Not to be cited without permission of the author(s)¹

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 86/112

Ne pas citer sans autorisation des auteur(s)¹

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 86/112

New Estimates of Commercially Harvestable Biomass of Stimpson's Surf Clam, Spisula polynyma, on the Scotian Shelf Based on the January Through April 1986 Test Fishery and New Age Data

By

T. Amaratunga and T.W. Rowell Invertebrates and Marine Plants Division Biological Sciences Branch Halifax Fisheries Research Laboratory Department of Fisheries and Oceans Scotia-Fundy Region P.O. Box 550 Halifax, N.S. B3J 2S7

¹This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author(s). ¹Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteur(s) dans le manuscrit envoyé au secrétariat.

ABSTRACT

Fishing data from the three vessels that participated in the 1986 commercial Test Fishery, and new age data, are presented in a reassessment of Stimpson's surf clam <u>Spisula polynyma</u> stocks on the Scotian Shelf. New boundaries enclosing a 198.6 km² area increased the estimated biomass for fishable concentrations on Banquereau Bank by 37,569 t, to a total of 595,111 t. Data from 345 aged animals were used to revise the estimated age (T_{max}) at which 95% of the cohort would be removed by natural mortality, to 40 yr. The new value for natural mortality of 0.08, estimated from M=3/T_{max}, suggested an annual removal in the order of 24,000 t. An alternate approach to exploit the stock was also presented, indicating that as the fishery progresses that data base should be enhanced so that adjustments may be made to the permissable catch levels.

RESUME

On présente les données de pêche des trois vaisseaux ayant participé à la pêche expérimentale commerciale de 1986 ainsi que de nouvelles données sur l'âge. Il s'agit d'une réévaluation des stocks mactre de Stimpson, <u>Spisula polynyma</u>, sur le plateau Scotian. De nouvelles frontières englobant une superficie de 198,6 km² ont fait augmenter de 37,569 t la biomasse estimée pour les concentrations pêchables sur le banc Banquereau; le nouveau total atteint 595,111 t. Les données sur 345 animaux dont l'âge a été déterminé ont été utilisées pour revoir l'âge estimé (T_{max}) auquel 95 % de la cohorte serait éliminée par la mortalité naturelle; cet âge révisé est de 40 ans. La nouvelle valeur pour la mortalité naturelle de 0,08, estimée à partir de M=3/T_{max}, indique une élimination annuelle de l'ordre de 24,000 t. On présente également une autre approche pour l'exploitation du stock, en indiquant qu'au fur et à mesure que la pêcherie progresse, la base de données devrait être enrichie de sorte qu'on puisse ajuster les niveaux des prises admissibles.

INTRODUCTION

Exploratory surveys conducted on the DELAWARE II from 1980 to 1983 indicated that commercial harvestable densities of Stimpson's surf clam, <u>Spisula polynyma</u>, on the Scotian Shelf were concentrated in two areas on Banquereau Bank (Rowell and Amaratunga, MS 1986). Data previously given to CAFSAC (March 1986) provided biomass estimates of virgin populations in the two areas and estimates of levels of annual removal likely to be sustainable. It was recognized that the surveys were exploratory in nature and that other areas of the Scotian Shelf might also have fishable concentrations that were not discerned.

Subsequent to the January through April commercial Test Fishery, it was suggested that sufficient new information, both from the Test Fishery and from additional ageing studies, was available to warrant a reevaluation of the biomass estimates and TAC advised by CAFSAC in March 1986. This paper considers the new data and provides an update on the previous assessment.

Test Fishery

The operational plan for development of a fishery for offshore clam resources on the Scotian Shelf, announced in December 1985, consisted of two phases. The first phase - a Test Fishery extending to April 30, 1986, was to address questions about resource abundance, compliance with human consumption standards, and factors relating to harvesting, processing, and marketing. Subject to the Test Fishery results, the next phase would be the opening of a commercial fishery. Three companies participated in the Test Fishery, each operating one licensed vessel. The vessels are labeled Vessels X, Y, and Z in order to maintain anonymity.

Observers were placed aboard each vessel to collect catch and operational data on a set-by-set basis. These data are reviewed here in the interest of determining any new areas of the Scotian Shelf that might have fishable concentrations.

Age Data

Age and growth information available to CAFSAC in March 1986 on Stimpson's surf clam <u>S</u>. polynyma on Banquereau Bank was limited to 102 length/age data points. Since length/age data are necessary to the estimation of natural mortality (M) and the estimation of maximum sustainable yield (MSY) in the model used at the March 1986 CAFSAC meeting, this report provides additional length/age data and revised estimates of M and MSY.

METHODS

Test Fishery

The questions being addressed in the Test Fishery had significant influence on the catch and catch rates achieved by the participating vessels. For example, each vessel was required to obtain clearance from DFO that the clams being landed from the various areas complied with human consumption standards. This represented the collection and forwarding of a small number of clams from each area to be tested for PSP and coliform contaminants. Consequently, certain station operations did not target large catches. Conversely, questions regarding resource abundance and factors relating to harvesting, processing, and marketing were addressed by the vessels operating in a commercial mode. In most instances the vessels attempted to operate in this mode; however, gear testing and mechanical difficulties, exploratory work, bad weather and icing conditions, and conflicting operational objectives severely hampered operations and resulted in many poor catches. Data available from the Test Fishery did not allow us to differentiate the operationally good tows from the bad ones. Tables 1, 2, and 3 give the locations, standardized catch rates (U.S. bushels per hour), and starting depths of operation for each vessel. The summary Table 4 gives a comparison of overall fishing activities by the three vessels.

