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ABSTRACT 

Dodimead, A. J. 1980. A general review of the oceanography of the Queen 
Charlotte Sound-Hecate Strait-Dixon Entrance region. Can. MS Rep. 
Fish. Aquat. Sci. No. 1574: 248 p. 

Oceanographic cruises and sources of serial physical-chemical and 
tidal current data, primarily for the period 1934-71, and the results of 
past research for the Queen Charlotte Sound-Hecate Strait-Dixon Entrance 
region are reviewed. The results of further analysis of these data, mainly 
of those for Queen Charlotte Sound and Hecate Strait, are presented. Other 
relevant information such as average wind conditions, monthly means of sea 
level (1944-73) and of zonal Ekman transport (1946-73), and annual and 
monthly means - and anomalies of sea surface temperature and salinity 
(1934-73) for several lightstations located in the region, are also 
discussed. 

Key words: Serial physical-chemical oceanographic data, temperature, 
salinity, density, dissolved oxygen content, tidal and residual 
currents, Queen Charlotte Sound, Hecate Strait, Dixon Entrance. 

RiSUMi 

Dodimead, A. J. 1980. A general review of the oceanography of the Queen 
Charlotte Sound-Hecate Strait-Dixon Entrance region. Can. MS Rep. 
Fish. Aquat. Sci. No. 1574: 248 p. 

L'A. examine les résultats d'expéditions océanographiques et les 
sources de séries de données physico-chimiques et de données sur les 
courants de marée, principalement pour la période allant de 1934 % 1971, 
ainsi que les résultats de recherches ayant été menées sur la région du 
bassin Reine-Charlotte, du détroit d'Hécate et de l'entrée Dixon. Il 
• • presente les resultats d'analyses plus poussées, surtout des données sur le 

bassin et le détroit. Il discute aussi de'autres données intéressantes 
comme la vitesse moyenne du vent, la moyenne mensuelle du niveau de la mer 
(1944-1973) et du transport zonal selon Ekman (1946;1973) et des moyennes 
annuelles et mensuelles et des anomalies de la temperature et de la salinité 
•a la surface de la mer (1934-1973) pres de plusieurs phares de la région. 

Mots-clés: Séries de données d'océanographie  ,physico-chimique, témperature, 
salinité, densité, teneur en oxygene dissous, courants rdsiduels 
et courants dus a la mare

•
e, bassin Reine-Charlotte, ddtroit 

d'Hécate, entrée Dixon. 



I. INTRODUCTION 

Serial physical-chemical oceanographic observations in the Queen 
Charlotte Sound-Hecate Strait-Dixon Entrance region (Fig. 1) were made 
initially in 1934, and have been continued aperiodically to the present. 
Most of the oceanographic data, including those on tidal currents,were 
collected during the period 1934-71 by personnel of the Pacific 
Oceanographic Group. 1  The data to 1963 have been published in data records, 
primarily those in the "Fisheries Research Board of Canada, Oceanographic 
and Limnological Series" (discontinued in 1967). All the serial data 
collected prior to 1972 are archived in the Marine Environmental Data 
Service (MEDS), Department of Fisheries and Oceans, Ottawa. While some 
oceanographic data have subsequently been obtained in this region, they are 
not yet as readily available as those collected prior to 1972. Some of the 
post-1971 data have been used to provide information on such major 
oceanographic features as the seasonal and spatial variability of water 
masses and the tidal and residual currents in the region2 ; however, this 
information is dispersed among several different publications. Also, a 
considerable amount of these data has not been analyzed, or has not been 
presented in a suitable and available format for researchers who have a 
continuing requirement for oceanographic and related information for this 
region. The purpose of this report is to present further analysis of the 
available serial physical-chemical and tidal current data, particularly of 
those for Queen Charlotte Sound and Hecate Strait. Other relevant 
information, such as average wind conditions, monthly means of sea level and 
of zonal Ekman transport, and annual and monthly means and anomalies of sea 
surface temperature and salinity at several lightstations located in the 
region, is also discussed. A documentation of oceanographic cruises and 
references for data sources primarily for the period 1934-71, as well as a 
general review of the results of past_research, are also included. 

It is hoped that the report will serve both as a complete source 
of available background oceanographic information, at least to 1972, for 
fisheries and other research studies, and as a means of identifying 
deficiencies in the data base. With respect to the latter, it is hoped that 
the report will serve as a catalyst for the design and implementation of 
oceanographic-biological time-series programs that will provide essential 
information for on-going and planned research studies, particularly those 
directly related to the management of the fishery resources in this region. 

'In  October 1970, the Pacific Oceanographic Group of the Pacific 
Biological Station, Nanaimo, B.C. was disbanded; the physical oceanographers 
and their support staff were transferred to other Canadian west coast 
establishments. 

2The term "region" throughout this report includes Queen Charlotte 
Sound, Hecate Strait, and Dixon Entrance. 
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II. OCEANOGRAPHIC CRUISES AND DATA SOURCES 

A brief description of oceanographic projects and cruises, as well 
as charts showing station positions at which serial oceanographic and tidal 
current observations were made during the period 1934-71, are provided in 
this section. Other oceanographic data collected in this period and in 
subsequent years are briefly noted. Figures for this and subsequent major 
sections are found immediately following the text for each of the sections. 
Figures for this section start on page 9. 

The first oceanographic cruise in the Queen Charlotte Sound-
Hecate Strait-Dixon Entrance region dates back to September 1934, at which 
time the late Dr. T. G. Thompson of the University of Washington, aboard MV 
CATALYST, made serial observations at three stations across the western 
entrance to Dixon Entrance (Fig. 2). 	This was followed by a second cruise 
in July 1937 (Fig. 2). The first Canadian cruise in the region was made in 
May-June 1938 under the leadership of Dr. J. P. Tully aboard MV AMLAC, and ' 
covered Dixon Entrance and northern Hecate Strait (Fig. 3). Along two of 
the north-south transects across Dixon Entrance (Sta. 104-1 to 104-4 and 
105-1 to 105-4; Sta. 102-1 to 102-4 and 107-1 to 107-4) observations were 
made on opposite tidal phases. Over the remaining part of the area, only a 
general synoptic survey was made. In May 1951, serial observations were 
made in Dixon Entrance and, for the first time, in Queen Charlotte Sound and 
in southern and central Hecate Strait (Fig. 4) in conjunction with an 
oceanographic survey of the offshore region. This was followed by another 
survey in late July 1951 (Fig. 5). The data for all of these cruises were 
published in a single manuscript report (Pacific Oceanographic Group 1956). 

Following these cruises, a major oceanographic study (Hecate 
Project) of the region was initiated in 1954 to define the water masses, 
their spatial and seasonal variability, and the tidal currents and 
circulation systems (Barber and Tabata 1954). The program included seven 
cruises - in May, June, July, August-September and November-December 1954, 
and in February, April and May-June 1955 (Fig. 6-12). Serial oceanographic 
measurements were made on a pre-planned grid of 75 stations, but for various 
reasons all stations were not occupied on each cruise. In July 1954, the 
cruise was interrupted on several occasions by adverse weather conditions. 
Again, in November-December 1954, the cruise suffered severely from 
unfavorable weather conditions, and was not completed because of storm 
damage to the research vessel, HMCS CEDARWOOD. In addition to the synoptic 
surveys, direct measurements of tidal currents at various depths from the 
surface to near-bottom were made at several stations, generally over a 50-hr 
period, in May, July and August-September 1954 and in June 1955 (Fig. 13). 
The data from these cruises were published by the Pacific Oceanographic 
Group (1955a,b,c). 

In 1957, the Coastal Surveys were initiated. Four cruises 
covering primarily the areas off the west coast of Vancouver Island and of 
the Queen Charlotte Islands were made. On three of the cruises, those of 
April, September and November-December 1957, a few stations were occupied 
between the northern tip of Vancouver Island and the southern tip of the 
Queen Charlotte Islands (Pacific Oceanographic Group 1958). During the 
November-December cruise, a few stations were also occupied in Queen 
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Charlotte Sound and in Dixon Entrance (Fig. 14). Only the chart for the 
December cruise is presented, as the stations occupied across the western 
entrance to Queen Charlotte Sound in April and September are similar in 
position to those occupied in December. 

In 1958, the Coastal-Seaways Project was undertaken to obtain data 
primarily to assess the changes in oceanographic conditions from the open 
ocean to the adjoining coastal seaways (Dixon Entrance, Queen Charlotte 
Sound, Juan de Fuca Strait). Cruises were made in November-December 1958, 
April, June and November-December 1959 (Fig. 15-18). These data were 
published by the Pacific Oceanographic Group (1959a,b c) and by Herlinveaux 
et al. (1960). The project was continued in October 1960 (Fig. 19) (Lane et 
al. 1960) and in February 1961 (Fig. 20) (Lane et al. 1961). 

In 1961, the Monitor Project was initiated. It was essentially a 
consolidation of the several previous projects into a single one. The 
following surveys once again provided a reasonable spatial and temporal 

' coverage of the region, particularly of Queen Charlotte Sound and Dixon 
Entrance, in July-August and September-October 1961 (Crean et al. 1962a), 
January and January-February 1962 (Crean et al. 1962b), March and March-
April 1962 (Crean et al.  1962e) and September-October 1962 (Crean et al. 
1963) (Fig. 21-27). With the completion of the project, resources were 
diverted to carry out programs in other areas, notably the Strait of 
Georgia. 

It was not until 1967, with the initiation of the Oceanic-Coastal 
Program by the author, that observations were resumed in this region. This 
program was designed primarily to provide information on the continental 
shelf and offshore waters off the west coast of Vancouver Island northward 
to the Queen Charlotte Islands for 2 seasonal periods (early autumn and late 
winter). Several transects were made in the region under discussion - in 
September 1967, April and October 1968, April and October 1969, March 1970 
and 1971 (Fig. 28-34). The data from these cruises were unique in that a 
Bissett-Berman (Plessey) 9006 STD system was used for the first time in this 
region; continuous profiles of temperature and salinity vs depth were 
obtained. Although these data have not been published, they have been 
processed and are on file with the Marine Environmental Data Service. 

Other physical oceanographic data have been collected in the 
region during the period 1934-71, but these were primarily bathythermograms 
during fisheries research cruises conducted by the Pacific Biological 
Station. The bathythermograms have not been published, and are not 
discussed in this report. However, surface and bottom water temperatures 
for each cruise are provided in cruise and data reports (Westrheim 1967; 
Harling et al. 1967, 1968, 1969, 1970a,b and 1971; Butler and Smith 1968; 
Levings 1968; Westrheim et al. 1968, 1969a,b, 1970 and 1971; Davenport et 
al. 1971). Also, current and temperature observations were made from the 
drill rig, SEDCO-135, while operating in Queen Charlotte Sound and Hecate 
Strait in 1968-69. The analysis of these data has recently been completed, 
and the results will be published shortly (Herlinveaux, priv. comm). 

Since 1971, physical-chemical oceanographic programs in the Queen 
Charlotte Sound-Hecate Strait-Dixon Entrance region have been extremely 
limited in both spatial and temporal coverage. The collection of 
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bathythermograms and some serial oceanographic data during fisheries 
research surveys has continued. In 1979, publication of the digitized 
bathythermograms from these cruises, as well as an assessment of temperature 
conditions, was initiated. The 1977 and 1978 data have been published 
(Dodimead et al. 1979a,b). In 1977, the Institute of Ocean Sciences, 
Patricia Bay, Sidney, B. C. collected salinity-temperature-depth (STD) data 
and obtained additional information on near-surface and bottom currents in 
Queen Charlotte Sound and Hecate Strait, but these data have not been 
published as yet. 
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Fig. 17. Station positions, June 21-29, 1959 (Pacific Oceanographic 
Group 1959c). 
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Fig. 18. Station positions, November 28-December 9, 1959 
(Herlinveaux et al. 1960). 
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Fig. 19. Station positions, October 20-26, 1960 (Lane et al. 1960). 
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Fig. 20. Station positions, February 11-26, 1961 (Lane et al. 1961). 
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Fig. 22. Station positions, September 22-October 17, 1961 (Crean et al. 

1962a). 
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Fig. 23. Station positions, January 17-24, 1962 (Crean et al. 1962b). 
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Fig. 24. Station positions, January 31-February 4, 1962 (Crean et al. 
1962b). 
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Fig. 25. Station positions, March 13 - 20, 1962 (Crean et al. 1962c). 
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1963). 
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III. SUMMARY OF PREVIOUS RESEARCH RESULTS 

The earlier studies on the physical-chemical and tidal current 
features of the Queen Charlotte Sound-Hecate Strait-Dixon Entrance region 
are reported in several different publications. Also, some of the reports 
are based on a preliminary analysis of the data. Most of the reports are 
summarized here in terms of areas - Queen Charlotte Sound-Hecate Strait, and 
Dixon Entrance. The others are included in the discussions in Section IV. 
Figures for this section start on page 53. 

A. Queen Charlotte Sound-Hecate Strait  

Oceanographic information for Queen Charlotte Sound and Hecate 
Strait results primarily from the analysis of data from the Hecate Project 
(1954-55). Barber and Tabata (1954) and Barber (1957b, 1958a,b) have 
utilized some of these data to describe the general features of the surface 
temperature and salinity distributions (including those for Dixon Entrance) 
as well as the seasonal variability of temperature, salinity, and dissolved 
oxygen content of the deep water masses and the mechanisms involved. Some 
information on the tidal and residual currents in Queen Charlotte Sound and 
in Hecate Strait has been provided by MacKay (1954), Barber and Groll 
(1955), Barber (1957a, 1958b) and Wickett (1973). Information on the heat 
budget of the waters in the vicinity of Triple Island in eastern Dixon 
Entrance has been provided by Tabata (1958). Other relevant studies include 
those by Ketchen (1956a,b) who reported on long-term trends in air and sea 
surface temperatures at coastal stations in Hecate Strait and Dixon 
Entrance, and on correlations between winter sea surface temperatures and 
year-class strengths of several groundfish species. A comparison of air 
circulation indices in Hecate Strait with sea surface temperatures at Triple 
Island was made by Eber (1957). Although the authors of the latter four 
reports used data primarily from Triple Island - located in eastern Dixon 
Entrance - their results reflect processes in Hecate Strait generally, and 
are therefore included in this sub-section. All the reports noted above are 
reviewed in some detail in the following sections; most are relatively 
short, but provide pertinent information on the oceanographic and 
meteorological conditions for these two areas. 

