Not to be cited without permission of the authors¹ Ne pas citer sans autorisation des auteurs¹ Canadian Atlantic Fisheries Scientific Advisory Committee CAFSAC Research Document 87/72 Comité scientifique consultatif des pêches canadiennes dans l'Atlantique CSCPCA Document de recherche 87/72 #### Assessment of 4VsW Cod by A. Sinclair Marine and Anadromous Fish Division Gulf Fisheries Center P.O. Box 5030 Moncton, New Brunswick E1C 986 and S.J. Smith Marine Fish Division Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia B2Y 4A2 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research Documents are produced in the official language in which they are provided to the Secretariat by the author. 1Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours. Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat. #### Abstract Nominal catch in 1986 was 51,306 t, down 5,756 t for 1985. The catch was 3,000 t over the TAC which had been reduced from 55,000 t in 1985 to 48,000 t in 1986. Comparison of observed and predicted 1986 catch at age indicated a greater than expected catch of the recruiting 1981-1983 yearclasses. Size segregation of the cod was noted from an analysis of research vessel survey results, and evidence for shifts in fishery effort in response to the recruitment of the strong 1979 and 1980 year-classes was presented. The 1986 age 5+ population estimates from the research survey was down by 50% from that in 1985, but was comparable to estimates from the 1980's. Otter trawl catch rates continued to increase in 1986. However, the increasing trend may be more indicative of high densities of cod in Subdiv. 4Vs than of overall abundance. Cohort analysis was calibrated with both the research vessel survey and commercial catch rate series, and these indicated a 1986 terminal fishing mortality of .35. Catch projections based on these results indicated that if the 1987 TAC of 44,000 t is taken, the 1988 $F_{0.1} = 2$ would be 32,000 t. ## Résumé Les prises nominales en 1986 ont été de 51 306 t, soit une réduction de 5756 t par rapport à 1985. Il s'agit d'un excédent de 3000 t par rapport au TPA qui avait été réduit de 55 000 t en 1985 à 48 000 t en Une comparaison entre les prises par âge observées et prévues en 1986 a indiqué une prise plus élevée que prévue des classes d'âge de 1981-1983 (recrutement). Une répartition de la morue en fonction de la taille a été constatée à partir des résultats des relevés effectués par les navires de recherche et on a relevé des indices montrant que l'effort de pêche aurait changé en réponse au recrutement des classes d'âge très fortes de 1979 et 1980. En 1986, les estimations de la population d'âge 5+ à partir des relevés effectués par les navires de recherche ont diminué de 50 % par rapport à celles de 1985, mais elles étaient comparables aux estimations faites dans les années 1980. Les taux de capture par chalut à panneaux ont continué à augmenter en 1986. Cependant, cette tendance à la hausse pourrait refléter davantage des densités élevées de la morue dans la subdivision 4Vs qu'une augmentation globale de l'abondance. L'analyse par cohorte a été étalonnée à la fois avec les résultats des relevés effectués par les navires de recherche et avec les taux de prise des navires commerciaux; il en découle que le taux de mortalité par pêche de dernière année en 1986 serait de 0,35. Les prévisions des prises fondées sur ces résultats indiquent que si le TPA de 44 000 t pour 1987 est réalisé, le taux de prise en 1988, pour un $F_{0,1} = 2$, sera de 32 000 t. #### Introduction A preliminary estimate of nominal catch in 1986 is 51,306 t, down from 57,062 in 1985 (Table 1 and Figure 1). There was also a reduction in TAC from 55,000 to 48,000 t. The foreign allocation to Portugal (1130 t) was revoked in 1986 and reallocated to the offshore fleet. Consequently, the only foreign catch was bycatch in the silver hake and redfish (Japan) fisheries. Nominal catch declined proportionally in Subdiv. 4Vs and Div. 4W, and Subdiv. 4Vs continued to give over 80% of the catch. Catch by Canadian gears by Division is given in Table 2. Most of the decrease in catch was realized by otter trawlers, but the catch by seiners also declined by over 50%. Longline catch remained at the 1985 level. Gillnet and pair trawl catches increased in 1985 and 1986 and this is represented by a higher miscellaneous gear catch in the past two years. The 1986 TAC of 48,000 t was exceeded by 3,300 t. Overruns of quotas in two gear sectors were recorded in quota reports (Table 3); namely the fg < 65' and the mg < 65'. In addition, an audit of landings slips and log records from the mg < 65' fleet conducted by Operations Branch personnel indicated approximately 2,300 t may have been misreported into Subdivision 4Vn. However, the basis of this audit was not considered to be firm enough to adjust the official statistics. ## Catch at age The 1984 catch-at-age estimates were revised due to the incorporation of additional length data not used in the original calculations. Details on these additional data are given in Table 4 and the revised age composition is given in Table 5. Comparison of the original and revised estimates (Table 6) indicate that differences are minimal with the largest difference being that the new age 4 estimate is 3% less than before. Six age length keys were used to estimate the 1986 commercial catch at age. The input data are described in Table 7. Pair trawl landings were included with otter trawls, and handline landings with longlines. The length-weight parameters were estimated from the 1986 summer survey. Catch at age by key is given in Table 8. As usual the longlines caught older fish than otter trawlers. There was an increased proportion of catch of ages 4 and 5 by otter trawlers in the second half of the year. These two ages made up 35% of the catch numbers in the first half year and 60% in the second half. In total the 1986 catch was dominated by the 1979-1982 year-classes (ages 4 to 7) which accounted for 87% of the numbers. These 6 keys accounted for 49,289 t, or 96% of the total catch. The total catch at age for these keys was prorated to represent the total nominal catch. A comparison of the observed and projected 1986 catch at age indicates much higher than expected catch at ages 4 to 6 (1982, 1981 and 1980 year- classes) (Figure 2). Projections last year used partial recruitment (PR) estimates for age 3 and 4 that were substantially lower than the mean values as shown below. | | Mean | Projected | |-----|------|-----------| | Age | PR | PR | | 3 | .13 | .013 | | 4 | .51 | .25 | The lower values were used in the SPA to give estimates for the 1981 and 1982 year-classes equal to the lowest previously observed. The projections were re-run using average PRs for ages 3 and 4 to see if a better agreement with the observed age compositions could be found. The resulting age composition is shown as P2 in Figure 2. In both cases it is clear that the projections indicated a broader age composition than that observed. This indicates that in 1986 the 1980-1982 year-classes made up a higher proportion of the population than what was expected. Catches of age 2-4 fish have decreased in recent years (Table 9a). Since 1983 the catch of 2 year old fish has been substantially reduced, while that of age 3 fish has also declined since 1984. Also, the catches at age 4 in 1985 and 1986 have been the lowest observed since 1978. At the same time the total numbers caught over these years was relatively unchanged. Weights at age in the commercial fishery in 1986 were among the lowest since the early to mid 1970s (Table 9b). ## Research Survey Results Spatial segregation of age groups in the management unit were noted in a preliminary analysis of summer research survey results (Sinclair and Annand 1986). The spatial segregation of age groups has important implications on PR in the commercial fishery. If such a condition exists fishermen may be able to track strong year-classes by changing fishing grounds. Further analysis of this aspect of 4VsW cod life history was carried out using seasonal survey results. The authors stress that the following results are preliminary and that further analysis is required before definitive statements can be made about cod migrations and distributions in the area. In addition to the summer research vessel surveys of 1970-1986, surveys were conducted in the Scotia-Fundy Region on an experimental basis in the spring of 1979-1984 and fall of 1978-1984. At present, age composition data are available for the 1979-1983 spring and 1978-1982 fall surveys. Numbers and weights at age were calculated on a tow by tow basis using the SMS software of O' Boyle and Wallace (1986). Overall mean catches per tow by stratum and age were calculated. For each age the stratum means were standardized to the grand mean catch per tow of the age group over all years. These standardized mean values were then plotted to examine the geographic distribution of age groups. Maps of strata boundaries from the research surveys and of common fishing banks are given in Figure 3. Standardized mean catch per tow by strata for ages 2, 4, 6, and 8 are given for the spring, summer, and fall surveys in Figures 4, 5, and 6 respectively. For each
