Not to be cited without permission of the authors 1

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 87/17

Ne pas citer sans autorisation des auteurs¹

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 87/17

Analysis of the Okak Assessment Unit Arctic Charr Population in 1986

by

J. B. Dempson and L. J. LeDrew
Science Branch
Department of Fisheries and Oceans
P. O. Box 5667
St. John's, Newfoundland A1C 5X1

- This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
 - Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
- 1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

Abstract

The Okak assessment unit, made up of Okak Bay and the Cutthroat subareas, was first assessed as a homogeneous unit at the end of the 1985 fishery. Annual landings have ranged from 5 to 76 t (mean 38 t) and from 1977 to 1986 have represented 26% of the total commercial catch of Arctic charr from the Nain Fishing Region. Total allowable catch in 1986 was 42 t. Landings in 1986 were 39 t or 69% of the recommended TAC. Effort decreased by 17% while catch per unit effort was up by 5%. A sequential population analysis was carried out on catch at age data from 1977 to 1986 and suggested a reference level catch in 1987 of 38-50 t.

Résumé

L'unité d'évaluation d'Okak, constituée de la baie d'Okak et des sous-zones de Cutthroat, a été évaluée pour la première fois comme unité homogène à la fin de la saison de pêche de 1985. Les débarquements annuels ont varié de 5 à 76 t (moyenne = 38 t) et, de 1977 à 1986, ils ont constitué 26 % de la pêche commerciale totale de l'omble chevalier pour la zone de pêche de Nain. En 1986, le TPA a été de 42 t, et les débarquements ont été de 39 t, ou 69 % du TPA recommandé. L'effort a diminué de 17 %, tandis que les prises par unité d'effort ont augmenté de 5 %. Une analyse séquentielle de population a été réalisée à partir des données sur les prises par âge de 1977 à 1986 et cette analyse indique un taux de prise de référence de 38-50 t pour 1987.

Introduction

Okak Bay is located approximately 125 km north of the village of Nain. Labrador (Fig. 1). This bay is a major area for the commercial production of Arctic charr along the northern Labrador coast. Catches of Arctic charr are delivered to the fish plant in Nain via a collector boat system. Results of tagging studies indicated that Okak Bay and the offshore area of Cutthroat were a single unit (Dempson et al. 1986). This was first assessed as such after the 1985 fishery. Catch statistics for the Okak assessment unit have been available since 1974 (Table 1). Annual landings have ranged from 5 to 76 t (mean = 38 t) and from 1977 to 1986 have represented 26% of the total commercial catch of Arctic charr from the Nain Fishing Region. Quotas were first applied to Okak Bay itself in 1981, while a TAC of 42 t was recommended for the Okak assessment unit for 1986. This paper summarizes the results of the 1986 fishery and provides a forecast of available harvest or 'reference level' catch for 1987 based upon the results of a sequential population analysis.

Stock Assessment

Catch and effort data are summarized in Table 1 for 1974-86. Landings in 1986 totaled 29 t and were 13% lower than in the previous year. This was approximately 69% of the TAC. Effort decreased by 17% while catch per unit effort (CUE) was up by 5%. The quota area catch column in Table 1 refers to the subarea specifically under quota restriction only (Okak Bay) prior to the formation of the assessment unit in 1986.

Numbers at age were available since 1977 and are summarized in Table 2. Data were derived from annual commercial sampling programs. Mean age of the catch has varied from 9.1 to 12.1 years with a slight decrease during the past several years. From 1977 to 1986, 52% of the catch has been made up to 9- to 11-year-old fish while fish aged 12 and above have represented 21% of the catch.

Weights at age were calculated from commercial samples obtained from 1977 to 1986. Gutted head-on was converted to whole weight using the conversion factor 1.22 (Dempson 1984). For the yield per recruit analysis, mean weight at age for the period 1977-79 was used. For stock projections mean weight at age for the period 1984-86 was used (Table 3).

Mean weight at age for the Okak assessment unit has also decreased over time. For 7- to 10-year-old Arctic charr the average percentage decrease in weight is 5% (0.08 kg) (average 1977-79 to 1984-86). For 11- to 14-year-old fish the percentage decline in weight is 13% (0.30 kg). Similar to the other stock units, there has been a decline in the proportion of 'large' charr in the commercial catch (fish greater than 2.3 kg gutted head-on weight) over this period of time. Since this trend occurs in three assessment units it is not believed to be a sampling problem as opposed to a selective removal of larger fish by the commercial fishery.