1. Surface temperature and salinity  

Barber and Tabata (1954) reported that sea surface temperatures in May 1954 
were about 46 °F (8°C), with a small decrease in temperature toward the 
north, particularly in Dixon Entrance. In July 1954, surface temperatures 
were generally from 51 to 54 °F (10 to 12 °C) and varied irregularly over the 
region; however, the water on the mainland shore was warmer than that to 
seaward. During this period clouds of relatively warm water occurred in 
Dixon Entrance - near Chatham Sound - and north of the Queen Charlotte 
Islands. By August, surface temperatures over the region ranged from 52 to 
57°F (11 to 14°C). Barber (1957b) noted that the surface temperature ranged 
from 14°C in August 1954 to 6°C in April 1955. Also, the surface waters of 
Queen Charlotte Sound and Hecate Strait were generally warmer than those in 
Dixon Entrance. 
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In May 1954, before the freshets of the major rivers (Skeena, 
Nass, Bella Coola and Dean) influencing these areas developed, surface 
salinities were about 31.54 along the mainland coast and increased to 324 
along the east coast of the Queen Charlotte Islands (Barbara and Tabata 
1954). In July, surface salinities along any line parallel to the axis of 
Hecate Strait were nearly constant; however, at any latitude the waters were 
somewhat fresher on the mainland side than on the seaward (Queen Charlotte 
Islands) side. The presence of fresh water was clearly evident in the 
southern part of Queen Charlotte Sound, in Dixon Entrance near Chatham 
Sound, and in the passages leading to southeast Alaska. In August, the 
picture intensified over that observed in July; the waters in the 
low-salinity areas became fresher and the distribution of this less-saline 
water was more extensive. The dilution was most apparent in Dixon Entrance, 
where surface salinities were 2-34 lower in August than in July. In 
general, surface salinities were relatively low (30-324) throughout the 
region during all seasons (Barber 1957b). In Queen Charlotte Sound and 
Hecate Strait surface salinities were found to be generally greater than 
those in Dixon Entrance (although numerical values were not reported). 

Additional information on the spatial distribution and temporal 
variability of surface temperature and salinity for the region (together 
with several examples which show the features described above) is presented 
in a later section (p. 69). 

2. Subsurface temperature, salinity and dissolved oxygen content  

Barber (1957b) has reported that, in the subsurface waters of 
Queen Charlotte Sound, there is an annual cyclic alteration of water 
masses. In winter, the subsurface waters are warmer and less saline than in 
summer; the range in this variation was found to be greatest along the 
mainland coast, and became less evident to seaward. The variation was 
attributed principally to strong southeast winds in winter, and to a 
relaxation of these winds in summer. During southeast winds, surface waters 
are transported shoreward in Queen Charlotte Sound, resulting in an 
accumulation of surface waters along the coast and a compensating offshore 
displacement of deeper waters. In spring, when the intensity of the 
southeast winds àecreases, a relaxation of the onshore transport occurs; 
surface waters move offshore, and there is a compensating inshore movement 
of deeper waters. Barber suggested that this seasonal variability in water 
masses is responsible for a large part of the seasonal sea-level oscillation 
observed at Prince Rupert, B.C. He also noted that the combination of wind 
and sea-level data suggests that variations in transport during winter may 
occur. In January 1950, little southeast wind occurred, and mean sea level 
was about 24 cm lower than normal. He noted that, under these conditions, 
the warmer less saline water at depth would not be observed. He suggested 
that the observations of mean sea level would provide an index to the major 
changes in subsurface water characteristics. 

In a subsequent paper, Barber (1958b) reported that the seasonal 
variation in the deep water in Queen Charlotte Sound resulted from two 
features: the depression of the oceanic halocline in winter, during the 
period of maximum southerly winds; and the rise of this halocline along the 
coast during light southerly or northwest winds and maximum runoff, which 
occur most frequently during summer. He suggested that sufficient surface 
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outflow occurs to allow the entrainment process, and hence the deep flow, to 
persist during all seasons in Queen Charlotte Sound. The variation in the 
depth of the halocline, together with the persistent deep-water inflow, 
would lead to marked changes of salinity - which in turn would result in 
changes in the salinity of the deep waters in the entire system. Also, a 
complete renewal of deep water in Queen Charlotte Sound could occur in a 
period as short as 2 weeks. 

Barber (1958a) also reported on the seasonal sequence of dissolved 
oxygen content at a selected station in Queen Charlotte Sound, noting that 
the least oxygen content in the deep water occurs during the summer months, 
at which time temperatures are low and salinities high. In July 1954 and 
June 1955, the dissolved oxygen content was less than 2 mg/L (2.8 ml/L) at 
depths below 250 m. However, in December 1954, values less than 2 mg/L were 
not observed above 400 m. He noted that the seasonal variation of dissolved 
oxygen content was similar to that observed at other positions in the 
region. He suggested that this variation could influence the seasonal depth 
migration of bottom fishes. 

3. Tidal and residual currents  

Barber (1957a) reported on the results of analysis of direct 
current observations made in June 1955 at Station 9, located north of 
Triangle Island in the southwestern part of Queen Charlotte Sound 
(Fig. 13).  He  noted that at all depths the currents were rotary, changing 
direction continually in a clockwise manner with a semi-diurnal or tidal 
period. At a depth of 20 m, the current was directed east at high water, 
and west at low water. The principal direction of the flood was northeast, 
and that of the ebb southwest. The maximum speed, slightly over 50 cm/sec 
(1 kn), occurred during the flood - between 3 and 4 hr after low water. 	A 
comparison of observed velocities at 20 m and 75 m indicated that the deep 
currents were generally "ahead" in their rotation with respect to those at 
20 m; at low water, currents at 75 m were directed north (west at 20 m), and 
at high water were directed south (east at 20 m). The calculated residual 
(net) movements were small, 2.5-5 mi/day (5-11 cm/sec) and the predominant 
direction was easterly into Queen Charlotte Sound; these results are 
summarized in Table 1. 

Table 1. Calculated residual (net) movements at Sta. 9 
located in southwestern Queen Charlotte Sound, June 1-3, 
1955 (Barber 1957a). 

Speed 

0 	 4 	 9 	 070 
10 	 3 	 6 	 135 
20 	 2.5 	 5 	 110 
30 	 2.5 	 5 	 095 
45 	 5 	 11 	 070 
75 	 4 	 9 	 030 
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Analyses of current data obtained during the period June 6-8, 1955 
at Station 5 - located near the mainland coast in Queen Charlotte Sound 
(Fig. 13) - showed that at 10 m a net seaward movement of about 20 km 
(11 mi) occurred during a (tidal) day (Barber 1958b). At 50 m there was 
little net movement. At 125 m, a large net movement again occurred, 
however, it was directed shoreward at about 15 km/day (8 mi/day). The 
vertical distribution showed that above 50 m a net seaward movement 
occurred, having a maximum speed of nearly 25 cm/sec (0.5 kn) and decreasing 
steadily to zero at 50 m (Fig. 35). Below 50 m, a net movement into the 
seaway occurred, averaging about 15 cm/sec (0.3 kn) between depths of 75 and 
125 m. • Based on the results from these two stations (Sta. 5 and 9), Barber 
cpncluded that the deep flow was continuous from seaward well into the inner 
part of southern Queen Charlotte Sound. Also, the contrary directions of 
the surface and deep water indicated the existence of considerable shear 
with consequent mixing occurring at all depths. 

MacKay (1954) published the results of five short series of 
surface and bottom (41 fm, 75 m) current observations made in northern 
Hecate Strait, at approximately 54 °10'N, 131°00'W, in July 1952. He 
concluded that, at this position, tidal currents were rotary with the 
dominant directions and velocities parallel to the coastline. The surface 
currents rotated clockwise semi-diurnally with a maximum speed of 1-1.5 kn 
(50-75 cm/sec) southward, and the minimum of less than 0.1 kn (5 cm/sec) 
northward. The net progress of water was to the south at about 0.4 kn (20 
cm/sec). There was no evidence that the component of steady southward flow 
was associated with either wind or land drainage. The bottom tidal currents 
varied irregularly from 0.2 to 0.6 kn (10 to 30 cm/sec), and were notable in 
that their rotation was counter-clockwise, opposite to that of the surface 
currents. The speed of the steady current near the bottom was less than 
0.1 kn (5 cm/sec). 

Wickett (1973) reported on an unusually strong surface current 
that was observed from a drill rig operating in Hecate Strait on September 
25, 1968. The current occurred on a falling spring tide and was reported to 
be southerly with an estimated velocity of about 2.5-3 kn (125-150 cm/sec), 
at a time when winds and seas were calm. However, this current occurred 
about 8 to 10 hours •after about a 24-hour period of very strong southerly 
and westerly winds. 

4. Heat budget  

Tabata (1958) analyzed meteorological and oceanographic data from 
1945 to 1955 and determined the magnitudes of the terms in the heat budget 
equation for the sea in the vicinity of Triple Island. Grand monthly means 
(1947-54) and their standard deviations are presented in Fig. 36 and a 
summary of his observations follows. The annual cycle of radiation absorbed 
by the sea (Qs ) is in phase with the total incident solar radiation under 
cloudless sky conditions (Qo ) and with total incident solar radiation under 
mean cloud cover (Qi), and attain a minimum (35 g-cal/cm2/day) in December 
and a maximum (350 g-cal/cm 2 /day) in June. The annual amplitude of the 
effective back radiation (Qb) is small compared to that of solar radiation 
and the extreme was seldom greater than 25% of the annual mean. The heat 
loss from the sea surface by this process varies from a maximum of 130 
g-cal/cm2 /day in winter, more than twice the magnitude of the absorbed solar 



- 47 - 

energy, to a minimum of 85 g-cal/cm2 /day in summer, less than one-third of 
the absorbed solar energy. The annual cycle of heat loss associated with 
evaporation (Qe ) possesses a maximum (175 g-cal/cm2/ day) during winter and 
a minimum (25 g-cal/cm 2/day) in summer. The annual amplitude is 
approximately one-half that of the absorbed solar radiation. 	The monthly 
transfer of sensible heat (Qh) is from sea to atmosphere in winter and is 
relatively large, reaching its maximum value (145 g-cal/cm2/ day) in 
January. During late summer the exchange is directed from atmosphere to sea 
at a rate of less than 15 g-cal/cm2/day. During winter the combined 
influence of evaporation (Q e ) and conduction (Qh) is much larger than that 
of solar radiation. Tabata concluded that, during the cold months, these 
cooling processes play a dominant role in changing the sea surface 
temperature. 

Tabata (1958) reported that the principle feature of the annual 
cycle of total heat transfer across the air-sea boundary is that the 
greatest loss from the sea (about 350 g-cal/cm2/day) occurs in December and 
January, and the greatest gain (more than 200 g-cal/cm2/day) occurs from May 
to September (Fig. 37). Periods of no net transfer occur during the latter 
part of March and of September. The monthly means of the total heat 
transfer of individual years follow the general'cyclic trend of grand 
monthly means. However, there were appreciable differences in the 
year-to-year deviation of monthly means (Fig. 37). Because of these 
year-to-year fluctuations, the times of no net tranfer vary. In spring it 
may occur at any time during the five weeks between early March and early 
April, but in autumn it occurs in the shorter period from late September to 
early October. 

The annual cycle of the total heat transfer across the air-sea 
boundary and the annual cycle of sea surface temperature at Triple Island 
are not in phase (Fig. 37). Tabata considered two likely possibilities for 
the discrepancy: vertical transfer of heat from deeper water, and lateral 
transport of water. He indicated that in winter it is probably due to 
transfer of warmer water from depth to the surface, or transport of warmer 
water into the region, or a combination of both. In summer, it is 
attributed to the exchange of heat with colder water at depth, and/or to an 
intrusion of cold water into the region. 

Tabata (1958) also made a comparison of total heat transfer at the 
air-sea boundary at Triple Island and the change of heat content of the 
water column throughout Dixon Entrance for the period May 1954 to June 
1955. Between May and July 1954, an increase in heat content twice than 
that to be expected from heat gain through the boundary was found to have 
occurred; this was attributed to transport of warmer water from the south 
through Hecate Strait, from the ocean by way of Dixon Entrance, or from 
both. A "decrease" in heat content between July and August 1954 was 
attributed to inshore transport of cold upwelled oceanic water from seaward 
of Dixon Entrance. Between August 1954 and February 1955, the decrease in 
heat content was much smaller than would be expected from the loss occurring 
at the sea surface. This condition was believed due to warmer oceanic water 
entering the area from the south through Hecate Strait and from offshore. 
During February and April 1955, the decrease of heat in the column was more 
than twice as much as that determined as being lost from the sea surface, 
and was attributed to intrusion of cold water from the north or northwest. 
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The influence of advection on the heat budget of the water was small during

the period April to June 1955. Tabata concluded that, advective as well as
surface energy transfer processes play an important role in affecting
coastal sea temperatures in these areas.

5. Other studies

Other relevant studies include those by Ketchen (1956a,b) and by
Eber (1957). Ketchen (1956a) examined long-term trends in the annual mean
air and sea surface temperatures at several coastal station located in the
region. He noted that at Masset, B.C. the annual mean air temperature
declined by nearly 4°F (2°C) between 1906 and 1922. Thereafter, the mean
rose 'fairly steadily, by more than 4°F (2°C), to a peak around 1941. A

sharp decline occurred from 1941 to 1950. During the latter period annual
mean sea surface temperatures at Triple Island also declined. Ketchen

(1957b) examined winter sea surface temperatures and abundance of several
groundfish species and obtained reasonable correlations. High negative
correlations were obtained with year-class strength of English (lemon) sole

and mean winter sea surface temperatures at Triple Island. He postulated
that, when such temperatures are low, the larvae are carried for a longer

period by the northward current through Hecate Strait, and as a result,

greater numbers are deposited on the rearing grounds located in the shallow

areas of northern Hecate Strait. He suggested that the observed
relationship between water temperatures and brood strength might be
dépendent upon the wind-induced current.

Considering the above hypotheses. and the fact that, during winter

and spring, currents in the vicinity of Triple Island are generally

northward and the mean isotherms are roughly perpendicular to the coastline,
Eber (1957) postulated that the sea surface temperature in this area should

be related to the northward component of geostrophic air flow. He obtained

a positive correlation between sea surface temperatures at Triple Island and
northward geostrophic wiad components for January data for the period
1938-56. Advection associated with wind-induced water movements appeared to
provide a plausible mechanism for this relationship. In summary, he

suggested that high average sea surface temperatures in January may result
from advection caused by winds with strong northward components. Low
January average surface temperatures may occur if winds are weak, since

cooling due to net radiational heat loss then becomes the dominant factor.

Anomalies created in January tend to persist until spring. An increase in
surface temperature from January to February, at which time the net heat
exchange is negative and the southerly wind component is strong, indicates
that significant advective processes do occur.

B. Dixon Entrance

Crean (1967) has provided a relatively comprehensive report on the
oceanography of Dixon Entrance. He has described the characteristics of the
seasonal cycles associated with precipitation, runoff, winds, Ekman

transport, sea level, heat transfer and sea surface temperatures and

salinities using long-term monthly means of data obtained in Dixon Entrance
and vicinity. Seasonal distributions and vertical structures of
temperature, salinity and density for four seasonal periods - spring
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(April and May), summer (June through August), autumn (September and 
October), and winter (November through March), based upon data collected on 
the Hecate Project (Fig. 6-12) and an autumn cruise in 1962 (Fig. 29), were 
presented and discussed. The seasonal circulation patterns and causative 
factors were also discussed. Some of his results are briefly noted here; a 
few of his figures are also presented. For additional information the 
original report should be consulted. In addition, Barber and Groll (1955) 
have briefly discussed bottom currents at one location in Dixon Entrance. 