season there is a tendency for the younger ages to be concentrated in the shallow strata around Sable Island and for the older ages to be concentrated in strata 43-45, in northern 4Vs. On a finer scale, it is important to note the following. spring, the highest densities of age 4 were in strata 54-57, Sable Island Bank and south of Middle Bank. At age 6 the highest densities were in strata 45, 50-52, 54, and 55. That is north of Banquereau and around the Gully, where age 4 are relatively less dense, and Sable Island Bank (Figure 4). In the summer, strata 55 has the highest age 4 density, while at age 6 the highest densities are north of Banquereau (Figure 5). In the fall the two strata on Banquereau Bank (47 and 48) are important for all ages, but tend to be slightly more important for ages 6 and 8 (Figure 6). As is demonstrated later, these are important fishing areas. fishing grounds may lead to changes in partial reccruitment. Depth and temperature distributions at age were estimated by number weighted mean depths and temperatures. Mean depth at age was estimated by: Da = $$\sum_{i=i}^{s} N_{ai} D_{i}$$ $$\frac{\sum_{i=i}^{s} N_{ai}}{\sum_{i=i}^{s} N_{ai}}$$ = the numbers caught at age a in set: where Nai $\mathtt{D_i}$ = the depth of set i This was done for each seasonal data set. In addition, for each age the mean depth and temperature was plotted with the bottom temperature profile for the strata corresponding to Subdiv. 4Vs and Div. 4W (strata 43-52 and 53-66 respectively). The results are given in Figures 7-9 for spring, summer, and fall respectively. For each season older fish were found at greater depths. In the spring the range of depths was narrower than the other two seasons. In the spring the mean temperatures at age, for all ages but age 1, were between 2-3°C. In the summer the range of temperatures were between 3-4°C. The pattern was much different in the fall with the mean temperature constantly decreasing with age. Temperature profiles by (Sub) Division differed substantially with water deeper than 75 m being about 3-4°C colder in Subdiv. 4Vs. In the spring and summer the mean depths and temperatures at ages 5 and above were closest to those found in Subdiv. 4Vs. This also was true for ages 2-4 in the spring. In the summer, however, mean temperatures and depths at ages 2-4 were closer to those in Div. 4W. These trends suggest that as the cod get older they move into Subdiv. 4Vs to stay in water that has a preferred temperature range. It is cautioned that the trends noted here may be biased by the higher abundance of cod in the management unit in recent years since the averages were weighted by numbers caught. The suggested movement of cod also does not agree with the conclusions of McKenzie (1956) who found two stocks in the area, one on Banquereau Bank and the other on Sable İsland Bank. Further analysis of these data on a finer time scale is warranted before firm conclusions can be drawn. Population estimates from the 1986 summer survey are substantially lower than in 1985 (Table 10). Total numbers are about 54 million, half of the 1985 estimate. This continues a trend from 1982 with total abundance estimates decreasing at a rate of approximately 45% per year. Estimates of age 2 and 3 abundance were the lowest ever observed, and the age 1 estimate was the third lowest. The age 4 and 5 estimates were in the mid range, while those for ages 6 and older were among the highest observed. Thus, the 1986 RV abundance estimates indicate a relatively high mature stock abundance, but low abundance of young fish. The age 5+ abundance index has been used for calibration purposes. The 1986 value is comparable to those of 1979-1982, but is well below the 1984 and 1985 values (Figure 10). Age 5+ population estimates by strata indicate a large reduction in abundance in Div. 4W, to a level comparable to the mid 1970's (Table 11), while in Subdiv. 4Vs the 1986 value is comparable to the higher estimates of the early 1980's. The percentage of the age 5+ estimate coming from Subdiv. 4Vs has increased in the 1980's, from approximately 65% to the 1986 high of 85%. Mean weights at age from the surveys were estimated by applying the 1985 summer length-weight coefficients (Sinclair and Annand 1986) to 1970-1986 summer research survey results using the SMS software (O'Boyle and Wallace 1986). These are given in Table 10b and are compared to the commercial mean weights for ages 3-8 in Figure 11. The research vessel survey results suggest an increase in mean weights for ages 6-8 from 1970 to 1976 followed by a decrease. Weights at ages 3-5 have been more stable but in the last two years were among the lowest recorded. In the commercial fishery the weights in all age groups appeared to increase from the early to late 1970s and decrease thereafter. The increasing trend in weight at ages 3 and 4 is likely due to a reduction in the catch of cod in the foreign small mesh fishery and increases in mesh size in the Canadian fishery; both of which would tend to reduce the selectivity of smaller fish in these age The similar pattern in weights at ages 6-8 in both the commercial and research vessel survey results suggest reduced weights at age in the population rather than only in the commercial catch due to shifts in the seasons fished. By plotting these weights in the log scale and joining the points along year-classes, the slopes of the connecting lines indicate growth rates. In both the research and commercial weights at age, the mid 1970s are characterized by relatively high growth rates, at a time of low cod biomass, while the growth rates for ages 5-8 in the 1980s were lower. This latter period is believed to be a time of high cod biomass. #### Commercial Catch Rates The catch and effort data from 1965-1985 described in Sinclair and Annand (1986) was updated to include preliminary data from 1986. All observations where either catch or effort was less than 10 units were eliminated from the data set. The 1965-1985 series had observations deleted for reasons given in Sinclair and Annand (1986). The only change made here was to include the 1985 TC4 and TC5 Maritime stern otter trawlers in the analysis in order to assess their potential effect on the parameter estimates. Last year the points were removed because it was suspected that the imposition of trip limits on these vessels led to a change in fishing behaviour such that the cod catch rates may have been artificially deflated. One of last year's research recommendations was to investigate the appropriateness of including longline catch and effort with that of the otter and pair trawls in the multiplicative model used to derive a standard catch rate series. Sinclair (1986) investigated partial recruitments for the two gears and concluded that since otter trawlers caught younger fish than the longliners, it would not be appropriate to combine the two gear types in a single index of stock biomass. Consequently a separate analysis of longliner catch rates was conducted here. A multiplicative model was fitted to the longline data and the results are presented in Table 12. The initial analysis was done with the STSC-APL workspace STANDAR(D) (Anon 1986). The factor for tonnage class (type 1) was not significant while the factors for month (type 3) and year (type 4) are significant at the 5% significance level. The factor for area (type 2) was highly significant. Examination of the regression coefficients and their associated standard errors in Table 13 indicates that chronologically there probably has not been a year effect since 1977 and given the degrees of freedom available, earlier effects appear to be marginal. The main contributor to the year effect appears to be the very low value for 1968 (Figure 12). The analysis in STANDAR(D) presents the sum of squares for a factor given that all other factors are already in the model. Further investigation of this model for these data would require more flexibility in assessing the fit of the factors in the model. Although STANDAR(D) does offer partial leverage plots as a diagnostic tool, it does not allow one to look at the effect of sequential addition of the factors in the model. Therefore, further analysis was carried out using the GLIM (Generalized Linear Interactive Modelling) system (Payne, 1986). This software was designed for exploring and evaluating the fit of linear models. The generalized aspect refers to the fact that it can be used for error distributions that are not normally distributed but do belong to the exponential family of distributions (e.g. poisson, gamma, binomial). The response variable in these analyses was ln (catch rate) and a normal distribution of errors was assumed. The theory of Generalized Linear Models refers to the measure of discrepancy between the observed and fitted values, formed from the logarithm of the ratio of the likelihoods as deviance (McCullagh and Nelder, 1983). For the Normal distribution the deviance is simply the residual sum of squares. The test statistic used to assess the factors in the model is the deviance divided by an estimate of the scale parameter. For a normal distribution of errors the estimate of the scale parameter is equivalent to the Mean-Square for residuals from the ANOVA table. This statistic has a central Chi-squared distribution under the null hypothesis. An analysis of deviance for the longliner data is presented in Table 14. The column labelled "Deviance" gives the change in the residual sum of squares as one goes from a model with more parameters (maximal model) to the model with fewer parameters (current model). This measure is then adjusted by the scale parameter (mean deviance for the maximal model) and tested by a Chi-square test. The results of this test are given in the column labelled P-level. The main result to note here is that the factor for gear (TC) is significant at the 5% level if it is entered before the time factors (month and year). Month