All three vessels were primarily directed at <u>S</u>. polynyma on Banquereau Bank, although a small number of tows were carried out on Roseway, Western, Sable Island, and Middle Banks. The operations of Vessels X and Y were focussed on Banquereau Bank (Fig. 1 and 2 respectively) with few tows elsewhere on the Shelf, while Vessel Z had only 45% of its tows on Banquereau Bank (Fig. 3).

On Banquereau Bank, Vessels X and Y effort was concentrated on the eastern areas of Areas 1 and 2, the high-density areas described by Rowell and Amaratunga (MS 1986), and another small area north of Area 1 (see Fig. 4). Catch rates of Vessels X, Y, and Z in or near these three areas are listed in Tables 5, 6, and 7 respectively. Vessel Z devoted only 15% of its tows to Areas 1 and 2, and only one of these tows resulted in relatively significant landings.

Age Data

The earlier growth data from 102 aged animals were obtained from samples collected during the 1981 and 1983 DELAWARE II surveys. Although an attempt was made to randomly pick approximately five animals from each 5 mm size class, not all size classes were available. In order to enhance the data base, four stations from the DELAWARE II 1981 survey were arbitrarily chosen for further age sampling, three of which were from Area 1 and the other from the western region of Banquereau Bank.

In addition, one large sample of shells obtained from the Test Fishery was sectioned and aged. The text table below gives the list of samples aged.

Sample	Location	No. of Shells Ageo
Research 1	Banquereau Bank (composite sample)	102
Research 2	44°27'; 59°36'	22
Research 3	44°27'; 58°19'	31
Research 4	44°27'; 57°59'	9
Research 5	44°38'; 58°02'	28
Test Fishery	44°28'; 58°00'	153
	TOTAL	345

Sections of shells were taken through the chondrophore and mounted on microscope slides as described by Ropes (1984). These thin sections (about 0.25 mm thickness) were viewed through a compound microscope to estimate age. Age determination by count of the annuli was done by two or more independent readers, and the mean count was taken as the representative age for the particular shell. Allen's (1966) method was used to estimate the von Bertalanffy growth parameters. Shell length data were collected from 6,190 animals on Banquereau Bank during the 1981 and 1982 DELAWARE II surveys. Length-frequency distributions are given in Table 8. An age-frequency distribution was constructed for these data (Table 9) using a modified APL program (Roddick and Mohn, MS 1985).

RESULTS AND DISCUSSION

Test Fishery

Assessment of the catch rates obtained in the Test Fishery is difficult in view of operational procedures followed and difficulties encountered by the vessels. For example, more than 75% of the tows experienced bad weather, ice, vessel icing conditions, and/or mechanical difficulties. Other factors, including conflicting points of view and possible objectives between a ship's captain and owner and the contracting company may also have significantly influenced catch rates. The number of hours of fishing time was limited to 88.3 h (Table 4). A more widespread distribution of stations would have made assessment more meaningful. Additionally, differences in gear among the vessels and operational differences compounded those difficulties. However, despite these limitations, the Test Fishery provided better definition of previously described areas of high density and revealed a previously undetected area of high density on Banquereau Bank.

On Banquereau Bank the fishing activities of the vessels were spread over a number of areas of the Bank, 47% of the 309 tows being made in, or close by, the previously identified high-density Areas 1 and 2 (43 tows were clumped in or near Area 1 and 101 tows were clumped in or near Area 2) An additional 21 tows were clumped in an area immediately north of Area 1. For convenience, these areas are labeled as follows: Area 3 - the clump north of Area 1; Area 1^1 - the clump in or near Area 1; Area 2^1 - the clump in or near Area 2 (Fig. 4). The remainder of the tows were spread throughout the western end of the Bank.

Catch rates achieved by the participating vessels were probably the best indicator of resource abundance. In the absence of firm evidence to confirm which tows were good, we have used a minimum catch rate of 20 bu per hour as a criterion to indicate a good tow. These tows are likely to be of commercial significance based on the catch rates recorded in the U.S. mid-Atlantic surf clam (a different but comparable species) fishery. The U.S. fleet average was 26-48 bu/h for the years 1979-1983, and Class 3 vessels, equivalent in size to those in the Test Fishery, averaged 44 bu/h. Twenty-seven percent (27%) of the tows in the Test Fishery were >20 bu/h, and there were three tows in the Test Fishery that had catch rates >100 bu/h. The mean catch rates by the two best performing vessels - Vessels X and Y, for Areas 1, 2, and 3 in the Test Fishery (Tables 5 and 6) compare well with the U.S. fishery. For the remaining areas of Banquereau (i.e. exclusive of Areas 1, 2, and the area now identified as Area 3), the mean catch rate was low, with only three stations resulting >20 bu/h. The one good catch (40 bu/h), near the western end of the Banquereau Bank, may again suggest the possibility of commercially fishable concentrations outside of those already described. However, further surveys are necessary to identify these.

The Test Fishery did not significantly change our information as to the boundary of Area 1 as previously described (Rowell and Amaratunga, MS 1986). Although Area 1^1 did extend slightly eastward of Area 1, the addition to the area was not considered sufficient to warrant a new calculation of additional biomass.

