Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 88/8

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 88/8

Assessment of the Okak Unit Arctic Charr Population in 1987

by

J. B. Dempson

Science Branch
Department of Fisheries and Oceans
P. 0. Box 5667

St. John's, Newfoundland AIC 5X1

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérēs comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrētariat:

Abstract

Reported landings of Arctic charr from the Okak assessment unit totaled 20 t in 1987, a decrease of 32% from 1986 and represented only 46% of the TAC. This catch represented 20% of the total catch of Arctic charr from the Nain Region in 1987. Effort decreased by 22% from 1986. Likelihood ratio statistics were used to examine temporal and spatial variation in the size composition of the catches from 1980 to 1987. Significant differences were found among years, inshore and offshore fishing zones, and specific time periods within the fishing season. However, there have been no consistent trends in the mean length or age of catches over the time period. The 1977-79 year-classes represented 72% of the catch in 1987. A sequential population analysis was carried out on catch-at-age data from 1977 to 1987 and suggested a reduction in the 1986 TAC of $43 t$ to a reference level catch in 1988 of 27 to 36 t.

RESUME

Les dēbarquements d'omble chevalier enregistrēs pour l'unité d'évaluation de l'Okak ont totalisé 20 t en 1987, ce qui reprēsente une baisse de 32% par rapport à 1986 , et constitue seulement 46% du TPA. Ces prises reprēsentaient 20% du total des captures d'omble chevalier de la région de la Nain en 1987. L'effort a diminué de 22% : par rapport à 1986. Les statistiques sur les rapport de vraisemblance: ont servi à examiner la variation temporelle et spatiale dans la composition par taille des captures de 1980 à 1987. Des différences significatives ont été observées d'une anneee à l'autre, entre les zones de pēche côtières et hauturières, et entre des périodes données dans la saison de pêche. Cependant, on n'a relevé aucune tendance constante dans la longueur moyenne ou l'âge des captures pendant cette pēriode. Les classes annuelles de 1977-1979 représentaient 72% des prises en 1987. Une analyse séquentielle de population portant sur les donnēes concernant l'âge à la capture entre 1977 et 1987 indique qu'il faudrait réduire le TPA, fixē à 43 t en 1986, à un niveau de rēfērence de 27 à 36 t pour 1988.

Introduction

Catch statistics from the Okak assessment unit, made up of the Okak Bay and Cutthroat subareas (Fig. 1), have been available since 1974. It was first assessed as a single unit in 1985. Annual landings have ranged from a low of 5 t in 1975 to 76 t in 1978 with an average of 37 t over the 14 -year period. From 1977 to 1987 landings from this unit have represented 25% of the total commercial production from the Nain Fishing Region. In 1987, 20\% of the commercial landings came from the Okak unit. The recommended total allowable catch (TAC) in 1987 was 43 t . This was partially divided into a specific inshore quota of 25.2 t for the Okak Bay subarea.

This paper summarizes the results of the 1987 fishery and provides a forecast of available harvest, or reference level catch, for 1988.

Assessment

Catch and effort data

Catch and effort data for the Okak assessment unit are summarized in Table 1 for 1974-87. Landings in 1987 totaled 20 t , a decrease of 32% from 1986, and represented only 46% of the TAC. Eighty percent of the catch was taken in the Okak Bay subarea which was 62% of the quota applied to Okak Bay. The remainder of the catch was taken in the offshore Cutthroat area. Effort decreased by 22% while catch per unit effort was 13% lower than the previous year which contributed to the decline in landings from the Okak unit in 1987.

Size distribution of commercial landings

Since 1980, approximately 34,000 fish have been sampled from the Okak assessment unit to obtain information on the size distribution of the commercial landings. The length-frequency data were examined to determine any heterogeneity of samples which could be related to the effect of commercial exploitation on the stock. Likelihood ratio statistics were used to examine temporal variation in the size distributions.