only becomes significant once Area is entered in the model. It appears that there may be a Month Area interaction and this needs to be explored further. As it stands these results do not change the findings from the STANDAR(D) analysis. That is, the year effect is mainly from the 1968 point and therefore this catch rate series does not appear to exhibit significant yearly trends. The catch rate analysis was continued by confining attention to otter trawlers and Spanish pair trawlers. The analysis of deviance for these data is presented in Table 15. The factor for area becomes more or less significant depending upon what factors are in the model. There appears to be a relationship between area and year such that area differences are probably temporal. The factor for area was dropped from the model pending further investigation. The degree of influence or leverage that an observation has on the fitted value is measured from the diagonal elements of what is called that Hat matrix. The estimate for the coefficients for the linear model given above is defined as, $$\beta = (X^{\mathsf{T}} X)^{-1} X^{\mathsf{T}} Y_0$$ where X is the design matrix, X is the transpose of this matrix and Y0 is the observation vector (ln catch rate). The fitted values are estimated as: $$\hat{Y} = X \hat{\beta}$$ or $\hat{Y} = X (X^T X)^{-1} X^T Y_0$ $\hat{Y} = HY_0$ where H is referred to as the Hat matrix and it essentially relates the observations to the fitted values. The diagonals of this matrix are used as a measure of this relation with those exceeding 2p/n (p=number parameters and n=number of observations) being considered extreme (Belsey, Kuh and Welch, 1980). Leverage values were calculated for the observations after fitting the final model given in Table 15. These values are plotted against year and gear in Figure 13. The top left plot shows the temporal distribution of the gear categories. These categories are coded as, 1: OTB1 TC4 Maritime 2 : OTB2 TC2 Maritime 3: OTB2 TC3 Maritime 4 : OTB2 TC4 Maritime 5 : OTB2 TC5 Maritime 6: OTB1 TC4 Newfoundland 7: 0TB2 TC4 Newfoundland 8: OTB2 TC5 Newfoundland 9: PT TC4 Spain 10 : PT TC5 Spain No gear categories extend completely throughout the series. The years 1967, 1978 and 1979 were all flagged because few gear types were used for those years. Most of the leverage points identified for gear are identified Table 16b gives the analysis of deviance after for the same reason. eliminating these high leverage points. A further calculation of the leverage values was computed after fitting the model to the reduced data set and the results are given in Figure 14. The years 1965 and 1966 are now flagged as having high leverage because there is only one gear in these years. The model was fitted again to the data set with these high leverage points omitted and the analysis of deviance is given in Table 16c. estimated mean catch rate by year for the fitted values from the three analyses in Table 16 are given in Table 17. These trends are plotted in Figure 15 where the main differences appear to be in the first few years. The mean catch rate by year from the fit given in Table 16c is plotted against the series used last year in Figure 16. This catch rate series follows very closely that used last year with the exception of the trend in 1981-1983. The inclusion of the 1985 otter trawl data referred to earlier did not significantly affect the yearly estimates for those years. The estimates of the coefficients for each of the levels of the factors are given in Table 18. Comparing the estimates and their respective standard errors for the levels of year, there appear to be changes in the mean catch rate over most of the years relative to the standard. Six levels of year are designated as aliased in this table and in Table 17. There are two types of aliasing both of which relate to the estimability of the parameters. Intrinsic aliasing refers to the condition where the design matrix can not be inverted when one includes a mean effect and all levels of a factor. STANDAR(D) and GLIM avoid this by setting one level of a factor as a reference against which the other levels are compared. Extrinsic aliasing occurs most often when there are no observations for a level of a factor or when levels of one factor or covariate is a linear combination of some other levels of some other factor or covariate. In this case the years 1965, 1966, 1967, 1978 and 1979 are extrinsically aliased whereas since 1965 has been removed 1986 is intrinsically aliased. All observations from the years 1965-1967, 1978 and 1979 were identified as having high leverage or influence on the associated fitted values. Removal of the observations from the former set of years resulted in large changes in the year estimates for 1979-1986 (Figure 16). Inclusion or removal of the 1978 and 1979 data did not affect any other estimates. Therefore the final standard catch rate series was calculated using data from 1968-1986 and the yearly estimates are given in Table 19 and in Figure 17. The trend in this series indicates a steady decline from 1968 and 1975, followed by an increase to the 1986 level which was the highest in the series. #### Fisheries Distribution From 1960-1979 less than 60% of the yearly nominal catch was taken in Subdiv. 4Vs, but in the 1980's this increased to over 80% (Figure 18). In 1986 over 85% of the catch came from Subdiv. 4Vs, the highest percentage recorded. Examination of catch and effort data from the Scotia-Fundy Observer Program indicated a reduction in the area fished in the spring offshore fishery in the recent past (Figure 19). During 1981-1984 the fishery was conducted in both Div. 4W and Subdiv. 4Vs, with high catch rates experienced south of Sable Island. This corresponds to when the strong 1979 and 1980 year-classes were aged 3 to 5 and to where these age groups are concentrated according to research vessel survey results. The shift of fishing effort away from Div. 4W in 1985-1986 may be due in part to the fishing fleet tracking these strong year-classes into Subdiv. 4Vs. Investigation of the age composition of commercial catches in the two areas for the years 1983-1986 may clarify the situation. High catch rates were experienced throughout Subdiv. 4Vs in 1985 while in 1986 catch rates were high on the edge of the Laurentian Channel but less intense on the banks. The shift in the observed fishing effort corresponds to the recent increase in the proportion of the nominal catch coming from Subdiv. 4Vs. However, it should be noted that with a reduction in the area fished, the high catch rates given in the past two years may be more indicative of high density in Subdiv. 4Vs than the abundance of fish in the entire management unit. The fall otter trawl fishery has been concentrated in Subdiv. 4Vs since 1981 (Figure 20). There has been little change in the area fished but in 1985 and 1986 high catch rates have been made on the Subdiv. 4Vs - 4Vn border. #### Partial Recruitment Partial recruitment (PR) for input to sequential population analysis (SPA) is usually estimated from tables of fishing mortality (F), standardized to yearly fully recruited F. Often an average of several yearly vectors is used. However, a declining trend in PR has been noted for this management unit in the recent past (Gagné et al. 1984; Sinclair and Gavaris 1985; Sinclair and Annand 1986). These changes may be due to variations in catch by gear (Sinclair 1986) or to shifts in areas fished. Therefore, average PR from the last three years has been used here to minimize the impact of the trend in PR. While this may be indicative of PR in the recent past it may not be indicative of that in the last year. This problem will remain as long as the gear and area effects on PR cannot be quantified. PR for 1983-1985 was estimated by assuming full recruitment for ages 7-10, calculating a yearly fully recruited F weighted by population numbers, then estimating PR for younger fish. Averages were calculated for all ages over the 3 years, and the average vector was adjusted so that the age 7-10 mean was equal to 1. The process was repeated by introducing the PR vector to cohort analysis until a stable vector was found. Age 6 was found to be fully recruited and there was little variation across ages 6-11. In subsequent analyses the PR for ages 6-15 was set at 1.0. The resulting vector (PR 83-85) is compared to that obtained using the same procedure for years 1982-1984 last year (PR 82-84) in Table 20. The values for ages 3-5 were lower this year than last, indicating a reduction in PR in the recent past. ## Sequential Population Analysis (SPA) Cohort analysis on ages 1-15 was calibrated using 5+ research vessel survey population numbers against 5+ mean population numbers and otter trawler exploitable biomass against otter trawler catch per unit effort. Calibrations with research vessel survey estimates used the survey estimates as the dependent variable based on the coefficients of variation of the survey and SPA (Sinclair and Annand 1986). The 1970 point was not included in calibrations as in previous assessments (Sinclair and Gavaris 1985, Sinclair and Annand 1986). The distribution of the last 3 points caused the discriminating power of the regressions to be poor. The correlation coefficient was highest between an Ft of .45 and .50 (.81), but was relatively stable from .35 to .60 (.79-.81) (Table 21). The sums of squares of the last 5 residuals standardized by the mean square error declined with increasing F_t . In the range of F_t considered, .30 to .60, the intercept values were not significantly different than zero. Given these observations, it was considered most appropriate to use the simplest model, that is to choose an F_t which put the intercept closest to the origin. This was at F_t = .35. A plot of the relationship is given in Figure 21. Otter trawler exploitable biomass was calculated from yearly otter trawl PR and mean population
