Not to be cited without permission of the authors 1

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 88/50

Ne pas citer sans autorisation des auteurs 1

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 88/50

Le maquereau bleu (<u>Scomber scombrus</u> Linné) du nord-ouest de l'Atlantique, sous-régions 2 à 6 de l'OPANO: évaluation du stock en 1987

par

Martin Castonguay

еt

Benoît Mercille

Division de la recherche sur les pêches Pêches et Océans Institut Maurice-Lamontagne 850, route de la Mer C.P. 1000 Mont-Joli (Québec) G5H 3Z4

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subject addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the authors. 1Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte Atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de Recherche qu'elle contient ne doivent pas être considerés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

RESUME

Les captures annuelles de maquereau dans le nord-ouest de l'Atlantique ont varié entre 27 000 t et 76 000 t depuis 1978. Ceci constitue une diminution importante par rapport aux captures des dix années précédentes, dont la moyenne se situait à environ $270\ 000$ t et le pic à $430\ 000$ t en 1973. Les captures ont augmenté depuis 1985, à cause de l'expansion de programmes conjoints entre les Etats-Unis et des pays européens. Les captures nominales ont atteint 76 000 t en 1987. Des analyses séquentielles de population (ASP) ont été calculées en utilisant des mortalités par pêche terminale (Ft) de 0.05 à 0.20 en 1987. Le vecteur de recrutement partiel utilisé dans les ASP est basé sur une ASP séparable calculée lors d'une évaluation précédente. Des tentatives de calibration entre les ASP et un indice de production annuelle totale d'oeufs de maquereau, d'une part et entre les ASP et un indice de taux de captures dans la division 3L, d'autre part, ne permettent pas de discriminer entre différentes mortalités par pêche en 1987, parce qu'à un faible niveau de mortalité par pêche, les ASP ne convergent pas. Néanmoins, une comparaison entre des estimations de biomasse basées sur la production d'oeufs d'une part et sur des ASP d'autre part indiquent qu'une ASP selon Ft=0.10 résulte probablement en une sous-estimation de la biomasse du maquereau. Les résultats d'une ASP selon $F_t=0.05$ sont donc présentés, qui indiquent une biomasse totale du stock reproducteur (les deux contingents) d'environ 1.4 million t.

<u>ABSTRACT</u>

Northwest Atlantic mackerel catches ranged between 27 000 t and 76 000 t since 1978. These catches are substantially below the catches for the 10 previous years that averaged $270\ 000$ t and culminated to 430 000 t in 1973. Catches have increased since 1985 owing to the expansion of joint ventures between the United States and European countries. Nominal catch for 1987 was 76 000 t. Sequential population analysis (SPA) were run using a terminal fishing mortality (F_t) between 0.05 and 0.20 in 1987. The partial recruitment vector used in SPA is based on a separable virtual population analysis calculated in a previous assessment. Calibration attempts between SPA and an index of annual total mackerel egg production and between SPA and a catch rate index in pivision 3L do not allow discrimination between different levels of Ft, because of the lack of convergence of SPA at low fishing mortalities. Nevertheless, a comparison between stock size estimates based on egg production and on SPA show that SPA at $F_t=0.10$ probably underestimates mackerel stock size. Results of SPA at $F_t=0.05$ are therefore presented which indicate a total spawning stock biomass (including the two contingents) of about 1.4 million t.

INTRODUCTION

Le maquereau bleu (<u>Scomber scombrus</u>) du nord-ouest de l'Atlantique (sous-régions 2 à 6 de l'OPANO) est présentement géré comme un seul stock bien que l'existence de deux aires de fraie distinctes soit connue (Sette, 1950). Le contingent nord du stock fraie dans le sud du golfe du Saint-Laurent durant les mois de juin et juillet. La fraie du contingent sud se produit en avril et en mai entre Cape Cod (au nord) et Cape Hatteras (au sud). La décision de gérer les deux groupes reproducteurs comme un seul stock représente la seule approche valable puisque ces derniers occupent les mêmes aires d'hivernage où ils sont soumis à une importante pêcherie.

Les flottes hauturières européennes ont pratiqué au cours des années soixante et soixante-dix une pêche intensive, supportée en très grande partie par la forte classe d'âge de 1967. L'extension de la juridiction sur les pêches par le Canada et les Etats-Unis en 1977 a exclu ces flottilles, et les captures ont considérablement diminué par après.

CAPTURES NOMINALES

Les captures de maquereau du nord-ouest de l'océan Atlantique (Tableau 1; Figure 1) ont été relativement faibles jusqu'en 1967 (moyenne 1960-1967: 18 440 t). Elles ont rapidement augmenté jusqu'a 430 437 t en 1973, à cause de la hausse des captures des flottilles hauturières européennes, pour redescendre tout aussi rapidement à 34 446 t en 1978. Les captures des Etats-Unis et du Canada sont restées près de leur niveau historique au cours de cette période. Les captures totales ont varié entre 27 000 t et 76 000 t depuis cette époque. Depuis 1980, les Etats-Unis ont entrepris des programmes conjoints d'exploitation du maquereau avec des pays européens. Les captures de ces derniers ont ainsi augmenté, sans toutefois approcher les niveaux atteints au début des années soixante-dix. Les captures américaines ont augmenté de façon régulière tandis que les captures canadiennes ont fluctué passablement, allant de 16 000 t à 30 000 t. Les captures de 1962 à 1987 pour chaque division des sous-régions 2 à 6 sont présentées au Tableau 2. La capture totale de 1987 est de 76 552 t, ce qui représente une augmentation d'environ 14 000 t par rapport à 1986. On doit remonter à 1977 pour retrouver une capture totale plus élevée que celle de 1987.

Les captures canadiennes en 1987 s'élèvent à 22 118 t (données préliminaires), ce qui représente une diminution d'environ 1 600 t par rapport à 1986. Les prises canadiennes ont atteint un sommet de 30 000 t en 1979 et en 1985. Les données américaines et étrangères nous ont été fournies par W. Overholtz (National Marine Fisheries Service, Woods Hole, Mass., USA, communication personnelle; Tableau 3). Les captures américaines ont augmenté en 1987, passant de 13 637 t en 1986 à 17 870 t en 1987. Cependant, les captures des flottilles étrangères (République démocratique d'Allemagne, Pays Bas, Pologne et URSS) en eaux américaines ont accusé l'augmentation la plus prononcée, passant de 25 355 t en 1986 à 36 564 t en 1987.

Les captures canadiennes de maquereau ont lieu presque exclusivement dans les sous-régions 3 et 4 de l'OPANO (Tableau 3). La pêche au maquereau à Terre-Neuve (divisions 3KL et 4R) s'effectue essentiellement au moyen de sennes à l'automne (aoûtoctobre) alors que le maquereau a atteint l'extrémité septentrionale de sa migration (Tableau 4). Les captures dans 4R ont atteint un sommet en 1987, en partie à cause d'une entente de ventes directes en mer avec l'URSS.

La pêche dans le golfe du Saint-Laurent (division 4T) est une pêche estivale (mai-septembre) qui se pratique à l'aide de filets maillants et de lignes à main. Sur le plateau scotian (divisions 4VnWX), la pêche s'effectue de mai à novembre au filet maillant, à la trappe et à la ligne à main (Tableau 4). Les captures dans les sous-régions 5 et 6 proviennent surtout de flottilles hauturières européennes qui pêchent au chalut pélagique, et aussi de pêches côtières américaines.

CAPTURES A L'AGE

L'échantillonnage des captures commerciales des sous-régions 3 et 4 a été effectué par le personnel des quatre régions du ministère (Tableau 5). Les échantillons provenant des régions Scotia-Fundy, Golfe et Québec comprenaient tous des fréquences de longueur et des échantillons stratifiés de données biologiques. Les données provenant de la région de Terre-Neuve ne comportaient que des échantillons aléatoires de données biologiques sans aucune donnée de fréquence de longueur.

Les nombres totaux de maquereaux mesurés et âgés étaient respectivement de 16 628 et 2 450, dont la majorité provenait des divisions 4RT (Tableau 5). Après décongélation des échantillons, les données suivantes ont été prélevées au laboratoire: longueur à la fourche (mm), poids total (0.1 g), poids des gonades (0.01 g), sexe et maturité. Les otolithes ont été prélevés pour fin de lecture d'âge. Environ la moitié des otolithes a été observée séparément par deux lecteurs alors que l'autre moitié n'a été observée que par un seul lecteur. Par la suite, les otolithes où il y avait désaccord ont été revus conjointement. Si le désaccord persistait après la relecture, les otolithes étaient rejetés.

Les échantillons aléatoires ont été combinés pour obtenir des fréquences de longueur mensuelles (par division et engin). Des clés âge-longueur trimestrielles ont ensuite été construites à partir de ces mêmes échantillons aléatoires pour calculer la composition en âge. Cette façon de procéder s'est avérée plus simple que de concevoir un système qui aurait traité les échantillons selon leur nature aléatoire.

Les données ont été traitées comme suit. Des tableaux de fréquences de longueur ont été dressés en prenant la moyenne des fréquences à l'intérieur d'une cellule de classification (engin, mois, division). Comme les captures associées à chaque échantillon ne sont généralement pas connues, aucune pondération n'a eu lieu à cette étape. Des clefs âge-longueur trimestrielles ont été obtenues de la même façon.

Par la suite, des fréquences de longueur mensuelles ont été calculées pour la sous-région 3, le golfe du Saint-Laurent (divisions 4RST de l'OPANO) et le plateau scotian (divisions 4VnWX) en pondérant chaque fréquence par la capture nominale associée à la cellule de classification. Ces fréquences ont été combinées par la suite pour former une seule fréquence trimestrielle pour chacune de ces trois zones (en pondérant par les captures nominales). Les clefs âge-longueur ont été combinées afin de faire correspondre une clef à chacune des fréquences de longueur.

Les nombres à l'âge, leurs variances (programme CATCH.AWS, Anonyme, 1986), et les poids et longueur moyens à l'âge ont été obtenus en appliquant ces clefs à leurs fréquences respectives. Ces vecteurs ont été additionnés par la suite pour produire les captures à l'âge totales. Les captures à l'âge de 1987 sont présentées au Tableau 6.

Les captures à l'âge provenant des sous-régions 5 et 6 ont été fournies par W. Overholtz (comm. pers., Tableau 7). La classe d'âge de 1982 domine la pêche en 1987, puisqu'elle contribue à 60 % de la capture totale (en nombres). Les matrices de captures à l'âge totales et des poids à l'âge correspondants sont présentées au Tableaux 8 et 9.