The data provide evidence that the boundary of Area 2 extends east of that previously described. Area 2^1 encloses 80 km² beyond the boundary of Area 2. The additional biomass within Area 2^1 , calculated using the DELAWARE II research survey density of 0.230 kg/m² of Area 2, was 18,400 t.

The new Area 3 was estimated to cover 118.6 km^2 . In calculating biomass within Area 3, the ratios between commercial vessel catch rates in Area 3 and those in the known high-density Areas 1 and 2 (Delaware II densities 0.248 and 0.230 respectively) were used (Table 10).

The biomass in Area 2^1 is estimated at 18,400 t and that in Area 3 at 19,569 t. The biomass for the fishable concentrations (Rowell and Amaratunga, MS 1986) on Banquereau Bank has therefore been increased by 37,969 t, to a total of 595,111 t (or rounded off to 600,000 t).

Age Data

Animals sectioned and aged ranged from 24 mm to 163 mm shell length and from 4 yr to 56+ yr in age. Shells larger than 135 mm were particularly difficult to section and age. Animals older than 35 yr were also generally difficult to age. Consequently, in the data set there are at present only 16 shells greater than 135 mm in length and 18 shells which had age readings greater than 40 yr.

Length-age scatter diagrams showed two distinct distribution patterns. These two groups were identified to originate from two sources of samples; viz: 1) the 1981 and 1982 DELAWARE II survey samples; and 2) the 1986 Test Fishery sample. Accordingly, the von Bertalanffy growth curves were fitted to: 1) All data combined (N=345); 2) DELAWARE II data (N=192); and 3) Test Fishery data (N=153). Figure 5 shows all three fitted curves.

	t _o	k	L _∞
Combined data:	1.97	.114	126.5
Delaware II data:	0.69	.080	126.2
Test Fishery data:	-1.16	.092	139.2

The growth parameters from the fitted curves were as follows:

Size of animals on Banquereau Bank observed in the DELAWARE II surveys ranged from 24 mm to 163 mm and in the Test Fishery from 65 mm to 160 mm. The age data are few in the smaller size range (<40 mm) and the largest size range (>135 mm); consequently, the fitted curves are weak in these areas. The additional age data, although poorly representative of the youngest and oldest clams, improved our ability to estimate the age (T_{max}) at which 95% of a cohort would be removed by natural mortality.

Consideration of growth curves derived from the research surveys and from the Test Fishery suggested the possibility of geographical variation in growth rate and also in natural mortality rates (M). Such variability is to be expected. Hughes and Bourne (1981) in their study of Alaskan <u>S. polynyma</u> found a maximum age of 25 yr and, using Ricker's (1975) model, estimated two very different values of M (0.1272 and 0.2504) in different years (1977 and 1978). These differing estimates are presumably based on samples from different areas of the surveyed grounds.

Two methods were employed to determine T_{max} from which M is determined. In the first method, the length-frequency determined from 6,190 clams measured during the research surveys on the entire Bank (Table 8) was used in conjunction with a scatter diagram (Fig. 6) plotted with the 192 aged shells from the research survey samples. From the length-frequency data it was estimated that 95% of the population reached a shell length of 123 mm. At 123 mm the age range estimated on the scatter diagram was 27 to 53 yr. The mid-point of this range, 40 yr, was taken to be the estimated T_{max} .

In the second method, the age composition of the population (Table 9) as derived from the age-length key using research survey data indicated a T_{max} of 41 yr. Natural mortality estimated by the formula $M = 3/T_{max}$, when $T_{max} = 40$ yr, is 0.075. We have rounded this value of M to 0.08 for use in calculating MSY.

It is cautioned here that the use of this method assumes equilibrium conditions within the population. The population structure evident from the research survey data indicates a non-equilibrium situation (i.e. low numbers of younger clams of a size sufficient to be fully recruited to the gear) which to some degree compromises the use of this model. The bias resulting from the analysis, however, is interpreted as being towards a low estimate of M.

Using the model MSY = $0.5MB_{\circ}$ (B_o = virgin biomass), a new estimate of MSY was developed for the Stimpson's surf clam on Banquereau Bank. With the biomass estimate of 600,000 t and assuming M = 0.08, the model suggests annual removals in the order of 24,000 t.

An alternate approach to the initial exploitation of this stock would be the establishment of an annual level of removal which would, over a defined period of time, completely remove the existing biomass. If the resource was required to last 10, 20, or 25 yr, this would equate to removals of 60,000 t, 30,000 t, and 24,000 t per year, respectively, assuming a virgin biomass of 600,000 t. This approach assumes no natural mortality, growth, or recruitment, and that all the estimated biomass is exploitable.

Neither approach is likely to jeopardize the resource in the short term. As the fishery progresses, the data base should be considerably enhanced and adjustments may be made to the permissible catch levels.

In setting the level of harvest, it should be kept in mind that levels of discarding in the new fishery may result in a significant, but currently unquantifiable, additional mortality. Discarding in the U.S. surf clam fishery (Spisula solidissima) is known to range from 10 to 50%, but resultant mortality levels are unknown. Additionally, it has been shown for the surf clam (S. solidissima) that dredge-induced mortality occurs.

ACKNOWLEDGEMENTS

Authors thank R.K. Mohn and D.L. Roddick for constructing the age-length key; F. Scattolon and C. Hunter for computer tabulations and graphics; and P. Woo, R. MacFarlane, and T. McLane for their work in preparing and ageing the clams.