biomass. Otter trawl PR was estimated from otter trawl partial fishing mortalities. Based on earlier work on otter trawler partial recruitment (Sinclair 1986) full recruitment was assumed for ages 6-7. The estimated otter trawl partial recruitment matrix is given in Table 22. The calibration was hampered by the relative position of the most recent points. Since the catch rates increased continuously from 1982 to 1986 the correlation coefficient increased and the sum of squares of the last 5 standardized residuals decreased with decreasing Ft (Table 23). These two criteria indicated Ft less than .10. At this value of Ft the intercept was highly significant and negative and the results are highly influenced by the last 3 points. However, as noted above, the recent shift of the fishery to Subdiv. 4Vs could have caused these catch rates to be indicative of density in that area and not of overall stock biomass. Without having a suitable method to weight divisional catch rates, it was not possible to take this into account. Again, the simple model with a zero intercept was considered most appropriate. This procedure indicated Ft = .35. The residuals around the predicted biomass indicated higher than expected catch rates for 1985-1986 (Figure 22). This is consistent with the observed shift of the fishery. Based on these calibrations it was concluded that an F_{t} for 1986 of .35 was the best estimate. No independent recruitment indices are available for this stock due to the lack of internal consistency along cohorts in the survey population estimates. However, the age 2 estimates of the 1983 and 1984 year-classes are the smallest in the survey time series. Also the age 3 estimate of the 1983 year-class was the smallest in the series. Using the 1986 Ft of .35 and the PR estimate given in Table 20, the 1983 year-class was estimated to be extremely small, less than 20 million fish at age 1. The smallest previously observed year-class was the 1972 at 64 million. Due to the uncertainties in the PR in recent years and the indication that these year-classes were small, the 1986 PR was adjusted to increase the 1983 and 1984 year-class estimates to be equal to the 1972 year-class. Beginning of the year population numbers, fishing mortality, and mean population biomass are given in Tables 24-26. #### Assessment Results #### Recruitment The long-term geometric mean age 1 recruitment to the stock is 107 million. The stock experienced above average recruitment from the late 1950's to the mid 1960's (Figure 23 Data prior to 1970 taken from Gagné et al. 1984). Recruitment declined somewhat through to the mid 1970's. However, the 1977-1980 year-classes were average to above average in size. This has been followed by relatively poor recruitment since 1981. The 1985 year-class was assumed to be equal to the geometric mean of the 1969-1980 year-classes of 91 million. #### Stock Size and Production The components of production (recruitment (age 3), growth, natural mortality, catch) were calculated for the 1970-1986 period using the FISH workspace of Rivard (1982). These are compared to the trend in mean biomass for the resource. The calculations were not performed for the period prior to 1970 due to uncertainties in weight at age. The biomass of the resource was high in the 1960's, between 150,000 t to 200,000 t (ages 3+) (Figure 24). Production in the early 1970's was due mainly to growth with age 3 recruitment being low, largely due to estimated removals of age 1-3 cod as by catch in the silver hake fishery (Figure 25). In this period catch exceeded surplus production and this led to a deline in biomass to a historic low in 1975. A reduction in the catch of young cod, the recruitment of the strong 1977-1980 year-classes, and a qeneral reduction of fishing mortality have all occured since the extension of fisheries jurisdiction. As a result surplus production has increased and exceeded catch for the period 1976-1983, allowing the stock to grow to an historic high level of approximately 250,000 t in 1983. Recent declines in mean weight at age has contributed to reduced growth production, and there Catch has exceeded surplus has also been a decline in recruitment. production for the past three years causing a slight decline in stock biomass. It should be noted that the trends described for the past 4-5 years are highly dependent on the estimated stock size in 1986. ## Prognosis Catch projections were made using the beginning of the year 1987 population numbers (estimated using 1986 population numbers [Table 24] and the 1986 F [Table 25]), the average weights at age for 1984-1986, and the average PR from 1983-1985. The 1986-1987 year-classes were assumed to be equal in size to the geometric mean of the 1969-1980 year-class age 1 abundance of 91 million. Input for projections are as follows: | Age | 1987 Population Nos. | Weight | Partial Recruitment | |-----|----------------------|--------|---------------------| | 1 | 91,000 | .000 | .00 | | 2 | 74,656 | .485 | .00 | | 3 | 43,015 | .703 | .06 | | 4 | 35,501 | 1.002 | .35 | | 5 | 28,384 | 1,383 | .80 | | 6 | 20,886 | 1.858 | 1.00 | | 7 | 19,343 | 2.466 | 1.00 | | 8 | 7,559 | 3.126 | 1.00 | | 9 | 3,254 | 3.704 | 1.00 | | 10 | 2,368 | 5.029 | 1.00 | | 11 | 936 | 6.165 | 1.00 | | 12 | 604 | 7.020 | 1.00 | | 13 | 227 | 9.644 | 1.00 | | 14 | 139 | 10.272 | 1.00 | | 15 | 24 | 11.610 | 1.00 | If the 1987 TAC of 44,000 t is taken, which would generate a fishing mortality of .28, the projected $F_{0.1}$ = .20 catch in 1988 is 32,000 t. If $F_{0.1}$ is taken in 1987 and 1988, the yields would be 32,000 t and 34,000 t respectively. Projected catch at age under both options is given in Table 27. A summary of vital parameter estimates from the past 4 assessments of the stock are given below: | | ======================================= | | Year | -class siz | e at age 3 | (x10-6) | |--------------------|---|------|------|------------|------------|---------| | Assessment
Year | Ft | 1979 | 1980 | 1981 | 1982 | 1983 | | 1984 | .35 | 111 | 112 | (72)* | (72)* | | | 1985 | .40 | 81 | 69 | 43 | (72)* | | | 1986 | .30 | 89 | 71 | 44 | 43 | (61)* | | 1987 | .35 | 74 | 87 | 54 | 48 | 43 | ^{*}Assumed Each estimate of Ft has been well above F0 1 = .2. The major differences between the 1984 and 1985 assessments were the estimated sizes of the 1979 and 1980 year-classes. Estimates of the 1979-81 year-classes were consistent between 1985 and 1986, but the 1982 year-class estimate was revised downward. The most recent estimates are lower for the 1979 and 1983 year-classes, but higher for the 1980 to 1982 year-classes. #### References - Anon. 1986. CAFSAC Assessment Software Catalogue. CAFSAC Res. Doc. 86/96. - Belsey, D.A., E. Kuh, and R.E. Welch. 1980. Regression diagnostics: identifying influential data and sources of collinearity. John Wiley & Sons. New York. 292 pp. - Gagné, J.A., A.F. Sinclair, and C. Dale. 1984. The 1984 assessment of 4VsW cod: a completely revised procedure. CAFSAC Res. Doc. 84/78. - McKenzie, R.A. 1956. Atlantic cod off southern Canadian mainland. Bull. Fish. Res. Bd. Canada. No. 105. 93 pp. - McCullagh, P. and J.A. Nelder. 1983. Generalized linear models. Chapman and Hall. New York. 261 pp. - O'Boyle, R. and D. Wallace. 1986. Operating instructions and validation of Marine Fish Division, Scotia-Fundy Region's survey data management system (SMS) and delta distribution analysis package (DAP). CAFSAC Res. Doc. 86/66 - Payne, C.D. (ed). 1986. GLIM System. Release 3.77. Numerical Algorithms Group. Oxford. - Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aqua. Sci. 1091. 146 pp. - Sinclair, A: 1986. Longliner otter trawler interactions in cod fisheries on the Scotian shelf: implications of differences in partial recruitment. CAFSAC Res. Doc. 86/94 - Sinclair, A. and C. Annand. 1986. Assessment of the 4VsW cod management unit following the 1985 fishery. CAFSAC Res. Doc. 86/46. - Sinclair, A. and S. Gavaris. 1985. Sequential population analysis of 4VsW cod following the 1984 fishery. CAFSAC Res. Doc. 85/48. Table 1. 4VsW cod nominal catches by country and NAFO Divisions. | YEAR | CANADA | FRANCE | PORTUGAL | SPAIN | USSR | OTHERS | TOTAL | SUBDIV. 4Vs | DIV. 4W | TAC | |------|---------------------|--------|------------------|-------|-----------------|-----------------|-------|-------------|---------|-------| | 1958 | 17938 | 4577 | 1095 | 14857 | - | 124 | 38591 | 23790 | 14801 | - | | 1959 | 20069 | 16378 | 8384 | 19999 | - | 1196 | 66026 | 47063 | 18963 | _ | | 1960 | 18389 | 1018 | 1720 | 29391 | - | 126 | 50645 | 27689 | 22956 | • | | 1961 | 19697 | 3252 | 2321 | 40884 | 113 | 42 | 66309 | 34237 | 32072 | • | | 1962 | 17579 | 2645 | 341 | 42146 | 2383 | 60 | 65154 | 26350 | 38804 | • | | 1963 | 13144 | 72 | 617 | 44528 | 9505 | 307 | 68173 | 27566 | 40607 | • | | 1964 | 14330 | 1010 | - | 39690 | 7133 | 1094 | 63257 | 25496 | 37761 | 6 | | 1965 | 23104 | 536 | 88 | 39280 | 7856 | 122 | 70986 | 36713 | 34273 | | | 1966 | 17690 | 1494 | • | 43157 | 5473 | 711 | 68525 | 27177 | 41348 | c | | 1967 | 18464 | 77 | 102 | 33934 | 1068 | 513 | 54158 | 26607 | 27551 | œ | | 1968 | 24888 | 225 | - | 50418 | 4865 | 32 | 80428 | 48781 | 31647 | - | | 1969 | 14188 | 217 | - | 32305 | 2783 | 672 | 50165 | 22316 | 27849 | • | | 1970 | 11818 | 420 | 296 | 41926 | 2521 | 453 | 57434 | 28639 | 28795 | • | | 1971 | 17064 | 4 | 18 | 30864 | 4506 | 107 | 52563 | 24128 | 28435 | 6 | | 1972 | 19987 | 495 | 856 | 28542 | 4646 | 71 19 | 61645 | 36533 | 25112 | c | | 1973 | 15929 | 922 | 849 | 30883 | 2918 | 2592 | 54093 | 23401 | 30692 | 60500 | | 1974 | 10700 | 35 | 1464 | 27384 | 3097 | 1061 | 43741 | 19611 | 24130 | 60000 | | 1975 | 9939 | 1867 | 546 | 15611 | 3041 | 1512 | 32517 | 11694 | 20823 | 60000 | | 1976 | 9567 | 697 | • | 11090 | 1018 | 2035 | 24407 | 11553 | 12854 | 30000 | | 1977 | 9890 | 68 | - | 400 | 97 | 335 |