Etant donné que la matrice des captures à l'âge comprend des données canadiennes et américaines, une vérification fréquente de la consistance des déterminations d'âge entre lecteurs canadiens et américains s'impose. La concordance de quatre comparaisons effectuées depuis 1983 varie entre 75 et 90 % (Castonguay et Landry, 1987). Une nouvelle comparaison, basée sur les otolithes de 1987, aura lieu au cours de l'année 1988.

INDICES D'ABONDANCE DU STOCK

Indices dérivés de la pêche commerciale:

Les taux de captures (capture moyenne par bordereau d'achat) des divisions 3K, 3L (années 1984 à 1987), 4T, 4Vn, 4W, 4X (années 1978 à 1987) ont été standardisés pour les mois et engins selon le modèle multiplicatif (programme STANDARD.AWS v3.1, Anonyme, 1986). Seuls les engins les plus significatifs (trappes, lignes, filets maillants et sennes) ont été retenus. Comme l'espèce est migratrice, il existe une interaction entre facteurs temporels et spatiaux. Ainsi la puissance relative des mois dans la rgression du modèle multiplicatif varie différemment entre 3K, 4Vn et 4X (Figure 2). A cause de cette interaction, les données de chaque division ont été analysées séparément.

Un facteur de pondération basé sur une moyenne des résidus d'une régression non-pondérée à quatre niveaux d'effort a été appliqué aux standardisations. L'importance du facteur année est significative dans 3L (p<0.005; Tableau 10), 4Vn (p<0.05; Tableau 11) et 4X (p<0.001; Tableau 12). Le taux de captures dans 3L a doublé entre 1984 et 1985, est resté stable en 1986 et a amorcé une baisse en 1987 (Tableau 13). Dans 4Vn, le taux de captures fluctue sans présenter de tendance (Tableau 14) alors que dans 4X, il a progressé de 1978 à 1985 et s'est stabilisé depuis (Tableau 15). Dans 3K et 4T, le facteur année n'est pas requis pour expliquer les variations du taux de capture (p>0.05).

Dans le but de déterminer les causes des tendances différentes que présentent les taux de captures entre 4X et 4Vn, une comparaison des captures à l'âge entre ces deux divisions a été réalisée pour les années 1983, 1984 et 1987 (Figure 3). Pour une année donnée, les captures à l'âge présentent peu de différences entre 4X et 4Vn. Il semble donc que d'autres facteurs doivent être invoqués pour expliquer les tendances différentes des taux de captures entre 4X et 4Vn. Ainsi, il est possible que la variabilité inter-annuelle de la disponibilité du maquereau soit plus grande dans 4Vn que dans 4X, ce qui pourrait expliquer les plus fortes fluctuations du taux de captures dans 4Vn. Le taux de captures de 4Vn n'apparaît donc pas être un bon indice de l'abondance du stock. Il n'est pas possible de poursuivre la comparaison pour d'autres années, parce que les données ne sont pas disponibles.

Un indice standardisé des captures commerciales (EU) par jour de 1964 à 1985, présenté dans Castonguay et Landry (1987), n'est pas disponible pour 1986 et 1987.

Indices dérivés des missions de recherche.

Le ministère des Pêches et des Océans poursuit depuis 1979 (à l'exception de 1981) des relevés d'oeufs de maquereau dans le sud du Golfe du Saint-Laurent (division 4T). On procède en échantillonnant à une ou deux reprises selon les années, une grille systématique de 65 stations. A partir de ces relevés, un indice de production annuelle totale d'oeufs de maquereau du contingent nord a été calculé (Tableau 16) au moyen d'un modèle développé par Ouellet (1987).

Une recommendation que le sous-comité des poissons pélagiques a émise lors de sa réunion de mai 1987 était que l'effort d'échantillonnage dans les strates définies par Ouellet (1987) devait être ajusté en fonction de la contribution des différentes strates à la variance globale. Cette recommendation visait à augmenter la précision des estimations de production quotidienne d'oeufs, puisque le comité était alors d'avis que les calculs de variances à partir de données transformées (Ouellet, 1987), qui montraient des variances très faibles, étaient dans l'erreur. Après vérification, il appert que lesdits calculs n'étaient pas dans l'erreur (P. Ouellet, MPO, Mont-Joli, comm. pers.).

L'ajustement de l'effort recommandé par le CSCPCA a été effectué en ajoutant à la grille régulière, 25 stations dans la zone de concentration maximale (strates 5 et 6 de l'annexe 4b de Ouellet (1987)). L'effort d'échantillonnage additionnel a eu pour effet de diminuer le coefficient de variation de l'estimation de production quotidienne, tel que le prévoit la théorie d'échantillonnage (Tableau 17). Cependant, la transformation racine carrée des données résulte en une baisse si marquée du coefficient de variation (Tableau 17) qu'il devient quelque peu futile de vouloir le diminuer davantage. C'est pourquoi nous avons repris le plan d'échantillonnage régulier (double couverture des 65 stations) en 1988.

Une consultation avec un statisticien du ministère (M. Steve Smith) sur la validité de l'indice d'abondance d'oeufs a été tenue durant la réunion de mai 1988 du sous-comité des poissons pélagiques. M. Smith a mis en doute la validité des variances parce que des variances estimées de populations où on retrouve de forts patrons spatiaux tendront à sous-estimer la véritable variance. Des problèmes en rapport avec la post-stratification n'ont pas non plus été adressés et le plan actuel ne tire pas avantage de la post-stratification. M. Smith a conclu son intervention en suggérant d'entreprendre une consultation exhaustive avec des statisticiens afin de mettre au point un plan d'échantillonnage qui produirait une meilleure estimation de la variance. Nous avons donc entrepris une consultation auprès d'experts dans le domaine.

La méthode d'estimation de la date de pic de fraie constitue probablement le principal point faible du modèle de production d'oeufs. A sa réunion de mai 1988, le sous-comité des poissons pélagiques a proposé d'extrapoler les estimations de production totale en assumant que la date médiane des relevés correspond à la date du pic de frai. Les valeurs calculées selon cette méthode de pic mobile sont présentées au Tableau 16.

Un indice d'abondance, dérivé de croisières de poissons de fond qu'effectue le «National Marine Fisheries Service» (Woods Hole, Mass., USA) est présenté dans Castonguay et Landry (1987). Cet indice n'est pas disponible pour 1987.

ANALYSE SEQUENTIELLE DE POPULATION

Données d'entrée à l'analyse séquentielle de population

Les analyses séquentielles de population (ASP) ont été exécutées en utilisant la matrice de captures à l'âge présentée au Tableau 8. Les biomasses ont été calculées à partir des poids moyens donnés au Tableau 9. Les âges de 1 à 10 ans seulement ont été considérés. Nous avons utilisé les mêmes recrutements partiels que Gascon et Mercille (1986) et Castonguay et Landry (1987) ont utilisé pour les deux évaluations précédentes. Le recrutement partiel aux âges 1 (0.039) et 2 (0.282) a été calculé par Gascon

et Mercille (1986) à l'aide de la méthode des analyses séquentielles de populations séparables (Pope et Shepherd, 1982). Le plein recrutement a été établi à 3 ans.

Une valeur de 0.3 a été utilisée pour la mortalité naturelle (M) après que le CSCPCA ait jugé en 1984 qu'il n'y avait pas lieu de changer cette valeur établie par le CIPANO (Doc. Cons. CSCPCA 86/17).

La mortalité par pêche (F) des poissons les plus âgés (10 ans) a été établie comme la moyenne des F des poissons de 6 à 9 ans pondérée par les effectifs à l'âge.

<u>Analyse de cohorte</u>

Etant donné que les ASP ne convergent pas lorsque la mortalité par pêche est faible, il n'est pas possible de discriminer entre différentes valeurs de mortalité par pêche terminale (F_t) . Néanmoins, deux tentatives de calibration entre des indices d'abondance et les effectifs calculés par analyse de cohorte selon différents F_t sont présentées.

Une première calibration a été calculée entre les effectifs matures (poissons âgés de 3 ans et plus) et l'indice de production annuelle totale d'oeufs de maquereau du Tableau 16. L'année 1982 a été omise du calcul du coefficient de détermination (\mathbf{r}^2) parce que les indices de production obtenus des deux trajets de la croisière diffèrent grandement. Les valeurs du coefficient de détermination (\mathbf{r}^2) varient en fonction de F_t comme suit:

F_{t}	0.05	0.075	0.10	0.15	0.20
r^2	0.67	0.69	0.70	0.72	0.72

Une deuxième calibration a été effectuée entre les effectifs matures (3+) et le taux de capture de 3L, présenté au Tableau 13. Il est à noter que seulement quatre années sont incluses dans cette comparaison. Les valeurs de r^2 varient en fonction de F_t de la façon suivante:

Ft	0.05	0.075	0.10	0.15	0.20
					<i></i>
r^2	0.89	0.87	0.84	0.80	0.76

Aucun autre indice d'abondance (taux de captures dans 4X et 4Vn) n'était corrélé de façon significative (p>0.05) avec les effectifs calculés selon des analyses de cohorte avec des F_t de 0.05, 0.075, 0.10, 0.15 et 0.20.

Les résultats d'une analyse de cohorte selon $F_{\mbox{\scriptsize t}} = 0.05$ (le même $F_{\mbox{\scriptsize t}}$ que l'an passé) sont présentés au Tableaux 18 à 20.

Etant donné que les analyses de cohorte ne convergent pas et ne peuvent être véritablement calibrées, le sous-comité considère

que les résultats de ces ASP ne devraient pas être utilisés pour calculer des projections.

ESTIMATIONS DE BIOMASSE BASEES SUR LA PRODUCTION D'OEUFS

Des estimations de biomasse du stock reproducteur du golfe du Saint-Laurent ont été calculées à partir des données de production d'oeufs pour les années 1983 à 1987. Pelletier (1986) a trouvé que la variable biologique la plus étroitement reliée (r² moyen=0.62) à la fécondité du maquereau du golfe du Saint-Laurent est le poids des gonades des femelles de stade ${\tt V}$ (gonades matures). Nous avons donc d'abord calculé pour chaque poisson femelle de stade V, la fécondité à partir du poids des gonades selon les équations de Pelletier (1986), puis la fécondité et le poids moyens des femelles de stade V de chaque année (Tableau 21). La production totale d'oeufs calculée selon Ouellet (1987) (Tableau 16) a été divisée par la fécondité moyenne pour obtenir le nombre de femelles ayant participé à l'activité reproductrice. Ce nombre a ensuite été multiplié par le poids moyen des femelles de stade V, puis par deux (assumant un rapport des sexes de 1:1) pour obtenir la biomasse du stock reproducteur du contingent nord, qui est présentée au Tableau 22.

