.1 | 26.2 | 2.7 | 12.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 79 sta

Geom. mean
115 sta
$\begin{array}{llllllllll}2.6 & 2.3 & 7.6 & 4.4 & 1.8 & 1.2 & 2.2 & 4.6 & 1.4 & 3.8\end{array}$

Ratio new/old

3.6	2.9	6.5	3.1	3.5	3.8	3.2	5.7	1.9	3.3

1983	1984	1985	1986	1987

$\begin{array}{lllll}13.1 & 12.6 & 41.8 & 21.3 & 31.2\end{array}$
$3.3 \quad 4.3 \quad 6.6 \quad 6.8$ -
$3.9 \quad 2.9 \quad 6.3 \quad 3.1$ -
The pattern of the two indices is similar. The 1987 value is the third highest in the $16-y r$ series.
b) Purse seine catch rates

The detailed purse seine logbook introduced in 1985 (Power and Stephenson 1986, 1987) was used for the third consecutive year. Coverage was good (84% of catch) as logbook submission was again a condition of license, and information was similar in quality to the previous years. 1987 logs (Table 7) showed an increase in total effort (as measured by searching hours and number of sets) and a slight increase in catch per hour searched over 1986. However, set rate (sets/hour) and catch per set per hour have decreased slightly over 3 yr . The usefulness of CPUE indices could not be evaluated further because of the short time series.
c) Acoustic survey

An acoustic survey of overwintering herring in Chedabucto Bay, N.S. was undertaken in January 1988, as in previous years (e.g. Buerkle 1987); however, an equipment fault, diagnosed after the survey, rendered the results unreliable and they were not used in the assessment.

Weights at Age
We have extended the series using average fishery weighted weights at age (Table 8). The 1987 weights at age (mean for stock fish weighted by gear) are:

Age	1987 weights at age (kg)								
	2	3	4	5	6	7	8	9	10
	. 050	. 098	. 153	. 199	. 245	. 274	. 290	. 318	. 350

Catch Matrix

The catch matrix (Table 9, 10) is an extension of the "adjusted" matrix (1973-84 adjustment to account for misreporting, omissions and previous errors: Mace (1985)) used in the previous three assessments (Stephenson et a1. 1985, 1986, 1987).

ESTIMATION OF STOCK SIZE

Traditional Sequential Population Analysis
Examination of the pattern of fishing mortality in recent years indicated a different partial recruitment pattern than has been used in previous assessments (Table 11). A new partial recruitment vector was chosen. As in last year, a value at age 1 was set to give geometric mean recruitment. PRs for ages 2, 3 and 4 were derived from examinations of F at age in recent years of a preliminary cohort run. The old (1986) and new partial recruitment vectors are:

It is clear that a PR of 0.75 is high for age 3 in recent years. The SPA based on the new, lower, age 3 PR projected an age structure similar to that in trawl samples from the 1988 acoustic survey.
$\%$ age 3 of $3+$

SPA @ PR 0.75	61.8
SPA @ PR 0.34	28.4
Survey trawl	20.9

Natural mortality was assumed to be 0.2
Sequential population analysis was calibrated with larval abundance and mature biomass as in previous assessments. However, the larval abundance index was treated as the dependent variable. Tuning, based upon the minimum residual sum of squares from a regression through the origin, indicated a fully recruited 1987 F of 0.1 .

Adaptive Framework Method (AFM)
Additional calibration was undertaken using the Adaptive Framework Method (Gavaris 1988), assuming a linear relationship between larval abundance and SPA derived mature biomass. Five formulations were attempted. The first used the larval abundance index to estimate 10 parameters: 1988 numbers for ages 3-10 and the slope and intercept of regression. Age 10 fishing mortality for 1972-86 was assumed to be the weighted (by numbers) average of those on ages 5-8. Subsequent formulations eliminated the intercept and older ages as estimated parameters. All of these were characterized by high coefficients of variation, and high correlation between adjacent year-classes. A final formulation estimated only two parameters - age 4 population numbers and slope. The 1987 partial recruitment was fixed at that described in the previous section. This is analogous to the traditional tuning method.

The relationship:
Larval abundance $=1.82 \times 10^{-5} *$ mature numbers
had CVs of 20% and 42% on the slope and age 4 numbers, respectively. SPA results are shown in Table 12. 1987 estimates are:

Age:	2	3	4	5	6	7	8	9	10
Pop no									
('000)	3024	2728	4421	1833	347	147	55	25	24
F	0.02	0.03	0.08	0.09	0.09	0.09	0.09	0.09	0.09

Assessment results

The $2+$ population numbers (numbers $\times 10^{6}$) from the AFM in this and from last year's assessment are:

	77	78	79	80	81	82	83	84	85	86	87
This yr	1.8	3.5	3.0	2.3	2.4	2.6	3.1	6.1	11.6	12.2	12.6
Last yr	2.1	4.5	3.9	3.0	3.1	3.0	3.4	4.6	5.5	5.4	-

The Adaptive Framework Method indicated the high variance in the SPA results tuned with the larval abundance index. Assuming the model is correct, the 1987 population size could be almost 50% lower or higher.