Arctic charr were measured for fork length and recorded in two-centimeter intervals. The smallest fish measured over the past eight years (1980-87) were in the 34 cm interval $(34.0-35.9 \mathrm{~cm})$, while the largest were from the 76 cm grouping. Analyses, however, were conducted on truncated data which excluded fish less than 42 cm in size and those fish which were in size categories 66 cm or higher. In total, 99.1% of all fish measured were within the $42-64 \mathrm{~cm}$ length intervals. The truncation also removed the possibility of obtaining any zero values for expected cell counts in the analyses.

There was a highly significant difference in the size distribution of catches among years $(G=1484, d f=77, P=0.000, N=34,152)$. The modal size has changed from the 50 cm interval in 1980-83 to the 48 cm interval during the past four years. Mean lengths are also summarized in Table 2. Significant differences also exist in the size distribution of the catches between the
inshore and offshore zones of the Okak unit ($G=819$, df $=11, \mathrm{P}=0.000, \mathrm{~N}=$ 34,152). Within the two zones there are differences among years (Table 3). Similar to the analyses for the Nain and Voisey unit catches (Dempson 1988a, 1988b), the fishing season was stratified into four time periods: June 15-July 14, July 15-July 31, August 1-15, and August 16 to the end of the fishing season. There is a difference in the size distribution among time period, and within individual time periods the size distribution differs between years (Table 3). There is a tendency for mean length of catches to decrease as the fishing season progresses for this assessment unit also (Table 4). Fish in the offshore zone are somewhat larger than the fish caught in the inshore zone (Table 2).

Cohort analyses

Numbers at age were available since 1977 and are summarized in Table 5. Data were derived from annual commercial sampling programs. Mean age of the catch has ranged from 9.1 to 12.1 years with no apparent increasing or decreasing trend. On average, 59% of the catch is made up of three age-classes of fish represented by 8-, 9-, and 10-year-olds. The 1977-79 year-classes made up 72% of the catch in 1987.

Weights ät age were calculated from commercial samples obtained from 1977 to 1987. Gutted head-on weights were converted to whole weights using the conversion factor 1.22 (Dempson 1984). For yield-per-recruit analysis, mean weight at age for the period 1977-79 was used as in past assessments. For stock projections, mean weight at age for the period 1984-87 was used (Table 6).

Total mortality (Z) was calculated using the Paloheimo method (Ricker 1975) and the average value for all years (1977-78 to 1986-87) was 0.66 . The average Z for the last three years was also 0.66 . Assuming a natural mortality rate of 0.2 results in an estimate of fishing mortality of about 0.46 . An estimate of total mortality derived from a catch curve using catch per unit effort at age data from 1985 to 1987 (ages $10-16$) similarly gave a value of Z of 0.66 . No estimate of mortality was available from tag recapture information in 1987.

An initial cohort analysis was run using partial recruitment values and terminal fishing mortality ($F_{T}=0.35$) from last year's assessment (Dempson and LeDrew 1987). An iterative procedure was used to obtain estimates of fishing mortality for the oldest age group (F_{B}) (Rivard 1982). Following this, partial recruitment rates were calculated using the historical averaging method from the matrix of fishing mortality values from 1981 to 1985 . These values were then applied to the initial terminal fishing mortality rate and the procedure repeated until the partial recruitment values stabilized (Table 6).

Yield per recruit was calculated by the method of Thompson and Bell (Ricker 1975) using partial recruitment rates and mean weight at age. $F_{\text {0 }}$ was 0.41 at a yield per recruit of 0.75 kg . This $\mathrm{F}_{0.1}$ value was rounded to $8: 4$ for conformity with other assessment units.