10390 | 2873 | 7517 | 7000 | | 1978 | 24642 | 437 | - | 57 | 218 | 51 | 25405 | 10357 | 15048 | 7000 | | 1979 | 39219 | 18 | *** | 2 | 683 | 108 | 40030 | 15393 | 24637 | 30000 | | 1980 | 48821 | 17 | 5 | 5 | 338 | 66 | 49252 | 31378 | 17874 | 45000 | | 1981 | 53053 | • | • | • | 630 | 35 | 53718 | 32107 | 21611 | 50000 | | 1982 | 55675 | - | | 465 | 45 | 34 | 55754 | 40110 | 15644 | 55600 | | 1983 | 50898 | - | 1230 | - | 190 | 62 | 52380 | 33170 | 19210 | 64000 | | 1984 | 52104 | - | 303 | - | 110_ | 30 | 52546 | 42578 | 9968, | 55000 | | 1985 | 56090 ¹ | • | 954 ² | - | 9 ² | 9 ² | 57062 | 47830 | 9232 | 55000 | | 1986 | 51 248 ¹ | • | - | • | 27 ² | 31 ² | 51306 | 43819 | 7487 | 48000 | ¹ Preliminary Scotla-Fundy and Newfoundland ² FLASH Table 2. Canadian catch of 4VsW cod by gear and (sub) Division (from NAFO). | | | | 4Vs | | | | | 4W | | | | | 4VsW | | | |-------------------|-------|------|-----|-----|-------|-------|------|------|------|-------|-------|-------|------|------|-------| | YEAR | ОТВ | LL | SDN | MIS | TOTAL | ОТВ | LL | SDN | MIS | TOTAL | ОТВ | LL | SDN | MIS | TOTAL | | 1964 | 2056 | 42 | 2 | - | 2100 | 7324 | 708 | 88 | 4110 | 12230 | 9380 | 750 | 90 | 4110 | 14330 | | 1965 | 7366 | 84 | 22 | - | 7472 | 10290 | 1339 | 159 | 3844 | 15632 | 17656 | 1423 | 181 | 3844 | 23104 | | 1966 | 6374 | 143 | 14 | - | 6531 | 6614 | 1472 | 38 | 3035 | 11159 | 12988 | 1615 | 52 | 3035 | 17690 | | 1967 | 6735 | 99 | 27 | _ | 6861 | 6460 | 1453 | 71 | 3619 | 11603 | 13195 | 1552 | 98 | 3619 | 18464 | | 1968 | 9501 | 48 | 18 | - | 9567 | 8360 | 1928 | 89 | 4944 | 15321 | 17861 | 1976 | 107 | 4944 | 24888 | | 1969 | 3540 | 43 | 7 | - | 3590 | 4695 | 2647 | 13 | 3243 | 10598 | 8235 | 2690 | 20 | 3243 | 14188 | | 1970 | 3054 | 21 | 1 | _ | 3076 | 3602 | 3039 | 62 | 2039 | 8742 | 6656 | 3060 | 63 | 2039 | 11818 | | 1971 | 5827 | 40 | - | _ | 5867 | 4768 | 4173 | 26 | 2230 | 11197 | 10595 | 4213 | 26 | 2230 | 17064 | | 1972 | 9856 | 115 | 4 | _ | 9975 | 4732 | 3350 | 7 | 1923 | 10012 | 14588 | 3465 | 11 | 1923 | 19987 | | 1973 | 6392 | 82 | 3 | _ | 6477 | 4723 | 3173 | 20 | 1536 | 9452 | 11115 | 3255 | 23 | 1536 | 15929 | | 1974 | 4644 | 56 | - | - | 4700 | 1335 | 2512 | 5 | 2148 | 6000 | 5979 | 2568 | 5 | 2148 | 10700 | | 1975 | 1824 | 63 | - | _ | 1887 | 3566 | 2558 | 11 | 1917 | 8052 | 5390 | 2621 | 11 | 1917 | 9939 | | 1976 | 3755 | 42 | - | - | 3797 | 937 | 2289 | 14 | 2530 | 5770 | 4692 | 2331 | 14 | 2530 | 9567 | | 1977 | 2751 | 50 | 4 | - | 2805 | 1873 | 3121 | 68 | 2023 | 7085 | 4624 | 3171 | 72 | 2023 | 9890 | | 1978 | 9561 | 294 | 19 | - | 9874 | 7997 | 4321 | 839 | 1611 | 14768 | 17558 | 4615 | 858 | 1611 | 24642 | | 1979 | 14853 | 438 | 86 | - | 15377 | 13784 | 5577 | 3245 | 1236 | 23842 | 28637 | 6015 | 3331 | 1236 | 39219 | | 1980 | 28941 | 2116 | 321 | _ | 31378 | 6298 | 6032 | 3440 | 1673 | 17443 | 35239 | 81 48 | 3761 | 1673 | 48821 | | 1981 | 27662 | 4274 | 171 | - | 32107 | 9148 | 7660 | 2433 | 1705 | 20946 | 36810 | 11934 | 2604 | 1705 | 53053 | | 1982 | 32247 | 7069 | 794 | - | 40110 | 6352 | 5877 | 1943 | 1393 | 15565 | 38599 | 12946 | 2737 | 1393 | 55675 | | 1983 | 26817 | 4475 | 671 | - | 31963 | 11280 | 4451 | 1936 | 1268 | 18935 | 38097 | 8926 | 2607 | 1268 | 50898 | | 1984 | 37270 | 4122 | 879 | 21 | 42292 | 3475 | 3067 | 2144 | 1126 | 9812 | 40745 | 7189 | 3023 | 1147 | 52104 | | 1985 ¹ | 38192 | 7390 | 718 | 567 | 46867 | 3010 | 2756 | 1230 | 2227 | 9223 | 41202 | 10146 | 1948 | 2794 | 56090 | | 1986 ¹ | 34515 | 8145 | 250 | 880 | 43791 | 2206 | 2700 | 626 | 1925 | 7457 | 36721 | 10845 | 875 | 2807 | 51248 | ¹ Preliminary Scotla-Fundy, preliminary Newfoundland Table 3. 4VsW cod - 1986 allocations and catches. | Gear Sector | Initial
Allocation | Final
Allocation | Catch (QR)* | |--------------------|-----------------------|---------------------|-------------| | Vessels > 100' | 30420 | 31550 | 30431 | | fg 65-100' | 930 | 18 | 19 | | mg 65-100° | 640 | 840 | 734 | | fg < 65' | 9350 | 9350 | 12216 | | mg < 65⁴ | 5530 | 6242 | 7357 | | foreign | 1130 | | | | CHANGE THE STREET | 48000 | 48000 | 50757 | ^{*}QR - Quota Report Table 4 Data used to calculate the 1984 age length keys for 4VsW cod. | | | Period | Length-We | ight Coeffe | | | | |-------|------|-----------|-----------|-------------|--------------|----------|-------| | Key | Gear | Covered | 8 | b | No. Measured | No. Aged | Catch | | 1 | OTB | JanMar. | •0042 | 3.150 | 4266 | 575 | 7756 | | 2 | OTB | AprJun. | -0042 | 3-150 | 11034 | 670 | 14232 | | 3 | ОТВ | Jul Sept- | -0123 | 2.925 | 1696 | 252 | 4994 | | 4 | ОТВ | OctDec. | -0123 | 2.925 | 14393 | 429 | 13364 | | 5 | LL | JanJun• | .0042 | 3.150 | 4774 | 570 | 2590 | | 6 | LL | JulDec- | ۰0123 | 2.925 | 5474 | 863 | 4601 | | 7 | SNU | JanJun. | .0042 | 3.150 | 2870 | 201 | 1356 | | 8 | SNU | Jul⊶Dec. | •0123 | 2.925 | 2229 | 174 | 1665 | | TOTAL | | | | | | | 50558 | Table 5. 4VsW cod catch at age (1000) by key recalculated for 1984. | | | . (| ОТВ | | 1 | Ļ L , | | SNU | | |-----------------|----------------|------|----------------|------|----------------|----------------|----------------|----------------|-------| | Ag e | Q ₁ | Ŷ2 | 9 3 | 94 | H ₁ | H ₂ | H ₁ | H ₂ | Total | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | | 3 | 2 | 79 | 39 | 210 | 0 | 4 | 2 | _28 | 364 | | 4 | 478 | 2219 | 638 | 1867 | 57 | 82 | 114 | 351 | 5806 | | 5 | 1012 | 2912 | 1227 | 2821 | 191 | 223 | 340 | 351 | 9077 | | 6 | 1314 | 1914 | 553 | 1166 | 202 | 265 | 254 | 241 | 5909 | | 7 | 978 | 1302 | 170 | 661 | 206 | 339 | 274 | 103 | 4033 | | 8 | 342 | 287 | 75 | 238 | 108 | 167 | 26 | 25 | 1268 | | 9 | 168 | 104 | 32 | 80 | 72 | 95 | 2 | 4 | 557 | | 10 | 51 | 29 | 19 | 72 | 39 | 76 | 0 | 0 | 286 | | 11 | 6 | 9 | 7 | 46 | 27 | 53 | 2 | 0 | 150 | | 12 | 3 | 14 | 4 | 11 | 11 | 28 | 0 | 0 | 61 | | 13 | 1 | 4 | 1 | 0 | 9 | 18 | 0 | 0 | 33 | | 14 | 2 | 1 | 1 | 0 | 3 | 9 | 0 | 0 | 16 | | 15 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | | 16+ | 0 | 0 | 0 | 0 | 7 | 5 | 0 | 0 | 12 | | Total | 4358 | 8864 | 2766 | 7172 | 932 | 1366 | 1013 | 1105 | 27576 | TABLE 6: COMPARISON OF NEW AND OLD 1984 CATCH AT AGE FOR 4VsU COD. | ACEI | OLD | new | |------|------|------| | | | | | 11 | 0 | 0 | | 21 | 2 | 2 | | 31 | 421 | 378 | | 41 | 6210 | 6034 | | 51 | 9371 | 9434 | | 61 | 6113 | 6141 | | 71 | 4102 | 4192 | | 81 | 1294 | 1318 | | 91 | 569 | 579 | | 101 | 293 | 297 | | 111 | 149 | 156 | | 121 | 61 | 63 | | 131 | 35 | 34 | | 14! | 17 | 17 | | 151 | 2 | 2 | Table 7. Data used to generate 1986 age length keys for 4VsW cod. | | | Period ·· | Length-We | ight Coeff. | • | | | | |-------|---------------|-----------|-----------|-------------|--------------|----------|-------|--| | Key | Gear | Covered | 8 | b | No- Measured | No. Aged | Catch | | | 1 | отв, отм, ртв | JanMar- | •0084 | 3.011 | 5745 | 536 | 91 18 | | | 2 | OTB, OTM, PTB | AprJun. | •0084 | 3.011 | 8965 | 370 | 11740 | | | 3 | OTB, OTM, PTB | Jul Sept- | .0084 | 3.011 | 3349 | 288 | 11570 | | | 4 | OTB, OTM, PTB | OctDec. | •0084 | 3.011 | 1998 | . 165 | 5521 | | | 5 | LL, LHP | JanJun. | .0084 | 3-011 | 3438 | 460 | 4465 | | | 6 | LL, LHP | JulDec- | -0084 | 3.011 | 3980 | 533 | 6875 | | | Total | | | | | | | 49289 | | Table 8 . 4YsW cod catch at age (1000) by key in 1986. | | | OTB, C | TM, PTB | | | ., LHP | | |-----------------|----------------|--------|---------|----------------|----------------|----------------|-------| | \ge | Q ₁ | 92 | Q3 | Q ₄ | H ₁ | H ₂ | Total | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | | 3 | 0 | 67 | 23 | 22 | 3 | 1 | 116 | | 4 | 640 | 878 | 1457 | 879 | 33 | 72 | 3959 | | 5 | 1401 | 1504 | 2597 | 1371 | 109 | 229 | 7211 | | 6 | 2377 | 2315 | 2220 | 980 | 295 | 484 | 8671 | | 7 | 872 | 1025 | 592 | 299 | 218 | 382 | 3388 | | 8 | 391 | 381 | 184 | 117 | 134 | 251 | 1458 | | 9 | 231 | 230 | 41 | 48 | 210 | 302 | 1062 | | 10 | 105 | 48 | 8 | 20 | 103 | 136 | 420 | | 11 | 39 | 73 | 1 | 1 | 55 | 102 | 271 | | 12 | 17 | 2 | ٩ | 3 | 28 | 51 | 102 | | 13 | 3 | 6 | 0 | 0 | 27 | 26 | 62 | | 14 | 3 | 0 | 0 | 0 | 4 | 4 | 11 | | 15 | 0 | 1 | 0 | 0 | 11 | 6 | 18 | | 1 6+ | 1 | 0 | 0 | 0 | 11 | 6 | 18 | | [otal | 6081 | 6532 | 7123 | 3741 | 1241 | 2053 | 26771 | | 1 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1985 | |---|--|--|--|---|--|---|--|--|---|--|---|--|---|--|--|--
--| | 1 2 3 4 1 5 1 7 1 1 1 1 1 1 1 1 | 1293
8631
8886
14802
13673
4539
1942
759
236
72
137
56
9 | 2311
15218
12582
9146
8809
10262
5160
1849
496
114
131
72
98 | 2383
17738
14227
13361
9661
8780
3432
1919
358
393
79
2 | 1418
12142
14881
7507
9755
3823
2996
3724
1166
273
299
3 | 1482
8451
12885
9947
7130
2766
944
1323
413
369
15 | 1792
9979
9485
4341
4549
2594
2627
612
497
660
153
126
36 | 728
4061
3587
3713
4818
2412
1426
611
184
49
22
107 | 2
24
386
1073
1559
871
501
220
128
35
44
55
11 | 177
153
1004
3650
4621
2441
758
213
112
80
26
28
26 | 12
81
1629
6164
9145
4871
1162
371
76
23
10
5 | 31
152
2034
5119
7112
6147
2929
1066
319
88
47
26
4 | 3
348
3742
9724
7276
4852
2991
1455
393
126
62
32
21 | 5
149
2500
7664
9953
3449
2408
1273
674
304
156
67
57 | 0
0
3048
8251
7368
5967
1938
999
576
229
140
50
22 | 0
2
378
6034
9434
6141
4192
1318
579
297
156
63
34 | 0
154
2323
8353
7782
3922
2224
978
427
274
168
65 | 0
2
121
4121
7506
9026
3527
1518
1105
437
282
106
65 | | 15 | 4 | 51 | 1 | 5 | 0
 | 9
 | 1 | 2 | 4
 | 0 | 4 | <u> </u> | 19 | 6 | 2 | 16 | 19 | | 1+1
2+1
3+1
4+1
5+1 | 55051
53758
45127
36241
21439
7766 | 66311
64000
48782
36200
27054
18245 | 72371
69988
52250
38023
24662
15001 | 58004
56586
44444
29563
22056
12301 | 45730
44248
35797
22912
12965
5835 | 37469
35677
25698
16213
11872
7323 | 21724
20996
16935
13348
9635
4817 | 4914
4912
4888
4502
3429
1870 | 13312
13135
12982
11978
8328
3707 | 23554
23541
23460
21831
15666
6522 | 25079
25048
24896
22862
17743
10631 | 31033
31030
30682
26940
17216
9940 | 28728
28723
28574
26074
18409
8457 | 28610
28610
28610
25562
17311
9943 | 28647
28647
28645
28267
22233
12799 | 26709
26709
26705
26751
24228
15875 | 27846
27846
27844
27723
23502
16095 | | | | | | | TAB | LE 98; | 4vsw | COD COMP | ERCIAL | WEIGHTS | AT AGE | {KG.} | • | | | 24 | 6/87 | |---|--|--|---|--|--|--|--|--|---|--|--|--|---|---|--|--|--| | 1 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 0.02