1. Surface temperature and salinity  

The seasonal sequence of sea surface temperature, for Dixon 
Entrance and northern Hecate Strait, described by Crean (1967) is shown in 
Fig. 38. In spring, the differences in surface temperature in Dixon 
Entrance are relatively small. The warmest water during this period is 
located in northern Hecate Strait. In summer, high surface temperatures are 
associated with the area of low-salinity water found along the northern 
shores of Dixon Entrance and in the southern reaches of Clarence Strait 
(Fig. 39). In autumn, surface temperatures throughout Dixon Entrance are 
generally lower than those to seaward or in northern Hecate Strait; in 
winter, surface temperature differences throughout these areas are small. 

Crean noted three persistent features in the surface salinity 
distributions (Fig. 39): (1) an area of low-salinity water associated with 
Chatham Sound, Clarence Strait, and the northern shores and west central 
part of Dixon Entrance; (2) a horizontal gradient of salinity at the mouth 
of Dixon Entrance, with surface salinities in Dixon Entrance being less than 
those in the adjacent ocean; and (3) an irregular area of water, associated 
with the northern part of Hecate Strait, and displaying salinities (>30.5Z 
in summer, >31.5 during the remaining seasons) higher than those in the 
remainder of Dixon Entrance. In summer, a marked reduction in salinity over 
the whole area occurs as a consequence of dilution due to the spring freshet 
of the Skeena and Nass rivers and to drainage provided by local streams. 

2. Water structure and deep water masses  

Crean (1967) also reported that the most distinctive feature of 
the water structure in summer and autumn is a strong thermocline (At -6 °C), 
which is coincident with a strong permanent halocline 	-3L). 	In winter, 
the thermocline is absent, and there is evidence of a weak temperature 
inversion at depth. In spring, a thin surface layer of warm water is 
apparent, while below this the changes of temperature with depth are small. 
There is a marked variation in the depth of the halocline with time of year; 
the depth is a minimum in summer and increases throughout the autumn to a 
maximum in winter, and becomes shallower again in the spring. The variation 
in depth is consistent with that reported by Barber (1957b) for Queen 
Charlotte Sound (p. 44). Below the halocline, temperatures are lower and 
salinities are greater in summer and autumn than in winter and spring; in 
winter, temperatures are higher and salinities are lower than those in any 
other seasons. 
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3. Tidal and residual currents  

Barber and Groll (1955) reported on the analysis of hourly current 
observations made near the bottom in Dixon Entrance just north of Graham 
Island at Station 65 in July 1954 (Fig. 13). They noted that the general 
directions of flood and ebb streams were parallel to that of the nearest 
coastline. The times of minimum current corresponded to the times of high 
and low water, and the times of maximum flood and ebb occurred close to 
mid-range of the tidal rise and fall. Over a tidal cycle a net movement of 
about 1.1 mi (2 km) to the southeastward was observed, equivalent to a 
steady current of about 0.1 kn (5 cm/sec). This movement was observed from 
the surface to within 3 fm (5.5 m) of the bottom. 

Crean (1967) utilized density sections and dynamic topography, as 
well as the results from a hydraulic model experiment (Bell and Boston 1962; 
1963 and Bell 1963) and from direct ,current observations, to define the 
basic circulation in Dixon Entrance. The hydraulic model experiments showed 
a strong net cyclonic vortex in central Dixon Entrance (Fig. 40), attributed 
to the meeting of the Queen Charlotte Sound and Dixon Entrance tides in 
northern Hecate Strait. Density sections across this vortex showed a 
well-developed doming of the isopcynal surfaces during the flood tide; the 
dome partially collapsed during the ebb. The results of the direct current 
observations made at three locations across the vortex indicated that the 
net components, to the south and west at Sta. A, to the north and west at 
Sta. B, and to the north and east at Sta. C (Fig. 41), were clearly 
consonant with the vortex circulation shown in the hydraulic model 
experiments. Also, a comparison of the net flow directions at Sta. A and C 
with the distribution of dynamic height from 0 to 125 m (Fig. 42) showed 
reasonable agreement with respect to this general rotation. There was a net 
inflow along the southern side of Dixon Entrance; this flow may be enhanced 
by westerly winds. 

In his summary, Crean defined a seasonal model of oceanographic 
behaviour for Dixon Entrance. By spring (April-May) the strong southeast 
winds characteristic of the preceding winter months have moderated 
considerably. The discharge of fresh water into Dixon Entrance increases 
rapidly. The net northward flow through Hecate Strait is reduced. Most of 
what flow occurs continues northward through Clarence Strait. The general 
onshore convergence of surface waters in the adjacent ocean begins to 
relax. In Dixon Entrance a basically conservative system is dominated by 
the net cyclonic circulation induced by the meeting of the tides in northern 
Hecate Strait. . 

In summer (June-August) the influence of southeast winds is 
minimal. In early summer, a strong discharge of fresh water from the Nass 
and Skeena rivers moves seaward through Dixon Entrance. The net northward 
flow through Hecate Strait becomes negligible. The strong freshwater 
discharge seaward, acting in concert with a densimetric flow occasioned by 
the final relaxation of the  onshore convergence, engenders a major flushing 
of brackish water from the region, and a strong intrusion of cold, saline 
water at depth. Throughout the remainder of the summer, the seaward flow of 
fresh water decreases and is largely confined to Clarence Strait and the 
northern shores and west-central part of Dixon Entrance. The net cyclonic 
circulation includes in its extent the seaward approaches. 
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In autunui (September-October) there is a marked increase in
southeast winds. The freshwater dtsch.irge associated with large

precLpitation In the coast_draLnage area increases to a secondary maximum in
October. This discharge is confined largely to Clarence Strait. The
northward flow through Hecate Strait increases and a general onshore
convergence of surface waters in the adjacent ocean begins. The net tidal

cyclonic circulation dominates the central part of Dixon Entrance and the
seaward flushing of brackish water through Dixon Entrance is weak.

In winter (November-March) two régimes of behavior are
distinguished. In early winter, when southeast winds are maximal, the
discharge of fresh water is relatively small since most of the precipitation

is retained on the bordering mountains as snow. There is a marked onshore
movement of oceanic surface water; associated with this movement is a
well-developed northward flow through Hecate and Clarence straits. In

particular, in its passage through Hecate Strait, this flow is enhanced by
the direct action of wind channelled northward through the Strait. In

consequence a marked movement of water seaward through Dixon Entrance
occurs. The water comprising the northward flow through Hecate Strait is
relatively warm, due to the mitigation of local cooling by the rapidity of
this northward motion. In late winter, the southeast winds gradually
decrease. The freshwater discharge remains small. The flow through Hecate
Strait is reduced, most of it continuing northward through Clarence Strait.
The onshore movement of oceanic surface water continues, but with diminished
intensity. In Dixon Entrance a basically conservative situation obtains,
dominated by the net cyclonic circulation. The seaward flushing of brackish
water is weak.

Crean notes that this general model of behavior undoubtedly
represents a major simplification of the actual processes involved.

However, further understanding of the problem would involve the continuous
recording of variables at strategic locations throughout the region (an

extremely costly procedure), and the relating of these variables to the
primary causal factors.
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Fm. 42. Distribution of dynamic height anomaly (AD), 0/125 m September-October 1962. 
( Crean 1967 ) 
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IV. RECENT RESEARCH RESULTS 

In this section, the seasonal features of coastal winds, sea level 
and zonal Ekman transport, based on monthly means, are reviewed. Yearly and 
monthly means and anomalies of sea surface temperature and salinity for 
several lightstations located in the region are discussed. Surface 
distributions of temperature and salinity for the region are also 
presented. The principal features of structure of temperature, salinity, 
density (as given by sigma-t) and dissolved oxygen content, and their 
spatial and temporal variability for Queen Charlotte Sound and Hecate Strait 
are described. Finally, additional information on the general features of 
the tidal and net flows in Hecate Strait and Dixon Entrance is provided. 
Figures for this section start on page 95. 

A. Coastal Winds 

Crean (1967) has provided a description of the dominant features 
of the annual cycle of winds in Dixon Entrance, Hecate Strait and Queen 
Charlotte Sound, based on wind data from four instrumented observing 
stations in the region - Prince Rupert, Sandspit, Cape St. James and McInnes 
Island (Fig. 1). He noted that the dominant winds are parallel to the 
coastal mountain barriers, which tend generally southeast-northwest. His 
observations, which are based on 8-10 yr averages of monthly total miles of 
winds resolved along these directions, are briefly discussed below. Also 
included is a description of the location of the weather stations and of the 
features of the surrounding areas, as reported by Environment Canada 
(1975). 

At Prince Rupert, the station reported here is located at the 
airport. The surrounding area is hilly and wooded. There are mountains to 
the north, east and south, with the Pacific Ocean to the west. There is a 
small hill 1/2 mile to the southeast which affects winds from that direction 
to some extent. At this station, considered a somewhat sheltered location, 
the southeast component is dominant throughout the year, but shows a marked 
annual cycle (Fig. 43) (Crean 1967). The wind mileage increases rapidly 
from September and attains an annual maximum in October, November and 
December. From January on, there occurs a gradual decrease to a minimum in 
July. 

At Sandspit, the anemometer is located at the airport which is 
situated on a flat spit projecting northward into Hecate Strait from the 
northeast corner of Moresby Island. There are hills to the southwest and 
west with mountains beyond. A dense belt of trees, about 80 ft high, to the 
south and west affects winds from the south and west quadrants. Although 
Sandspit is a more exposed station than Prince Rupert, the total wind 
mileages are considerably less than those at Prince Rupert (Fig. 43). The 
southeast component is still dominant throughout the year. The monthly mean 
mileages show an annual cycle similar to that at Prince Rupert, though the 
increase from September to October is more gradual than that at the latter 
location. 
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At Cape St. James, the station is located on a small plateau 
[(approximately 60' (18 m) by 200' (61 m)] on a cone-shaped hill [300' 
(91 m) above mean sea level] on St. James Island (southern extremity of the 
Queen Charlotte Island). Turbulence is created by local topography. At 
this station the annual cycle of winds is dominated by a strong northwest 
component in summer, and thus differs markedly from those at the other 
locations (Fig. 43). This dominance is attributed to the effect of the 
mountain barrier, which will tend to deflect winds into the direction 
parallel to its own northwest-southeast axis, and thereby increase the 
portion of winds from this direction. A contributory factor to the 
relatively large mileages may be the relatively high location of the 
anemometer, as noted above. 

McInnes Island is considered to be the best source of data on the 
prevailing winds in Queen Charlotte Sound and Hecate Strait. At this 
station there is open sea from northwest through west to south-southeast, 
with islands in the remaining directions. Winds from west-northwest through 
north to east-southeast are affected locally by higher ground and by trees 
on the island. At this station the southeast component clearly dominates, 
except in July,at which time a weak northwest component is apparent 
(Fig. 43). The amplitude of the annual cycle is greater than that at either 
Prince Rupert or Sandspit. 

Long-term monthly means of wind speeds and of percentage 
frequencies along 8 points of the compass at McInnes Island are presented in 
Fig. 44. From October through April, the largest mean speeds, about 20-29 
mi/hr (9-13 m/sec), characterize the southeast and south components. From 
June through August, mean speeds along these directions are about one-half 
the winter values, but are greater than the mean northerly speeds, which are 
about 3-8 mi/hr (1.3-3.6 m/sec). Northerly speeds are relatively constant 
throughout the year. The percentage frequency of winds reflects their 
seasonal variability, relatively large values (about 20 to 30%) for the east 
and southeast components from October to April and for the northwest 
component from May to October. 

B. Sea Level and Zonal Ekman Transport  

Sea level and calculated wind-driven transport are of considerable 
significance in identifying variability in flow and in water structure and 
properties. As examples, Favorite (1974) has shown that in the Gulf of 
Alaska there is a near-linear relationship between monthly-mean increases in 
sea level (corrected for atmospheric pressure, seasonal steric effects and 
precipitation) and wind-driven transport, except during summer. As noted 
earlier in this report, Barber (1957b) has suggested that the annual 
alteration in water masses in Queen Charlotte Sound is responsible for a 
large part of the seasonal sea level oscillation observed at Prince Rupert. 
He also reported that below-average sea level in winter (January) indicates 
the absence of warm subsurface waters in Queen Charlotte Sound. Wickett and 
Thomson (1973) reported that there is good coherence between Ekman transport 
normal to the coast at lat. 50°N, long. 130°W and sea level at Prince 
Rupert; high sea level is associated with large onshore Ekman transport, 
whereas very low sea level is associated with relatively large offshore 
transport. 



- 63 -

Monthly means of sea level (uncorrected for atmospheric pressure)
for Prince Rupert, and of zonal Ekman transport at 50°N, 130°W for the
period 1944-1973 are presented in Fig. 45. Sea level values greater than

12.75 and less than 12.25 ft and transport values greater than 500 tons/km/

sec and negative values (offshore transport) are shaded to.clearly show the
seasonal and annual variability in the monthly means. An annual cycle is

clearly evident. Abrupt increases in sea level and in transport normally
occur in October-November, coincident with the onset of the strong southerly
winds, and the values generally remain relatively high in January and

February. Lowest annual values of sea level and negative values of

transport generally occur from May through September.

In autumn, winter and early spring, zonal Ekman transport is

generally directed onshore (Fig. 45), reflecting a convergent condition
associated with the strong southerly winds that generally prevail during

these periods. With a relaxation of these winds and an increase in the

frequency of northerly winds in late spring and summer (May to October),
transports are generally directed offshore (negative values); they are

relatively small, reflecting a weak divergent condition.

The general coherence between sea level at Prince Rupert and Ekman

transport normal to the coast at 50°N, 130°W (Wickett and Thomson 1973) is

apparent.in these data, particularly during autumn-winter, with high (low)
monthly means of sea level generally associated with large (small) monthly

means of Zonal Ekman transport (Fig. 45).

Marked yearly variations both in sea level and in zonal Ekman

transport are also evident (Fig. 45). The persistence of relatively low and

high monthly-mean values during both the winter (December through March) and
the summer (June through August) periods are noted here. During the

December-March period, sea levels were generally relatively low in 1946-47,

1948-49, 1949-50, 1955-56, 1956-57, 1961-62, 1964-65, 1970-71 and 1971-72.
Zonal Ekman transports for this period were relatively small in 1946-47,

1948-49, 1949-1950 (except in February), 1955-56 (except in January),
1956-57, 1961-62, 1964-65, 1968-69, 1970-71 and 1971-72, and, except for

1968-69, corresponded to winter periods of relatively low sea level. Winter

periods of high sea levels and large zonal Ekman transports are less obvious

because of the marked fluctuations in the monthly-mean values during this

period. Sea levels were generally high in the winters of 1952-53, 1957-58,

1960-61, 1965-66, 1967-68, 1969-70 and 1972-73. Ekman transports during

this period were generally large in 1952-53, 1957-58, 1958-59, 1960-61,
1963-64 and 1969-70, in most cases, corresponding to the high sea levels of

those winters. The significance of these anomalies in relation to winter

sea surface temperature anomalies at the lightstations is discussed in a
later section (p. 67).

