Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 87/80

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 87/80
-Assessment of Atlantic herring in NAFO Division 4T, 1987
by

E.M.P. Chadwick<br>and<br>G.A. Nielsen<br>Fisheries Research Branch<br>Department of Fisheries and Oceans<br>P.O. Box 5030<br>Moncton, NB E1C 9B6

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat by the author.

1Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.


#### Abstract

Reported herring landings in 1986 in the southern Gulf of St. Lawrence (NAFO Division 4T) were $59,031 \mathrm{t}$; $70 \%$ of the catch was taken in the fall gillnet fishery which had its largest catch since 1971 and probably the largest in history. The prognosis is more optimistic than the previous year because of large numbers of 1980 and 1982 year-classes occurring in the catch as well as high catch rates. Catch rates in the spring and fall gillnet fisheries were the highest since 1974. Fishing mortality on fully recruited age groups was estimated to be 0.40 for spring spawners and 0.36 for fall spawners. Projected landings at F0. $1=0.3$ for 1988 , assuming the 1987 catch is $50,000 \mathrm{t}$, are $12,800 \mathrm{t}$ for spring spawners and $23,300 \mathrm{t}$ for fall spawners.


## RÉSITE

Les débarquements de hareng signalés en 1986 dans le sud du golfe du Saint-Laurent (Division 4 T de 1'OPANO) ont été de 59031 t ; $70 \%$ des prises proviennent de la pêche au filet maillant pratiquée à l'automne, ce qui constitue la prise la plus importante de ce type de peache depuis 1971 et, probablement la plus importante de l'histoire. Le pronostic est plus favorable que l'année précédente, parce qu'on observe dans les prises un grand nombre de poissons des classes d'âge 1980 et 1982 et que les taux de prise sont élevés. Les taux de prise pour la pêche au filet maillant au printemps et à l'automne ont été les plus élevés depuis 1974. La mortalité par pêche dans les groupes d'âge pleinement recrutés a été estimée à: 0,40 pour les reproducteurs de printemps et à 0,36 pour les reproducteurs d'automne. En supposant que les prises pour 1987 seront de 50000 t , les débarquements prévus en 1988, pour une $F_{0,1}=0,3$, sont de 12800 t pour les reproducteurs de printemps et de 23300 t pour les reproducteurs d'automne.

## INTRODUCTION

This assessment of the 1986 herring fishery marks the eleventh year that CAFSAC has provided biological advice on 4 T herring. There have been eleven previous assessments, including: Winters et al. (1977), Winters (1978), Winters and Moores (1979), (1980), Cleary (1981), (1982), (1983), Ahrens and Nielsen (1984), Ahrens (1985a), Clay and Chouinard (1986), and Chadwick and Nielsen (1986).

The current assessment was conducted using the same procedures as used by Chadwick and Nielsen (1986). Nevertheless the prognosis is considerably more optimistic on the size of incoming year-classes, both for spring and fall spawners. This is due to both large numbers of the 1980 and 1982 year-classes occurring in the catch as well as significantly enhanced gillnet catch rates for both resources.

There are two recognized spawning groups: spring and fall spawners. Prior to 1965, the fishery was exploited primarily by gillnetters on spawning grounds; average landings for $1949-64$ were $32,000 \mathrm{t}$. In the mid 1960's, purse seines were introduced which primarily harvested mixed stocks; landings increased to a peak of $175,000 \mathrm{t}$ in 1970. 4 T herring were also fished in NAFO Division 3Pn from 1966-72. Purse seines were the major gear throughout the 1970's. Since 1981, over $80 \%$ of reported landings were caught by gillnetters.

In 1986, about $87 \%$ of the catch was taken in gillnets, of which $60 \%$ was taken in fixed gillnets; the remaining $40 \%$ was taken in drift gillnets. Gillnets are set inshore, primarily on the spawning grounds. By contrast, purse seines, which took the remaining 13\% of the 1986 catch, are fished offshore. Purse seines capture a mixture of stocks and generally catch younger and smaller fish than gillnets. A small precentage of herring was caught in traps and miscellaneous gears, but because these gears are set inshore their landings have been included with gillnets.

Quotas or total allowable catches (TAC) have been established since 1972. From 1974-81, the TAC ranged from 45,000 to $60,000 \mathrm{t}$ but it was never achieved. From 1981-85, the TAC ranged from 15,000 to $20,000 \mathrm{t}$ but was exceeded each year by at least 30\%, except in 1985 when the TAC of $32,500 \mathrm{t}$ was almost achieved; however, unreported landings indicate that the 1985 TAC may have been exceeded by about 30\% (Chadwick and Nielsen 1986). In 1986 CAFSAC adjusted the original scientific advice of $9,100 \mathrm{t}$ for spring spawners and $16,000 \mathrm{t}$ for fall spawners (Anon. 1986a) to $7,900 \mathrm{t}$ for spring spawners and $23,400 \mathrm{t}$ for fall spawners (Anon. 1986b).

The 1986 TAC was established at $43,375 \mathrm{t}$ and partitioned as follows: $7,200 \mathrm{t}$ for the spring gillnet fishery, $27,500 \mathrm{t}$ for the fall gillnet fishery, and $8,675 \mathrm{t}$ for the purse seine fishery. The spring gillnet fishery was managed by seasonal quotas, i.e. $4,000 \mathrm{t}$ of herring could be caught between January 1 and May 21; 2,200 t between May 22 and May 31; and, 1,000 t between June 1 and June 30. The fall fishery was managed by a global quota and weekly closures in order to ensure an equitable distribution of catch.

The 1987 TAC of $60,250 \mathrm{t}$, has been divided as follows: spring fishery $8,200 \mathrm{t}$ for gillnets and $2,050 \mathrm{t}$ for purse seines; fall fishery - 40,000 t for gillnets and $10,000 \mathrm{t}$ for purse seines.

## INPUT DATA

## 1986 Landings

Preliminary 1986 landings were available from the Gulf Region purchase slip file: total landings were 59,031 tonnes which was 36\% greater than the TAC and nearly twofold the CAFSAC advice. The 1986 landings were the fifth highest on record for Area 4 T , excluding Magdalen Islands (Figure 1).

The landings have been divided into the spring and fall spawning groups in the table below:

| Year | 1979 | 1980 | 1981 | $\underline{1982}$ | 1983 | 1984 | 1985 | 1986 | 1987 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC | 55 | 55 | 16 | 15 | 20 | 19 | 32.3 | 43.4 | 60.3 |
| Catch |  |  |  |  |  |  |  |  |  |
| Spring | 18 | 20 | 9 | 8 | 10 | 6 | 9 | 17 | - |
| Fall | 30 | 21 | 13 | 12 | 16 | 19 | 22 | 42 | - |
| Total | 48 | 40 | 21 | 24 | 26 | 27 | 31 | 59 | - |

The following general points can be made with reference to the 1986 nominal catches. First, the largest monthly catch was taken in September (Table 1): in 1986, 50\% of the annual catch was taken in this month; in 1985, it was also 50\%. Second, 70\% of the catch was taken in the fall gillnet fishery which had its largest catch since 1971 and probably the largest in history (Table 2). Third, the fall 1986 purse seine catch was the largest since 1980. Fourth, about 5\% of the 4 T catch was landed in Quebec.

It is also worth noting the very clumped distribution of catches in the purse seine fishery. The location of sets for the 1985 fishery is indicated in Figure 2, and for the 1986 fishery in Figures 3 and 4. In both years, almost all sets were within several kilometers of Grande Rivière.

In 1986, slightly more than $1 \%$ of total landings were officially recorded on Supplementary-B slips (slips filled out monthly by fishery officers to estimate landings not sold to plants): 654 t from the spring fishery (January-June), and $64 t$ from the fall fishery (July-December). About 4\% of catch was recorded on Supplementary-B slips in 1985.

In 1986, unreported landings were again estimated from a survey of gillnet fishermen (Nielsen 1987). The greatest fraction of unreported landings occurred in the Acadian Peninsula and Escuminac areas. Unreported landings comprise catch used for bait or personal use and not sold to plants. Supplementary B slips are supposed to estimate this part of the catch. As in 1985, unreported catches would increase the landings in the spring fishery by almost twofold. There would be only a slight increase of landings in the fall fishery because $99 \%$ of the landings were sold to plants.

The assessment was not calculated using an estimate of unreported gillnet landings because it was not possible to adjust years before 1985.

Based on antecdotal information from the fall purse seine fishery, it is possible that landings in this fishery have been under reported by $40 \%$ since 1981.

Tagging studies have shown that 4 T herring are caught in Sydney Bight (NAFO Subdiv. 4Vn), where a late fall purse seine fishery occurs. It is not possible to estimate accurately the quantity of 4 T herring caught in that fishery because herring from other stocks may also be present.

## ABUNDANCE INDEX

Gillnet fishery catch rates:
The abundance index was calculated from the catch per net per trip in the gillnet fishery. Catch per trip data were aggregated across areas and months, 1973-86, for five areas for the spring and fall fisheries. The spring fishery occurs up to June 30 and the fall fishery during the last half of the year.

The five areas were (Figure 5): Caraquet (Statistical Districts (S.D.) - 65, 66, 67), Escuminac (S.D. - 73, 75), Shediac (S.D. - 78, 80), Pictou (S.D. - 11), and North P.E.I. (S.D. - 82, 92). These areas were selected because they are areas of major gillnet landings and because most of their catch is from discrete spawning aggregations (Messieh 1984). From 1983-86, $80 \%$ of spring catches and $50 \%$ of fall catches were from these areas (Table 3).

The annual catch per trip for each area is summarized in Table 4; 1973-83 data were taken from Messieh (1984). There were no correlations over time of catch rates among areas within the spring, and fall fisheries. This result suggested that, within fishing season, stock abundance was independent in each of the five areas. There were several significant correlations between fishing seasons, however, which suggested that factors which affect abundance may not be independent among areas. For example, the spring Escuminac fishery was positively correlated with the fall Pictou fishery ( $p=0.01$ ); and the spring Shediac fishery was positively correlated with the fall P.E.I. ( $p=0.01$ ) fisheries.

The monthly catch rate data were analyzed by area, month and year, separately for the spring and fall fisheries, using the multiplicative model of Gavaris (1980) in a revised STSC APL version written by D. Gascon, Quebec Region (STANDARD.WS Version 1.0). For the spring fishery, 58\% of the standardized catch rate could be explained by the model, due to variation among areas and months (Table 5). There was no significant annual variation or trend in the standardized catch rate. Similar results were obtained for the fall fishery (Table 5) and the standardized catch rates were not used as an index of abundance for either fishery.