0.15
0.45
0.91
1.50
2.19
2.94
3.73
4.51
5.28
6.71
7.36
7.95 | 0.01
0.11
0.32
0.64
1.56
2.65
1.758
4.27
3.728
4.27
5.65 | 0.05
0.18
0.44
0.81
1.29
12.48
3.14
3.93
4.52
5.87
6.51
7.73 | 0.08
0.22
0.45
1.21
1.72
2.28
2.90
3.54
4.90
5.59
6.96
7.62 | 1.02
1.53
2.13
2.82
3.58
4.41
5.28 | 0.27
0.53
0.89
1.34
1.87
2.47 | 1.46
2.03
2.66
3.35
4.07
4.80 | 0.10
0.28
0.81
1.67
2.36
3.17
4.58
4.14
5.33
4.65
4.91
7.14
8.59 | 0.20
0.62
0.95
1.25
1.268
2.47
3.61
5.23
5.59
6.54
7.92
9.75
8.68 | 0.00
0.53
0.76
1.06
1.70
2.39
3.13
3.71
4.77
6.84
7.96
9.41
10.63
10.03 | 0.00
0.57
0.80
1.15
1.60
2.21
3.08
4.31
5.26
6.95
10.19
7.92
8.13
14.45 | 0.00
0.62
0.83
1.69
2.13
2.96
3.94
5.70
7.16
7.67
9.84 | 0.00
0.58
0.81
1.07
1.58
2.39
2.78
4.07
5.49
7.08
8.74
9.10
11.43
10.59
12.48 | 0.12
0.39
0.81
1.09
1.55
2.10
3.10
3.53
4.38
5.75
6.99
10.53
11.71
12.69 | 0.00
0.56
0.72
1.00
1.42
1.91
2.49
3.44
3.78
4.96
6.84
8.94
10.23
11.85 | 0.00
0.63
0.70
1.04
1.46
1.98
2.49
3.17
3.93
5.10
6.12
9.93
11.17
11.25 | 0.00
0.26
0.68
0.96
1.27
1.68
2.77
3.70
5.02
5.84
10.05
9.42
11.73 | | | · · · | | | | | | | | | | | | | | | | | |---|---|---|---|---|---|---|--|--|---|---|---|---|--|---|--|--|--| | 1 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | 0
1
2
3
4
5
6
7
8
10
11
12 | 0
1478
16388
5250
7714
3742
1228
1532
466
104
249
209
101 | 0
1539
7680
35664
8027
15803
5775
3459
1475
638
20
137
58 | 0
6210
9674
11881
31536
5812
5989
1621
547
495
153
0 | 0
6430
43907
69024
56081
22484
1870
2907
901
431
514
165 | 0
5174
32961
19246
5623
2017
2244
372
463
224
161
63
59 | 0
3372
8412
13000
6171
2959
675
867
235
433
23
0
68 | 0
2242
14066
16098
10187
6621
1264
656
1308
0
929
38
0 | 0
808
10145
26372
17059
11353
4893
1081
878
244
0
161
62 | 174
3033
13065
31245
34205
9461
3490
889
185
90
79
0 | 1017
1213
10612
16044
16595
18075
9053
2696
1009
411
83
45 | 50
690
7064
18488
10260
17365
12099
4794
1302
338
265
93 | 74
4589
12770
18936
30753
12057
8570
4404
1553
533
650
163
74 | 9
2633
225028
188892
65976
14824
8020
4325
1850
413
419
226 | 57
39572
37813
120818
48451
24808
11398
2511
1444
395
222
64 | 200
1165
20894
36823
54858
37171
17253
11861
1170
955
284
674
17 | 0
3697
4834
22643
27478
26772
14701
7358
2896
1391
330
319
610 | 79
1026
3791
4368
16126
10552
11462
3339
1678
679
443
101 | | 0+1
1+1
2+1
3+1
4+1
5+1 | 38461
38461
36983
20595
15345
7631
3889 | 80325
80325
78786
71106
35442
27415
11612 |
73918
73918
67708
58034
46153
14617
8805 | 204715
204715
198285
154378
85354
29273
6789 | 68607
68607
63433
30472
11226
5603
3586 | 36215
36215
32843
24431
11431
5260
2301 | 53409
53409
51167
37101
21003
10816
4195 | 73056
73056
72248
62103
35731
18672
7319 | 95995
95821
92788
79723
48478
14273
4812 | 76858
75841
74628
64016
47972
31377
13302 | 72808
72758
72068
65004
46516
36256
18891 | 95126
95052
90463
77693
58757
28004
15947 | 513615
513606
510973
284945
96053
30077
15253 | 287682
287625
248053
210240
89422
40971
16163 | 183325
183125
181960
161066
124243
69385
32214 | 113029
113029
109332
104498
81855
54377
27605 | 53644
53565
52539
48748
44380
28254
17702 | | | | | | | T | ABLE 1 | 08: 4V | SW COD | SUMMER | SURVE | WEIGHT | TS AT A | ee (ke' |). | | | 24/ | 6/87 | |---|---|--|--|--------|--|--|----------------------|--|----------------------|---|--|--|--|--|--|--------------------------------------|--|--| | | l | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | 1
2
3
4
5
6
7
8
9 | ands and such think with right that the think | 0.24
0.86
1.17
1.65
2.39
3.44
3.55
5.31
5.68 | 0.05
0.19
0.44
1.05
1.40
1.74
2.63
3.56
3.10 | | 0.09
0.25
0.62
1.03
1.30
2.10
2.10
2.89
2.24
7.96 | 0.13
0.31
0.55
1.12
1.57
2.05
3.45
3.46
2.71
4.01 | 3.46
4.77
6.17 | 0.26
0.50
0.94
1.41
2.11
3.22
3.24
0.00
4.99 | 5.29
5.09
0.00 | 0.08
0.40
0.71
1.20
1.81
2.74
3.06
4.68
6.47
11.96 | 0.05
0.26
0.48
0.94
1.37
2.15
3.55
5.28
5.59
8.24 | 0.07
0.29
0.58
0.96
1.49
2.26
2.93
4.72
7.70
8.33 | 0.08
0.34
0.63
1.17
1.76
2.14
2.83
4.34
6.55
8.79 | 0.29
0.48
0.72
1.33
2.15
2.60
3.41
4.33
6.17 | 0.07
0.24
0.51
0.97
1.37
2.11
3.07
3.48
4.95 | 1.86
2.27
3.83
3.04
3.33 | 0.14
0.43
0.75
1.18
1.67
2.18
3.01
3.79
4.34 | 0.08
0.26
0.46
0.84
1.29
1.71
2.22
2.73
3.97
4.93 | | 11
12 | | 3.13
12.74 | 2.72
9.06 | 0.0000 | 4.57
0.00 | 8.27
6.17 | 9.06 | 5.17
0.00 | 5.42
3.97 | 0.00
0.00 | 7.54
12.74 | 0.00 | 8,42
12,74 | B.16
0.00 | 8,17
11,74 | 7.60
13.80 | 7.08
4.46 | 7.18
0.00 | Table 11: 4VsW cod age 5+ population estimates ('000) by strata, Division and depth zone. | DIV | DEPTH | STR | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | |-----|----------|----------------------------|---------------------|----------------------|-----------------------|-------------------|---------------------|-----------------------|----------------------|--------------------|------------------|--------------------------|-------------------------|-------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------| | 445 | (50 F# | 43
47
48 | 421
175
90 | 943
0
216 | 362
74
94 | 597
155
397 | 146
96
27 | 397
939
11 | 92
36
17 | 81
275
445 | 50
480
401 | 464
1592
4233 | 3188
10139
192 | 1323
2386
354 | 1229
1492
254 | 5446
6444
92 | 30937
512
268 | 17494
3732
2038 | 3156
5618
288 | | | 50-100 F | 49 | 4219 | 16132
17 | 11436 | 4068
39 | 2969
0 | 1671
10 | 4374 | 7572
5 | 528
0 | 5250
57 | 4971
34 | 12332
0 | 11015 | 7499
58 | 16361
2 | 11031
22 | 14003
4 | | |)100 FM | 50
45
46
51 | 12
86
60 | 2397
65
17 | 37
332
81
29 | 964
36 | 30
77
39
7 | 242
4
31 | 143
169 | 81
1081
6 | 264
0 | 13
203
68
73 | 4902
280
15 | 86
2150
562
32 | 99
4431
1029
133 | 77
1754
319
175 | 93
2526
486
102 | 171
6681
1162
49 | 46
1625
350 | | 4₩ | ⟨50 F₩ | 52
55
56 | 0
21
25 | 13
78
483 | 0
599
125 | 0
44
517 | 139
195
66 | 157
109
98 | 57
508
703 | 89
752
287 | 728
204 | 383
4278
5628 | 12
3834
1047 | 0
2022
797 | 293
7436
175 | 568
5622
487 | 277
1184
767 | 72
773
495 | 64
288
100 | | | wa .aa r | 58
63
64 | 119
0
280 | 377
54
316 | 264
46
199 | 17
0
1674 | 57
71
818 | 89
161
341 | 157
67
893 | 991
78
160 | 173
57
518 | 2482
103
2910 | 2797
64
2011 | 1017
127
1005 | 627
27
1168 | 1305
0
439 | 2698
171
934 | 1549
60
310 | 379
27
150 | | | 50-100 F | 57
60 | 0
1
330 | 0
36
209 | 37
0
0 | 0 | 0
24
0 | 0
0
1 <u>31</u> | 23
0
0 | 27
0
0 | 9690
106 | 288
0
_0 | 1905
146 | 123
41
65 | 94
72
67 | 169
54
118 | 112
0 | 87
95
0 | 287
10 | | |)100 FM | 62
65
53
61
66 | 10
238
0
0 | 148
245
0
0 | 74
46
0
0 | 43
0
0
0 | 51
103
0
0 | 55
106
0
0 | 387
128
0
0 | 79
46
0
0 | 481
0
0 | 55
231
0
0
0 | 0
436
0
0
9 | 37
64
0 | 59
187
0
0
5 | 106
118
0
0 | 202
0
0
0 | 208
95
0
0 | 77
0
0 | | | TOTAL A | 59 | 1926
5068 | 5766
19803 | 749
12451 | 20707
6267 | 690
3530 | 703
3462 | 3051
4894 | 6613
9635 | 585
1724 | 3065
12336 | 225
237 33 | 3418
19225 | 111
20014 | 10013
22432 | 11750
51564 | 7869
42452 | 1639
25154 | | | TOTAL A | • | 2950 | 7712 | 2139 | 23004 | 2075 | 1793 | 5917 | 9033 | 12543 | 19040 | 12518 | 8716 | 10028 | 18431 | 17818 | 11549 | 2957 | ## ANALYSIS OF VARIANCE | SOURCE OF | | SUMS OF | Mean | | |------------|-----|---------------------|---------------------|---------| | VARIATION | DF | SQUARES | squares | F-Value | | | | | | *** | | INTERCEPT | i | 5.853 E 0002 | 5.853 E 0002 | | | REGRESSION | 32 | 4.889E0001 | 1.52810000 | 8.593 | | TYPE 1 | 2 | 1.477E 001 | 7.384E 002 | 0.415 | | TYPE 2 | 1 | 2.310E0001 | 2.310E0001 | 129.917 | | TYPE 3 | 11 | 6.550E0000 | 5.955E 001 | 3.350 | | TYPE 4 | 18 | 9.641E0000 | 5.356E 001 | 3.013 | | RESIDUALS | 418 | 7.431E0001 | 1.7788 001 | | | TOTAL | 451 | 7.084E0002 | | | Table 12: Analysis of variance for the 1965-1986 longliner catch rate data. ## REGRESSION COEFFICIENTS | CATEGORY | CODE | VARIABLE | COEFFICIENT | STD. ERROR | NO. OBS. | |----------|----------|----------------------|------------------|----------------|----------| | 1 | 8 | INTERCEPT | 70.037 | 0.245 | 451 | | 2 | 1 | | | | | | 3 | 1 | | | | | | 4 | 1 | | | | | | 1 | 9 | 1 | 0.004 | 0.044 | 182 | | | 10 | 2 | 70.059 | 0.072 | 53 | | 2 | 2 | 3 | ~0.580 | 0.051 | 282 | | 3 | 2 | 4 | 70.160 | 0.145 | 20 | | | 3 | 5 | 70.270 | 0.141 | 25 | | | 4 | 6 | ⁻0.529 | 0.128 | 45 | | | 5 | 7 | 70.482 | 0.127 | 47 | | | 6 | 8 | 70.469 | 0.128 | 46 | | | 7 | 9 | 70.504 | 0.129 | 42 | | | 8 | 10 | 70.451 | 0.127 | 49 | | | 9 | 11 | 70.499 | 0.128 | 44 | | | 10 | 12 | 70.585 | 0.129 | 42 | | | 11 | 13 | 70.421 | 0.129 | 40 | | | 12 | 14 | 70.414 | 0.132 | 35 | | 4 | 3 | 15 | 70.249 | 0.248 | 12 | | | 4 | 16 | 71.691 | 0.478 | 1 | | | 7 | 17 | 70.026 | 0.234 | 20 | | | 8 | 18 | 70.251 | 0.234 | 20 | | | 9 | 19 | ~0.244 | 0.234 | 20 | | | 10 | 20 | 70.438 | 0.245 | 13 | | | 11 | 21 | 70.617 | 0.247 | 12 | | | 12 | 22 | | 0.246
0.234 | 12
20 | | | 13 | 23
2 4 | ~0.345
~0.251 | 0.234 | 20
29 | | | 14
15 | 2 5 | 70.340 | 0.228 | 28 | | | 16 | 25
26 | 70.239 | 0.223 | 20
39 | | | 17 | 2 0
27 | 70.251 | 0.223 | 44 | | | 18 | 21
28 | ~0.251
~0.345 | 0.222 | 46 | | | 19 | 29
29 | 70.482 | 0.222 | 44 | | | 20 | 30 | 70.193 | 0.229 | 24 | | | 21 | 30
31 | 70.115 | 0.229 | 26 | | | 22 | 32 | ¯0.205 | 0.224 | 37 | Table 13: Regression coefficients for the 1965-1986 longliner catch rate data. Table 14. Analysis of deviance for multiplicative model for longliners all data, 1965-1986 (4VsW cod). | Model | Devi ance | df | P-level | |------------------|-----------|----|---------| | | | | | | 1 | • | | | | +gear | 2.625 | 2 | 0.008 | | +area | 29.060 | 1 | 0.000 | | +month | 7.557 | 11 | 0.000 | | +year | 9.641 | 18 | 0.000 | | +area | 31.14 | i | 0.000 | | +month | 7.489 | 11 | 0.000 | | / +year | 10.11 | 18 | 0.000 | | +gear | 0.147 | 2 |
0.660 | | +month | 4.604 | 11 | 0.107 | | +year | 19.98 | 18 | 0.000 | | +gear | 1.206 | 2 | 0.075 | | +area | 23.10 | 1 | 0.000 | | +year | 20.25 | 18 | 0.000 | | +gear | 1.565 | 2 | 0.036 | | +area | 20.52 | 1 | 0.000 | | +month | 6.550 | 11 | 0.000 | | Final Model | | | | | i | | | | | tareatmonthtyear | 48.74 | 30 | 0.000 | Scale parameter = 0.2050 Table 15. Analysis of deviance for four factor model, otter trawlers and pair trawlers (Spain) all data 1965-1986 (4VsW cod). | <u>Model</u> | <u>Deviance</u> | <u>df</u> | <u>P-level</u> | |--|----------------------------------|--------------------|------------------| | 1