Cohort analyses were run using a range of terminal fishing mortality rates from 0.15 to 0.5 . In each run, fishing mortality rates for the oldest age group (F_{B}) were re-evaluated using the iterative procedure. Regressions of F (weighted mean F for fully-recruited fish) on fishing effort and mean mid-year population biomass on catch per unit effort of fully-recruited fish were used in tuning the analysis to determine an appropriate value for F_{T} in 1987. Data from 1977. to 1987 (excluding 1984 as in past assessments) were used in the regression analyses. Regressions were also run with the 1979 data excluded which gave a somewhat better relationship.

Regressions of F on effort showed a decrease in the correlation coefficient with an increase in F_{T} (Table 7). These regressions were not statistically significant beyond $F_{T}=0.35$. The distance of the last point (1987) to the regression line was lowest when $F_{T}=0.45$, while the intercept value was the lowest when $F_{T}=0.25$. The sum of the residuals or the sum of squares of the residuals for the last three years (1985-87) increased with F_{T}. Regressions with only 1984 data excluded yielded similar results, although the intercept value was lowest when when $F_{T}=0.2$.

Regressions of average population biomass on catch per unit of effort had the best correlation when $F_{T}=0.3$. The distance of the last point (1987) to the regression line was also smallest when $F_{T}=0.3$ as was the smallest intercept. The sum of the residuals for the past three years was lowest when $F_{T}=0.2$ while the sum of the squares of the residuals for the past three years was lowest when terminal F was 0.3 (Table 7). Regressions with only 1984 data excluded followed similar trends, although the best correlation and lowest residuals were obtained at slightly lower values of terminal fishing mortality.

In summary, regression analyses suggested a value of F_{T} from 0.25 to 0.35 . Estimates derived from the Paloheimo method and catch curves suggest a value of about 0.45 .

Catch projections

Projections were run with F_{T} varying from 0.25 to 0.35 . Recruitment for the projections was estimated from the geometric mean of population numbers for age 6 - and 7 -year-old fish for the years 1977-85. Weights at age were based on 1984-87 data. Table 8 summarizes the population numbers and fishing mortality rates for the cohort analysis run with $\mathrm{F}_{\mathrm{T}}=0.3$.

Results of the projections are summarized in Table 9. The reference level catch in 1988 ranges from 27 to 36 t with the highest value occurring when $F_{T}=0.25$. These values represent a reduction in the 43 t TAC recommended for 1987. In view of the decreased catch per unit effort in the Okak unit during the past several years, it may be warranted to reduce the reference level catch on the basis of the information derived from the 1987 data. With terminal F estimated to be 0.3 in 1987, the reference level catch for the Okak assessment
unit in 1988 would be 30.6 t . This could be divided into a specific inshore quota of $22 t$ based on the average proportion of inshore to offshore catches during the past five years (72\%).

References

Dempson, J. B. 1984. Conversion factors for northern Labrador Arctic charr landings statistics. CAFSAC Res. Doc. 84/6. 8 p.

1988a. Assessment of the Nain unit Arctic charr population in 1987. CAFSAC Res. Doc. 88/6. 21 p.

1988b. Assessment of the Voisey unit Arctic charr population in 1987. CAFSAC Res. Doc. 88/7. 15 p.

Dempson, J. B., and L. J. LeDrew. 1987. Analysis of the Okak assessment unit Arctic charr populations in 1986. CAFSAC Res. Doc. 87/17. 12 p.

Ricker, W. E.' 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191.

Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091.

Table 1. Summary of catch and effort statistics for the Okak assessment unit, 1974-87. Quotas and landings are in kg-round weight, effort is expressed as man-weeks fished.