REFERENCES

- Allen, K.R. 1966. A method of fitting growth curves of the von Bertalanffy type of observed data. J. Fish. Res. Board Can. 23: 163-179.
- Hughes, S.E. and N. Bourne. 1981. Stock assessment and life history of a newly discovered Alaskan surf clam (Spisula polynyma) resource in the southwest Bering Sea. Can. J. Fish. Aquat. Sci. 38(10): 1173-1181.
- Ricker, W.E. 1975. Computation and interpretation of the biological statistics of fish populations. Bull. J. Fish. Res. Board Can. 191: 382 p.
- Roddick, D.L. and R.K. Mohn. MS 1985. A method for the generation of Catch-at-age data. Int. Cons. Explor. Mer C.M.1985/D14: 21 p.
- Ropes, J.W. 1984. Methods for ageing oceanic bivalves. Underwater Naturalist 15(1): 12-16.
- Rowell, T.W. and T. Amaratunga. MS 1986. Distribution, abundance, and preliminary estimates of production potential for the ocean quahaug (Arctica islandica) and Stimpson's surf clam (Spisula polynyma) on the Scotian Shelf. Can. Atl. Fish. Sci. Adv. Comm. Res. Doc 86/56: 21 p.

Table 1. Catch data for Vessel X giving latitude and longitude at stations, standardized catch rates (bushels per hour) and starting depth (m).

•

「小教学を学ぶ」に見たられていたというでは、1月1日では、日本語語を行ったが、1月1日には、日本語が、1月1日には、日本語が、1月1日には、日本語が、1月1日には、1月1日の1日には、1月1日の1日には、1月1日の1日には

STN.#	LAI	LONG	CATCH BUZHR	DEPTH	STN.#	LAT	LONG	CATCH BUZHR	DEPTH
1	442700	575900	3.96	47	6.3	444100	582200	9.00	64
2	442700	575900	9.00	47	64	444400	572700	4.80	49
3	442700	575900	12 00	A0	45	444700	570500	172 20	57
Ā	442760	575900	30 00	A ()	60	444300	572500 E 2 3 () 0 0	70.04	57
c,	442700	575000	6 00	40	60	444300	372800	30,04	50
J /	442700	573700	0,00	49	67	444300	572700	26.76	52
<u>ь</u>	442800	280000	27.00	50	68	444300	572800	4.80	48
7	435400	612600	.00	48	69	444400	572700	4.44	51
8	435400	612400	. 00	49	70	444300	572600	20.16	55
9	434900	612100	.00	42	11	444300	572700	30.00	48
10	434800	612000	.00	39	72	444400	572600	26,40	53
11	434900	605400	. 0 0	47	23	444200	572700	23.16	53
12	434900	605200	.00	41	74	444100	572600	18.96	55
13	434800	605100	. 0.0	41	25	447900	573100	13.56	53
14	434800	604900	. 0.0	39	7.5	AA3000	573300	75 16	50
1.65	434000	604200	00	70	70	447000	573300	71 20	51
10	434100	2009200	.00	30	//	443700	J/3300	51,20	51 E 7
10	434700	602700	.00		78	443900	5/3300	8,04	
17	434700	602200	.00	11	79	444000	573200	8,84	21
18	435700	591600	.00	42	80	444300	572900	30.84	53
19	435800	591500	.00	42	81	444300	573000	30.96	53
20	442700	590000	12.00	63	82	444200	573000	15.60	52
21	443100	590300	5.04	53	83	444200	573100	20.16	52
22	443000	593100	39,96	49	84	443900	573100	35.16	55
23	442800	580700	8.52	51	85	443900	573200	6.60	55
24	442900	580000	4,44	48	86	444000	573300	17,16	53
25	443000	575900	2,28	50	87	444100	573300	17.16	52
26	443200	575900	2.04	47		444200	573000	8 40	53
27	443400	575700	2 04	48		444200	573100	172 16	50
20	443500	575400	00	40 AS	07	444600	0/0100	17,10	50
20	443300	575400	.00		90	444800	572600	13,90	30
27	443400	3/3400	.00	44 (J) A 117	91	444500	572700	32,04	54
30	443300	575300	,00	43	92	444500	572700	32.04	54
-31	442500	581000	27,96	59	93	444400	572700	24.00	58
32	442400	580900	12.60	60	94	444300	572800	24.00	57
33	442400	580300	11.52	52	95	444300	572900	8.04	55
34	442300	580700	1,80	55	96	444300	573000	24.00	53
35	442300	580700	41.04	55	97	443900	573600	24.00	52
36	442200	580700	41.52	52	98	444000	573700	36.00	51
37	442300	580700	40.44	55	o o	443900	573600	15.00	52
38	442200	580500	6.84	53	100	AAA000	573700	18 00	51
39	442200	580400	3.96	52	101	447000	577600	12 00	5.9
4.0	442700	580600	23.64	55	101	444000	573000	1/2 0.0	40
41	444800	573100	. 00	36	102	444000	J/3000 577700	0 00	
A 73	AAA700	573000		70	10.5	444000	373700	7.00	U1 675
~~	444600	572900	04 74	€ 1	104	443900	573500	6.00	0 .
43	444000	571000	00.70	۵1 د ۳	185	443300	573900	.00	57
44	443400	J/1000	10.04	40	106	442300	580000	17.64	5.0
450	443300	572500	12,70	49	107	441800	581100	12.00	53
46	443400	592500	7.72	0 <i>2</i>	108	442400	582500	20.04	63
47	443100	585700	3.72	0.5	109	442800	581900	24.00	61
48	442800	585600	. 0 0	52	110	443600	582000	15.96	60
49	442700	585600	18,00	55	111	444200	582100	3,96	64
50	442700	585400	3,96	53	112	441100	604200	3,96	60
51	443200	585400	.06	6765	113	440800	605600	.00	47
52	443200	585400	3,96	513	11.0	AA0 200	605900	0.0	107 K-7
53	442900	583900	8,04	68	4.445	440700	60.6700	ວ ຊິຊິ	64
54	444200	582200	3.96	68	114	AA2A00	604600	L,00	5-1 5-1
55	444100	582300	48,00	64	110	1112011UU AA/37.00	207000	16.00	10.17
56	443700	582200	27.96	56	11/	442600	60.3800	10,70	00 10 m
60 C	444/200	500000	41 40	65	118	442600	604000	28.20	00
607 600	<u>~~~~</u>		10 00	1.7	119	442800	603900	10,96	49
- UN ED	4444000	501000	16	67	120	442800	604000	20.04	52
57	444200	281900	0,70	01	121	443100	604000	15.96	51
60	444100	581700	7,92	6 t	122	443100	604100	14.16	52
61	444200	582100	. 6 0	67	123	443100	602400	15.00	53
62	444200	582100	13:32	50	124	443200	604300	12.00	55
					125	450700	602000	. 0 0	64