+ gear
+ area
+ month
+ year | 62.25
6.272
32.22
145.8 | 9
1
11
21 | 0
0
0
0 | | + area | 7.778 | 1 | 0 | | + month | 33.85 | 11 | 0 | | + year | 126.7 | 21 | 0 | | + gear | 78.20 | 9 | 0 | | + month | 34.89 | 11 | 0 | | + year | 130.9 | 21 | 0 | | + gear | 79.76 | 9 | 0 | | + area | 1.015 | 1 | •063 | | + year | 123.2 | 21 | 0 | | + gear | 83.98 | 9 | 0 | | + area | 0.677 | 1 | .151 | | + month | 38.62 | 11 | 0 | scale parameter = 0.2920 | | <u>Deviance</u> | <u>df</u> | <u>P-level</u> | |----------------------------------|-------------------------|---------------|----------------| | Final Model | | | | | 1
+ gear
+ month
+ year | 62.25
31.75
151.6 | 9
11
21 | 0
0
0 | | | scale param | eter = 0.2 | 926 | Table 16. Comparison of analysis deviance when high leverage points omitted from analysis. ## a) Full data set | <u>Model</u> | <u>Deviance</u> | <u>df</u> | <u>P-level</u> | |----------------------------------|-------------------------|---------------|----------------| | 1
+ gear
+ month
+ year | 62.25
31.75
151.6 | 9
11
21 | 0
0 | | • | scale param | meter = 0.2 | 926 | # b) First cycle: delete 56 points | <u>Model</u> | | <u>Deviance</u> | <u>df</u> | <u>P-level</u> | |------------------|-----------------|--------------------------|---------------|----------------| | 1
+ gear
+ | month
+ year | 53.79
31.55
141.44 | 9
11
18 | 0
0
0 | | | • | scale param | meter = 0.2 | 955 | # c) 2nd cycle: delete 18 points | <u>Model</u> | <u>Deviance</u> | <u>df</u> | <u>P-level</u> | |----------------------------------|-------------------------|---------------|----------------| | 1
+ gear
+ month
+ year | 52.40
30.81
137.6 | 9
11
16 | 0
0
0 | | | scale param | neter = 0.2 | 966 | Table 17. Comparison of predicted catch rates for 4VsW cod for all observations and then after removal of high leverage points. | 14 | | a Set (F) | | Cycle (1) | | Cycle (2) | |-------------|--------|-----------|-------------|-----------|-------|-----------| | <u>Year</u> | Mean - | S.E. | <u>Mean</u> | S.E. | Mean | S.E. | | 1965 | 1.412 | 0.242 | 1.133 | 0.436 | alia | ased | | 1966 | 1.327 | 0.222 | 1.276 | 0.239 | alia | ased | | 1967 | 1.056 | 0.177 | alia | ased | alia | ased | | 1968 | 1.201 | 0.173 | 1.239 | 0.187 | 1.372 | 0.219 | | 1969 | 1.194 | 0.165 | 1.213 | 0.169 | 1.245 | 0.175 | | 1970 | 1.069 | 0.151 | 1.077 | 0.156 | 1.107 | 0.161 | | 1971 | 0.762 | 0.105 | 0.772 | 0.107 | 0.831 | 0.118 | | 1972 | 0.729 | 0.087 | 0.736 | 0.089 | 0.744 | 0.090 | | 1973 | 0.697 | 0.079 | 0.703 | 0.081 | 0.709 | 0.082 | | 1974 | 0.523 | 0.051 | 0.527 | 0.053 | 0.530 | 0.053 | | 1975 | 0.388 | 0.040 | 0.390 | 0.041 | 0.394 | 0.041 | | 1976 | 0.518 | 0.051 | 0.523 | 0.052 | 0.528 | 0.053 | | 1977 | 0.526 | 0.060 | 0.523 | 0.060 | 0.520 | 0.060 | | 1978 | 0.565 | 0.112 | alia | ased | alia | ased | | 1979 | 1.096 | 0.200 | | ased | alia | ased | | 1980 | 0.954 | 0.094 | 0.954 | 0.095 | 0.946 | 0.095 | | 1981 | 0.921 | 0.088 | 0.919 | 0.089 | 0.913 | 0.088 | | 1982 | 1.113 | 0.105 | 1.112 | 0.106 | 1.102 | 0.105 | | 1983 | 1.080 | 0.107 | 1.080 | 0.108 | 1.073 | 0.108 | | 1984 | 1.162 | 0.117 | 1.162 | 0.118 | 1.155 | 0.118 | | 1985 | 1.527 | 0.150 | 1.525 | 0.152 | 1.511 | 0.151 | | 1986 | 1.672 | 0.151 | 1.669 | 0.153 | 1.652 | 0.152 | | | | | | | | | Table 18: Parameter estimates for otter trawler catch rates for model 1+gear+month+year. | | | 3 | | |----------|---------------------|----------------------|--------------------| | | estimate | s.e. | parameter | | 1 | 0.3575 | 0.09226 | 1 | | 2 | -0.5404 | 0.08622 | GEAR(2) | | | | | • | | 9 | -0.1033 | 0.06904 | GEAR(3) | | 3
4 | -0.1033
0.09127 | 0.06504 | GEAR(4) | | 5 | 0.2417 | 0.06153 | GEAR(5) | | 6 | -0.07912 | 0.03133 | GEAR(6) | | 7 | 0.3023 | 0.1185 | GEAR(7) | | 8 | 0.1951 | 0.08190 | GEAR(8) | | 9 | 0.4918 | 0.08101 | GEAR(9) | | 10 | | 0.08628 | GEAR(10) | | 11 | 0.9143 | 0.08455 | | | | 0.07002 | | MONT(2)
MONT(3) | | 12
13 | 0.009919
-0.1709 | 0.08046
0.08235 | MONT(4) | | 14 | | 0.08233
0.08599 | MONT (5) | | | -0.3156 | | | | 15 | -0.4644 | 0.09226 | MONT(6) | | 16 | -0.5316 | 0.09782 | MONT(7) | | 17 | -0.4028 | 0.09396 | MONT(8) | | 18 | -0.3194 | 0.09268 | MONT(9) | | 19 | -0.3520 | 0.08905 | MONT(10) | | 20 | -0.06408 | 0.09022 | MONT(11) | | 21 | 0.02240 | 0.09370 | MONT(12) | | 22 | 0.000 | aliased | YEAR(2) | | 23 | 0.000 | aliased | YEAR (3) | | 24 | -0.1764 | 0.1529 | YEAR(4) | | 25 | -0.2771 | 0.1329 | YEAR(5) | | 26 | -0.3935 | 0.1380 | YEAR(6) | | 27 | -0.6806 | 0.1333 | YEAR(7) | | 28 | -0.7940 | 0.110B | YEAR(8) | | 29 | -0.8426 | 0.1053 | YEAR(9) | | 30 | -1.135 | 0.08776 | YEAR(10) | | 31 | -1.431 | 0.0 946 3 | YEAR(11) | | 32 | -1.140 | 0.08981 | YEAR(12) | | 33 | -1.153 | 0.1062 | YEAR (13)? | | 34 | 0.000 | aliased | YEAR(14) | | 35 | 0.000 | ali ase d | YEAR (15) | | 36 | -0.5564 | 0.07976 | YEAR(16) | | 37 | -0.5923 | 0.07385 | YEAR (17) | | 38 | -0.4042 | 0.07194 | YEAR(18) | | 39 | -0.4300 | 0.08020 | YEAR(19) | | 40 | -0.3567 | 0.08233 | YEAR (20) | | 41 | -0.08802 | 0.07683 | YEAR(21) | | 42 | 0.000 | aliased | YEAR (22) | | | le parameter | | . 2966 | | | - | | | ## Current model: ``` number of units is 1151 y-variate CATR ``` weight WATE offset * probability distribution is NORMAL. link function is IDENTITY scale parameter is to be estimated by the mean deviance terms = 1 + GEAR + MONT + YEAR Table 19. Standardized otter trawler catch rate. | . Year | CPUE | | |--------|-------|--| | 1968 | 1.372 | | | 1969 | 1.245 | | | 1970 | 1.103 | | | 197 | .828 | | | 1972 | .745 | | | 1972 | .711 | | | 1974 | .532 | | | 1975 | .396 | | | 1976 | .528 | | | 1977 | .526 | | | 1978 | .575 | | | 1979 | 1.081 | | | 1980 | .953 | | | 198′ | .922 | | | 1982 | 1.112 | | | 1983 | 1.083 | | | 1984 | 1.165 | | | 1985 | 1.524 | | | 1986 | 1.665 | | | | | | Table 20. Partial recruitment estimates for 4VsW cod. | Age | PR 82-84 | PR 83-85 | |-----|----------|------------| | 3 | .13 | .06 | | 4 | .51 | .06
.35 | | 5 | .87 | . 80 | | 6 | 1.00 | 1.00 | | 7 | 1.00 | 1.00 | | | | | Table 21. Calibration results using SPA 5+ mean numbers as the independent variable and RV 5+ numbers as the dependent variable. The results are the correlation coefficient (r), the intercept (a), the slope (b) student T for the intercept (T), and the sum of standardized residuals (RES). Ft | | .30 | .35 | .40 | .45 | .50 | •55 | .60 | |-----|------|------|--------------|-------|--------------|-------|-------| | r | .77 | .79 | .80 | .81 | .81 | .80 | .79 | | a | 2350 | -769 | -3458 | -5563 | ~7100 | -8108 | -8657 | | b | .57 | .68 | .77 | .85 | .81 | .96 | .99 | | T | .38 | 12 | 52 | 80 | 98 | -1.07 | -1.10 | | Res | 9.83 | 9.40 | 8.81 | 8.20 | 7.67 | 7.32 | 7.14 | | TABLE 77: ATTES TEAM! DARTIAL REPUBLITMENT FOR AUGH POF | | | | | | | | | | |---|-------|-----|-------|------|---------|--------------|-----|-------|-----| | | TABLE | 221 | OTTER | TEAM | DARTTAL | PERCUITTUENT | EGD | ANDER | COL | 8/ 7/87 | | 1 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | |----|---------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|-------| | 1 | 1 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | 2 | 1 0.000 | 0.005 | 0.102 | 0.001 | 0.006 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.001 | 0.007 | 0.004 | 0.000 | 0.000 | 0.000 | 0.001 | | 3 | 1 0.002 | 0.052 | 0.200 | 0.074 | 0.526 | 0.005 | 0.000 | 0.008 | 0.106 | 0.153 | 0.039 | 0.131 | 0.123 | 0.157 | 0.027 | 0.009 | 0.076 | | 4 | 1 0.181 | 0.234 | 0.760 | 0.212 | 1.000 | 0.110 | 0.157 | 0.067 | 0.538 | 0.813 | 0.260 | 0.449 | 0.644 | 0.748 | 0.337 | 0.153 | 0.475 | | 5 | 1 0.456 | 0.439 | 1.000 | 0.592 | 1.000 | 0.537 | 0.628 | 0.403 | 1.000 | 1.000 | 0.591 | 0.867 | 1.000 | 1.000 | 0.950 | 0.530 | 1.000 | | | 1 0.507 | | | | | | | | | | | | | 1.000 | 1.000 | 1.000 | 1.000 | | 7 | 1 0.977 | 0.746 | 0.868 | 0.732 | 0.735 | 1.000 | 1.000 | 0.971 | 1,000 | 1,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 8 | 1 0.894 | 1.000 | 1.000 | 1.000 | 1.000 | 0.635 | 1.000 | 1.000 | 0.674 | 0.944 | 1.000 | 0.944 | 0.904 | 0.837 | 0.893 | 0.874 | 1.000 | | - | 1 1.000 | | | | | | | | | | | | | 0.997 | 0.650 | 0.948 | 0.714 | | | 1 0.876 | | | | | | | | | | | | | 0.614 | 0.641 | 0.579 | 0.594 | | | 1.000 | | | | | | | | | | | | | 0.960 | 0.399 | 0.711 | 0.580 | | | 1.000 | | | | | | | | | | | | | 0.438 | 0.496 | | | | | 1 1.000 | | | | | | | | | • • • • • | | | | 0.134 | 0.164 | 0.263 | 0.199 | | | 1 0.346 | | | | | | | | | | | | | 0.686 | 0.244 | | | | 15 | 1 1.000 | 0.292 | 1.000 | 0.834 | 0.000 | 0.165 | 0.000 | 1.000 | 0.513 | 0.000 | 0.762 | 0.316 | 0.136 | 0.275 | 0.000 | 0.065 | 0.075 | Table 23. Calibration results with CPUE vs Fishable Biomass. | | . Ft | | | | | | | | | | | | | |----------|---------|--------|--------|------|------|--|--|--|--|--|--|--|--| | | .10 | .20 | .30 | .35 | .40 | | | | | | | | | |
r | .88 | .86 | .80 | .76 | .72 | | | | | | | | | | a | -158038 | -47044 | -10033 | 542 | 8472 | | | | | | | | | | b | 348 | 176 | 118 | 102 | 89 | | | | | | | | | | T | -3.33 | -1.81 | 45 | .03 | .40 | | | | | | | | | | Σ Res. | 5.00 | 6.09 | 7.03 | 7.28 | 7.44 | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | there 54' days are restured to the term to pentage property. | | | | | | | | | | | | | | 6/ //0/ | | | |---|---|---|---|--|--|---|---|---|---|--|---|---|--|---|---|---|--| | 1 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | 1 2 1 2 3 4 1 5 6 7 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 94640
87620
51826
54245
45685
19352
6290
2929
585
319
320
211
30
156 | 96103
76315
63927
34391
31019
25032
11737
3393
1712
265