Year	Quota	Quota area catch	Landings	Effort	CUE
1974			46,891		
1975			5,057		
1976			25,338	148	171
1977			42,392	243	174
1978			76,024	352	216
1979			43,261	283	153
1980			49,035	253	194
1981	27,300	11,049	47,541	202	235
1982	27,300	9,031	34,171	186	184
1983	21,000	30,732	48,978	286	171
1984	27,000	13,864	18,146	94	193
1985	27,000	24,746	33,261	208	160
1986	42,000		28,896	172	168
1987	43,000		19,649	134	147

Table 2. Length-frequency distributions of Okak assessment unit catches from 1980 to 1987. Mean lengths are also shown for the total unit and for inshore and offshore zones.

| Fork length
 interval
 (cm) | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | Total |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | | | | |
| 42 | 187 | 59 | 49 | 69 | 61 | 45 | 201 | 131 | 802 |
| 44 | 482 | 132 | 186 | 423 | 310 | 245 | 537 | 469 | 2,784 |
| 46 | 870 | 219 | 313 | 961 | 529 | 583 | 883 | 738 | 5,096 |
| 48 | 1,076 | 216 | 444 | 1,499 | 511 | 728 | 965 | 851 | 6,290 |
| 50 | 1,214 | 272 | 462 | 1,741 | 437 | 703 | 819 | 751 | 6,399 |
| 52 | 1,013 | 214 | 353 | 1,372 | 286 | 513 | 563 | 494 | 4,808 |
| 54 | 811 | 182 | 258 | 970 | 164 | 360 | 373 | 311 | 3,429 |
| 56 | 512 | 121 | 151 | 562 | 93 | 252 | 216 | 175 | 2,082 |
| 58 | 309 | 80 | 87 | 360 | 51 | 140 | 116 | 90 | 1,233 |
| 60 | 193 | 49 | 50 | 205 | 20 | 71 | 61 | 38 | 687 |
| 62 | 93 | 34 | 24 | 116 | 14 | 35 | 25 | 12 | 353 |
| 64 | 38 | 20 | 21 | 51 | 6 | 29 | 16 | 8 | 189 |
| Tota1 | 6,798 | 1,598 | 2,398 | 8,329 | 2,482 | 3,704 | 4,775 | 4,068 | 34,152 |
| Mean length | | | | | | | | | |
| total | 51.6 | 51.7 | 51.3 | 51.9 | 49.9 | 51.3 | 50.1 | 50.0 | 51.1 |
| Inshore | 50.9 | 51.1 | 50.9 | 51.5 | 49.2 | 50.9 | 49.7 | 49.9 | 50.6 |
| Offshore | 52.5 | 52.6 | 51.6 | 52.3 | 51.4 | 52.0 | 50.7 | 50.6 | 51.9 |

Table 3. Summary of likelinood ratio statistics comparing size distribution of commercial Arctic charr catches from the Okak assessment unit, 1980-87. Time periods 1-4 are defined in the text.

Comparison	G	df	P	N
Years	1,484	77	0.000	34,152
Zones				
	819	11	0.000	34,152
Zones:				
Period 2	41	11	0.000	7,059
Period 3	294	11	0.000	15,510
Period 4	215	11	0.000	11,156
Years:				
Inshore zone	985	77	0.000	20,920
Offshore zone	460	77	0.000	13,232
Period 2	461	77	0.000	7,059
Period 3	700	66	0.000	15,510
Period 4	567	77	0.000	11,156
Time period	1,340	33	0.000	34,152
Time period:				
Inshore zone	811	33	0.000	20,920
Offshore zone	264	33	0.000	13,232

Table 4. Summary of mean length of Arctic charr catches by time period for inshore and offshore fishing zones of the Okak assessment unit.

Time period		Fork length (cm)		
	Inshore zone	Offshore zone	Total	
1 - Jun 15-Jul 14	53.5	53.8	53.8	
2- Jul 15-Jul 31	52.1	52.5	52.3	
3-Aug 1-Aug 15	50.7	51.8	51.2	
4-Aug 16-end	49.9	51.2	50.1	

Table 5. Estimated catch at age for Arctic charr from the Okak assessment unit, 1977-87.