10

a de la compañía de l

امقا بالعيدين ال

 $\sigma \in \mathbb{R}^{n}$

Table 2. Catch data for Vessel Y giving latitude and longitude at stations, standardized catch rates (bushels per hour) and starting depth (m).

and a second second state of the second s

CT11 #	LAT	LONG	CATCH BUZHR	DEPTH
un a sur un a sus	122 123 128			
1	432800	644000	.00	60
2	443960	603900	.00	46
3	443200	603900	12.00	48
4	442900	604300	9.00	59
5	443200	603900	26.64	48
	442900 443600	582400	20,68	57
Ŕ	443600	582300	15.00	57
9	443700	582200	20.76	57
10	443800	582100	24.00	57
11	444200	582200	2.76	65
12	444000	581900	7.56	59
1.5	443800	282000 502100	7.72	60
15	443700	582200	5.84	
16	444500	572700	132.00	56
17	444500	572700	16.80	57
18	444500	572600	33.00	57
19	444500	572700	9.00	56
2:0	444500	572800	20.52	52
-00 00	444600 444600	572900	19.04	07 51
23	444600	572700	15.60	56
24	444500	572800	18,48	52
25	444600	522700	15,24	57
26	444500	572900	16.20	54
27	444500	572700	17.28	56
28	444500	572800	17.04	58
20 X 12 17 D	444400 444700	572800	12,24	55
31	444200	573000	28.44	56
32	444200	573100	32.28	56
33	444100	573200	32.64	55
34	444200	573200	34,32	55
35	444100	573200	23.52	55
30 79	444200	573100	29,76	55
38	444200	573100	34,32	50 54
39	444200	573100	33.12	56
4.0	444200	573100	35.04	55
41	444100	573200	39.36	56
42	444000	573000	30.00	55
43	444100	573300	20,64	55
45	444100	573300	20.88	55
46	444000	573300	28,80	54
47	444000	573400	26.40	55
48	444000	573300	28,80	55
49 ·	443900	573400	27.24	55
00 191	443700	573400	25.88	54
52	444200	573100	66.72	55
53	444100	573200	52.92	56
54	443700	573500	50.04	57
55	443700	573600	60.00	56
36 19.2	44.3200	573600	75.00	54
58	443700	573700	100,02	04 52
59	443600	574100	6.72	42
60	443580	574600	16.32	55
6.1	442900	574800	21.84	59
62	442700	575900	9.00	46
63 64	442X00 442X00	525700 525400	9,96 13,90	49 © 1
65 65	442300	590500 590500	10,00 302 74	(J-1) 昭日
65	441900	531000	24,96	52
67	442200	582400	42.84	62
6 G	442700	580400	30.00	52
617 200	442700	580300	50.04	51
20	4427400 4422400		38.16	54
	442700	580200	10102 24.94	51.3 51.3
			···· · · · · · ·	N 2 3 4

Table 3.	Catch data for Vessel Z giving latitude and	longitude at stations,	standardized catch	
	rates (bushels per hour) and starting depth	(m).		