LITERATURE CITED

Buerkle, U. 1987. Results of the 1986 and 1987 winter acoustic surveys of NAFO Div. 4WX herring stocks. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 87/36: 19 p .

Gavaris, S. 1988. An adaptive framework for the estimation of population size. Can. AtT. Fish. Sci. Advis. Comm. Res. Doc. 88/29: 12 p.

Hunt, J. J. 1987. Herring sampling program for the Scotia-Fundy Region, 1975-85. Can. MS Rep. Fish. Aquat. Sci. 1923: 21 p.

Hunt, J. J., G. Martin, and G. A. Chouinard. 1986. The effect of freezer storage on herring length and maturity stage determination. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 86/89: 13 p.

Iles, T. D., M. J. Power, P. M. Mace, G. N. White, and F. G. Peacock. 1984. Assessment of the 1983 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 84/72: 42 p.

Iles, T. D., and J. Simon. 1983. Assessment of the 1982 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 83/89: 37 p.

Mace, P. M. 1985. Catch rates and total removals in the $4 W X$ herring purse seine fisheries. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 85/74: 31 p.

Power, M. J., and R. L. Stephenson. 1986. An analysis of logs from the 1985 4Xa summer herring purse seine fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 86/44: 35 p.

Power, M. J., and R. L. Stephenson. 1987. An analysis of logs from the 1986 4Xa summer herring purse seine fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 87/77: 21 p.

Sinclair, M., and T. D. Iles. 1981. Assessment of the 1980 4WX herring fishery. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 81/10: 42 p.

Sinclair, M., J. Simon, W. Stobo, and T. D. Iles. 1982. Assessment of the 1981 4WX herring fishery. Can. At. Fish. Sci. Advis. Comm. Res. Doc. 82/36: 34 p.

Stephenson, R. L., M. J. Power, and T. D. Iles. 1986. Assessment of the 1985 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 86/43: 45 p.

Stephenson, R. L., M. J. Power, and T. D. Iles. 1987. Assessment of the 1986 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 87/75: 39 р.

Stephenson, R. L., M. J. Power, T. D. Iles, and P. M. Mace. 1985. Assessment of the 1984 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 85/78: 58 p.

Table 1. Gear types involved in the 1987 4WX herring fishery.

Gear	Landings nominal (t)
Purse seine	91,625
Weirs	33,408
Gillnet	2,919
Traps	440
Shutoffs	698
Midwater trawl	17
Misc.	74

Table 3. Historical series of annual landings (t) by major components of the 4WX herring fishery (1963-85 from Stephenson et al. 1986).

Year	4Wa	4Xa			4×b		Stock total
	Purse seine	Purse seine	Gil7net	Weir	Purse seine	shutoff \& weirs	
1963		15093	2955	5345	6871	29366	
64		24894	4053	12458	15991	29432	
65		54527	4091	12021	15755	33346	86394
66		112457	4413	7711	25645	35805	150226
67		117382	5398	12475	20888	30032	156741
68		133267	5884	12571	42223	33145	196362
69	25112	84525	3474	10744	13202	26539	150462
70	27107	74849	5019	11706	14749	15840	190382
71	52535	35071	4607	8081	4868	12660	129101
72	25656	61158	3789	6766	32174	32699	153449
73	8348	36618	5205	12492	27322	19935	122687
74	27044	76859	4285	6436	10563	20602	149670
75	27030	79605	4995	7404	1152	30819	143897
76	37196	58395	8322	5959	746	29206	115178
77	23251	68538	18523	5213	1236	23487	117171
78	17274	57973	6059	8057	6519	38842	95882
79	14073	25265	4363	9307	3839	37828	59021
80	8958	44986	19804	2383	1443	13525	79584
81	18588	53799	11985	1966	1368	19080	87706
82	12275	64344	6799	1212	103	25963	84733
83	8226	63379	8762	918	2157	11383	84385
84	6336	58354	4490	2684	5683	8698	78083
85	8751	87167	5584	4062	5419	27863	112385
86	8414	56139	3533	1958	3365	27883	73733
87	8780	77706	2289	6786	5139	27320	101157

[^0]| | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC | - | - | - | - | 109.0 | 110.0 | 99.0 | 65.0^{1} | 100.0 | 80.2 | 82.0 | 80.0 | 125.0 | 97.6 | 126.5 |
| Reported stock ${ }^{3}$ catch | 122.7 | 149.7 | 143.9 | 115.2 | 117.1 | 95.9 | 59.0 | 79.6 | 87.7 | 84.7 | 84.4 | 78.1 | 112.4 | 73.7 | 101.2 |
| Adjusted stock ${ }^{4}$ catch | | | | | | 114.0 | 77.5 | 107.0 | 137.0 | 105.8 | 117.4 | 135.9 | - | - | - |
| Reported total catch | 142.6 | 170.3 | 174.7 | 143.9 | 150.7 | 134.7 | 96.2 | 93.1 | 106.8 | 110.7 | 94.1 | 88.7 | 141.9 | 101.8 | 130.2 |

[^1]Table 5. Distribution of biological samples from the 1987 4WX commercial herring fishery; detail fish $=$ number of fish taken for detail analysis including ageing, LF samples = number of length-frequency samples, LF fish = number of fish measured.

