Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries
Scientific Advisory Committee
CAFSAC Research Document 87/23

Ne pas citer sans
autorisation des auteurs 1
Comité scientifique consultatif des pêches canadiennes dans 1'Atlantique

CSCPCA Document de recherche 87/23

Sequential Population Analysis of the Nain Assessment Unit Arctic Charr Population in 1986
by
J. B. Dempson and L. J. LeDrew Science Branch
Department of Fisheries and Oceans P. 0. Box 5667

St. John's, Newfoundland A1C 5X1

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

Abstract

The Nain assessment unit, made up of Anaktalik Bay, Nain Bay, Tikkoatokak Bay, Webb Bay, Black Island, and Dog Island, was first assessed as a homogeneous unit at the end of the 1985 fishery. Annual landings from this assessment unit have ranged from 34 to 76 t (mean $=54 \mathrm{t}$) and from 1977 to 1986 have represented 36% of the total commercial production of Arctic charr from the Nain Fishing Region. Total allowable catch in 1986 was 43 t. Landings in 1986 were 37 t or 86% of the TAC. Effort decreased by 27% while catch per unit effort was 23% higher than in 1985. A sequential population analysis was carried out on catch at age data from 1977 to 1986 and suggested a reference level catch in 1987 from 45.5 to 53.5 t.

Résumé

L'unité d'ēvaluation de Nain, qui est constituēe de la baie d'Anaktalik, de la baie de Nain, de la baie de Tikkoatokak, de la baie de Webb, de Black Island et de Dog Island, a ētē évaluēe pour la première fois comme une entitē homogène à la fin de la saison de pêche de 1985. Les dēbarquements annuels dans cette unité d'évaluation ont varié de 34 à 76 t (moyenne $=54 \mathrm{t}$) et, de 1977 à 1986, ils ont constitué 36% de la pêche commerciale totale d'omble chevalier dans la zone de pëche de Nain. En 1986, le TPA ētait de 43 t et les dëbarquements ont étē de 37 t , ou $86 \% \mathrm{du}$ TPA. L'effort de pêche a diminuē de 27%, tandis que les prises par unité d'effort ont ētē supērieures de 23% à celles de 1985. Une analyse séquentielle de population a ētē rēalisée à partir des données sur les prises par âge pour 1977 à 1986; cette analyse indique que le taux de prise de rēférence en 1987 devrait se situer entre 45,5 et 53,5 t.

Introduction

The Nain assessment unit (Fig. 1) consists of an inshore zone made up of Anaktalik Bay, Nain Bay, Tikkoatokak Bay, and Webb Bay subareas, and an offshore zone consisting of the Dog Island and Black Island subareas (Dempson et al. 1986). It was first assessed as a homogeneous unit in 1985 (Dempson and LeDrew 1986). Prior to this, individual assessments were conducted separately on Arctic charr populations from Nain-Tikkoatokak Bay and Anaktalik Bay. Commercial removals from the other subareas within the assessment unit were only partially accounted for in the assessment. Annual landings from the Nain assessment unit have ranged from 34 to 76 t (mean $=54 \mathrm{t}$) (Table 1) and from 1977 to 1986 have represented 36% of the total commercial production from the entire Nain Fishing Region. The TAC recommended for 1986 was 43 t.

This paper summarizes results of the 1986 fishery and provides a forecast of available harvest, or a 'reference level' catch, for 1987.

Stock Assessment

Catch and effort data for the Nain assessment unit are summarized in Table 1 for 1974-86. The highest catch of $76 t$ occurred in 1977, the lowest of $34 t$ was in 1975. No quotas were in effect on any subarea during these two years. The quotas listed in Table 1 for 1979-83 applied only to the specific subareas of Anaktalik Bay and Nain-Tikkoatokak Bay. In 1984 and 1985, an offshore component was included in the TAC. The quota area catch in Table 1, therefore, summarizes landings for those subareas specifically under quota restrictions only prior to the derivation of assessment units in 1986. In 1986, the TAC applied to the entire assessment unit.

Landings in 1986 totaled 37 t and were 10% lower than the previous year. Effort decreased by 27%, while catch per unit effort (CUE) was 23% higher than in 1985. The 1986 catch, however, was 86% of the TAC for the assessment unit.

