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The problem of estimating the variance of the mean from a single 

systematic sample of a spatially autocorrelated population is investigated 

by simulation methods. Using a r,aussian Markov stationary autocorrelated 

model the behaviour of four contenders for the estimator of this 

variance was studied under various conditions. It was found that a 

sample based form of the unconditional expected variance of 

systematic sampling was the most efficient of the four. Further, 

it was found that using a jackknife autocorrelation estimator instead 

of the natural autocorrelation estimator did not improve the 

efficiency of this variance estimator. 
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Resume 

Des methodes de simulation ont servi a analyser le probl~me 

de 1 •estimation de la variance de la moyenne a partir d•un echantillon 

systematique unique d•une population a autocorrelation spatiale. Nous 

faisons appel a un mod~le gaussien stationnaire de Markov pour etudier, 

dans diverses conditions, le comportement de quatre estimateurs possibles 

de variance. On a constate que le plus efficace des quatre estimateurs 

etait une forme, fondee sur 1 •echantillon, de la variance anticipee 

inconditionnelle de 1 •echantillonnage systematique. On a trouve en 

outre que 1•emploi d1 un estimateur d•autocorrelation dit 11 jackknife '• au 

lieu d•un estimateur naturel n' ameliorai t pas 1 •efficacite de cet 

estimateur. 
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1. INTRODUCTION 

Sample surveys of commercially important fish and invertebrate 

species are often carried out to gather information on temporal changes 

in population size. This information is used in conjuction with 

commercially based indices, e.g. catch per unit effort, to provide 

conservation and management advice. Due to the nature of the use of 

the results of such surveys it is important that the survey design used 

be as optimum a design as possible with respect to providing precise 

estimates of the mean numbers or weights of animals present. In 

general these types of surveys are very difficult to design because the 

only available "a priori" information is a rough idea of the range or 

boundaries of the population being studied. In the case of sedentary 

benthic invertebrates, it may be assumed that spatial autocorrelation 

is present, that is samples taken close together in space are more 

likely to be similar than samples taken further apart. Often where 

surveys cover a large area, stratified random designs are employed 

usually with some arbitrary ranges of depths used as the stratifying 

variable. The presence of spatial autocorrelation in these types of 

surveys is usually ignored; temporal changes can affect the spatial 

patterns in mobile species, and the large distances between samples can 

reduce the effect of autocorrelation on the variance estimates. For 

small scale surveys of sedentary animals where samples may be taken 

very close together the degree of autocorrelation can have a greater 

effect. 
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In recent issues of Biometrika there have been a number of papers 

dealing with the problem of finding an optimum sampling design for 

autocorrelated populations in one (Blight, 1973) and two dimensions 

(Bellhouse 1977, Martin 1979). In these cases it was determined from 

theoretical comparisons that a type of systematic sampling scheme 

provided the optimum design with respect to minimum variance. 

In addition to the above studies systematic sampling sche~es have 

recently received some attention in the fisheries literature (Fieldler 

(1978), Venrick (1978), and Lenarz and Adams (1980)). These studies 

compare systematic, stratified and random schemes in one dimension by 

simulation and/or empirical methods. They conclude that systematic 

schemes are to be preferred on the basis of increased precision of the 

estimate of the population mean. 

One drawback of this sampling method is the lack of a general 

estimator of the variance of the mean. Heilbron (1978) using 

simulation techniques studied this problem when sampling an 

autocorrelated population in one dimension. He concluded that a sample 

based approximation of the unconditional expected value, derived by 

Cochran (1946) and discussed further by Quenouille (1949), performed 

well enough with respect to a quadratic loss criterion to be useful in 

practice. We propose to extend some of the techniques used by Heilbron 

to the two dimensional case and again by simulation, study the 

behaviour of four possible estimators of the variance. The familiar 

superpopulation model (Cochran 1946, Quenouille 1949 and others) is 

used along with a Gaussian stationary serial correlation model. The 
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The problem of estimating the variance and the model are explained in 

§2 while the method of study and the estimators examined are discussed 

in §_3. 

