Not to be cited without permission of the author(s) ${ }^{1}$

Canadian Atlantic Fisheries
Scientific Advisory Cormittee
CAFSAC Research Document 88/42

Ne pas citer sans autorisation des auteur(s) ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans d'Atlantique

CSCPCA Document de recherche $88 / 42$

Assessment of the Redfish in NAFO Division 30

by
D.B. Atkinson and D. Power
Science Branch
Department of Fisheries and Oceans
P.O. Box 5667
St. John's, Newfoundland AlC 5Xl

$1_{\text {This }}$ series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required, and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author(s).
${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pêches sur la oôte atlantique du Canada. Corme telle, elle couvre les problèmes actuels selon les échéancier voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteur(s) dans le manuscrit envoyé au secrétariat.

Abstract

In 1987 Canada took only 181 t of a reported catch of just over $11,000 \mathrm{t}$. Catches by the Soviet Union accounted for over 60% of the total, while Cuba took about 25%. Catch rates continue to fluctuate from one year to the next and there are no significant trends over time. The TAC was lowered from $20,000 \mathrm{t}$ in 1987 to $14,000 \mathrm{t}$ in 1988 and available data from the 1987 fishery are insufficient to suggest any change in this for 1989.

Résumé

En 1987, la part des prises du Canada n'a été que de 181 t sur des prises déclarées de plus de 11000 t. Les prises par les Russes représentaient plus de 60% des prises totales, tandis que les prises par Cuba correspondaient à environ 25%. Les taux de capture continuent de fluctuer d'une année à l'autre et aucune tendance importante ne se manifeste au cours des années. Le TPA est passé de 20000 t en 1987 à 14000 t en 1988, et les données accessibles provenant de l'exploitation de 1987 ne nous permettent pas de proposer aucune modification de cette valeur pour 1989.

Introduction

Between 1976 and 1987, nominal catches ranged from about 7000 t to 18.000 t (Table 1) and have been above $20,000 \mathrm{t}$ in only two years (Figure 1). In 1987, provisional statistics indicate a catch of about $11,000 \mathrm{t}$. The Soviet Union continues to predominate in the fishery (taking over 60% of the total in 1987), while Canada's catch remains low (only 181 t in 1987). The fishery has taken place predominantly in the second half of the year during recent times, although there is some fishing activity in most months (Table 2). The first TAC of $16,000 \mathrm{t}$ was imposed in 1974. This level was increased to $20,000 t$ in 1978 and maintained through 1986 (with the exception to 1980 when it was raised, for reasons unknown, to $21,900 \mathrm{t}$). During the 1987 assessment meetings, it was recommended that the TAC be lowered to $14,000 \mathrm{t}$ based on ${ }^{2 / 3}$ effort MSY (from general production analyses) (Atkinson and Power MS 1987), and this new level has been adopted for 1988. Since the imposition of TAC's in 1974, they have never been achieved.

Methods and Results

As in the past, catch and effort data from ICNAF/NAFO Statistical Bulletins (1959-1985) were combined with preliminary NAFO data (1986) and preliminary Canadian data (1987). Only data where redfish comprised $>50 \%$ of the total catch were used. Previously (eg. Atkinson and Power MS 1987), data from side and stern trawlers were summarily combined (both for bottom trawls and midwater trawls). For this assessment, the data were re-extracted and the side and stern categories kept separate. For some of the earlier years, it was not clear from the ICNAF statistics whether catches were by side or stern trawlers. For these, classification was achieved by backchecking with the lists of fishing vessels (compiled by ICNAF) and/or Lloyd's Registry. Classification of charter vessels (not identified as side or stern in NAFO statistics) was done through examination of Foreign Observer Program (FOP) data.

The extracted catch and effort data were input into a multiplicative model (Gavaris 1980) to derive a standardized catch rate series. Those country-gear-TC and months with less than 5 data points were deleted as were all catches and effort of less than 10 units in order to eliminate potential biases. In addition, because there were only 2 data points for 1987 (Canadian), they were eliminated from the analysis. Examination of the residuals from an initial run did not indicate any bad outliers in the data (Figures 2a and b), so no points were deleted.

In the past, questions have been raised concerning the validity of grouping similar category types a posteriori, but since the data were considered "new". a comparison of categories within the country-gear-TC (CGT) and month category types was carried out. Although the relationship between categories was generally the same as that in the past (Atkinson and Power MS 1987), there were a few minor differences (Table 3). These new groupings were used in the subsequent analysis. As with the previous analysis (Atkinson and Power MS 1987), weighting of the regression was not carried out because the extent of possible pro-rating of the effort data prior to 1984 is not known. It should be noted that the standard CGT was changed from Canadian vessels (as used in the past) to the USSR-OTB2-TC7.