During the June-August period, the yearly variations in sea level

and zonal Ekman transport were small in comparison to those in winter; thus

the anomalies are not easily identified. Sea levels appear to have been

relatively low in 1944, 1945, 1951, 1958 (July) and 1962. Offshore
transport (negative values) during this period were relatively large in

1948, 1949, 1951, 1952, 1958 (June and July) and 1963. Sea levels were

relatively high in 1954, 1957, 1964, 1968, 1969, 1971, 1972 and 1973.
Relatively small offshore or onshore transport generally occurred in 1957,
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1964, 1968, 1969 (August), 1971, 1972 and 1973 (June and July), and, except 
for one year (1954), corresponded to summer periods of high sea level. 
Generally, the coherence between sea level and zonal Ekman transport appears 
to be less in summer than in winter. 

C. Surface Conditions at Coastal Lightstations  

Long-term records of daily observations of sea surface temperature 
and salinity are available at several lightstations located in the region. 
Some of these records date back to 1934 and have been used by numerous 
researchers to provide information on the seasonal cycles and long- and 
short-term variations in surface temperature and salinity. Long-term 
monthly means and standard deviations, and annual and monthly means and 
their deviations from the long-term monthly means are discussed. The data, 
presented here in graphical form, have been published in tabular form to 
1971 by Hollister and Sandness (1972). Subsequent data (1971-76) are 
available in Pacific Marine Science Report 72-14 (Hollister 1972); 74-1 
(Hollister 1974); 74-11 (Giovando and Hollister 1974); 78-2, 78-8 and 78-12 
(Giovando 1978a,b,c). In the figures, temperatures have been plotted 
usually in °F, the same units used in the above reports, but values in the 
text are cited in both °F and °C. Figures for this sub-section start on 
page 100. 

1. Annual surface temperature and salinity cycles  

Long-term monthly means and standard deviations of temperature and 
salinity for Langara (1940-70), Cape St. James (1934-70), Triple Island 
(1940-70) (observations discontinued in 1971), Bonilla Island (1960-70), 
McInnes Island (1954-70) and Ivory Island (1937-55) (observations 
discontinued in 1956) are presented. The locations of these stations are 
shown in Fig. 1. 

(a) Temperature  

The annual temperature cycles are similar at each of the stations 
(Fig. 46) and are characteristic of the sea surface temperature régime for 
these latitudes, namely, a temperature maximum in August, and a minimum in 
February-March. The annual range varies from about 10 to 15 °F (5.5 to 
8.3°C), and is less at the "outside" stations (Cape St. James and Langara 
Island) than at the "inside" stations (Triple, Bonilla, McInnes and Ivory 
Island). The annual ranges are: at Langara, 42.9-52.8 ° F (6.1-11.6 °C); Cape 
St. James, 44.4-54.7 °F (6.9-12.6 °C); Triple Island, 43.5-54.8 °F (6.4- 
12.7 ° C); Bonilla Island, 43.2-54.0 ° F (6.2-12.2 °C); McInnes Island, 
43.6-56.2 °F (6.4-13.4°C); and Ivory Island, 43.2-58.1 °F (6.2-14.5°C). At 
the outside stations, the summer maximum and winter minimum temperatures 
decrease from south to north. However, at the inside stations, the 
long-term-average minimum temperatures are very similar (43.2-43.6 °F, 
6.2-6.4°C), but the corresponding maximum temperatures range from 54.0 to 
58.8°F (12.2 to 14.9°C), a difference of 4.8°F (2.7°C). The relatively 
large differences in the maxima may be attributed to "local" variability in 
the stability of the near-surface water column. This variability can result 
from several factors acting singularly or in combination - fresh water 
input, tidal mixing, advection, and local differences in air-sea energy 
exchange. The small differences in the long-term minima between the 
southern and the northern inside stations indicate that advection is 
generally the dominant process during winter. 
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(b) Sa1intLy_

Pickard and McLeod (1953) have classified the daily seawater

observation stations according to three climatological regions, based on the

annual near-surface salinity cycle. The first includes areas far removed

from the influence of river runoff. In such areas open-oceanic conditions

prevail and there is little annual variation in surface salinity. The second

includes those areas where surface salinity is dominated by runoff draining
the regions of snow storage; here salinities are at a minimum in early

summer. The third includes those areas characterized by a salinity minimum
in winter associated with local runoff resulting from heavy winter

precipitation. Each of these climatological regions occurs within the Queen

Charlotte Sound-Hecate Strait-Dixon Entrance region. Langara Island and

Cape St. James are areas dominated by oceanic conditions, with a relatively
small annual range, about 0.254 (Fig. 47). At Langara, two minima occur

each year, in summer (July) and in late autumn (Novembar), while at Cape St.
James only a summer (August) minimum occurs. The second classification is
reflected at Triple Island and Ivory Island,'which are featured by a marked

salinity minimum in summer. At Triple Island, the minimum occurs in

June-July and is related to the peak discharges of the Skeena and Nass
rivers, which occur in June. The salinity minimum at Ivory Island occurs

later, July-August and is attributed to the peak discharges of the Dean and

Bella Coola rivers. The difference in time of the minima is considered to
be due to the difference in distance the waters of these rivers must travel
before reaching the region - the waters of the Dean and Bella Coola moving

further than those of the Skeena and Nass. On the other hand, Mclnnes
Island shows a salinity minimum in November, and is typical of the third

classification, whose stations are dominated by heavy local precipitation

and runoff - which are a maximum at this time of the year. Bonilla Island

shows a fairly marked minimum in November, and also a slight minimum in

July-August, showing the effects of both local late-autumn runoff and early-

summer river discharge. A slight minimum also occurs in February. This may
be due to some "relaxation" of the early-winter onshore transport allowing

the low-salinity waters from the mainland pasages to spread into the region.

Deviations of yearly averages from the long-term annual means of

sea surface temperature and salinity for Langara Island, Cape St. James and
Triple Island for the period 1940-75 are presented in Fig. 48. A marked

cooling trend is evident during the period 1940-50, followed by a warming

one from 1950 to 1963, and a cooling one from 1963 to 1972 (Fig. 48a). The

deviations are very similar at each of the stations. Warm years occurred in
1940-42, 1953, 1958, 1963, and cold years in 1950, 1955-56 and

1971-72. A 5-6 yr periodicity in negative and positive anomalies of sea

surface temperature of the North Pacific Ocean reported by Favorite and
McLain (1973) is also indicated in these data.

The yearly deviations suggest a general decrease in surface

salinity during the period 1940-75 at each of the stations (Fig. 48b). The
rate of decrease is similar at each station, and is similar to that recently
reported by Webster and Farmer (1977) for the 1935-1970 period - about 0.41.
/35 yr at Langara Island and at two lightstations (Amphitrite Pt. and Kains

Is.) located on the west coast of Vancouver Island. Yearly deviations in
salinity show some coherence between stations, but less than that for
temperature. Also, there appears to be little coherence between temperature

and salinity fluctuations - a feature also noted by Webster and Farmer

(1977) for other lightstations along the B.C. coast.



- 66- 

2. Monthly means of surface temperature and salinity  

Monthly means of sea surface temperature and salinity for Cape St. 
James (1934-73), Ivory Island (1937-53), McInnes Island (1954-73) (replacing 
Ivory Island in 1954) Langara Island (1937-73) and Triple Island (1940-70) 
are presented in Fig. 49-52. Differences from the long-term monthly means 
are indicated by the vertical bars (light and heavy lines). Differences 
greater than one standard deviation are shown by the heavy vertical bars and 
are considered to identify significantly anomalous conditions. 

(a) Monthly means of surface temperature and anomalies  

In general, all stations reflect similar temperature trends, 
although differences from the long-term monthly means may vary from station 
to station (Fig. 49 and 50). From 1934 to early 1945, there was a dominance 
of anomalously warm surface conditions at all stations, particularly during 
the winter months (December through March). Warm winter conditions 
generally prevailed in 1937-38, for three consecutive years in 1939-40, 
1940-41 and 1941-42 (no data for Cape St. James) and again in 1943-44 and 
1944-45. These conditions usually persisted until mid-summer, but the 
anomalies were generally somewhat less than those in winter. These winters 
were followed by a lengthy period (1946-57) in which there was a dominance 
of cold surface conditions in winter - 1946-47, 1948-49, 1949-50, 1955-56 
and 1956-57. During this 11-yr period, there was only one summer period in 
which temperatures were relatively high, namely 1957. Although temperature 
conditions were variable during the period 1958 to early 1964, the trend was 
toward warm conditions - winter to mid-summer 1958, winter 1962-63, 
generally throughout 1963 and in winter 1963-64. Cold conditions generally 
prevailed during the first half of 1962. From 1964 through 1973 anomalous 
conditions occurred in late summer (August through September) 1967 (warm), 
in mid-winter(January-February) 1969 (cold), in winter 1969-70 (warm) and in 
winters 1970-71 and 1971-72 (both cold). 

(h) Monthly means of surface salinity and anomalies  

In contrast to the marked similarity in surface temperature trends 
at each of the lightstations, there is considerably less coherence in the 
surface salinity trends (Fig. 51 and 52), reflecting the highly regional 
variability in freshwater discharge and mixing processes. At the outside 
stations, large anomalies tended to persist for several months, whereas at 
the inside stations, the persistence of very large anomalies was of shorter 
duration. The general trends at each of the stations are briefly noted. 

At Cape St. James, there was a predominance of very low-salinity 
water in 1934, 1935, 1954, 1955 and in 1967 (Fig. 51). Relatively 
high-salinity water was present in 1937, in the latter part of 1942 and 
generally throughout 1944 and 1945. From 1938 to mid-1942 and from 1957 to 
1967, anomalies were relatively small, generally less than one standard 
deviat  ion.  

At Langara Island, above-average salinity conditions generally 
prevailed from mid-1942 to 1947 (Fig. 52), generally coinciding with periods 
of above-average conditions at Cape St. James. Below-average salinity 
conditions occurred in the latter part of 1953, in 1961, in the first half 
of 1963 and of 1964 and in the latter half of 1967. 
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At Triple Island, high-salinity water was present in the first 
half of 1945 and of 1950, with low-salinity water dominant in 1954 and 1955 
(Fig. 52). From 1956 through 1969, average salinity conditions generally 
prevailed, except for the large anomalies that are evident in June and July 
in some years. 

At Ivory Island (1937-53), salinity conditions were generally 
below average in 1939, and above average in the latter part of 1951. At 
McInnes Island (1954-69), salinities were anomalously low in 1967 and 1968 
and high in late 1955, in early 1956 and in summer 1965. 

(c) Winter (December through March) anomalies of surface temperature,  
sea level and zonal Ekman transport  

Monthly mean sea surface temperatures for various periods have 
been tested as an index of changes in year-class strengths of several 
groundfish stocks in Hecate Strait (Ketchen 1956a,b). A general assessment 
of temperature conditions that prevailed at the lightstations during the 
winter period (December through March) for the years 1939 through 1973 is 
provided in Table 4. The anomalies in temperature are compared to those of 
sea level and zonal Ekman transport, where data are available. The cold 
conditions in the winter of 1946-47, 1948-49, 1949-50, 1955-56, 1956-57, 
1961-62, 1964-65, 1968-69, 1970-71 and 1971-72 (Table 4) were associated 
with low sea level (except in 1968-69) and small Ekman transport (see p. 63 
and Fig.45). The warm winter conditions in 1957-58, 1960-61 and 1969-70 
weré associated with high sea level and large Ekman transport. However, the 
warm conditions in winter 1962-63 were associated with slightly 
above-average sea levels and average transports. Also, in 1963-64, only 
transports were moderately large. However, sea level and Ekman transport 
were above average in October and/or November for both of these winter 
periods. Other discrepancies in these relationships are obvious. In winter 
1944-45, temperature conditions were anomalously warm, but sea levels were 
low (no transport data). The relatively high sea levels and large Ekman 
transports in 1952-53 were associated with average temperature conditions. 
In 1968-69, cold conditions generally prevailed, but sea levels were 
relatively high. However, Ekman transports were relatively small during 
this winter period. Apart from these few discrepancies, it appears that 
both anomalies in sea level at Prince Rupert and zonal Ekman transport at 
50 °N, 130 °W are associated with anomalous winter surface temperature 
conditions in the region. 
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Table 4. Summary of sea surface temperature conditions, December through 
March, at coastal light stations in the Queen Charlotte Sound-Hecate 
Strait-Dixon Entrance region, 1939-1973. 

Stations 

Year 	Langara Triple Island 	C. St. James 

Ivory Island 
McInnes Island 

(to 1954) 

	

1939-40 	- 	 V.W. 	 - 	 V.W. 

	

1940-41 	V.W. 	 V.W. 	 - 	 V.W. - W 

	

1941-42 	V.W. 	 V.W. - W 	- 	 V.W. - Av. 

	

1942-43 	Av. 	 Av. 	 Av. 	 Av. 

	

1943-44 	V.W. - W 	V.W. - W 	V.W. 	 W 

	

1944-45 	V.W. - W 	V.W. - W 	V.W. 	 W - V.W. 

	

1945-46 	Av. 	 Av. 	 Av. 	 Av. - C 

	

1946-47 	V.C. 	 V.C. - C 	C 	 V.C. - C 

	

1947-48 	Av. 	 Av. 	 Av. 	 Av. 

	

1948-49 	V.C. - C 	V.C. 	 V.C. - C 	V.C. - C 

	

1949-50 	V.C. 	 V.C. 	 V.C. - C 	V.C. 

	

1950-51 	Av. - C 	Av. - C 	 Av. - C 	 Av. - C 

	

1951-52 	C 	 C 	 C 	 C 

	

1952-53 	Av. 	 Av. 	 Av. 	 Av. 

	

1953-54 	Av. 	 Av. 	 - 	 - 

	

1954-55 	W- Av. 	Av. 	 W - Av. 	 W - Av. 

	

1955-56 	C - V.C. 	C - V.C. 	V.C. 	 V.C. 

	

1956-57 	C - Av. 	V.C. - Av. 	V.C. 	 V.C. - Av. 

	

1957-58 	Av. - V.W. 	V.W. 	 Av. 	 W - Av. 

	

1958-59 	Av. - W 	Av. 	 Av. 	 Av. 

	

1959-60 	Av. 	 Av. 	 Av. 	 Av. 

	

1960-61 	W - Av. 	W - Av. 	 W 	 W - Av. 

	

1961-62 	Av. 	 C 	 Av. - C 	 C 

	

1962-63 	W - V.W. 	W 	 V.W. - W 	V.W. - W 

	

1963-64 	W 	 W 	 V.W. 	 V.W. - W 

	

1964-65 	C - Av. 	C - Av. 	 C - Av. 	 C - Av. 

	

1965-66 	Av. 	 Av. 	 Av. - W 	 Av. 

	

1966-67 	Av. 	 Av. 	 Av. 	 Av. 

	

1967-68 	Av. 	 Av. - C 	 Av. 	 Av. 

	

1968-69 	V.C. - C 	C 	 C - Av. 	 V.C. - Av. 

	

1969-70 	W - Av. 	W - Av. 	 W - V.W. 	 W - Av. 

	

1970-71 	C - Av. 	- 	 Av. 	 C - V.C. 

	

1971-72 	V.C. 	 - 	 V.C. 	 V.C. 