2. THE MODEL 

Envisage the area to be sampled divided up into a rectangular 

lattice with N1 rows and N2 columns so that there are 

N = Nt x N2 sample units of equal size available. A rectangular 

shaped sample area may not be attainable in practice but the infinite 

number of permutations of non-rectangular shapes would be unmanageable 

in a study of this sort. The size of the sample units would be 

determined by the type of sampling gear used in the survey, i.e. in the 

benthic marine environment the gear could be dredges or bottom trawling 

nets which would be towed over a standard distance by a vessel. 

Further, associated with each sample unit is an unknown value 

Yij which is to be observed, where i and j denote the row and 

column indices respectively, i = 1, ••• , N1 and j = 1, ••• , Nz. 

After Quenouille (1949) and Bellhouse (1977) we assume that these N 

observations (Yij) are to be considered a finite population which 

is in turn a sample from an infinite superpopulation which has the 

following characteristics, 



E(Yij] = ~' 

E((Yiy - ~ )2] = cr 2 

6 

E((Yij -~) (Yi+u,j+v-~ )] =cr2pu,v. 

( 1) 

The quantity P·a, v represents the autocorrelation between 

sample units of distance u and v units apart. 

Further, we wish to sample this finite population by employing a 

systematic scheme in the following manner. We first rewrite the row 

and columns indices of the rectangular lattice as N1 = n1K1 and 

N2 = n2K2 respectively, where K1, K2, n1 and n2 are all 

integers. Then from the following ranges 1, ••• , K1 and 1, ••• , 

Kz randomly select integers i' and j' with probabilities 1/K1 and 

1/Kz· The sample will consist of those units identified by the n1 

x nz combinations of the row indices i', i' + K1, i' + 2K1, 

i' + (n1- 1)K1 and column indices j', j' + Kz, j' + 2Kz, ••• , 

j' + (nz- 1)Kz· The sample will be structured as a rectangular 

lattice in space, and when taken in this manner is called and aligned 

sample. Alternatively the i' and j' could have been chosen such that 

only the rows, or columns, are aligned or neither are aligned. 

Bellhouse (1977) has shown that the aligned sample is less efficient 

than the case where the alignment is in one direction only or where 

there is no alignment but no conclusions could be drawn as to the 

relative efficienSY between the latter two types. We prefer to 

restrict our attention to aligned samples because we have found them to 

be easier and more efficient to implement especially where vessel time 

and associated costs are concerned. 
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From the sample we are interested in estimating the finite 

population mean Y by the sample mean, 

nl 
1 =-- E 

nl n2 i = 1 
y .. 

lJ 

where t and s denote the particular values of i' and j' chosen to 

obtain the sample. The sampling variance of Y~,s is defined by: 

Kl 
Vsy = 1 E 

KlK2 i=l 

K2 
r (v - V) 2 

s= 1 ., 1. ,s 

(2) 

( 3) 

The quantities required for equation 3 can only be obtained if the 

finite population was completely enumerated. Since we have only one 

value of Y~,s for any one systematic sample we·cannot estimate the 

variance by directly using the definition in equation 3. As noted in 

the introduction therein lies the problem with this sampling method. 

In §3 we will discuss some possible ways of estimating this variance. 

In our simulation study we assumed that the population values 

followed a Gaussian stationary autocorrelation model with 
u v 

Pu,v = P1P2· 

3. ESTIMATORS AND METHOD OF STUDY 

To compare the variances obtained from various types of sampling 

designs with respect to sampling an autocorrelated population in tNO 

dimensions, Quenouille (1949) derived the unconditional expected value 
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for each variance. The expected value for the variance of the mean of 

a systematic sample {EVS) therein derived is as follows: 

2 
EVS = _cr_ 

n,n2 ( Kl Kz-lj { .,..,......,...---:.1~~ r r 
K K l - K K n n (K K 1)) X u,ve:s (Klnl-/u/) 
1 2 1 2 1 2 1 2-

(4) 

In this equation cr2, Kt, Kz, "1 and nz are as defined 

previously while Pu,v refers to the autocorrelation between sample 

units of distance u,v units apart in the finite population and 

PKlu,Kzv is the autocorrelation between units contained in a single 

systematic sample. The first double summation is carried out over a 

region s where lui < K1n1, lvl < Kznz and excludes u = v = o. 