The number of nets was estimated from a series of five questionnaires which were sent to fishermen in recent years:

| Years <br> Surveyed | Year of <br> Survey | Reference |
| :---: | :--- | :--- |
| $1971-79$ | $1978-79$ | 0'Boyle and Cleary (1981) |
| $1980-82$ | 1983 | Cleary and Hamel 1986 |
| 1983 | 1984 | Ahrens, unpublished |
| $1983-85$ | 1985 | Nielsen (1986) |
| 1986 | 1986 | Nielsen (1987) |

The number of nets used in the spring and fall fisheries was calculated using a number of assumptions. First, the number of nets used per fishing trip in the spring fishery was estimated from the average number of nets in the Chaleur area (S.D. 63-68) and Escuminac area (S.D. 70, 73, 75-78, 80, 82, $83,92)$, weighted by the proportion of catch in the two areas.

There has been a dramatic decline in the number of nets in the fall fishery. since 1982. It is believed that the variation in nets fished per trip is inversely related to stock abundance. The influence of other factors, such as the recent change towards a roe fishery and the imposition of boat quotas and perhaps an emphasis towards catching mature fish on the spawning grounds, was not known. However, the use of boat quotas has been localized and not felt to have greatly affected aggregate catch rates.

Second, although questionnaires cover a broader area and more Statistical Districts than included in the time series of catch rates taken from Messieh (1984), they were assumed to be equivalent because there was considerable overlap of Statistical Districts in both data sets.

Third, the time series from 1980-86 was adjusted to be consistent with the years 1971-79 by including only fishermen who sold more than $50 \%$ of their catch to plants. The adjustment was necessary because fishermen who sell their catch to plants use twice as many nets as fishermen who keep their catch. The 1986 survey indicated that the number of nets used in the fishery had not changed since 1984:

The abundance indices for the spring and fall fisheries, are presented in Table 6. It is clear that the 1986 catch rates were the highest since 1974. Values in the fall fishery were significantly correlated ( $p<0.01$ ) with results from the multiplicative model (monthly purchase slip data). The spring catch rate showed a similar trend to the multiplicative model but they were not correlated.

## Purse seine fishery catch rates:

Catch rates (tonnes per set) in the purse seine fishery were available from logbooks sent annually to Statistics Branch by the fishermen. These
data were summarized by month 1971-79 by Winters and Moores (1980) who used an unweighted mean to calculate an annual catch rate. Logbooks from 1980-85 were summarized and the unweighted means were calculated as before (Table 7). The unweighted means were significantly correlated ( $P<0.01$ ) to the catch per net per trip in the fall gillnet fishery (Table 6). Because only about $20 \%$ of landings are taken by this fishery, this catch rate series was not used as an abundance index.

## Index fishermen:

In the fall of 1986 an independent abundance index was initiated with the assistance of 15 index fishermen. The fishermen were distributed as follows: five in Area 438 (Caraquet), three in Area 436 (Nortwest P.E.I.), three - Area 432 (Fishermen's Bank), and four - Area 433 (Pictou). The following statistics were available:

| Statistic | Mean | S.D. |
| :--- | :---: | :--- |
| No. of trips | 11.1 | 4.2 |
| No. of days fished | 11.1 | 4.2 |
| No. of nets/trip | 6.0 |  |
| Catch/net/trip | 1.12 | 0.61 |

It is noteworthy that the catch rate is very similar to the fall catch rate of 1.14 from the purchase slip file. Variation in daily catch rates and variation among areas are shown in Figure 6. It is evident in Figure 6 that there are pronounced patterns in the daily variation in catch tables which should be examined in greater detail next year.

## Catch and Weight at Age

Spawning groups for each sample collected in 1986 were assigned in the following manner: 1) in the gillnet fishery, fish in maturity stage $5-7$ were assumed to spawn during the season of capture; 2) in the fall purse seine fishery, fish in maturity stage 4 were assumed to spawn in the spring; and 3) for all other maturity stages, a discriminant function based on otolith morphometry was used if the probability of correct classification was higher than $75 \%$. All remaining fish ( $<10 \%$ ) were not used. Samples taken 1971-86 are summarized in Table 8.

Although the above technique is consistent with previous years, it is different from the technique currently used in $4 R$ and 4S. A blind test of spawning assignment showed 78\% agreement between the ager and the discriminant function, but there is concern about assigning spawning groups by using otoliths for maturity stages other than stages 5-7.

The macroscopic method of assigning maturity stages was compared to that used in $4 R$ and $4 S$ (McQuinn 1987). Generally our technique tended to assign earlier maturity stages, whereas, McQuinn's technique assigned more stages 3 and 8 (Table 9).

Catch and weight at age matrices were calculated using stratified samples for 1984, 1985, and 1986 and random samples in previous years. Gillnet fisheries in NAFO Division 4 T were divided into three groups for each spawning group, including: NAFO Unit Areas 431-4, Area 436, and Areas 437-9. These areas were further subdivided into the spring (Jan.-June) and fall (July-Dec.) fisheries. A seventh group included all fish taken by purse seines. Landings in three areas for 1985 and 1986 are given in Table 10. A computer program called HERCTA was used to combine the age-length keys and length-frequency data within each group and to weight the numbers at age by the landings. In 1986, HERCTA was modified slightly to weight length frequencies by trip weights. It was also necessary to redo the catch at age for 1985 samples. Prior to 1985 samples were collected randomly and no changes were required.

The percentage of the catch by spawning group in the spring and fall fisheries, 1980-86 are summarized in Table 11. The percentage of spring spawners in the fall purse seine fishery for areas $437-439$ was 61\% in 1986.

The mean weight-at-age matrix for spring and fall spawners, 1974-86 is shown in Table 12.

The catch-at-age matrix was calculated separately for spring and fall spawners in the gillnet and purse seine fisheries (Tables 13 and 14). It was truncated at age $11+$ to be consistent with previous assessments (Clay and Chouinard 1986). The cross products of the 1986 mean weights and catches at age were within 1\% of the reported catch.

The landings in the gillnet fishery by spawning group (cross products of Tables 13 and 14) were divided by the catch rate (catch/net/trip of Table 6) to obtain an effort index (Table 15). This effort index, in numbers of net-trips, was used to calibrate the VPA.

It is interesting to note that the size and age distribution of herring caught in the fall fisheries of areas 4 Th (Pictou) and 4 Tn (Chaleur Bay) were quite different in 1986. The length-frequency distributions are shown in Figure 7 for fish taken by the same size of gillnet (2 5/8"). There were fewer small fish taken in Chaleur Bay. The age distributions for the two areas is compared for the years 1984 to 1986 in Table 16. Again, it is clear that in 1986, more younger herring especially the 1982 year-class, were caught in the Pictou area. There appeared to be little difference between the two areas in 1984.

## Partial Recruitment

Partial recruitment for the spring fishery was calculated using selectivity curves for the gillnet fishery and the assumption that all mature herring were available to the purse seine fishery. The mesh selectivity at age was updated using results of mesh size distribution from the 1986 survey. Spring spawners were considered to be fully recruited at ages 4, 5, and 6.

The essential steps are as follows: selectivity curves were known for mesh sizes of $2.25,2.50,2.63$, and 2.75 inches (Ahrens 1985a); curves for eight other mesh sizes, ranging from 1.63 to 3.25 inches, were interpolated and extrapolated using the average variance, skewness and kurtosis of Ahren's curves and the Gram Charlier series; selectivity at age was obtained by multiplying the selectivity at length by the age-length key; 1986 gill net landings were separated according to mesh size (Table 17) using Nielsen's (1987) survey of fishermen; the combined selectivity at age was weighted by landings at each mesh size for the spring and fall fisheries; immature fish were assumed to be not on the spawning grounds; and, maturities at age in the gillnet fishery were taken from samples from the fall purse seine fishery. The maturities at age are shown below:

|  | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Spring | 0.24 | 0.84 | 0.97 | 1.00 | 1.00 |
| Fall | 0.14 | 0.21 | 0.96 | 1.00 | 1.00 |

Selectivity at age for the purse seine fishery was assumed to be 1.0 for age 3 and older; 61\% of purse seine catches were assumed to be spring spawners; and finally, purse seine and gillnet catches at age were combined and normalized at the age with the highest catch.

These partial recruitment patterns were consistent with an agestructured analysis which was based on the calculation of historical PR's and the selection of terminal F's on the basis of minimizing residuals along a cohort.

There was no basis for changing the PR for fall spawners. An analysis of selectivity of gillnet and purse seine fisheries indicated that it had not changed in 1985 and 1986. The flat-topped PR was also consistent with results of the age-structured analysis described above.

The partial recruitment values selected for this assessment and those used in the previous three assessments are summarized in Table 18.

## Natural Mortality

As in previous assessments natural mortality was assumed to be 0.2.

## Fishing Mortality

F (11+): Fishing mortality rates at older ages were calculated by assuming the F's on the $11+$ were equal to the F 's on the 10 year olds as described for 4R herring.

F (1986): The gillnet catch rate was broken down across ages by using the gillnet sampling data. Fully recruited $F$ was chosen on the basis of regressions between spawning group gillnet catch numbers at age per unit effort and estimated beginning of year VPA spawning group population numbers at age for the converged part of the matrix (1974-82). The VPA was calculated using the APL workspace FISH, Version 1.0 written in STSC APL (Rivard 1982). Unlike last year, preliminary regressions indicated an intercept of zero. Consequently the tuning regressions were forced through the origin. The selection criteria were based upon maximizing the correlation coefficient and minimizing the sum of squared standardized residuals of the last four years (1983, 1984, 1985, and 1986). This was repeated individually for the fully recruited ages-4, 5, and 6 for spring spawners and 5, 6, and 7 for fall spawners.

## ASSESSMENT RESULIS

## Spring Spawners

The optimization changed slowly with fishing mortality:

| Age | Criterion | F |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0.3 | 0.4 | 0.5 |
| 4 | R2 | 0.685 | 0.720 | 0.725 |
|  | SS Residual | 1.7 | 1.2 | 0.9 |
| 5 | R2 | 0.756 | 0.704 | 0.635 |
|  | SS Residual | 0.7 | 0.6 | 0.5 |
| 6 | R2 | 0.913 | 0.899 | 0.867 |
|  | SS Residual | 0.4 | 0.2 | 0.2 |

A fishing mortality which was selected from the middle of the optimal range.

The fully recruited $F$ in 1986 was estimated to be 0.40 . This analysis generated a fully-recruited $F$ in 1985 of 0.28 , consistent with last year's estimate of 0.3. The resulting cohort analysis indicated that the 1979, 1980 and 1981 year-classes were dominant and the 1982 year-class was average. Together, the 1979 and 1980 year-classes comprised over $50 \%$ of the catch biomass. The population estimates, compared to those derived last year, are:


The beginning of year population numbers, fishing mortality and mean population biomass are shown in Table 19. The current assessment is predicting much stronger 1980, 1981 and 1982 year-classes.