AGE	catch at age											
	1	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
AGE	1	1977							251	17	41	42
6	1	84	205	1	130	39	93 713	1762	1371	2675	2.056	1008
7	1	139	2.465	1989	638	526	2760	4471	2336	4948	6333	1636
8	1	417	8163	7462	5631 9175		4167	5787	2151	5385	5197	3686
9	1	1084	5494	4997	9175	7615	3848	5601	1850	2740	3291	7
10	1	266.7.	5594	3299	6487	4673	3622	5169	2211	2936	1261	1371
11	1	3388	3747	1954	2863	4673 1330	1512	4075	1472	987	875	395
12	1	5417	3953	8878	1382	1044	444	1643	1180	740	562	299
13	1	2278	2773	761	407	459	342	658	587	768	148	166
14	1.	1691	511	527	350	359	183	3.07	219	103	170	85
15	1	1472	1027	110	2.62 90	44	57	107	127	75	8	34
16	1	832	308	351	90 129	145	38	11	12	50	1	1
17	1	139	411	234	129 33	148	15	43	1	6	72	1
18	1	139	103	95	33 61	132	1	63	35	56	1	1
19	1	139	117	138	61							
						25715	17825	30172	13803	21486	2.0016	11972
$6+$	1	19889	34874	23096	276.38 27508	25676	17732	29697	13552	21469	19975	11930
$7+$	1	19805	34669	23095	27508	25150	17019	27935	12181	18794	17919	10922
$8+$	1	19666	32204	21106	26870 21239	23015	14259	23464	9845	13846	11586	9286
$9+$	1	19249	24041	13644	21239 12064	15849	10092	17677	7694	8461	6389	5600
$10+$	1	18165	18547	8647	12064	15849 8234	6244	12076	5841	5721	3098	2353
$11+$	1	15498	12953	5348	5577							

Table 6. Summary of weight ($k g$ round) at age data, partial recruitment rates, and calculated $\mathrm{F}_{0}, 1$ for the Arctic charr population of the Okak assessment unit.

Age	Weight		Partial recruitment
	1977-79	1984-87	
6	1.21	1.13	0.006
7	1.48	1.29	0.084
8	1.66	1.59	0.302
9	1.85	1.83	0.630
10	1.98	1.96	1.0
11	2.02	1.88	1.0
12	2.36	2.05	1.0
13	2.30	1.96	1.0
14	2.38	2.02	1.0
15	2.48	1.96	1.0
16	2.30	2.24	1.0
17	2.30	1.83	1.0
18	2.30	2.36	1.0
19	2.30	2.36	1.0
$=0$	a Y / R	4 kg .	

Table 7. Results of regressions (1977-87, excluding 1979 and 1984, Part A, and excluding 1984 only, Part B) of F on effort and average population biomass on catch per unit effort (CUE) for various terminal fishing mortality rates $\left(F_{T}\right)$ for the Okak assessment unit.

		Terminal F							
Regression	Parameter	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50

Part A

F (weighted mean
for fully-recruited
fish) on effort

r	0.91	0.88	0.82	0.75	0.68	0.59	0.48	0.42
intercept	-0.13	-0.05	0.03	0.10	0.17	0.23	0.29	0.35
residual - 1987	-0.07	-0.06	-0.06	-0.05	-0.03	-0.02	-0.00	0.02
residuals	-0.03	0.05	0.12	0.18	0.23	0.28	0.32	0.36
(1985-87)					0.04	0.05	0.06	0.06
$\sum \underset{(1985-87)}{\left(\begin{array}{l} \text { residuals })^{2} \end{array}\right.}$	0.01	0.02	0.03	0.04	0.04	0.05		

Average population biomass
(fully-recruited
fish) on CUE
$\stackrel{r}{\text { intercept }}(\mathrm{t})$
$\begin{array}{llllrrrrr} & 31 & 15 & 6 & 0 & -5 & -8 & -11 & -13 \\ \text { residual - } 1987(t) & 21 & 10 & 3 & -2 & -5 & -7 & -9 & -11 \\ \sum \text { residuals }(t) & 5.3 & -4 & -10 & -14 & -17 & -19 & -20 & -21\end{array}$
$\begin{array}{llllllllll}\sum \begin{array}{ll}\text { residuals } \\ (1985-87)\end{array} & 5.3 & -4 & -10 & -14 & -17 & -19 & -20 & -21 \\ \sum \begin{array}{llll}(\text { residuals })^{2} & (t) & 608 & 201 \\ (1985-87)\end{array} & 92 & 77 & 93 & 121 & 151 & 181\end{array}$