The second summation exists over the region s• where lui < n1, lvl < 

nz and again u = v = o is excluded. 

This equation was used as the basis for three of the estimates 

studied here by replacing the parameters cr2, Pu,v and 

PK1u,Kzv with sample based estimates analogous to the approach 

taken by Heilbron (1978). 



9 

The estimators compared in the simulation study are defined as 

follows: 

(1) The EVSY: The equation in (4) with cr2 replaced by the 

1 
. K1 u K2v 

samp e var1ance and PK
1

u,Kzv = pl pZ 

esti rna ted by 

n1-u n2-v 
SK1u,K2v = E E (Yij- f')(Yi+u,j+v- ~·) 

~i=~l~·~·=~l ___________________________________ (S) 

{ 

n1-u n2-v 
2 n1-u 

E E (Y. · - f') X E 
i=l J·=l lJ i=l 

nz-V 2 } (Y .. -f") t 
E l+U,l+V 

j=l 

n1-u n2-v 
where f• = E E Y;J·/(n1-u}(n2-v}, 

i=l j=l 

n1-u n2-v 

'f" = E E Y • + · I ( ) ( ) i=l j=l , u,J+v n1-u n2-v 

The values (u,v) are set to (1,0) when estimating~Klu and 

(0,1) for rfzv. 
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(2) EVSJ: Again we use equation (4) and replacecr2 with the 

sample variance but the autocorrelation estimator is a 
J jackknifed version of (5) PK
1
u,K

2
v, 

defined as: 

(6) 

where PK1u,Kzv and PK1u,Kzv are 

computed by using (5) on the first and second halves 

of the data set, respectively, divided in half along 

- Kl the jth direction for P 1 and along the ith direction 

for P2 K2 • 

-2 (K K -1) ( 3) EVSO = ncr n ~ ~ , that is using the expected 
1 2 1 2 . 

value form but ignoring the autocorrelation. 

(4) SUB4: This is strictly an ad hoc estimate which was designed 

to imitate equation (3) but at the sample level. The 

sample is subdivided into four pseudo-systematic 

samples and the mean is calculated for each sample. 

The original sample mean is used as an estimate of the 

population mean and the pseudo sample means are used 

in place of the Yl,s values. From preliminary 

tests it was observed that this estimator- was biased 

by a factor of approximately 4 and therefore the 

simulations were carried with equation (3) divided by 

4.0. 
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The simulations were carried out by generating ~~ 

pseudo-random numbers into a N1 x N2 array 

replicated 500/K1K2 times for each set of 

parameters studied. These numbers were generated 

using the IMSL (International and Mathematics and 

Statistics Libraries) subroutine GGNML (IMSL, 1980). 

It was found that there existed a residual serial 

correlation between the numbers generated but this was 

eliminated by "shuffling" rows and columns of the 

generated array. 

The desired autocorrelation structure was obtained by 

first applying the following transformation along the 

rows of the data matrix, 

y' . . = ( 1 - p 12) ty. . + p 1 y. . 1 ( j=2' , J , J , ,J-

Then the columns were treated in an analogous manner 

by applying, 

The following 4 sets of runs were carried out: 

A: N1 = Nz = 40, K1 = K2 = 2 

B: N1 = Nz = 40, K1 = Kz = 5 
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C: Nl = Nz = 80, Kt = Kz = 2 

D: Nl = Nz = 80, Kl = Kz = 5 

In each case the simulations were run for the following three sets 
. K1u K2v = 0.2, (2) ~ K1u of autocorrelat1on; (1) P1 =o 2 ··1 

K2v K1u K2v 
= Pl = 0.4 and (3) pl = p2 = 0.8. The 

autocorrelation values were set at the sample level since it is at this 

level that the researcher will detect them. In the results any 

particular simulation run is identified by a letter and a number, e.g. 