	

1972-73 	Av. 	 - 	 Av. 	 Av. - C 

C - cold 	 W - warm 
V.C. - very cold Av. - average 	 V.W. - very warm 
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D. Surface distributions of temperature and salinity

Distributions of surface (3 and 5 m) temperature and salinity for

various periods in 1954-55, 1959 and 1961-62 are presented. These two

depths are those used by Crean (1963) and are considered to eliminate short-

term surface effects such as those due to diurnal variations in temperature

and to local runoff. The distributions reflect the principal seasonal and
spatial features and some of the year to year variations that can be
expected in the near-surface waters. Also, some information on the surface
circulation can be inferred from the configuration of the isolines, in
particular the isohalines. The inferred flows that appear to show some
consistency in time and/or space are indicated in the figures by arrows.
Figures for this sub-section start on page 119.

1. Surface temperature

In May 1954, the seasurface temperature distribution was
generally irregular, but surface (3 m) temperatures were relatively uniform

over the region, about 8°C in Queen Charlotte Sound and Hecate Strait and

7-7.5°C in Dixon Entrance (Fig. 53). A tongue of relatively low-temperature
water appears to have formed in southern Queen Charlotte Sound. Based on

temperature conditions at the lightstations, this distribution reflects
slightly below-average temperature conditions for May.

By July 1954, the effects of seasonal heating are clearly evident
in Fig. 54. Temperatures throughout the region were 3-4°C higher than those
observed in May. A relatively marked gradient had developed in southern

Queen Charlotte Sound, and is attributed to the relatively cold mixed waters
inflowing from Queen Charlotte Strait. A slight gradient had also developed
off the southeast coast of the Queen Charlotte Islands, possibly associated

with a local upwelling condition. Over the remainder of the region the
distribution was irregular, with tongues and cells of warm and cold water
the dominant features; these are attributed to weak and irregular flow
patterns. This distribution is also considered to represent slightly
below-average conditions for this time of the year.

In August-September 1954, marked gradients, tongues and cells were

the dominant features (Fig. 55). The temperature gradient in southern Queen
Charlotte Sound had increased from that observed in July, but the gradient

that was present off the southeast coast of the Queen Charlotte Islands in
July had dissipated. However a relatively marked gradient, with
temperatures increasing to seaward, had formed along the eastern (mainland)

side of Hecate Strait, and was continuous across the northern part of the
Strait. This gradient is attributed to upwelling along the mainland side.
Temperatures ranged from 9°C in southern Queen Charlotte Sound to 14.5°C in

the central part of the Sound, from about 10 to 14°C in Hecate Strait, and
from about 11.5 to 13°C in Dixon Entrance. Maximum temperatures in Dixon

Entrance were about 1 to 1.5°C lower than those observed in Hecate Strait

and in Queen Charlotte Sound. This distribution is considered to reflect
average conditions for this period.

In February 1955, relatively uniform conditions again prevailed

throughout most of the region (Fig. 56). Surface temperatures were highest
(-8°C) in southwestern Queen Charlotte Sound, while the lowest temperatures
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occurred within a small cell off Rose Spit (-6°C) and in the mainland 
approaches to the region (-7 °C). In Dixon Entrance, temperatures ranged 
between 6.5 and 7 °C, about 1-1.5 °C lower than those observed in Queen 
Charlotte Sound and in southern Hecate Strait. This distribution is 
indicative of near-average conditions. 

In mid-April 1955 also, temperatures decreased from south to 
north, with a range of about 1.5 ° C (Fig. 57) - similar to that observed in 
other periods. In Hecate Strait and central Queen Charlotte Sound the 
isotherms were oriented perpendicular to the coasts. Temperatures were 
about 1°C lower than those observed in February throughout the region and 
are indicative of below-average conditions. 

The temperature distribution for June 1955 shows features 
considered typical for the summer period, namely a marked gradient in 
southern Queen Charlotte Sound, cells of relatively warm and cold water in 
Queen Charlotte Sound and Hecate Strait, and temperatures increasing seaward 
from the mainland side of Hecate Strait (Fig. 58). This distribution also 
reflects below-average conditions. 

The temperature distributions for subsequent periods show seasonal 
features similar to those already noted, and also reflect the annual 
variability that can occur. In April 1959 the general south-to-north 
decrease (1.5°C) is again evident (Fig. 59). Throughout the region 
temperatures were about 1-1.5°C higher than those observed in April 1955, 
and are indicative of average conditions. 

In late June 1959, the dominant features were the tongues of 
relatiliely warm water along the mainland side of Queen Charlotte Sound, 
Hecate Strait and Dixon Entrance, and the gradients in southern Queen 
Charlotte Sound and at the seaward entrance to Dixon Entrance (Fig. 60). In 
central Dixon Entrance temperatures were relatively uniform, 11-11.5 °C. 

Distributions for early October 1961, January and March 1962 were 
generally typical of those for autumn and late-winter periods, with 
temperatures decreasing northward and the absence of any appreciable 
gradients (Fig. 61-63). In mid-March 1962, temperatures ranged from 6.5 °C 
in Queen Charlotte Sound to less than 5°C in Dixon Entrance (Fig. 63). 
Below-average temperature conditions prevailed throughout the region during 
this period. 

2. Surface salinity  

Surface (3-5 m) salinity distributions are presented for 
essentially the same periods as are those for  temperature. 1  In May 1954, 
surface salinities ranged from about 31 to 32Z over most bf the region, with 
lowest salinities (<31Z) at the eastern approaches, and'highest salinities 
(321) at the western approaches to Queen Charlotte Sound and Dixon Entrance 
(Fig. 64). There is evidence of the development of a tongue pi relatively 
low-salinity water in southern Queen Charlotte Sound, as indicated by the 
configuration of the 31.5Z isohaline. The development of this tongue is 
also evident in the surface temperature distribution for this period 
(Fig. 53). The relatively high salinity water (>31.8Z) in western Hecate 
Strait is considered a remnant of a northward intrusion of oceanic 
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water that normally occurs during the winter months. The terminus of this 
intrusion is indicated by a small cell of relatively high salinity (32L) in 
southeastern Dixon Entrance. From central Dixon Entrance salinities 
increased slightly to seaward, and decreased slightly to the mainland 
coast. 

In July 1954, low-salinity water and marked horizontal gradients 
along the mainland side of Queen Charlotte Sound and in eastern and 
northeastern Dixon Entrance were the dominant features (Fig. 65). The 
gradients are attributed to the peak discharges in June of the large 
snow-melt fed mainland rivers. A gradient was also present at the western 
entrance to Dixon Entrance, marking the boundary between the oceanic and 
coastal waters. Over the remainder of the region, salinities were 
relatively uniform, 31 to 321.. In central Dixon Entrance, surface 
salinities were about 0.5,4 lower than those observed in May, but little 
change had occurred in Hecate Strait. The tongue of low-salinity water in 
southern Queen Charlotte Sound was now a well-developed feature, with a 
predominantly westward flow indicated. 

By August-September 1954, the low-salinity water, which in July 
was confined to the eastern and northern boundaries of the region, had 
spread seaward, and as a result, salinities in Dixon Entrance were about 11, 
lower, and in Hecate Strait from 0.5 to 1.5l lower (Fig. 66), than those in 
July. In general, surface salinities were also lower in Queen Charlotte 
Sound, except in the low-salinity tongue, and as a result the gradient 
associated with the tongue was less marked than that in July. However, the 
tongue had progressed further seaward, but not to the extent noted in some 
other years - e.g. in August 1958 (Favorite 1961) and in June-August 1966 
(Dodimead 1968). There was a significant change in the configuration of the 
isohalines in Hecate Strait, with a general east-west orientation indicated 
- in contrast to the predominantly north-south orientation that normally 
occurs in winter, spring and early summer. This implies that there was 
little north-south flow during this period in Hecate Strait. A westward 
flow of surface water is indicated in northern Dixon Entrance. 

During late November 1954, salinities in Queen Charlotte Sound 
(Fig. 67) were, in general, higher than those for August. This condition is 
attributed to the retention of local runoff at the eastern shores by the 
southerly winds which are usually dominant at this time of year - as is 
evident by the marked gradient in the vicinity of McInnes Island. Also, 
vertical mixing of surface waters with the subsurface waters occurs, 
resulting in an increase in salinity in the surface layer. A remnant of the 
low-salinity tongue in southwestern Queen Charlotte Sound is evident. 

By February 1955, surface salinities were again relatively low 
throughout the region, generally ranging between 30.5 and 31.51, (Fig. 68). 
This is attributed to an early "relaxation" of the winter onshore transport, 
resulting in a westward spread of the low-salinity waters which had been 
confined along the mainland coast. In addition, a general northward flow is 
indicated in Queen Charlotte Sound and in Hecate Strait, as shown by the 
general north-south orientation of the isohalines. In Dixon Entrance, the 
surface flow appears to have been weak and irregular, with a seaward surface 
flow in northern Dixon Entrance and a relatively weak inflow near Langara 
Island. 
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In April 1955, surface salinities were relatively high and uniform 
throughout most of the region (Fig. 69), being about 0.5Z, higher than those 
observed in February. These conditions reflect the extremes of late winter 
conditions, associated with low surface temperatures, minimum stability in 
the water column, and the lack of substantial local and snow-melt runoff. A 
definitive flow pattern is not evident in this period. During this period, 
the low salinity water in eastern Dixon Entrance had intruded southward into 
northern Hecate Strait, displacing or overriding the high-salinity water 
normally encountered in this part of the region. In central Dixon Entrance, 
Hecate Strait and northern Queen Charlotte Sound, salinities were generally 
similar to those in May 1954. 

Near surface (5 m) distributions of salinity for April and June 
1959, July-August and October 1961, and January, March and March-April 1962 
show major features and seasonal variations similar to those just described 
(Fig. 71-77). However, as with temperature, some year to year differences 
are apparent in the figures. In April 1959, salinities were about 1%, lower 
over most of the region, and the north-south configuration of the isolines 
was more definite, than was the case in April 1955 (Fig. 69 and 71). 

In June 1959, the salinity distribution (Fig. 72) was essentially 
the same as that for June-July 1954(Fig. 54), with marked gradients and very 
low-salinity water in eastern Dixon Entrance, relatively low-salinity water 
and a gradient at the western entrance to Dixon Entrance, a tongue of 
low-salinity water in southern Queen Charlotte Sound, and relatively uniform 
salinities (31 to 32Z) over the remainder of the region. 

During July-August 1961, the surface salinity over most of Queen 
Charlotte Sound was relatively uniform, and low (Fig. 73) compared to that 
observed in August 1954. The tongue of low-salinity water, previously 
identified by the 31.5Z isohaline, appears to have had a much greater 
westward and northward extent than in other summer periods for which data 
have been presented. 

From October 1961 to mid-January 1962, surface salinities 
increased by about 0.5Z throughout Queen Charlotte Sound, Hecate Strait and 
southern Dixon Entrance (Fig. 74-75). The increase occurred during a period 
of very low sea level and small Ekman transport (Fig. 45), indicating little 
northward flow during this period. Thus, the increase does not appear to be 
associated with a marked northward intrusion of relatively high-salinity 
water through Queen Charlotte Sound. It may be due to mixing and 
evaporation, coupled with small freshwater runoff during this period. 

By mid-March and in early April 1962, surface salinities were 
slightly lower than those observed in January, and were relatively uniform, 
about 31.5 to  32,  over most of the region (Fig. 76-77). These figures 
indicate that changes in surface salinities, over a period of about 2 weeks 
are relatively small during this period. 
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E. Annual Cycle of Subsurface Temperature, Salinity, Density and Dissolved
Oxygen Content in Queen Charlotte Sound and Hecate Strait

The occurrence Of an annual cycle in the subsurface waters

(considered to be those waters at depths of 125 in and greater) of Queen
Charlotte Sound (Barber 1957 b, 1958 a,b) and of Dixon Entrance (Crean 1967)
has been noted. Examples to demonstrate this annual cycle in the vertical
structure of temperature, salinity, density (as given by sigma-t) and
dissolved oxygen content are presented for 5 separate areas in Queen
Charlotte Sound and Hecate Strait shown in Fig. 78. The stations

representing each area are either coincident or closely spaced. The 1954-55
and 1960-62 data sets provide the best temporal coverage to indicate this
cycle. However, the data are not of sufficient density with respect to time
and depth to define precisely when and to what depths the extremes of the
seasonal subsurface conditions occurred in these periods. Figures for this
sub-section commence on page 145.

The annual cycle is similar in each of the areas (here and in

subsequent di:scussions and in the figures, these are referred to as
stations) (Fig. 79-85). In mid-summer (July - August), the dominant
features of the vertical structures are the thin mixed or near-mixed surface

layer, and underlying this layer, the relatively marked gradients associated
with the thermocline, halocline, pycnocline and oxycline. During this
period these gradients are at their minimum depth. Below them the waters

are of relatively low temperature and dissolved oxygen content, and of high
salinity and density. These features and conditions occur most frequently
in mid-summer and are defined as "summer" conditions.

Coincident with the development of the generally strong and
persistent southerly winds of autumn and early winter (October-December),
marked changes occur throughout the water column. The surface layer

thickens; the thermocline, halocline, pycnocline and oxycline are displaced
downward.(e.g. Fig. 80), and are considered to reach their maximum depth by
late December. By this time the subsurface waters have been replaced by
waters of relatively high temperature and dissolved oxygen content and of
low salinity and density. Also, during this period, erosion of the summer
thermocline continues because of surface cooling and convective and
wind-induced mixing. These surface processes continue until late March -
early April. During late winter the thermocline disappears and temperatures
decrease, and near-isothermal conditions may extend to depths of 150-200 m
(e.g. Fig. 81). However, the vertical gradients of salinity, density and
dissolved oxygen remain, but are considerably deeper than those observed in
mid-summer. In the shallower areas, marked vertical gradients are indicated
in the near-bottom waters (e.g. Fig. 84 - dissolved oxygen). Temperature
inversions are common features during late winter. These features and
conditions are defined as "winter" conditions.

With the relaxation of southerly winds in spring, the surface
waters which have accumulated along the mainland coast move seaward, and

there is a compensating movement of subsurface oceanic water shoreward. As
a result, the subsurface waters are replaced by waters of relatively low
temperature and dissolved oxygen content and of relatively high salinity and
density. There is also an upward displacement of the vertical gradients of
salinity, density and dissolved oxygen, marking the return to "summer"
conditions.
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In these figures the isolines have been drawn to indicate 
relatively gradual changes between the extremes of "summer" and "winter" 
conditions. However, because of the marked variability in the onset, 
strength and duration of the seasonal winds, considered to be the prime 
factor related to the occurrence of these conditions, it is reasonable to 
assume that variations in the onset and duration of the change probably 
occur. Strong southerly winds usually commence about mid-October, and 
remain relatively strong through December. Therefore the change to "winter" 
conditions will generally occur during this period. However, the relaxation 
of these winds is extremely variable, and may occur at any time from late 
winter to late spring; also, the relaxation process may be gradual or 
relatively abrupt within this time frame. Therefore, it follows that the 
subsurface conditions could change accordingly; the return to "summer" 
conditions may be abrupt or gradual and may occur at any time from late 
winter through late spring. The data for 1954 indicate a relatively late 
and abrupt change to "summer" conditions, between May and early July 1954. 