On remarque également au Tableau 22 que les estimations de biomasse selon $F_t{=}0.1$ sous-estiment probablement la biomasse totale du maquereau. En effet, le Tableau 17 contient une comparaison entre la biomasse du stock reproducteur du contingent nord selon la production d'oeufs et la biomasse totale des deux contingents (poissons âgés de 3 ans et plus) selon une analyse de cohorte à $F_t{=}0.05$ et à $F_t{=}0.1$. Cette comparaison montre que l'analyse de cohorte selon $F_t{=}0.1$ résulte en des estimations de biomasse totales plus petites que les estimations de biomasse du contingent nord, basée sur les oeufs (excepté pour 1983). On y note aussi que les fluctuations d'abondance concordent entre les deux méthodes d'estimation de stock.

L'année 1987 a été marquée par une collaboration étroite entre scientifiques américains et canadiens sur le maquereau. En participant à la croisière d'oeufs de maquereau du MPO en 1987 et en obtenant par notre entremise des échantillons de maquereaux matures du golfe du Saint-Laurent, les américains ont pu obtenir une estimation de la biomasse du contingent nord de maquereau de 979 574 t pour 1987 qu'ils ont comparé à une estimation de biomasse du contingent sud pour la même année (119 051 t) (Berrien, 1988). La taille relative des deux contingents semble à l'inverse de ce qu'elle était au début du siècle, puisque Sette (1943) a rapporté que le contingent sud était alors environ 10 fois plus gros que le contingent nord. Il est aussi à noter que l'estimation de biomasse américaine du contingent nord en 1987 (979 574 t) est très voisine de celle présentée ici (1 083 068 t) (Tableau 22).

REFERENCES

- Anderson, E.D. 1985. Status of the Northwest Atlantic Mackerel stock - 1984. NMFS, NEFC, Woods Hole Lab. Ref. Doc. No. 85-03, 46p.
- Anonyme, 1986. CAFSAC Assessment Software Catalog. CSCPCA Doc. Rec. 86/96.
- Berrien, P. 1988. Atlantic mackerel, <u>Scomber scombrus</u>, total annual egg production and spawner biomass estimates for the Gulf of St. Lawrence and Northeastern United States waters, 1987. NMFS, Sandy Hook Lab. Rep, No. 88-02.
- Castonguay, M. et J. Landry. 1987. Le maquereau bleu (<u>Scomber scombrus</u> Linné) du nord-ouest de l'Atlantique, sous-régions 2 à 6 de l'OPANO. CSCPCA Doc. Rec. 87/47, 34 p.
- Gascon, D. et B. Mercille. 1986. Le maquereau (<u>Scomber</u> scombrus Linné) du nord-ouest de l'Atlantique, sous-régions 2 à 6 de l'OPANO. CSCPCA Doc. Rec. 86/92, 33 p.
- Maguire, J.J. 1985. An investigation of Northwest Atlantic mackerel partial recruitment vector. CSCPCA Doc. Rec. 85/108, 28p.
- Ouellet, P. 1987. Mackerel (<u>Scomber scombrus</u>) egg abundance in the southern gulf of St. Lawrence from 1979 to 1986, and the use of the estimate for stock assessment. CSCPCA Doc. Rec. 87/62, 40 p.
- Pelletier, L. 1986. Fécondité du maquereau bleu, <u>Scomber scombrus</u> L., du golfe du Saint-Laurent. Rapp. tech. can. sci. halieut. aquat. 1467: v + 37 p.
- Pope, J.G., et J.G. Shepherd. 1982: A simple method for the consistent interpretation of catch-at-age data. J. Cons. int. Explor. Mer 40:176-184.
- Sette, D.E. 1943. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part I: Early life history including the growth, drift, and mortality of the egg and larval population. U.S. Wildl. Serv., Fish. Bull. 50 (38): 149-237.
- Sette, D.E. 1950. Biology of the Atlantic mackerel (<u>Scomber scombrus</u>). Part II: Migrations and habits. U.S. Fish. Wildl. Serv., Fish. Bull. 49(51):251-358

Tableau 1. Captures de maquereau (t) de 1960 à 1987 pour les sous-régions 2-6 de 1'OPANO.

A	01	Í	Etats-Unis ^l		Derra l	Tot o1	Cmand
Année	Canada	Commercial	Récréatif	Total	Pays ¹ étrangers	Total commercial	Grand total
1960	5 957	1 396	2 478	3 874	_	7 353	9 831
1961	5 459	1 361	3 022	4 383	11	6 831	9 853
1962	6 801	938	3 565	4 503	175	7 914	11 479
1963	6 363	1 320	3 981	5 301	1 299	8 982	12 963
1964	10 786	1 644	4 343	5 987	801	13 231	17 574
1965	11 185	1 998	4 292	6 290	2 945	16 128	20 420
1966	11 577	2 724	4 535	7 259	7 951	22 252	26 787
1967	11 181	3 891	4 498	8 389	19 047	34 119	38 617
1968	11 134	3 929	7 781	11 710	65 747	80 810	88 591
1969	13 257	4 364	13 050	17 414	114 189	131 810	144 860
1970	15 710	4 049	16 039	20 088	210 864	230 623	246 662
1971	14 942	2 406	16 426	18 832	355 892	373 240	389 666
1972	16 254	2 006	15 588	17 594	391 464	409 724	425 312
1973	21 619	1 336	10 723	12 059	396 759	419 714	430 437
1974	16 701	1 042	7 640	8 682	321 837	339 580	347 220
1975	13 544	1 974	5 190	7 164	271 719	287 237	292 427
1976	15 746	2 712	4 202	6 914	223 275	241 733	245 935
1977	20 362	1 377	522	1 899	56 067	77 806	78 328
1978	25 429	1 605	6 571	8 176	841	27 875	34 446
1979	30 244	1 990	3 723	5 713	440	. 32 674	36 397
1980	22 136	2 683	2 381	5 064	566	25 385	27 766
1981	19 294	2 941	5 052	7 993	5 361	27 596	32 648
1982	16 379	3 330	1 131	4 461	6 647	26 356	27 487
1983	19 797	3 805	3 000	6 805	5 955	29 557	32 557
1984	16 995	5 954	2 583	8 537	15 045	37 994	40 577
1985	29 855	6 632	3 813	10 445	32 409	68 896	72 709
1986 ²	23 704	9 637	4 000	13 637	25 355	58 696	62 696
1987 ²	22 118	12 310	5 560	17 870	36 564	70 992	76 552

 $^{^1}$ 1960 à 1983: Anderson, 1985; 1984 à 1987: Overholtz, comm. pers. 2 Données préliminaires.

Tableau 2. Captures commerciales de maquereau (t) par division et subdivions de 1'OPANO, pour la période 1962-1987.

Année		Divisions et subdivisions											
	2Ј	3К	3L	3Pn	3Ps	4R	48	4T	4Vn	4Vs	4W	4X	Total ⁷
1962 1963 1964 1965 ¹ 1966 1967 1968 1969 1970 ² 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	0 0 0 0 0 0 0 20 207 0 372 0 0 0 0 5 0	445 138 353 0 70 45 126 228 525 692 587 843 353 1 657 1 400 663 5 688 3 232 1 042 2 142 6	60 25 405 163 1 0 51 12 159 412 844 1 343 11 352 1 922 3 794 7 127 7 731 11 384 5 058 4 566 210	3Pn 0 0 1 0 0 1 9 7 16 26 20 10 35 17 15 149 22 8 26 1	145 210 87 22 22 8 184 66 139 169 128 297 236 555 65 60 104 208 82 135 19	16 0 11 10 44 35 7 30 65 151 205 206 92 65 123 22 52 480 1 016 60 72	126 438 281 9 29 49 487 3 11 121 180 292 67 26 87 71 12 7 6	1 635 2 326 5 094 4 622 5 258 3 119 4 663 3 739 5 812 5 782 7 351 9 438 6 864 2 126 2 945 2 670 3 197 6 096 8 070 5 960 8 422	723 907 1 070 1 088 1 235 2 047 1 765 2 085 2 759 1 915 2 074 3 896 2 445 2 128 3 114 1 399 2 547 3 000 2 809 2 084 2 133	0 0 0 0 0 42 38 250 163 64 655 16 569 4 321 3 7 0	827 751 1 492 1 698 2 016 2 176 10 557 6 166 4 824 10 159 6 582 15 752 22 218 19 757 12 949 5 140 2 400 2 331 1 891 1 385 997	2 888 1 678 2 166 3 976 4 146 3 763 2 928 4 990 5 376 4 699 4 325 5 400 11 002 7 418 4 250 5 595 4 012 3 847 2 312 2 990 4 512	6 865 6 473 10 960 11 590 12 821 11 243 20 819 17 364 19 959 24 496 22 360 38 514 44 655 36 258 33 065 22 765 25 899 30 612 22 296 19 355 16 383
1983 1984	0 0	3 850 4 265	3 839 1 237	7 48	57 88	561 229	1 69	6 103 5 548	1 111 2 416	5 0	725 1 505	3 547 2 828	19 806 18 233
1985 ³ 1986 ⁴ 1987 ⁴	0 1 0	9 931 7 519 6 576	5 139 4 260 2 670	18 9 2	549 170 0	118 135 2 623	68 177 101	7 774 6 922 5 042	1 701 967 1 279	0 0 3	1 639 510 883	3 968 3 034 2 994	30 906 23 704 22 173

Deux tonnes capturées dans 3M ne sont pas répertoriées au tableau.

NK: Inconnu

Trois tonnes capturées dans 30 ne sont pas répertoriées au tableau.

Une tonne capturée dans 30 n'est pas répertoriée au tableau.

Données préliminaires.

De 1962 à 1967, les débarquements étaient répertoriés globalement pour la division 5Z.

Aucune statistique n'est disponible pour la sous-région 6, antérieurement à 1966. En

^{1966-67,} les débarquements étaient répertoriés globalement pour la sous-région 6.

La somme des colonnes "Total" du Tableau 2 n'est pas toujours identique au total commercial du Tableau 1 parce que le Tableau 2 utilise les données l'OPANO (sauf pour 1986 et 1987), tandis que le Tableau 1 est basé en partie sur les données américaines.

Données par division non disponibles.