196
138
122
16 | 74173
76592
48711
40955
19882
17425
11209
4941
1105
953
114
42
48
11 | 63597
58571
46658
27008
21441
7536
6322
6072
2309
581
424
22
33
6 | 77279
50786
36968
24735
15320
8728
2711
2465
1601
835
228
77
15
20
0 | 84016
61929
33933
18608
11251
6091
4643
1365
821
937
350
173
58
12 | 74051
67165
41674
19200
11307
5096
2640
1424
564
223
170
148
15 | 69652
59969
51315
30874
12360
4898
1989
871
613
295
138
120
24
22
9 | 111325
57025
49077
41664
24307
8709
3222
1176
514
386
210
73
48
10 | 95650
90985
46550
39272
30809
15720
4921
1943
770
320
244
148
35 | 111321
78301
74419
36637
26576
16950
8463
2978
1255
562
241
191
117
25 | 129063
91113
63970
59089
25364
15323
8315
4279
1474
739
380
155
133
92 | 80427
105665
74283
48988
39579
14183
8155
4102
2187
851
491
255
98
90
74 | 71694
65843
86376
58555
33173
23399
8491
4498
2207
1181
421
261
148
28 | 64891
58698
53908
67961
40475
20493
13758
5198
2779
1285
759
218
169
101 | 64173
53128
48056
43794
50182
24602
11222
7471
3063
1751
784
481
122
107
68 | 91185
52541
43494
39206
33754
33527
13101
5639
41023
1047
394
241
71 | | 1+1
2+1
3+1
4+1
5+1
6+1 | 364223
269583
181963
130137
75891
30206 | 344482
248379
172064
108137
73746
42727 | 296161
221988
145397
96685
55731
35849 | 240588
176991
118420
71762
44754
23312 | 221769
144490
93704
56736
32001
16681 | 224206
140191
78261
44328
25720
14469 | 223707
149656
82491
40817
21617
10310 | 233151
163498
103529
52214
21340
8980 | 297761
186436
129411
80334
38670
14363 | 327382
231732
140747
94197
54925
24116 | 358046
246726
168425
94006
57369
30793 | 399508
270445
179331
115362
56273
30909 | 379426
298999
193334
119051
70063
30484 | 356304
284610
218767
132390
73835
40662 | 330704
265812
207114
153206
85246
44770 | 309004
244831
191703
143546
99852
49571 | 319968
228783
176243
132748
93543
59789 | | | | | | | | TABLE 2 | 5: 4VSW | COD F | ISHING | MORTAL | ITIES | | | | | 8/ | 7/87 | |-----|----------------|----------------|-------|----------------|-------|----------------|---------|-------|----------------|--------|-------|-------|----------------|----------------|-------|-------|-------| | | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | | | 0.015
0.115 | 0.027
0.249 | 0.036 | 0.025
0.260 | | 0.024 | | | 0.002 | | 7 | | 0.000 | 0.000 | 0.000 | | | | 3 1 | 0.210 | 0.245
0.348 | 0.390 | 0.435 | 0.486 | 0.369 | 0.100 | 0.008 | 0.023 | 0.039 | 0.031 | 0.067 | 0.038 | 0.040 | 0.008 | 0.004 | 0.003 | | 5 | 0.402 | 0.377 | 0.770 | 0.699 | 0.722 | 0.592 | 0.637 | 0.150 | 0.236 | 0.398 | 0.351 | 0.381 | 0.326 | 0.282 | 0.298 | 0.203 | 0.280 | | 7 1 | 0.417 | 0.665 | 0.413 | 0.742 | 0.486 | 0.982
0.684 | 0.909 | 0.326 | 0.306 | 0.302 | 0.482 | 0.507 | 0.395 | 0.291 | 0.411 | 0.488 | 0.350 | | 9 | 0.591
0.287 | 0.386 | 0.443 | 0.817
0.733 | 0.335 | 1.105 | | 0.262 | 0.275 | 0.115 | 0.330 | 0.349 | 0.416 | 0.340 | 0.262 | 0.435 | 0.350 | | 11 | 0.642 | 1.342 | 1.455 | 1.509 | 0.075 | 0.660 | 0.154 | 0.434 | 0.147 | 0.045 | 0,242 | 0.199 | 0.431 | 0.458 | 0.258 | 0.488 | 0.350 | | 13 | 0.410 | 0.862
2.197 | 1.954 | 0.165 | 0.000 | 1.624 | 0.040 | 0.693 | 0.550 | 0.134 | 0.038 | 0.192 | | 0.238 | 0.384 | 0.892 | 0.350 | | | 0.338 | 1.743 | 0.000 | 7.427
0.914 | | 1.634 | | | 7.679
0.338 | | | | 0.979
0.328 | 0.976
0.273 | 0.205 | | | | | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | |--|--|---|--|--|--|--|--|--|--|---|--|--|---|---|--|---|--| | 1 2 3 4 5 6 7 8 9 10 11 123 134 15 | 1703
11273
19132
37816
51494
33350
13799
8453
1822
1333
1301
1089
163
1076
100 | 860
6763
16509
16945
25222
26839
16416
5404
4158
671
428
405
242
40
475 | 3303
10871
16192
24424
16417
20260
20781
10862
3121
2952
289
217
127
72
12 | 4556
10328
15545
16286
17115
8117
9338
9727
5130
1593
996
102
163
5 | 9012
13792
16582
17459
15310
13785
5532
5354
5468
2944
1236
479
111
166 | 7528
13806
13712
13043
10413
7720
6728
2828
1748
2038
1236
479
217
43
83 | 6676
16488
20523
14908
11184
6704
4244
3225
1690
850
796
431
175
91 |
6313
15215
37521
29931
17415
9443
4904
3101
2033
1334
475
385
115
158 | 20163
31998
41793
44955
33100
16391
9128
5012
2288
2025
1406
474
302
12 | 0
43685
31461
34462
39429
28009
12109
5839
3149
1906
1722
1244
312
140 | 0
40410
53167
35254
32697
26795
18895
9216
5124
3218
1474
1630
825
178
129 | 0
50766
46770
55451
32565
24241
17678
12282
6460
4344
2405
1151
1303
715
142 | 0
55626
53236
43512
48634
26544
17081
12453
8964
4326
3182
1790
642
558
715 | 7798
23274
62013
52995
40777
38117
20823
12598
7463
5501
2158
1912
1309
195
279 | 0
29739
35241
58564
45338
29419
25618
13876
8404
5034
4166
1339
1213
852
852 | 0
30576
30480
40253
60127
36157
20208
17818
8919
6991
3608
2126
736
978
598 | 0
12381
26950
32291
34101
43412
24377
12020
11694
6266
4263
2072
1867
296 | | 1+1
2+1
3+1
4+1
5+1
6+1 | 183904
182201
170928
151796
113981
62487 | 121378
120518
113755
97246
80301
55078 | 129901
126597
115727
99535
75111
58694 | 99042
94486
84159
68613
52328
35212 | 107232
98220
84428
67846
50386
35077 | 81621
74094
60287
46576
33532
23119 | 87995
81319
64831
44308
29400
18215 | 128419
122106
106891
69370
39438
22024 | 209151
188988
156989
115197
70242
37142 | 203466
203466
159781
128320
93858
54429 | 229013
229013
188503
135436
100181
67485 | 256274
256274
205508
158738
103287
70723 | 277263
277263
227637
168401
124889
76255 | 277212
269415
246141
184128
131132
90356 | 258886
258886
229147
193906
135342
90004 | 259575
259575
228999
198519
158266
98139 | 212626
212626
200245
173295
141004
106904 | Table 27. Projected catch at age('000) for 1987 and 1988 for 4VsW cod under two assumptions: A) TAC of 44,000 t caught in 1987, B) $F_{0.1}$ catch in 1987. Α. В. Age Age Figure 1: Nominal catch for 4VsW cod. Figure 2: Comparison of observed and projected catch at age. Two projections are presented; that projected last year assuming PR used in the cohort analysis (Proj), and that projected from last year's population estimate but using average PR. Figure 3: Maps of the study area showing A) NAFO boundaries and common fishing banks, and B) Research vessel survey strata. RV SPRING DATA 1979-1983 RELATIVE TO GRAND MEAN Figure 4: summer RV DATA 1970-1985 RELATIVE TO GRAND MEAN Figure 5: RV FALL DATA 1978-1982 Figure 6: RELATIVE TO GRAND MEAN Figure 7: A) Mean depth at age, B) mean temperature at age, C) mean temperature at depth from Subdiv. 4Vs and Div. 4W (solid line) compared to mean depth and temperature at age. Numbers indicate age and unnumbered dots are for ages 10 and above. SPRING SURVEYS. Figure 8: as for Figure 7, SUMMER SURVEYS. Figure 9: as for Figure 7, FALL SURVEYS. Figure 10: Age 5+ abundance at age from summer surveys. Figure 11: Comparison of mean weights at age from surveys and commercial catch. Figure 12: Standardized mean catch rate by year for longlines fishing 4VsW cod (2 s.e.). Figure 13: Leverage vs gear and year from the initial analysis of otter trawler catch rates. (See text for gear codes). Figure 14: Leverage vs gear and year from a second analysis of otter trawler catch rates after eliminating aliased data. Figure 15: Comparison of mean catch rates after high leverage points were removed. F indicates the full analysis, 1 following elimination of 1967, 1978, and 1979 data, 2 following elimination of 1965 and 1966 data. Figure 16: Comparison of the catch rate series used for calibration last year (1965-85) to the otter trawler series used this year. Figure 17: Standardized catch rate for otter trawlers fishing 4VsW cod. Figure 18: Percent of nominal catch taken in Subdiv. 4Vs. Figure 19: 4VsW cod spring offshore fishery distribution 1981-1986 from Scotia Fundy Region observer program. Symbol size indicates catch rate. ## 4VSH CÓD CATCH RATES (T/HR) DBSERVER DATA JAN-JUN Figure 19: con't Figure 20: 4VsW cod fall offshore fishery distribution 1981-1986 from Scotia Fundy Region observer program. Symbol size indicates catch rate. ## (VSW COD CATCH RATES (1/HR) OBSERVER DATA JUL-DEC Figure 20: con't | 5 | YEAR | RESIDUALS | IHD | DEP | |---|------|-----------|-------|-------| | F | 1970 | 1.000 | 57722 | 7631 | | E | 1971 | 70.676 | 52462 | 27415 | | D | 1972 | ~0.897 | 37108 | 14517 | | C | 1973 | 0.998 | 28394 | 29273 | | 3 | 1974 | 70.786 | 22032 | 5403 | | A | 1975 | -0.491 | 16800 | 5260 | | 6 | 1976 | 0.173 | 14363 | 10816 | | 7 | 1977 | 0.694 | 17617 | 18672 | | 8 | 1978 | 70.536 | 30815 | 14273 | | 9 | 1979 | 0.362 | 41686 | 31377 | | Ó | 1980 | 0.744 | 42762 | 35256 | | ĭ | 1981 | 0.027 | 42063 | 28004 | | | 1782 | *0.530 | 54052 | 30077 | | 3 | 1983 | 0.221 | 58102 | 40971 | | 4 | 1984 | 2.354 | 65352 | 69385 | | 7 | | -, | | | | 5 | 1985 | 0.210 | 78047 | 54377 | | 6 | 1986 | ~1.367 | 72772 | 28254 | Figure 21: Calibration plot for 4VsW cod using RV survey 5+ numbers vs SPA 5+ mean numbers. | 5 | YEAR | RESIDUALS | IHD | DEP | |-------|------|-----------|------|--------| | G | 1970 | -1.209 | 1103 | 74315 | | F | 1971 | 70.990 | 828 | 53299 | | E | 1972 | 0.586 | 745 | 94803 | | D | 1973 | -0.903 | 711 | 44165 | | C | 1974 | 0.452 | 532 | 68916 | | 3 | 1975 | ~0.448 | 396 | 26579 | | A | 1976 | 70.943 | 528 | 24307 | | 7 | 1977 | 70.864 | 526 | 26601 | | 8 | 1978 | 1.136 | 575 | 94945 | | 9 | 1979 | 0.328 | 1081 | 120756 | | 0 | 1980 | 70.188 | 953 | 91404 | | 1 | 1981 | 0.801 | 922 | 119584 | | 2 | 1982 | 1.161 | 1112 | 150303 | | 3 | 1983 | 1.996 | 1083 | 173775 | | 12345 | 1984 | 0.748 | 1165 | 142594 | | 5 | 1985 | 70.890 | 1524 | 127186 | | 5 | 1986 | 70.773 | 1665 | 145206 | Figure 22: Calibration plot for 4VsW cod using otter trawl fishable biomass vs catch rate. Figure 23: 4VsW cod age 1 recruitment. Year is indicated on x axis. Figure 24: 4VsW cod age 3+ mean population biomass. Figure 25: Production history of 4VsW cod. A) Production due to growth and recruitment, B) Comparison of surplus production (total production less natural mortality) and catch biomass. Stock biomass increases when surplus production exceeds catch.