Gear component	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
4Wa purse seine - detail fish - LF fish - LF samples - catch (t)	434	$\begin{array}{r} 521 \\ 3815 \\ 19 \\ 2895 \end{array}$	$\begin{array}{r} 256 \\ 3076 \\ 15 \\ 1598 \end{array}$	$\begin{array}{r} 534 \\ 6439 \\ 40 \\ 3853 \end{array}$											
4Xa purse seine - detail fish - LF fish - LF samples - catch (t)								24	$\begin{array}{r} 518 \\ 3074 \\ 17 \\ 3817 \end{array}$	$\begin{array}{r} 1109 \\ 7286 \\ 44 \\ 15616 \end{array}$	$\begin{array}{r} 525 \\ 4442 \\ 26 \\ 23388 \end{array}$	$\begin{array}{r} 446 \\ 2684 \\ 15 \\ 27893 \end{array}$	$\begin{array}{r} -740 \\ \sim 4892 \\ \sim-26 \\ 6968 \end{array}$		
4Xb purse seine - detail fish - LF fish - LF samples - catch (t)	3188	$\begin{gathered} 57 * \\ 438 \\ 2 \\ 283 \end{gathered}$		$\begin{gathered} 129 * \\ 733 \\ 4 \\ 1368 \end{gathered}$											
4Xa gillnet - detail fish (4×00R) - LF fish - LF samples - catch (t)							2	20	$*$ 72	9	$\begin{array}{r} 56 * \\ 521 \\ 3 \\ 1238 \end{array}$	$\begin{gathered} 33 * \\ 355 \\ 2 \\ 948 \end{gathered}$			
4Xa NS weir - detail fish (4XR) - LF fish - LF samples - catch (t)								$\begin{array}{r} 422 \\ 2447 \\ 14 \\ 1503 \end{array}$	$\begin{array}{r} 775 \\ 4272 \\ 23 \\ 2531 \end{array}$	$\begin{array}{r} 428 \\ 2163 \\ 14 \\ 1218 \end{array}$	$\begin{array}{r} 218 \\ 1109 \\ 6 \\ 1167 \end{array}$	$\begin{gathered} 140 * \\ 661 \\ 4 \\ 367 \end{gathered}$			
4Xa NS trap - detäil fish (4XMOQ) - LF fish - LF samples - catch (t)								$\begin{gathered} 69 * \\ 551 \\ 4 \\ 216 \end{gathered}$	$\begin{gathered} 31 * \\ 374 \\ 3 \\ 138 \end{gathered}$	28	34	7	16	1	
4Xb mid trawl - detail fish - LF fish - LF samples - catch (t)															$\begin{array}{r} 45 \\ 734 \\ 4 \\ 17 \end{array}$
$4 \times b$ weirs \quad - detail fish - LF fish - LF samples catch (t)			,	39	21	6	12	$\begin{array}{r} 36 \\ 323 \\ 2 \\ 10 \end{array}$	$\begin{gathered} 183^{*} \\ 1774 \\ 9 \\ 168 \end{gathered}$	$\begin{array}{r} 1053 \\ 6386 \\ 36 \\ 2575 \end{array}$	$\begin{array}{r} 2046 \\ 12094 \\ 70 \\ 10893 \end{array}$	$\begin{array}{r} 1426 \\ 8804 \\ 49 . \\ 6711 \end{array}$	$\begin{array}{r} 1235 \\ 7940 \\ 45 \\ 5362 \end{array}$	$\begin{gathered} 140 * \\ 863 \\ 5 \\ 703 \end{gathered}$	$\begin{gathered} 67 * \\ 711 \\ 4 \\ 122 \end{gathered}$
4Xb shutoff - - detail fish - LF fish - LF samples - catch (t)										17	*	$\begin{gathered} 111 * \\ 570 \\ 3 \\ 112 \end{gathered}$	$\begin{gathered} 27 * \\ 336 \\ 2 \\ 459 \end{gathered}$		

[^2]Table 6． 1987 4WX herring numbers at age by gear component（thousands）．

011	$6 \downarrow 21$	2601	89¢z	789L	6ヵL6I	999901	00ヶ0カて	tLLOG	26298	0	yos $K q$ asund Xt Sd
0	εI	81	9ε	16	£દદ	092t	0 06\％	0¢gi	9 1¢乙	$\llcorner\varepsilon$	sıea6－כs！u XMt OI
0	0	2	\downarrow	61	$6 \downarrow$	¢81	809	¢¢8	9819	8GLG	fyoznys en gxt 6
0	96	ILI	209	£¢ちて	850 L	89 L L	てヵ¢ ¢	LZILt	\＆9โとて！	61662	
											YOO7s－40N
0	0	0	0	0	0	0	0	0	2	86\＆I	дәдемр！ш яхт
0	カI	81	62	92	カt2	206	9¢2I	$9 \angle 1$	L	0	уכ07s delz Xt 9
22	69	921	¢91	ャT9	1822	g9til	66965	LIL6	0tLOI	0	
0	01	$\angle I$	$\downarrow \varepsilon$	081	16 t	88¢¢	T09L	toI	0	0	
0	0	92	09 T	L9E	9802	£818	90 gez	L6ゃてI	£๖¢	0	əs．and gn axt
18	โセ¢ป	g2il	89ヶて	618 L	G0902	6¢t901	Gz\＆もをて	08teg	$009 \angle \varepsilon$	0	
¢92	gcg	t9L	6891	220¢	$\angle \pm$ ¢	086LT	68282	£09¢	89	0	asund Mt I
											$\frac{70075}{}$
II	01	6	8	L	9	¢	\dagger	ε	2	I	