## Fall Spawners

Again, the optimization changed slowly with fishing mortality, with a slight increase in $R^{2}$ at $F=0.36$ :

| Age | Criterion | F |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0.32 | 0.36 | 0.38 |
| 5 | R2 | 0.622 | 0.626 | 0.626 |
|  | SS Residual | 1.27 | 1.19 | 1.16 |
| 6 | R2 | 0.902 | 0.903 | 0.901 |
|  | SS Residual | 0.24 | 0.21 | 0.20 |
| 7 | R2 | 0.824 | 0.829 | 0.828 |
|  | SS Residual | 0.32 | 0.27 | 0.25 |

The fully recruited $F$ in 1986 was estimated to be 0.36 . This analysis generated a fully-recruited $F$ in 1985 of 0.18 which compares to last year's $F$ of 0.25 . The 1980 and 1982 year-classes dominated. Together they comprised $48 \%$ of the catch biomass. The population estimates, compared to those derived last year, are:


The beginning of year population numbers, fishing mortality and mean population biomass are shown in Table 20. Trends over time for some of the population parameters is shown in Figure 8. The current assessment is predicting much larger 1979, 1980 and 1982 year-classes. The age specific calibration plots are given in Figure 9. The four regression lines fit the data fairly well; that for age 4 was not used in the calibration but, nevertheless, illustrates the fit of the 1986 point ( 1982 year-class) to the line. The time trends (Figure 10) for ages 4 and 5 present evidence for a trend in the residuals. It is also evident in Figure 9 that the model for these two age groups may not be linear.

## PROGNOSIS

As in previous assessments the 1986 numbers at ages 2 and 3 were set by the age 2 geometric mean population numbers for the period 1974 to 1983. Projections were made using: 1974-83 geometric mean population numbers at age 2, catch in 1986, and fully recruited F. The catch in 1987 was assumed to be $10,000 \mathrm{t}$ of spring spawners and $50,000 \mathrm{t}$ of fall spawners. Partial recruitment and mean weights in the period 1987 to 1989 were assumed to be as estimated for the 1986 fishery.

The following input parameters were used to run the projections:
Spring Spawners Fall Spawners

| Age | Nos. | Catch | Wt. | PR |  | Nos. | Catch | Wt. | PR |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |
| 2 | 118,223 | 315 | .101 | .05 | 158,700 | 331 | .167 | .001 |  |
| 3 | 96,680 | 5,021 | .159 | .53 | 129,905 | 4,372 | .221 | .17 |  |
| 4 | 57,398 | 17,265 | .213 | 1.0 | 209,624 | 35,927 | .242 | .58 |  |
| 5 | 68,655 | 20,651 | .251 | 1.0 | 95,283 | 26,265 | .294 | 1.0 |  |
| 6 | 53,352 | 16,048 | .284 | 1.0 | 127,095 | 35,034 | .331 | 1.0 |  |
| 7 | 35,167 | 5,797 | .325 | .5 | 72,838 | 20,078 | .374 | 1.0 |  |
| 8 | 10,113 | 1,667 | .309 | .5 | 36,996 | 10,143 | .386 | 1.0 |  |
| 9 | 3,264 | 538 | .331 | .5 | 12,001 | 3,308 | .404 | 1.0 |  |
| 10 | 710 | 117 | .279 | .5 | 1,941 | 535 | .436 | 1.0 |  |
| 11 | 2,797 | 461 | .299 | .5 |  | 2,420 | 667 | .424 | 1.0 |

The results are:

| Spring Spawners | Year |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1987 | 1988 | 1989 | 1990 |
| Catch ( t ) | 10,000 | 12,800 | 12,400 | 12,000 |
| $4+$ biomass (t) | 45,077 | 44,660 | 42,100 | 40,200 |
| Fully recruited F | 0.23 | 0.30 | 0.30 | 0.30 |
| Recruitment ('000s) | 118,223 | 118,223 | 118,223 | 118,223 |

Fall Spawners

| Catch ( $t$ ) | 50,000 | 23,300 | 21,500 | 20,200 |
| :--- | :---: | :---: | :---: | :---: |
| $5+$ biomass ( $t$ ) | 81,500 | 61,900 | 55,500 | 51,100 |
| Fully recruited F | 0.52 | 0.30 | 0.30 | 0.30 |
| Recruitment ('000s) | 158,700 | 158,700 | 158,700 | 158,700 |

Fall Spawners (50\% rule)

| Catch ( $t$ ) | 50,000 | 30,900 | 23,100 | 19,900 |
| :--- | :---: | :---: | :---: | :---: |
| $5+$ biomass ( $t$ ) | 81,354 | 58,300 | 48,500 | 44,200 |
| Fully recruited $F$ | 0,52 | 0.42 | 0.36 | 0.33 |
| Recruitment ('000s) | 158,700 | 158,700 | 158,700 | 158,700 |

The projected catch at $\mathrm{F}_{0} .1$ level in 1987 is 31,300 for the fall spawners. The 1987 TAC is 50,000 for this fishery. This catch will reduce the 1988 projected catch at $\mathrm{F}_{0.1}$ by $16 \%$.

Compared to the 1985 projections, 1987 catches at $\mathrm{F}_{0} .1$ have increased by 30\% for both spawning groups.

As noted above, the age 2 and 3 population estimates in 1986 are based on geometric mean recruitment. The impact of these year-class size estimates on projected yield is:

|  | Percent of Projected yield |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1986 | 1987 | 1988 | 1989 | 1990 |  |
|  |  | 5 | 46 | 67 | 81 | 87 |
| Spring Spawners | 2 | 16 | 39 | 58 | 74 |  |

## ACKNOWLEDGEMENTS

We would like to thank Clarence Bourque and Colin MacDougall for collection of samples and ageing; Robert 0'Boyle for his many suggestions; and Shirley Gauthier and Rita Gautreau for typing the manuscript.

## REFERENCES

Ahrens, M. 1985a. Annual assessment of herring in NAFO Division 4T. CAFSAC Res. Doc. 85/45, 38p.

Ahrens, M. 1985b. Two phase sampling of the herring fishery in NAFO Division 4T. CAFSAC Res. Doc. 85/46, 18p.

Ahrens, M. and G. Nielsen. 1984. An assessment of the 4 T herring stock. CAFSAC Res. Doc. 84/64, 35p.

Anon. 1986a. CAFSAC Advisory Document 86/1.
Anon. 1986b. CAFSAC Advisory Document 86/19.
Chadwick, E.M.P. and G. Nielsen. 1986. Assessment of Atlantic herring in NAFO Division 4T, 1986. CAFSAC Res. Doc, 86/38. 47p.

Clay, D. and G. Chouinard. 1986. Southern Gulf of St. Lawrence herring: Stock Status Report 1985. CAFSAC Res. Doc. 86/4, 84p.

Cleary, L. 1981. An assessment of the Gulf of St. Lawrence herring stock complex. CAFSAC Res. Doc. 81/23, 34p.

Cleary, L. 1982. Assessment of the 4 T herring stock. CAFSAC Res. Doc. 82/47, 43p

Cleary, L. 1983. An assessment of the southern Gulf of St. Lawrence herring stock complex. CAFSAC Res. Doc. 83/69, 40p.

Cleary, L. and J. Hamel. 1986. La pêche au hareng au filet maillant dans le sud du Golfe Saint-Laurent 1980-1982. Rapp. tech. can. sci. hal. aquat. Na 1475, 57 p.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

McQuinn, I.H. 1987. New maturity cycle charts for the herring stocks along the west coast of Newfoundland (NAFO Division 4R) and the north shore of Quebec (NAFO Division 4s). CAFSAC Res. Doc. 87/66, 11p.

Messieh, S.N. 1984. Recent changes in fishing effort and catch rates of inshore herring fisheries in the southern Gulf of St. Lawrence. CAFSAC Res. Doc. 84/59, 34p.

Nielsen, G.A. 1986. The 19854 T herring gillnet questionnaire. CAFSAC Res. Doc. 86/3.

Nielsen, G.A. 1987. The $19864 T$ herring gillnet questionnaire. CAFSAC Res. Doc. 87/61, 21p.

D'Boyle, R.N. and L. Cleary 1981. The herring (Clupea harengus harengus) gillnet fishery in the southern Gulf of St. Lawrence, 1970-79. Can. Tech. Rep. Fish. Aquat. Sci. No. 1065, 90p.

Pottle, R.A., P.A. MacPherson, S.N. Messieh and D.S. Moore 1980. A SCUBA survey of herring (Clupea harengus L.) spawning bed in Miramichi Bay, N.B. Can. Tech. Rep. Fish. Aquat. Sci. No. 984, 14p.

Rivard, D. 1982. APL program for stock assessment. Can. Tech. Rep. Fish. Aquat. Sci. No. 1091, 146p.

Winters, G.H. 1978. Recent trends in stock size, recruitment and biological characteristics of southern Gulf herring. CAFSAC Res. Doc. 78/3, 17p.

Winters, G.H., D.S. Miller and J.A. Moores 1977. Analysis of stock size and yield of southern Gulf herring. CAFSAC Res. Doc. 77/2, 15p.

Winters, G.H. and J.A. Moores 1979. An evaluation of recent changes in the population dynamics of southern Gulf herring. CAFSAC Res. Doc. 79/28, 34p.

Winters, G.H. and J.A. Moores 1980. An evaluation of the current status of southern Gulf herring. CAFSAC Res. Doc. 80/54.