The trend for increased landings and abundance of fish in the offshore zone continued in 1986 (Table 1). This was the first time that over 50% of the catch occurred in the offshore zone. Since 1976 the proportion of the catch taken in the offshore zone has been correlated with total landings ($r=-0.73$, $P=0.010)$; total landings are lower in years when a greater proportion of the catch occurs in the offshore zone. Based on catch data from 1977 to 1985, July 21 was calculated to be the overall mean date of the fishery as estimated by a migratory timing statistic (Dempson and Kristofferson 1987). Thus fish caught after July 22 are classified as 'late'. Fishing in the offshore zone usually occurs later in the season in comparison with fishing in the inshore areas. Therefore, there is also a highly significant relationship between the proportion of the catch taken in the offshore zone and the proportion of the catch which is taken 'later' in the fishing season ($r=0.92, \mathrm{P}=0.0001$). It follows then that as the proportion of the catch taken later in the season increases, total catch should decrease. In fact total catch is negatively correlated to the proportion of the catch taken 'late' ($r=-0.79, P=0.004$). From counting fence operations it is known that charr begin returning to the rivers during the second two weeks of July. It is possible that the
availability of fish to the fishery is less when landings are concentrated in the offshore zone later in the fishing season. Thus overall landings may not necessarily be expected to be as high as if catches were concentrated in the inshore zone earlier in the fishing season.

Numbers at age were available since 1977 and are summarized in Table 2. Data were derived from annual commercial sampling programs. Mean age has ranged from 8.5 to 9.8 years with a slight trend to a younger mean age during the past three years. From 1977 to $1986,66 \%$ of the catch has been made up of 8 -, 9-, and 10 -year-old fish. Only 5% of the fish are older than age 12.

Weights at age were calculated from commercial samples obtained from 1977 to 1986. Gutted head-on weights were converted to whole weight using the conversion factor 1.22 (Dempson 1984). For the yield per recruit analysis, mean weight at age for the period 1977-79 was used. This tends to reflect more of the 'original' characteristics of the stock. For stock projections, mean weight at age for the period 1984-86 was used (Table 3).

Mean weight at age has changed over time. For 7 - to 10 -year-old Arctic charr the average percentage decrease in weight is $8 \%(0.16 \mathrm{~kg})$ (average 1977-79 to 1984-86), while the average decline for 11- to 14-year-old fish is $23 \%(0.66 \mathrm{~kg})$. It is possible that the large catches during the late 1970 s , primarily in the inshore subareas of Anaktalik Bay and Tikkoatokak Bay, have effectively removed the larger individuals from the stock. The percentage of the catch of 'large' charr (fish greater than 2.3 kg gutted head-on weight) in Anaktalik Bay from 1977 to 1979 ranged from 20 to 38% but dropped to 11% for 1982-84 (Dempson et al. 1986). Similarly in Tikkoatokak Bay, the percentage of 'large' charr in the catch was between 14 and 20% in 1977-79, but only 5 to 8% in 1982-84. These two subareas dominated the landings from the Nain assessment unit from 1977 to 1979 ranging from 79 to 92% of the total catch. From 1984 to 1986 only $11-33 \%$ of the total catch was taken from these two subareas. The change in mean weight at age would appear to reflect the removal of these larger fish.

Total mortality (Z) was calculated using the Paloheimo method (Ricker 1975) and the average vaTue from all years (1977-78 to 1985-86) was 0.57. Average Z of 0.60 for the past three years (1983-84 to 1985-86) was reasonably constant. Assuming a natural mortality rate as in past assessments of 0.2 yields an estimate of fishing mortality of 0.40 . An estimate of total mortality was also derived from a catch curve using catch per unit effort at age data from 1984-86. This indicated a Z of 0.62 .

As in past years, an estimate of fishing mortality was derived from:

$$
\mu=1-e^{-F} \text { (Ricker 1975) }
$$

where μ was estimated from tag recaptures. Using last year's value of 10% for an estimate of tagging mortality, tag loss or non-reporting of tags results in a value of μ of

$$
\mu=\frac{151}{435}=0.347
$$

Rate of fishing mortality was calculated to be 0.43 (95% C.L. $=0.35-0.52$).
An initial cohort analysis was run using partial recruitment values and terminal fishing mortality (F_{T}) from last year's assessment (Dempson and LeDrew 1986) ($F_{T}=0.45$). An iterative procedure was used to obtain estimates of fishing mortality for the oldest age group $\left(F_{B}\right)$. The iteration process stops when the input and output values differ by 0.005 or less (Rivard 1982). Following this the cohort analysis procedure was rerun using the newly-derived values for F_{B}.

Partial recruitment rates were calculated using the historical averaging method from the matrix of fishing mortality rates generated from the last sequential population analysis (SPA) and are presented in Table 3.