		＊		$\stackrel{\stackrel{0}{\square}}{\stackrel{\circ}{\circ}}$		$\xrightarrow[\text { ¢ }]{\substack{\text { ¢ }}}$	－80
言累	号导：${ }_{\text {a }}^{\text {¢ }}$	呂		¢	¢	$\stackrel{\square}{\square}$	8
$\begin{aligned} & \text { 言 } \\ & \text { 亲㒘 } \end{aligned}$	$\stackrel{8}{\text { ¢ }}$	\％		$\begin{aligned} & \text { 滈 } \\ & \hline \end{aligned}$	웅울 ธ่ ํㅜํ		$\stackrel{8}{4}$

¢圽	¢8\％	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{g}}}{\substack{2}}$	8888安安这	\％			$\stackrel{8}{\text { ¢ }}$
¢	888				388		
擩	¢	$\stackrel{\square}{\square}$	－	＋		留	宮
骂	$\begin{aligned} & 888 \\ & \text { 葆茓淢 } \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{g}} \\ & \text { ⿷⿹勹巳y } \end{aligned}$		$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$			

魚		骨				\％	\％
							5
논연	웅 움会荗宫					鹤	8
		合		$\begin{aligned} & 0.0 \\ & \text { Oig } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Qen } \\ & \stackrel{\dot{z}}{3} \end{aligned}$	8

Area	rotal Catch		
	1985		1997
Irinity			
June	． 00		10
July	156.10	604．90	278.20
Algust	11034.10	6324.10	8992．40
Septeaber	24531.60	6381.20	8850．40
Total all months	3572．80	10.20	18225.70
Geran Bank			
June	195.70	49.00	1472.90
July	2691.00	42.60	2098.30
August	6519.20	2740.20	200．80
Septenter	5382.80	10383.60	11096.20
rotal all months	14788.70	15.40	4868

66900．1	$00 \cdot L$ LIEE	$\begin{aligned} & \text { sedy it iof } \\ & \text { repod teph } \end{aligned}$
02\％L60II OS．0878	01 ＇88001	
		1equadeg
08＇8is 01 －99\％	08＇88¢	${ }^{15 \text { nппny }}$
05＇8897 02＇6172	08：85pr	${ }^{1} \mathrm{nf}$
00.		

Table 8. Average weights at age for the $4 W X$ herring fishery (stock portion) 1965-87.

11	10	10	10	0	0	0	0	0	0	0	0	0	0	0	10	10	10	10	10	0	0	0	12
21	41	41	41	33	37	32	66	44	29	48	21	33	65	28	41	41	41	41	41	38	53	55	50
31	112	112	112	112	106	119	143	138	106	110	94	114	113	112	112	112	112	112	112	132	118	124	98
41	172	172	172	148	162	169	199	192	143	175	179	159	174	181	172	172	172	172	172	191	204	182	153
51	218	218	218	185	207	211	230	225	225	206	216	233	214	229	218	218	218	218	218	229	249	239	199
61	254	254	254	244	242	257	254	262	252	240	240	249	274	259	254	254	254	254	254	259	278	271	245
71	286	286	286	276	282	292	293	292	279	277	268	277	293	302	286	286	286	286	286	280	315	306	274
81	323	323	323	399	306	332	329	322	331	322	333	317	325	330	323	323	323	323	323	296	334	329	290
91	354	354	354	338	334	369	362	345	360	342	358	382	328	351	354	354	354	354	354	309	344	360	318
01	389	389	369	410	390	389	388	380	38	352	379	404	416	397	389	389	389	389	389	364	440		

Table 9. $4 W X$ herring stock catch at age in numbers (thousands).