Jable 1. Herring landings in MaFO Division 4T, 1967 to 1986 ( $t$ ).

| YEAR | Jan. | Feb. | Mar. | Apr. | May. | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1967 | 1742 | -- | -- | 409 | 25220 | 8764 | 5679 | 10718 | 4620 | 1358 | 3095 | 1131 | 62736 |
| 1968 | 546 | 442 | 806 | 6455 | 24239 | 2566 | 15847 | 19768 | 22350 | 5284 | 13057 | 770 | 112130 |
| 1969 | -- | -- | 73 | 9329 | 17701 | 6568 | 35476 | 46987 | 22448 | 4169 | 11543 | 121 | 154415 |
| 1970 | -- | 55 | -- | 21211 | 15782 | 2545 | 51002 | 36860 | 24959 | 18506 | 3831 | 746 | 175497 |
| 1971 | -- | -- | 42 | 10644 | 11895 | 4809 | 41521 | 23067 | 36282 | 5163 | 1053 | 370 | 134846 |
| 1972 | -- | -- | -- | 400 | 6102 | 2583 | 11034 | 9092 | 14453 | 7777 | 2108 | 41 | 53590 |
| 1973 | -- | -- | -- | 1876 | 12801 | 4221 | 2135 | 7737 | 9436 | 2079 | 69 | 3 | 40357 |
| 1974 | -- | -- | -- | 1302 | 14474 | 1190 | 2958 | 3143 | 7282 | 3081 | 1714 | 9 | 35153 |
| 1975 | -- | -- | -- | 4028 | 20229 | 1428 | 289 | 2398 | 4646 | 8986 | 2256 | 305 | 44565 |
| 1976 | -- | -- | -- | 8461 | 14406 | 961 | 193 | 1082 | 1807 | 5244 | 6973 | 326 | 39453 |
| 1977 | -- | -- | -- | 7625 | 8338 | 8850 | 244 | 2125 | 1148 | 7166 | 8726 | 602 | 44824 |
| 1978 | 240 | -- | -- | 2046 | 13363 | 883 | 526 | 2487 | 10095 | 13672 | 6981 | 2848 | 53141 |
| 1979 | -- | -- | -- | 14072 | 6158 | 1113 | 680 | 1766 | 6381 | 5071 | 9904 | 2598 | 47743 |
| 1980 | 80 | -- | 15 | 10458 | 9220 | 1032 | 910 | 2224 | 1952 | 9011 | 5001 | 540 | 40443 |
| 1981 | -- | -- | 13 | 1736 | 4566 | 729 | 1588 | 5119 | 3986 | 2171 | 1246 | -- | 21154 |
| 1982 | -- | -- | -- | 199 | 5667 | 876 | 442 | 5592 | 8047 | 3122 | 36 | -- | 23981 |
| 1983 | -- | -- | -- | 263 | 7282 | 1000 | 851 | 10291 | 2735 | 2160 | 1291 | -- | 25873 |
| 1984* | -- | -- | -- | 188 | 5998 | 531 | 964 | 5747 | 8182 | 5433 | 184 | -- | 27227 |
| 1985* | -- | 1 | 6 | 204 | 5237 | 577 | 776 | 5775 | 14675 | 3476 | 561 | -- | 31288 |
| 1986* | -- | -- | -- | 610 | 5955 | 299 | 38 | 12240 | 28635 | 7203 | 4051 | -- | 59031 |

*preliminary

Table 2. Catches ( $t$ ) of herring by gear and by season in NAFO Division 4 T 1971-1986. Spring fishery occurs from January to June; the fall fishery from July to December.

| YEAR | SPRING | FALL | SPRING | FALL | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | 14074 | 10327 | 13316 | 97129 | 134846 |
| 1972 | 8137 | 9585 | 948 | 34910 | 53580 |
| 1973 | 11713 | 7920 | 7185 | 13539 | 40357 |
| 1974 | 8285 | 4199 | 8681 | 13988 | 35153 |
| 1975 | 7119 | 4741 | 18566 | 14139 | 44565 |
| 1976 | 6611 | 3419 | 17217 | 12206 | 39453 |
| 1977 | 4926 | 3285 | 19887 | 16726 | 44824 |
| 1978 | 8484 | 4853 | 8048 | 31756 | 53141 |
| 1979 | 7444 | 5780 | 13899 | 20620 | 47743 |
| 1980 | 6443 | 6784 | 13330 | 13886 | 40443 |
| 1981 | 6545 | 10926 | 20 | 3663 | 21154 |
| 1982 | 6742 | 14130 | 0 | 3109 | 23981 |
| 1983 | 8545 | 13858 | 0 | 3470 | 25873 |
| 1984* | 6717 | 17701 | 0 | 2809 | 27227 |
| 1985* | 6037 | 21566 | 0 | 3685 | 31288 |
| 1986 | 7828 | 39956 | 0 | 11247 | 59031 |

[^0]Table 3. Combined landings in Statistical Districts 11, 65, 66, 67, 73, 75, 78, 80, 82 and 92 as a percentage of landings in gillnets and other inshore gears and of total landings in NAFO Division 4T. Spring fishery includes landings from January to June; fall fishery includes landings from July to December.


Table 4. Catch-per-unit-effort (tons per purchase slip, or per successful fishing trip) in spring and fall inshore gillnet fisheries of five selected areas of NAFO Division 4T 1973-1986. The Statistical Districts represented by each area are given in the table heading.

| YEAR | SPRING |  |  |  |  | FALL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Caraquet $65,66,67$ | $\begin{gathered} \text { Escuminac } \\ 73,75 \end{gathered}$ | Shediac $78,80$ | Pictou 11 | $\begin{gathered} \text { PEI } \\ 82,92 \end{gathered}$ | Caraquet $65,66,67$ | $\begin{gathered} \text { Escuminac } \\ 73,75 \end{gathered}$ | Shediac $78,80$ | Pictou 11 | $\begin{gathered} \text { PEI } \\ 82.92 \end{gathered}$ |
| 1973 | 3.25 | 2.01 | 0.85 | -- | 0.95 | 2.78 | 3.21 | -- | 1.55 | -- |
| 1974 | 2.15 | 1.58 | 0.45 | -- | 0.36 | 6.20 | 3.71 | -- | 0.97 | 0.21 |
| 1975 | 0.82 | 1.60 | 0.71 | -- | 0.99 | 6.76 | 4.59 | 0.09 | 1.27 | 0.25 |
| 1976 | 1.52 | 1.83 | 0.24 | -- | 0.49 | 5.18 | 7.44 | -- | 1.04 | 0.44 |
| 1977 | 3.91 | 2.28 | 0.92 | -- | 0.54 | 4.93 | 3.55 | -- | 1.23 | 0.22 |
| 1978 | 4.33 | 2.67 | 1.22 | -- | 0.96 | 4.18 | 4.30 | -- | 1.05 | 0.38 |
| 1979 | 1.90 | 1.68 | 0.59 | -- | 1.36 | 2.57 | 7.34 | 0.06 | 0.98 | 0.99 |
| 1980 | 2.56 | 1.17 | 0.63 | -- | 0.92 | 1.78 | 5.37 | -- | 0.85 | 2.69 |
| 1981 | 0.75 | 0.87 | 1.19 | 6.81 | 0.82 | 2.27 | 4.95 | -- | 1.15 | 3.24 |
| 1982 | 1.49 | 2.33 | 1.28 | 9.46 | 1.61 | 4.00 | 1.25 | -- | 0.74 | 5.28 |
| 1983 | 1.51 | 2.60 | 0.96 | 0.63 | 1.76 | 4.76 | 0.77 | -- | 1.34 | 3.77 |
| 1984 | 1.33 | 2.92 | 0.62 | -- | 0.44 | 3.52 | 0.77 | 0.75 | 2.83 | 2.46 |
| 1985 | 1.20 | 2.95 | 1.52 | 0.92 | 0.76 | 5.30 | 0.25 | 8.59 | 3.02 | 5.65 |
| 1986 | 1.51 | 3.40 | 3.10 | -- | 1.00 | 6.40 | 6.20 | 0.25 | 4.04 | 5.14 |

Table 5. Monthly catch rate (catch/trip) analyzed by area, month and year for the spring and fall fistreries.

REGRESSION OF MLLTIPLICATIVE MODEL

MULTIPLE R..................... . . . 764
MULTIPLE R SQUARED. ......... . . 583

SPRING

ANALYSIS OF VARIANCE

| Source of Variation | DF | Sums of Square | Mean Squares | F-Value |
| :---: | :---: | :---: | :---: | :---: |
| Intercept | 1 | 2.575E0003 | 2.575E0003 |  |
| Regression | 20 | $3.661 \mathrm{E0002}$ | $1.831 \mathrm{E0001}$ | 9.232 |
| Type 1 | 4 | 1.426 EDOO 2 | $3.565 E 0001$ | 17.977 |
| Type 2 | 3 | 1.654 E 0002 | 5.514E0001 | 27.809 |
| Type 3 | 13 | 4.638 E 0001 | 3.568 E 0000 | 1.799 |
| Residuals | 132 | $2.617 \mathrm{EOOO2}$ | 1.983 E 0000 |  |
| Total | 153 | 3.203E0003 |  |  |

## REGRESSION OF MLRTIPLICATIVE MOOEL

```
MULTIPLE R............... . . }52
MULTIPLE R SQUARED...... . . }27
```

FALL

ANALYSIS OF VARIANCE

| Source of Variation | DF | Sums of Squares | Mean <br> Squares | F-Value |
| :---: | :---: | :---: | :---: | :---: |
| Intercept | 1 | $2.939 E 0003$ | 2.939 E 0003 |  |
| Regression | 21 | 1.792 E 0002 | 8.533 EOOOO | 3.307 |
| Type 1 | 4 | 5.677E0001 | 1.419E0001 | 5.500 |
| Type 2 | 4 | 8.971 E0001 | 2.243 E0001 | 8.692 |
| Type 3 | 13 | 5.652E0001 | 4.348 E 0000 | 1.685 |
| Residuals | 187 | 4.82550002 | $2.580 E 0000$ |  |
| Total | 209 | 3.60150003 |  |  |

Table 6. Catch ( $t$ ) per successful trip, number of nets fished per trip and CPUE index for spring and fall inshore gillnet fisheries of NAFO Division 4T.

| YEAR | Spring Fishery |  |  | Fall Fishery |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Catch (t) per successful trip1 | Number of nets fished per trip ${ }^{2}$ | CPUE index tons per net per trip | Catch (t) per successful trip 1 | Number of nets fished per trip ${ }^{3}$ | CPUE index tons per net per trip |
| 1974 | 1.23 | 20.6 | 0.060 | 2.99 | 7.6 | 0.39 |
| 1975 | 1.29 | 30.1 | 0.043 | 3.63 | 7.2 | 0.50 |
| 1976 | 1.34 | 29.9 | 0.045 | 3.13 | 8.9 | 0.35 |
| 1977 | 1.89 | 27.9 | 0.068 | 3.56 | 9.3 | 0.38 |
| 1978 | 2.22 | 29.4 | 0.076 | 3.21 | 11.4 | 0.28 |
| 1979 | 1.49 | 34.4 | 0.043 | 1.78 | 11.9 | 0.15 |
| 1980 | 1.09 | 39.2 | 0.028 | 1.45 | 18.4 | 0.079 |
| 1981 | 0.92 | 41.4 | 0.022 | 2.15 | 19.3 | 0.11 |
| 1982 | 1.73 | 39.7 | 0.044 | 2.33 | 18.6 | 0.13 |
| 1983 | 1.79 | 22.5 | 0.080 | 3.45 | 7.3 | 0.47 |
| 1984 | 1.90 | 26.5 | 0.072 | 3.02 | 5.3 | 0.57 |
| 1985 | 1.81 | 27.2 | 0.067 | 4.59 | 5.2 | 0.88 |
| 1986 | 2.47 | 27.1 | 0.091 | 5.91 | 5.2 | 1.14 |

[^1]Table 7. Catch ( $t$ ) per set for purse seiners in Areas 433-439 of NAFO Division 4 T 1971-85. The 1971-79 data are taken from Winters and Moores (1980), recent data were summarized directly from logbooks.