STN.#	LAT	LONG	CATCH BUZHR	рертн		STN.#	LAT	LONG	CATCH BUZHR	
1	444200	603400	. 0.0	43						
2	444200	603300	.24	41		20	442700	374600 E04800	3,96	
3	444100	603200	.12	39		07 E0	442700	594700	.76	
4	444100	603100	. 00	36	•	38 60	442700	574700	.70	
5	444000	602900	.12	40			446700	575000 858566	,00	
6	443500	603400	.24	38		C) U 2, 1	446000	- U7U4U0 より空700	100	
7	443500	603400	. 00	40		6.9	441 200	605300	· 2	
8	443500	603500	.00	43		67	4412.00	6000000 605200	.00	
9	443400	603500	.00	47		63	441000	605200	.00	
10	443300	603600	.00	48		65	441000	605800	. 0.0	
11	443000	603800	6.00	49	•	66	441000	604900	.00	
12	442900	603900	.60	48		67	440300	604000	.00	
13	443500	603500	2.52	50		68	440100	603800	. 8 0	
14	443500	603500	3,60	52	•	69	442100	602800	. 0.0	
15	444400	572700	1.84	56		70	442200	602700	.00	
16	444600	572700	2.40	56		71	442300	602600	. 0 0	
17	444500	573000	.00	37		72	442500	602300	12.00	
18	444000	573400	21,48	53		73	442600	602300	9.96	
19	444100	573600	.00	47		74	442700	602300	3.96	
20	443900	573500	. 0 0	52		25	442800	602400	.00	
21	443600	573600	4.56	53		76	442600	603100	3.96	
22	443600	573700	12.90	53		77	442500	603300	6.00	
23	443500	573700	7,56	55		78	442600	603500	.36	
24	443500	573700	8.52	57		79	442800	603700	6.96	
25	443500	573700	3,96	61		8.0	442900	603900	,24	
26	442700	575800	3.60	47		81	443000	604000	.84	
27	442800	575900	.12	51 E 0		82	442500	603800	.00	
28	442900	575900	, 84	50		83	442500	604000	.00	
27	445000	070900 S70900	· 6 0	48		84	442500	603800	5.04	
.5U 721	443000	373700 598388	1 7/2	01 #CO		85	442500	604000	. 60	
10.	443000		1,32	U.C. 1972	•	85	442600	604200	.00	
	443400	590100	1 20			87	442700	604200	, 0 0	
33	443400	590300	1 · ζ θ δ ΔΒ	57	•	88	442800	604200	.00	
7X 45	447400	590400	0.0	60		87	442900	604200	12.00	
36	443300	598480	2 04	57		90	443000	604100	5.40	
32	443300	590400	1.20	57		91	443100	604200	9.96	
38	443200	598688	.95	58		92	443200	604200	1,68	
39	443100	590200	.24	58		¥3	443400	604400	.00	
40	443100	590800	8,04	59		74	443800	604300	8.04	
41	443100	598788	5.04	55			443800	C04400 704700	.70	
42	443200	590800	1.08	59		70 07	443000 443700	004000	, U U N N	
43	443200	590900	.00	67		φ <u>α</u>	443600	604000	0.4	
4.4	443100	592100	3,96	56		00	443600	603800	.04	
45	443100	592300	2.04	51		100	443600	603200	. 00	
46	443100	592400	5.40	51		101	443680	603600	. 0 0	
47	443100	592600	8.52	51		102	443900	603700	.00	
48	443600	592600	12.90	52		103	432800	644200	. 0 0	
49	443300	592600	7.08	52		104	432700	644400	.00	
50	443400	592600	60.00	53		105	432600	644400	,00	
51	443400	592700	.00	51		106	432500	644400	.00	
52	443500	594400	3.17	48		187	432400	644600	. 0 0	
53	443600	593600	5.04	56		108	442400	644600	.00	
54	443500	593700	1.56	56		109	432500	644500	. 0 0	
55	443500	593700	5.96	10 M		110	432800	644600	.00	

Operational Data	Vessel	x	Vessel	Y	Vessel	. Z
• Total # of tows	125		72		110	
• Total hrs towed	34.9	9	25.5		27.9)
. Total catch (bu) (<u>S. polynyma</u>)	467.8	3	524.1		71.8	}
• No. of tows with zero catch with 0-9.9 bu with 10-19.9 bu with 20-29.9 bu with 30-39.9 bu with >40 bu	27 34 29 17 12 6		2 10 18 19 15 11		44 60 4 1 0 1	
 Ave. catch rate (bu/hr) 	17.0	5	29.9		3.7	
 Highest catch rate achieved (bu/hr) 	86.	7	133.3		60	
 Catch rate by depth (bu/hr) 	↓ # of tows	bu/hr	# of tows	bu/hr	# of tows	bu/hr
35-39 m 40-44 m 45-49 m 50-54 m 55-59 m 60-64 m 65-69 m 70-74 m	6 7 21 48 22 14 7 -	0 9.0 18.2 19.7 11.8 11.3	- 1 5 19 43 3 1 -	- 6.7 11.5 40.1 28.1 16.9 2.8	2 8 14 13 20 40 9 1	0 0.1 0.3 3.6 8.6 4.4 0.4 0
• Ave. depth of operations (m)	52.	2	54.8		50.7	7
• Max. depth of operations (m)	66		65		74	
• Min. depth of operations (m)	36		42		28	

Table 4	 Summary 	y of	operations	of	each	partici	pating	vessel.
---------	-----------------------------	------	------------	----	------	---------	--------	---------

Table 5. Standardized catch rates (bu/hr) of Vessel X on locations within or near Areas 1 and 2, and in Area 3.