Total mortality (Z) was calculated using the Paloheimo method (Ricker 1975) and the average value for all years (excluding 1983-84) was 0.65. Assuming a natural mortality rate of 0.2 yields an estimate of fishing mortality of 0.45. As in past years there was a considerable amount of variation in the estimates and a catch curve was also used to provide an estimate of Z. Using catch per unit effort at age data from 1984 to 1986 (ages 11-16) a Z of 0.63 was obtained.

An independent estimate of exploitation and fishing mortality, as derived from tag recaptures, was obtained for the first time for this assessment unit where:

$$\mu = 1 - e^{-F}$$
 (Ricker 1975).

Assuming a value of 10% for an estimate of tagging mortality, tag loss and non-reporting of tags results in a value of μ of

$$\mu = \frac{39}{98} = 0.398.$$

Tag loss is believed to be minimal given the short period of time between tagging in the spring and the duration of fishery (two to three months). Nonreporting of tags is also believed to be minimal. Fisheries and Oceans staff have been present at the Nain Fish Plant for the duration of the fishery each year since 1977. This has ensured a good cooperation with fishermen regarding reporting of tags, and prompt reward payment for their return.

Rate of fishing mortality was calculated to be 0.51 (95% C.L. = 0.34 - 0.79). The number of tags applied was only about one-quarter of the number applied in the Nain assessment unit.

An initial cohort analysis was run using partial recruitment values and terminal fishing mortality (F_T) from last year's assessment (Dempson and LeDrew 1986) (F_T = 0.45). An iterative procedure was used to obtain estimates of fishing mortality for the oldest age group (F_B) (Rivard 1982). Following this the cohort analysis procedure was rerun using the newly-derived values for F_B .

<u>Partial recruitment rates</u> were calculated using the historical averaging method from a matrix of fishing mortality rates generated from the last sequential population analysis (SPA) and are presented in Table 3.

Yield per recruit was calculated by the method of Thompson and Bell (Ricker 1975) using partial recruitment rates and mean weight at age. $F_{0.1}$ was 0.43 at a yield per recruit of 0.74 kg. This $F_{0.1}$ value was rounded to 0.4 for conformity with other assessment units.

Cohort analyses were performed using a range of terminal fishing mortality rates from 0.2 to 0.6 using the newly-derived estimates of partial recruitment. In each run, fishing mortality rates for the oldest age group were re-evaluated using the iterative procedure. Regressions of F (weighted mean F for

fully-recruited fish) on effort and population biomass on catch per unit effort of fully-recruited fish were used in tuning the analysis to determine an appropriate value for F_T in 1986. Data from 1977 to 1986 (excluding 1984) were included in the regression analysis.

Regressions of F on effort showed a decrease in the correlation coefficient with an increase in F_T (Table 4). The distance of the last point (1986) to the regression line was lowest when F_T = 0.4-0.5. The intercept value was lowest when F_T = 0.35 and the residuals for the last two years were smallest when F_T was 0.35 or less.

The regressions of population biomass on CUE had the highest correlation at F_T = 0.25. Residuals were also lowest when F_T = 0.25.

In summary, regression analyses suggested a value of F_T from 0.25 to 0.45 while the Paloheimo, catch curve, and tagging results suggested an average value of around 0.45. Dropping the lowest and highest values indicated F_T may range between 0.3 and 0.4.

Stock projections were run for a series of terminal fishing mortalities ranging from 0.30 to 0.40. Recruitment for the projections was estimated from the geometric mean of population numbers for age 6- and 7-year-old charr. Weights at age were based on 1984-86 data. Table 5 summarizes the population numbers and fishing mortality matrix for the cohort analysis run with $\mathsf{F}_\mathsf{T} = 0.40$.

Results of the projections are summarized in Table 6. The 'reference level' catch in 1987 ranges from 38 to 50 t with the highest value occurring with $F_T=0.30$. The 1986 TAC was 42 t while the average catch during the past five years has been 33 t. Given that effort decreased in 1986 and that there has not been any consistent change in age structure of the population, it is suggested that the 1986 'reference level' catch of 42 t remain in effect for 1987.