Tableau 2. (suite)

Année				Divis	ions et s	ubdivisio	ns			
	5Y	5Ze ⁵	5Zw	5NK	6A ⁶	6В	6C	6D	6NK	Total ⁷
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 ⁸ 1987 ⁸	347 890 1 217 1 124 1 831 2 662 2 307 3 423 3 063 1 928 3 957 857 857 857 835 611 794 437 522 359 1 250 485 453 606 616 469	378 1 022 580 2 830 5 527 13 243 26 718 25 225 64 737 64 623 133 864 155 006 100 585 119 111 69 825 507 246 9 41 28 36 60 13 964	21 349 36 535 34 961 38 719 62 697 159 433 50 261 47 143 31 494 4 321 327 466 341 602 564 1 126 874 1 144	208 186 0 0 0 0 0 0 0 329 218 261 145 101 272 8 7 12 12 10 13	2 073 6 925 464 6 323 29 409 98 930 151 205 44 869 103 891 67 365 61 978 20 881 346 648 853 5 733 6 082 4 194 1 974 4 484	167 9 424 44 261 116 406 32 024 19 654 37 865 14 894 41 392 20 092 415 252 589 1 314 2 648 1 866 8 202 8 968	0 26 756 22 598 13 929 1 644 284 976 1 509 2 924 8 192 19 15 1 72 44 1 719 2 410 4 187	0 0 0 0 212 0 92 0 0 114 0 0 0	8 254 488 950 3 039 1 761 1 061 91 128 0 395 0 41 6 0 1 118 5 387 4 171	933 2 098 1 797 3 954 9 431 22 830 59 259 108 174 199 979 337 574 387 364 381 164 294 925 250 979 208 668 55 084 1 976 2 062 3 089 8 241 9 840 9 701 19 486 24 400 34 992 48 819

Tableau 3. Captures de maquereau (t) en 1987 par pays et sous-région de 1'OPANO.

D		Sous-région		W 1	
Pays	3	4	5-6 ¹	Total	
Canada-Golfe	2	5 013		5 015	
Canada-Terre-Neuve	9 246			9 246	
Canada-Québec		2 753		2 753	
Canada-Scotia-Fundy		5 104		5 104	
États-Unis comm.			12 310	12 310	
États-Unis Réc.			5 560	5 560	
Pays étrangers		55	36 509	36 564	
Total	9 248	12 925	54 379	76 552	

Captures des États-Unis et des pays étrangers évaluées par W. Overholtz (comm. pers.).

Tableau 4. Captures de maquereau (t) en 1987 pour les sous-régions 3-4 de 1'OPANO.

	A	М	J	J	A	S	0	N	D	Total
3K seines-barrages seines-coulis. filets maillants lignes trappes			3.2 0.5	3.0 41.9 24.1 * 57.6	337.6 1 911.9 149.1 1.2 143.6	134.2 2 487.4 107.4 0.2 152.7	201.7 503.6 84.1 0.2 27.2	129.1 63.2 1.1	9.7	815.3 5 008.0 369.0 1.6 381.6
Total			3.7	126.6	2 543.4	2 881.9	816.8	193.4	9.7	6 575.5
3L seines-barrages seines-coulis. filets maillants lignes trappes		26.6	* 0•4	3.1 15.8 0.2 14.5	20.9 147.7 42.8 0.5 29.1		415.9 710.1 68.6 0.7 10.2	3.3 8.8	0.1	765.7 1 465.4 316.8 2.5 119.7
Total		26.6	0.4	33.6	241.0	1 150.7	1 205.5	12.1	0.2	2 670.1
3Pn filets maillants						1.4	0.6			2.0
Total						1.4	0.6			2.0
4R seines-coulis. filets maillants lignes trappes	0.2		9.8 0.2	85.1 0.7 2.2	348.6 106.5 0.8 0.5	1 096.6 21.1 0.3 0.3	910.7 38.3 0.1	0.9		2 355.9 261.9 2.1 3.0
Total	0.2		10.0	88.0	456.4	1 118.3	949.1	0.9		2 622.9
4S seines-coulis. filets maillants lignes			0.2 0.1	1.9 0.1	1.2 28.7 11.6	32.0 5.6 13.0	6.3			33.2 36.4 31.1
Total			0.3	2.0	41.5	50.6	6.3			100.7

^{*:} Moins de 50 kg.

l: La région de Scotia-Fundy rapporte un débarquement de 0.1 t dans 5Y et une capture de 0.2 t dans 4X en janvier qui ont été inclues dans le total de 4X.

Tableau 4. (suite)

	A	М	J	J	A	S	0	N	D	Total
4T seines-coulis. filets maillants lignes trappes		22.7 116.8 36.6	0.1 1 458.8 7.1 18.2	33.5 575.3 86.6 15.9	146.4 274.3 737.2	181.2 1 091.7	10.6 104.9 119.5	1.3 0.9	1.8 0.2	215.1 2 712.8 2 043.0 70.7
Total		176.1	1 484.2	711.3	1 157.9	1 272.9	235.0	2.2	2.0	5 041.6
4Vn seines-barrages seines-coulis. filets maillants lignes trappes autres inconnu		20.5 0.5 102.2	10.9 1.6 147.3	5.4 14.2 29.1	144.2 0.5 0.2 0.2	0.3 427.9	13.3 348.8 0.5	1.7 9.4		0.3 13.3 36.8 938.9 288.5 0.7 0.2
Total		123.2	159.8	48.7	145.1	428.2	362.6	11.1		1 278.7
4Vs filets maillants		3.2								3.2
Total		3.2								3.2
4W filets maillants lignes trappes autres Inconnu Pays étrangers		289.5 0.7 20.2	169.2 1.9 0.3 *	4.5 0.6 24.8 *	1.8 3.3 12.1	10.2 7.7 0.9	29.4 15.8 14.2 0.4 0.1	26.0 1.3 193.3		530.6 31.3 265.8 0.4 0.1 54.7
Total		363.6	171.4	30.0	18.6	18.8	59.9	220.6		882.9
4X ¹ filets maillants lignes trappes autres		121.7 0.1 191.9	163.6 55.6 491.7	15.0 8.4 827.9	4.7 18.8 354.7	3.3 3.9 146.6		28.1 6.5 67.4	2.2	416.2 98.7 2 479.0
Total		313.7	710.9	851.3	378.2	153.8	481.8	102.0	2.2	2 994.2

Tableau 5. Échantillons de maquereau par mois en 1987 pour les sous-régions 3-4 de 1'OPANO. (L = nombre de données de longueur/A = nombre de données d'âge).

	Mai L/A	Juin L/A	Juillet L/A	Août L/A	Sept. L/A	Octobre L/A	Total L/A
3K seines-barrages seines-coulis. filets maillants trappes			39/ 21	50/ 42 53/ 47	123/ 90 50/ 34		110/ 77 223/ 167 144/ 103 53/ 47
3L seines-coulis. filets maillants trappes			54/ 37	100/ 84 53/ 39	30/ 26 52/ 40 26/ 19	48/ 35	130/ 110 100/ 75 133/ 95
3Ps filets maillants					97/ 80		97/ 80
4R seines-coulis.			1 012/134	1 766/155	1 497/145	200/ 26	4 475/ 460
4T filets maillants lignes		2 787/250 517/ 41	530/ 48 697/118	492/ 44 1 769/247		792/ 91	4 494/ 413 4 193/ 546
4Vn lignes				152/ 41			152/ 41
4W filets maillants lignes trappes	258/ 45 135/ 25	108/ 17 273/ 50		189/ 52			366/ 62 189/ 52 408/ 75
4X filets maillants trappes	193/ 0	334/ 0	132/ 0	587/ 47 115/ 0			587/ 47 774/ 0
total seines-barrages seines-coulis. filets maillants lignes trappes	258/ 45 328/ 25	2 895/267 517/ 41 607/ 50	1 012/134 569/ 69 697/118 186/ 37	1 916/281 1 079/ 91 2 110/340 221/ 86		792/ 91	110/ 77 4 828/ 737 5 788/ 780 4 534/ 639 1 368/ 217
GRAND TOTAL	586/ 70	4 019/358	2 464/358	5 326/798	2 978/554	1 255/312	16 628/2450

Tableau 6. Captures à l'âge de maquereau provenant des sous-régions 3 et 4 de l'OPANO en 1987. Sont présentés: poids moyens à l'âge (kg), longueurs moyennes à l'âge (cm), captures à l'âge (moyenne X 10³), erreur standard et coefficient de variation.

Âge	Moy	yenne	Capture						
Age	Poids	Longueur	Nombres Moyens	Erreur standard	C.V.				
1	0.177	26 068	6 823	288.43	0.04				
2	0.277	29 671	2 730	285.45	0.10				
3	0.419	33 479	2 036	157.17	0.08				
4	0.510	35 406	2 083	220.84	0.11				
5	0.526	35 810	23 915	391.50	0.02				
6	0.627	37 677	5 398	350.32	0.06				
7	0.717	39 039	321	138.60	0.43				
8	0.819	40 739	220	82.44	0.37				
9	0.910	42 181	76	36.87	0.48				
10	0.883	41 948	157	119.82	0.76				
11	0.894	42 095	150	60.49	0.40				
12	0.905	42 158	472	145.54	0.31				
13	0.942	42 468	169	62.96	0.37				
14	0.979	43 000	4	3.88	1.03				
15	0.979	43 000	33	34.61	1.04				

Tableau 7. Captures à l'âge (milliers de poissons) de maquereau en 1986 et 1987 pour les sous-régions 3-6 de l'OPANO $^{\rm l}$.

Âge				1986						1987	7		
	SR	3-4	SR	5-6	Tot	al	•	SR	3-4	SR .	5-6	Tota	1
1		174		589		763		6	823	2	981	9	804
2	1	967	7	938	9	905		2	730	13	432	16	162
3	3	051	2	386	5	437		2	036	12	262	14	298
4	31	643	56	822	88	465		2	083	5	730	7	813
5	8	228	13	386	21	614		23	915	85	947	109	862
6		529		988	1	517		5	398	12	880	17	486
7		289		115		404			321	2	326	2	647
8		551	2	374	2	925			220		182		402
9		102		86		188			76	1	889	1	965
10		261		432		693			157		101		258
11		545		877	1	422			150		363		513
12		418	1	666	2	084			472		425		897
13		203		434		637			169	1	432	1	601
14+				640		640			37		417		454
Total	47	961	88	733	136	694		44	587	139	575	184	162

¹ Données préliminaires

Tableau 8. Captures à l'âge (millions de poissons) du maquereau des sous-régions 2-6 de l'OPANO.