AREA 3

AREA 2 AND 2'

STN.#	LAT	LONG	CATCH BU/HR	DEPTH	STN.#	LAT	LONG	CATCH BU/HR	DEPTH
555555661230 111 111	$\begin{array}{r} 444200\\ 444100\\ 443700\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 444200\\ 443600\\ 443200\\ \end{array}$	582200 582300 582200 581800 581400 5812100 582100 582100 582100 582100 582100 582100	3.96 487.96 27.96 41096 7.96 7.92 13.02 13.02 15.26	64571175404 566666666	41 423 44 46 66 67 66 77 77 77 77 77 77 77 77 77 77	$\begin{array}{r} 44800\\ 444700\\ 444400\\ 444400\\ 444300\\ 444300\\ 444300\\ 444300\\ 4444300\\ 4444300\\ 4444300\\ 4444200\\ 4444200\\ 4444200\\ 4444200\\ 4443900\\ 44443900\\ 4444300\\ 4444900\\ 444900\\ 444400\\ 444900\\ 444400\\$	557721200 557721200 557721200 55777200 557772200 557772200 557772200 557772200 557772200 557772200 557772200 5577722000 5577772000 5577772000 5577772000 5577772000 5577772000 5577772000 5577772000 5577772000 5577772000 5577772000 55777772000 5577772000 55777772000 55777772000 55777772000 557777777777	$\begin{array}{r} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 8 \\ & 1 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 4 \\ & 2 \\ & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 1 \\ & 0 \\ & 2 \\ & 3 \\ & 1 \\ & 5 \\ & 1 \\ & 5 \\ & \end{array}$	3356455545583855 4555455455
	AREA 1	. AND 1'		an (*** bit mar i i	76 77 78 79	443900 443900 443900 444000	573300 573300 573300 573300 573200	35,16 31,20 8,04 8,64	52 51 53
51N,# =====	L.A.I ===		CAICH BU/HK	DEPTH	80 81	444300 444300	572900 573000	30,84 30,86	53
12345434567.000-2254567.000 22228888888888888888888888888888888	$\begin{array}{c} 442700\\ 442700\\ 442700\\ 442700\\ 4422800\\ 442800\\ 442800\\ 442800\\ 442800\\ 443800\\ 443800\\ 443800\\ 443800\\ 443800\\ 443800\\ 443800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 4448800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 44488800\\ 444888800\\ 444888800\\ 444888800\\ 44488888\\ 4488888\\ 4488888\\ 4488888\\ 4488888\\ 4488888\\ 448888888\\ 448888888\\ 448888888\\ 448888888\\ 448888888\\ 448888888\\ 448888888\\ 448888888\\ 4488888888$	575900 575900 575900 575900 575900 575900 575900 575900 575900 575900 575900 5755000 5755600 5755600 577575600 577575600 577575600 577575600 577575600 577575600 577575600 577575600 577575700 57757000 577575000 5775757000 5788007000 5788007000 5788007000 5588007000	$\begin{array}{c} 3.96\\ 9.00\\ 12.00\\ 20.00\\ 28.522\\ 4.44\\ 2.84\\ 2.84\\ 2.84\\ 2.00\\ .000\\ .$	4444459990180785339025555555	823 834 88567 889 991 992 999 999 999 999 1001 101 101 1004	$\begin{array}{r} 444200\\ 444200\\ 443900\\ 4443900\\ 4443900\\ 4444000\\ 444200\\ 444200\\ 444200\\ 444200\\ 4444200\\ 4444500\\ 4444500\\ 4444300\\ 4443900\\ 4444300\\ 4444400\\ 444400\\ 444400\\ 4444400\\ 4444400\\ 4444400\\ 44440$	$\begin{array}{c} 55733100\\ 55733100\\ 55733300\\ 55733300\\ 55733300\\ 55733300\\ 55733300\\ 55733300\\ 557733222220\\ 557722222300\\ 557722222300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233300\\ 5577233000\\ 557723000\\ 557723000\\ 557723000\\ 557723000\\ 557723000\\ 557723000\\ 557723000\\ 557723000\\ 55772300000\\ 5577230000\\ 5577230000\\ 5577230000\\ 5577230000\\ 5577230000\\ 557720000\\ 557720000\\ 557720000\\ 557720000\\ 557720000\\ 557720000\\ 557720000\\ 5577200000\\ 5577200000\\ 5577000000\\ 5577000000\\ 5577000000\\ 55770000000\\ 55770$	$\begin{array}{c} 355.50\\ 1205.160\\ 170.160\\ 170.160\\ 170.160\\ 170.160\\ 170.160\\ 1752.000\\ 152.000\\ 187.000\\ 187.000\\ 187.000\\ 187.000\\ 182.$	୨ <mark>୦୦୦ ଅଟି ଅଟି ସେଥି ଆକ୍ଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅଟି ଅ</mark>

Table 6. Standardized catch rates (bu/hr) of Vessel Y on locations within or near Areas 1 and 2, and in Area 3.

AREA 2 AND 2'

STN.# LAT LONG CATCH BU/HR DEPTH 6776271627468676655555465555564555564456764222 AREA 3 STN,# LAT LONG CATCH BU/HR DEPTH ## ## ## **az 12**2 123 224 **20 22 22 22** 221 223 23 122 443600 443600 443700 443800 444200 444200 444200 12.80 20.76 24.00 2.756 7.92 7.92 6.84 582400 582300 582200 582200 582200 582200 582200 582200 555565655 8 582000 582100 582200 443800 443700 443700 AREA 1 AND 1' LAT CATCH_BU/HR STN.# LONG DEPTH 575900 575900 575900 580500 580500 580300 580300 580300 580300 580300 580200 580200 21.84 9.96 13.80 32.76 24.96 30.04 38.16 16.32 24.96 442900 442700 442700 442300 666666667777 $\begin{array}{r} 442300\\ 442300\\ 441900\\ 442700\\ 442700\\ 442700\\ 442700\\ 442600\\ 442700\\ \end{array}$

Table 7. Standardized catch rates (bu/hr) of Vessel Z on locations within or near Areas 1 and 2. No tows were made in Area 3.