The analysis of variance (Tables $4 a$ and b) for the final run indicates that the model accounts for about 62% of the variation. The final residual plots are shown in Figures 3a and b. Boxplots of the residuals (Figure 4) do not reveal any trends with time. Each of the category types is significant (Table 4b) but the year category is significant only because of two years. 1979 and 1982. Thus the catch rates, although showing a high amount of inter-annual fluctuation, indicate no overall trend with time for the period 1959 to 1986 (Figure 5, Table 5). Effort has been fairly stable in the recent period (Figure 6, Table 5), although there has been a general decline since the mid- to late- 1970's. There are no effort data available for 1968. The higher standardized catch rates (and related lowering of standardized effort) above those given previously (Atkinson and Power MS 1987) is directly attributable to the change in the standard CGT noted above. The USSR standard had a higher coefficient than did the standard Canadian vessels in previous analyses.

Previous assessments have paid little to no attention to the variance surrounding the estimates of catch rate from the multiplicative analysis. This current assessment indicates that there has been considerable variation in the catch rates from year to year but no significant trend exists over the time period for which effort data are available. It is therefore not appropriate to utilize general production models for this stock at present.

Stratified random research surveys have been conducted in Division 30 from 1973 to the present. Although these surveys routinely only fish depths less than 200 fathoms (366 m), there are some data available for redfish. The length frequencies (Figure 7) suggest that there may have been two pulses of recruitment during the period of the surveys; one (or two) in the early-mid 1970's, and one in the late 1970's-early 1980's. Year classes from these periods correspond approximately to those found to be relatively strong in other areas.

Some commercial frequencies are available from the 1987 fishery (Figure 8). These indicate fish of about $17-30 \mathrm{~cm}$ being taken although the modes are generally in the $20-23 \mathrm{~cm}$ range except in one case (Japan in March).

Conclusions

Examination of the limited research data available suggests that there may have been two pulses of recruitment to the fishery in recent years. One of these may be reflected in an increase in commercial catch rates in the late 1970's. If the later pulse is real, it should be reflected in increased catch rates in the next few years. Catch rates show considerable fluctuations over the 1959-1987 time period but trends are not present. It is felt that the stock is being (and has been) haervested below the $\mathrm{F}_{0.1}$ level but the data are insufficient to confirm this. If this is the case, then higher catches are possible.

References

Atkinson. D.B. and D. Power. MS 1987. Redfish in NAFO Division 30. CAFSAC Res. Doc. 87/44.
Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.
Table 1: Nominal catches (1) of redfish in Division 30 by country and year.

Country	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986*	1987*
Canada (M)+	610	655	381	1.557	565	417	47	4	29	48	3	24
Canada (N)	3.054	2.317	1.460	4.847	976	2.160	444	3	138	56	134	159
France (M)	1	-	-	-	-	-	-	-	-	-	-	-
France (SP)	15	2	-	-	-	-	-	-	-	-	-	-
France	-	-	-	-	-	-	-	2	-	-	-	-
Japan	4	-	3	2	-	-	496	1	1.258	661	1.162	1,073
Portugal	1	-	-	134	59	-	5	-	-	-	-	-
Romania	-	-	-	664	-	-	-	-	-	-	-	-
Spain	-	-	1	8	-	-	-	-	25	630	45	32
USSR	11.663	7.376	4.647	8,008	14.219	8,659	8.717	5,670	7.262	5,905	6,099	7.089
Cuba	-	500	368	2,517	1.487	1,368	1.651	1.460	1.316	806	3,006	2.859
USA	-	-	-	-	-	-	-	--	-	104	2	-
TOTAL	15,348	10.850	6,860	17.737	17.306	12,604	11,360	7.140	10.028	8.210	10.451	11.236

[^0]Table 2: Nominal catches (t) of redfish in Division 30 by month and year.

Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1976	352	452	399	857	1.477	1.497	3.119	1.440	2,221	2,540	40	954	15.348
1977	553	36	1,047	1,736	987	1.865	1,580	1.113	1,032	828	63	10	10,850
1978	48	102	1.478	1,326	1.216	930	656	353	433	155	158	5	6.860
1979	35	844	2,464	2,072	87	1,997	739	692	1.235	1,320	3,594	2,658	17.737
1980	612	1,250	856	3.698	1,145	858	143	2,395	1.860	149	986	3,354	17,306
1981	991	3.735	1,444	1.601	621	1.467	773	584	510	873	5	-	12,604
1982	-	1	1.121	1.258	545	652	4.555	2,245	661	233	89	-	11,360
1983	254	355	2,904	1.227	71	156	576	938	319	1	73	266	7.140
1984	219	155	2	32	85	257.	446	3.210	2.799	1,882	435	506	10,028
1985	1,522	-	453	239	118	252	227	1.710	1.486	350	35	1.817	8.210 a
1986*	707	-	425	593	68	710	3.491	3.712	58	3	317	367	10.451
1987*	-	5	760	6	763	14	910	259	347	234	1.222	392	11.236 b

Table 3: Comparison of similarities of categories in country-gear-TC (CGT) and month category types between the 1987 assessment and that presented in this paper (number is code shown in Table 4b).