| YEAR | Catch ( $t$ ) per set |  |  | Unweighted mean |
| :---: | :---: | :---: | :---: | :---: |
|  | Sept. | Oct. | Nov. |  |
| 1971 | 47.2 | 59.4 | 63.6 | 56.7 |
| 1972 | 37.1 | 53.9 | 44.3 | 45.1 |
| 1973 | 49.1 | -- | -- | -- |
| 1974 | 28.3 | 35.4 | 50.0 | 37.9 |
| 1975 | 32.1 | 37.8 | 33.5 | 34.5 |
| 1976 | 27.3 | 44.5 | 50.6 | 40.6 |
| 1977 | 39.5 | 53.1 | 40.6 | 44.4 |
| 1978 | 44.1 | 33.1 | 55.7 | 44.3 |
| 1979 | 31.3 | 19.9 | 22.2 | 24.5 |
| 1980 | 28.3 | 26.8 | 18.1 | 24.4 |
| 1981 | -- | 22.2 | 46.2 | 34.2 |
| 1982 | 23.6 | 45.8 | -- | 34.7 |
| 1983 | -- | 33.4 | 71.0 | 52.2 |
| 1984 | -- | 42.6 | 2.5 | 22.6 |
| 1985 | -- | 53.6 | 101.5 | 77.6 |
| 1986 | -- | 75.7 | 97.0 | 86.3 |

Table 8. Summary of samples taken for ageing of herring in NAFO Division 4T.

| YEAR | Gillnet |  | Purse Seine |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Spring | Fall | Spring | Fall |
| 1971 | 2266 | 549 | 547 | 1046 |
| 1972 | 350 | 396 | -- | 419 |
| 1973 | 1209 | 997 | 151 | 800 |
| 1974 | 1541 | 670 | 1074 | 1225 |
| 1975 | 3988 | 907 | 1934 | 621 |
| 1976 | 3067 | 696 | 1605 | 838 |
| 1977 | 1612 | 379 | 1559 | 2127 |
| 1978 | 5186 | 1462 | 896 | 2403 |
| 1979 | 7408 | 2258 | 1154 | 4204 |
| 1980 | 4850 | 194 | 1746 | 299 |
| 1981 | 2601 | 2245 | 95 | 549 |
| 1982 | 5240 | 1520 | -- | -- |
| 1983 | 878 | 2361 | -- | 1102 |
| 1984 | 861 | 4077 | -- | 2186 |
| 1985 | 457 | 999 | -- | 437 |
| 1986 | 599 | 1107 | -- | 680 |

Table 9. 1986 Comparison of Gulf and Quebec maturity assignments.

| Areas 431-435 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Que | 3 | 4 | 5 | 8 | Que | 3 | 4 | 5 | 8 |
| Gulf | 3 | 0 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 3 | 22 | 15 | 0 | 4 | 0 | 0 | 4 | 0 |
|  | 5 | 0 | 2 | 3 | 0 | 5 | 0 | 0 | 17 | 0 |
|  | 8 | 0 | 0 | 0 | 13 | 8 | 1 | 0 | 0 | 17 |

Areas 431-435

| female | Jan-June |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
|  | Que | 3 | 4 | 5 | 8 | July-Dec |  |  |  |  |
| Gulf | 3 | 1 | 0 | 0 | 4 | 3 | 3 | 4 | 5 | 8 |
|  | 4 | 1 | 8 | 22 | 0 | 4 | 1 | 0 | 0 | 1 |
|  | 5 | 0 | 1 | 17 | 0 | 5 | 3 | 0 |  |  |
|  | 8 | 0 | 0 | 0 | 5 | 8 | 0 | 1 | 19 | 0 |
|  |  |  |  |  | 8 | 0 | 0 | 9 |  |  |


| Areas 436 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Que | 3 | 4 | 5 | 8 | Que | 3 | 4 | 5 | 8 |
| Gulf | 3 | 0 | 0 |  | 1 | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 2 | 8 | 2 | 0 | 4 | 0 | 0 | 0 | 0 |
|  | 5 | 0 | 0 | 1 | 0 | 5 | 0 | 0 | 0 | 0 |
|  | 8 | 3 | 0 | 0 | 3 | 8 | 0 | 0 | 0 | 0 |

Areas 436

| female | Jan-June |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
|  | Que | 3 | 4 | 5 | 8 | July-Dec |  |  |  |  |
| Gulf | 3 | 1 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
|  | 4 | 0 | 4 | 5 | 0 | 4 | 0 | 0 | 0 | 0 |
|  | 5 | 0 | 0 | 9 | 0 | 5 | 0 | 0 | 0 | 0 |
|  | 8 | 1 | 0 | 0 | 2 | 8 | 0 | 0 | 0 | 0 |


| Areas | 437-439 |  |  |  |  |
| :--- | :---: | :--- | :--- | :--- | ---: |
| male | Jan-June |  |  |  |  |
|  | Que | 3 | 4 | 5 | 8 |
| Gulf | 3 | 4 | 0 | 0 | 15 |
|  | 4 | 3 | 5 | 4 | 1 |
|  | 5 | 0 | 0 | 2 | 0 |
|  | 8 | 0 | 0 | 0 | 21 |

July-Dec

| Que | 3 | 4 | 5 | 8 |
| ---: | ---: | ---: | ---: | ---: |
| 3 | 17 | 10 | 1 | 24 |
| 4 | 29 | 86 | 59 | 3 |
| 5 | 0 | 0 | 20 | 0 |
| 8 | 3 | 0 | 0 | 93 |

Areas 437-439

| female | Jan-June |  | July-Dec |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Que | 3 | 4 | 5 | 8 | Que | 3 | 4 | 5 | 8 |
| Gulf | 3 | 15 | 1 | 0 | 15 | 3 | 121 | 3 | 1 | 62 |
|  | 4 | 1 | 5 | 10 | 0 | 4 | 79 | 23 | 16 | 0 |
|  | 5 | 0 | 1 | 13 | 0 | 5 | 0 | 1 | 14 | 0 |
|  | 8 | 0 | 0 | 0 | 12 | 8 | 15 | 0 | 0 | 72 |

Table 10. 1986 Landings divided into seven areas with separate age - length keys.

| Gear | Area | Season | LANDINGS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Maritimes | Quebec | Total |
| Gillnet | 431-435 | Jan - Jun | 2,527 | 328 | 2,855 |
|  |  | Jul - Dec | 12,253 | 0 | 12,253 |
|  | 436 | Jan - Jun | 3,297 | 0 | 3,297 |
|  |  | Jul - Dec | 1,267** | 0 | 1,267 |
|  | 437-439 | Jan - Jun | 1,041 | 635 | 1,676 |
|  |  | Jul - Dec | 23,906 | 2257 | 26,163 |
|  | Unknown* | Jul - Dec | 273 |  | 273 |
| Seine | 437-439 | Jul - Dec | 11,247 |  | 11,247 |
| Total |  |  |  |  | 59,031 |

* Unknown included in areas 437-439 fall
** Put 436 Jul - Dec into 431-435 fall

Table 11. Proportion of spring (S) and fall (F) spawners sampled in the spring (prior to July 1) and fall fisheries in Areas 431-435, 436 and 437-439 of NAFO Division 4T, 1980-86.


Spring fishery (gillnet)

| Year | Area 431-435 |  |  |  | Area 436 |  |  |  | Area 437-439 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | numbers |  | $\%$ |  | numbers |  | \% |  | numbers |  | \% |  |
|  | S | F | S | F | S | F | S | F | S | F | S | F |
| 80 | 4208 | 163 | 96 | 4 | 941 | 0 | 100 | 0 | 94 | 0 | 100 | 0 |
| 81 | 2755 | 73 | 97 | 3 | 382 | 74 | 84 | 16 | 911 | 0 | 100 | 0 |
| 82 | 3069 | 1 | 100 | 0 | 369 | 0 | 100 | 0 | 625 | 0 | 100 | 0 |
| 83 | 0 | 0 | 0 | 0 | 590 | 48 | 92 | 8 | 94 | 4 | 96 | 4 |
| 84 | 91 | 33 | 73 | 27 | 18 | 2 | 90 | 10 | 116 | 20 | 85 | 15 |
| 85 | 114 | 0 | 100 | 0 | 233 | 2 | 99 | 1 | 67 | 2 | 97 | 3 |
| 86 | 135 | 25 | 84 | 16 | 169 | 35 | 83 | 17 | 235 | 53 | 82 | 18 |

Fall fishery

|  | Area 431-435 Gillnet |  |  |  | Area 437-439 Gillnet |  |  |  | Area 437-439 Purse |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | numbers |  | $\%$ |  | numbers |  | \% |  | numbers |  | \% |  |
| Year | S | F | S | F | S | F | S | F | S | F | S | F |
| 80 | 0 | 0 | 0 | 0 | 46 | 344 | 12 | 88 | 1235 | 474 | 72 | 29 |
| 81 | 0 | 293 | 0 | 100 | 7 | 1931 | 0 | 100 | 84 | 443 | 16 | 84 |
| 82 | 0 | 290 | 0 | 100 | 28 | 1097 | 2 | 98 | 0 | 0 | 0 | 0 |
| 83 | 0 | 879 | 0 | 100 | 12 | 1074 | 1 | 99 | 507 | 488 | 51 | 49 |
| 84 | 1 | 434 | 0 | 100 | 37 | 812 | 4 | 96 | 521 | 318 | 62 | 38 |
| 85 | 6 | 576 | 1 | 99 | 47 | 298 | 14 | 86 | 185 | 143 | 56 | 44 |
| 86 | 4 | 659 | 1 | 99 | 98 | 488 | 17 | 83 | 405 | 263 | 61 | 39 |

Table 12. Weight (g)-at-age matrices for spring and fall fisheries of herring in NAFO Division 4T.

|  | SPRING WEIGHTS AT AGE |  |  |  |  |  |  |  |  |  |  | 28/4/87 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | 95 | 90 | 104 | 133 | 133 | 133 | 133 | 124 | 117 | 146 | 144 | 103 | 101 |
| 3 | 160 | 154 | 177 | 172 | 172 | 172 | 172 | 173 | 170 | 178 | 168 | 160 | 159 |
| 4 | 202 | 185 | 210 | 213 | 213 | 213 | 213 | 232 | 202 | 214 | 202 | 210 | 213 |
| 5 | 238 | 229 | 247 | 247 | 247 | 247 | 247 | 277 | 247 | 242 | 220 | 244 | 251 |
| 6 | 275 | 266 | 275 | 287 | 287 | 287 | 287 | 318 | 295 | 252 | 281 | 288 | 284 |
| 7 | 291 | 298 | 271 | 291 | 291 | 291 | 291 | 346 | 285 | 310 | 224 | 359 | 325 |
| 8 | 319 | 304 | 304 | 310 | 310 | 310 | 310 | 366 | 299 | 254 | 320 | 409 | 309 |
| 9 | 320 | 316 | 310 | 348 | 348 | 348 | 348 | 376 | 305 | 398 | 312 | 428 | - 331 |
| 10 | 328 | 329 | 333 | 324 | 324 | 324 | 324 | 369 | 312 | 375 | 241 | 324 | 279 |
| $11+$ | 348 | 357 | 353 | 359 | 359 | 359 | 359 | 413 | 420 | 385 | 216 | 359 | 299 |