Yield per recruit was calculated by the method of Thompson and Bell (Ricker 1975) using partial recruitment rates and mean weight at age. $F_{0.1}$ was 0.40 at a yield per recruit of 0.89 kg .

Cohort analyses were performed using a range of terminal fishing mortality $\left(F_{T}\right)$ rates from 0.2 to 0.6 using the newly-derived estimates of partial recruitment. In each run, fishing mortality rates for the oldest age group $\left(F_{B}\right)$ were re-evaluated using the iterative procedure. Regressions of F (weighted mean F for fully-recruited fish) on fishing effort and population biomass on catch per unit effort of fully-recruited fish were used in tuning the analysis to key in on an appropriate value for F_{T} in 1986. Data from 1977 to 1986 were included in the regression analyses.

Regressions of F on effort showed a decrease in the correlation coefficient with an increase in F_{T} (Table 4). The distance of the last point (1986) to the regression line decreased as F_{T} increased. The intercept value, however, was lowest when $F_{T}=0.25$. Two additional indices were used in trying to identify an appropriate value for F_{T}. The sum of the residuals for the last three years (1984-86) was the lowest when $\mathrm{F}_{\mathrm{T}}=0.35$, while the sum of squares of the residuals for the last three years was minimal when $F_{T}=0.3$.

With respect of the regressions of population biomass on CUE, the correlation coefficient had the highest value when $F_{T}=0.3$. The residual of the last year to the regression line was lowest when $F_{T}=0.35$, while the residuals for the last three years were also lowest when $\mathrm{F}_{\mathrm{T}}=0.3$

In summary, regression analyses suggest a value of F_{T} of 0.3-0.35. Estimates derived from the Paloheimo and catch curve methods ($F_{T}=0.4$), in addition to the tagging results ($F_{T}=0.43$) suggest a slightly higher value of terminal fishing mortality.

Stock projections, therefore, were run with F_{T} varying from 0.35 to 0.45. Recruitment for the projections was estimated from the geometric mean of population numbers for age 6- and 7-year-old fish for years 1977-84. Weights at age were based on 1984-86 data. Table 5 summarizes the population numbers and fishing mortality matrix for the cohort analysis run with $\mathrm{F}_{\mathrm{T}}=0.40$.

Results of the projections are summarized in Table 6. The 'reference level' catch in 1987 ranges from 45.5 to 53.5 t with the highest value occurring with $F_{T}=0.35$. The 1987 reference level catch resulting from the cohort analysis run with $F_{T}=0.40$ is virtually identical to the projected available harvest two years in advance from last year's assessment (47.7 t). The reference level catch projected two years in advance (for 1988), with $\mathrm{F}_{\mathrm{T}}=$ 0.40 , would be 50 t . A reference level catch of 47 t for 1987 would be 9% higher than last year, but still 19% lower than the average catch in this assessment unit over the past 10 years (mean $=58.2 \mathrm{t}, 1977-86$).

The reference level catch could be apportioned using the proportionate distribution of total landings in the Nain assessment unit inshore and offshore zones during the past five years. These values are:

Average 1982-86

Inshore	0.620
Offshore	0.380

Applying these values to a reference level catch of 47 t , for example, would result in the following distribution of allowable landings for 1987:

Inshore	29.1 t
Offshore	17.9 t

The inshore component could also be subdivided into respective subareas to avoid concentrating effort in any one location.

References

Dempson, J. B. 1984. Conversion factors for northern Labrador Arctic charr landings statistics. CAFSAC Res. Doc. 84/6.

Dempson, J. B., and A. H. Kristofferson. 1987. Spatial and temporal aspects of the ocean migration of anadromous Arctic char, Salvelinus alpinus. In Life history strategies of diadromous fishes. Am. Fish. Soc. Spec. PubT.

Dempson, J. B., and L. J. LeDrew. 1986. Sequential population analysis of the Nain assessment unit Arctic charr population. CAFSAC Res. Doc. 86/24.

Dempson, J. B., L. J. LeDrew, and G. Furey. 1986. Summary of catch statistics by subarea and assessment unit for the northern Labrador Arctic charr fishery in 1985. CAFSAC Res. Doc. 86/26.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191.

Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091.

Table 1. Summary of catch and effort statistics for the Nain assessment unit, 1974-86. Quotas and landings are in kg round weight, effort is expressed as man-weeks fished. Refer to text for information on quotas and quota area catch.