Another feature evident in these data is the variability that can 
occur in "winter" conditions. The deepening of the isolines appears to have 
been less in winter 1961-62 than in winter 1960-61 (Fig. 80, 81, and 84). 
Also, by late winter (January-February), temperatures throughout the water 
column were lower in the winter of 1962 (January) than that of 1961 
(February). Several factors were associated with the relatively cold 
conditions in winter 1961-62; monthly means of sea level and zonal Ekman 
were relatively low, as has been noted previously, and monthly means of air 
temperature at McInnes Island were between 0.8 and 2.5 ° C lower in the winter 
of 1961-62 than in that of 1960-61. 

F. Vertical Temperature and Salinity Structures in Queen Charlotte Sound  
and Hecate Strait. 

To show clearly the characteristic features of the temperature and 
salinity structures, as well as the ranges in temperature and salinity for 
the waters of Queen Charlotte Sound and Hecate Strait, all available data 
(excluding bathythermograph data) for 3 stations (Sta. A, C, E; Fig. 78) are 
presented. Sta. A is considered representative of waters in the western 
approach to Queen Charlotte Sound and Sta. C and E representative of waters 
of the deeper areas of. central Queen Charlotte Sound and Hecate Strait, 
respectively. The data have been grouped arbitrarily into four 3-month 
periods, July-September, October-December, January-March and April-June. 
Although the data are relatively sparse in most of these periods, they do 
provide an indication of the seasonal and yearly variability that can be 
expected in these properties. Figures for this sub-section start on page 
152. 

In July-September, the distinctive features of the temperature and 
salinity structures are the thin mixed or near-mixed surface layer and the 
marked thermocline and halocline (Fig. 86-88). In the absence of surface 
mixing, the thermocline and halocline will extend to the surface. 
The thermocline extends from near-surface to about 75-100 m depth at Sta. A 
and to about 100-125 m at  Ste.  C and E. The magnitude of the thermocline is 
dependent upon the degree of surface heating and mixing and is about 6 to 
8 ° C. The halocline extends from near-surface to depths of 125-150 m at 
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Sta. A and C, and to about 150 m at Sta. E. The upper portions of the 
thermocline and halocline are generally coincident in depth, but the lower 
limit of the halocline appears to be deeper than that of the thermocline. 
The magnitude of the halocline is dependent upon the freshwater input, and 
therefore varies with location, but is about 2 to 31. During this period, 
the thermocline and halocline are at their minimum depth. Below these 
gradients temperature decreases, and salinity increases, slightly with 
depth; temperatures are low and salinities high throughout most of the water 
column. 	In the subsurface waters (125 m to bottom), the ranges in 
temperature and salinity in these data are about 1.0 °C and 0.54, 
respectively, at 125 m depth, decreasing to about 0.7°C and 0.151 at 200 m 
depth. These values are considered representative of the variability 
generally occurring in this period. 

In October-December the dominant processes and their sequence are 
considered to be: surface cooling (primarily through conduction and 
evaporation), wind-induced and convective mixing, onshore transport of the 
surface layer accompanied by an accumulation and downward displacement of 
these waters along the mainland side, and offshore transport at depth 
resulting in a displacement of subsurface waters to seaward. These 
processes are reflected by changes in the structures. The initial changes 
are the thickening of the surface mixed layer and the downward displacement 
of the thermocline and halocline in late October (Fig. 89-91). These 
result in large changes in temperature and salinity at intermediate depths 
(75-100 m). By late-December, the subsurface waters have been replaced and 
are now relatively warm and of low salinity. The range of temperature for 
October-December for these data is about 2.5°C at 125 m, decreasing to about 
1.9 °C at 200 m, while the corresponding salinity values at the two depths 
are about 1.1 and 0.71. 

During late winter (January-March) the cooling, mixing and 
advective processes continue. The main features are the near-isothermal 
conditions to depths of 150-200 m and the relatively large temperature 
inversions common at depth, particularly at Sta. C and E (Fig. 92-94). The 
variability in temperature and salinity in the subsurface waters is 
generally similar to that of the previous period. 

In April-June, mixing and surface cooling are replaced by surface 
heating and dilution. Also, there is a relaxation in southerly winds; this 
is accompanied by an offshore movement of surface waters, and a compensating 
onshore flow of subsurface waters. These processes result in the 
development of the summer thermocline, an increase in the magnitude of the 
halocline, a decrease in the depth of the halocline and a reentry of 
relatively cold and saline subsurface waters (Fig. 95-97), marking the 
return to "summer" conditions. The range in temperature is about 1.5 °C 
between 125 and 250 m, while the salinity range is about 14 at 125 m, 
decreasing to about 0.14 at 250 m depth, again indicative of the seasonal 
and yearly variability that can be expected in these areas during this 
period. 

During April-June, both "summer" and "winter" conditions may 
occur. Conditions in April 1955 and 1968 were generally characteristic of 
"summer" (Fig. 95, 96), whereas during April 1969, conditions were generally 
typical of those for "winter" (Fig. 97). 
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The near-isothermal feature of the temperature structure in late 
winter is of considerable significance, as surface conditions in this period 
generally reflect the subsurface conditions to depths of 150-200 m (p.113). 
Thus, the anomalies in the long-term records of sea surface temperature at 
the lightstations are considered to reflect corresponding anomalies in the 
subsurface waters to at least these depths (150-200 m), in these areas, 
during late winter. It follows that, since there is good coherence between 
sea level at Prince Rupert, zonal Ekman transport at 50 °N, 130 °W and sea 
surface temperature anomalies, any or all of these can be used in Queen 
Charlotte Sound and Hecate Strait as indices of subsurface temperature 
conditions during late winter. As noted earlier Barber (1957a) suggested 
sea level at Prince Rupert as an index of subsurface temperature 
conditions. 

A schematic diagram indicating the approximate overall annual 
range and the range of "summer" and "winter" conditions for the subsurface 
waters (those below 125 m) is presented in Fig. 98. The overall range in 
temperature is about 3.5 °C at 125 m, decreasing to about 1.3 °C at 300 m 
depth. Similarly, the salinity range decreases from about 1.8Z at 125 m to 
0.3I at 300 m depth. Incidently, the figure also shows the large 
variability in temperature and salinity characteristic of depths between the 
surface and 125 m. 

G. Vertical Sections of Temperature, Salinity, Density and Dissolved  
Oxygen Content in Queen Charlotte Sound and Hecate Strait.  

Vertical sections of temperature, salinity, density (as given by 
sigma-t) and dissolved oxygen content along six sections transecting Queen 
Sound and Hecate Strait reflect the seasonal sequence of events as well as 
the spatial and yearly variability of these properties and of flow in these 
areas. Two sections transect Queen Charlotte Sound and four transect Hecate 
Strait (Fig. 99). Most of the data presented are those for 1954-55. The 
remainder are those for 1961-62 (section 4) and for 1967-70 (sections 1 and 
2). Figures for this sub-section start on page 166. 

1. Section 1 - Queen Charlotte Sound (Fig. 100-110).  

In early May 1954, vertical and horizontal gradients of properties 
were small throughout this section (Fig. 100). In the western part of the 
section, there is evidence of a deepening of the isolines shoreward, at 
least in the upper layer to about 75 m depth. Near the mainland coast, 
temperatures and dissolved oxygen content were relatively high, and 
salinities and densities were relatively low, in the near-bottom waters at 
100-150 m depth. Temperatures and salinities appear to fall within the 
range of typical "winter" conditions (Fig. 98). 

By early July 1954, temperatures in the upper 75 m of the water 
column had increased as the summer thermocline developed (Fig. 101). 
However, salinities in this layer were very similar to those observed in 
May, except for the formation of a thin surface layer of low-salinity water 
near the coast. As noted previously, this indicates the effect of the early 
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summer discharges from the large snow-melt-fed rivers. Below 100 m depth,

temperatures and dissolved oxygen decreased, and salinities and densities
increased from May to July. The greatest change occurred between the depths
of 100 to 150 m near the shore; there the decrease in temperature and
dissolved oxygen was about 1.0°C and 3 ml/1, respectively, and the increase
in salinity about 0.51, indicating a relatively late and abrupt return to
"summer" conditions (Fig. 98).

In the latter part of August, temperatures in the surface layer

increased as the summer thermocline developed, with the warmest waters

occurring to seaward (Fig. 102). In the western part of the section,
temperatures and dissolved oxygen at depths below 100 m were slightly

higher, and salinities and densities were slightly lower, than those in
July. The apparent net increase in heat content of these waters is opposite
to that reported for the waters of Dixon Entrance during this period (Tabata
1958). However, near the coast, conditions in the deeper waters remained
almost unchanged between the beginning of July and late August. The

deepening of the isolines (except those of dissolved oxygen) shoreward to

depths of at least 125 m is again evident in the western part of the
section.

In early December 1954, surface cooling and mixing as well as
advective processes dominated, resulting in a marked thickening of the
surface mixed layer and a downward displacement of the vertical gradients

associated with the thermocline, halocline, pycnocline and oxycline
(Fig. 103). With respect to conditions in mid-August, marked increases in
temperature and dissolved oxygen and decreases in salinity and density,
occurred to depths of at least 300 in. At 150 m depth, the changes in

temperature, salinity and dissolved oxygen were relatively large, about 2°C,
U and 1.5 ml/1, respectively, from August to December. These conditions

are indicative of the extremes of "winter" conditions. The downward slope
of the isolines in the upper portion of the water column, observed in the
western part of the section in May-August, was absent.

In February 1955, sampling depths were limited to those above
100 m, but the data show a typical decrease in temperature of about 2.5°C
(Fig. 104) from that observed at corresponding depths in December.

In mid-April 1955, temperatures were relatively uniform to about
150 m depth (Fig. 105), and were about 1°C lower than observed in February.
Below 125 m depth, conditions were in general similar to those observed in
early May 1954.

By late June 1955, the distributions of properties were very
similar to those observed in early July 1954, particularly in the subsurface
waters (Fig. 106). The downward slope of the isolines shoreward to depths
at least 150 m is clearly evident in the western part of the section. This

appears to be a spring and summer feature of the structure along this
section.

During the period 1967-70, continuous profiles of temperature and

salinity were obtained along approximately the same track as in 1954-55
(Fig. 99). The 1967-70 observations extended further to seaward, but
covered only two seasonal periods, March-April and September-October. The
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distributions of temperature and salinity obtained (no dissolved oxygen data 
available) provide additional information on the seasonal and yearly 
variations - especially at depth - in these properties (Fig. 107-110). 

In mid-September 1967, the isolines at depths below 250 m deepened 
toward the continental slope (Fig. 107), whereas in April 1968 the 
corresponding isolines rose toward the shelf area (Fig. 108). As a result, 
the continental slope waters at these depths were colder and more saline in 
the latter period. 

Temperature and salinity conditions at depths between 150 and 
300 m depth were generally similar in April 1969 and March 1970 in the 
western part of the section (Fig. 109 and 110), but were considerably warmer 
and less saline than those in April 1968 (Fig. 108). Also, near the coast 
temperatures were higher and salinities were lower at depths between 100 and 
150 m in April 1969 and March 1970 than in April 1968. Further, 
temperatures and salinities of these waters were generally similar in April 
1968, July 1954 and June 1955. This indicates a relatively early intrusion 
of the cold saline oceanic waters, marking an early return to "summer" 
conditions, in April 1968. 

Temperature inversions are characteristic of the temperature 
structure in late winter and early spring. These data show that inversions 
occurred to depths of about 175 m. 

2. Section 2 - Queen Charlotte Sound (Fig. 111-121).  

Vertical sections are presented for the same seasonal periods in 
1954-55 as for Section 1, except that data are not available for December 
1954. Distributions of temperature and salinity for September 1967, April 
and October 1968, and April and October 1969 are also shown. 

In general, the seasonal sequence of events was similar to that 
noted for Section 1. An intrusion of relatively cold, saline, dense and low 
dissolved oxygen content water occurred along the continental slope and 
shelf between early May and early July 1954 (Fig. 111 and 112). 

By the latter part of August temperature and dissolved oxygen 
content were slightly higher, and salinity and density slightly lower 
(Fig. 113) than those observed in July in the shelf and slope waters; 
similar conditions were noted in Section 1. 

In February 1955, the dominant feature was the deepening of the 
isolines shoreward near the mainland side of the section (Fig. 114). This 
indicates an onshore movement of surface waters -  resultingin a relatively 
strong northward flow. This is considered a characteristic feature of the 
winter circulation. 

The downward slope of the isolines in mid-April (Fig. 115) also 
indicates northward flow; it appeais to be weaker but to extend further 
seaward than in February. Conditions in the subsurface waters in mid-April 
approached those observed in early May 1954. 
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By late June 1955, conditions in these waters (Fig. 116) were 
similar to those in early July 1954 (Fig. 112). 

The continental slope waters at depths below 250 m were of higher 
temperature in September 1967 than in April 1968 (Fig. 117 and 118), as 
noted for Section 1. However, the salinity of these waters was generally 
similar for these periods. Also, in April 1968, temperatures of the waters 
of the continental shelf and slope, between 150 and 300 m depth, were up to 
1 °C lower than those in October 1968 (Fig. 119), April 1969 (Fig. 120) and 
October 1969 (Fig. 121), except near the mainland coast. Here, near-bottom 
water temperatures were similar (-7°C) in April 1968 and April 1969, and 
similar (.-6.5 ° C) in October 1968 and October 1969. 

3. Section 3 - Hecate Strait (Fig. 122-126).  

A significant feature of this section is the difference between 
the properties of the waters in Hecate Strait and those to the east of the 
sill on the mainland side of the Strait. In all periods for which there are 
data, waters below 50 m depth in the latter area were of higher temperature 
and dissolved oxygen and of lower salinity and density than those in the 
former (Fig. 122, 124, 125). 

In July and August 1954 (Fig. 123 and 124), the subsurface waters 
were of lower temperature and dissolved oxygen content and of higher 
salinity and density than those in May 1954, with the extreme of "summer" 
conditions again occurring in July, as noted for sections 1 and 2. Another 
significant feature is the difference in the slope of the isolines in July 
and August. In July the isolines sloped slightly downward toward the 
eastern shore between depths of 50 and 150 m, while in August they appeared 
to slope upward. This indicates an upwelling or divergent condition along 
the eastern shoreline in August, which would be accompanied by a southward 
flow in this area of Hecate Strait. This is opposite to the convergent 
condition and northward flow inferred from the slight downward slope of the 
isolines in July. This change may account for the change in properties from 
May to August in the waters east of the sill, where, below the sill depth, 
there was a slight decrease in temperature and dissolved oxygen and a slight 
increase in salinity and density. 

The deepening of the isolines near the mainland coast in February 
and April 1955 (Fig. 125-126), as occurred in Section 2 to the south, 
reflects continuity in the northward flow between sections 2 and 3. 
Conditions in the subsurface waters in April 1955 were similar to those in 
May 1954. 