References

- Dempson, J. B. 1984. Conversion factors for northern Labrador Arctic charr landings statistics. CAFSAC Res. Doc. 84/6.
- Dempson, J. B., and L. J. LeDrew. 1986. Assessment of the Okak assessment unit Arctic charr population in 1985. CAFSAC Res. Doc. 86/25.
- Dempson, J. B., L. J. LeDrew, and G. Furey. 1986. Summary of catch statistics by subarea and assessment unit for the northern Labrador Arctic charr fishery in 1985. CAFSAC Res. Doc. 86/26. 19 p.
- Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191.
- Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091.

Table 1. Summary of catch and effort statistics for the Okak assessment unit, 1974-86. Quotas and landings are in kg-round weight, effort is expressed as man-weeks fished.

Year	Quota	Quota area catch	Landings	Effort	CUE
1974			46,891		
1975			5,057		
1976			25,338	148	171
1977			42,392	243	174
1978			76,024	352	216
1979			43,261	283	153
1980			49,035	253	194
1981	27,300	11,049	47,541	202	235
1982	27,300	9,031	34,171	186	184
1983	21,000	30,732	48,978	286	171
1984	27,000	13,864	18,146	94	193
1985	27,000	24,746	33,261	208	160
1986	42,000	•	28,896	172	168

ESTIMATED CATCH AT AGE FOR ARCTIC CHARR FROM THE OKAK STOCK UNIT, 1977-86. TABLE 2.

6 84 205 1 130 39 93 475 251 17 41 7 139 2465 1989 638 526 713 1762 1371 2675 2056 8 417 2465 1989 638 526 713 1762 1371 2675 2056 9 1084 5497 9175 7166 4471 2336 4948 6333 10 2667 5594 4997 9175 7166 4167 5787 2151 5385 5197 10 2667 5594 4997 9175 7165 446 5501 1850 2740 3299 10 2667 5594 3299 6487 7615 3848 5601 1850 2740 3291 12 447 1864 562 5169 2211 2936 146 5169 2211 2936 148 13 1472 1027 410 262 359 148				
1977 1978 1979 1980 1981 1982 1983 1984 1985	98	1 4000000011 C 1 40000000000000000000000	001	9.1
1977 1978 1979 1980 1981 1982 1983 1984	98	- 1000000000000000000000000000000000000	148	9.5
1977 1978 1979 1980 1981 1982 1983 475 139 2465 1989 638 526 713 1762 471 130 2135 2760 4471 130 2667 5594 3299 6487 7615 3848 5601 1084 5494 4997 9175 7166 4167 5787 1084 5494 4997 9175 7166 4167 5787 1084 5494 5297 5487 7615 3848 5601 1084 5497 1954 2863 4673 3622 5169 1084 514 527 350 459 342 658 1027 410 262 359 183 307 1084 57 107 1089 34874 23096 27638 25715 17827 3017 1074 19889 34874 23096 27638 25715 17827 3017 1284 1587 3017 1074 19889 34874 23096 27638 25715 17827 3017 10889 34874 23096 27638 25715 17827 10889 25715 17827 10889 25715 17827 10889 25715 10889 25715 10889 24874 10889 2868 10889 24874	98	QCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	380	10.1
1 1977 1978 1979 1980 1981 1982 6 1 84 205 1 130 39 93 7 1 139 2465 1989 638 526 713 8 1 417 8163 7462 5631 2135 2760 9 1 1084 5494 4997 9175 7166 4167 9 1 1084 5497 9175 7166 4167 9 1 1084 5497 9175 7615 3848 1 1 2594 3299 6487 7615 3848 2 1 3388 3747 1954 2863 4673 3622 3 1 2694 359 1878 183 183 4 1 1694 517 761 407 1044 444 4 1 1694 517 410 262 359 183 5 1 1 274	98	1 4C4C810000014.0	17	10.1
1977 1978 1979 1980 1981	98	CC+BBR484	782	9.9
1977 1978 1979 1980 130 130 139 2465 1989 638 638 1084 5497 9175 1338 3747 1954 2863 2278 2773 761 407 407 159 129 6487 139 1139 411 234 129 611 139 411 234 129 611 139 117 138 511 139 117 138 511 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 139 117 138 611 138 1	98	1 NOTHER BOOK TO THE TO	571	10.2
1977 1978 1979 1979 1979 1979 139 2465 1989 1084 5494 4997 1954 2278 2773 761 2278 2773 761 2278 2773 761 234 1129 103 95 1139 103 95 117 1389 34874 2309 EAN	98	1001488489	763	9.6
1 1977 1978 6 1 84 205 7 1 139 2465 8 1 417 8163 9 1 1084 5494 1 1 3388 3747 2 1 5417 3953 3 1 2278 2773 4 1 1694 514 5 1 1472 1027 6 1 832 308 7 1 139 411 8 1 139 103 9 1 139 103	97	. 040000CC460 4	309	9.6
1977 6 1 139 8 1 1084 10 1 2667 3 1 2278 3 1 2278 5 1 1472 6 1 832 7 1 139 8 1 139 8 1 139 8 1 139	97	04448C0C808444 0000048C400404	487	10.1
00-80-100400-801 0H		4400040048444 6016064767	988	12.1
	:		10	