1	1965	1966	1967	1968	1969	91970	01971	1972	21973
11	270378	154323	722208	164703	3108875	5699720	O 87570		$0 \quad 754$
21	1084719	914093	613970	2389061	1290329	9576896	6404224	4649254	4126421
31	34835	448940	153626	224956	6531812	276532	2183896	671984	4595992
41	234383	73382	266454	83109	9132319	9286278	8106630	O 148516	6109530
51	49925	321857	110051	290285	5162439	9201215	5113566	677207	$7 \quad 34422$
61	10592	45916	159203	73087	7112631	1120280	075593	375384	425562
71	1693	13970	57948	90617	762506	6111937	793620	049065	519361
81	561	7722	4497	31977	722595	541257	750022	248700	017604
91	54	1690	409	15441	16345	521271	136618	826055	519836
101	37	215	- 296	5668	82693	37039	9 7536	6 13792	29661
$11+1$	1	1	- 148	1175	5722	$2 \quad 2674$	45695	511679	911120
1	1974	1975	1976	1977	1978	1979	1980	1981	1982
11	14151	2870	240	1164	35381	311	1623	0	3589
21	596153	264491	48470	1404943	3467191	170523	9566	75713	72591
31	72381	180898	176226	28659	361772	226442	60559	331741	122380
41	616622	92487	130598	192958	11338	47200	359484	68816	17756
51	53199	384646	72334.	1060611	107627	4639	21958	306716	73025
61	15254	50599	219788	55066	60431	19695	358.3	21728	154542
71	8120	9357	18960	150588	27286	15521	3507	1631	10910
81	5313	3238	4967	12466	96741	9981	4951	1914	1535
91	10964	3481	3556	2873	9838	35386	2009	1366	977
101	5787	2842	1835	1253	2169	3834	8179	361	886
$11+1$	7359	4599	3071	3448	1499	2042	2105	1442	719
1	1983	1984	1985	1986	1987				
11	3367	0	5762	40	1398				
21	128378	72301	138419	80019	50422				
31	101017	141067	215599	176197	76865				
41	168379	131251	193369	1869833	320651				
51	16946	84920	94308	363611	147483				
6	41607	13633	27081	20180	27924				
71	63468	13803	8989	6878	11843				
81	7334	16299	11609	2759	4433				
91	1351	5418	5107	1879	2043				
101	434	1263	767	866	1897				
$11+1$	895	5207	300	223	395				

Table 10. $4 W X$ herring catch weight (mt) at age.

1	1965	1966	1967	1968	1969	1970	1971	1972	1973
1 \|	2704	1543	7222	0	0	0	0	0	0
21	44473	37478	25173	73122	10800	18288	26719	28762	3641
31	3902	50281	17206	25195	56106	9123	26224	9905	62996
41	40314	12622	45830	12300	21475	48295	21230	28560	15696
51	10884	70165	23991	53587	33657	42376	26132	17333	7731
61	2690	11663	40438	17862	27234	30888	19170	19751	6429
71	484	3995	16573	24983	17627	32708	27403	14302	5404
81	181	2494	1453	12759	6910	13697	16447	15667	5830
91	19	598	145	5216	2117	7840	13256	8989	7139
101	14	84	115	2321	1051	2740	2922	5246	3757
$11+1$	0	0	58	481	282	1041	2208	4443	4325
1	1974	1975	51976	1977	1978	1979	1980	1981	1982
11	0	0	0	0	0	3	16	0	36
21	28436	5501	1585	9160	9812	6991	392	3104	2976
31	7976	17059	20107	3247	4055	25362	6783	3715	13707
41	108155	16555	20778	33613	2050	8118	61831	11836	3054
51	10938	82930	16883	22665	24604	1011	4787	66864	15919
61	3659	12124	454815	15099	15627	5003	910	5519	39254
71	2251	2503	3256	44122	8243	4439	1003	466	3120
81	1711	1079	1576	4055	31944	3224	1599	618	496
91	3754	1246	1360	943	3453	12527	711	484	346
101	2037	1077	$7 \quad 742$	521	- 861	1491	3182	140	345
$11+1$	2590	1743	31241	1433	395	-794	819	561	280
1	1983	1984	1985	1986	1987				
11	34	0	0	0	17				
21	5263	2713	7313	4400	2539				
31	11314	18630	25442	21781	7501				
41	28961	25122	39432	34032	48975				
51	3694	19418	23516	8704	29294				
61	10568	3533	7536	5469	6843				
71	18152	3863	2833	2102	3245				
81	2369	4828	3879	907	1287				
91	478	1674	1757	677	650				
101	169	460	337	346	664				
11+1	348	1895	132	89	138				