4. Section 4 - Hecate Strait (Fig. 127-134).  

Data obtained along Section 4 in 1954-55 and 1961-62 are 
presented. In July 1954, the main features were the general downward slope 
of the isolines throughout much of the water column and the retention of a 
relatively thick surface layer of low salinity at the eastern shore, 
indicating a convergent situation (Fig. 127). 

By August 1954, the slope of the isolines in the upper 100 m of 
the water column was reversed - the isolines sloped upward in the eastern 
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part of the section (Fig. 128). As in Section 3, this implies an upwelling 
condition, resulting in relatively low temperatures from 0 to 100 m depth, 
and an offshore and southward flow of surface waters along the mainland side 
of the Strait. In the deeper waters (below 100 m depth), temperature and 
dissolved oxygen appear to be slightly lower, and salinity and density 
slightly higher, in August than in July, opposite to the change in 
conditions that occurred in Queen Charlotte Sound and in southern Hecate 
Strait during these two months. 

In February 1955, temperatures were relatively uniform throughout 
the water column (Fig. 129), with the bottom water temperatures at 150 m 
being about 2 °C higher, and salinities about 0.8L lower, than those observed 
in August. The downward slope of the isohalines and isopycnals indicates an 
extension of the northward flow that was noted to the south of this 
section. 

The northward flow was still evident in April 1955 (Fig. 130), but 
temperatures throughout the water column had decreased about 1°C from those 

observed in February. 

By late June 1955, conditions in the subsurface waters (Fig. 131) 

had returned essentially to those observed in early July 1954, except that 
dissolved oxygen was slightly lower in June 1955 than in July 1954. 

In the latter part of July 1961, conditions were in general 
similar to those observed in late August 1954, and are considered to be 
typical of mid-summer conditions (Fig. 132). By early October 1961, 
temperatures and dissolved oxygen had decreased, and salinities and 
densities had increased, in the surface layer. However, changes in the 
bottom waters at 150 to 200 m depth were very small and, except for 
dissolved oxygen, opposite to those in the surface layer, i.e. temperature 
increased and salinity and density decreased slightly (Fig. 133). 

The mid-March 1962 distribution shows relatively cold and high-
salinity conditions above 100 m depth. A southward flow between the surface 
and 100 m depth is indicated, opposite to that noted in February and April 
1955. The southward flow is reflected in the low sea levels at Prince 
Rupert for this period. 

5. Section 5 - Hecate Strait (Fig. 135-140).  

This section extends across Hecate Strait past the northern tip of 
Banks Island (Fig. 99). In May 1954, the depths of the isolines remained 
relatively constant across the Strait (Fig. 135). The difference in the 
vertical distribution of properties west and east of Banks Island is 
evident - below 50 m depth temperature and dissolved oxygen were higher, and 
salinity and density lower, to the east of Banks Island than to the west. 

In early July 1954, a marked downward slope of the isolines 
(toward the eastern shore) in the upper layer is indicated (Fig. 136). In 
the deeper waters, temperature, salinity and density increased, and 
dissolved oxygen decreased, with respect to conditions in May. 
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In late August, a reversal in the slope of the isoline from that 
observed in July is indicated to occur to at least a depth of 50 m 
(Fig. 137), again reflecting an upwelling condition and a change from 
northerly to southerly flow. As a result, the near-surface waters on the 
western side of the Strait were considerably warmer than those adjacent to 
the eastern shore. 

In February 1955, the waters were virtually homogeneous throughout 
the water column (to at least 100 m), with temperature decreasing slightly 
(-0.2 °C), and salinity increasing (-0.4L), from east to west (Fig. 138). 

In April 1955 (Fig. 139), temperatures were lower ( 1°C) and 
salinities were higher (~0.2l) than those observed in February. 

By June 1955, the vertical structures associated with summer 
conditions are apparent (Fig. 140). Also, conditions were generally similar 
to those in early July 1954. 

A dominant feature in this section was the absence of any 
appreciable vertical gradients in the relatively shallow waters on the 
western side of the Strait throughout the year. 

6. Section 6 - Hecate Strait (Fig. 141).  

Vertical distributions of properties across northern Hecate Strait 
are displayed in Fig. 141. The dominant features were: the high temperature 
and dissolved oxygen contents and low salinities and densities of the 
bottom waters in July, as compared to those for the other periods shown; and 
the absence of any appreciable vertical gradients in the shallow waters on 
the western side of the Strait throughout the year, also noted in Section 
5. From mid-July 1954 to late August, temperature and dissolved oxygen 
decreased, and salinity and density increased, at depths below 50 m. 

In winter (February 1955), the waters on the western side of the 
Strait were slightly colder than those on the mainland side. The 
distributions for June 14 and 19 show the marked changes that can occur in 
the surface layer over a relatively short period (5 days). 

H. Tidal and Residual Currents in Hecate Strait and Dixon Entrance. 

Most of the available information on tidal and residual currents 
at depth resulted from the direct current observations made during the 
Hecate Project (1954-55). Observations were made at various levels from the 
surface to near-bottom at several locations in Queen Charlotte Sound, Hecate 
Strait and Dixon Entrance (Fig. 13) (Pacific Oceanographic Group 1955b,c). 
Observations at the surface were made with a current drag and at depth with 
an Ekman current meter. The current drag consisted of crossed metal vanes 
buoyed up with 4-inch glass balls. The dimensions of one face of the vane 
was 1 1/2 ft square (0.14 m2 ). Observations were made hourly or half-
hourly from an anchored vessel, generally over a 50-hour period. Some of 
the results for Queen Charlotte Sound and Dixon Entrance have been reviewed 
in an earlier section (p. 45,50). Included here is a very gross analysis of 
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the data from 6 stations in Hecate Strait (Sta. 42-44; Sta. I-1 - I-3) and 
one station in Dixon Entrance (Sta. 65)(Fig. 13), at which observations were 
made over a 50-hour period. The data are presented as progressive vector 
diagrams to show the general features of the tidal and net flows. 
Representative wind vectors for wind speeds greater than 5 m/sec (10 kn) are 
included in the surface (0 m) and/or 10 m plots. Times of high and low 
water are also indicated, and are those predicted for Prince Rupert 
(Department of Mines and Technical Surveys 1954). Net speeds and directions 
for each depth are summarized in tabular form. Some of these results and 
diagrams originate from earlier analysis of these data by F. G. Barber and 
his associates. 

Before discussing the tidal and current data, the results of 
experiments to determine the effect of the ship's roll upon the behavior of 
the Ekman current meter (Tabata and Groll 1956) are reviewed, since some of 
the measurements were made in "roll" conditions with such meters. Tests 
were made employing a pair of meters in the following experiments: (1) 
simultaneous measurements from a steady ship in a calm seaway; (2) 
simultaneous measurements from a rolling ship in a rough seaway; and (3) 
simultaneous measurements during an artificial ship's roll in which one 
instrument was given an oscillation simulating a motion caused by a ship's 
roll while the other was kept stationary. Direct underwater observations of 
the behavior of the instruments were made during the third experiment. 

For a steady ship in a calm seaway, the current speeds recorded by 
the two instruments agreed to within 5% and the directions to within 4 
degrees when the current speeds ranged from 5 to 45 cm/sec. In weaker 
currents (<5 cm/sec) the disagreement in directions was about twice as 
large. 

During experiment (2), sea/swell conditions varied from 0/0 to 2/3 
on the Beaufort scale, creating a ship's roll of up to 20 ° . During 
sea/swell less than 1/1 (Beaufort scale of 1 is equivalent to sea/swell 
heights of 0.25 to 0.75 m), the ship's roll was small; differences in 
recorded speeds were the same as those measured from a steady ship, whereas 
differences in direction were about twice as great, 10 °  compared to 4 ° . 
However, when a sea/swell of 1/2 or 2/1 (2 is equivalent to heights of 0.75 
to 1.25 m) was reached, accompanied by an increase in the ship's roll, the 
disagreements in speed doubled from 5 to 10%, while those in direction 
remained unchanged. Tabata and Groll considered that recorded speeds were 
trustworthy only when sea/swell conditions are <1/1, and too high when they 
are >1/1. Directions appear reliable (within 115° ) to sea/swell as large as 
2/3 (3 is equivalent to heights of 1.25 to 1.75 m). 

The third test was conducted to determine the effect of a 10 to 
15 °  artificial roll of the ship on the meter readings. When the current 
speeds ranged from 20 to 30 cm/sec (recorded by the stationary instrument), 
the oscillating instrument recorded speeds that were greater than 1.5 times 
those of the stationary one. However, the mean difference in direction only 
amounted to 4°. When currents were less than 10cm/sec, the recorded speed 
of the oscillating instrument was again much larger, and there was a wide 
variation in direction. The authors note that "the method used here in 
creating the motion caused by an artificial roll may not be an accurate 
reproduction of the ship's roll in the sea where irregular rolling occurs, 
but it is assumed that it can be used to first approximation." 



With due consideration of the conclusions from these experiments

with respect to the wind and sea/swell conditions prevailing at the time of
the observations and also of runoff conditions, results from the Hecate

Project are considered to reflect the general characteristics of the tidal

and net flows, in particular those in the deeper waters below 10 m depth, in
these areas.

1. Tidal and Residual Currents in Hecate Strait.

Direct current observations were made at Sta. 42-44 across central

Hecate Strait during May 19-25, 1954 and at Sta. I-1 - I-3 across southern
Hecate Strait during August 30-September 6,1954. The "finer structure" of

the currents is described first, followed by a short discussion of the net
motions involved. The data for each section are presented in numerical
sequence of stations (i.e., 42, 43, and 44; I-1, I-2, and I-3). However, it

should be noted that this is the reverse of the chronological order in which
the stations were occupied.

At Sta. 42 (depth 182 in, 100 fm), located on the mainland side of

Hecate Strait, observations were made hourly at 0 and 10 m by current drag,
and at 20, 30, 50, 100 and 150 m depth by Ekman current meter during May
23-25, 1954. During the period of these observations, winds were southerly,
generally varying in strength from light airs to 3 m/sec (6 kn) - except for
a brief period during the latter part of the experiment, at which time wind

speeds of 6 m/sec (12 kn) were recorded. Progressive vector diagrams for
the currents at 10, 20, 30, 50, 100 and 150 m depth are presented in
Fig. 142-147. The currents at 0 are not presented as they were similar in

both direction and speed to those at 10 in. Wind vectors are indicated by

the dashed lines and arrows in Fig. 142.

The currents tended to rotate with a semi-diurnal tidal period
(Fig. 142-147). The rotation was most marked at 20 and 30 in. At 100 m, the
changes in direction of the currents were such that a "saw-toothed"

configuration was the significant feature. At the shallower depths, 0-50 in,
the rotation if present was generally clockwise, but at 100 and 150 m, it
was predominantly counter-clockwise. These results are consistent with

those of MacKay (1954), who also reported a counter-clockwise rotation at
100 in depth, opposite to that at shallower depths, as previously noted for
northern Hecate Strait (p. 46).

Speeds were generally a maximum during the mid-tide stage and a
minimum during the turn of the tide (reference station, Prince Rupert).

Maximum speeds of 40 to 50 cm/sec (0.8 to 1 kn) were recorded at all depths

except 10 in, but the observations were few - only 1 to 3 at each depth. An
analysis of the percentage frequency of observationswithin 10 cm/sec

increments (0-9, 10-19 cm/sec, etc.) showed that, at all depths sampled the

dominant speeds were 10-29 cm/sec (0.2-0.6 kn) - for about 60 to 70% of the
observations (reported here to the nearest multiple of 5%).

At Sta. 43 (depth 60 m, 33 fm), located in mid-strait,
observations were also made approximately hourly at 0 and 10 m (current
drag), and half-hourly at 10, 20, 30 and 50 m depth (Ekman current meter)
during May 21-23, 1954. At the time of these observations, relatively
strong southeast winds prevailed, varying in strength between 5 and 11 m/sec
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(10 and'22 kn). During the latter part of the observational period, the 
state of the sea caused the vessel to roll quite heavily. Progressive 
vector diagrams are presented for all depths (Fig. 148-152). 

At each depth the currents exhibited a very marked clockwise 
rotation with a semi-diurnal tidal period (Fig. 149-152). Speeds were 
generally at a maximum (40-60 cm/sec) (0.8-1.2 kn) during the mid-tide 
stage, and at a minimum during the turn of the tide. Generally, the 
stronger tidal currents occurred more frequently during the ebb than during 

the flood tide. For example, at 20 m the percentage frequency of currents 

between 45 and 60 cm/sec was about 25% during the ebb tides, but only about 
15% during the flood tides (approximately 50 observations at 1/2 hourly 
intervals on the flood and on the ebb stages. At 30 m, the frequency of 

currents of these magnitudes was 25% for the ebb and 5% for the flood. The 
dominant speeds - those characterizing between 50 and 70% of the 
observations - were found to be between 20 and 39 cm/sec (0.4 and 0.8 kn). 

At Sta. 44 (depth 33 m, 11 fm), located on the western side of the 

Strait, observations were also made half-hourly at 10 and 17 m with an Ekman 
current meter (observations made at 0, 5 and 10 m with a current drag are 
not presented as generally they weré not taken regularly. Relatively strong 
winds prevailed during the first 8 hours of the observations (May 19-21, 
1954). Thereafter, winds were relatively weak - generally less than 
4.6 m/sec (9 kn) - with occasional periods of light airs. 

Tidal currents at 10 and 17 m were very similar (Fig. 153-154). 
The rotary nature of the currents noted at the other stations was entirely 
absent at all depths sampled. Instead, the currents parallelled the coast, 
reversing direction with each change of the tide. Maximum tidal currents 
were again observed during mid-tide, and were generally between 40 and 
60 cm/sec (0.8 and 1.2 kn). The dominant speeds were between 20 and 49 
cm/sec (0.4 and 1 kn) - 60 and 70% of the observations at 10 and 17 m, 
respectively. 

A summary of net speeds and directions over the 50-hr period of 
observatiOns at the 3 stations is presented in Table 5. At Sta. 42, net 
speeds were similar, 3-5 cm/sec (0.08-0.1 kn), at all depths except at 50 m, 
at which the net velocity was about 3-5 times as large as those at the other 
depths. These are equivalent respectively, to net excursions of 2.7 to 4.5 
km and 12.6 km over a tidal day. From 0 to 50 m net flows were southerly, 
but at 100 and 150 m were westerly and northwesterly, respectively. 

At Sta. 43, net flows were northerly at 0 and 10 m, but the net 
speed at 0 m was twice that at 10 m. This difference may be attributed to 
wind, enhancing the flow at the surface to a greater degree than that at 
10 m depth. At 20, 30 and 50 m, the net flows were southerly, 4-5 cm/sec 
(0.08-0.1 kn), equivalent to daily net excursions of about 3.5-4.5 km. 

At Sta. 44, net flows at 10 and 17 m were southerly, but the 
speeds were relatively small (<1 to 2 cm/sec) (<0.02 to 0.04 kn), resulting 
in small net excursions over a tidal day. 
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Table 5. Summary of net speeds and directions of currents in Hecate Strait,
May 19-25, 1954.