Âge	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
0	.0	.0	•0	.0	.0	1.8	1.1	4.0	4.8	2.4	3.6	4.0	2.0
1	16.1	1.1	12.9	9.0	24.0	.8	141.4	7.1	193.5	74.6	22.1	161.8	95.9
2	2.8	4.2	7.0	3.6	11.5	26.7	61.5	262.1	54.5	294.2	85.7	283.2	242.2
3	15.2	1.3	4.1	2.9	5.3	19.8	59.3	160.7	522.1	127.4	256.2	285.1	264.4
4	3.8	26.3	4.0	4.0	2.6	3.5	38.1	65.8	162.9	558.9	182.6	233.6	101.5
5	1.2	6.0	19.4	5.2	4.7	3.3	14.3	5.7	27.6	203.5	390.4	192.4	114.3
6	1.6	.3	4.1	19.5	7.9	5.1	6.6	3.0	7.0	34.6	87.3	197.2	111.8
7	1.4	• 2	3.9	4.2	21.8	6.1	•7	2.0	5.3	8.9	24.0	31.2	108.3
8	.8	• 2	.7	4.0	• 5	32.3	1.0	3.1	9.9	3.6	4.2	11.0	25.7
9	• 4	• 2	.8	• 7	• 2	•3	6.1	2.2	10.0	4.3	8.2	4.1	6.4
10	.1	.1	• 2	.0	.0	.0	.1	8.3	3.8	8.1	3.8	3.8	2.5
11	.3	•1	.0	.0	.0	.0	.0	.0	2.8	7.2	5.6	1.6	.8
12	.0	•0	.0	•0	.0	.0	.0	.0	.0	.0	.0	•0	.0
13	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0
14	.0	•0	.0	•0	.0	.0	.0	•0	•0	.0	.0	•0	.0

Âge	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
0	3.7	.0	.0	.0	.0	.0	•0	.0	.0	.0	•0	.0	•0
1	373.7	12.5	2.0	.1	. 4	1.2	10.4	3.6	2.2	•5	3.3	.8	9.8
2	431.4	353.5	27.0	• 2	.6	10.9	4.8	9.9	14.2	41.7	1.8	9.9	16.2
3	113.7	272.5	101.0	4.7	1.3	1.0	8.7	2.7	4.5	28.2	130.7	5.4	14.3
4	100.8	85.7	54.0	17.4	7.1	1.0	2.0	8.4	1.4	3.3	32.6	88.5	7.8
5	58.6	52.4	12.0	13.3	18.6	6.9	2.8	1.2	6.8	1.2	2.6	21.6	109.9
6	67.8	27.3	9.9	8.4	13.1	13.8	7.9	2.7	.7	4.6	.8	1.5	17.5
7	51.9	40.5	5.6	4.7	6.2	4.7	13.1	4.4	1.3	•6	3.1	.4	2.6
8	50.5	34.6	6.3	2.2	2.6	2.0	5.6	8.1	4.8	•6	•3	2.9	0.4
9	12.5	22.6	3.8	4.5	2.2	1.0	2.7	2.6	11.8	3.3	• 5	• 2	2.0
10	2.3	13.4	3.6	1.5	2.3	1.0	.9	1.3	5.3	7.7	2.4	.7	0.3
11	1.0	1.4	•3	4.6	• 7	1.6	•4	•6	1.2	2.9	4.5	1.4	0.5
12	•0	•0	•3	•6	1.9	• 5	• 4	•3	• 7	.8	2.3	2.1	0.9
13	.0	•0	•0	•6	•6	1.3	.7	.7	• 4	.6	•6	•6	1.6
14	•0	•0	•0	•0	1.0	.8	•8	1.3	.8	1.6	1.1	•6	0.5

Tableau 9 . Poids à l'âge (Kg) du maquereau des sous-régions 2-6 de l'OPANO.

Âge	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
													···········
0	.001	.001	.001	.001	.001	•057	.070	.061	.048	.050	•054	.051	.048
1	.130	.120	.116	.123	.128	.123	.148	.131	.107	.110	.123	.113	.111
2	.208	.192	.188	.200	.209	.202	.241	.214	.179	.181	.210	.189	.190
3	.289	.264	.262	.278	•294	•283	•335	.300	.253	.256	.300	.269	.273
4	•365	.334	•332	.352	•374	.360	•425	.382	.324	.327	.386	•345	•352
5	.433	•395	•395	.419	•447	•428	•506	•456	.389	•391	•464	•414	•425
6	.491	.448	•450	•477	•509	.489	•576	•520	•444	•446	•533	•473	•487
7	•541	•492	•495	•525	•562	•540	•634	•574	•491	•494	.590	•524	•541
8	•581	•529	•533	•565	.605	•581	.683	.618	•530	•532	.638	•565	•585
9	.614	•559	•564	.598	.641	.615	•722	•654	•562	•564	•677	.600	.621
10	.641	.583	•588	.001	.001	.001	.753	.683	.587	.589	.708	.628	.649
11	.662	.602	.001	.001	.001	.001	.001	.001	.608	.610	.733	•650	•673
12	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001
13 14	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001 .001	.001
14	.001	.001	.001	.001	.001	•001	.001	.001	.001	•001	.001	•001	.001
	'												
Âge	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Âge	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
			· · · · · · · · · · · · · · · · · · ·										
0	.045	.001	.001	.001	.001	.001	.072	•065	•001	•001	•001	.001	.001
0	.045 .104	.001 .097	.001 .114	.001 .192	.001	.001 .146	.072 .114	.065 .152	.001 .172	.001 .136	.001 .157	.001 .109	.001 .156
0 1 2	.045 .104 .176	.001 .097 .168	.001 .114 .198	.001 .192 .285	.001 .190 .272	.001 .146 .376	.072 .114 .315	.065 .152 .340	.001 .172 .354	.001 .136 .232	.001 .157 .314	.001 .109 .243	.001 .156 .221
0 1 2 3	.045 .104 .176 .252	.001 .097 .168	.001 .114 .198 .288	.001 .192 .285 .425	.001 .190 .272	.001 .146 .376 .548	.072 .114 .315 .523	.065 .152 .340	.001 .172 .354 .519	.001 .136 .232 .384	.001 .157 .314	.001 .109 .243 .408	.001 .156 .221
0 1 2 3 4	.045 .104 .176 .252	.001 .097 .168 .244	.001 .114 .198 .288 .375	.001 .192 .285 .425	.001 .190 .272 .531	.001 .146 .376 .548	.072 .114 .315 .523	.065 .152 .340 .541	.001 .172 .354 .519 .633	.001 .136 .232 .384	.001 .157 .314 .348	.001 .109 .243 .408	.001 .156 .221 .331 .432
0 1 2 3 4 5	.045 .104 .176 .252 .326 .393	.001 .097 .168 .244 .316	.001 .114 .198 .288 .375	.001 .192 .285 .425 .463	.001 .190 .272 .531 .567	.001 .146 .376 .548 .609	.072 .114 .315 .523 .577	.065 .152 .340 .541 .606	.001 .172 .354 .519 .633	.001 .136 .232 .384 .550	.001 .157 .314 .348 .488	.001 .109 .243 .408 .399	.001 .156 .221 .331 .432
0 1 2 3 4 5	.045 .104 .176 .252	.001 .097 .168 .244	.001 .114 .198 .288 .375 .454	.001 .192 .285 .425 .463 .509	.001 .190 .272 .531 .567 .579	.001 .146 .376 .548 .609 .617	.072 .114 .315 .523	.065 .152 .340 .541 .606 .666	.001 .172 .354 .519 .633 .680	.001 .136 .232 .384 .550 .655	.001 .157 .314 .348 .488 .617	.001 .109 .243 .408	.001 .156 .221 .331 .432 .436
0 1 2 3 4 5	.045 .104 .176 .252 .326 .393 .451	.001 .097 .168 .244 .316 .382	.001 .114 .198 .288 .375	.001 .192 .285 .425 .463	.001 .190 .272 .531 .567	.001 .146 .376 .548 .609	.072 .114 .315 .523 .577 .643	.065 .152 .340 .541 .606	.001 .172 .354 .519 .633	.001 .136 .232 .384 .550	.001 .157 .314 .348 .488	.001 .109 .243 .408 .399 .484	.001 .156 .221 .331 .432
0 1 2 3 4 5 6 7	.045 .104 .176 .252 .326 .393 .451	.001 .097 .168 .244 .316 .382 .440	.001 .114 .198 .288 .375 .454 .524	.001 .192 .285 .425 .463 .509 .582	.001 .190 .272 .531 .567 .579 .603	.001 .146 .376 .548 .609 .617 .635	.072 .114 .315 .523 .577 .643 .660	.065 .152 .340 .541 .606 .666 .743	.001 .172 .354 .519 .633 .680 .707	.001 .136 .232 .384 .550 .655 .687	.001 .157 .314 .348 .488 .617 .716	.001 .109 .243 .408 .399 .484 .602	.001 .156 .221 .331 .432 .436 .543
0 1 2 3 4 5 6 7 8	.045 .104 .176 .252 .326 .393 .451 .500 .540 .573	.001 .097 .168 .244 .316 .382 .440 .489 .530 .563	.001 .114 .198 .288 .375 .454 .524 .582 .631 .671	.001 .192 .285 .425 .463 .509 .582 .625	.001 .190 .272 .531 .567 .579 .603 .652	.001 .146 .376 .548 .609 .617 .635 .672	.072 .114 .315 .523 .577 .643 .660 .674 .707 .723	.065 .152 .340 .541 .606 .666 .743 .737	.001 .172 .354 .519 .633 .680 .707 .763	.001 .136 .232 .384 .550 .655 .687 .718	.001 .157 .314 .348 .488 .617 .716 .763	.001 .109 .243 .408 .399 .484 .602 .744	.001 .156 .221 .331 .432 .436 .543 .528 .768 .753
0 1 2 3 4 5 6 7 8 9 10	.045 .104 .176 .252 .326 .393 .451 .500 .540	.001 .097 .168 .244 .316 .382 .440 .489 .530 .563 .590	.001 .114 .198 .288 .375 .454 .524 .582 .631	.001 .192 .285 .425 .463 .509 .582 .625 .659 .673 .697	.001 .190 .272 .531 .567 .579 .603 .652 .714 .752 .769	.001 .146 .376 .548 .609 .617 .635 .672 .705 .781 .743	.072 .114 .315 .523 .577 .643 .660 .674 .707 .723 .756	.065 .152 .340 .541 .606 .666 .743 .737 .722	.001 .172 .354 .519 .633 .680 .707 .763 .757	.001 .136 .232 .384 .550 .655 .687 .718 .757 .751	.001 .157 .314 .348 .488 .617 .716 .763 .752	.001 .109 .243 .408 .399 .484 .602 .744 .742	.001 .156 .221 .331 .432 .436 .543 .528 .768 .753 .804 .792
0 1 2 3 4 5 6 7 8 9 10 11	.045 .104 .176 .252 .326 .393 .451 .500 .540 .573 .600 .621	.001 .097 .168 .244 .316 .382 .440 .489 .530 .563 .590 .611	.001 .114 .198 .288 .375 .454 .524 .582 .631 .671	.001 .192 .285 .425 .463 .509 .582 .625 .659 .673 .697 .717	.001 .190 .272 .531 .567 .579 .603 .652 .714 .752 .769 .822	.001 .146 .376 .548 .609 .617 .635 .672 .705 .781 .743 .785	.072 .114 .315 .523 .577 .643 .660 .674 .707 .723 .756 .772 .812	.065 .152 .340 .541 .606 .666 .743 .737 .722 .719	.001 .172 .354 .519 .633 .680 .707 .763 .757 .760	.001 .136 .232 .384 .550 .655 .687 .718 .757 .751	.001 .157 .314 .348 .488 .617 .716 .763 .752 .831	.001 .109 .243 .408 .399 .484 .602 .744 .742 .828	.001 .156 .221 .331 .432 .436 .543 .528 .768 .753
0 1 2 3 4 5 6 7 8 9 10 11 12 13	.045 .104 .176 .252 .326 .393 .451 .500 .540 .573 .600 .621 .001	.001 .097 .168 .244 .316 .382 .440 .489 .530 .563 .590	.001 .114 .198 .288 .375 .454 .524 .582 .631 .671 .703	.001 .192 .285 .425 .463 .509 .582 .625 .659 .673 .697	.001 .190 .272 .531 .567 .579 .603 .652 .714 .752 .769	.001 .146 .376 .548 .609 .617 .635 .672 .705 .781 .743	.072 .114 .315 .523 .577 .643 .660 .674 .707 .723 .756 .772 .812	.065 .152 .340 .541 .606 .666 .743 .737 .722 .719 .740	.001 .172 .354 .519 .633 .680 .707 .763 .757 .760 .779	.001 .136 .232 .384 .550 .655 .687 .718 .757 .751	.001 .157 .314 .348 .488 .617 .716 .763 .752 .831 .835 .829	.001 .109 .243 .408 .399 .484 .602 .744 .742 .828 .760	.001 .156 .221 .331 .432 .436 .543 .528 .768 .753 .804 .792
0 1 2 3 4 5 6 7 8 9 10 11	.045 .104 .176 .252 .326 .393 .451 .500 .540 .573 .600 .621	.001 .097 .168 .244 .316 .382 .440 .489 .530 .563 .590 .611	.001 .114 .198 .288 .375 .454 .524 .582 .631 .671 .703 .729	.001 .192 .285 .425 .463 .509 .582 .625 .659 .673 .697 .717	.001 .190 .272 .531 .567 .579 .603 .652 .714 .752 .769 .822	.001 .146 .376 .548 .609 .617 .635 .672 .705 .781 .743 .785	.072 .114 .315 .523 .577 .643 .660 .674 .707 .723 .756 .772 .812	.065 .152 .340 .541 .606 .666 .743 .737 .722 .719 .740 .790	.001 .172 .354 .519 .633 .680 .707 .763 .757 .760 .779 .796 .830	.001 .136 .232 .384 .550 .655 .687 .718 .757 .751 .751 .758 .788	.001 .157 .314 .348 .488 .617 .716 .763 .752 .831 .835 .829	.001 .109 .243 .408 .399 .484 .602 .744 .742 .828 .760 .771 .745	.001 .156 .221 .331 .432 .436 .543 .528 .768 .753 .804 .792 .825