FALL WEIGHTS AT AGE
28/4/87
1974197519761977197819791980198119821983198419851986

| 2 | 47 | 40 | 35 | 119 | 119 | 119 | 119 | 76 | 94 | 143 | 137 | 119 | 167 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 126 | 115 | 111 | 177 | 177 | 177 | 177 | 143 | 151 | 174 | 214 | 249 | 221 |
| 4 | 190 | 169 | 184 | 245 | 245 | 245 | 245 | 242 | 155 | 249 | 244 | 279 | 242 |
| 5 | 235 | 215 | 217 | 283 | 283 | 283 | 283 | 273 | 189 | 285 | 290 | 312 | 294 |
| 6 | 255 | 248 | 253 | 313 | 313 | 313 | 313 | 317 | 237 | 317 | 306 | 355 | 331 |
| 7 | 283 | 272 | 276 | 338 | 338 | 338 | 338 | 326 | 324 | 343 | 344 | 384 | 374 |
| 8 | 314 | 288 | 283 | 359 | 359 | 359 | 359 | 348 | 237 | 262 | 367 | 404 | 386 |
| 9 | 327 | 314 | 300 | 380 | 380 | 380 | 380 | 394 | 285 | 365 | 380 | 405 | 404 |
| 10 | 331 | 325 | 323 | 364 | 364 | 364 | 364 | 328 | 380 | 348 | 416 | 423 | 436 |
| $11+$ | 354 | 362 | 349 | 395 | 395 | 395 | 395 | 427 | 389 | 398 | 361 | 395 | 424 |

Table 13. a) Catch-at-age matrices for spring spaming groups in the gillnet and purse seine fisheries of NAFD Division 4 T .

| . |  |  |  |  | SPRING <br> 1978 | SPAWNERS <br> 1979 | $\begin{aligned} & \text { S CATCH } \\ & 1980 \end{aligned}$ | AT AGE 1981 | 1982 | 1983 | 1984 | 1/5/87 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 |  |  |  |  |  |  |  | 1985 | 1986 |
| 2 | 5260 | 1521 | 15931 | 3351 | 14434 | 21741 | 21382 | 6141 | 924 | 424 | 207 | 125 | 315 |
| 3 | 8736 | 27837 | 8498 | 58673 | 14121 | 13689 | 42580 | 17775 | 33383 | 10821 | 3476 | 8473 | 5021 |
| 4 | 3285 | 18829 | 27893 | 6874 | 65301 | 5856 | 5689 | 8250 | 6201 | 31206 | 11033 | 11330 | 17265 |
| 5 | 1647 | 3260 | 6746 | 10264 | 4692 | 33954 | 3096 | 1304 | 1476 | 3934 | 13838 | 11707 | 20651 |
| 6 | 21560 | 16243 | 2237 | 3563 | 6956 | 2130 | 15768 | 868 | 337 | 1104 | 1509 | 5368 | 16048 |
| 7 | 3699 | 20158 | 465 | 604 | 1277 | 3072 | 3269 | 4444 | 217 | 70 | 116 | 2036 | 5797 |
| 8 | 4128 | 2683 | 8805 | 498 | 1182 | 707 | 2033 | 755 | 339 | 50 | 11 | 364 | 1667 |
| 9 | 6245 | 3395 | 1034 | 6513 | 191 | 203 | 740 | 756 | 114 | 17 | 11 | 249 | 538 |
| 10 | 947 | 5457 | 1488 | 510 | 3584 | 718 | 320 | 108 | 2 | 2 | 22 | 1 | 117 |
| $11+$ | 2529 | 6157 | 19853 | 13472 | 1992 | 3488 | 2910 | 1198 | 110 | 10 | 34 | 1 | 461 |
|  |  |  |  |  | SPRING | GILLNET | CATCH | AT AGE |  |  |  | 1/ | 5/87 |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | 108 | 8 | 1 | 86 | 38 | 55 | 541 | 45 | 68 | 1 | 13 | 2 | 8 |
| 3 | 4911 | 14874 | 2338 | 13965 | 6459 | 7667 | 22219 | 13031 | 32597 | 5160 | 1877 | 6602 | 3882 |
| 4 | 1974 | 3710 | 18058 | 3301 | 27332 | 3056 | 3567 | 7527 | 6047 | 29194 | 7932 | 9341 | 12248 |
| 5 | 1191 | 1377 | 2307 | 3691 | 1386 | 20895 | 1406 | 1270 | 1475 | 3646 | 11970 | 9663 | 14241 |
| 6 | 14032 | 1793 | 535 | 540 | 1902 | 556 | 9528 | 785 | 326 | 1019 | 1195 | 4543 | 9205 |
| 7 | 2600 | 6672 | 97 | 42 | 315 | 1404 | 216 | 3197 | 177 | 36 | 52 | 1655 | 1961 |
| 8 | 2272 | 1925 | 2946 | 59 | 262 | 110 | 1074 | 79 | 332 | 1 | 0 | 257 | 284 |
| 9 | 2532 | 1628 | 419 | 1084 | 96 | 63 | 104 | 285 | 113 | 1 | 0 | 197 | 8 |
| 10 | 338 | 2640 | 292 | 1 | 1361 | 362 | 140 | 38 | 1 | 1 | 0 | 0 | 63 |
| $11+$ | 469 | 1660 | 2894 | 1497 | 1164 | 1672 | 2134 | 1009 | 109 | 1 | 0 | 0 | 425 |
|  |  | SPRING PURSE SEINE CATCH AT AGE |  |  |  |  |  |  |  |  |  | 28/4/87 |  |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | 5152 | 1513 | 15930 | 3265 | 14396 | 21686 | 20841 | 6096 | 856 | 423 | 194 | 123 | 307 |
| 3 | 3825 | 12963 | 6160 | 44708 | 7662 | 6022 | 20361 | 4744 | 786 | 5661 | 1599 | 1871 | 1139 |
| 4 | 1311 | 15119 | 9835 | 3573 | 37969 | 2800 | 2122 | 723 | 154 | 2012 | 3101 | 1989 | 5017 |
| 5 | 456 | 1883 | 4439 | 6573 | 3306 | 13059 | 1690 | 34 | 1 | 288 | 1868 | 2044 | 6410 |
| 6 | 7528 | 14450 | 1702 | 3023 | 5054 | 1574 | 6240 | 83 | 11 | 85 | 314 | 825 | 6843 |
| 7 | 1099 | 13486 | 368 | 562 | 962 | 1668 | 3053 | 1247 | 40 | 34 | 64 | 381 | 3836 |
| 8 | 1856 | 758 | 5859 | 439 | 920 | 597 | 959 | 676 | 7 | 49 | 11 | 107 | 1383 |
| 9 | 3713 | 1767 | 615 | 5429 | 95 | 140 | 636 | 471 | 1 | 16 | 11 | 52 | 530 |
| 10 | 609 | 2817 | 1196 | 509 | 2223 | 356 | 180 | 70 | 1 | 1 | 22 | 0 | 54 |
| $11+$ | 2060 | 4497 | 16959 | 11975 | 828 | 1816 | 776 | 189 | 1 | 9 | 34 | 0 | 36 |

Table 14. Catch-at-age matrices for fall spamers.

|  |  |  |  |  | FALL SPAWNERS |  | CATCH AT AGE |  |  |  |  | 1/5/87 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | 5403 | 96 | 93 | 205 | 1514 | 2906 | 1369 | 109 | 184 | 35 | 9 | 30 | 331 |
| 3 | 5715 | 2090 | 277 | 3037 | 19348 | 6217 | 32429 | 10075 | 9273 | 4782 | 1135 | 3736 | 4372 |
| 4 | 17524 | 4169 | 1758 | 7676 | 27378 | 35031 | 9995 | 33204 | 21526 | 23879 | 27519 | 17694 | 35927 |
| 5 | 6097 | 25621 | 5034 | 3604 | 14092 | 27629 | 23278 | 5971 | 26147 | 10971 | 16248 | 24072 | 26265 |
| 6 | 4235 | 6860 | 28944 | 3622 | 3973 | 11109 | 8343 | 2606 | 5663 | 13643 | 12972 | 12625 | 35034 |
| 7 | 10666 | 3262 | 4154 | 22200 | 3465 | 2323 | 4130 | 978 | 2344 | 2409 | 6718 | 5798 | 20078 |
| 8 | 2827 | 4854 | 1849 | 2219 | 13853 | 3128 | 637 | 977 | 1004 | 1867 | 1386 | 2144 | 10143 |
| 9 | 5444 | 2159 | 3510 | 1412 | 1606 | 5242 | 848 | 216 | 641 | 623 | 480 | 431 | 3308 |
| 10 | 4295 | 3568 | 737 | 2761 | 890 | 702 | 320 | 108 | 132 | 114 | 154 | 203 | 535 |
| $11+$ | 19110 | 20635 | 16451 | 16704 | 16259 | 10386 | 2966 | 872 | 162 | 309 | 174 | 1 | 667 |
|  |  |  |  |  | $\begin{aligned} & \text { FALL } \\ & 1978 \end{aligned}$ | $\begin{gathered} \text { GILLNET } \\ 1979 \end{gathered}$ | $\begin{array}{r} \text { CATCH } \\ 1980 \end{array}$ | $\begin{array}{r} \text { AT AGE } \\ 1981 \end{array}$ | 1982 | 1983 | 1984 | 1/5/87 |  |
|  | 1974 | 1975 | 1976 | 1977 |  |  |  |  |  |  |  | 1985 | 1986 |
| 2 | 1 | 1 | 1 | 1 | 5 | 1 | 25 | 1 | 1 | 1 | 0 | 0 | 258 |
| 3 | 125 | 1 | 39 | 122 | 351 | 128 | 7254 | 6851 | 3542 | 792 | 931 | 2755 | 3605 |
| 4 | 4258 | 1602 | 276 | 1879 | 4389 | 7809 | 3293 | 28863 | 18645 | 21648 | 26518 | 16301 | 34220 |
| 5 | 1765 | 8163 | 1455 | 340 | 3104 | 3821 | 4027 | 5537 | 23280 | 10465 | 14918 | 21838 | 23241 |
| 6 | 515 | 1227 | 5839 | 253 | 593 | 1883 | 929 | 2471 | 5308 | 12544 | 12214 | 11787 | 30308 |
| 7 | 1876 | 742 | 465 | 3215 | 614 | 402 | 836 | 974 | 2250 | 2223 | 6236 | 5473 | 17661 |
| 8 | 180 | 616 | 243 | 133 | 3440 | 484 | 185 | 830 | 960 | 1782 | 1308 | 1993 | 9361 |
| 9 | 2070 | 403 | 419 | 81 | 83 | 694 | 210 | 104 | 491 | 589 | 446 | 332 | 2961 |
| 10 | 730 | 315 | 50 | 468 | 178 | 11 | 139 | 53 | 131 | 81 | 154 | 197 | 518 |
| $11+$ | 4813 | 1800 | 2143 | 1162 | 1785 | 1418 | 620 | 866 | 61 | 260 | 171 | 0 | 614 |
|  |  |  |  | SPRING PURSE SEINE CATCH AT AGE |  |  |  |  |  | 19831984 |  | 28/4/87 |  |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |  |  | 1985 | 1986 |
| 2 | 5402 | 95 | 92 | 204 | 1509 | 2905 | 1344 | 108 | 183 | 34 | 9 | 30 | 73 |
| 3 | 5590 | 2089 | 238 | 2915 | 18997 | 6089 | 25175 | 3224 | 5731 | 3990 | 204 | 981 | 767 |
| 4 | 13266 | 2567 | 1482 | 5797 | 22989 | 27222 | 6702 | 4341 | 2881 | 2231 | 1001 | 1393 | 1707 |
| 5 | 4332 | 17458 | 3579 | 3264 | 10988 | 23808 | 19251 | 434 | 2867 | 506 | 1330 | 2234 | 3024 |
| 6 | 3720 | 5633 | 23105 | 3369 | 3380 | 9226 | 7414 | 135 | 355 | 1099 | 758 | 838 | 4726 |
| 7 | 8790 | 2520 | 3689 | 18985 | 2851 | 1921 | 3294 | 4 | 94 | 186 | 482 | 325 | 2417 |
| 8 | 2647 | 4238 | 1606 | 2086 | 10413 | 2644 | 452 | 147 | 44 | 85 | 78 | 151 | 782 |
| 9 | 3374 | 1756 | 3091 | 1331 | 1523 | 4548 | 638 | 112 | 150 | 34 | 34 | 99 | 347 |
| 10 | 3565 | 3253 | 687 | 2293 | 712 | 691 | 181 | 55 | 1 | 33 | 0 | 6 | 17 |
| $11+$ | 14297 | 18835 | 14308 | 15542 | 14474 | 8968 | 2346 | 6 | 101 | 49 | 3 | 0 | 53 |