Station 42 Station 43 Station 44

Depth Speed Dir. Speed Dir. Speed Dir.
(m) cm/sec (°T) cm/sec (°T) cm/sec (°T)

0 4 150 8 345 - -
10 4 150 4 030 2 105
17 - - - - <1 220
20 5 190 4 225 - -
30 5 175 4 205 - -
50 14 180 5 195 - -

100 5 270 - - - -
150 3 325 - - - -

(Speeds are reported to nearest whole number of cm/sec and directions to

nearest multiple of 5°.)

At Sta. I-1 (depth 88 m, 48 fm), located on the southwest side of

Hecate Strait, observations were made hourly at 10, 20, 30, 50 and 75 m
(Ekman current meter) and half-hourly at 0 m (current drag) during September

4-6, 1954. Light airs prevailed for the first 9 hours of these
observations. Thereafter, relatively strong southerly winds prevailed,
ranging from 7 to 13 m/sec (14 to 24 kn). Progressive vector diagrams are

presented for all depths (Fig. 155-160).

The tidal currents showed some rotation at all depths (Fig.

155-160). However, no rotation was observed at 0 and 10 m subsequent to the

development of strong southerly winds ( Fig. 155-156). The rotation was

generally clockwise at depths of 0 to 50 m. At 75 m, the rotation was

counter-clockwise. Maximum speeds were generally between 30 and 50 cm/sec
(0.6 and 1 kn) at depths of 0 to 30 m. However, during the period of strong
southerly winds, current speeds of 70 to 100 cm/sec ( 1.4 to 2 kn) were

observed at 0 m. At depths of 50 and 75 m, maximum speeds were 30-40 cm/sec
(0.6-0.8 kn). The dominant speeds were 10-39 cm/sec (0.2-0.8 kn) at 10, 20
and 30 cm - for about 80% of the observations - and 10-29 cm/sec ( 0.2-0.6

kn) at 50 and 75 m - for about 75% of the observations.

At Sta. 1-2 (depth 137 m, 75 fm), located in mid-strait,

observations were made hourly at 10, 20, 30 (period of observations was only

32 hours) 50, and 100 m (Ekman current meter) and half-hourly at 0 m

(current drag) during September 2-4, 1954. Winds were northerly, but
generally less than 6 m/sec (12 kn), except for a 12-hour interval during
the mid-period of the observations, at which time they varied between 7 and
9 m/sec (14 and 19 kn). Progressive vector diagrams are presented for 0,

10, 20, 50 and 100 m (Fig. 161-165).

Currents were similar at 0, 10 and 20 m (Fig. 161-163). There was
little rotation at these depths, in sharp contrast to the marked rotation



-  86  - 

observed at these depths at Sta. 43 (Fig. 148-150), also located in 
mid-strait. At 50 m, currents rotated (clockwise) to some degree (Fig. 
164). At 100 m, the rotation was predominantly counter-clockwise 
(Fig. 165). From 0 to 20 m depth, maximum speeds of about 40-60 cm/sec 
(0.8-1.2 kn) were observed. Generally speeds decreased with depth, with 
maximum speeds between 30 and 50 cm/sec (0.6 and 1.0 kn) at 50 m, and 
generally between 20 and 30 cm/sec (0.4 and 0.6 kn) at 100 m depth. The 
dominant speeds at 0 and 10 m were 10-39 cm/sec (0.2-0.8 kn) - (60 and 75%, 
respectively), 10-29 cm/sec (0.2-0.6 kn) at 20 m (50%), 20-29 cm/sec 
(0.4-0.6 kn) at 50 m (50%) and 10-19 cm/sec (0.2-0J4 kn) at 100 m depth (for 
65% of the observations). 

At Sta. I-3 (depth 234 m, 128 fm), located on the eastern side of 
the Strait, observations were made hourly at 10, 20, 50, 100 and 200 m 
(Ekman current meter) and half-hourly at 0 m (current drag) during August 
30-September 1, 1954. Winds were southeasterly for the greater part of the 
experiment, changing from light airs to northwesterly during the latter part 
of the period. However, the winds at all times were relatively weak, less 
than 5 m/sec (10 kn). Progressive vector diagrams are shown for all depths 
(Fig. 166-171). 

Similar characteristics to those noted at the other stations were 
generally observed. There is evidence of intervals counter-clockwise 
rotation at 100 m depth, in contrast to the slight clockwise rotation 
indicated at the other depths. Maximum velocities were relatively large, at 
0 and 10 m, 50-70 cm/sec (1.0-1.4 kn); at 20 m, 40-60 cm/sec (0.8-1.2 kn); 
and at 50-200 m depth, 30-40 cm/sec (0.6-0.8 kn). However, the dominant 
velocities were 20-49 cm/sec (0.4-1 kn) at 0 m (65%), 20-39 cm/sec (0.4-0.8 
kn) at 10 m (65%), 20-39 cm/sec (0.2-0.8 kn) at 20 m (55%); and 10-29 cm/sec 
(0.2-0.6 kn) at 50, 100 and 200 m depth (for about 80% of the 
observations). 

The net speeds and directions are summarized in Table 6. At Sta. 
I-1, the net flows were northerly, with speeds generally decreasing with 
depth. Net  excursions over a tidal day ranged from 27 km at 0 m to about 
6.5 km at 75 m depth. 

At Sta. I-2, the net flows were southeasterly from 0 to 50 m, 
opposite in direction to those at Sta. I-1, and westerly at 100 m depth. 
Net  excursions over a tidal day were relatively great at depths of 0 to 30 
m, averaging about 20 km. At 50 and 100 m, the net daily excursion was only 
about 8 km. 

At Sta. I-3, the net flows were northeasterly and relatively 
strong at 0 and 20 m. At 100 and 200 m, net flows were considerably less 
than those at 0 to 20 m, and were southeasterly. Net  excursions were 
generally similar to those at other stations at corresponding depths. 
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Table 6. Summary of net speeds and directions of currents in Hecate Strait, 
August 31 - September 3, 1954. 

Sta. I-1  Sta. I-2 	 Sta. I-3 

Depth 
(m) 

Speed 	Dir. 	 Speed 	Dir. 	Speed 	Dir. 
cm/sec 	(°T) 	 cm/sec 	(°T) 	• cm/sec 	(°T) 

	

0 	 30 	350 	 24 	150 	27 	040 
10 	 20 	020 	 23 	140 	31 	045 
20 	 12 	000 	 24 	135 	22 	050 
30 	 9 	000 	 22 	145 
50 	 10 	030 	 8 	155 	10 	060 
75 	 7 	315 	 - 	- 	- 	- 
100 	 - 	- 	 9 	260 	9 	135 

	

200 	 - 	- 	 - 	- 	6 	120 

(Speeds are reported to the nearest whole number of cm/sec and 
directions to the nearest multiple of 5 degrees.) 

2. Tidal and residual currents in Dixon Entrance.  

Current observations were made hourly in south central Dixon 
Entrance - Sta. 65 (depth 84 m, 44 fm) at 0 m (current drag) and at 10, 30, 
50, and 75 m (Ekman current meter) during July 17-19, 1954. During this 
period, southerly winds prevailed, varying in strength from light airs to 
speeds of about 5 to 8 m/sec (10 to 15 kn). Progressive vector diagrams for 
each of the depths are presented in Fig. 172-177. 

The rotation of the currents was most marked at depths of 20 to 
75 m. At depths of 0 to 20 m it was either clockwise or counter-clockwise 
(Fig. 172-174), but at depths of 30 to 75 m predominantly clockwise 
(Fig. 175-177), with a semi-diurnal tidal period. At and near mid-tide 
stage, the prevailing direction of flow was generally east-west, 
parallelling the northern coast of Graham Island; notable exceptions were 
the northerly ebb flows at 0 and 10 m depth during a period when strong 
southerly winds prevailed. Apparently the wind-induced northerly flow was 
sufficiently strong to suppress the tidally-induced flow. However, the 
southerly winds appeared to have little effect on the direction of the flood 
flow at these depths. Also, at depths below 10 m, the winds appeared to 
have little or no effect on the directions of either the flood or ebb tidal 
currents. Maximum speeds ranged from about 50 to 65 m/sec (0.8 to 1.3 kn) 
at all depths, and they generally occurred during the mid-range of the flood 
and the ebb tides. The dominant speeds were 10-29 cm/sec (0.2-0.6 kn) at 0 
(70%) 10 (65 7. ), 20 (65%) and 30 m (55%); 20-39 cm/sec (0.4-0.8 kn) at 50 m 
(80%) and 30-49 cm/sec (0.6-1 kn) at 75 m depth (for 60% of the 
observations). 

Net speeds varied from 4 to 12 cm/sec, while directions varied 
from northeasterly (0 m), to easterly (10 m), to southeasterly (20-75 m) 
(Table 7). At the surface and 10 m, net flows averaged 11 cm/sec. Between 
20 and 75 m, they averaged about 6 cm/sec (0.12 kn), equivalent to a net 
excursion of about 5.5 km over a tidal day. 
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Table 7. Summary of net speeds and directions at Sta. 65 
in Dixon Entrance, July 17-19, 1954. 

Depth 	 Net speeds 	 Direction 

(m) 	 (cm/sec) 	 ( °T) 

0 	 10 	 045 
10 	 12 	 090 
20 	 6 	 105 
30 	 8 	 145 
50 	 4 	 135 
75 	 6 	 135 

(Speeds are reported to nearest whole number of 
cm/sec and directions to nearest multiple of 5 ° .) 

3. Summary of tidal and residual currents  

Based upon the above-discussed results, as well as some obtained 
earlier, general statements on the tidal and residual currents in the region 
can be made. The currents tended to be rotary with a semi-diurnal tidal 
period. There were differences in the degree of rotation, with the most 
distinct rotation generally occurring at stations furthest from shore. At 
stations nearest to shore, little or no rotation was found; the dominant 
directions were parallel to the coast. The rotation was clockwise from the 
surface to 75 m depth, except at Sta. I-1, where the rotation was 
predominantly anti-clockwise at 75 m depth. At depths of 100 and 150 m, the 
rotation was predominantly anti-clockwise, while at 200 m the rotation was 
again clockwise. 

Maximum tidal currents varied with position, but were of the order 
of 40-60 cm/sec (0.8-1.2 kn), generally decreasing with depth. Maximum 
flows generally occurred during the mid-range of the tide, and minimal flows 
occurred close to, or at, the times of high and low water. There appeared 
to be a variation in current speed and direction associated with the diurnal 
inequality of the tidal amplitudes. The greater current and more evident 
rotation occurred between higher high water and lower low water. 

Calculated net movements indicate net flows of about 5 to 
25 cm/sec (0.1 to 0.5 kn). The largest such motions were generally observed 
in the surface waters, although at some positions they were greatest at 
intermediate and near-bottom depths. The near-surface net flows appear to 
be related both to wind and to the discharge of fresh water from runoff, and 
thus it is to be expected that they would vary seasonally. 
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Fig. 50. Monthly mean sea surface temperature and difference from  long-terni  monthly mean at 
Langara Is. and Triple Is., 1936-73 (heavy vertical bar indicates a difference greater than 
one standard deviation). 
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Fig. 51. Monthly mean surface salinity and difference from the long-term monthly mean at 
Cape St. James and Ivory Is., 1934-70 (heavy bar indicates a difference greater than one 
standard deviation). 
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Fig. 61. Temperature (°C) distribution at 5 m depth, October 3-9, 1961. 
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Fig. 62. Temperature (°C) distribution at 5 m depth, January 17-24, 1962. 
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Fig. 63. Temperature ( °C) distribution at 5 m depth, March 13-20, 1962. 
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Fig. 64. Salinity (%;0) distribution at 3 m depth, May 3-28, 1954 
(arrows indicate direction of flow). 
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Fig. 66. Salinity (%;(;) distribution at 3 m depth, August 17-September 9, 
1954 (arrows indicate direction of flow). 
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Fig. 68. Salinity (go) distribution at 3 m depth, February 6-13, 1955 
(arrows indicate direction of flow). 
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Fig. 69. Salinity ( go) distribution at 3 m depth, April 14-18, 1955. 
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Fig. 70. Salinity ($o) distribution at 3 m depth, May 30-June 24, 1955 
(arrows indicate direction of flow). 
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Fig. 72. Salinity (%;0) distribution at 5 m depth, June 21-29, 195 9  
(arrows indicate direction of flow). 
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Fig. 73. Salinity (%0) distribution at 5 m depth, July 27 -August 3, 1961. 
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Fig. 103. Vertical sections of temperature, salinity, density and 

dissolved oxygen content in Queen Charlotte Sound, December 2, 1954. 
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Fig. 105. Vertical sections of temperature, salinity and density in 
Queen Charlotte Sound, April 18, 1955. 
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Fig. 106. Vertical Sections of temperature, salinity, density and 
dissolved oxygen content in Queen Charlotte Sound; June 22, 1955. 
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Fig. 122. Vertical sections of temperature, salinity, density and dissolved oxygen

content in Hecate Strait, May 5, 1954.
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Fig. 155. Progressive vector diagram of tidal currents at 10 m 
depth at Station I-1 in Hecate Strait, September 4-6,  1954.  
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Fig. 156. Progressive vector diagram of tidal currents at 10 m depth
at Station I-1 in Hecate Strait, September 4-6, 1954.
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Fig. 151. Progressive vector diagram of tidal currents at 20 m depth 
at Station I-1 in Hecate Strait, September 4-6, 1954. 
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Fig. 159. Progressive vector diagram of tidal currents at 50 ni depth 
at Station I-1 in Hecate Strait; September 4-6, 1954. 
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Fig. 161. Progressive vector diagram of currents at  O. m depth at 
Station I-2 in Hecate Strait, September 2-4, 1954. 
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Station 1-2 in Hecate Strait; September 2-4; 1954. 
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Fig. 164. Progressive vector diagram of tidal currents at 50 m depth 
at Station I-2 in Hecate Strait, September 2-4, 1954. 



STA. 1-2 
100 m. 

HW -1639 

FINISH 
0550/4/9/54 

0-) (NI 

1650 

0050/4 0950 
LW-0953 

START 
0050/3  f 	 0150/2/9/54 

1050 
LW-IO27 

0450 
HW - 0440 

2 
-L- 

km 

HW -1604 
1550 HW-0400 

0350 

2350 
LW-2318 

2250 
LW -2233 

Fig. 165. Progressive vector diagram of tidal currents at 100 m depth at Station 1-2 in Hecate Strait, 
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Fig. 168. Progressive vector diagram of tidal currents at 20 m depth at Station I-3 in

Hecate Strait, August 30-September 1, 1954.
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Fig. 170. Progressive vector diagram of tidal currents at 100 m depth 
at Station 1-3 in Hecate Strait, August 30-September 1, 1954. 
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Fig. 171. Progressive vector diagram of tidal currents at 200 m depth 
at Station 1-3 in Hecate Strait, August 30-September 1, 1954. 
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Fig. 175. Progressive vector diagram of tidal currents at 30 m 
depth at Station 65 in Dixon Entrance, July 17-19, 1954. 
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Fig. 177. Progressive vector diagram of tidal currents at 75 m depth 
at Station 65 in Dixon Entrance, July 17-19, 1954. 
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