Al: N1 = N2 = 40, K1 = K2 = 2 and P
1
K1u = P£2v ;: 0.2 

Addi ti anal runs were carried out for the A series for 

Pllu = o.a, P 2 K2v = a. 2 and P K1u 
1 = 0.8, 

Pz. K2 v = 0.4. The results of these experiments were in 

accordance with those from the cases listed above and therefore will 

not be reported here. 

Since the autocorre1ations were set to be greater than zero, 

autocorrelation estimates encountered by the simulation program which 

were less than zero were set equal to zero and a record was kept of the 

number of occurrences. 

The estimators are compared by the criterion of relative 

effeciency (R.E.) defined here as the ratio of the mean squared error 

of EVS to the mean squared error of the variance estimator (T, say), 

that is: 



R.E. (T) = 

13 

t t 
E (EVS; - VSY) 2/ E 

i=l i=l 
2 (T. -VSY) , , 

where t is the total number of simulations carried out for any 

particular case. 

(7) 

Use of the above criterion differs from the approach taken by 

Heilbron (1978) where the conditional expectation of VSY was used in 

place of EVS in (7). This conditional expectation was derived under 

the assumption that the observations resulted from an arbritary 

Gaussian distribution and then specialized to the Markov serial 

correlation model. We preferred to use the unconditional expected 

value because being distribution-free it would facilitate comparisons 

between our results and those obtained if alternate distributions or 

models were studied. 

4. RESULTS AND DISCUSSION 

The results from the relative efficiency comparison are presented 

in Figure 1 and 2. These results can be summarized as follows; R.E. 

(EVSY);;;;. R.E. (EVSJ) > R.E. (EVSO) > R.E. (SU84) . The estimated 

relative bias for each estimator, i.e. R.B.(n = [(T-VSY)/VSY]x100, is 

plotted in Figures 3 and 4. Here the results are not as obvious as the 

relative efficiency results but the following trends can be seen. The 

!R.B. (EVSO) I was always greater in value than those obtained for the 

other estimators while !R. B. ( SUB4) I behaved erratically. In accordance 

with the relative efficiency results jR.B. (EVSY)I was always less than 

or equal to IR. B. ( EVSJ) !. 
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Intuitively one would expect, for the model assumed in this study, 

that those estimators which take the autocorrelation into account would 

be more efficient and in general less biased than those that did not. 

However, we did not expect to see the estimator EVSY perform as well as 

or better than EVSJ. Recall that the autocorrelation estimator in EVSJ 

was the jackknife estimator which is expected to be less biased than 

the natural estimator (5) used in EVSY. _Comparing the estimated 

average values obtained from the simulation experiment for the two 

types of autocorrelation estimators we see that this is indeed true 

(Table 1). However from Table 2 where the variances of the estimators 

and the percentage of times that the estimates were less than zero are 

compared it is obvious that the jackknife estimator is also a less 

precise estimator. Therefore the advantage to be gained by using the 

less biased jackknife estimator is lost due the associated larger 

variance. 

The main point to be made then is that Heilbron•s (1978) findings 

for the one dimensional case can now be extended to two dimensions. In 

addition our results show that for the two dimensional case, use of the 

jackknife autorcorrelation estimator instead of the less complicated 

natural autocorrelation estimator (5) does not improve the relative 

efficiency of the sample-base unconditional expected variance 

estimator. 

We would like to thank J. McGlade, R.K. Misra and D. Rivard for 

their very helpful comments on an earlier draft. 
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Tab1 e 1. Results of the Simulation Study: Comparing Average values obtained from 
the 'Jtocorre 1 ati on estimators. Re 1 ati ve Bi'as ( R. 8 .) =(estimator-parameter)/ 
para1 .. cter, expressed as a percentage 

Simulation Expected Avg (p K1 u) Avg (p1J) Avg\ (oK2v) Avg (p 
2 
J.j 

Set No. Value 1 2 
(R.B.) (R.B.) (R.B.) (R.B.) 