| YEAR | EFFORT INDEX* Thousands of Net-Trips |  |
| :---: | :---: | :---: |
|  | Spring | Fall |
| 1974 | 132 | 12 |
| 1975 | 194 | 7 |
| 1976 | 158 | 8 |
| 1977 | 76 | 6 |
| 1978 | 118 | 16 |
| 1979 | 196 | 32 |
| 1980 | 323 | 54 |
| 1981 | 283 | 101 |
| 1982 | 171 | 82 |
| 1983 | 105 | 30 |
| 1984 | 68 | 31 |
| 1985 | 112 | 22 |
| 1986 | 113 | 33 |

[^2]Table 16. Catch at age in thousands of fish from the fall gillnet fishery in Northern and Southern parts of 4 I. These numbers are for fall spawners only.


| Age | South <br> Areas 431-435 |  |  | North <br> Areas 437-539 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1984 | 1985 | 1986 | 1984 | 1985 | 1986 |
| 2 | 0 | 0 | 234 | 0 | 0 | 24 |
| 3 | 244 | 944 | 1852 | 611 | 1471 | 1645 |
| 4 | 14875 | 6788 | 22950 | 10021 | 8139 | 9489 |
| 5 | 5117 | 11659 | 6532 | 7795 | 8893 | 13993 |
| 6 | 3737 | 4567 | 11608 | 3405 | 6685 | 17423 |
| 7 | 2196 | 1805 | 2971 | 2705 | 3533 | 14424 |
| 8 | 562 | 560 | 1561 | 506 | 1377 | 7772 |
| 9 | 302 | 285 | 317 | 75 | 47 | 2644 |
| 10 | 108 | 77 | 107 | 33 | 120 | 402 |
| 11+ | 22 | 0 | 177 | 140 | 0 | 407 |

Table 17. 1986 gillnet landings ( $t$ ) by mesh size in NAFO Div. 4T.

| Mesh size (inches) | Spring Fishery |  | Fall Fishery |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Tonnes | Percent | Tonnes | Percent |
| ¢ 2.000 | 107 | 1.4 | 226 | 0.5 |
| 2.125 | 72 | 0.9 | 135 | 0.3 |
| 2.250 | 3439 | 44.0 | 0 | 0.0 |
| 2.310 | 187 | 2.4 | 0 | 0.0 |
| 2.375 | 1191 | 15.2 | 227 | 0.5 |
| 2.500 | 1394 | 17.8 | 938 | 1.8 |
| 2.625 | 1242 | 15.9 | 40030 | 79.1 |
| 2.750 | 183 | 2.3 | 7786 | 15.4 |
| 2.875 | 38 | 0.5 | 986 | 2.0 |
| 3.000 | 0 | 0.0 | 288 | 0.6 |
| 3.250 | 13 | 0.2 | 0 | 0.0 |

Table 18. Partial recruitment for the spring and fall components of the NAFO Division 4 T herring fishery used in the current and past two assessments.


| AGE | Spring |  |  |  | Fall |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Ahrens 1985 a | $\begin{aligned} & \text { Clay \& } \\ & \text { Chouinard } \\ & 1986 \end{aligned}$ | Chadwick <br> \& Nielsen 1986 | Current | Ahrens 1985 a | Clay \& Chouinard 1986 | Chadwick <br> \& Nielsen 1986 | Current |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0.001 | 0.005 | 0 | 0 | 0.001 | 0.001 |
| 3 | 0.47 | 0.77 | 0.87 | 0.53 | 0.03 | 0.11 | 0.17 | 0.17 |
| 4 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.53 | 0.58 | 0.58 |
| 5 | 1.00 | 0.82 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 6 | 0.50 | 0.58 | 0.51 | 1.00 | 0.85 | 0.73 | 1.00 | 1.00 |
| 7 | 0.34 | 0.51 | 0.46 | 0.50 | 0.63 | 0.54 | 1.00 | 1.00 |
| 8 | 0.20 | 0.40 | 0.46 | 0.50 | 0.53 | 0.31 | 1.00 | 1.00 |
| 9 | 0.15 | 0.40 | 0.45 | 0.50 | 0.50 | 0.22 | 1.00 | 1.00 |
| 10 | 0.15 | 0.40 | 0.45 | 0.50 | 0.50 | 0.18 | 1.00 | 1.00 |
| 11+ | 0.15 | 0.38 | 0.45 | 0.50 | 0.50 | 0.19 | 1.00 | 1.00 |

Table 19. Spring spaners results of virtual population analysis using a terninal $F$ of 0.40 : a) Population numbers in thousands at beginning of year, b) Fishing mortality and c) Mean population in biomass in kg.

| a) | 1974 | 1975 | 1976 | 1977 | 1978 | POPULATION NLMBERS |  |  | 1982 | 1983 | 1984 | 1985 | 12/8/87 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 1979 | 1980 | 1981 |  |  |  |  | 1986 |
| 2 | 155300 | 60150 | 336741 | 58598 | 52147 | 115714 | 109174 | 239964 | 176131 | 148939 | 97295 | 35433 | 173943 |
| 3 | 70324 | 122389 | 47871 | 261285 | 44944 | 29634 | 75066 | 70037 | 190909 | 143368 | 121557 | 79471 | 28897 |
| 4 | 30649 | 49671 | 75016 | 31504 | 160832 | 24020 | 11876 | 22931 | 41258 | 126097 | 107589 | 96377 | 57398 |
| 5 | 50277 | 22121 | 23630 | 36179 | 19573 | 72592 | 14367 | 4575 | 11309 | 28168 | 75003 | 78103 | 68655 |
| 6 | 116058 | 39673 | 15161 | 13243 | 20334 | 11780 | 28710 | 8961 | 2566 | 7924 | 19503 | 48886 | 53352 |
| 7 | 25426 | 75512 | 17785 | 10389 | 7618 | 10354 | 7717 | 9238 | 6552 | 1796 | 5489 | 14602 | 35167 |
| 8 | 52388 | 17470 | 43584 | 14140 | 7959 | 5082 | 5697 | 3360 | 3543 | 5168 | 1407 | 4389 | 10113 |
| 9 | 84108 | 39156 | 11875 | 27717 | 11126 | 5447 | 3521 | 2825 | 2068 | 2594 | 4186 | 1142 | 3264 |
| 10 | 46155 | 63211 | 28987 | 8787 | 16799 | 8937 | 4276 | 2213 | 1629 | 1590 | 2108 | 3417 | 710 |
| $11+$ | 35506 | 36931 | 46815 | 22386 | 6733 | 10511 | 6667 | 3211 | 1714 | 1332 | 1300 | 1706 | 2797 |
| $2+$ | 666190 | 526286 | 647465 | 484228 | 348066 | 294069 | 267072 | 367317 | 437679 | 466975 | 435436 | 363526 | 434296 |
| $3+$ | 510891 | 466136 | 310724 | 425630 | 295920 | 178356 | 157898 | 127353 | 261548 | 318036 | 338141 | 328093 | 260354 |
| 4+ | 440567 | 343746 | 262854 | 164345 | 250976 | 148722 | 82831 | 57316 | 70639 | 174668 | 216584 | 248623 | 231457 |
| $5+$ | 409918 | 294075 | 187838 | 132841 | 90143 | 124702 | 70956 | 34385 | 29381 | 48571 | 108995 | 152245 | 174058 |
| b) |  |  |  |  |  | FISHING MORTALITY |  |  |  |  |  | 12/8/87 |  |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | . 038 | . 028 | . 054 | . 065 | . 365 | . 233 | . 244 | . 029 | . 006 | . 003 | .002 | . 004 | . 002 |
| 3 | . 148 | . 290 | . 218 | . 285 | . 427 | . 714 | . 986 | . 329 | . 215 | . 087 | . 032 | . 125 | . 212 |
| 4 | . 126 | . 543 | . 529 | . 276 | . 596 | . 314 | . 754 | . 507 | . 182 | . 320 | . 120 | . 139 | . 400 |
| 5 | . 037 | . 178 | . 379 | . 376 | . 308 | . 728 | . 272 | . 378 | . 156 | . 168 | . 228 | . 181 | . 400 |
| 6 | . 230 | . 602 | . 178 | . 353 | . 475 | . 223 | . 934 | . 113 | . 157 | . 167 | . 089 | . 129 | . 400 |
| 7 | . 175 | . 350 | . 029 | . 066 | . 205 | . 397 | . 631 | . 758 | . 037 | . 044 | . 024 | . 167 | . 200 |
| 8 | . 091 | . 186 | . 253 | . 040 | . 179 | . 167 | . 501 | . 285 | . 112 | . 011 | . 009 | . 096 | . 200 |
| 9 | . 086 | . 101 | . 101 | . 301 | . 019 | . 042 | . 264 | . 351 | . 063 | . 007 | . 003 | . 276 | . 200 |
| 10 | . 023 | . 100 | . 058 | . 066 | . 269 | . 093 | . 086 | . 055. | . 001 | . 001 | . 012 | . 000 | . 200 |
| $11+$ | . 082 | . 203 | . 622 | 1.057 | . 392 | . 452 | . 647 | . 524 | . 073 | . 008 | . 029 | . 001 | . 200 |
| : |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4+ | . 120 | . 297 | . 361 | . 370 | . 485 | . 496 | . 640 | . 438 | . 149 | . 266 | . 148 | . 149 | . 355 |

Table 19. Spring speners results of virtual papulation analysis using a teminal fof 0.40: a) Ptpilation nunters in thousands at beginning of year, b) Fishing matality and c) Mean papilatim in bicmess in kg.