$\begin{aligned} & 1987 \text { Assessment } \\ & \text { CGT } \end{aligned}$	This Assessment CGT	Code	1987 Assessment Month	This Assessment Month	Code	
FR(SP) OTB 4	FR(SP) OTB 4	9114	April	April	4	
USSR OTB 4	USSR OTB 4	20114	January February	January October	1	
CAN(M) OTB 4			October November	November December		
CAN(N) OTB 4	CAN(N) OTB 4					
CAN(MQ) OTB 4	CAN(MQ) OTB 4	2114	March	March	3	
CAN(MQ) OTB 5	CAN(MQ) OTB 5		May			
CAN(M) OTB 5	CAN(M) OTB 5		July	May	5	
	CAN(N) OTB 5		June			
CAN(N) OTB 5	JPN OTB 6	14126	August September	June August	8	
JPN OTB 6	POL OTB 7					
				July	7	
POL OTB 7		20127		September		
	JPN OTB 7					
JPN OTB $7 \quad$ USSR OTB 7CUBA OTM $7 \quad$				February	2	
USSR OTB 7	CUBA OTM 7		4157			
CUBA OTB 7	CUBA OTB 7	4127				
USSR OTM 7	USSR OTM 7					

Table 4a: ANOVA from final multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

REGRESSION OF MULTIPLICATIVE MONEL

MULTIPLE R............... 0.790
MULTIPLE R SQIARED..... 0.623

Adalysis of variance

SOURCE OF		stms or	MEASI	
Varlation	DF	SOLARES	SQTARES	F-VALUE
	--	---	-------	
InTERCEPT	1	$1.061 \mathrm{E1}$	1.06151	
REGRESSIOM	38	1.18752	3.124 EO	15.373
TYPE 1	6	5.379 EL 1	8.965 E 0	44.116
TYPE 2	5	1.081 EL	1.302 L 0	8.870
TYPE 4	26	1.497 EL	$5.759 \mathrm{E}^{-1}$	2.334
RESIDUALS	353	7.173E1	2.0325-1	
TOTAL	392	2.010 E 2		

Table 4b: Coefficients for the different categories from the final multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

KEGRESSION COEFTICIENTS

CATEGORY	CODE	YARIABLE	COEFFICIENT	STD. ERSOR	MO. UBS.
1	20127	IMTERCEPT	0.693	0.142	392
2	8				
4	59				
1	2114	1	-0.787	0.0154	155
	4127	2	0.152	0.075	60
	4157	3	-0.174	0.136	15
	9114	4	-1.623	0.227	5
	14126	5	-0.352	0.123	18
	20114	5	-1.489	0.145	14
2	1	7	-0.342	0.070	100
	2	8	-0.421	0.128	16
	3	9	-0.276	0.102	29
	4	10	-0.650	0.106	25
	5	11	-0.195	0.096	32
	7	12	-0.119	0.068	103
4	60	13	0.077	0.290	3
	61	14	0.176	0.213	7
	62	15	0.018	0.184	12
	63	16	0.058	0.186	13
	64	17	-0.103	0.227	6
	65	18	-0.350	0.249	5
	66	19	-0.019	0.349	2
	67.	20	0.344	0.213	7
	69	21	-0.371	0.199	9
	70	22	-0.225	0.192	10
	71	23	0.101	0.179	14
	72	24	-0.249	0.168	17
	73	25	0.069	0.201	9
	74	26	-0.388	0.198	9
	75	27	-0.385	0.224	$\overline{6}$
	75	28	0.050	0.157	23
	77	39	-0.050	0.158	23
	78	30	-0.099	0.156	24
	79	31	0.315	0.153	29
	80	32	0.157	0.155	26
	81	33	0.288	0.158	23
	82	34	0.376	0.160	24
	83	35	0.228	0.172	17
	84	36	0.223	0.160	24
	85	37	0.051	0.166	20
	86	38	0.087	0.176	17

Table 5: Catch rate and effort derived from final multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

FREDICTED CATCH RATE

STAMARDS USED THRIABLE MTMBERS: 201278

Figure 1: Nominal Catches (t) of redfish in Nafo Division 30, 1959-1987 (1986 and 1987 are provisional)

Figure 2a: Residuals vs predicted in catch rate from initial multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

Figure 2b: Expected normal values vs residuals from initial multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

PREDICTED LN CATCH RATE

Figure 3a: Residuals vs predicted In eatch rate from final multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

Figure 3b: Expected normal values vs residuals from final multiplicative analysis of commercial catch and effort data for redfish in NAFO Division 30.

Figure 4: Boxplots (percentiles) of residuals derived from the final multiplicative analysis of the commercial catch and effort data for redfish in NAFO Division 30.

Figure 5: Standardized catch rates (t / hr) derived from the final multiplicative analysis of the commercial catch and effort data for redfish in NAFO Division 30.

Figure 6: Standardized effort (hr) for redfish in NAFO Division 30, 1959-1987 (1986 is provisional).

Figure 7: Research length frequencies for redfish from Canadian stratified random surveys in NAFO Division 30.

Figure 7: Continued

Figure 7: Continued

Figure 8 : Length frequencies available from the commercial redfish fishery by yarious countries in NAFO Division 30 in 1987.

Figure 8 : Continued

[^0]: + Maritimes and Quebec were combined prior to 1979.