	Inshore			Offshore				Total				
	Catch	Effort	CUE	Catch	Effort		\% Catch offshore	Catch	Effort*	CUE	Quota	Quota area catch
1974	30,822			6,923			18.1	37,745				
1975	31,076			2,754			8.1	33,830				
1976	50,813	146	348	2,500	52	48	4.7	53,313	196	272		
1977	7,098	183	387	5,347	114	47	7.0	76,255	291	262		
1978	70,465	212	332	3,298	106	31	4.5	73,763	314	235		
1979	54,967	189	291	11,877	152	78	17.8	66,844	336	199	61,000	52,832
1980	52,328	183	286	22,727	215	106	30.3	75,055	390	192	61,000	50,176
1981	49,956	157	318	15,676	131	120	23.9	65,632	278	236	37,160	37,223
1982	43,108	119	362	12,509	117	107	22.2	55,617	235	237	43,660	39,119
1983	33,603	147	229	17,599	149	118	34.4	51,202	289	177	51,000	19,102
1984	24,558	131	187	14,342	128	112	36.9	38,900	244	159	43,200	29,063
1985	21,527	125	172	19,631	130	151	47.7	41,158	252	163	30,500	36,019
1986	16,347	91	180	20,748	101	205	55.9	37,095	185	201	43,000	

*Total effort should be equal to or less than the sum of the inshore and offshore effort.
TABLE 2.

8＊8	で 6	$6^{*} 6$	$8^{*} 6$	$8^{\circ} 6$	$\varepsilon^{\bullet} 6$	$\mathbf{Z}^{\bullet} 6$	$6^{*} 8$	$8^{\circ} 8$	$S^{*} 8$	$\begin{array}{r} 39 H \\ N \forall J W \end{array}$
2g9£										
I	It	I	ST	SZ	I	91	I	I	\downarrow	1 LT
2S	OE	I	I	$L 1$	01	2	$\square 1$	26	I	195
$90 己$	\downarrow 「こ	62	I	26	LS	6Σ	$\square \Sigma$	8II	I	151
10己	こちb	で1	908	652	08	67 6	こち¢	ことこ	085	$1 \downarrow 5$
こち己	928	SLS	998	$2 T$	こと己	492	9It	ご乏	8SE	$1 E I$
SE9	b2EI	6EST	8LEE	＋092	EL9	966	ELST	889	886	1 こ！
$\bigcirc 0 ¢ 5$	EEL己	C9E2	Sg2s	0205	982E	$\underline{\Sigma}$ S	89「て	L9E2		1 I
$\checkmark 68 己$	9025	S80S	68ES	$t 298$	6826	ちrs8	9026	9066	CSOS	101
6E6S	0 ISt	2695	CEL9	9122	OBIST	S2L91	E6S6	b86L	$0 \Sigma 92$	16
6 T8L	L2てL	0588	2626	Sてtb	0299	0£6IT	89SIT	己己IET	EStで	18
EBIV	2982	6002	6895	1ヶ9	LSSI	E2OL	90£b	E0＜9	OS2G	12
ごこ	bLI	¢8	0 IC	StI	StI	£した	OEt	ILE	E002	19
9867	S86T	4865	E865	286T	T865	0861	626T	8265	L265	1

Table 3. Summary of weight (kg-round) at age data, partial recruitment rates and calculated $F_{0.1}$ for the Nain assessment unit Arctic charr populations.

Age	Weight			Partial recruitment
	1977-79	1980-83	1984-86	
6	1.05	1.13	1.15	0.012
7	1.52	1.41	1.40	0.105
8	1.83	1.62	1.75	0.420
9	2.12	1.91	2.01	0.762
10	2.45	2.01	2.12	1.00
11	2.59	2.01	2.12	1.00
12	2.63	2.08	2.09	1.00
13	2.74	2.16	2.13	1.00
14	3.13	2.09	2.10	1.00
15	3.05	2.18	2.10	1.00
16	3.05	2.10	2.10	1.00
17	3.05	2.10	2.10	1.00
$F_{0 \cdot 1}=0.40$	of 0.89			

Table 4. Results of regressions (1977-86) of F on effort and population biomass on catch per unit effort for various terminal fishing mortality rates (F_{T}) for the Nain assessment unit.