Fishery year	1	2	3	4	$\begin{aligned} & \text { PR } \\ & 5 \end{aligned}$	6	7	8	9	10	Notes	Reference (Res. Doc. \#)
1986	. 003	. 36	. 75	1	1	1	1	1	1	1	Ages $4+$ considered to be fully recruited. Age 3 (.75) based upon partial maturity and consistent with previous years.	$\begin{aligned} & \text { Stephenson et al. (1987) } \\ & (87 / 75) \end{aligned}$
1985	. 003	. 4	. 75	1	1	. 5	. 5	. 5	. 5	. 5	"Chosen after consideration of the historical F matrix. This indicated a dome-shaped partial recruitment pattern with full recruitment at age 4."	$\begin{aligned} & \text { Stephenson et al. (1986) } \\ & (86 / 43) \end{aligned}$
1984	. 002	. 5	1	1	1	1	1	1	1	1	"changed from previous years after consideration of the population structure of the overwintering aggregation of herring in Chedabucto Bay, the pattern of the fishing mortality matrix and the increase in directed effort for small fish (as a result of low 4Xb weir landings in 1983 and 1984	Stephenson et al. (1985) (85/78)
1983	. 01	. 22	. 53	1	1	1	1	1	1	1	Ages 1-2; F's fixed to generate mean recruitment Ages 3-10: "assumed to be identical to the last assessment."	$\begin{aligned} & \text { Iles et al. (1984) } \\ & (84 / 72) \end{aligned}$
1982	. 01	. 22	. 53	1	1	1	1	1	1	1	"conform more closely with the pattern of recruitment at age for herring generally."	$\begin{aligned} & \text { Iles and Simon (1983) } \\ & (83 / 89) \end{aligned}$
1981	. 001	. 5	. 53	. 77	1	1	1	1	1	1	Using average F values for years 1975-78; "The mean F's for ages 5.10 for this time period were averaged and divided into the mean F's for ages 1, 2, 3 and 4, respectively."	Sinclair et a1. (1982) (82/36)
1980 a	0	. 8	. 6	. 9	1	1	1	1	1	1	Average conditions	Sinclair and Iles (1981) (81/10)
b	. 006	. 4	. 23	. 9	1	1	1	1	1	1	"appears more representative of the most recent years 1978 to 1979."	

Table 12. 4WX herring: a) population numbers, and b) table of F values from sequential population analysis.

a)	1	1973	1974	1975	1976	1977	1978	1979	1980
	1 I	1909255	1410412	207903	584968	3180137	1067468	357473	1183755
	21	802933	1562483	1141944	167619	478714	2602623	841954	292393
	31	3517247	542996	739832	695623	93378	264814	1817123	535038
	41	404914	2340403	379074	442040	410072	50519	184077	1282841
	51	100391	232409	1358217	226674	243741	161143	31103	108001
	61	58704	51047	142144	763972	120135	103591	34548	21267
	71	45622	24933	27991	70593	426615	48532	30133	10465
	81	48712	19834	13067	14451	40641	213025	15045	10627
	91	50190	23953	11431	7768	7337	21995	86875	3287
	101	24656	23144	9691	6209	3142	3407	9106	39109
	$11+1$	53035	47762	36900	29688	23009	17992	20518	50591
	1	1981	1982	1983	1984	41985	5 1986	-1987	
	11	1310183	1832184	4913257	8533498	4184680	- 3693029	5539446	
	21	967708	1072687	1496818	4019588	6986637	7420912	23023560	
	31	230735	723785	812559	1109329	3225540	5594928	2728402	
	41	383256	158893	481851	573863	3780599	2445766	64421310	
	51	725027	251516	114024	242150	- 351078	8 464133	31833235	
	61	68556	316074	139849	78022	2121417	7202105	5347099	
	71	14170	36468	118944	76851	151543	374904	4147210	
	81	5394	10126	19986	39955	$5 \quad 50431$	134066	655103	
	91	4220	2685	6901	9727	$7 \quad 17964$	430785	- 25395	
	101	873	2219	1314	4428	83061	110087	$7 \quad 23504$	
	$11+1$	32988	27596	22456	21611	114900	- 21321	139975	

FISHING MORTALIty

b)	I	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87
1	1	.00	.01	.02	.00	.00	.04	.00	.00	.00	.00	.00	.00	.00	.00	.00
2	1	.19	.55	.30	.39	.39	.16	.25	.04	.09	.08	.10	.02	.02	.03	.02
3	1	.21	.16	.32	.33	.41	.16	.15	.13	.17	.21	.15	.15	.08	.04	.03
4	.36	.34	.31	.40	.73	.29	.33	.37	.22	.13	.49	.29	.32	.09	.08	
5	1	.48	.29	.38	.43	.66	.34	.18	.25	.63	.39	.18	.49	.35	.09	.09
6	1	.66	.40	.50	.38	.71	1.03	.99	.21	.43	.78	.40	.21	.28	.12	.09
7	.63	.45	.46	.35	.49	.97	.84	.46	.14	.40	.89	.22	.21	.11	.09	
8	1	.51	.35	.32	.48	.41	.70	1.32	.72	.50	.18	.52	.60	.29	.09	.09
9	1	.57	.70	.41	.71	.57	.68	.60	1.13	.44	.51	.24	.36	.38	.07	.09
10	1	.57	.32	.39	.40	.58	1.22	.63	.26	.61	.58	.45	.38	.32	.10	.09
$11+1$.57	.36	.25	.20	.26	.26	.38	.25	.06	.07	.07	.40	.08	.06	.07	

Fig. 1. 1987 4WX herring catches by gear and month.

Fig. 2. Position of Trinity Ledge closure BOX for the 1987 4WX herring fishery.

Fig. 3. 1987 4Xa purse seine log data for year.

Fig. 4. 4WX herring stock catches by gear.

Fig. 5. 1987 fall larval herring abundance (\#'s per m^{2} to bottom).
28.