Table 3. Summary of weight (kg round) at age data, partial recruitment rates and calculated ${\bf F_{0}}$, for the Arctic charr population of the Okak assessment unit.

	We	ight		
Age	1977-79	1984-86	Partial recruitment	
6	1.21	1.14	0.005	
7	1.48	1.31	0.067	
8 9	1.66	1.60	0.317	
9	1.85	1.78	0.553	
10	1.98	1.98	0.772	
11	2.02	1.87	1.0	
12	2.36	2.06	1.0	
13	2.30	1.93	1.0	
14	2.38	2.00	1.0	
15	2.48	1.92	1.0	
16	2.30	1.96	1.0	
17	2.30	1.96	1.0	
18	2.30	1.96	1.0	
19	2.30	1.96	1.0	

 $F_{0.1} = 0.43$ at a Y/R of 0.74 kg.

Table 4. Results of regressions of F on effort and population biomass on catch per unit effort for various terminal fishing mortality rates (F_T) for the Okak assessment unit.

				····	Termi	nal F			
Regression	Parameter	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.6
F (weighted me									
for fully-recr						NS			
fish) on effor		0.78	0.78	0.73	0.69	0.64	0.59	0.53	0.41
	residual - 1986	-0.10	-0.06	-0.06	-0.04	-0.02	0.01	0.03	0.08
	normalized	-0.19	-0.12	-0.11	-0.07	-0.03	0.01	0.05	0.14
	intercept	-0.18	-0.16	-0.06	0.01	0.06	0.12	0.17	0.28
	normalized	-0.37	-0.32	-0.10	0.01	0.11	0.21	0.30	0.46
	Σ residuals (1985-86)	-0.10	-0.10	0.02	0.07	0.13	0.18	0.23	0.32
	Σ (residuals) ² (1985-86)	0.01	0.01	0.01	0.01	0.02	0.03	0.04	0.06
Population bio									
(fully-recruit		0 00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
fish) on CUE	r	0.88	0.91	0.90	0.90	0.89	0.89	0.88	0.88
	residual (t) - 1986	4	1	-1	-3	-4	- 5	-6	-7
	normalized	0.11	0.02	-0.04	-0.09		-0.16	-0.19	-0.23
	intercept (t)	17	13	11	9	7	6	5	4
	normalized	0.48	0.39	0.32	0.27	0.23	0.20	0.18	0.14
	Σ residuals (1985-86)	3	-3	- 6	- 9	-11	-13	-14	-16
	Σ (residuals) ² (1985-86)	18	12	27	46	64	82	97	123

Table 5. Summary of the population numbers and fishing mortality matrix for the cohort analysis run with ${\rm F}_{\rm T}=$ 0.40 on the catch at age data for the Okak assessment unit Arctic charr population.

POPULATION NUMBERS

	1977	1978	1979	1980	1981	1932	1983	1984	1985	1986
6 1	91674	62774	14390	40086	30844	47422	63033	91105	103982	22640
7 1	57985	74980	51209	36343	32702	25217	38742	51177	74363	85118-
8 (27513	47348	39158	40127	29178	26298	20001	30125	40660	58463
9 1	21766	22149	31379	41683	27758	21957	19034	12330	22550	28812
10	12439	16810	13163	21170	25825	16242	14206	10347	8149	13590
11 i	12507	7771	8726	7792	11463	14253	981 6	6563	6798	4192
12	11699	7174	2972	5374	3739	5156	8372	3360	3373	2909
13 I	4730	4677	2297	1639	3151	1898	2826	3184	1419	1868
14	4219	1811	1320	1192	974	1635	1153	827	1539	492
15 I	2892	1922	1018	604	659	382	1029	348	146	565
16	1794	1036	644	462	257	215	147	565	87	27
17	604	716	569	210	297	171	124	24	348	3
18 I	332	368	214	254	55	112	106	92	8	239
19 I	187	146	208	90	178	2	78	47	74	1
6+1	250342	249712	217269	197027	167130	160962	178688	210094	263495	218920
7+ I	158668	186939	172878	156941	136286	113540	115655	118989	159514	196280
8+1	100683	111958	121669	120598	103584	88322	76914	67812	85151	111163
9+1	73170	64610	62511	80471	74406	52024	56912	37688	44491	52700