Regression	Parameter	Terminal F							
		0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.6
F (weighted mean for fully-recruited fish) on effort							NS		
	r	0.85	0.83	0.79	0.73	0.65	0.54	0.42	0.15
	residual - 1986	-0.11	-0.11	-0.11	-0.10	-0.09	-0.08	-0.06	-0.03
	normalized	-0.21	-0.20	-0.19	-0.17	-0.15	-0.12	-0.10	-0.04
	intercept	-0.10	0.00	0.10	0.19	0.27	0.35	0.43	0.58
	normalized	-0.20	0.00	0.17	0.32	0.45	0.58	0.69	0.88
	Σ residuals (1984-86)	-0.15	-0.10	-0.05	-0.01	0.03	0.06	0.10	0.16
	$\Sigma\left(_{(1984-86)}\right.$	0.01	0.01	0.00	0.01	0.02	0.02	0.02	0.03

Population biomass
(fully-recruited
fish) on CUE

r	0.66	0.82	0.85	0.84	0.81	0.79	0.77	0.74
residual (t) - 1986	16	8	2	-2	-5	-7	-9	-11
normalized	0.32	0.17	0.05	-0.04	-0.11	-0.17	-0.21	-0.29
intercept (t)	26	21	17	14	12	10	9	7
normalized	0.54	0.45	0.38	0.33	0.29	0.26	0.23	0.19
Σ residuals $(1984-86)$	15	3	-6	-12	-17	-20	-23	-27
$\sum \underset{(1984-86)}{(\text { residual })^{2}}$	248	70	39	59	98	142	186	266

Table 5. Summary of the population numbers and fishing mortality matrix for the cohort analysis run at $F_{T}=0.40$ on the catch at age data for the Nain assessment unit Arctic charr population.

1	1977	1978	1979	1980	1931	1982	1983	1981	1985	1986
6.1	124694	$10 \leq 217$	56758	19003	41296	39232	60132	86891	137150	46894
71	82884	100279	86627	46081	40018	33679	32030	49042	71065	112132
81	42931	59190	76036	67028	36802	31355	26994	24696	38334	555.94
91	21483	23881	36833	51786	14083	24186	21667	17761	16736	24801
101	13257	10685	12328	21475	27265	22357	12793	11648	9391	9621
111	6637	6283	4761	6286	9855	13470	10501	5598	4936	4335
12 I	2222	3214	3002	1935	1911	5095	6486	3815	2446	2111
131	826	925	1104	1035	729	980	1815	2254	1731	805
141	419	352	475	525	156	387	429	704	1325	668
15.1	134	180	42	107	114	55	83	75	448	685
16^{1}	3	109	41	4	52	42	3	67	35	173
171	1	1	1	21	1	34	19	1	54	1
6+1	295472	311616	278009	245287	202314	170923	172954	202552	283651	257820
7+1	170798	205399	221251	196235	161017	131641	112822	115631	146501	210926
$8+1$	87914	105120	134624	150204	120999	97961	80751	6.6619	75435	98794
$9+1$	44982	456.30	58588	8.3176	81197	36606	53797	41923	37101	43200

FISHIHG MORTALITY

	1977	1978	197	98	981	1982	98	98	98	198
6	0.01	0.004	0.008	0.003	0.004	0.004	0.004	0.001	0.001	0.00
7	10.132	0.077	0.057	0.025	0.044	0.021	0.060	0.046	0.046	0.042
8	0.337	0.279	0.184	0.217	0.220	0.170	0.219	0.189	0.235	0.168
9	10.498	0.461	0.339	0.442	0.479	0.437	0.421	0.437	0.354	0.305
10	0.547	0.608	0.474	0.579	0.505	0.556	0.627	0.659	0.573	0.400
11	0.525	0.538	0.700	0.575	0.46 .0	0.531	0.812	0.628	0.649	0.100
12	0.676	0.869	0.865	0.776	0.433	0.832	0.857	0.590	0.912	-
13	10.652	0.466	0.542	1.692	0.433	0.625	0.748	0.331	0.752	0.400
14	0.644	1.918	1.294	1.325	0.837	1.313	1.549	0.252	0.460	0.400
15	0.008	1.288	2.179	0.518	0.801	2.804	0.013	0.560	0.751	0.400
16	0.524	4.196	0.479	0.827	0.239	0.592	0.516	0.017	2.985	0.400
17	0.553	0.636	0.586	0.69	0.493	0.5	0.71	0.589	0.63	0.400
10	0.555	665	. 60	0.720	0.993	0.593	0.751	. 596	0.648	

Table 6. Summary of projected reference level catch (t) for 1987 and 1988 with F_{T} in 1986 varying from 0.35 to 0.45 .

	F_{T} in 1986		
	0.35		0.45
1987	53.5	47.5	45.5
1988	54.9	50.2	49.1

Fig. 1. General patterns of ocean movements of anadromous Arctic charr in northern Labrador showing number of fish tagged and release locations. Stock Unit areas are also indicated.