APPENDIX I

Fisheries
 Managenennt Plen: 1987 Scotia-Fundy Region

4WX Herring

1987 SCOTIA-FUNDY HERRING MANAGEMENT PLAN

PART I

This Plan has been developed in consultation with representatives of the herring fishing industry, the two provincial goverments and the Department of Fisheries and Oceans through the Scotia-Fundy Herring Advisory Committee. This Plan will apply to the 1987 herring fishery which begins on October 15, 1986, and ends on October 14, 1987.

Monitoring of all herring landings will be carried out under the provisions of Section 48 of the Fisheries Act, in accordance with existing regulations and subject to any new regulations which may come into effect in 1987.

The total allowable catch (TAC) will be 126, 500t in Herring Fishing Areas 17 to 21 which will be allocated as set out in Table I.

HERRING FISHING AREAS

GEAR TYPE	HERRING FISHING ARFA	SEASON	quota (t)	Allomance (t)
Purse Seine	Ared 17	Nov.07/86-Mar . $01 / 87$	4,200 1	
Purse Seine	Area 18	Cinsed All Year	N / A	
Purse Seine	Area 20 and 21 (Fall Fisher.v)	Oc.t. $15 / 86-$ - ec $.31 / 87$	9,000	
	Area 20 and 21 (Winter Fishery)	Van.01/37-Mar. $31 / 87$	1,500?	
	Area 19 (Ched abucto Bay)	Nov . $17 / 86-\mathrm{Mar} .01 / 87$	23,0003	
	Area 20 and 21 (Summer Fishery)	May 01/87-0ct. $14 / 87$	81,5004	
	Area 19, 20 \& 21 (Bait. Fishery)	TOTAL	115,000	
		N/A	2,600 5	
Drift Gill Nets	Area 20	TOTAL	117,600	117,600
		N / A		5,000 (0ss)
Set Gill Net.s	Areas 17, 18, 19, ?0 and 21	N / A		3,900
Weirs	Areas 20 and 21	N / μ		
Trap Nets	$\begin{aligned} & \text { Areas } 10,20 \\ & \text { and } 21 \end{aligned}$	N / A		
		TOTAL		8,900 6
			TAC	126, 500

1. To be fished by Gulf purse seine vessels only; the 4,200t does not count toward the Scotia-Fundy TAC.
2. No more than 500 t of the $1,500 \mathrm{t}$ winter fishery quota will be taken inside a 1 ine, yet to be defined, along the south coast. of New Brunswick near Saint Jbm.
3. Ip to 9, 200t (40% of the 23 , 000t quota) may be taken in waters of Cheddocto Bay in Area 19 lying inside of a straight 1 ine from Cape Canso to Oreen Isl and, after December 31, 1986.
4. Uncaught, quotas from the fall, winter and Ged tucto Bay fisheries will be made avail dole to the sumer fishery within the 1987 fishing vear only.
5. The 2, 600t bait quota will be allocated to each purse seine vessel based on its existing percent share of the purse seine TAC, i.e., $1.6 \% 2.7 \%$, etc.
6. Al lowances are appl ied only to inshore gear 1 icensed for waters adiacent to Nova Scotia. This catch approximated 7,500t in 1984, 10,500t in 1935 and 5,000t in 1986. No quotas or allowances are appl ied to inshore gear licensed for waters adjacent to New Brınswick.

PART II

Part II applies to the purse seine fleet.

1. Participation

Any Scotia-Fundy purse seine vessel may participate in any or all of Herring Fishing Areas 19,20 and 21 subject to season, area quota and vessel quota restrictions.

2. Vessel Quotas

a) All purse seine vessels shall operate on an annual vessel quota. This quota is determined on the basis of a 1.6% share of the TAC for Cl ass A vessels and a 2.7% share of the TAC for Cl ass B vessels.

These percentage shares al so apply to processor-owned vessels (Class C) but do not account for quota purchases. Subiect to additional authorized quota purchases for the 1987 fishery, individual vessel quotas will be allocated as set out in Table II and issued as a licence condition.
b) All documented individual vessel quota overruns in the 1986 fishery will be deducted from the 1987 individual vessel quotas.
3. Trinity Ledge C losure

That area of Trinity Ledge off Southwest Nova Scotia bounded on the north by latitude $44^{\circ} 05^{\prime}$, on the south by latitude $43^{\circ} 55^{\prime}$ and on the west by longit, ude $66^{\circ} 25^{\prime}$ will be closed to purse seine vessels for three days (Thursday noon until Sunday noon) each week during the period August 15 to September 15, 1987.

4. Scotts Bay C losure

A more appropriate Area 21 boundary line, to be established prior to commencement of the summer fishery, will be in place to protect a herring spawning area in the upper Bay of Fundy. This closure will be effected by removing the existing Area 21 boundary line by variation order and establishing the new line as a licence condition.
5. Georges Bank

A Georges Bank purse seine fishery will be authorized under the following conditions:
a) fishing to occur only in Canadian fisheries waters within 5Ze:
b) a DFO observer must be present on all trips;
c) 24 hours' notice must be given to DF0 prior to departure; and
d) failure to comply with parts (a), (b) and (c) will result in any catch being attributed to that vessel's quota.
6. Over-the-Side Sales (OSS)

Ministerial approval in principle may be sought, with industry consensus, for an over-the-side sales proqram consistent with goverment policy, at a later date.
7. Over-the-Wharf Sales (OTW)

Sane as item 6.