Tableau 10. Analyse de variance de la régression des taux de capture (ln) en fonction des différentes catégories pour la division 3L de l'OPANO.

RÉGRESSION DU MODELE MULTIPLICATIF

R multiple 0.989 R multiple carré..... 0.979

ANALYSE DE VARIANCE

Source de Variation	DL	Sommes des carrés	Carrés moyens	F
Origine	1	1.393E0003	1.393E0003	
Régression Type 2 (mois) Type 3 (engins) Type 4 (années)	11 4 4 3	4.337E0002 5.098E0000 4.824E0001 1.981E0000	3.943E0001 1.275E0000 1.206E0001 6.602E-001	305.558 9.877 93.457 5.116
Résidus	73	1.420E0000	1.290E-001	
TOTAL	85	1.836E0003		

COEFFICIENTS DE RÉGRESSION

CATÉGORIE	CODE	VARIABLE	COEF-	ERREUR STD	NO. OBS.
			FICIENT	<u> </u>	
2	9	Origine	5.984	0.207	85
3	6	_			
4	1984				
2	7	1	-1.267	0.258	15
	8	2	-0.645	0.172	19
	10	3	0.080	0.174	19
	11	4	-0.286	0.246	12
3	1	5	0.032	0.193	18
	4	6	2.090	0.176	18
	7	7	-0.957	0.349	12
	64	8	2.713	0.176	15
4	1985	9	0.726	0.201	19
	1986	10	0.665	0.195	23
	1987	11	0.532	0.194	24

Tableau 11. Analyse de variance de la régressin des taux de capture (ln) en fonction des différentes catégories pour la subdivision 4Vn de l'OPANO.

RÉGRESSION DU MODELE MULTIPLICATIF

R multiple 0.916 R multiple carré..... 0.839

ANALYSE DE VARIANCE

Source de Variation	DL	Sommes des carrés	Carrés moyens	F
Origine	1	9.413E0003	9.413E0003	
Régression Type 2 (mois) Type 3 (engins) Type 4 (années)	21 6 6 9	9.858E0002 1.443E0001 2.477E0002 1.491E0001	4.694E0001 2.405E0000 4.128E0001 1.657E0000	63.368 3.247 55.730 2.236
Résidus	255	1.889E0002	7.408E-001	
TOTAL	277	1.059E0004		

COEFFICIENTS DE RÉGRESSION

CATÉGORIE	CODE	VARIABLE	COEF-	ERREUR STD	NO. OBS.
2	6	Origine	FICIENT 6.889	0.240	277
2 3	5	8			
4	1978				
2	5	1	-0.167	0.201	40
	7		-0.284	0.196	52
	8	2 3	-0.598	0.199	51
	8 9	4	-0.098	0.220	36
	10	5	0.047	0.228	36
	11	6	0.300	0.304	21
	1	7	1.434	0.232	45
3	6	8	-0.938	0.227	42
	6 7	9	-1.243	0.219	66
	8	10	-1.131	0.249	36
	14	11	-1.661	0.255	38
	15	12	1.121	0.278	26
4	1979	13	0.379	0.199	39
	1980	14	0.170	0.208	35
	1981	15	0.674	0.219	34
	1982	16	0.239	0.236	28
	1983	17	-0.043	0.248	23
	1984	18	0.247	0.246	25
	1985	19	0.534	0.251	21
	1986	20	-0.200	0.274	14
	1987	21	0.007	0.259	19

Tableau 12. Analyse de variance de la régression des taux de capture (ln) en fonction des différentes catégories pour la division 4X de 1'OPANO.

RÉGRESSION DU MODELE MULTIPLICATIF

R multiple 0.945 R multiple carré..... 0.893

ANALYSE DE VARIANCE

Source de Variation	DL	Sommes des carrés	Carrés moyens	F
Origine	1	1.247E0004	1.247E0004	
Régression Type 2 (mois) Type 3 (engins) Type 4 (années)	24 7 8 9	2.496E0003 9.716E0001 5.602E0002 4.838E0001	1.040E0002 1.388E0001 7.002E0001 5.375E0000	160.244 21.386 107.885 8.282
Résidus	461	2.992E0002	6.491E-001	
TOTAL	486	1.527E0004		

COEFFICIENTS DE RÉGRESSION

CATÉGORIE	CODE	VARIABLE	<u>COEF-</u> FICIENT	ERREUR STD	NO. OBS.
2	6 1	Origine	8.117	0.171	486
4	1978				
2	5	1	0.485	0.153	65
	7	2	-0.818	0.142	70
	8 9	3	-0.985	0.146	73
	9	4	-0.849	0.156	65
	10	5	-0.239	0.157	55
	11	5 6	-0.063	0.166	56
	12	7	-0.269	0.253	26
3	2	8	-0.477	0.192	49
	5	9	-1.891	0.167	41
	6	10	-2.366	0.119	105
	7	11	-3.261	0.135	79
	8	12	-2.250	0.170	64
	11	13	-3.672	0.482	10
	14	14	-3.371	0.196	47
	63	15	-3.502	0.418	11
4	1979	16	0.020	0.160	56
	1980	17	-0.182	0.168	56
	1981	18	0.346	0.187	45
	1982	19	0.236	0.176	49
	1983	20	0.221	0.181	46
	1984	21	0.578	0.188	49
	1985	22	0.969	0.188	44
	1986	23	0.934	0.196	45
	1987	24	0.850	0.197	41

Tableau 13. Taux de captures (Kg/bordereau d'achat) commerciaux moyens dans la division 3L de l'OPANO.

TAUX DE CAPTURES PRÉDITS

ANNÉES <u>CAPTUF</u>		<u>IRE</u>	TAUX	TAUX DE CAPTURE	
<u></u>	<u>Poids</u>	Prop.	Moyenne	E.S.	<u>Effort</u>
1984 1985 1986 1987	1237 5139 4260 2670	1.000 1.000 1.000 0.988	1.000 2.163 2.037 1.784	0.000 0.443 0.396 0.345	1237 2376 2091 1497

C.V. moyen de la moyenne: .147

Tableau 14. Taux de captures (Kg/bordereau d'achat) commerciaux moyens dans la division 4X de l'OPANO.

TAUX DE CAPTURES PRÉDITS

ANNÉES	CAPTU	<u>RE</u>	<u>TAT</u>	JX DE CAPTUR	E
	Poids	Prop.	Moyenne	E.S.	<u>Effort</u>
1978	4012000	0.976	1.000	0.000	4012000
1979	3847000	0.996	1.395	0.223	2758035
1980	2312000	0.990	1.138	0.190	2031460
1981	2990000	1.000	1.923	0.356	1554828
1982	4512000	1.000	1.725	0.302	2615279
1983	3547000	1.000	1.698	0.306	2088355
1984	2828000	0.954	2.424	0.453	1166680
1985	3968000	0.991	3.583	0.669	1107579
1986	3034000	0.999	3.456	0.671	877958
1987	2994000	1.000	3.177	0.621	942491

C.V. moyen de la moyenne: .163

Tableau 15. Taux de captures (Kg/bordereau d'achat) commerciaux moyens dans la subdivision 4Vn de l'OPANO.