A 1 a.2 a. 1969 0.2a23 a. 1896 a. 1945 
( -1.55) (1.15) (-5.2a) (-2.75) 

A 2 a.4 0.3913 a.4a12 a.383a a.3916 
(-2.19) (0.3a) (-4.25) (-2. la) 

A 3 a.8 0.7587 a. 7867 a. 7521 a.7772 
( -5 . 16) ( -l. 66) (-5.99) ( -2.85) 

B 1 a.2 0.158a a. 1120 a.1380 a.1540 
( -21. aa) (-14.aa) (-13.aa) (-23.aa) 

B 2 a.4 a.3276 a.3696 a.3087 a.3465 
(-19.aO) (-7.6a) (-22.83) (-13.38) 

B 3 a.8 a.6185 a.7a48 a.S887 a.6439 
(-22.69) ( -11. ga) (-26.41) (-19.51) 

c 1 a.2 0.1984 a. 1999 a. 1927 a. 1985 
(-0.7a) (-a.a5) ( -1. 4a) (-a.75) 

c 2 a.4 a.3969 a.3997 a. 3946 a.3969 
(-a.78) (-a.a8) ( -1.35) (-a.78) 

c 3 a.8 a.7855 a.7961 a.7839 a.7926 
(-1.77) (-0.45) ( -2. a1) (-a.93) 

0 1 a.2 a. 1950 a.2a4a a. 1920 a. 198a 
(-2.50) (2.aO) (-4.aa) ( -1. aa) 

0 2 0.4 a.3842 a.4014 0.3827 a.3955 
(-3.95) (a.35) (-4.33) (-1.13) 

0 3 0.8 0.7296 a.7696 a.7262 0.7631 
(-8.80) (-3.80) (-9.23) (-4.61) 
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Table 2. Results of the Simulation Study: Comparison of the vari·ances (xlo-2) 
of autocorrelation estimators and percentage of times that 
estimates were less than zero (% <0.) 

Simulation (- K1 u J. Var (p£11 Var (3
2

K2v) Var (~2J) Set No. Var .P 1 _ 
% <0. % <0. % <0. % <0. 

A 1 0.2567 0.2803 0.2572 0.2693 
0.0 0.08 0.0 0.6 

A 2 0.2792 0.3136 0.2757 0.2879 
0.0 0.0 0.0 0.0 

A 3 0.3205 0.4759 0.3187 0.4159 
0.0 0.0 0.0 0.0 

B 1 1. 7398 1 . 9675 1. 7330 2.6350 
11.6 25.6 15.0 33.8 

8 2 1. 8063 2.5267 1. 8798 2. 5604 
2.20 9.4 1.4 12.20 

B 3 1. 8474 3.4288 3.2550 4.1549 
0.0 1.8 0.2 3.0 

c 1 0.0630 0.0643 0.0715 0.0719 
0.0 0.0 0.0 0.0 

c 2 0.0738 0.0782 0.0776 0.0788 
0.0 0.0 0.0 0.0 

c 3 0.1037 0.1341 0.1012 0.1 162 
0.0 0.0 0.0 0.0 

D 1 0.4980 0.5760 0.4327 0.4744 
0.8 3.4 3.4 3.4 

D 2 0.5462 0.6572 0.4573 0.4807 
0.0 0.0 0.0 0.0 

D 3 0.4418 0.6268 0.2974 0.4516 
0.0 0.0 0.0 0.0 
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RELATIVE EFFICIENCY 
EVSYA 

m~--------------••--------======~i EVSJA 

EVSOA 

.. ----------------•---------------.. SUB4
8 .. 

Q~--------------~--------------~--------------~------------~ 
o.o 1.0 2.0 

RUN CODE 
3.0 

Figure 1. Relative efficiency results from the simulation study Sets A 
and B. See text for explanation of estimators. 
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RELATIVE EFFICIENCY 

~ ----- ____ :_~vso0 

•----------------•-----------------• SUB4° 
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Figure 2. Relative efficiency results from the simulation study Sets C 
and D. See text for explanation of estimators. 
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RELATIVE BIAS(/.) 
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Figure 2. PPrcentage bias results from the simulation study Sets A 
and B. See text for explanation of estimators. 
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RELATIVE BIAS(/.) 

EVS0° 

EVSOC 

SUB4° 

EVSY~ 
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RUN CODE 

Figure 4. Percentage bias results from the simulation study Sets C and 
D. See text for explanation of estimators. 
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