FISHING MORTALITY

1 197	7 1978	1979	1980	1981	1982	1983	1984	1985	1986
6 1 0.00	1 0.004	0.000	0.004	0.001	0.002	0.008	0.003	0.000	0.002
7 1 0.00			0.020	0.018		0.052	0.030	0.041	0.027
8 0.01			0.169	0.084	0.123	0.284	0.090	0.114	0.127
9 1 0.057	7 0.320	0.194	0.279	0.336	0.235	0.409	0.214	0.306	0.221
10 1 0.27	0 0.457	0.324	0.413	0.394	0.304	0.572	0.220	0.465	0.309
11 0.35	6 0.761	0.284	0.521	0.599	0.330	0.872	0.466	0.649	
12 0.71	7 0.939	0.395	0.334	0.491	0.401	0.759	0.662	0.391	0.400
13 0.760	1,065	0.456	0.321	0.456	0.299	1.028	0.527	0.859	0.400
14 0.58	6 0.376	0.582	0.392	0.736	0.263	0.997	1.533	0.802	
15 0.827	7 0,893	0.589	0.653	0.921	0.755	0.400	1.188	1.505	0.400
16 0.71	9 0.398	0.922	0.242	0.209	0.347	1.633	0.286	3.054	
17 0.294	4 1.006	0.606	1.139	0.775	0.282	0.103	0.830	0.173	
18 0.62	2 0.370	0.673	0.155		0.160	0.578	0.012	1.560	0.400
19 0.57		0.392	0.427	0.569	0.342	0.827	0.560	0.610	0.400
11+1 0.592	2 0.836	0.403	0.435	0.579	0.344	0.839	0.590	0.637	0.400

Table 6. Summary of projected reference level catch (t) for 1987 and 1988 with ${\rm F}_{\rm T}$ in 1986 varying from 0.35 to 0.45.

	F _T in 1986				
Reference level catch	0.35	0.40	0.45		
1987	43.1	38.0	34.0		
1988	44.3	39.8	36.3		

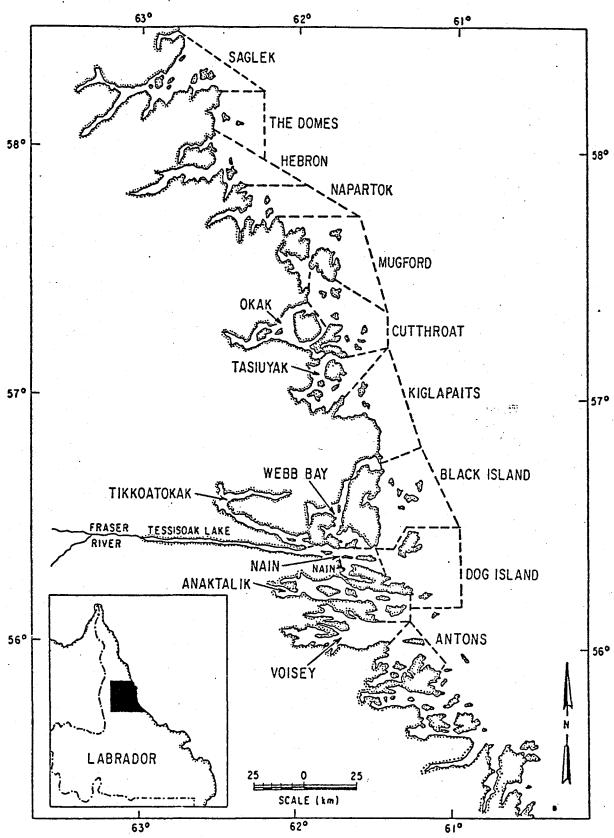


Fig. 1. Geographic separation of Nain Fishing Region subareas.