TAUX DE CAPTURES PRÉDITS

ANNÉES	CAPT	URE	<u>T.</u>	TAUX DE CAPTURE			
	Poids	Prop.	Moyenne	E.S.	Effort		
1978	2547000	1.000	1.000	0.000	2547000		
1979	3000000	1.000	2.076	0.410	1444984		
1980	2809000	0.924	1.682	0.348	1669809		
1981	2084000	0.983	2.777	0.602	750438		
1982	2133000	1.000	1.791	0.418	1191069		
1983	1111000	1.000	1.347	0.330	824528		
1984	2416000		1.801	0.438	1341660		
1985	1701000	1.000	2.397	0.593	709548		
1986	967000	0.877	1.143	0.308	845711		
1987	1279000	1.000	1.412	0.360	906012		

C.V. moyen de la moyenne: .211

Tableau 16. Production quotidienne et son écart-type (calculé après une transformation racine carrée), et production annuelle totale, d'oeufs de maquereau du golfe du Saint-Laurent de 1979 à 1987 (excepté 1981).

Croisière	Production quotidienne (10 ¹² oeufs)	Ecart-type (10^{12})	Production totale (10 ¹² oe	
		- 	pic fixe ¹	pic mobile ²
1979/A	21.34	0.75	798.1	357.4
1980/A	10.42	0.46	191.5	174.5
1982/A 1982/B	41.63 11.30	2.11 0.46	3 802.7 223.6	697.1 189.2
1983/A	8.74	0.37	152.3	146.4
1984/A 1984/B	20.21 9.61	0.63 0.39	336.8 266.7	338.4 160.9
1985/A 1985/B	28.12 22.81	0.64 0.74	474.5 1 078.1	470.9 382.0
1986/A 1986/B	50.64 16.80	1.17 0.44	876.3 794.0	848.0 281.3
1987/A 1987/B	40.10 7.93	1.44	731.7 194.1	671.5 132.8
1				

¹Production annuelle totale calculée en assumant que le pic de fraie survient le 23 juin (Ouellet, 1987).

Production annuelle totale calculée en assumant que la date médiane de la croisière correspond au pic de fraie.

Tableau 17. Effets de l'effort d'échantillonnage et de la transformation racine carrée sur la précision de l'estimation de production quotidienne (PQ) d'oeufs de la croisière 1987/A. La précision est exprimée par le coefficient de variation (CV).

Effort	Transformation	PQ (10 ¹² oeufs)	C∇ (%)
65 stations	aucune	40.10	18.54
65 stations	racine carrée	40.10	3.59
90 stations	aucune	35.94	11.47
90 stations	racine carrée	35.94	1.58

Tableau 18. Effectifs (millions de poissons) en début d'année estimés par ASP en utilisant Ft=0.05

 +		1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
1	955	555	578	564	1234	4163	8656	3714	4519	2679	2292	2373	4344
	487	693	410	417	410	893	3083	6291	2745	3181		1679	1619
3 1	2628	358	510	298	306	294	639	2231	4435	1987		1349	1000
4	66	1934	264	374	218	222	201	422	1515	2836		1338	754
5 I	22	46	1410	192	274	159	161	116	256	982	1620	852	790
6 1	6	16	29	1028	138	199	115	107	81	166	552	864	465
7 1	4	3	11	18	745	95	143	80	77	54	93	334	470
8 1	3	2	2	5	10	533	65	105	57	52			221
9 1	4	1	1	1	0	7	367		75	34			26
10 1	0 	2 	29 11 2 1	0	0	0	5	267	33	47	21	19	12
	4174		3216	2897	3334	6566	13436	13380	13794	12018	10033	8877	9702
2+1	3220	3055	2638	2333	2100	2403	4780	9667	9274	9339		6504	5357
3+1	2733	2362			1690		1696	3376	6529	6158		4825	3738
4+1	105	2004	1718	1618	1385	1215	1057	1145	2095	4171	3717	3476	2738
 +		5 1976	5 1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
1 1		1 1463	3 418	133	683	108	438	2122	9221	469	637	1821	5677
2 1								315	1569	6829		469	1348
3 1									225	1150	5023	256	339
4				1788				263	38	163	828	3619	185
5 I				851	1310	415	123	37	188	27	118		2605
6 1	48	7 299	172	284	619	954	301	89	27	133	19	85	415
7 1	24	9 302	198	119	203	447	695	216	64	19	95	13	415 62 9 47
8 1	25	5 14(84			504	156	46	14	67	9
9 1	14	1 146					106		366	112			
10	1.	4 94	88 4	51	96	74	44	76	174	261	80 		7
1+1		8 9152	2 6353	4583	3992	2949	2531	3915	12027	9209	7194		10695
2+1									2806	8740	6557	5129	5018
3+1									1237		6209	4660	
4+1									1012		1186	4404	3330

Tableau 19. Biomasse moyenne (milliers de tonnes) estimée par ASP en utilisant Ft=0.05.

	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	
1 I	106	57	57	59	135	442	1097	420	408	251	242	223	412	
2 1	87	115	.66	72	73	153	635	1136	420	472	340	248	243	
3 1	654	82	115	71	77	69	175	555	905	424	508	275	199	
4 1	20	554	75	_			66	127	398	710	420	359	212	
5 I	8			69		. 58	67	44			558	265	266	
6 !			10						30				168	
7 1	1		4	7	356		78	39	31	21				
8	1				5		38	55	24		16	21	104	
9 1		1		-		3	227		34		18	9	12	
10	0	1	0	0	0	0	3	155	16	22	12	9	6	
1+1	882	832	806	811	879	1179	2441	2605	2346	2285	2385	1858	1812	
2+1	776	774	749	752	744	737	1345	2185	1938	2034	2143	1635	1401	
3+1	689	659	683	680	671	583	710	1049	1518	1563	1803	1387	1158	
4+1	35	578	568	609	594	514	534	494	613	1139	1296	1112	959	
i	1975	197	76 19	977 1	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
 +-	1975	197	76 19	977 1	L978	1979	1980	1981	1982	1983	1984	1985	1986	1987
 +- 1	1975 484													
+-		12	22	41	1978 22 76		13	1981 43 21	1982 278 91		 55	1985 86 94	 171	764
+- 1	484	12 52	22 27 1	41	22	112 23	13	43	278	1370 477	 55	 86	171 97	
1 2	484 440	12 52 37	22 27 1 79 6	41 81 616	22 76	112 23 104	13 162 34	43 21	278 91	1370 477 100	55 1364	86 94	171 97 89	764 256
1 2 3	484 440 202	12 52 37 16	22 27 1 79 6	41 81 616	22 76 282	112 23 104	13 162 34 88	43 21 163	278 91 25	1370 477 100 20	55 1364 376	86 94 1490	171 97 89	764 256 95
1 2 3 4	484 440 202 128	12 52 37 16	22 27 1 79 6 50 3	41 81 516 883	22 76 282 711	112 23 104 276	13 162 34 88	43 21 163 26	278 91 25 135	1370 477 100 20 108	55 1364 376 77 15	86 94 1490 341	171 97 89 1231 240	764 256 95 67
1 2 3 4 5 6 7	484 440 202 128 149 175 94	12 52 37 16 8	22 27 1 79 6 50 3 37 1	41 81 616 883 53 76 98	22 76 282 711 371 141 63	112 23 104 276 650 319 113	13 162 34 88 219 519 258	43 21 163 26 68	278 91 25 135 21 56	1370 477 100 20 108 16 41	55 1364 376 77 15 77	86 94 1490 341 62 11 61	171 97 89 1231 240 44 8	764 256 95 67 958 190 27
1 2 3 4 5 6	484 440 202 128 149 175 94	12 52 37 16 8 10	22 27 1 79 6 50 3 77 1 98	41 81 616 883 53 76 98	22 76 282 711 371 141 63 80	112 23 104 276 650 319 113 51	13 162 34 88 219 519 258 88	43 21 163 26 68 169 401 198	278 91 25 135 21 56	1370 477 100 20 108 16 41 101	55 1364 376 77 15 77 12 30	86 94 1490 341 62 11 61 9	171 97 89 1231 240 44 8 42	764 256 95 67 958 190 27
1 2 3 4 5 6 7 8 9	484 440 202 128 149 175 94 105	12 52 37 16 8 10	22 27 1 79 6 50 3 77 1 88 85 1	41 81 516 883 53 76 98 01 41	22 76 282 711 371 141 63 80 77	112 23 104 276 650 319 113 51 66	13 162 34 88 219 519 258 88 40	43 21 163 26 68 169 401 198 65	278 91 25 135 21 56 136 311	1370 477 100 20 108 16 41 101 236	55 1364 376 77 15 77 12 30 71	86 94 1490 341 62 11 61 9	171 97 89 1231 240 44 8 42 7	764 256 95 67 958 190 27 6
1 2 3 4 5 6 7 8 9 10	484 440 202 128 149 175 94	12 52 37 16 8 10	22 27 1 79 6 50 3 77 1 88 85 1	41 81 616 883 53 76 98	22 76 282 711 371 141 63 80	112 23 104 276 650 319 113 51 66	13 162 34 88 219 519 258 88 40	43 21 163 26 68 169 401 198 65	278 91 25 135 21 56 136 311	1370 477 100 20 108 16 41 101	55 1364 376 77 15 77 12 30	86 94 1490 341 62 11 61 9	171 97 89 1231 240 44 8 42	764 256 95 67 958 190 27
1 2 3 4 5 6 7 8 9	484 440 202 128 149 175 94 105	12 52 37 16 8 10 11 5	22 27 1 79 6 50 3 77 1 88 85 1	41 81 616 883 53 76 98 01 41 52	22 76 282 711 371 141 63 80 77	112 23 104 276 650 319 113 51 66	13 162 34 88 219 519 258 88 40 47	43 21 163 26 68 169 401 198 65	278 91 25 135 21 56 136 311	1370 477 100 20 108 16 41 101 236	55 1364 376 77 15 77 12 30 71	86 94 1490 341 62 11 61 9	171 97 89 1231 240 44 8 42 7 16	764 256 95 67 958 190 27 6 30
1 2 3 4 5 6 7 8 9 10	484 440 202 128 149 175 94 105 66 7	12 52 37 16 8 10 11 5	22 27 1 79 6 50 3 7 1 98 8 8 55 1 55 14	41 81 616 383 76 98 01 41 52	22 76 282 711 371 141 63 80 77 30	112 23 104 276 650 319 113 51 66 63	13 162 34 88 219 519 258 88 40 47	43 21 163 26 68 169 401 198 65 28	278 91 25 135 21 56 136 311 147 48	1370 477 100 20 108 16 41 101 236 115	55 1364 376 77 15 77 12 30 71 167	86 94 1490 341 62 11 61 9 24 57	171 97 89 1231 240 44 8 42 7 16	764 256 95 67 958 190 27 6 30
1 2 3 4 5 6 7 8 9 10 1 1 + 1	484 440 202 128 149 175 94 105 66 7	12 52 37 16 8 10 11 5 4	22 27 19 60 37 19 18 18 16 16 17 18 18 19 19 19 19 19 19 19 19 19 19	41 81 616 883 553 76 98 .01 .41 52	22 76 282 711 371 141 63 80 77 30	112 23 104 276 650 319 113 51 66 63	13 162 34 88 219 519 258 88 40 47	43 21 163 26 68 169 401 198 65 28	278 91 25 135 21 56 136 311 147 48	1370 477 100 20 108 16 41 101 236 115	55 1364 376 77 15 77 12 30 71 167	86 94 1490 341 62 11 61 9 24 57	171 97 89 1231 240 44 8 42 7 16	764 256 95 67 958 190 27 6 30 5

Tableau 20. Mortalités par pêche estimée par ASP.