AREA 1 AND 1'

news and in 1999 in 601.000 and 11.0 on 60.00 the first states and show and see the second states and the second states and the

SINI	LAT	LONG	CATCH BUZHR	DEPTH
				:::: ::: ::: :: : :: :
	<u></u>	575800	3.60	47
22	4428())	- (b) € (t (t	.12	51
28	442900		, 84	50
29	443000	575900	, 6 ()	48
$\underline{30}$	443000	575900	10,44	51
31	443000	580100	1.32	32

AREA 2 AND 2'

STN,#	LAT	LONG	CATCH BUZHR	DEPTH
	*** ***	== == == ==		
15	444400	572700	.24	56
16	444600	572700	2.40	56
17	444500	573000	. 0 0	37
18	444000	573400	21,48	53
19	444100	573600	.00	47
20	443900	573500	. 0 0	52
21	443600	573600	4,56	53
22	443600	573700	20.04	53
23	443500	573700	2.56	<u> </u>
24	443500	573700	8.52	55
25	443500	573700	3.96	61

- ----

n general and a state of the second secon

Length	(mm)	Percent frequency
0-5		0
10		0
15		0
20		0
25		0.016
30		0.048
35		0.129
40		0.194
40		0.323
50		0.562
60		0.024
65		1 632
70		2.116
75		3,603
80		3.667
85		6.026
90		7.189
95		10.759
100		10.921
105		12.456
110		10.065
115		11.276
120		7.351
125		5.38
130		2.359
135		1.567
140		0.590
140		0.170
150		0.001 0 0.018
160		0.032
165		0.016

A STATE AND A STATE OF A STATE OF

Section Section

ł

Table 9. Age-frequency distribution constructed for <u>S</u>. <u>polynyma</u> from DELAWARE II data using the modified APL program of Roddick and Mohn (1985).

Age	Number at Ag	ge Cumulative %
3	0.01	0
4	1 04	0 0002
6	3.63	0.0008
7	6.32	0.0018
8	9.45	0.0033
9	56.79	0.0125
10	90.76	0.0272
12	182.95	0.0784
13	231.86	0.1158
14	274.63	0.1602
15	306.37	0.2097
16	324.36	0.2621
10	328.34	0.3151
19	302.71	0.4158
20	279.37	0.4609
21	379.57	0.5222
22	339.05	0.5770
23	299.85	0.6254
24	263.44	0.6680
25	230.54	0.7052
27	175.95	0.7662
28	153.94	0.7911
29	135.03	0.8129
30	118.86	0.8321
31	105.05	0.8490
33	83.22	0.8776
34	74.64	0.8896
35	67.30	0.9005
36	61.01	0.9103
37	53.01	0.9189
30	49.78	0.9269
40	44.39	0.9417
41	42.15	0.9485
42	26.77	0.9528
43	25.58	0.9570
44	24.52	0.9609
45	23.30	0.9684
47	21.97	0.9719
48	21.28	0.9754
49	20.66	0.9787
50	20.11	0.9820
51	19.60	0.382T
52	19.15	0.9913
54	18.36	0.9942
55	18.02	0.9971
56	17.71	1.0000

.

• •

.

i

	Vessel X	Vessel Y	
Catch rate (bu/hr)			
Area l	15.1	24.6	
Area 2	21.0	35.3	
Area 3	17.0	11.7	
Catch rate ratios of Areas 1 and 2 to Area 3			
a) Area 3: Area l	1.13	0.48	
b) Area 3: Area 2	0.81	0.33	
Estimated Density of Area 3	(kg/m²)		
a) Ratio x $0.248^{*} =$	0,280	0.119	
b) Ratio x $0.230^{+} =$	0.186	0.076	
	$\vec{x} = 0.$	$\bar{x} = 0.165 \text{ kg/m}^2$	
Biomass in Area 3		-	
x Density x area =	0.165 x 118.6 x	10 ³ = 19,569 t	

Table 10. Density estimates and biomass estimate for Area 3 calculated from mean catch rates (bu/hr) of Areas 1, 2 and 3 and use of catch rate ratios to determine the density of clams in Area 3 relative to known research survey densities in Areas 1 and 2.

* Estimated density for Area 1 of 0.248 $\rm kg/m^2$ taken from DELAWARE II research survey data.

+ Estimated density of 0.230 kg/m² taken from DELAWARE II research survey data.

Figure 1. Stations occupied by Vessel X on Banquereau Bank during the January through April 1986 test fishery.

Figure 3. Stations occupied by Vessel Z on Banquereau Bank during the January through April 1986 test fishery.

Figure 4. Banquereau Bank showing boundaries of areas of most significant concentrations Spisula polynyma. Area 1 and Area 2 are those identified in the 1981-1982 research surveys. Area 1¹, Area 2¹ and Area 3 are those identified from the 1986 Test Fishery [N.B. Areas 1¹, 2¹, and 3 are not accurate representations of the true areas given in accompanying text].

Figure 5. von Bertalanffy growth curves fitted to (a) all length-age data (N = 345), (b) DELAWARE II research survey length-age data (N = 192) and (c) Test Fishery length-age data (153) using Allen's (1966) method.

AGE IN YEARS

Figure 6. Length (mm) - Age (yrs) scatter diagram for animals aged from samples collected during the 1981 and 1982 <u>Delaware II</u> research surveys in Banquereau Bank.

LENGTH (mm)