Part B

F on effort

$\quad r$	0.83	0.77	0.70	0.62	0.53	0.44	0.35	0.26
intercept	-0.08	0.00	0.08	0.15	0.22	0.28	0.35	0.40
residual -1987	-0.07	-0.07	-0.06	-0.06	-0.04	-0.03	-0.01	0.01
\sum residuals	-0.02	0.06	0.13	0.19	0.24	0.29	0.34	0.37
(1985-87)								

Average population
biomass on CUE

$\begin{array}{lrrrrrrr}\text { intercept (} t \text {) } & 31 & 20 & 13 & 8 & 5 & 0 & 1 \\ \text { residual_1987 (} t \text {) } & 21 & 8 & 0 & -5 & -9 & -11 & -14 \\ \text { (residuals }(t) & 4 & -10 & -19 & -25 & -30 & -33 & -35 \\ \text { (} & -37\end{array}$
(1985-87)

Table 8. Summary of the population numbers and fishing mortality matrix for the cohort analysis run with $F_{T}=0.30$ on the catch at age data for the Okak assessment unit Arctic charr population.

FISHING MOF:TALITV

	1	1977	1978	1.979	1980	1981	1982	1983	1981	1985	1986	1997
\leq	1	0.001	0.004	0.000	0.004	0.001	0.00 .3	0.0 .10	0.005	0.001	0.001	0.002
	1	0.003	0.038	0.043	0.020	0.018	0.0374	0.060	0.037	0.066	0.086	0.005
8	1	0.01%	0.217	0.152	0.167	0.088	0.128	0.308	0.105	0.181	0.218	0.091
9	:	0.059	0.320	0.194	0.284	0.332	0.216	0.130	0.238	0.374	0.294	89
10	1	0.270	0.486	0.324	0.414	0.405	0.298	0.614	0.235	0.543	4	
11	1	0.35 .5	0.731	0.311	0.5120	0.601	0.342	0.844	0.625	0.721	0.520	0.300
12	1	0.715	0.940	0.395	0.378	0.490	0.401	0.824	0.619	0.472	0.486	0.300
13	1	0.759	1.060	0.457	0.321	0.551	0.298	1.043	0.602	0.747	0.514	0.300
14	1	0.58 ¢	0.375	0.577	0.393	0.736	0.349	0.989	1.621	1.058	0.316	0.300
15	1	0.819	0.853	0.587	0.642	0.925	0.755	0.611	1.159	2.035	0.727	0.360
15	1	0.718	0.391	0.922	0.241	0.204	0.350	1.633	0.555	2.469	0.997	0.
17	1	0.290	1.006	0.588	i. 138	0.767	0.273	0.10 .1	0.8 .31	0.441	0.194	0.300
18	1	0.604	0.361	0.673	0.148	3.336	0.157	0.568	0.012	1.564	3.691	0.300
19	1	0.492	0.673	0.371	0.127	0.18, 1	0.232	0.758	0.441	0.638	0.15	
10		0.513	0.700	0.378	0.430	0.489	0.333	0.770	0.475	0.659	0.469	. 300

Table 9. Summary of projected reference level catch (t) for 1988 and 1989 with F_{T} in 1987 varying from 0.25 to 0.35 for the Okak assessment unit.

	F_{T} in 1987		
	0.25	0.30	0.35
1988	36.1	30.6	26.6
1989	35.3	31.1	28.1

Fig. 1. Geographic separation of the Nain Fishing Region subareas.