ı	1962	1963	1964	1965	1966	1967	1968	1969 1	1970 19	71 19	72 19	73	
1	.020	.002	.026	.019						33 .0:		83	
2	.007	.007	.020	.010	.033	.035	.023	.050 .	.023 .1	14 .0		18	
3	.007	.004	.009	.011	.020	.082				77 .1		82	
4	.069	.016	.018	.012	.014	.018	.249	.200 .	133 .2			27	
5	.064	.165	.016	.032	.020	.024	.109	.059 .	134 .2	75 .3	29 . 3	804	
6 I	.391	.023	.182	.022	.069	.030	.069	.033 .	106 .2			808	
7 1	.574	.084	. 514	.322	.035	.077	.006	.030 .	.083 .2	13 .3	55 .1	.15	
8 1	.393	.162	. 535	2.666	.063	.073	.018	.035 .	.224 .0	83 .1	64 .3	107	
9 1	.135	.177	3.004	3.099	2.335	.054	.019	.055 .	168 .1	59 .3	10 .2	67	
10 i		.050			.041				141 .2			55	
3+1									143 .2			64	
ı		1975		1977	1978 1	979 19	80 198	1 1982	1983	1984	1985	1986	1987
1													
	.026	.081	.010	.006	.001 .	001 .0	13 .02	8 .002	.000	.001	.006	.001	.002
2 1							13 .02 25 .07		2 .000				
2 3		.081 .174 .143	.114	.030	.001 .	007 .0	25 .07	3 .037	7 .011				.014
	.191 .367	.174 .143	.114	.030 .047	.001 .	007 .0		3 .037 8 .060	7 .011	.007 .029	.006	.025 .025	.014
3	.191 .367 .170	.174 .143 .259	.114 .177 .170	.030 .047 .053	.001 . .007 .	007 .0 007 .0 015 .0	25 .07 16 .02 07 .04	3 .037 8 .060 5 .038	7 .011 0 .024 3 .044	.007 .029 .024	.006 .028 .047	.025 .025 .029	.014 .050 .050
3 4	.191 .367 .170	.174 .143	.114	.030 .047 .053 .036	.001 . .007 . .011 .	007 .0 007 .0 015 .0 017 .0	25 .07 16 .02 07 .04	3 .037 8 .060 5 .038 7 .038	7 .011 0 .024 3 .044 3 .043	.007 .029 .024	.006 .028 .047 .027	.025 .025 .029	.014 .050 .050
3 4 5	.191 .367 .170 .184 .327	.174 .143 .259 .156	.114 .177 .170 .232 .112	.030 .047 .053 .036	.001 . .007 . .011 . .018 .	007 .0 007 .0 015 .0 017 .0	25 .07 16 .02 07 .04 20 .02	3 .037 8 .060 5 .038 7 .038 1 .036	7 .011 0 .024 3 .044 3 .043 5 .031	.007 .029 .024 .053	.006 .028 .047 .027	.025 .025 .029 .044 .021	.014 .050 .050 .050
3 4 5 6	.191 .367 .170 .184 .327	.174 .143 .259 .156 .176 .278	.114 .177 .170 .232 .112	.030 .047 .053 .036 .069	.001007011018035 .	007 .0 007 .0 015 .0 017 .0 025 .0	25 .07 16 .02 07 .04 20 .02 17 .03 12 .02	3 .037 8 .060 5 .038 7 .038 1 .036 2 .024	7 .011 0 .024 3 .044 3 .043 5 .031 4 .024	.007 .029 .024 .053 .041	.006 .028 .047 .027 .051	.025 .025 .029 .044 .021	.014 .050 .050 .050 .050
3 4 5 6 7	.191 .367 .170 .184 .327 .311	.174 .143 .259 .156 .176	.114 .177 .170 .232 .112 .169	.030 .047 .053 .036 .069 .033	.001 . .007 . .011 . .018 .	007 .0 007 .0 015 .0 017 .0 025 .0 036 .0	25 .07 16 .02 07 .04 20 .02 17 .03 12 .02	3 .037 8 .060 5 .038 7 .038 1 .036 2 .024 0 .019	7 .011 0 .024 3 .044 3 .043 5 .031 4 .024	.007 .029 .024 .053 .041 .037	.006 .028 .047 .027 .051 .040	.025 .025 .029 .044 .021 .036	.014 .050 .050 .050 .050 .050
3 4 5 6 7 8	.191 .367 .170 .184 .327 .311 .145	.174 .143 .259 .156 .176 .278	.114 .177 .170 .232 .112 .169 .340	.030 .047 .053 .036 .069 .033 .039	.001007011018035047018 .	007 .0 007 .0 015 .0 017 .0 025 .0 036 .0 037 .0	25 .07 16 .02 07 .04 20 .02 17 .03 12 .02 16 .02	3 .037 8 .060 5 .038 7 .038 1 .036 2 .024 0 .019	7 .011 0 .024 3 .044 3 .043 5 .031 4 .024 9 .036 3 .038	.007 .029 .024 .053 .041 .037	.006 .028 .047 .027 .051 .040 .026	.025 .025 .029 .044 .021 .036 .051	.014 .050 .050 .050 .050 .050

Tableau 21. Nombre (n), poids moyen (GONM) et écart-type (s), des gonades femelles de stade V, équation reliant le poids des gonades (GON) à la fécondité (FEC), son r² et la fécondité moyenne (FECM) calculée à partir de cette équation. Les équations sont tirées de Pelletier (1986).

Année	n	GONM (g)	S	équation	r ² (no	FECM oeufs)
1983	94	98.3	31.3	FEC=0.66*logGON+4.52	0.55	675 962
1984	182	77.5	39.8	FEC=0.91*1ogGON+4.01	0.69	530 742
1985	243	78.8	42.1	FEC=0.65*logGON+4.60	0.69	660 878
1986	103	89.8	51.9	FEC=0.75*logGON+4.32	0.62	593 853
1987	178	68.3	32.9	FEC=0.75*1ogGON+4.32	0.62	486 925

 $^{^{1}\}mathrm{Les}$ équations de 1983 à 1985 sont spécifiques à ces années, alors que celle de 1986 et 1987 est une équation moyenne.

Tableau 22. Comparaison entre l'estimation de biomasse du stock reproducteur (poissons âgés de trois ans et plus) total (les deux contingents) basée sur une analyse de cohorte selon $F_t{=}0.05$ et $F_t{=}0.1$ et l'estimation de biomasse du contingent nord basée sur la production annuelle totale d'oeufs. 1

Année	Biomasse du contingent nord Production d'oeufs (milliers de tonnes)	Biomasse analyse de (milliers d	cohorte
	_	F _t =0.05	F _t =0.1
1983	357	737	419
1984	748	825	459
1985	1 428	2 056	1 100
1986	1 747	1 676	871
1987	1 083	1 379	689

¹Lorsque deux estimations de production d'oeufs sont disponibles pour une année donnée, la biomasse est calculée à partir de la moyenne arithmétique de ces estimations.

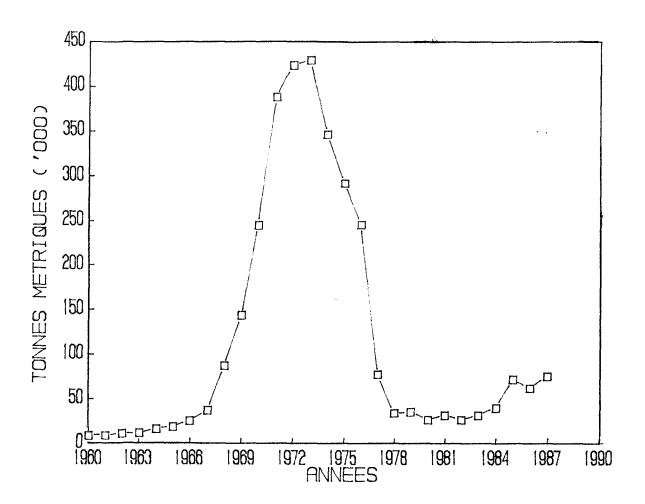
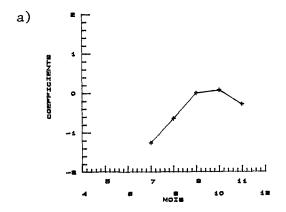
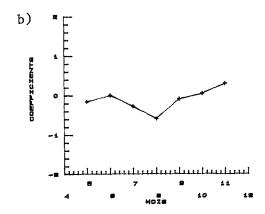




Fig.1. Captures annuelles totales de maquereau (milliers de tonnes) pour les sous-régions 2 à 6 de 1'0.P.A.N.O.

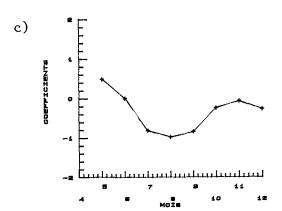
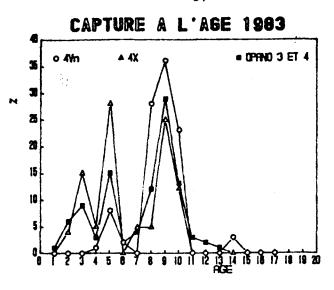
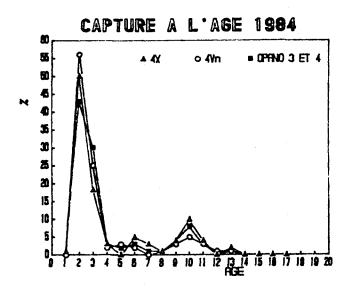




Fig. 2. Comparaison des puissances relatives des mois entre 3K(a), 4Vn(b) et 4X(c).

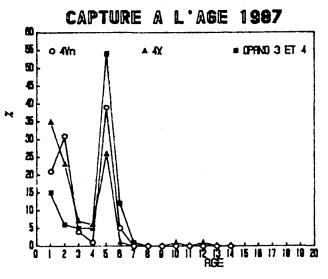


Fig. 3. Comparaisons des captures à l'âge de 4Vn, 4X et des sous-régions 3 et 4 de l'O.P.A.N.O. pour 1983,1984 et 1987.

1