[^3]Table 20. Fall spaners - results of virtual population analysis using a terminal $F$ of 0.36: a) Papulation numbers in thousands at beginning of year; b) Fishing mortality and c) Mean population in biomass in kg.

| a) |  |  | POPULATION NLMBERS |  |  |  |  |  |  |  |  | 12/8/87 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | 42778 | 89497 | 135851 | 169179 | 76365 | 264654 | 244189 | 313775 | 383360 | 204361 | 317775 | 99179 | 1014628 |
| 3 | 51598 | 30135 | 73187 | 111141 | 138327 | 61152 | 214051 | 198686 | 256798 | 313703 | 167285 | 260164 | 81173 |
| 4 | 203435 | 37073 | 22781 | 59670 | 88247 | 95745 | 44442 | 145907 | 153554 | 201858 | 252511 | 135934 | 209624 |
| 5 | 49415 | 150702 | 26581 | 17061 | 41908 | 47477 | 46692 | 27342 | 89415 | 106242 | 143661 | 181838 | 95283 |
| 6 | 62480 | 34941 | 100202 | 17208 | 10707 | 21560 | 13872 | 17166 | 16983 | 49548 | 77057 | 102918 | 127095 |
| 7 | 111610 | 47322 | 22400 | 55849 | 10811 | 5171 | 7600 | 3808 | 11696 | 8780 | 28222 | 51351 | 72838 |
| 8 | 110350 | 81727 | 35793 | 14581 | 25638 | 5716 | 2132 | 2486 | 2233 | 7455 | 5009 | 17027 | 36796 |
| 9 | 135917 | 87789 | 62521 | 27631 | 9930 | 8456 | 1850 | 1169 | 1151 | 920 | 4414 | 2847 | 12001 |
| 10 | 138504 | 106353 | 69922 | 48012 | 21345 | 6677 | 2180 | 747 | 762 | 362 | 189 | 3180 | 1941 |
| $11+$ | 129733 | 109511 | 83846 | 56581 | 36810 | 16671 | 4831 | 1495 | 514 | 504 | 193 | 16 | 2420 |


| $2+1035819$ | 775051 | 633083 | 576911 | 460087 | 533280 | 581839 | 712581 | 916466 | 893733 | 996316 | 854453 | 1653800 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $3+$ | 993042 | 685555 | 497232 | 407732 | 383722 | 268626 | 337650 | 398806 | 533106 | 689372 | 678541 | 755275 |
| 4 | 639172 |  |  |  |  |  |  |  |  |  |  |  |
| $4+$ | 941444 | 655420 | 424045 | 296591 | 245396 | 207474 | 123598 | 200120 | 276307 | 375669 | 511256 | 495111 |
| $5+$ | 738009 | 618347 | 401264 | 236922 | 157149 | 111728 | 79157 | 54212 | 122753 | 173811 | 258745 | 359177 |


| b) |  | FISHING MORTALITY |  |  |  |  |  |  |  |  |  | 12/8/87 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| 2 | . 150 | . 001 | . 001 | . 001 | . 022 | . 012 | . 006 | . 000 | . 001 | . 000 | . 000 | . 000 | . 000 |
| 3 | . 131 | . 080 | . 004 | . 031 | . 168 | . 119 | . 183 | . 058 | . 041 | . 017 | . 008 | . 016 | . 061 |
| 4 | . 100 | . 133 | . 089 | . 153 | . 420 | . 518 | . 286 | . 290 | . 168 | . 140 | . 128 | . 155 | . 209 |
| 5 | . 147 | . 208 | . 235 | . 266 | . 465 | 1.030 | . 801 | . 276 | . 390 | . 121 | . 134 | . 158 | . 360 |
| 6 | . 078 | . 245 | . 385 | . 265 | . 528 | . 843 | 1.093 | . 184 | . 460 | . 363 | . 206 | . 146 | . 360 |
| 7 | . 112 | . 079 | . 229 | . 579 | . 437 | . 686 | . 918 | . 334 | . 250 | . 361 | . 305 | . 133 | . 360 |
| 8 | . 029 | . 068 | . 059 | . 184 | . 909 | . 928 | . 401 | . 570 | . 687 | . 324 | . 365 | . 150 | . 360 |
| 9 | . 945 | . 028 | . 064 | . 058 | . 197 | 1.156 | . 707 | . 228 | . 956 | 1.381 | . 128 | . 183 | . 360 |
| 10 | . 035 | . 038 | . 012 | . 066 | . 047 | . 124 | . 177 | . 174 | . 213 | . 427 | 2.299 | . 073 | . 360 |
| $11+$ | . 177 | . 232 | . 243 | . 391 | . 658 | 1.124 | 1.095 | 1.003 | . 424 | 1.091 | 3.000 | . 074 | . 360 |
| $5+$ | . 084 | . 131 | . 192 | . 300 | . 511 | . 942 | . 851 | . 282 | . 396 | . 221 | . 182 | . 150 | . 360 |

Thle 20. Fall eqpanere - resilts of virtual pqulation aralysis using a teminal Fof 0.36: a) Ptpilation nubers in thousancs at beginning of yearc $b$ ) Fishing enntality and $c$ ) Mean popilation in biomass in kg -

| c) | MEAN POPLATIIN BITMASS (KG) |  |  |  |  |  |  |  |  |  |  |  | 12/8/87 <br> 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |  |
| 2 | 1696123 | 3242735 | 4307893 | 18235031 | 8148753 | 28376572 | 26258077 | 21609520 | 32652615 | 26484292 | 3945732 | 10691\% | 15354727 |
| 3 | 5535964 | 3022053 | 7348010 | 17567964 | 20484817 | 9266511 | 31472064 | 25046762 | 34462314 | 49068196 | 32328518 | 58262300 | 1578778 |
| 4 | 33572946 | 5329726 | 3640114 | 12315353 | 16113498 | 16735556 | 8624573 | 27918285 | 19909626 | 42607004 | 52519632 | 31919759 | 41639531 |
| 5 | 9813767 | $26003 \% 61$ | 467592 | 3859605 | 8664118 | 729481 | 8350476 | 5938535 | 12763391 | 25897823 | 35426122 | 47684930 | 21449750 |
| 6 | 13910368 | 6995404 | 1919876 | 4307679 | 2380815 | 4190643 | 2436603 | 4519233 | 2946840 | 12010993 | 19381083 | 30889727 | 32211817 |
| 7 | 27137940 | 11230718 | 502369 | 13115269 | 270220 | 1159388 | 154670 | \%1909 | 3051071 | 230467 | 7621310 | 16769399 | 20858811 |
| 8 | 30973017 | 20648358 | 8924735 | 4346363 | 5560935 | 123057 | 575356 | 603238 | 350847 | 2100495 | 1404330 | 5804534 | 10875550 |
| 9 | 38415724 | 24654411 | 16484153 | 9254197 | 3114494 | 1759215 | 462149 | 374682 | 194458 | 168605 | 1430081 | 957834 | 3712311 |
| 10 | 40858922 | 30762594 | 20354237 | 15347413 | 6883825 | 2076389 | 661003 | 204425 | 27191 | 93657 | 28907 | 117699 | 647944 |
| $11+$ | 38264806 | 32189980 | 2364271 | 16874512 | 9761262 | 3650412 | 107074 | 371369 | 148743 | 112692 | 20937 | 5373 | 785578 |

[^4]HERRING LANDINGS: GULF OF ST. LAWRENCE


Figure 1 Landings of herring in NAFO Division 4T.


Figure 2 Location of Purse Seine Sets in 1985.


Figure 3 Location of Purse Seine Sets in 1986.


Figure 4 Location of Purse Seine Sets in 1986.


Figure 5 Map at top indicates NAFO Areas in 4T. At bottom, Map of Southern Gulf of St. Lawrence showing the areas where the major gillnet landings are made each year, and for which catch rates were calculated.

## INDEX FISHERMEN CATCH RATES



Figure 6 Mean daily catch rate and its standard deviation for 15 index fishermen in the fall gillnet fishery.

Commercial Sample Length Frequencies 1986 September 4TH GIllnats


Commercial Sample Length Frequencies


Figure 7 Length frequency distribution of herring caught in Pictou (Area 4 Th ) and Chaleur Bay (Area 4 Tn ) in $25 / 8^{\prime \prime}$ mesh gillnets in the 1986 fall fishery.

Catch Biomass


Adult Biomass


Adult Fishing Mortality


1986 Catch at age


Age 2 Recruitment


Figure 8 Herring in 4T -- population parameters.

Age 4


Age 5



Figure 9 . Age specific relationships used in calibration of Fall spawner $4 T$ herring SPA.

Age 4



Age 6


Age 7


Figure 10 . Age specific trends of observed and predicted 4 Therring fall spawner population numbers.


[^0]:    *preliminary

[^1]:    1 - For combined Statistical Districts $11,65,66,67,73,75,78,80,82$, and 92.
    2 - For combined Statistical Districts $63,64,65,66,67,68,70,73,75,76,77,78,80,82$, 83 , and 92.

    3 - For combined Statistical Districts 63, 64, 65, 66, 67, 68

[^2]:    *Landings in the gillnet fishery (cross products of Tables 12, 13 and 14) of each spawning group divided by CPUE index (Table 6) X 1000.

[^3]:    
    $3+119802532940864536392661771870149509282413233560123542723 \quad 22143420406983825421752658401816 \quad 6374715051050385$
    
    $5+105015407726977964581846630924701215574202499482514350754$

[^4]:    $2+2409975781646808491136022501152238583814785 \quad 76174402814509787548018106717102160848634189618303204165951301516292$
    
    
    