TABLE II

1987 SCOTIA-FUNDY PURSE SEINE VESSEL QUOTA ALLOCATIONS

CLASS A
(NON-MOB ILE)
(\% SHARE) CLASS B
(MOB ILE)
(\% SHARE) CLASS C
(PROCESSOR-OWNED)
(\% SHARE)

1. CAPE SHOAL 1.6%

2 CHELTOM

1. 6%
2. CLELAND G.
3. 6%
4. CRAIG \& DIANNE
5. 6%
6. DAUGHTERS THREE
7. 6%
8. DEBORAH \& RUTH
9. 6%
10. FIVE LADIES 3.2%
11. FLYING SWAN IV 1.6%
12. FUNDY MISTRESS 1.6%
13. GAIL \& TROY 1.6%
14. GOLDEN DAWN 1.6%
15. INGALLS SANDS 1.6%
16. LISA ANN
17. 2%
18. MISS JENNIFER
19. 6%
20. NORCHA
21. 6%
22. POLLY B.
23. 6%
24. PUBNICO VIRGO 1.6%
25. RICHARD B. 1.6%
26. SARAH \& STEWART 1.6%
27. SEACO 1.6%
28. SEAFOAM 1.6%
29. SEVEN L'S 1.6%
30. TODD \& CARLA 1.6%
31. CANADA 100
32. 0%
33. CPRD
34. 9%
35. CENTENNIAL III
3.0\%
36. DUAL VENTURE
4.0\%
37. EASTERN FISHER
38. 7%
39. ISLAND PRIDE \#1
40. 7%
41. LEROY \& BARRY II 4.0\%
42. MARGARET EL IZABETH
43. 0\%
44. MARIE LYNN ANITA 4.0\%
45. NOVA STAR 2.7\%
46. PUBNICO GEMINI 2.7%
47. SANDY G 2.7\%
48. SEALIFE II 2.7%
49. SEALIFE III 2.7\%

39. EASTERN POD PHENIX	
2. 7%	
40. LADY MELISSA	4. 0%
41. LADY NOREEN	2.7%
42. MATTUNA MARINER	4.0%

24. TOMMIE \& ARNIE 3.2%

For 1987, the percentage share of the purse seine TAC and the separate bait quota equat to the following tonnages:
$1.6 \%=1,840 \mathrm{t}$ and 41.6t bait
$1.9 \%=2,185 t$ and $49.4 t$ bait
$2.7 \%=3,105 t$ and $70.2 t$ bait
$3.0 \%=3,450 \mathrm{t}$ and 78 . Ot bait
$3.2 \%=3,680 \mathrm{t}$ and 83.2 t bait
$4.0 \%=4,600 t$ and 104.0 t bait

PART III

Part III applies to inshore gear which is comprised of weirs, trap nets and gill nets.

1. General

Effort limitations in all inshore fisheries will be governed by current regulations and licensing policy.
2. Weir Fishery

The Split Rock to Gannet Rock Light closure will be in effect from April 15, 1987, to September 30, 1987. An extension of this closure may be granted up to October 15 after consultation with industry.

3. Herring Drift Net Fishery

a) An OSS program for 5,000 t is to occur. This program will be made up of gill net herring only and no portion of that allowance can be transferred to a purse seine OSS program.
b) Ministerial approval in principle may be sought for an OTW program, consistent with government policy, at a later date.
c) If a purse seine OSS program is approved, a cooperative agreement may occur between the Maritime Fishermen's Union representing the drift netters and a purse seine group coordinator to ensure daily OSS capacity is filled.

PART IV

Regulatory Requirements

1. Until such time as new requlations can be promulgated to control:
a) the Trinity Ledge area closure;
b) the Scotts Bay area closure; and
c) the 500 t limit on herring to be caught along the shore near Saint John in the winter fishery.
these restrictions can be implemented and legally enforced as licence conditions pursuant to section 33 of the Atlantic Fishery Regulations, 1985.
2. In accordance with the Annual Regulatory Plan and consistent with the Committee's advice (1984), it is anticipated that regulations requiring mandatory weighing of herring at the time of landing could be in place by April 1, 1987.

[^0]: ${ }^{1}$ Includes all purse seine, 4Xa gillnet, 4Xa weir, 4Xa traps, 4Xb midwater trawl (see Table 2).

[^1]: ${ }^{1}$ TAC raised from 60.0 t to 65.0 t in mid-season.
 ${ }^{2}$ Excludes an allowance of $13,000 \mathrm{t}$ for inshore 4 Xn fixed gear.
 ${ }^{3}$ Excludes $4 \times \mathrm{Xb}$ wier + shutoff, $4 \times \mathrm{n}$ gill + trap, 4W inshore gear.
 ${ }^{4}$ Includes $1978-1984$ adjustment for misreporting and omissions.

[^2]: *Cells undersampled according to criteria of 200 detail fish per gear type per month with $>50 \mathrm{t}$ catch.

